
A Model-Based Approach to Facilitate Design of
Homogeneous Redundant E/E Architectures

Hadi Askaripoor, Morteza Hashemi Farzaneh, and Alois Knoll
Chair of Robotics, Artificial Intelligence and Real-time Systems

Technical University of Munich
Boltzmannstr. 3, 85748 Garching bei München

Email:{hadi.askari,morteza.hashemi}@tum.de, {knoll}@in.tum.de

Abstract—Designing the new generation of electronic and
electrical architectures, guaranteeing reliable communication
is a prerequisite. The fulfillment of this requirement is a
challenging undertaking that requires advanced expertise and
is time-consuming. This paper presents a novel model-based
approach for automating the generation of optimized network
architectures in the design phase, supporting homogeneous
redundant routings. Our results indicate a linear growth of
architecture synthesis time if the number of applications is
growing while the number of nodes remains constant. Con-
versely, increasing the number of nodes results in exponential
growth of the architecture synthesis time. We believe that the
proposed approach contributes to facilitating the design of safe
E/E architectures.

Index Terms—Functional Safety, E/E Architectures, Model-
Based Development, Homogeneous Redundant Routings, Archi-
tecture Optimization.

I. INTRODUCTION

In the past decade, there has been significant development
of Electrical and Electronic (E/E) architectures in the automo-
tive industry. Advanced driver assistance systems and in-car
entertainment require a considerable amount of data trans-
mission over the vehicle network architecture. The reliability
of the data involved in safety-critical applications must be
guaranteed. Redundancy is one approach for improving the
reliability that is also defined in the automotive functional
safety standard ISO 26262 [1]. Therefore, the redundancy
path for critical data must be specified and ensured in the
early design phase of the architecture.

The design of reliable data routes in compliance with ISO
26262 is an elaborate engineering task, that is time consuming
and also requires domain-specific knowledge.

According to ISO 26262, redundancy for the provision of
fault-tolerance comprises two types: homogeneous and het-
erogeneous redundancy. Homogeneous redundancy requires
mandatory duplication of the elements, either hardware com-
ponents or software processes. In addition, it concentrates
on the outcomes of the hardware transient faults as well
as random faults in the design phase. On the other hand,
heterogeneous redundancy uses the software processes to
provide the redundancy for the hardware components.

This paper presents a model-based approach for automating
the creation of reliable E/E network architectures in order
to generate single routes and Homogeneous Redundant (HR)
routes for safety-critical applications, based on predetermined

optimization objectives (e.g., reducing cost by minimizing the
number of allocated network links). In our approach, we col-
lect architectural requirements such as the number of nodes,
criticality level of the applications, and link cost. After analy-
sis of these requirements, they are automatically transformed
into constraints that represent the mathematical formulation
(using Integer Linear Programming (ILP)) of the defined
routing requirements. This transformation is performed by
the Model Driven Development (MDD) approach [2]. The
constraints are then solved based on predefined optimization
goals (e.g., by reducing the total number of network links
used). The result is an optimized E/E architecture supporting
reliability by redundant routes.

Since architecture synthesis time (the time required for
the generation of the architecture based on the predefined
requirements) plays a significant role in accelerating the
design and the development process, we present the synthesis
time measurements using three various scenarios.

This paper is structured as follows: the next section dis-
cusses the related work. Section III describes our method-
ology including the system model, constraints encoding,
optimization goals, and implementations. Section IV presents
the run time evaluation and finally section V presents further
steps and the conclusion.

II. RELATED WORK

The reliability of a heterogeneous automotive system using
Automotive Safety Integrity Level (ASIL) decomposition has
been studied by the authors in [3]. They presented two
heuristic algorithms to improve the reliability goal while min-
imizing the development cost for each ASIL decomposition
scheme. This work calculates the reliability based on tasks
mapped on the ECUs and their failure rates. The authors of [4]
and [5] have focused on meeting the real-time requirement
of distributed automotive applications while optimizing the
development cost. However, none of these studies created
any network architecture and routings. Lukasiewycz et.al [6]
proposed a graph-based model and a constraint system to
create routing of messages generated by an application which
is mapped on an ECU in the architecture. The same au-
thor [7] presented a binary encoding strategy for resource
allocation, binding the tasks, and routing the messages us-
ing Satisfiability (SAT)-encoding for the one-linear objective

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 3426

20
21

 IE
EE

 In
te

rn
at

io
na

l I
nt

el
lig

en
t T

ra
ns

po
rt

at
io

n
Sy

st
em

s C
on

fe
re

nc
e

(IT
SC

) |
 9

78
-1

-7
28

1-
91

42
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IT
SC

48
97

8.
20

21
.9

56
51

15

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:53:47 UTC from IEEE Xplore. Restrictions apply.

optimization. The new Time-Sensitive Networking (TSN)
standards improve the safety (e.g. by introducing mechanisms
for deterministic timing and high network reliability) of E/E
architectures. Optimization of routings in TSN have been
explained in [8]. These papers concentrate on the relation
between the schedule of the time-triggered traffic and the
message routing while, redundant routing is not discussed.
An automated approach, for the creation of low-redundant
and single routings in automotive architectures while con-
sidering predefined optimization goals using SAT-Decoding,
was explained in [9]. In this work, mapping of applications
on the resources, given to the system as inputs. In addition,
the generated routes were optimized based on the number of
allocated links and mean-time-to-failure (MTTF) (i.e., defined
as the individual failure rate for all architecture components).

The above approaches create routings for network archi-
tectures; however, they consider a predesigned architecture
as an input for the constraint system and do not create HR
routing. Moreover, none of these studies utilized a model-
based development approach.

III. METHODOLOGY

A. System Model

The graph-based model from [6], [9], which is an
extension of the model presented in [7], has been used.
Our model consists of three independent graphs, namely an
application graph, architecture graph, and mapping graph
which are explained in the following.

Architecture graph GArch(N, ~L) comprises nodes N which
are connected by directed links ~L. Each node can either be a
processor, a switch, or an ECU. A node can be connected to
one or multiple other nodes.

The application graph GApp(A,D) includes applications
A = As∪Ans as well as their data Ds and Dns respectively,
where the applications are either safety or non-safety critical.
Each datum is a directed edge between a defined application
as a source and another specified application as a destination.
An application always contains a datum which is safety-
critical or non-safety-critical. Each safety-critical application
as a source, in order to transmit its data to its relevant
destination, must meet the predefined safety requirements
(e.g., high-redundancy or low- redundancy, reliability, etc.)
while non-safety critical applications are exempted from these
requirements.

The mapping graph GM (A,N,M) contains applications,
which act either as senders Asen or receivers Arec, nodes, and
mapping edges. This graph illustrates on which node a certain
application (Asen or Arec) can be implemented. In case of the
mapping of Asen on a node, the related node is interpreted as
a source node (N = Ns) with mapping definition ms while
the node, which is allocated to Arec, becomes a destination
node (N = Nd) with mapping declaration md (N = Ns∪Nd,
m = {ms,md},m ∈M).

In our system model, each datum, d = {din, dout}, d ∈ D,
is sent by an application Asen as the sender and is received

by another application Arec as the receiver. For each datum
d, we define din (if it is received by a node) and dout (if it is
sent from a node). Each datum can also be routed over any
link, and any node. Moreover, it is assumed that all links can
be utilized by all existing data in the architecture graph.

The routing of each safety critical or non-safety critical
datum, is indicated by the routing graph GR (a subgraph
of GArch). GR consists of directed links ~L which include
routed data. Each ~L starts from the source node (Ns), where
the Asen is mapped, and ends at the destination node, Nd,
where Arec is implemented.

B. Constraints Encoding

In this subsection, we illustrate an approach for formu-
lating constraint sets explaining the system model with the
possibility of generating valid single routes and HR routes.

Similar to [6], [9], in this approach, the routing decisions
are explained by encoding a binary variable for each din and
dout so that these variables indicate whether the correspond-
ing din and dout are utilized for transmitting the related datum
D over a link ~L. As each din and dout belongs to a unique
link in our model, by using the relevant din or dout, the
related link is activated in order to route the corresponding
datum. To implement our approach, we encoded din, dout,
ms, and md, as binary variables in our constraint system.

For instance, din is translated as an incoming datum which
is allocated in the implementation system as a binary variable.
In this respect, if the relevant datum d enters into a node over
a link, its related din = 1; otherwise, din = 0.

1) Single Route or Non-Safety Critical Route Constraint
Set: to encode non-redundant routings or single routings,
the following constraints are utilized:

∀Asen∈ A, ∀Ns∈ N :∑
ms∈m

ms = 1 (1)

∀Arec∈ A, ∀Nd∈ N : ∑
md∈m

md = 1 (2)

∀dout∈ D, m ∈M :

ms − md −
∑

dout∈d

dout <= 0 (3)

∀din∈ D, m ∈M :

ms +
∑

din∈d

din <= 1 (4)

∀din∈ D, m ∈M :

md − ms −
∑

din∈d

din <= 0 (5)

∀dout∈ D, m ∈M :

md +
∑

dout∈d

dout <= 1 (6)

3427

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:53:47 UTC from IEEE Xplore. Restrictions apply.

∀din, dout∈ D, m ∈M :

ms − md +
∑

din∈d

din −
∑

dout∈d

dout = 0 (7)

∀ ~L1, ~L2,∀d = {dout, din}, d∈ D:

dout + din = 0 (8)

This constraint indicates that each application as a sender
can be mapped on a node just once (1). Accordingly, (2)
states that the application as a receiver can be bounded just
once as well. Constraint (3) enforces at least one out-going
datum (dout) over a link for the source node (Ns ⇒ ms = 1).
The source node, in the event of running an Asen on an
arbitrary node (Ns ⇒ ms = 1), is obliged to block all in-
coming data (din) which are coming from the other nodes,
according to constraint (4); as a result, there is no din for the
relevant node. Similarly to (3), but this time for a node as the
destination (Nd ⇒ md = 1), at least one in-coming datum
(din) over a link must be applied, according to constraint
(5). Constraint (6) expresses that the destination must not
have any activated out-going data (dout); in other words, if
(Nd ⇒ md = 1) ⇒

∑
dout = 0. Constraint (7) consists of

several explanations. If a node gets allocated for Asen as
well as Arec simultaneously, so that the node becomes a
source and a destination, it must not comprise any activated
data (din, dout) according to (7), while drawing attention
to constraints (4),(6) as well. Moreover, a node, allocated
as the source not the destination (i.e., ms = 1,md = 0),
must have exactly one activated out-going datum (dout) in
respect of (7). While, a node, assigned to Arec, must include
exactly one triggered in-coming datum (i.e.,

∑
din = 1)

w.r.t. constraint (7). In addition, based on (7), the nodes are
enforced, which are neither a source nor a destination for
routing a unique datum, to either have no triggered data (i.e.,∑

dout = 0,
∑

din = 0) or to have precisely one activated
in-coming datum and one activated out-going datum (i.e.,∑

dout = 1,
∑

din = 1). These constraints encode single
routings while avoiding routing cycles. In order to connect
the din to the dout while both nodes are connected by a
directed link, the constraint (8) is used. For instance, if the
dout routing out from N1, as the starting point of link ~L1,
over the link ~L1 becomes activated, the din routing into
N2, as the finishing point of the link ~L1, over the link ~L1

must be activated too in respect of (8). The same concept is
applied for ~L2.

2) HR Route Constraint Set for High Safety-Critical Pur-
poses: the constraints below encode the HR route, where
the generated topology for a specified datum includes at
least nhmr ∈ N HR routings, with duplication of the entire
routing elements including the nodes (except for the source
and destination nodes), and the links.
nhmr ∈ N is defined as a constant variable, which

determines the minimum number of devoted HR routings
for the generated topology corresponding to the selected

application graph.

∀dout∈ Ds, Ds ∈ D, m ∈M , nhmr ∈ N:

ms − md −
∑

dout∈d,d∈Ds

dout <= −nhmr (9)

∀din∈ Ds, Ds ∈ D, m ∈M , nhmr ∈ N:

md − ms −
∑

din∈d,d∈Ds

din <= −nhmr (10)

∀dout∈ Ds, Ds ∈ D, m ∈M :

ms − md +
∑

dout∈d,d∈Ds

dout <= 1 (11)

∀din∈ Ds, Ds ∈ D, m ∈M :

ms − md +
∑

din∈d,d∈Ds

din <= 1 (12)

∀d = {din, dout}∈ Ds, Ds ∈ D, m ∈M :

ms−md+
∑

dout∈d,d∈Ds

dout−
∑

din∈d,d∈Ds

din = 0 (13)

∀d = {din, dout}∈ Ds, Ds ∈ D:∑
dout∈d,d∈Ds

dout +
∑

din∈d,d∈Ds

din <= 1 (14)

For generating topology meeting HR routings, the con-
straints (4) and (9) are considered for a node in the constraint
system if the node is allocated as the source (ms = 1,md =
0). Constraint (9) states that the source node must have at
least nhmr activated out-going data (dout) while it must
not have any triggered din based on (4). Conversely, the
constraints (6) and (10) are applied to a node if the related
node is determined as the destination (md = 1,ms = 0).
The destination is enforced to have at least nhmr activated
in-coming data (din) by the constraint (10); at the same
time, it must not have any operated dout in respect of (6).
The Constraints (11), (12), and (13) are utilized to encode
the HR routings by only a node which is not assigned for
the destination as well as the source (md = 0,ms = 0).
According to (11), the node, which is neither a destination nor
a source, can have at most one activated dout while constraint
(12) states that the same node can have at most one operated
in-coming datum din; moreover, the number of dout routing
through a link, must be equal to the number of in-coming
data (din) for the same node based on (13). The constraint
(14) is used to avoid cycling between two nodes (i.e., invalid
routing). A cycle occurs when a datum visits a node more than
once. This constraint forces a desired node to have either one
activated dout, one activated din, or no activated datum with
another node.

3428

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:53:47 UTC from IEEE Xplore. Restrictions apply.

C. Optimization Goals for Routings

In order to generate optimized topologies including the
routes, two general optimization objectives are applied to
the single as well as the HR routings constraint sets. These
optimization goals focus on minimizing cost and the number
of used links.

∀din∈ d:

min
∑

dout∈d

dout (15)

∀dout∈ d, d ∈ D, cdout

l ∈ cl, cl ∈W:

min
∑

dout∈d

dout ∗ cdout

l (16)

∀din∈ d, d ∈ D, cdin

l ∈ cl, cl ∈W:

min
∑

din∈d

din ∗ cdin

l (17)

According to (15), the minimization of out-going data (dout)
routing over the links (~L) resulting in mitigation of the used
links in the entire created topology, is set as the optimization
objective in our constraint system. Furthermore, objectives
(16) and (17) describe reducing the cost of the generated
topology, based solely on the cost of each link (cl ∈W). This,
in such a way that the sum of the multiplication between dout
and the cost of its related link (cdout

l), is reduced regarding
(16). The same concept is applied for din based on (17).

D. Implementations

1) System Architecture: to generate E/E topologies based
on predefined requirements, the approach presented in [10] is
followed. According to Fig. 1, our system architecture collects
application requirements (i.e., safety criticality, application
assignment, number of required nodes, and the cost of the
topology components such as the link) as the inputs to the
system. After analysis of the requirements based on the
inputs and defining variables for the constraint system, the
constraints are generated depending on the safety-criticality
level of applications and they are formulated into an ILP
method. Moreover, the optimization objectives (i.e., the cost
and links optimization) can be set in our constraint system.
Finally, the generated constraint system is solved using a
Gurobi Optimization Solver [11] in order to create either
single or HR routings based on the defined constraints.

In order to implement our topology generation framework,
we use a Model-Driven Development (MDD) approach to
specify how the software system should work before the code
is generated.

Start

Architectural Requirements: #nodes,
#applications, data criticality, link cost, etc.

Analysis of Requirements

Safety Critical

Constraint Solving &
Optimization

Feasible

End

Constraint Generation
for Single Routing

Constraint Generation
for HR Routing

Optimized Created
Architecture

NoYes

YesNo

Fig. 1. The system architecture to create homogeneous redundant E/E
architectures.

2) Model-Driven Development: using MDD, software de-
velopers can build elaborate applications in a visualized
manner because it utilizes pre-construct application compo-
nents and graphical models. Automation of the challenging
programming tasks is defined as the main goal of MDD. Fur-
thermore, particularly when developing several applications,
it speeds up the redeployment, rebuilds, and tests procedures
compared with traditional approach [2].

There are various types of MDD tools for creating models
for software design purposes. In this work, an open-source
graphic modeling tool using Unified Modeling Language
(UML) from Eclipse Foundation was utilized. Using a similar
approach, the authors of [12] present a model-based frame-
work to facilitate schedule synthesis in TSN. The framework
automates the creation and solving of scheduling constraints
for the safety-critical network traffic.

According to Fig. 2, the designed metamodell (i.e., using
a model to describe another model as an instance) of our
framework is visualized. This metamodell consists of eight
elements. The Topology element plays a role as the main class
of the metalmodell where all other classes are subordinate
to it. Here we have five classes as the main elements in
our system model including Node, Application, Link, Data,
Data-in, and Data-out; in addition, there is a data type
(i.e., GRBTopology) used by the elements of the system
model. To explain the relation of each element to the system
model mentioned in III-A, Node class plays the same role
as the node in the GArch and includes several attributes.
Here, each Node can include one-to-many links and zero-
to-many applications as the sender and the receiver. While
Application, similarly presented in GApp, either as the sender
or the receiver, can only be mapped on one Node; moreover,

3429

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:53:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The metamodell containing elements used for creating topology
instances, generating constraints, and solving architectural optimization prob-
lem.

the Application can only send one Data based on one-to-
one reference relation with Data. Furthermore, each pair of
applications are considered (Asen, Arec) as one application
in our run-time evaluation. In our designed metamodell (Fig.
2), a Link (with the same role as explained in GArch) can
be referenced to a Node as its starting point and its finishing
point. In addition, one-to-many Data-In and Data-Out can be
routed over a Link. In this class diagram, Data, which is
described in GApp as our system model, references to one-
to- many Data-In and Data-Out while it can be either sent
or received by only one Application. Eventually, according
to Fig. 2, Data-In or Data-Out (described in GApp as well
as III-B) can be routed over only one Link; moreover, each
Data-In or Data-Out belongs to a Data. Also, each Data-In is
referenced to each Data-out and conversely.

Algorithm 1: ADL
Input: N = {N1, N2, ..., Np}, A = {A1, A2, ..., Ap},

D = {{din1 , .., dinp}, {dout1 , .., doutp}}, and
M = {{ms1 , ..,msp}, {md1 , ..,mdp}}, p ∈ N

Output: Created routings only for the destination node
running a safety-critical application

1 for i← 0 to A do
2 for j ← 0 to N do
3 if safety-criticality of A becomes true then
4 if md = 1∧ ms = 0 then
5 for k ← 0 to din do
6 expr1 · add(din · gurobi);
7 end
8 expr2 ·addConstr(md−ms−expr1 <=

−1);
9 model · add(expr2);

10 end
11 end
12 end
13 end

We presented the ADL algorithm, as shown in Algorithm

1, to ensure that at least two incoming data (din) enter only
to the destination node to create the HR routings. The details
of the ADL algorithm are explained as follows. For each
application (line 1), all nodes pass through conditions (line 2)
including the safety-criticality level of each application (line
3) and also if the receiver application is mapped on a node
(line 4). After passing the ifcondition, the binary variable
of all data entering the node (din), is added to the expression
1 (line 5-7). The defined constraint is applied and added to
the expression 2 (line 8), and finally, it is added to our system
model (line 9).

IV. RUN-TIME EVALUATION

Our proposed approach facilitates the design process for
system architects. Nonetheless, high computation times for
generation and solving the constraints will have a negative
effect on practical usage. Therefore, this section focuses on
measuring the run time of constraint generation and solving
for three specific scenarios.

In the first scenario, the number of HR routes is increased
while the number of applications and nodes is constant. In
the second scenario, the number of applications increases
whereas the number of nodes and HR routes remains constant.
In the last scenario, the number of nodes is grown and the
number of HR routes and applications remains unchanging.
Each measurement consists of two parts: the time for gener-
ation of ILP constraints and the time for solving.

To analyze the role of HR routes in the constraint gener-
ation run time in the first scenario, we generated topologies
with the same number of nodes and applications, fixed to 100
and 20 respectively, while increasing the number of routes
from one to six. As Fig. 3(a) shows, the number of HR routes
does not significantly influence the constraint generation time.

For the second scenario, the number of applications is
increased from 20 to 100 while the number of nodes and
HR routes are fixed at 100 and 6 respectively. The goal
is, to observe the effect of the increase in the number of
applications on the constraint generation time. As Fig. 3(b)
shows, the run time for constraint generation rises linearly
(approximately from 4500 to 27000 milliseconds) in propor-
tion to the increase in the number of applications, once the
number of applications grows from 20 to 100.

In our last scenario, we keep the number of applications
and HR routes constant, 2 and 6 respectively, whereas the
number of nodes increases to 160. As shown in Fig. 3(c),
the generation time grows as the number of nodes increases.
However, the number of nodes has less impact on constraint
generation time than the number of applications based on Fig.
3(b). Furthermore, it can be seen from Fig. 3(c) that the run
time exhibits a non-linear increase.

In the second part of this experiment, the run time to
solve the created ILP constraints using the Gurobi Solver is
measured for the three aforementioned scenarios. Moreover,
we optimized the number of allocated network links (defined
in 15). Fig. 3(d) shows the measured solving time for creating

3430

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:53:47 UTC from IEEE Xplore. Restrictions apply.

0

200

400

600

800

1000

20 40 60 80 100 120 140 160

R
u

n
 T

im
e

(m
s)

Number of Nodes

#Applications = 2 , #HR Routes = 6

0

5000

10000

15000

20000

25000

30000

20 40 60 80 100

R
u

n
 T

im
e

(m
s)

Number of Applications

#Nodes = 100 , #HR Routes = 6

0

1000

2000

3000

4000

5000

1 2 3 4 5 6

R
u

n
 T

im
e

(m
s)

Number of HR Routes

#Nodes = 100 , #Applications = 20

0

10000

20000

30000

40000

50000

60000

20 40 60 80 100

R
u

n
 T

im
e

(m
s)

Number of Applications

#Nodes = 100 , #HR Routes = 6

0

500

1000

1500

2000

20 40 60 80 100 120 140 160

R
u

n
 T

im
e

(m
s)

Number of Nodes

#Applications = 2 , #HR Routes = 6

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6

R
u

n
 T

im
e

(m
s)

Number of HR Routes

#Nodes = 100 , #Applications = 20

(a) (b) (c)

(f)(e)(d)

Fig. 3. The result of architectural synthesis time of the defined experimental scenarios for constraint generation (a, b, and c) and constraint solving (d, e,
and f).

HR routes with the number of nodes and applications are fixed
at 100 and 20 respectively. It shows that the run time grows
linearly with the increase of the number of HR routes. The
computation time indicates a linear increase as the number
of applications grows and the nodes and number of HR
routes remain constant (Fig. 3(e)). For example, to solve
the constraints of an architecture that consists of 100 nodes
and 20 applications supporting six HR routes, the required
time is roughly 10 seconds while the architecture comprising
100 applications and the same number of nodes as well as
HR routes, requires about 50 seconds. In the last scenario,
we increase the number of nodes from 20 to 160 while the
number of applications and HR routes are equal to 2 and 6
respectively. In contrast to Fig. 3(d) and Fig. 3(e), Fig. 3(f)
exhibits exponential growth in the solving time as the number
of nodes increases. As an example, the solving time for 80
nodes is roughly 400 milliseconds while it increases to 1700
milliseconds for 160 nodes.

V. CONCLUSION

In this paper, we have proposed a novel model-based
approach to automate the creation of automotive E/E archi-
tectures in the design phase while calculating homogeneous
redundant routings for safety-critical applications. We also
optimized the generated architectures based on predefined
optimization goals such as reducing the number of used
network links. Integer Linear Programming (ILP) was utilized
to implement and solve the routing constraints. We evaluated
the performance of our presented approach by measuring the
run time of constraint generation as well as solving for three
different scenarios. The solving time increased exponentially
as the number of nodes was risen. In addition, we observed
approximately a linear growth as the number of safety-critical
applications and homogeneous redundant routes increased
with the number of nodes constant.

In this paper, we concentrated on improving the redun-
dancy aspect in the design of E/E architectures. However,

this approach needs to be extended by a measurable metric
(e.g., MTTF) to assess architectural safety improvements.
Moreover, we will design industrial feasibility studies to
further evaluate and enhance the presented approach.

REFERENCES

[1] ISO 26262:2018 - Road Vehicles - Functional Safety, International
Organization for Standardization in ISO 26262, Sep. 2020. [Online].

[2] Atkinson, C. and Kuhne, T., 2003. Model-driven development: a
metamodeling foundation. IEEE software, 20(5), pp.36-41.

[3] Xie, G., Chen, Y., Liu, Y., Li, R. and Li, K., 2017. Minimizing
development cost with reliability goal for automotive functional safety
during design phase. IEEE Transactions on Reliability, 67, pp.196-211.

[4] Gan, J., Pop, P. and Madsen, J., 2014. Tradeoff analysis for dependable
real-time embedded systems during the early design phases. Disserta-
tion, DTU Compute.

[5] Tamaş-Selicean, D. and Pop, P., 2011. Optimization of time-partitions
for mixed-criticality real-time distributed embedded systems. In 2011
14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (pp. 1-10).

[6] Lukasiewycz, M., Shreejith, S. and Fahmy, S.A., 2014. System simula-
tion and optimization using reconfigurable hardware. In 2014 Interna-
tional Symposium on Integrated Circuits (ISIC) (pp. 468-471). IEEE.

[7] Lukasiewycz, M., Streubuhr, M., Glaß, M., Haubelt, C. and Teich,
J. Combined system synthesis and communication architecture explo-
ration for MPSoCs. In 2009 Design, Automation & Test in Europe
Conference Exhibition (pp. 472-477). IEEE.

[8] Nayak, N.G., Dürr, F. and Rothermel, K., 2016. Time-sensitive
software-defined network (TSSDN) for real-time applications. In Pro-
ceedings of the 24th International Conference on Real-Time Networks
and Systems (pp. 193-202).

[9] Smirnov, F., Reimann, F., Teich, J., Han, Z. and Glaß, M., 2018.
Automatic optimization of redundant message routings in automotive
networks. In Proceedings of the 21st International Workshop on Soft-
ware and Compilers for Embedded Systems (pp. 90-99).

[10] Askaripoor, H., Farzaneh, M.H. and Knoll, A. Considering Safety
Requirements in Design Phase of Future E/E Architectures. In 2020
25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA) (Vol. 1, pp. 1165-1168).

[11] Gurobi Optimization, I., 2020. Gurobi optimizer reference manual.
URL http://www. gurobi. com.
Available: https://www.iso.org/standard/68383.html

[12] Farzaneh, M. H., Kugele, S., and Knoll, A. (2017, September). A
graphical modeling tool supporting automated schedule synthesis for
time-sensitive networking. In 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA).

3431

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:53:47 UTC from IEEE Xplore. Restrictions apply.

		2021-10-19T14:41:32-0400
	Certified PDF 2 Signature

