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Abstract. Programming on heterogeneous hardware architectures
using OpenCL requires thorough knowledge of the hardware. Many High-
Performance Domain-Specific Languages (HPDSLs) are aimed at sim-
plifying the programming efforts by abstracting away hardware details,
allowing users to program in a sequential style. However, most HPDSLs
still require the users to manually map compute workloads to the best
suitable hardware to achieve optimal performance. This again calls for
knowledge of the underlying hardware and trial-and-error attempts. Fur-
ther, very often they only consider an offloading mode where compute-
intensive tasks are offloaded to accelerators. During this offloading
period, CPUs remain idle, leaving parts of the available computational
power untapped. In this work, we propose a tool named OptCL for exist-
ing HPDSLs to enable a heterogeneous co-execution mode when capable
where CPUs and accelerators can process data simultaneously. Through
a static analysis of data dependencies among compute-intensive code
regions and performance predictions, the tool selects the best execution
schemes out of purely CPU/accelerator execution or co-execution. We
show that by enabling co-execution on dedicated and integrated CPU-
GPU systems up to 13× and 21× speed-ups can be achieved.
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1 Introduction

Today, hardware environments have become increasingly parallel or heteroge-
neous to meet growing computational demands. A personal computer nowadays
is commonly equipped with a multi-core CPU with an integrated or a discrete
GPU. Some cloud service providers also offer instances equipped with Field Pro-
grammable Gate Arrays (FPGAs). Programming such accelerators used to be
cumbersome, as they required in-depth knowledge of the hardware, e.g., map-
ping computing task to pixel shaders for GPUs or to logic gates for FPGAs. The
emergence of programming languages such as the Open Computing Language
(OpenCL) vastly simplifies the programming efforts by abstracting away most
of the hardware details. It enables programming data parallel code targeting
various hardware platforms using a C-like standard. However, challenges still
remain as developers need to learn yet another programming language and port
sequential legacy code to a parallel OpenCL programming style.

A number of High-Performance Domain-Specific Languages (HPDSLs) such
as SYCL, OpenABL [5,30], or Habanero-C [11] further simplify the adoption
of OpenCL. They act as an intermediate layer between OpenCL and common
programming languages such as C, allowing users to program in their familiar
sequential style. Users are only required to annotate the compute-intensive func-
tions (using pragma STEP in OpenABL) or putting the compute-intensive parts
in a special function (submit in SYCL or launch in Habanero-C). HPDSL-specific
compilers are finally responsible for translating those functions to OpenCL ker-
nels.

Although these HPDSLs simplify the parallel programming, they still require
the user to decide which parts should be offloaded to accelerators. The selection
of tasks for offloading to accelerators is not trivial (e.g., [31]), since thorough
knowledge of the hardware is again required to optimally map workloads to
accelerators. This limits the benefits of HPDSLs. Frameworks such as Polly-
ACC [7] are proposed to relieve the users of this burden by automatically detect-
ing compute-intensive hotspots and translating them to OpenCL kernels. How-
ever, these frameworks typically follow a so-called offloading mode, where the
hotspots are offloaded to accelerators and CPUs remain idle during the offloading
periods, leaving their computational power temporarily untapped.

In this paper, we propose a middleware called OptCL (Optimise performance
targeting high-performance domain-specifiC Languages) for existing HPDSLs.
It combines a series of traditional or well-known approaches in the field of data-
dependency analysis and performance profiling, customising them to the fea-
tures of HPDSL code. In addition to the offloading mode, which has already
been achieved in many original HPDSL compilers or with the help of other
frameworks, the middleware enables a co-execution mode in which CPU and
accelerators work simultaneously if a performance benefit is expected, which
is determined through data dependency analysis and performance predictions
on the available hardware. OptCL focuses on data dependencies crossing High
Performance Regions (HPRs), defined as the code regions compiled to OpenCL
kernels, tailored to the structure of HPDSLs. Further, guided by the same data
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dependency analysis, OptCL also reduces kernel invocation overheads. OptCL is
based on Clang, operating on an Intermediate Representation (IR) level called
Abstract Syntax Tree (AST). It can be seamlessly plugged into a wide range of
C-based HPDSLs with little installation effort. OptCL complements an original
HPDSL compiler, enabling it to also work for closed-source HPDSLs, provided
that the HPDSL can output IR of OpenCL kernels in the shape of Standard
Portable Intermediate Representation (SPIR), a binary OpenCL IR for CPUs
and AMD GPUs or Parallel Thread Execution (PTX) for NVIDIA GPUs. The
main contributions of this paper are:

– To the best of our knowledge, we are the first to propose a tool for existing
HPDSLs to generate OpenCL code that enables co-execution.

– A comparison study between a sampling-based and a machine-learning based
approach to estimate the performance of OpenCL kernels on hardware.

– We present two case studies of applying OptCL to two HPDSLs: OpenABL,
an open-source Domain-Specific Language (DSL) for Agent-Based Simula-
tions (ABSs) in which we have full control of the code generation work-
flow; and ComputeCpp, a closed-source commercial implementation of SYCL
where we have less control of the code generation workflow.

The remainder of this paper is organised as follow: In Sect. 2, we present
background and an overview of related work. In Sect. 3, we describe the OptCL
middleware in detail. We present our case studies and evaluate the performance
of OptCL in Sect. 4. Section 5 concludes the paper.

2 Background and Related Work

2.1 SYCL

SYCL is a specification developed by Khronos targeting heterogeneous hardware
platforms. It allows the same code to be executed on accelerators such as GPUs,
FPGAs as well as CPUs. SYCL abstracts away from hardware details, enabling
developers to code parallel programs in a regular C++ style. Most SYCL imple-
mentations generate OpenCL code.

Algorithm 1 shows the example of summing up two vectors using SYCL. Users
are required to first select a device to run the kernels on (L. 1–2), followed by
allocating memory space on the device-side (L. 3–5). L. 6–12 is a special function
marked by the keyword submit defining a kernel in the form of a lambda expres-
sion by first declaring the inputs and outputs using a data type called accessor. L.
10–11 implements the logic of a kernel. Many SYCL implementations also support
heterogeneous platforms by providing facilities such as asynchronous scheduling of
kernels by overlapping data transfer and computation.

ComputeCpp is a commercial implementation of SYCL (a free community
edition is also available) [4]. Following the SYCL specification, ComputeCpp
consists of two parts: a device compiler and a run-time library, both of which
are closed source. Only AMD GPUs and x86/ARM CPUs are fully supported.
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Experimental support for NVIDIA GPUs was removed in the most recent ver-
sion. Given SYCL code as input, ComputeCpp outputs SPIR or PTX as well as
an integration file to be loaded by the ComputeCpp run-time. During compila-
tion, users choose which IR (SPIR or PTX) to output. Therefore, NVIDIA GPUs
cannot be used together with other accelerators in a heterogeneous setting.

Although ComputeCpp supports offloading to multiple devices, the assign-
ment of individual kernels to the hardware is left to the user. Further, as Com-
puteCpp focuses more on portability than performance, it may not always fully
exploit the hardware’s capabilities [29]. We will show that by plugging OptCL
into ComputeCpp, the performance of the generated OpenCL code can indeed
be improved, both through co-execution and by reducing the kernel invocation
overhead. OptCL constructs OpenCL programs that support a mixed use of PTX
and SPIR binaries. As a side effect, we also re-enable using NVIDIA GPUs with
ComputeCpp, and more importantly enable the use of NVIDIA GPUs along
with other accelerators unsupported by the original ComputeCpp.

2.2 OpenABL

OpenABL is an open-source DSL to generate high-performance ABS programs
from sequential code written in a C-like language for various hardware plat-
forms [5,30]. Unlike SYCL, which is designed for general computing, OpenABL
specialises in the field of ABS. The OpenABL framework is comprised of two parts:
a frontend and a backend. Algorithm 2 illustrates a skeleton to implement a sim-
ple traffic simulation using OpenABL. Users may define agents with a mandatory
position member (keyword agent, L.1-3), constants (keyword param, L. 4–5), sim-
ulation environments with user-specific type (keyword environment, L. 6–7), step
functions (marked by pragma step, L. 8–9) which will be later translated into
OpenCL kernels, and a main function (keyword main(), L. 10–12).

The OpenABL compiler first generates an AST from the above code, the same
IR used in our middleware. The backend later rebuilds simulation code from the
AST and parallelises step functions. So far, five backends are supported by Open-
ABL, including OpenCL. The workflow of OpenABL overlaps partially with our
proposed middleware. The middleware can thus be completely integrated into
the OpenABL compilation flow to generate high-performance OpenCL code.
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2.3 Related Work

The presented middleware targets heterogeneous hardware platforms. Challenges
and state-of-the-art solutions in this context can be found in [12] for general-
purpose computing and in [32] for agent-based simulations.

Previous efforts parallelise sequential code using a set of pre-defined rewrite
rules [27], code templates [28] or special syntax for loops [2,14], enabling the
translation to programs in OpenCL, CUDA, or Threading Building Blocks code.
These frameworks pursue a goal of generating parallel programs from sequential
representations similar to HPDSLs. Necessary structural amendments have to be
made for existing HPDSL programs to use these frameworks, while our OptCL
aim to parallelise existing programs without any changes required.

Several works [7,24,26] automatically detect parallelisable loops in sequen-
tial representations and translate the loops to OpenCL kernels. The existing
approaches targeting OpenCL follow a similar workflow as OptCL: a sequential
program is first converted into an IR. Data parallel loops or static control regions
are detected in the IR and translated to OpenCL kernels. These existing works
assume that parallelisable regions are explicitly stated as loops in the sequential
code. However, this assumption may not hold for HPDSL programs. As HPDSLs
abstract away implementation details, they usually only require users to code
loop bodies, i.e., the HPRs. The iterative behaviour is handled internally by
the HPDSL runtime (and eventually by the OpenCL runtime). Further, none of
these approaches consider co-execution opportunities. In contrast to the existing
works on automatic parallelisation, our approach relies on HPDSL-level code
segments to identify regions for co-execution. The combination of existing auto-
matic parallelisation methods with our approach for mapping computations to
heterogeneous hardware is an interesting avenue for future work.

There exist a handful of DSLs providing different levels of native co-execution
support. Habanero-C (HC) [11] features shared virtual memory and smart data
layout to achieve performance portability on CPU-GPU systems. CnC-HC [25],
which maps the Concurrent Collections (CnC) model to the HC runtime, extends
the supported hardware to include FPGAs. HC and CnC-HC both use work-
stealing approaches to achieve load-balancing between CPU and accelerators.
Unlike our work, which automatically determines data dependencies, in HC, the
data dependencies are ensured by the users based on async and finish constructs.
Performance on the individual piece of hardware is also estimated based on a
user-specified machine description. The work reported in [20] extends PetaBricks
language which allows users to specify multiple algorithmic paths for the same
input and output. The compiler then chooses the path leading to the best per-
formance given hardware settings determined using an evolutionary mechanism.
However, users still need to produce parallel code explicitly.

Two co-execution schemes are extensively used in the literature: data
partitioning and task partitioning. Tasks partitioning has been carried out
offline using performance analytical models [3] or using machine learning-based
approaches [6,10,13,17]. OpenABLext [30], an extension of the OpenABL frame-
work, carries out an online partitioning of the workload. It executes the first few
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Fig. 1. An overview of OptCL.

simulation steps to profile the available hardware to determine the hardware
assignment for the remainder of the simulation. This approach is closely tailored
to the OpenABLext workflow and requires additional user input. In the evalua-
tion section, we will conduct a comparison study between a representative offline
machine learning-based approach and a sampling-based approach similar to [30]
but applicable beyond the ABS domain. Other works [14,18,21] proposed novel
adaptive scheduling mechanisms to partition the workload at the data level aim-
ing at achieving load-balancing or power-saving. Many frameworks built based on
these designs [8,16,19] can operate directly on OpenCL kernels. They typically
start with a small portion of workload assigned to CPUs and the remainder to
the accelerators (or vice versa). A balancing phase then incrementally balances
the workload assigned to the CPUs and to the accelerators until convergence is
reached. If the workload is irregular, this balancing phase can be re-triggered
if certain imbalance criteria are met. Data layout and transfer among different
devices are also dealt with by the frameworks automatically.

A study comparing data partitioning and task partitioning schemes on a
CPU-FPGA system is carried out in [9]. The authors concluded that both
schemes can be beneficial. OptCL partitions the workload at the task level,
which is a natural choice following the specification of HPDSLs, as each HPR
will be typically translated to one OpenCL kernel. Data partitioning will only
be used in a special case as an additional optimisation (cf. Sect. 3.4). Future
work could explore the combination of task and data partitioning in OptCL by
employing one of the aforementioned designs.

3 The OptCL Middleware

An overview of OptCL is given in Fig. 1. OptCL generates OpenCL code in three
steps: 1) data dependency analysis, 2) profiling, 3) hardware assignment, and
code reconstruction. In the first step, OptCL identifies the sub-AST containing
HPRs from the AST generated for the entire program. The sub-AST is further
split up into smaller ASTs, each representing an HPR or the code region between
two HPRs. A Data Dependency Graph (DDG) derived from those small ASTs
identifies the data dependencies and distinguishes HPRs that are free of interde-
pendencies, which can thus be co-executed. The second step profiles the kernels
generated out of the HPRs on the available hardware. Based on the profiling
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Fig. 2. DAG generation. (a) Original DDG (b) Processing HPR3&4 (c) Proc. HPR2&3
w. ICS2 (d) Parallelising HPR2&3 (e) Proc. HPR 1, 2&3 w. ICS1

results, the third step decides on the execution scheme and reconstructs the
program accordingly.

Users are required to specify two inputs to OptCL at installation time: the
keyword used to annotate the start of HPRs (HPR keyword), and the data type
used to define in- and output (in other words, to allocate memory on the devices)
of those HPRs (e.g., accessor in SYCL or agent in OpenABL), which is referred
to as Device Variable Keyword (DVK). Notably, this setup is done once per
language and is application-agnostic. OptCL can run in a fully automated way
after this setup. In what follows, we will discuss each step in detail.

3.1 Step 1: Data Dependency Analysis

Common compilers also produce ASTs during compilation, from which data
dependencies for the entire code base are deduced. OptCL only focuses on a
portion of the entire AST i.e. the sub-AST around the HPRs and eliminates
code snippets that are not targeted for parallel execution, e.g., reading inputs,
etc. This can reduce evaluation complexity, tailored to the structure of HPDSL
code.

Step 1 starts from a partial compilation of the input HPDSL code. This
assembles code if multiple source files are available and sorts HPRs according to
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the required execution order. The partial compilation stops when the AST for
the entire program is generated. At a glance, it seems to be redundant with the
HPDSL’s own compilation process. However, it is essential to enable OptCL on
closed-source HPDSLs, since OptCL does not have access to the intermediate
compiling stages of a closed-source compiler.

The AST of the entire program is first traversed to locate HPRs and usage
of device variables. The traversal is implemented using the RecursiveASTVisi-
tor class of Clang. HPRs are identified in the raw code using the HPR keyword
inputted by the users. The scope of each HPR is to the end of the function (e.g.,
for OpenABL) or lambda expression (e.g., for SYCL) following the keyword.
Device variables are identified by the DVK for both their device part (variables
which are mapped to the device’s memory space), their host counterpart (vari-
ables declared on the host to initialise device variables or to store the results
read from the device), and their aliases determined by the clang alias analysis.
There can be code snippets between two consequent HPRs where the host coun-
terpart of a device variable is amended. Data dependency can thus also occur,
preventing the neighbouring HPRs from parallel execution. Therefore, during
data dependency analysis, those code snippets, further referred to as In-between
Code Snippets (ICSs), should also be taken into consideration.

While traversing the AST of the entire program, it can be identified whether
an HPR or an ICS is within a loop. This IsWithinALoop information is also
recorded to be applied later. With all HPRs detected, unit ASTs (uASTs),
defined as sub-ASTs representing an HPR or an ICS, are extracted from the
overall AST.

Within one uAST, we trace read and write operations on the device variables
based on three patterns and combinations thereof that may indicate a read or
write operation:

– Assignment statement (A = B or A = func(B,C)): the former case entails a
write operation on A and a read operation on B. The latter entails a write
operation on A. As we do not analyse the function func(), we conservatively
assume that func() may cause both read and write on B and C.

– Binary operation (A = B + C): a binary operation incurs a write operation
on A and read operations on B and C respectively.

– Unary operation (A++ or !A): for unary operations, we distinguish between
increment (A++ or ++A) and decrement (A−− or −−A) on the one hand,
which incur both read and write operations on A; and other unary operations
which incur only read operations on A on the other hand.

Algorithm 3 illustrates an example HPDSL program with four HPRs and two
ICSs.HPRs or ICSs within a loop (identified using IsWithinALoop) are treated as a
single node in DDG, as the data dependency remains unchanged in each iteration.
By applying the above rules, we can identify which type of operations is imposed in
a HPR/ICS for each device variable (e.g. HPR1 reads from device variable A and
writes B, so A : Re and B : Wr with Wr always overrides Re). The generation
of DDG starts with assuming dependencies everywhere, resulting in a DDG rep-
resenting sequential execution (Fig. 2a). OptCL then tries to parallelise as many
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HPR nodes as possible. ICS nodes are not considered for parallelisation, as they by
user’s design have to be executed sequentially on the host. However, as explained
above, they play an essential role to determine the data dependencies of the sur-
rounding HPRs. The attempt begins with the last HPR nodes (e.g., HPR3&4 in
Fig. 2a). Two consecutiveHPRnodes can touch the samedevice variable, for exam-
ple, HPR1 and HPR2 touch variable A, B and C, yielding four types of depen-
dencies: Read-After-Read (RAR), Write-After-Read (WAR), Read-After-Write
(RAW) and Write-After-Write (WAW).

Two or more consecutive HPR nodes can be parallelised if: 1) There is no ICS
node in between carrying write dependencies of the device variables that are used
in the latter node in the DDG graph; and 2) They touch a disjunct set of device
variables or all device variables they touch have either RAR or WAR dependency.

While RAR intuitively causes no dependency, WAR also results in no depen-
dency. This is because when executing in parallel on different devices, each device
keeps a local copy of the variable. Modifying the local copy on one device has no
effect on other devices. For instance, as shown in Algorithm 3, when co-executing
HPR2 and HPR3 on different devices, HPR2 and HPR3 each keep a local copy
of C which reflects the values after HPR1. The write operations on C (e.g.,
C[i]++) in HPR3 do not change the values of C in HPR2.

As illustrated in Fig. 2b, HPR4 cannot be parallelised with HPR3 due to
RAW dependency on C (HPR3 writes to C and then HPR4 reads from C).
Node HPR3 can be parallelised with node HPR2 (Fig. 2c and 2d), because only
WAR dependency exists (HPR2 reads from C and HPR3 writes to C) and ICS2
carrying write-dependency to A while A is not used in the latter node i.e. node
HPR3. Node HPR1 cannot be parallelised with node HPR2 and node HPR3
(Fig. 2e) owing to two reasons. First, there is RAW dependency on device variable
B and C. Second, ICS1 modifies variable B which is overwritten in HPR2.

This parallelisation process traverses a DDG iteratively until no more nodes
can be parallelised.

3.2 Step 2: Profiling

We propose two design options for the profiling stage: a sampling-based profiling
approach executing a small portion of the application to estimate the perfor-
mance of the whole program and an offline mechanism using a machine-learning
based approach to predict the performance. The usability and accuracy of two
different approaches will be compared in Sect. 4.

Sampling-Based Profiling. The sampling-based profiling mechanism extends
the mechanism introduced in an earlier work, OpenABLext [30], to generalize from
the ABS case to other applications. Device programs encapsulating OpenCL ker-
nels (e.g. PTX or SPIR) are generated using the HPDSL’s own compiler. OptCL
produces one temporary host program per device (including CPUs), assuming a
sequential execution order and a single device environment. These temporary host
programs are functionally similar to the ones generated by the original HPDSL
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compiler with extra utilities to measure the execution time of individual kernels,
including both kernel invocation and data transfers (for using CPUs as accelera-
tors, only kernel invocation time is counted, as there is no data transfer). Further,
after each kernel invocation, the data is transferred back to the host in order to
measure the data transfer overhead.

Each kernel is profiled with the real data with a timer or the time used for
one full kernel invocation, whichever takes longer. In the case multiple rounds
of kernel invocations can be done within the time limit set by the timer, the
throughput is recorded. If one kernel invocation takes longer than the timer, the
execution time is used to indicate the performance.

Offline Profiling. The offline approach implements an established perfor-
mance prediction model using so-called architecture-independent features intro-
duced in work [10]. Each OpenCL kernel is abstracted as a series of architecture-
independent features ranging from opcode counts to branch deviation entropies.
The Architecture Independent Workload Characterization (AIWC) tool [10]
developed based on the idea is employed to characterise the OpenCL kernels gen-
erated by the HPDSL’s compiler. The AIWC tool acts as a plugin to an OpenCL
simulator, Oclgrind, which has been widely used to debug OpenCL kernels [22].
Oclgrind simulates the execution of OpenCL kernels on the IR level, and therefore
it is hardware independent. During the simulation, Oclgrind generates events, e.g.,
on a conditional branch, based on the encountered IR instructions. AIWC acts as
an event handler which counts the appearance of certain events. When a full ker-
nel invocation is completed, AIWC conducts a statistical summary of the counters
and produces metrics. These features are later fed into a prediction model based
on a Random Forest (RF) [1] to predict the execution time on a CPU, a GPU or
any other accelerator. By iteratively partitioning the data, the algorithm builds
decision trees. Then, the forest, which is an ensemble of decision trees, provides
the prediction based on the mean among the trees, providing a more reliable and
robust prediction result. The experiments conducted by the authors in [10] showed
an average of 1.2% deviation between the predicted execution time and measured
time.

3.3 Step 3: Hardware Assignment and Program Reconstruction

In this step, a hardware assignment to maximise the performance is determined
based on the profiling stage, following these rules:

a) If the throughput/execution time of a kernel on one device outperforms other
devices, the kernel is assigned to this winning device.

b) When co-execution is possible as indicated by the DDG: 1) If the co-executed
kernels have different winning devices, they are assigned to their respective
winning devices. 2) If some of them share a winning device 1, the second best
device 2 of a kernel is chosen, as long as the total execution time of these
kernels on device 1 is larger than co-execution on device 1 and 2 (cf. Fig. 3).
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Fig. 3. Co-exec. leads to a gain even if sub-optimal hardware is chosen.

Based on the hardware assignment, OptCL reconstructs the HPDSL program.
OptCL employs the Clang rewrite method to replace the HPRs with their OpenCL
kernel invocations, together with the necessary initialisation and data transfer.
Other parts such as ICSs, I/Os are copied over from the original HPDSL program.
During the reconstruction, a couple of measures are taken to reduce the kernel
invocation overhead: firstly, all OpenCL kernels are compiled only once prior to the
start of the first HPR. The compiled binaries stay in memory and are used when
needed. Secondly, we optimise for the situation where HPRs reside in a loop. This
can cause data transfer redundancies if every single call to the HPR in a loop iter-
ation is treated as a new OpenCL kernel, which entails bi-directional data transfer
to/from the host. The IsWithinALoop information is collected in Step 1. In case all
HPRs residing in the same loop are assigned to the same device and there is no ICS
in the loop, the data transfer between host and device is extracted and executed
outside the loop to eliminate redundant data transfer.

In a multi-device execution environment, different devices usually do not
share the same memory space. OptCL also inserts code that is responsible for
allocating memory on the respective devices. In the case where a shift of devices is
required between two consecutive kernels, a data path is built in between. There
are special cases where data exchange can be avoided, e.g., when an Accelerated
Processing Unit (APU) is used. We will showcase this in the evaluation section.
OptCL smartly decides which data should be copied over to the other devices
and perform the copies only when it is necessary based on the data dependency
information collected in Step 1 as well as the hardware type.

After the co-execution, the host may receive inconsistent outputs from dif-
ferent devices. The correct output is then restored using the dependency infor-
mation recorded in Step 1. A merge function is inserted into the host program
in two scenarios: In a WAR dependency scenario, the merge function picks the
output from the device conducting the write operation. In the scenario where co-
executed kernels write to different device variables, the merge function gathers
the individual outputs from the devices that carried out the write operation and
merges them together on the host. For example, HPR2 and HPR3 illustrated in
Algorithm 3 can be co-executed on different devices. The merge function then
merges device variable B outputted by HPR2 and device variable C by HPR3
on the host. The merged data is re-distributed to the devices if the next kernel
is not executed on the host (CPUs).
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A piece of clean-up code concludes the host program, freeing buffers and
kernels as well as outputting the results if required. Eventually, OptCL lets
Clang compile the reconstructed code and generate the final executables.

3.4 Optimisation

Enhanced Dependency Detection. Device variables can be declared using
user-defined structures. For example, when using OpenABL to program a traffic
ABS, a device variable can be an array of car agents where each car possesses its
identifier, position, velocity, etc. Dependencies may be overestimated if OptCL
were to treat the structure as a whole. In a given program, it may occur that two
consecutive kernels write to disjoint sets of members of the same structure. In
this case, these two kernels can potentially still be co-executed. However, given
the dependency detection rules described in Sect. 3.1, they would be identified
as having a WAW dependency.

To solve this issue, an enhanced dependency detection is introduced. Device
variables declared as structures are broken down to the member level. Given
device variable A defined using structure T{type member1, type member2, ...},
the dependency detection rules described in Sect. 3.1 traces the read and write
operations on A.member1, A.member2, etc.

User-Specified Merge Function. If extra logic is provided to resolve depen-
dency conflicts, parallelisation of HPRs with RAW or WAW dependencies is also
possible. In some use cases, RAW or WAW dependency may even be tolerated,
e.g., in stochastic ABSs [23].

To fulfil such needs, we allow users to define their own merge functions fol-
lowing the naming convention kernel1 kernel2 merge function in the respective
HPDSL’s syntax. Once a RAW or WAW dependencies are detected, OptCL will
search for the existence of an optional merge function. Users can also define an
empty merge function to allow RAW or WAW dependency to exist. This also
implies that OptCL will not check if the dependency conflicts are resolved by
applying the user-specified merge functions. Users are then responsible for ensur-
ing the logic of the program is still correct by providing the merge functions. An
example of a user-specified merge function will be given in Sect. 4.

Single Kernel. When an HPDSL program contains only a single HPR, co-
execution is still possible if the data partitioning scheme is used. It is safe to
do so because the input data is processed in parallel even on one device. Each
device receives a subset of the data proportional to its computational power as
profiled in Step 2. After processing, the output is transferred back to the host
for merging.

To prevent discrepancy to the outcome of the HPDSL programs, this opti-
misation only applies to single kernels possessing no intra-read-and-write depen-
dency. That means, e.g., if the kernel touches device variable A[i], there has to be
no write to A[j] where i �= j in the same kernel. This is because A[i] and A[j] can
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be potentially processed on different devices where there is no guaranteed syn-
chronisation. This rule can be imposed by doing an additional intra-dependency
check during the data dependency analysis in Step 1.

4 Evaluation

We evaluate OptCL by plugging it into two HPDSLs: SYCL and OpenABL.
Both of the studied HPDSLs target CPU-GPU heterogeneous platforms. Our
evaluation was, therefore, conducted on CPU-GPU systems. To cover possible
hardware configurations, we include two types of CPU-GPU systems: a dedicated
CPU-GPU (dCPU-GPU) platform equipped with an Intel Core i5-11400F CPU
with 16 GB of RAM and an NVIDIA GTX 1070 graphics card with 8 GB of
RAM and an integrated CPU-GPU (iCPU-GPU) platform equipped with an
Intel i5-7400 CPU with 16 GB of RAM and an integrated Intel HD 630 iGPU.
Both systems run Ubuntu 18.04. The key difference between the two platforms
is that while data transfer is often required between the CPU and the GPU in
the dCPU-GPU setting, physical memory is shared between the CPU and the
iGPU in the iCPU-GPU setting. Thus, the CPU and the iGPU can directly
access each other’s data, eliminating the data transfer overhead.

For SYCL, six applications covering domains ranging from physics simula-
tion to machine learning were selected to evaluate the performance of OptCL.
The applications are: Backpropagation (BP), an algorithm used for training
neural networks in supervised machine learning tasks; K-Means (KM), a clus-
tering algorithm that partitions N nodes into K clusters; Speckle Reducing
anisotropic diffusion (SR), a noise removal algorithm, e.g., for ultrasonic and
radar images; Hot Spot (HS), a simulation of a processor’s thermal dynam-
ics; CirCle (CC), a molecular simulation of the potential and relocation of
molecules driven by mutual forces in a 2-D space; hierarchical-Matrix-Vector
multiplication (MV) [15], a method that decomposes a large matrix-vector
multiplication and computes the result iteratively.

The tested applications all follow a pattern where HPRs are executed iter-
atively. We were not aware of any off-the-shelf SYCL implementations of these
applications. Therefore, we implemented them from scratch, applying our best
efforts to optimise for a general SIMD architecture such as those of GPUs.1

4.1 Profiling Approaches Comparison

First, we compare the sampling-based approach and the offline approach intro-
duced in Sect. 3.2. The goal is to select the approach with higher accuracy while
also evaluating the usability. The evaluation is done on the dCPU-GPU system.

No setup is needed for the sampling-based approach. For the offline app-
roach, the RF must be pre-trained with an extensive number of kernel patterns.
We trained the model using the OpenDwarfs Extended Benchmark Suite,2 the
1 https://github.com/xjjex1990/OptCL.
2 https://github.com/BeauJoh/OpenDwarfs.

https://github.com/xjjex1990/OptCL
https://github.com/BeauJoh/OpenDwarfs
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Fig. 4. Comparison of different RC/G results.

same suite used for training in the original AIWC work [10]. The suite covers
applications ranging from solvers to mathematical problems to image processing
algorithms, demonstrating versatile kernel patterns. By varying the input sizes,
the suite provided ∼5,000 kernel patterns and their execution times.

The RF intakes three major parameters. num.trees: the number of trees in
a forest; mtry : number of possible independent features; and min.node.size: the
minimal node size per tree. We employed the values suggested by the AIWC
authors: num.trees = 505, mtry = 30 and min.node.size = 9. With these
parameters, the training process took less than 20 min on a 32-core workstation.
For the sampling-based approach, we profile the applications with a timer set to
1 s which is the only overhead of this approach.

The profiling step is to guide the hardware assignment. Therefore, it is more
important to learn the relative performance comparison between different hard-
ware types rather than the individual execution time. Further, for the sake of cre-
ating an application-independent metric to quantify the two profiling approaches,
we employ a performance ratio metric RC/G defined as the execution time on
the CPU divided by the time on the GPU. In case throughput is taken, RC/G

is defined as the throughput on the GPU divided by the one on the CPU.
Figure 4 illustrates RC/G outputted by the sampling-based approach, the

offline approach as well as the measured RC/G on the CPU and the GPU. The
x-axis labels are of the form NAME-SCALE, where NAME refers to the name
of the application and SCALE is the input size. Due to limit space, here we
demonstrate three applications: BP, CC, and KM, but varying different input
scales. As depict in Fig. 4, a base line RC/G = 1 (meaning the performance on
the CPU and the GPU is equal) splits the space into two sides. The sampling-
based approach managed to identify correctly the better-performing hardware
between the CPU and the GPU in all cases but one (CC-4096), albeit with a
certain estimation error (defined as the estimated ratio divided by the measured
ratio). It failed in the CC-4096 case because the amount of workload in each
iteration of CC depends strongly on the changing positions of the molecules, and,
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therefore, it changes from iteration to iteration. Using the first few iterations to
estimate the full execution time thus leads to deviations. Although the offline
approach also succeeded in estimating the performance deviation in most of the
cases (7 out of 9), it came with much bigger estimation errors (82% on average
versus 22% with the sampling-based approach). Significant errors are observed
in KM-1024 as well as in KM-65536, as the training data lacked of such kernel
pattern or input size.

In summary, the sampling-based approach led to better accuracy in all tested
applications with zero setup effort, compared to a moderately trained (training
data size/test data size = 555.6) offline machine-learning based approach. Hence,
we will stick to use the sampling-based approach with timer set to 1 s in the rest
of this paper. However, the offline approach could still produce valid results when
trained to more comprehensively cover the possible kernel patterns and input
sizes, which we defer to future work.
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4.2 Case Study 1: SYCL

We relied on ComputeCpp version 2.21, which still supports NVIDIA GPUs. All
the tested applications were compiled with -O3 optimisation.
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Six applications are categorised into two groups based on the observed speed
up types: Group 1: BP, KM and SR. These applications consist of several
kernels. Owing to the dependencies between kernels, co-execution is not feasible.
However, performance improvements are still possible through kernel invocation
overhead reduction introduced in Sect. 3.3 as well as by executing them on the
best suitable hardware. Group 2: HS, CC and MV. Co-execution is feasible.
In addition to the performance benefits achieved by less invocation overhead,
further performance improvements are observed due to co-execution. We report
the performance of these two groups separately.

To put the performance of OptCL into perspective, we provide another base-
line. The performance of the same SYCL code compiled by hipSYCL, an open-
source SYCL implementation using OpenMP for CPU and CUDA for GPU as
the backends. hipSYCL supports NVIDIA graphics cards (via clang-CUDA),
and for CPUs, it uses OpenMP, which incurs only little invocation overhead.

Figure 5a and 5b show the throughput of CompCpp-C/G (the throughput
of the SYCL code compiled by ComputeCpp and executes on CPU/GPU),
Hip-C/G (the same code compiled by hipSYCL and runs on CPU/GPU) with
each application normalised to the throughput of its respective CompCpp-C.
As depicted in the two figures, OptCL achieved the best performance in all
settings. The performance was not optimal for the ComputeCpp variants as
shown in Fig. 5a, due to the incomplete support of NVIDIA GPUs and the ker-
nel invocation overheads as the HPR in each iteration was treated as a new
kernel. The runtime freshly compiles the kernel and redundantly transfers data
to accelerators each time an HPR is invoked, which can be verified by running
the executables in the Oclgrind simulation. By compiling the same SYCL code
using hipSYCL, substantial speed-ups up to 120× were achieved. The perfor-
mance was improved further by employing the OptCL middleware, thanks to
the kernel invocation overhead reduction and using the most suitable hardware.

To better illustrate the power of co-execution, in Fig. 5b we also show the
‘otherwise’ scenarios, where we suppose OptCL would assign the kernels to only
CPU (OptCL-C.-only) or GPU (OptCL-G.-only). Notably, Hip-C (OpenMP)
performed worse than the ComputeCpp executables in the CC application.
This is because in CC, each molecule traverses the global memory for other
nearby molecules, causing large numbers of cache misses. As can be seen in
the ‘otherwise’ scenarios, while running the OptCL variants on a single accel-
erator (OptCL-CPU-only and OptCL-GPU-only) already produced similar or
even better performance than other variants, co-execution further boosted the
throughputs. A maximum speed-up of 1.67× over the ‘otherwise’ scenarios and
13× over the baseline CompCpp-C was observed for the MV application.

The performance on the iCPU-GPU system is displayed in Fig. 6. As both
ComputeCpp and hipSYCL do not well support iGPU (the support is exper-
imental in hipSYCL), we exclude them from the evaluation. The iGPUs are
usually not as powerful as the dedicated ones due to fewer cores and thermal
concerns. As a consequence, co-execution for the MV application was not feasible
in the iCPU-GPU setting, because of the large throughput deviation between
the CPU and the iGPU, causing long execution time on the iGPU even with a
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small amount of data. However, for the applications (CC and HS) that are eligi-
ble for co-execution, more significant performance benefits were obtained owing
to the zero-copy technology reducing the data transfer overhead. We achieved a
speed-up of 7× and 5× over the Hip-C executables and 3× and 21× over the
CompCpp-C executables in CC and HS, respectively.

4.3 Case Study 2: OpenABL

Independent kernels are common in the domain of ABS where multiple models
operate on different attributes of the same agent. Different types of agents in the
same simulation can perform individual models that do not rely on the states of
other types which presents ample opportunity for co-execution. However, not all
of them can benefit from co-execution, as the performance on one type of hard-
ware can dominate the others, resulting in the same situation as the MV case in
the iCPU-GPU setting. Due to limited space, we only demonstrate applications
that benefit from co-execution.

Three ABS models from three domains were selected: social science, trans-
portation, and biology: CRowd (CR), modelling the flocking behaviour of peo-
ple following fire wardens to escape from a single-entrance room in case of a fire
accident; TRaffic (TR), a traffic simulation comprised of a car following model
and a lane changing model. A user-specified merge function is added to enable
co-execution of these two models. For experimentation purposes, we set the
merge function such that the car following model always overwrites the output
of the lane changing model; AnTs (AT), a simulation of the foraging behaviour
of ants. We based the evaluation on an extended version of OpenABL which
supports generating OpenCL code.3

Despite the fact that data transfer overhead was avoided, co-execution was
not feasible for the tested applications on the iCPU-GPU system. Similarly to the
MV application, this is caused by the large performance deviation between the
CPU and the iGPU. Therefore, in what follows, we only report the performance
using the dCPU-GPU system. As shown in Fig. 7, compared to running on a
single device, co-execution led to the best performance in all three applications.
In the CR application, the path finding is slow on the GPU owing to the heavy
memory operations, causing an overall performance reduction on the GPU as
indicated by the ABL-G bar in Fig. 7. Similarly, for the TR application, the car
following model requires memory-intensive search for nearby vehicle which is
again slow on the GPU. By co-execution, i.e., assigning the memory-intensive
kernel to the CPU and the rest to the GPU, a speed-up of 1.15× and 1.13× over
running on the CPU was achieved by OptCL for the TR and CR application.

Although all kernels run faster on the GPU than the CPU in the AT appli-
cations due to GPU’s massive parallelism, overlapping execution of kernels on
the CPU and the GPU can still lead to performance benefits. This is because
of the reason explained in Fig. 3. For the AT applications, co-execution was also
1.15× faster than running on the GPU.

3 https://github.com/xjjex1990/OpenABL Extension.

https://github.com/xjjex1990/OpenABL_Extension
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5 Conclusion and Future Work

In this paper, we presented OptCL, a middleware to generate efficient
co-execution-enabled OpenCL code from existing high-performance Domain-
Specific Languages (HPDSLs) code. Through a data dependencies analysis
among High Performance Regions (HPRs) and performance predictions, OptCL
assigns each kernel to the most suitable hardware device and selects the best
execution strategy out of purely CPU-based execution, offloading to an accel-
erator, or co-execution. Kernel invocation and data transfer overheads are also
minimised in the generated code.

The workflow of OptCL consists of three steps. Starting from HPDSLs code,
OptCL triggers a partial compilation, where an Abstract Syntax Tree (AST) is
generated. After identifying all High Performance Regions (HPRs), we can then
only focus on the sub-AST that is related to HPRs. A data dependency graph is
built using the information gathered from analysing the sub-AST, revealing the
dependencies between HPRs and thus possibilities for co-execution. In Step 2,
kernels converted from HPRs are profiled on the available hardware devices. The
profiling results are used to assign each kernel to its best suitable hardware and
to enable co-execution where possible. Two profiling approaches are studied to
estimate the power of each device: a sampling-based approach by executing the
applications with a small amount of data and an offline approach using a pre-
diction model. In our comparison study, the sampling-based approach enabled
higher performance than the offline approach. Finally, in Step 3, OpenCL exe-
cutables are generated reflecting the hardware assignment.

We demonstrated the versatility of OptCL by using it with two existing
HPDSLs, SYCL and OpenABL in two different hardware settings: a system using
a CPU and a discrete GPU as well as an integrated CPU-GPU system. In an
extensive study using various applications at different scales, OptCL outperformed
existing solutions and exhibited significant speed ups. We showed that OptCL can
be used to enable high-performance execution on heterogeneous hardware environ-
ments without in-depth knowledge of programming paradigms for the underlying
hardware. Maximum speed-ups of 13× and 21× over the original compiler were
achieved on the dCPU-GPU system and iCPU-GPU system respectively.

OptCL assumes users are aware of all the parallelisable opportunities and
code them in the HPRs accordingly. A possible direction to improve our mid-
dleware is to automatically detect parallelisable code snippets. We will further
consider extending the hardware support to more accelerators such as FPGAs
not yet targeted by most existing HPDSLs.
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21. Pérez, B., Stafford, E., Bosque, J., Beivide, R.: Sigmoid: an auto-tuned load balanc-
ing algorithm for heterogeneous systems. J. Parallel Distrib. Comput. 157, 30–42
(2021)

22. Price, J., McIntosh-Smith, S.: Oclgrind: an extensible OpenCL device simulator.
In: Proceedings of the 3rd International Workshop on OpenCL, Palo Alto, CA,
USA. ACM (2015)

23. Rao, D.M., Thondugulam, N.V., Radhakrishnan, R., Wilsey, P.A.: Unsynchronized
parallel discrete event simulation. In: 1998 Winter Simulation Conference. Proceed-
ings (Cat. No. 98CH36274), Washington, USA, vol. 2, pp. 1563–1570. IEEE (1998)

24. Riebler, H., Vaz, G., Kenter, T., Plessl, C.: Transparent acceleration for heteroge-
neous platforms with compilation to OpenCL. ACM Trans. Archit. Code Optim.
(TACO) 16(2), 1–26 (2019)
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