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Abstract

Due to the rapid improvements of quantum supercomputers, several classical public-
key cryptographic schemes could become insecure in the near future. Therefore, post-
quantum cryptography has attracted increasing attention, and the National Institute
of Standards and Technology launched the Post-Quantum Cryptography Standard-
ization. Code-based schemes are considered to be post-quantum secure and play an
important role in the aforementioned standardization process.
This dissertation studies code-based cryptography from three different perspectives.

In the first part, the coding-theoretic problems syndrome decoding in the sum-rank
metric, syndrome decoding of high-order interleaved codes in the rank metric, and
decoding Gabidulin codes beyond the unique decoding radius are investigated. For all
three problems, new algorithms are proposed and the complexities of the algorithms
are analyzed. Furthermore, the algorithms are compared to existing strategies, and
the impact of the findings on cryptography is discussed.
In the second part, two attacks on the code-based schemes Twisted Reed–Solomon

based McEliece and Hamming Quasi-Cyclic (HQC) are developed. The attack on the
former system is severe, as it exploits mathematical weaknesses in the cryptographic
algorithms, and therefore demonstrates flaws in the security of the system. The attack
on the latter scheme constitutes a power side-channel attack and targets an implemen-
tation proposed by the designers of the system. The described attack does not uncover
any flaws in HQC but weaknesses in the proposed implementation.
In the third part, the new code-based encryption scheme LIGA is proposed. The

scheme is based on the hardness of list decoding and interleaved decoding of Gabidulin
codes, and it represents an improved variant of the broken Faure–Loidreau system. It
is proven that the public-key encryption version is indistinguishable under chosen-
plaintext attacks, and the key-encapsulation mechanism version achieves indistin-
guishability under adaptive chosen-ciphertext attacks, both under the assumption that
the underlying problems are hard. The scheme is not based on hiding the structure of
a code. It features short ciphertext sizes, small key sizes, and no decryption failures.
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1
Introduction

Cryptographic techniques refer to methods for secure communication in the presence
of adversaries and have been deployed for more than 3000 years [1]. Before the 1970s,
they were largely an art, where constructing and breaking ciphers relied on creativity
and experience [2]. Furthermore, the main users of cryptography were military or-
ganizations and governments, who mostly applied private-key encryption schemes, in
which the same secret cryptographic key is used by both the sender and the receiver.
In the early 1970s, the field of cryptography started to evolve from an art to a multi-
disciplinary research topic bringing together mathematics, computer science, electrical
engineering, and physics. A strong theory has been developed that has allowed the
thorough study of cryptography as a science and has influenced the mindset of scien-
tists about the broad field of computer security [2]. Furthermore, in 1976, Diffie and
Hellman published the first paper on public-key (or asymmetric) cryptography [3],
which constituted a breakthrough in cryptography, as it guaranteed security objec-
tives, such as data confidentiality, data integrity, authentication, and non-repudiation,
for communication between parties who do not share a secret key [4]. These powerful
tools are used by virtually all of us on a regular basis, e.g., every time we authenti-
cate ourselves by a password, visit a https-based website, or conduct an e-commerce
transaction. Scenarios in the future indicate that these methods will become even
more important, as an ever increasing number of applications that are critical to our
wellbeing (like cooperative driving vehicles) will rely on secure communication.
Today, the security of virtually all asymmetrically encrypted communication relies
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on the difficulty of computing discrete logarithms and factoring large integers, e.g.,
the Transport Layer Security (TLS) protocol version 1.3 [5]. In 1994, however, Pe-
ter Shor developed two quantum algorithms that solve the aforementioned problems
efficiently [6], and it was shown that currently applied asymmetric schemes can be bro-
ken by a quantum computer with 20 million qubits within a few hours [7] . Although
state-of-the-art quantum computers do not have even 100 qubits yet [8], companies
aim to build 1000-plus qubit quantum computers by 2023 [9], and some researchers
predict that within the next twenty years quantum computers will be powerful enough
to break essentially all asymmetric schemes currently in use [10].
Due to this rapid development in quantum computing, research on post-quantum

cryptography is already necessary now, as time is needed to improve the efficiency
of post-quantum schemes, to build confidence in them, and to improve their usabil-
ity [11]. Therefore, in December 2016, the National Institute of Standards and Tech-
nology (NIST) launched the post-quantum cryptography standardization process to
standardize public-key cryptographic algorithms that are quantum-resistant [10]. By
the initial deadline at the end of 2017, 69 encryption and signature schemes were ac-
cepted to the first round of the standardization process, and 7 of these schemes have
advanced to the third round that is currently being evaluated.
Code-based cryptosystems refer to schemes whose security relies on the hardness of

problems in coding theory. In these schemes, the one-way function is often defined as
adding an error to a codeword of an error-correcting code or computing a syndrome
of an error using a fixed parity-check matrix of an error-correcting code [12]. These
systems have gained a lot of attention, as it is believed that they can resist quantum
computer attacks, and for this reason, they play an important role in the standardiza-
tion process of NIST. The study of this family of schemes was initiated by the seminal
paper of McEliece in the late 1970s [13]. Therein, McEliece proposed a public-key
encryption scheme which uses the algebraic structure of a random binary irreducible
Goppa code as private key and a scrambled generator matrix1 of that Goppa code as
public key. The ciphertext is defined as the sum of a codeword of the scrambled code
and an error vector of small Hamming weight, where the error can only be efficiently
removed if the private key (i.e., the algebraic structure of the Goppa code) is known.
To this day, the rationale behind McEliece’s proposal still has a significant impact on
the design of code-based cryptosystems. For instance, two out of the three code-based

1McEliece proposed to scramble the generator matrix by multiplying a random full rank matrix
from the left and a random permutation matrix from the right.
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encryption proposals in the third round of the NIST standardization process evolved
from McEliece’s scheme.
The main drawback of McEliece’s original scheme is the relatively large size of its

public key. To overcome this issue, researchers proposed to replace Goppa codes by
other algebraic codes, but most of them have been broken by structural attacks. For
instance, in 1986, Niederreiter suggested the use of Generalized Reed–Solomon (GRS)
codes [14], but Sidelnikov and Shestakov devised an efficient attack to generate an al-
ternative private key given the public key [15]. Further proposed variants of McEliece
schemes based on algebraic codes and efficient attacks on them are shown in [16–32].
Another approach to reduce the key size is to use errors of certain rank weight instead
of certain Hamming weight, which was first proposed by Gabidulin, Paramonov, and
Tretjakov in [33]. In this paper, the authors additionally replaced Goppa codes by
Gabidulin codes, but the system had to be modified multiple times [34–40] due to
structural attacks by Gibson [41, 42], Overbeck [43–45], and variants thereof [46–48].
To the best of our knowledge, the schemes by Berger et al. [49] and Loidreau [50,
51] are the only variants that have not been broken yet. Since many of the proposals
based on algebraic codes have been broken by structural attacks, researchers have been
investigating McEliece schemes based on codes with a very weak algebraic structure
such as Moderate-Density Parity-Check Codes (MDPC) [52–54] and Low-Rank Parity-
Check Codes (LRPC) [55–59]. This direction of research seems to be very promising,
as the systems enable small key and ciphertext sizes, and in contrast to most McEliece
schemes based on algebraic codes, there are strong arguments why probably no effi-
cient key-recovery attack exists. Beside the idea of using codes with a weak algebraic
structure, code-based schemes were proposed that do not rely on hiding the structure
of an error-correcting code, e.g., [60–63]. While the system in [60] is not practical, and
the schemes [61, 62] were broken [64, 65], the system introduced by Aguilar-Melchor
et al. in [63] seems to be promising. The rank version of [63] reached the second
round and the Hamming version of [63] even advanced to the third round of the NIST
standardization process.

Outline

In this dissertation, we investigate general coding-theoretic problems that have appli-
cations in cryptography, we develop attacks on existing code-based encryption systems,
and we propose a new code-based cryptographic scheme.

3



1 Introduction

In Chapter 2, we introduce the notation that we use throughout this dissertation
and review some definitions and properties of linear codes. We further define the
Hamming metric, the rank metric, and the sum-rank metric, and we state the formal
definitions of the well-known problems, syndrome decoding in the Hamming metric
and syndrome decoding in the rank metric. We conclude this chapter by recalling the
definitions of some complexity classes and some cryptographic principles.
In the first part of Chapter 3, we consider the problem of syndrome decoding in

the sum-rank metric. We first derive statements about erasure-decoding in the sum-
rank metric, and based on these results, we propose a non-trivial generic decoding
algorithm. Our algorithm is compared to other decoding strategies and a hardness
reduction to this problem is shown. In the second part, we investigate the problem
of syndrome decoding of high-order interleaved codes in the rank-metric. We propose
a new algorithm, prove conditions under which it is guaranteed to solve the problem,
and compare it to other known decoding strategies. In the third part of this chapter,
we develop a new strategy for decoding Gabidulin codes beyond the unique decoding
radius. We compare this decoding strategy to other algorithms and discuss possible
modifications to it. This chapter ends with a short summary and open problems
related to the aforementioned problems.
Chapter 4 is devoted to attacks on two encryption schemes in the Hamming metric.

The first scheme which we investigate is a variant of McEliece’s system, which uses
Twisted Reed–Solomon (TRS) codes instead of binary Goppa codes. After recalling
the formal definition of the system, we derive a feasible key-recovery attack on it.
Furthermore, we provide a detailed complexity analysis of the attack and show the
average runtime of an implementation on a general purpose processor. In the second
part of this chapter, we consider the system Hamming Quasi-Cyclic (HQC). In order
to do that, we recall the definition of the system and review its security assumptions.
We then propose a power-based side-channel chosen-ciphertext attack on the IND-
CCA2-secure2 Key-Encapsulation Mechanism (KEM) version of HQC. Furthermore,
we give a detailed analysis about the success probability and the runtime of the attack.
This chapter ends with remarks on both systems and open problems.
In Chapter 5, we propose LIGA, a code-based rank-metric encryption scheme that

is based on the difficulty of list decoding and interleaved decoding of Gabidulin codes.
The system constitutes a modification of the Faure–Loidreau (FL) system, which was

2A system is IND-CCA2 secure if it is indistinguishable under adaptive chosen-ciphertext attacks
(Definition 2.33).
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broken in a key-recovery attack by Gaborit, Otmani, and Talé Kalachi. We show
that the public-key encryption variant of LIGA is IND-CPA secure3 in the standard
model, and the KEM variant is IND-CCA2 secure in the random oracle model, both
under hardness assumptions of formally defined problems related to list decoding and
interleaved decoding of Gabidulin codes. We further examine several exponential-
time attacks on the aforementioned problems, state their complexity, and compare
the resulting parameters to some NIST proposals. We observe that LIGA has small
ciphertext and key sizes, it guarantees no decryption failures, and its security does
not rely on hiding the structure of a code. This chapter ends with a summary and a
description of a new attack by Bombar and Couvreur.
A summary of the presented results as well as an outlook is given in Chapter 6.
We present additional remarks inAppendix A to C and a summary of the notation

and the abbreviations in Appendix D.
Note that Chapters 3, 4, and 5 are self contained, and the notation and the variables

defined in those chapters are only valid within the scope of the respective chapter. This
was done to minimize the total number of variables used in the thesis. The reader
is warned not to take definitions across those chapters. Only the definitions from
Chapter 2 are valid throughout the whole thesis.

3A system is IND-CPA secure if it indistinguishable under chosen-plaintext attacks (Definition 2.30).
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2
Preliminaries

In this chapter, we introduce the notation and the concepts used throughout this
dissertation. A summary of the notation and the abbreviations is given in Appendix D.

2.1 Notation

Let q be a power of a prime, and let m and u be positive integers. Then, Fq denotes
the field of size q, Fqm refers to the extension field of Fq of order qm, and Fqmu is the
extension field of extension degree u of Fqm . Note that Fq ⊆ Fqm ⊆ Fqmu , and Fqmu
is a u-dimensional vector space over Fqm and a mu-dimensional vector space over Fq.
The respective multiplicative groups are indicated by F∗q := Fq \{0}, F∗qm := Fqm \{0},
and F∗qmu := Fqmu \ {0}.
We denote the set of allm×nmatrices over Fq by Fm×nq and the set of all length-n row

vectors over Fqm by Fnqm = F1×n
qm . Define the set of integers [a :b] := {i ∈ Z :a ≤ i ≤ b}.

For i ∈ [1 : m] and j ∈ [1 : n], we denote the element in the i-th row and the j-th
column of the matrix A ∈ Fm×nq by Ai,j and use the submatrix notation

A[a:b],[c:d] :=


Aa,c . . . Aa,d
... . . . ...

Ab,c . . . Ab,d

 .

The matrix A restricted to the rows indexed by [a :b] is written as A[a:b],: = A[a:b],[1:n],
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and the matrix A restricted to the columns indexed by [c : d] is written as A:,[c:d] =
A[1:m],[c:d]. By rkq(A) and rkqm(B), we denote the rank of the matrix A ∈ Fm×nq over
Fq and the rank of the matrix B ∈ Fu×nqm over Fqm , respectively. The transpose of A is
indicated by A>, A⊥ denotes a matrix whose rows form a basis of the right kernel of
A, and ref(A) refers to the reduced row echelon form of A. Furthermore, the number
of m× n matrices over Fq of rank i (e.g., see [66]) is denoted by

NMq(m,n, i) =
i−1∏
j=0

(qm−qj)(qn−qj)
qi−qj ≤ 4qi(m+n)−i2 . (2.1)

Let a be a vector in Fnqm and denote the j-th entry of a by aj, where j ∈ [1 :n]. We
write the concatenation of a = [a1 , . . . , an ] and the vector d = [d1 , . . . , dn′ ] ∈ Fn′qm as
[a,d] := [a1 , . . . , an , d1 , . . . , dn′ ] ∈ Fn+n′

qm .
For n = n′, we define the product of a and d by

ad := a rot(d)> = d rot(a)> = da,

where the circulant matrix

rot(a) :=


a1 an . . . a2

a2 a1 . . . a3
... ... . . . ...
an an−1 . . . a1

 ∈ Fn×nqm .

The componentwise product of the vectors a and d is equal to

a ? d := [a1d1, . . . , andn] ∈ Fnqm .

The Moore matrix for a vector a ∈ Fnqm is defined by

Ms,q (a) :=


a1 a2 . . . an

aq1 aq2 . . . aqn
... ... . . . ...

aq
s−1

1 aq
s−1

2 . . . aq
s−1
n

 ∈ Fs×nqm .

If a1, . . . , an ∈ Fqm are linearly independent over Fq, then rkqm(Ms,q (a)) = min{s, n},
e.g., see [67].
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2.1 Notation

The definition of a Moore matrix can be extended to matrices by

Ms,q (B) :=



B1,1 B1,2 . . . B1,n

B2,1 B2,2 . . . B2,n
... ... . . . ...

Bu,1 Bu,2 . . . Bu,n

Bq
1,1 Bq

1,2 . . . Bq
1,n

Bq
2,1 Bq

2,2 . . . Bq
2,n

... ... . . . ...
Bqs−1

u,1 Bqs−1

u,2 . . . Bqs−1
u,n



∈ Fus×nqm ,

where B ∈ Fu×nqm .

The diagonal matrix with the entries of a ∈ Fnqm on the main diagonal is denoted
by diag(a) ∈ Fn×nqm .

For a fixed basis γ = [γ1, γ2, . . . , γm] ∈ Fmqm of Fqm over Fq, we define the mapping

extqm/q : Fnqm → Fm×nq ,

a = [a1, a2, . . . , an] 7→ A =


A1,1 A1,2 . . . A1,n
... ... . . . ...

Am,1 Am,2 . . . Am,n

 ,

where aj = ∑m
i=1 Ai,jγi, for j ∈ [1 : n]. Similarly, for a fixed basis of Fqmu over Fqm ,

we can relate each vector b ∈ Fnqmu to a matrix B ∈ Fu×nqm according to extqmu/qm :
Fnqmu → Fu×nqm , b 7→ B, where the j-th column of B is the expansion of bj in the basis
of Fqmu over Fqm . We apply the definition of extqm/q and extqmu/qm also to matrices by
extending each row and then vertically concatenating the resulting matrices.

We define the trace of a vector b ∈ Fnqmu to Fnqm by

Tr : Fnqmu → Fnqm

b = [b1, b2, . . . , bn] 7→
[
u−1∑
i=0

bq
mi

1 ,
u−1∑
i=0

bq
mi

2 , . . . ,
u−1∑
i=0

bq
mi

n

]
.

Let [δ1, δ2, . . . , δu] ∈ Fuqmu be a basis of Fqmu over Fqm . We call [δ∗1, δ∗2, . . . , δ∗u] ∈ Fuqmu a

9



2 Preliminaries

dual basis to [δ1, δ2, . . . , δu] if it fulfills

Tr(δiδ∗j ) =

1, if i = j,

0, else,

for i, j ∈ [1 :u]. Note that a dual basis always exists.

Let a1, . . . ,a` ∈ Fnqm . Then, the Fq-linear vector space spanned by a1, . . . ,a` is
denoted by

〈a1, . . . ,a`〉q :=
{∑̀
i=1

viai : vi ∈ Fq
}
.

Similarly, the Fq-linear vector space generated by the elements of a set S is denoted by
〈S〉q. The Fq-dimension of a space V is written as dimq(V), the dual space of V as V⊥,
and the Grassmannian Grq(V , k) of V is the set of all k-dimensional Fq-linear subspaces
of V . The cardinality of Grq(V , k) is equal to the Gaussian binomial coefficient

j
k


q

:=


(1− qj)(1− qj−1) · · · (1− qj−k+1)

(1− q)(1− q2) · · · (1− qk) , for k ≤ j,

0, for k > j,

where j = dimq(V). For k ≤ j, this quantity can be lower and upper bounded [68,
Lem. 4] by

qk(j−k) ≤

j
k


q

≤ 4qk(j−k). (2.2)

The Fq-linear row space of a matrix A ∈ Fm×nq is denoted by Rq(A), and the
right Fq-kernel is defined by Kq(A) := {v ∈ Fnq : Av> = 0}. For a ∈ Fnqm , we
define the Fq-rank of a by rkq(a) := dimq(〈a1, . . . , an〉q) = rkq(extqm/q(a)). Using the
definition of extqm/q, we define the right Fq-kernel of B ∈ Fk×nqm by Kq(B) := {v ∈ Fnq :
extqm/q(B)v> = 0}, and the Fq-rank of B by rkq(B) := rkq(extqm/q(B)).

The sets of univariate polynomials over Fq and Fqm are denoted by Fq[X] and Fqm [X],
respectively. For the degree of a polynomial f ∈ Fq[X], we write deg(f). For a vector
α = [α1, . . . , αn] ∈ Fnq , we define the evaluation map by

evα : Fq[X]→ Fnq
f 7→ [f(α1), f(α2), . . . , f(αn)].

10



2.2 Linear Codes

Let I and J be two finite subsets of integers. We define their sumset by

I + J := {a+ b : a ∈ I, b ∈ J }.

The probability of an event is denoted by Pr, and the expectation of a random variable
is denoted by E. Drawing an element i uniformly at random from a set I is written
as i $←− I, and assigning an element a to k is indicated by k ← a.
In order to classify the asymptotic running time of algorithms, we use the well-known

big O notation, which we denote by O.

2.2 Linear Codes
In this section, we review some concepts of linear codes as well as the Hamming metric,
the rank metric, and the sum-rank metric.

Definition 2.1 (Linear Code). An [n, k]Fqm code C is a k-dimensional Fqm-linear
subspace of Fnqm. A generator matrix G ∈ Fk×nqm of C is a matrix whose rows form a
basis of C.

Definition 2.2 (Dual Code). Let C be an [n, k]Fqm code. Then, the dual code of C is
defined by

C⊥ :=
{
c′ ∈ Fnqm :

n∑
i=1

c′ici = 0,∀c ∈ C
}
.

A matrix H ∈ F(n−k)×n
qm is a parity-check matrix of C if and only if it is a generator

matrix of C⊥.

Definition 2.3 (Interleaved Code). Let C be an [n, k]Fqm code and u be a positive
integer. The corresponding u-interleaved [u;n, k]Fqm code is defined by

C(u) :=




c1

c2
...
cu

 ∈ Fu×nqm : ci ∈ C,∀i ∈ [1 :u]


.

We call C the constituent code and u the interleaving order.

Note that any codeword C ∈ Fu×nqm of an interleaved code C(u) can be written as
C = MG, where M ∈ Fu×kqm and G ∈ Fk×nqm is a generator matrix of the constituent

11
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code C. Furthermore, it holds that HC> = 0 ∈ F(n−k)×u
qm for any codeword C ∈ C(u),

where H ∈ F(n−k)×n
qm is a parity-check matrix of C.

Definition 2.4 (Schur-Square of a Code). Let C be an [n, k]Fqm code. The Schur-
square (or Hadamard-square) of C is given by

C(?2) := 〈{a ? b ∈ Fnqm : a, b ∈ C}〉qm .

2.2.1 Hamming Metric

The Hamming metric was introduced by Richard Hamming in 1950 [69]. Codes in this
metric are sets of vectors over a finite field and the distance of two vectors is given by
the number of positions at which the corresponding entries differ. In the following, we
review definitions related to the Hamming metric.

Definition 2.5 (Hamming Support). Let c be a vector in Fnq . Then, the Hamming
support of c is defined by

suppH(c) := {i ∈ [1 :n] : ci 6= 0}.

Definition 2.6 (Hamming Weight). Let c be a vector in Fnq . Then, the Hamming
weight of c is denoted by

wtH(c) := |suppH(c)|.

Definition 2.7 (Hamming Distance). Let c and d be vectors in Fnq . Then, the Ham-
ming distance between c and d is equal to

dH(c,d) := |{i ∈ [1 :n] : ci 6= di}|.

Note that dH(c,d) = wtH(c− d) holds.

Definition 2.8 (Minimum Hamming Distance). Let C be an [n, k]Fq code. The mini-
mum Hamming distance of C is given by

dmin = min{dH(c,d) : c,d ∈ C, c 6= d},

and we call C an [n, k, dmin]HFq code. If it is clear from the context, the superscript H
will be omitted. Codes that attain the Singleton bound [70] with equality, i.e., their

12



2.2 Linear Codes

minimum distance dmin is equal to n− k + 1, are called Maximum Distance Separable
(MDS) codes.

Definition 2.9 (Hamming Super-Support). Let c be a vector in Fnq . A set A ⊇ [1 :n]
is called a Hamming super-support of c if

A ⊇ suppH(c).

Reed–Solomon (RS) codes are one of the best-known codes, and they are extensively
used in practice to correct errors in the Hamming metric.

Definition 2.10 (Reed–Solomon Code [71]). Let k and n be integers such that 1 ≤
k ≤ n, and let the entries of the vector α = [α1, . . . , αn] ∈ Fnq be distinct. The RS code
over Fq of length n, dimension k, and with locators α is defined by

RSk(α) := {evα(f) : f ∈ Fq[X], deg(f) ≤ k − 1} ⊆ Fnq .

Note that RS codes are MDS codes, and their decoding was studied in many publi-
cations, e.g., in [71–82].
In the next theorem, we show the implication of an algorithm that is able to deter-

mine valid locators of an RS code given any of its generator matrices.

Theorem 2.1 (Sidelnikov–Shestakov Attack [15]). Let RSk(α) denote an RS code
with code locators α = [α1, . . . , αn] ∈ Fnq . Given any generator matrix of RSk(α),
there is an algorithm which determines a vector α′ ∈ Fnq such that

RSk(α) = RSk(α′),

where α′ = [aα1 + b, . . . , aαn + b] with a ∈ F∗q and b ∈ Fq, in O(n4) operations in Fq.

TRS codes were introduced in [83] and constitute a generalization of RS codes.

Definition 2.11 (Twisted Reed–Solomon Code [83]). Let `T, k, and n be integers such
that `T ≥ 1 and 1 ≤ k ≤ n, and let the entries of the vector α = [α1, . . . , αn] ∈ Fnq
be distinct. For a vector τ ∈ [1 :n − k]`T of distinct twists, a vector π ∈ [0 : k − 1]`T
of distinct increasing hooks, and a vector of field coefficients η ∈ (F∗q)`T, the set of
[τ ,π,η]-twisted polynomials is given by

Pk(τ ,π,η) :=

k−1∑
i=0

fiX
i +

`T∑
j=1

ηjfπjX
k−1+τj : fi ∈ Fq

 ⊆ Fq[X].

13
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Then, the [τ ,π,η]-TRS code over Fq of length n, dimension k, and with locators α is
given by

T RSk(α, τ ,π,η) := {evα(f) : f ∈ Pk(τ ,π,η)}.

Equivalently, the code T RSk(α, τ ,π,η) is defined by the generator matrix

Gα,τ ,π,η :=



1 1 . . . 1
α1

1 α1
2 . . . α1

n
... ... . . . ...

απ1−1
1 απ1−1

2 . . . απ1−1
n

απ1
1 + η1α

k−1+τ1
1 απ1

2 + η1α
k−1+τ1
2 . . . απ1

n + η1α
k−1+τ1
n

απ1+1
1 απ1+1

2 . . . απ1+1
n

... ... . . . ...
α
π`T−1
1 α

π`T−1
2 . . . α

π`T−1
n

α
π`T
1 + η`Tα

k−1+τ`T
1 α

π`T
2 + η`Tα

k−1+τ`T
2 . . . α

π`T
n + η`Tα

k−1+τ`T
n

α
π`T +1
1 α

π`T +1
2 . . . α

π`T +1
n

... ... . . . ...
αk−1

1 αk−1
2 . . . αk−1

n



.

In [84], the authors derive a method to obtain a subfamily of TRS codes that are
MDS.

Theorem 2.2 (Explicit MDS TRS Codes [84]). Let q0 be a power of a prime, and
1 = s0 < . . . < s`T be non-negative integers such that Fqs0

0
⊂ Fqs1

0
⊂ . . . ⊂ F

q
s`T
0

= Fq is
a chain of subfields. Let k and n be integers such that k < n ≤ q0, and let the entries
of α = [α1, . . . , αn] ∈ Fnq0 denote distinct locators. Furthermore, let τ , π, and η be
chosen as in Definition 2.11, such that ηi ∈ F

q
si
0
\ F

q
si−1
0

, for i ∈ [1 : `T]. Then, the
code T RSk,n(α, τ ,π,η) is MDS.

In [84], the authors further propose a decoding algorithm for the code construction
given in Theorem 2.2. Since the complexity of this decoding strategy is in

O
((
q2`T

0

)`T
n log2(n) log

(
log(n)

))
,

it is only practical for a very small number of twists.
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2.2 Linear Codes

2.2.2 Rank Metric

Codes in the rank metric are sets of vectors over an extension field, whose elements can
be interpreted as matrices over a subfield. The distance of two vectors is given by the
rank of the difference of their matrix representation. The codes were independently
introduced in [85–87], together with their most famous code class, Gabidulin codes.
An overview of the known properties of rank-metric codes and their application in
cryptography and coding theory is given in [88].
In the following, we review the definition and some concepts of the rank metric.

Definition 2.12 (Rank Weight). Let c be a vector in Fnqm. Then, the rank weight of
c is given by

wtR(c) := rkq(c).

Definition 2.13 (Rank Distance). Let c and d be vectors in Fnqm. Then, the rank
distance between c and d is defined by

dR(c,d) := wtR(c− d).

Definition 2.14 (Minimum Rank Distance). Let C be an [n, k]Fqm code. The minimum
rank distance of C is given by

dmin = min{dR(c,d) : c,d ∈ C, c 6= d}.

The code C is an [n, k, dmin]RFqm code, and it is called a Maximum Rank Distance (MRD)
code if it attains the rank-metric Singleton bound with equality, i.e., if dmin = n−k+1.

The following lemma provides an important statement about the decomposition of
vectors and matrices.

Lemma 2.3 (Matrix Decomposition [89, Theorem 1]). Let u ≥ 1 be a non-negative
integer, and let E ∈ Fu×nqm be a matrix of Fq-rank t. Then, the matrix can be decomposed
into E = AB, where both A ∈ Fu×tqm and B ∈ Ft×nq have full Fq-rank t. The matrices
A and B are unique up to elementary Fq-column and Fq-row operations, respectively.

Using Lemma 2.3, we define the row and the column rank support as follows.

Definition 2.15 (Row and Column Rank Support). Let u ≥ 1 be a non-negative
integer, and let E ∈ Fu×nqm be a matrix of Fq-rank t and decomposition E = AB
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with A ∈ Fu×tqm and B ∈ Ft×nq . Then, we call the Fq-linear column space of A the
column rank support supp(C)

R (E) and the Fq-linear row space of B the row rank support
supp(R)

R (E).

Definition 2.16 (Row and Column Rank Super-Support). Let u ≥ 1 be a non-negative
integer, and let E ∈ Fu×nqm be a matrix of Fq-rank t and decomposition E = AB

with A ∈ Fu×tqm and B ∈ Ft×nq . Then, we call the Fq-linear space F (R) a row rank
super-support of E if supp(R)

R (E) ⊆ F (R), and the Fq-linear space F (C) a column rank
super-support of E if supp(C)

R (E) ⊆ F (C).

In the following, we define Gabidulin codes, which can be seen as the analogs of RS
codes in the rank metric.

Definition 2.17 (Gabidulin Code [86]). Let k, n, and m be integers such that 1 ≤
k ≤ n ≤ m, and let g = [g1, . . . , gn] ∈ Fnqm have Fq-rank n. The Fqm-linear Gabidulin
code Gk(g) over Fqm of length n, dimension k, and with locators g is defined by its
generator matrix

GG =Mk,q (g) .

Gabidulin codes are MRD codes [86], and their decoding has been studied exten-
sively, e.g., in [86, 87, 90–104].
The next lemma provides a statement about the error and erasure correction capa-

bility of Gabidulin codes.

Lemma 2.4 (Error-Erasure Decoding of Gabidulin Codes [99–104]). Let Gk(g) denote
an [n, k]Fqm Gabidulin code, and let r = c+ e ∈ Fnqm, where c ∈ Gk(g),

e = aEBE + aCBC + aRBR, (2.3)

the terms aE ∈ Ft′qm, BE ∈ Ft′×nq , aC ∈ FγE
qm, BC ∈ FγE×n

q , aR ∈ FρE
qm, and BR ∈ FρE×n

q

have full Fq-rank, and δE := ρE + γE. If BC and aR are known to the decoder and if
2t′ + δE ≤ n − k is fulfilled, then there exist efficient algorithms that can decode r in
Gk(g) uniquely.

In this dissertation, we call the product aEBE full rank errors, the term aCBC

column erasures, and the vector aRBR row erasures.
Interleaved codes in the rank metric were introduced in [104, 105] and have found

applications in code-based cryptography [62, 65, 106, 107], network coding [104, 108],
and the construction and the decoding of space-time codes [109–114].
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Definition 2.18 (Interleaved Gabidulin Codes [105]). Let u, k, n, and m be positive
integers such that 1 ≤ k ≤ n ≤ m. A linear (vertically, homogeneous) interleaved
Gabidulin code G(u)

k (g) over Fqm of length n, dimension k, and interleaving order u is
defined by

G(u)
k (g) :=




c1

c2
...
cu

 ∈ Fu×nqm : ci ∈ Gk(g), ∀i ∈ [1 :u]


.

When considering random additive errors of rank weight t, interleaved Gabidulin
codes can be decoded uniquely up to t ≤ b u

u+1(n−k)c errors with high probability [105,
115, 116]. Although the ratio of errors that can be successfully decoded is high, many
error patterns exist for which all known efficient decoders fail. As shown in the next
lemma, we can efficiently construct a large class of such errors.

Lemma 2.5 (Interleaved Decoding Failures [99, 105, 115]). Let GG ∈ Fk×nqm be a
generator matrix of Gk(g), and let xi ∈ Fkqm and ci = xi ·GG, for i ∈ [1 : u]. Then,
the algorithms proposed in [99, 105, 115] fail to correct an additive error Z ∈ Fu×nqm of
Fq-rank t if

rkqm





Mn−t−1,q (g)
Mn−k−t,q (c1 + z1)
Mn−k−t,q (c2 + z2)

...
Mn−k−t,q (cu + zu)




< n− 1,

where zi is the i-th row of Z for all i ∈ [1 :u].

Decoding the error patterns shown in Lemma 2.5 has been subject to intensive
research since the Loidreau–Overbeck decoder [105] was proposed in 2006. In the
Hamming metric, the equivalent problem for interleaved RS codes has been studied
since 1997 [78], and more than a dozen papers have dealt with decoding algorithms
for these codes. However, no polynomial-time decoding algorithm for the case of
Lemma 2.5 has been proposed so far, and it is widely conjectured that there cannot
exist such a decoder.
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2.2.3 Sum-Rank Metric

The sum-rank metric is a family of metrics which contains both the Hamming and the
rank metric as special cases. It was introduced under the name “extended rank metric”
as a suitable distance measure for multi-shot network coding in 2010 [117]. Since then,
several code constructions and efficient decoders have been proposed for this metric
[118–128]. These codes have been studied in the context of distributed storage [129],
aspects of network coding [125], and space-time codes [130]. Furthermore, in [131],
the authors derived several fundamental results on sum-rank-metric codes, including
various bounds, MacWilliams identities, and new code constructions.
In the following, we review some common definitions for the sum-rank metric.

Throughout this dissertation, we call `SR ∈ N the blocking parameter, where `SR | n.
We refer to the integer ηSR := n/`SR as block size and define µSR := min{ηSR,m}.

Definition 2.19 (Sum-Rank Weight). Let c be a vector in Fnqm. Then, the (`SR-)sum-
rank weight of c is defined by

wtSR(c) :=
`SR∑
i=1

rkq(ci),

where c = [c1, c2, . . . , c`SR ], and ci ∈ FηSR
qm , for i ∈ [1 :`SR].

Note that for `SR = 1, the sum-rank metric coincides with the rank metric, and
for `SR = n, the sum-rank metric is equal to the Hamming metric. Furthermore, for
c ∈ Fnqm , it holds that wtR(c) ≤ wtSR(c) ≤ min{µSR`SR, wtH(c)}.

Definition 2.20 (Sum-Rank Weight Decomposition). Let c be a vector in Fnqm. Then,
the (`SR-)sum-rank weight decomposition of c is given by the vector

[rkq(c1), . . . , rkq(c`SR)] ∈ [0 :µSR]`SR ,

where c = [c1, c2, . . . , c`SR ], and ci ∈ FηSR
qm , for i ∈ [1 :`SR]. We denote the set of weight

decompositions of sum-rank weight t by Tt,`SR,µSR :=
{
t ∈ [0 :µSR]`SR : ∑`SR

i=1 ti = t
}
.

Note that it was shown in [132] that

|Tt,`SR,µSR | =

⌊
t

µSR+1

⌋
∑
i=0

(−1)i
(
`SR

i

)(
t+ `SR − 1− (µSR + 1)i

`SR − 1

)
≤
(
`SR + t− 1
`SR − 1

)
. (2.4)
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Definition 2.21 (Sum-Rank Distance). Let c and d be vectors in Fnqm. Then, the
(`SR-)sum-rank distance between c and d is defined by

dSR(c,d) := wtSR(c− d).

Definition 2.22 (Minimum Sum-Rank Distance). Let C be an [n, k]Fqm code. The
minimum (`SR-)sum-rank distance of C is equal to

dmin = min{dSR(c,d) : c,d ∈ C, c 6= d}.

We call the code C an [n, k, dmin]SR
Fqm code.

2.2.4 Well-Studied Problems

In this section, we state well-known problems in coding theory and review algorithms
to solve them.

Problem 2.1 (Decisional Hamming Syndrome Decoding (DecSDH) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of an [n, k]Fqm code C
• Non-negative integer t
• Vector s ∈ Fn−kqm

Question: Is there a vector e ∈ Fnqm with wtH(e) ≤ t such that s = eH>?

In 1978, Berlekamp et al. proved that the DecSDH problem is NP-complete [133].
At this time, the algorithm proposed by Prange [134] was the most efficient way to
solve this problem by finding a solution to the associated search problem:

Problem 2.2 (Search Hamming Syndrome Decoding (SeaSDH) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of an [n, k]Fqm code C
• Non-negative integer t
• Vector s = eH> ∈ Fn−kqm , where wtH(e) = t

Objective: Search for an e′ ∈ Fnqm such that wtH(e′) ≤ t and s = e′H>.

The idea of Prange’s Information-Set Decoding (ISD) algorithm [134] is to guess
an error-free set {I1, . . . , In−s} ⊂ [1 : n] which contains an information set, where
t ≤ s ≤ n − k. The set {I1, . . . , In−s} is error-free if eI1 = . . . = eIn−s = 0, and
{I1, . . . , In−s} contains an information set if the columns Ī1, . . . , Īs of H are linearly
independent, where {Ī1, . . . , Īs} = [1:n]\{I1, . . . , In−s}. Given such a set, the SeaSDH
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problem can be solved by a simple matrix inversion. The probability that a random set
{I1, . . . , In−s} is error-free and contains an information set is approximately

(
s
t

)/(
n
t

)
.1

Checking whether {I1, . . . , In−s} is error-free and contains an information set requires
O(n3m3) operations in Fq. It follows that if there is one solution to SeaSDH, the average
complexity of Prange’s algorithm for solving the SeaSDH Problem is approximately

WPrange = n3m3

(
n
t

)
(
s
t

) ≥ n3m3

(
n
t

)
(
n−k
t

) (2.5)

operations in Fq, where WPrange is minimized for s = n− k. In case there are multiple
solutions to SeaSDH, the complexity needs to be divided by the number of solutions,
which is, on average, equal to

NH :=
∑t
i=0

(
n
i

)
(qm − 1)i

qm(n−k) .

From 1978 until now, several methods were proposed to accelerate the determination
of an error-free information set, see [135] for a comprehensive list.
In 2016, Gaborit and Zémor probabilistically reduced the DecSDH problem to its

rank-metric equivalent [136], which is defined as follows:

Problem 2.3 (Decisional Rank Syndrome Decoding (DecSDR) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of an [n, k]Fqm code C
• Non-negative integer t
• Vector s ∈ Fn−kqm

Question: Is there a vector e ∈ Fnqm with wtR(e) ≤ t such that s = eH>?
The first algorithm to solve the DecSDR problem was proposed in 1996 [137], and

since then, several improvements have been developed [138–142]. These algorithms
solve the problem by finding a solution to the search variant of the problem:

Problem 2.4 (Search Rank Syndrome Decoding (SeaSDR) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of an [n, k]Fqm code C
• Non-negative integer t
• Vector s = eH> ∈ Fn−kqm , where wtR(e) = t

Objective: Search for an e′ ∈ Fnqm such that wtR(e′) ≤ t and s = e′H>.
1For practical parameters, the probability that a random set {I1, . . . , In−s} contains an information
set is much larger than the probability that this set is error free. Therefore, we neglect the former
probability in our analysis.
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The mentioned algorithms can be classified into two families. The algorithms be-
longing to the first family are known as combinatorial rank syndrome decoders, and
they can be seen as analogs of ISD algorithms in the rank metric. In [139], Gaborit,
Ruatta, and Schrek proposed a method that repeatedly samples an s-dimensional Fq-
linear subspace of either Fqm or Fnq until a subspace is found that contains the column
or the row rank support of the error,2 where t ≤ s ≤ min{n − k, m

n
(n − k)}. If such

a subspace is determined, the SeaSDR problem can be solved by a matrix inversion,
which requires O(n3m3) operations in Fq. The probability that a randomly drawn
s-dimensional Fq-linear subspace of Fqm is a column rank super-support of the error
is given by s

t


q

m
t

−1

q

≈ q−t(m−s),

and the probability that a randomly drawn s-dimensional Fq-linear subspace of Fnq
contains the row rank support of the error is

s
t


q

n
t

−1

q

≈ q−t(n−s).

Furthermore, the complexity of checking whether the drawn subspace is a column or
row rank super-support of the error is in O(n3m3). Thus, in case there is only one
solution to SeaSDR, the Gaborit–Ruatta–Schrek decoder [139] has a complexity of
approximately

WGRS = n3m3qt(min{n,m}−s) ≥ n3m3qtmin{k,d kmn e} (2.6)

operations in Fq, which is minimal for s = min{n − k, m
n

(n − k)}. This method has
been improved, and the currently fastest variant [140] requires

WComb = min
{
n3m3qtd(k+1)m/ne−m, n3m3qtk

}
operations in Fq. If there are multiple solutions to SeaSDR, the complexity of the
combinatorial rank syndrome decoders has to be divided by the number of solutions,

2We defined the column rank support of e = [e1, . . . , en] by 〈e1, . . . , en〉q ⊆ Fqm and the row rank
support of e by Rq(extqm/q(e)) ⊆ Fn

q , as this allows us a simplified notation in the following
chapters. Therefore, we have to guess subspaces of Fqm to find a column rank super-support of e
and subspaces of Fn

q to find a row rank super-support of e.
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which is, on average, equal to

NR :=

t∑
i=0

(
i−1∏
j=0

(
qm − qj

))n
i


q

qm(n−k) . (2.7)

Therefore, we define WCRSD := WComb/NR.
The second family is called algebraic rank syndrome decoders, but a detailed descrip-

tion of these algorithms is outside the scope of this dissertation. The algebraic rank
syndrome decoders are usually more efficient than the combinatorial rank syndrome
decoders, and we denote the complexity of the algebraic methods byWARSD. Since the
complexity expression is quite involved, we state the formula in Appendix A.1. Note
that it is not known how to reduce the complexity of the algebraic techniques in case
there are multiple solutions to SeaSDR.

2.3 Complexity Classes
In the following, we review complexity classes that we make use of in this dissertation
(e.g., see [143]). For that, let A denote an algorithm that has as input a sequence
of random bits r and the input x of the considered decision problem L. Then, A is
referred to as a Probabilistic Polynomial Time (PPT) algorithm if the length of the
random sequence r is polynomial in the size of the input x and if A runs in time
polynomial in the size of the input x. In the following definitions, the variable ∆ is
any constant with 0 ≤ ∆ < 1, and the stated probabilities are for a fixed input x and
a random sequence r.

Definition 2.23 (Polynomial Time (P)). The problem L is in the class P if there is a
PPT algorithm AP with output true or false such that ∀x ∈ L we have ∀r AP(x, r) =
true, and ∀x 6∈ L we have ∀r AP(x, r) = false.

Definition 2.24 (Randomized Polynomial Time (RP)). The problem L is in the class
RP if there is a PPT algorithm ARP with output true or false such that ∀x ∈ L it holds
that Pr(ARP(x, r) = true) ≥ ∆, and ∀x 6∈ L we have ∀r ARP(x, r) = false.

Definition 2.25 (Co-Randomized Polynomial Time (coRP)). The problem L is in the
class coRP if there is a PPT algorithm AcoRP with output true or false such that ∀x ∈ L
we have ∀r AcoRP(x, r) = true, and ∀x 6∈ L it holds that Pr(AcoRP(x, r) = false) ≥ ∆.
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Definition 2.26 (Zero-Error Probabilistic Polynomial Time (ZPP)). The problem L

is in the class ZPP if there is a PPT algorithm AZPP with output true, false, or fail
such that for all x we have Pr(AZPP(x, r) = fail) ≤ ∆. Furthermore, for all x and r it
holds that AZPP(x, r) = true implies x ∈ L, and AZPP(x, r) = false implies x /∈ L.

Note that ZPP = RP ∩ coRP.

Definition 2.27 (Non-Deterministic Polynomial Time (NP)). The problem L is in
the class NP if there is a PPT algorithm ANP such that x ∈ L exactly when there is
an r such that ANP(x, r) = true.

Note that the chain P ⊆ ZPP ⊆ RP ⊆ NP holds.

2.4 Cryptographic Schemes and Attack Models
In this dissertation, we consider two different types of public-key cryptosystems, which
are known as public-key encryption schemes and KEMs.3 The former type of systems
is used for a confidential communication between parties that did not agree on any
secret in advance. The systems of this type are defined as follows:

Definition 2.28 (Public-Key Encryption Scheme). A public-key encryption scheme
ΠEnc consists of three PPT algorithms (KeyGen,Encrypt,Decrypt) with the following
properties:

1. The key-generation algorithm KeyGen takes as input parameters which are chosen
according to the desired security level λ and returns a pair of keys (sk, pk). The
former of these is called the private key and the latter is called the public key.

2. The encryption algorithm Encrypt takes as input a public key pk and a message
m, and it returns a ciphertext y.

3. The decryption algorithm Decrypt takes as input a private key sk and a ciphertext
y, and it returns either a message m or a decryption failure.

For any message m, the inequality Decrypt(Encrypt(m, pk), sk) 6= m is only allowed
to hold with negligible probability over (sk, pk).

3A detailed discussion of the considered cryptographic schemes and attack models is given in [2,
Cha. III]. Note that we use similar notations and definitions as in [2].
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The security of public-key encryption schemes is commonly proven under assump-
tions on the capability of the adversaries. The basic requirement for these systems is
IND-CPA security, which means that the adversaries can query an encryption oracle
but do not have access to a decryption oracle. To formally define IND-CPA security,
consider the following game between an adversary and a challenger:

Definition 2.29 (The IND-CPA Game PubEncCPA
A,ΠEnc(λ)).

1. The challenger runs KeyGen to generate a key pair (sk, pk) depending on the
security level λ.

2. The adversary A is given pk and oracle access to Encrypt( · , pk).4 Then, the
adversary returns a pair of equal-length messages (m1, m2).

3. The challenger draws an integer b uniformly at random from {1, 2}, computes a
ciphertext y = Encrypt(mb, pk) and gives y to A.

4. The adversary A continues to have oracle access to Encrypt( · , pk) and returns
an integer b′ ∈ {1, 2}.

The output of the experiment is 1 if b′ = b and 0 otherwise. If b′ = b, we say that A
succeeds.

Based on this game, we define IND-CPA security as follows:

Definition 2.30 (IND-CPA Security of Public-Key Encryption Schemes). A public-
key encryption scheme ΠEnc = (KeyGen,Encrypt,Decrypt) is called IND-CPA-secure if
for all PPT adversaries A, there exists a negligible function5 fngl such that

Pr
(

PubEncCPA
A,ΠEnc(λ) = 1

)
≤ 1

2 + fngl(λ),

where λ denotes the security level.

Compared to symmetric encryption schemes, public-key encryption schemes have
the disadvantage of slower encryption and decryption algorithms as well as larger
key and ciphertext sizes. Therefore, hybrid schemes consisting of a symmetric and a

4Although the oracle access to Encrypt( · , pk) is redundant, we state it for didactic reasons, as it
explains why it is called a chosen-plaintext game.

5A function f : N → R is called negligible if for every positive integer p there is an integer N such
that for all integers x > N it holds that |f(x)| < x−p.
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public-key cryptosystem are often used to transmit large amounts of data. In these
schemes, the public-key system is used to exchange a secret key, and the symmetric
cryptosystem uses the exchanged secret key to encrypt the data. This type of public-
key cryptosystem is known as KEM and is defined as follows:

Definition 2.31 (Key-Encapsulation Mechanism). A KEM consists of three PPT
algorithms (KeyGen,Encaps,Decaps) with the following properties:

1. The key-generation algorithm KeyGen takes as input parameters which are chosen
according to the desired security level λ and returns a key pair (sk, pk).

2. The encapsulation algorithm Encaps takes as input a public key pk, and returns
a ciphertext y and a shared key K.

3. The decapsulation algorithm Decaps takes as input a private key sk and a cipher-
text y, and it returns a key K or a decapsulation failure.

If Encaps outputs (y, K), then it is only allowed that Decaps(y, sk) returns K ′ 6= K

with negligible probability over (sk, pk).

We are interested in KEMs that provide IND-CCA2 security, which means that the
adversaries have access to both an encapsulation and a decapsulation oracle. To define
IND-CCA2 security, consider the following game:

Definition 2.32 (The IND-CCA2 Game KEMCCA2
A,ΠKEM(λ)).

1. The challenger runs KeyGen to generate a key pair (sk, pk) depending on the
security level λ and runs Encaps(pk) to obtain (y, K).

2. The challenger draws an integer b uniformly at random from {1, 2}. If b = 1, he
chooses K̂ = K, and if b = 2, he draws K̂ uniformly at random from all possible
shared keys.

3. The adversary A is given (pk,y, K̂). Furthermore, A obtains access to the or-
acle Encaps(pk) and the oracle Decaps( · , sk), where A is not allowed to query
Decaps(y, sk).

4. The adversary A returns an integer b′ ∈ {1, 2}.

The output of the experiment is 1 if b′ = b and 0 otherwise. If b′ = b, we say that A
succeeds.
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Based on this game, the IND-CCA2 security of KEMs is given as follows:

Definition 2.33 (IND-CCA2 Security of KEMs). A KEM is called IND-CCA2-secure
if for all PPT adversaries A, there exists a negligible function fngl such that

Pr
(

KEMCCA2
A,ΠKEM(λ) = 1

)
≤ 1

2 + fngl(λ),

where λ denotes the security level.
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3
Coding-Theoretic Problems with
Applications in Cryptography

In public-key cryptography, the security of a given system is ensured through the
computational hardness of the underlying mathematical problems. Early systems like
the Diffie–Hellman key exchange mechanism and the Rivest–Shamir–Adleman (RSA)
encryption scheme are based on the hardness of computing discrete logarithms and
factoring large integers [3, 144]. However, due to Shor’s algorithm [6], the two afore-
mentioned problems became easy-to-solve by sufficiently large quantum computers,
and therefore, cryptographers started to look for other difficult problems that could
serve as the core of post-quantum secure systems. Currently, there are two main
branches in the field of quantum-resistant encryption schemes. One branch is referred
to as lattice-based cryptography, where most systems rely on variants of the shortest
vector problem, the closest vector problem, or learning with errors, see e.g., [145–147].
The other branch is known as code-based cryptography, where the problems syndrome
decoding in the Hamming metric and syndrome decoding in the rank metric often serve
as the starting point to build cyptographic schemes. The first Hamming-based system
by McEliece partly relies on the hardness of syndrome decoding in the Hamming met-
ric [13, 135]. Since the system by McEliece suffers from large key sizes, new schemes
have been developed, whose security is based on variants of Hamming syndrome decod-
ing, e.g., the systems Bit Flipping Key Encapsulation (BIKE) [52, 148] and HQC [63,
149]. The security of the former system depends on the hardness of finding codewords
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of low Hamming weight and the hardness of Hamming syndrome decoding in cyclic
codes, and the security of the latter scheme only relies on the hardness of variants
of Hamming syndrome decoding in cyclical codes. As syndrome decoding in the rank
metric seems to be harder than in the Hamming metric, rank-based systems potentially
allow one to reduce both the key and the ciphertext sizes. Two well-studied rank-based
encryption schemes are ROLLO1 [56, 150] and Rank Quasi-Cyclic (RQC) [63, 151].
While the security of ROLLO is partly based on the hardness of rank syndrome de-
coding in ideal codes, RQC solely relies on variants of this problem.
In this chapter, we investigate three problems that are of importance to code-based

cryptography. The first problem refers to syndrome decoding in the sum-rank metric,
where the sum-rank metric is a family of metrics that coincides with the Hamming
metric and the rank metric in special cases. We formally state the decoding problem
and show that it can be seen as a generalization of DecSDH and DecSDR, which are
formally defined in Section 2.2.4. Furthermore, we present a randomized reduction
of DecSDH to syndrome decoding in the sum-rank metric, which indicates that the
considered problem is hard and could be a suitable metric upon which to build cryp-
tographic schemes. In addition, we present the first non-trivial algorithm to solve this
problem.
The second problem is syndrome decoding of high-order interleaved rank-metric

codes. This problem can be seen as a variant of DecSDR, where one gets u instances of
DecSDR, and the solutions to these instances share the same row-support. We present
an efficient algorithm to solve this variant of DecSDR, we analyze the complexity of the
algorithm, and we compare it to other decoding strategies. The proposed algorithm
has an impact on rank-based McEliece or Niederreiter schemes, as it proves that in
the case of multiple encryptions, the row-supports of the errors have to be generated
independently; otherwise the systems will have a high probability of being insecure.
The third problem refers to decoding Gabidulin codes beyond their unique decoding

radius and builds the core of rank-based systems like RQC, LIGA [106, 152], and
Rank Metric Encryption Scheme with Short Keys (RAMESSES) [153]. Therefore, the
hardness of this problem is important to assess the security of these schemes. Although
we have no rigorous proof that the problem is actually hard, it should be noted that
many scientists have tried to solve it in polynomial time and have not been successful.
We propose a randomized decoding algorithm that solves the problem in exponential

1The system ROLLO is the compilation of Rank-Ouroboros, Low Rank Parity Check Codes Key
Exchange (LAKE) and Low Rank Parity Check Codes Encryption (LOCKER).
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time, and we show that it is currently the most efficient algorithm for many parameter
sets. The complexity of this algorithm gives an indication and an upper bound on the
hardness of the problem.
The results shown in Section 3.1 are based on [154], which is published in the pro-

ceedings of the 2020 IEEE International Symposium on Information Theory (ISIT),
and on [155], which is currently under review for publication in the IEEE Transactions
on Information Theory. The author of this dissertation contributed all of the content
that is shown in Section 3.1. The cited papers contain further algorithms for an effi-
cient computation of the derived bounds and for efficiently drawing vectors from a set
according to a given non-uniform distribution. These algorithms are only referenced
but not shown in this dissertation, as they were mainly developed by the other authors
of [154, 155].
Parts of Section 3.2 are included in the proceedings of the 2021 IEEE International

Symposium on Information Theory (ISIT) [156]. The content of [156] that is described
in this section was contributed by the author of this thesis. Furthermore, Section 3.2
contains proofs for some of the conjectures that are published in [156]. The cited
publication contains comparisons of the proposed decoder with its Hamming metric
equivalent and with Simple codes [157]. The comparison with the Hamming metric
decoder is outside the scope of this dissertation, and the comparison with Simple codes
is not presented, as it was mainly contributed by the other authors of [156].
The results given in Section 3.3 are published in the proceedings of the 2020 Inter-

national Conference on Post-Quantum Cryptography (PQCrypto) [158]. The author of
this dissertation contributed all of the content that is presented in this section, except
for the simulation result shown in the first row of Table 3.1.
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3.1 Syndrome Decoding in the Sum-Rank Metric
In this section, we investigate the problem of decoding random codes in the sum-rank
metric. We define the decisional version of the problem as follows:

Problem 3.1 (Decisional Sum-Rank Syndrome Decoding (DecSDSR) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of an [n, k]Fqm code C
• Non-negative integer t
• Vector s ∈ Fn−kqm

Question: Is there an e ∈ Fnqm such that wtSR(e) ≤ t and s = eH>?
We study the hardness of the this problem and propose a non-trivial algorithm to

solve it. As it is usually done for all decoding-based problems, we solve the decisional
problem DecSDSR (Problem 3.1) by trying to find a solution to the associated search
problem, which is defined as follows:

Problem 3.2 (Search Sum-Rank Syndrome Decoding (SeaSDSR) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of an [n, k]Fqm code C
• Non-negative integer t
• Vector s = eH> ∈ Fn−kqm , where wtSR(e) = t

Objective: Search for an e′ ∈ Fnqm such that wtSR(e′) ≤ t and s = e′H>.
To solve the search problem SeaSDSR (Problem 3.2), we devise a non-trivial generic

sum-rank-metric decoding algorithm. The approach of our proposed algorithm is com-
parable to some generic decoding algorithms in the Hamming and the rank metric.
First, it determines the support of an error, and then, it obtains the full error by era-
sure decoding. To derive and analyze our algorithm, we need some statements about
erasure decoding.

3.1.1 Erasure Decoding in the Sum-Rank Metric

We first state an upper bound on the number of vectors in Fnqm of sum-rank weight
t ≤ µSR`SR, where µSR := min{ηSR,m}.

Theorem 3.1. Let m, ηSR, µSR, `SR, and t be non-negative integers such that µSR =
min{ηSR,m} and `SR ≥ 1. Then, for t ≤ µSR`SR, the number of vectors in FηSR`SR

qm of
sum-rank weight t is given by

Nq,ηSR,m(t, `SR) =
∑

t∈Tt,`SR,µSR

`SR∏
i=1

NMq(m, ηSR, ti)
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=


NMq(m, ηSR, t), if `SR = 1,
min{ηSR,m,t}∑

t′=0
NMq(m, ηSR, t

′) · Nq,ηSR,m(t− t′, `SR − 1), if `SR > 1,

≤
(
`SR + t− 1
`SR − 1

)
4`SRq

t(m+ηSR− t
`SR

)
,

where the variables Tt,`SR,µSR and NMq(m, ηSR, t) denote the set of weight decomposi-
tions of sum-rank weight t and the number of m × ηSR matrices over Fq of rank t,
respectively. Furthermore, for t > µSR`SR, it holds that Nq,ηSR,m(t, `SR)= 0.

Proof. For `SR = 1, the quantity Nq,ηSR,m(t, `SR) is the number of m× ηSR matrices of
rank t. For `SR > 1, we sum up over the number of possibilities to choose the rank
weight t′ of the first block multiplied with the number of sum-rank weight words in
the remaining `SR − 1 blocks.
The upper bound can be derived as follows: Since NMq(m, ηSR, ti) ≤ 4qti(m+ηSR−ti)

and |Tt,`SR,µSR | ≤
(
`SR+t−1
`SR−1

)
, see (2.1) and (2.4), we observe that

∑
t∈Tt,`SR,µSR

`SR∏
i=1

NMq(m, ηSR, ti) ≤ |Tt,`SR,µSR | max
t∈Tt,`SR,µSR


`SR∏
i=1

NMq(m, ηSR, ti)


≤
(
`SR + t− 1
`SR − 1

)
4`SRq

maxt∈Tt,`SR,µSR

{∑`SR
i=1 ti(m+ηSR−ti)

}
.

For ∑`SR
i=1 ti = t, the term maxt∈Tt,`SR,µSR

{∑`SR
i=1 ti(m+ ηSR − ti)

}
is equal to

t(m+ ηSR)− min
t∈Tt,`SR,µSR


`SR∑
i=1

t2i

 ≤ t(m+ ηSR)− t2

`SR
,

where the upper bound follows from Jensen’s inequality.
Since each of the `SR blocks has a rank weight of at most µSR, it holds that
Nq,ηSR,m(t, `SR)= 0 for t > µSR`SR. �

Figure 3.1 shows example values of Nq,ηSR,m(t, `SR) and the respective bound given
in Theorem 3.1 for different values of `SR. It seems that the bound is quite tight for
most values of `SR and only significantly differs for `SR close to n. This deviation is
due to the factor 4`SR , which is large for large values of `SR, and which is due to a
relatively loose bound on the number of matrices.
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Figure 3.1: Comparison of the exact number of vectors of sum-rank weight t, i.e.,
Nq,ηSR,m(t, `SR), and the bound given in Theorem 3.1 for q = 2, m = 40,
n = 60, and t = 10 as a function of `SR.

Note that the recursion in Theorem 3.1 can be turned into an efficient algorithm to
draw vectors uniformly at random from the set of vectors of sum-rank weight t, see
Appendix B.1.

Supports in the Sum-Rank Metric

Similar to the rank metric, we have two types of supports in the sum-rank metric,
which we call the row sum-rank support and the column sum-rank support.

Lemma 3.2. Let e = [e1, e2, . . . , e`SR ] be a vector in Fnqm, where wtSR(e) = t. Fur-
thermore, let the vector t denote the weight decomposition of e. Then, there are vectors
ai ∈ Ftiqm and matrices Bi ∈ Fti×ηSR

q with rkq(ai) = rkq(Bi) = ti, such that ei = aiBi,
for i ∈ [1 :`SR]. Stated differently,

e =

=:a∈Ft
qm︷ ︸︸ ︷[

a1 a2 a3 . . . a`SR

]
·

=:B ∈Ft×nq︷ ︸︸ ︷
B1 0 0 . . . 0
0 B2 0 . . . 0
0 0 B3 . . . 0
0 0 0 . . . B`SR

 .

The decomposition is unique up to elementary Fq-linear operations on the entries of
the vectors ai and Fq-row operations on the matrices Bi.

32



3.1 Syndrome Decoding in the Sum-Rank Metric

Proof. The decomposition ei = aiBi and its uniqueness up to Fq-linear operations
follow from the same arguments as in the rank metric [86]. �

Definition 3.1 (Row Sum-Rank Support). Let e = [e1, e2, . . . , e`SR ] be a vector in
Fnqm, where wtSR(e) = t. Then, the row sum-rank support of the vector e is defined as
the product

supp(R)
SR (e) := supp(R)

R (e1)× supp(R)
R (e2)× · · · × supp(R)

R (e`SR),

where supp(R)
R (ei) ⊆ FηSR

q is equal to the Fq-linear space spanned by the rows of Bi ∈
Fti×ηSR
q , for i ∈ [1 : `SR], and B1, . . . ,B`SR are as in Lemma 3.2. Furthermore, a

product of subspaces F (R) is called a row sum-rank super-support of e if

F (R) := F (R)
1 ×F (R)

2 × · · · × F (R)
`SR

and supp(R)
R (ei) ⊆ F (R)

i , for i ∈ [1 :`SR].

Note that the term row support in the sum-rank metric was already defined in [159].

Definition 3.2 (Column Sum-Rank Support). Let e = [e1, e2, . . . , e`SR ] be a vector in
Fnqm, where wtSR(e) = t. Then, the column sum-rank support of the vector e is defined
as the product

supp(C)
SR (e) := supp(C)

R (e1)× supp(C)
R (e2)× · · · × supp(C)

R (e`SR),

where supp(C)
R (ei) ⊆ Fqm is equal to the Fq-linear space spanned by the entries of

ai ∈ Ftiqm, for i ∈ [1 : `SR], and a1, . . . ,a`SR are as in Lemma 3.2. Furthermore, a
product of subspaces F (C) is called a column sum-rank super-support of e if

F (C) := F (C)
1 ×F (C)

2 × · · · × F (C)
`SR

and supp(C)
R (ei) ⊆ F (C)

i , for i ∈ [1 :`SR].

To simplify the notation, we will only specify whether we refer to the row or to the
column support in case it is not clear from the context.

Definition 3.3. Let µSR and s be positive integers such that 0 ≤ s ≤ µSR`SR and let
f be a vector in Ts,`SR,µSR. Then, we denote the sets of all products of subspaces of
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weight s and weight decomposition f by

Ξ(C)
q,µSR

(f) :={F1 × · · · × F`SR : Fi is an fi-dimensional subspace of FqµSR , ∀i∈ [1 :`SR]}

and

Ξ(R)
q,µSR

(f) :=
{
F1 × · · · × F`SR : Fi is an fi-dimensional subspace of FµSR

q , ∀i∈ [1 :`SR]
}
.

As before, we will omit the superscripts (C) and (R) if it is clear from the context.

Erasure Decoding

In the following, we prove that, given a super-support of an error of weight smaller
than the minimum distance of the code, erasure decoding always leads to a unique
solution. To prove this statement, we need the following lemma:

Lemma 3.3. Let t be an integer such that 0 ≤ t ≤ n, let H ∈ F(n−k)×n
qm be a parity-

check matrix of an [n, k]Fqm code C, and let

B`SR,t :=



B1 0 . . . 0
0 B2 . . . 0
0 0 . . . B`SR

 ∈ Ft×nq : Bi ∈ Fti×(n/`SR)
q , rkq(Bi) = ti,

`SR∑
i=1

ti = t

 .

Then, the code C has minimum sum-rank distance dSR
min if and only if rkqm

(
HB>

)
=

dSR
min−1 for any B ∈ B`SR,dSR

min−1 and rkqm
(
HB>

)
< dSR

min for at least one B ∈ B`SR,dSR
min

.

Proof. If C has minimum distance dSR
min, then for any vector x with wtSR(x) = dSR

min−1,
it must hold that Hx> 6= 0. Furthermore, there is a vector y with wtSR(y) = dSR

min

such that Hy> = 0. This property together with the decomposition proposed in
Lemma 3.2 proves this lemma. �

Theorem 3.4 (Row Erasure Decoding). Let H ∈ F(n−k)×n
qm be a parity-check matrix

of an [n, k, dSR
min]SR

Fqm code C, let e ∈ Fnqm be an error vector with wtSR(e) = t < dSR
min,

and let s> = He>. Furthermore, let

F = F (C) = F (C)
1 ×F (C)

2 × · · · × F (C)
`SR

be any column super-support of e, where F (C)
i has dimension fi, for i ∈ [1 : `SR], and
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∑`SR
i=1 fi = s < dSR

min. Then, the error e can be determined from H and s given the
column super-support F = F (C) of e with O((n− k)3m3) operations in Fq.

Proof. Let H = [H1, . . . ,H`SR ] ∈ F(n−k)×n
qm , where H i ∈ F(n−k)×ηSR

qm , for i ∈ [1 : `SR].
Then, the syndrome

s> = He> = HB>a> =
`SR∑
i=1
H iB

>
i a
>
i =

`SR∑
i=1
H iB̂

>
i â
>
i ,

where â = [â1, . . . , â`SR ] ∈ Fsqm is a basis of the known column super-support of
the error and B̂i ∈ Ffi×ηSR

q are unknown, for i ∈ [1 : `SR]. To determine the un-
known matrices B̂1, . . . , B̂`SR , we write the aforementioned system over Fq, which
reads as s>ext = Ĥextb̂

>, where sext ∈ F(n−k)m
q denotes the expanded syndrome, and

the matrix Ĥext ∈ Fm(n−k)×ηSRs
q depends only on H and â. Furthermore, the vector

b̂ := [B̂1,1,1, . . . , B̂`SR,f`SR ,ηSR ], where B̂ijr is the entry in the j-th row and the r-th
column of B̂i, for i ∈ [1 :`SR].
The system s>ext = Ĥextb̂

> has a unique solution if and only if rkq(Ĥext) = ηSRs.
To see that this condition is always fulfilled, assume rkq(Ĥext) < ηSRs and s>ext =
Ĥextb̂

> = 0. It follows that there is a vector b̂ 6= 0 such that Ĥextb̂
> = 0, and thus,

H(âB̂)> = 0. The latter equality implies that âB̂ ∈ C \{0}, which is a contradiction
due to wtSR(âB̂) = s < dSR

min.
We observe that the most complex part of the algorithm is to solve anm(n−k)×ηSRs

linear system over Fq which is in O(m3(n− k)3) since ηSRs ≤ m(n− k). �

Theorem 3.5 (Column Erasure Decoding). LetH ∈ F(n−k)×n
qm be a parity-check matrix

of an [n, k, dSR
min]SR

Fqm code C, let e ∈ Fnqm be an error vector with wtSR(e) = t < dSR
min,

and let s> = He>. Furthermore, let

F = F (R) = F (R)
1 ×F (R)

2 × · · · × F (R)
`SR

be any row super-support of e, where F (R)
i has dimension fi, for i ∈ [1 : `SR], and∑`SR

i=1 fi = s < dSR
min. Then, the error e can be determined from H and s given the row

super-support F = F (R) of the error vector e with complexity O((n−k)3m2) operations
in Fq.

Proof. The error vector e can be decomposed into âB̂, where B̂ is a block-diagonal
matrix containing bases of the row super-support entries F (R)

i . Since F has weight
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s < dSR
min, we have rkqm(HB̂>) = s, see Lemma 3.3. Then, s> = He> = (HB̂>)â>,

where â is unknown, and s,H , and B̂ are known. This linear system of equations has a
unique solution, and thus, we can uniquely determine â and e using elementary matrix
multiplication, Gaussian elimination, and polynomial multiplication algorithms. The
multiplication HB̂> requires O((n− k)sηSRm) operations in Fq since each row of B̂
has at most ηSR non-zero entries and solving the linear system

(
HB̂

>)
â> = s> for â

requires O(s2(n − k)) operations in Fqm . Furthermore, any operation in Fqm requires
O(m2) operations in Fq. �

Note that for a known row super-support, the result can also be derived from [129,
Corollary 1].

Remark 3.1. From the previous statement it follows that we can guarantee uniqueness
of erasure decoding only if s < dSR

min. However, erasure decoding can return a valid
solution for s ≤ min

{
n− k, b m

ηSR
(n− k)c

}
, and the probability that this happens is

high for many codes. Therefore, most generic Hamming and rank-metric decoding
algorithms choose s as large as possible, i.e., s = min

{
n− k, b m

ηSR
(n− k)c

}
. This

choice is also a good heuristic for our proposed algorithm.

3.1.2 A Non-Trivial Algorithm for Solving SeaSDSR

From the previous section it follows that if a super-support F ⊇ suppSR(e) of weight s
such that t ≤ s < dSR

min is known, then the error e can be retrieved from the syndrome
vector s and the parity-check matrixH in polynomial time. In this section, we propose
a Las Vegas-type algorithm2 that determines such a super-support F by repeatedly
sampling products of subspaces according to a designed probability mass function
until a sample can be used for successful erasure decoding. This routine is shown in
Algorithm 1, where we omit the prefixes row and column such that we treat both cases
in a unified manner.
In the following, we specify the function DrawRandomSupport(s, t, µSR,m) and derive

Theorem 3.10, which constitutes the main statement of this section. This theorem
states that Algorithm 1 always finds a solution to SeaSDSR and provides both upper
and lower bounds on the complexity of the algorithm. Since the proof is quite technical,
we first provide some interim results.

2A Las Vegas algorithm is a randomized algorithm that always outputs a correct result. However,
the running time can vary from one run to another.
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Algorithm 1: Generic Sum-Rank Syndrome Decoder
Input : Parity-check matrix H ∈ F(n−k)×n

qm

Syndrome vector s ∈ Fn−kqm

Integers t and s
Output: Vector e′ ∈ Fnqm

1 µSR ← min{m, ηSR}
2 e′ ← 0
3 while wtSR(e′) > t ∨ s 6= e′H> do
4 F ← DrawRandomSupport(s, t, µSR,m) (specified in Algorithm 3)
5 if µSR = m then
6 e′ ← row erasure decoding w.r.t. F , H , s (cf. Theorem 3.4)
7 else
8 e′ ← column erasure decoding w.r.t. F , H , s (cf. Theorem 3.5)

9 return e′

The proposed super-support drawing algorithm DrawRandomSupport(s, t, µSR,m) is
designed such that it minimizes the worst-case expected number of iterations

max
e∈Fn

qm
:

wtSR(e)=t

E[#iterations] = max
e∈Fn

qm
:

wtSR(e)=t

{
Pr(suppSR(e) ⊆ F)−1

}
.

Thus, the proposed algorithm first samples f from Ts,`SR,µSR according to a designed
probability distribution p̃f , and then draws the support F uniformly at random from
Ξq,µSR(f).

Lemma 3.6. Let e be a vector in Fnqm, where wtSR(e) = t, let te = [t1, . . . , t`SR ] be the
weight decomposition of e, and let f ∈ Ts,`SR,µSR. If F is sampled uniformly at random
from Ξq,µSR(f), then the probability

Pr(suppSR(e) ⊆ F | f) = %q,µSR(f , te) :=
`SR∏
i=1

fi
ti


q

µSR

ti

−1

q

. (3.1)

Furthermore, this probability can be bounded by

4−`SRq−
∑`SR

i=1 ti(µSR−fi) ≤ %q,µSR(f , te) ≤ 4`SRq−
∑`SR

i=1 ti(µSR−fi).

Proof. Since F = F1 × · · · × F`SR is sampled uniformly, each subspace Fi is sampled
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statistically independently and uniformly from the set of all fi-dimensional subspaces
of FµSR

q or FqµSR , respectively. This implies that the probability

Pr(suppSR(e) ⊆ F | f) =
`SR∏
i=1

Pr(suppR(ei) ⊆ Fi | fi),

where

Pr(suppR(ei) ⊆ Fi | fi) =
µSR − ti
fi − ti


q

µSR

fi

−1

q

=
fi
ti


q

µSR

ti

−1

q

,

for i ∈ [1 :`SR]. Using the bounds on the Gaussian coefficients stated in (2.2) we obtain
the upper and the lower bound of Pr(suppSR(e) ⊆ F | f). �

Using Lemma 3.6, the worst-case number of iterations of the proposed algorithm for
a designed probability mass function p̃f evaluates to

max
e∈Fn

qm
:

wtSR(e)=t

E[#iterations] = max
t∈Tt,`SR,µSR

 ∑
f∈Ts,`SR,µSR

p̃f%q,µSR(f , t)
−1

. (3.2)

Minimizing (3.2) w.r.t. p̃f on Ts,`SR,µSR can be numerically performed using linear
programming algorithms for small parameters `SR, µSR, and s. One should note that
the number of optimization variables |Ts,`SR,µSR| grows fast in `SR, µSR, and s and
makes the optimization problem complex, see Appendix B.2 for a detailed discussion.
For our analysis, the following suboptimal solution is sufficient.3

First, we propose a randomized4 mapping ScompµSR
: Tt,`SR,µSR×Z→ Ts,`SR,µSR that

maximizes %q,µSR(ScompµSR
(t, s), t) for a given t ∈ Tt,`SR,µSR . Second, instead of picking

f ∈ Ts,`SR,µSR directly, we sample t ∈ Tt,`SR,µSR at random according to the designed
distribution pt and assign f = ScompµSR

(t, s). It follows that for a fixed vector e, the
probability

Pr(suppSR(e) ⊆ F) =
∑

f∈Ts,`SR,µSR

p̃f%q,µSR(f , te) ≥ pte · %q,µSR(ScompµSR
(te, s), te),

where te is the weight decomposition of the error. Third, we minimize the following

3We show that the optimal solution is close to the described suboptimal approach in Section 3.1.3.
4Randomized mapping means that in case there are multiple possible outputs, one output is selected
uniformly at random.
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upper bound

max
e∈Fn

qm
:

wtSR(e)=t

E[#iterations] ≤ max
t∈Tt,`SR,µSR

{(
pt · %q,µSR(ScompµSR

(t, s), t)
)−1

}

instead of (3.2). This suboptimal solution comes at the disadvantage of a slightly
smaller success probability but enables an efficient support drawing algorithm whose
complexity can be lower and upper bounded.
The mapping ScompµSR

is shown in Algorithm 2, where the randomized step in Line 4
ensures that there is no bias in preferring certain positions. This randomization seems
to be especially important for instances with a large `SR. However, we are not able
to properly incorporate the randomness in our complexity analysis of Algorithm 1.
Therefore, we use the deterministic quantity %q,µSR,s(t) instead, which is given by

%q,µSR,s(t) := %q,µSR(ScompµSR
(t, s), t)

for all t ∈ Tt,`SR,µSR and a fixed s ≥ t.

Algorithm 2: ScompµSR

Input : Vector t ∈ Tt,`SR,µSR

Non-negative integer s
Output: Vector f ∈ Ts,`SR,µSR

1 f = [f1, . . . , f`SR ]← t
2 δ ← s− t
3 while δ > 0 do
4 h

$←−
{
h′ : fh′ = min

i

{
fi : ti = max

j
{tj : fj 6= µSR}

}}
5 fh ← fh + 1
6 δ ← δ − 1
7 return f

The following lemma proves that f = ScompµSR
(t, s) maximizes %q,µSR(f , t) among all

f ∈ Ts,`SR,µSR .

Lemma 3.7. Let t, s, `SR, and µSR be integers such that t ≤ s ≤ `SRµSR, and let t
be a vector in Tt,`SR,µSR. Then, the vector f = ScompµSR

(t, s) maximizes %q,µSR(f , t),
where ScompµSR

is defined in Algorithm 2.

Proof. Since the denominator of (3.1) does not depend on f , it is sufficient to prove
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that for a fixed vector t, the vector f = ScompµSR
(t, s) maximizes

`SR∏
i=1

fi
ti


q

. (3.3)

To see that this holds, assign f = t and increase the entries of f until ∑`SR
i=1 fi = s. If

fi ≥ ti and fi is increased by one, the quantity (3.3) is increased by a factor
fi + 1

ti


q

fi
ti

−1

q

=
ti∏
µ=1

(
qfi+2−µ−1
qµ−1

)
(
qfi+1−µ−1
qµ−1

) = qfi+1 − 1
qfi−ti+1 − 1 .

Since (qfi+1 − 1)(qfi−ti+1 − 1)−1 is monotonically decreasing in fi for a given integer
ti, it holds that

qti <
qfi+1 − 1
qfi−ti+1 − 1 < qti+1. (3.4)

Furthermore, for fi > fj and ti = tj > 0, we have

qfi+1 − 1
qfi−ti+1 − 1 <

qfj+1 − 1
qfj−tj+1 − 1

⇐⇒

fi + 1
ti


q

fi
ti

−1

q

<

fj + 1
tj


q

fj
tj

−1

q

. (3.5)

From (3.4) and (3.5) follows that increasing any position i with smallest fi among
all positions with largest ti leads to the largest increase of (3.3). This approach of
increasing the entries is optimal since this choice also maximizes the increase of (3.3)
in the following steps. �

The Support-Drawing Algorithm

A support-drawing routine that implements the described ideas is shown in Algo-
rithm 3, where

Qt,`SR,µSR :=
∑

t∈Tt,`SR,µSR

%q,µSR,s(t)−1. (3.6)

Note that an efficient implement of Line 2 in Algorithm 3 is derived in [155, Sec. V].
In the following proposition, we derive upper and lower bounds on the expected

number of iterations, i.e., how often we expect to execute Algorithm 3 together with
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Algorithm 3: DrawRandomSupport
Input : Non-negative integers t, s, µSR,m
Output: Product of subspaces F of weight s

1 Draw t ∈ Tt,`SR,µSR according to the distribution

pt := %q,µSR,s(t)−1Q−1
t,`SR,µSR

∀ t ∈ Tt,`SR,µSR , where Qt,`SR,µSR is defined as in (3.6)2

3 f ← ScompµSR
(t, s)

4 if µSR = m then
5 F $←− Ξ(C)

q,µSR
(f)

6 else
7 F $←− Ξ(R)

q,µSR
(f)

8 return F

erasure decoding to solve SeaSDSR.

Proposition 3.8. Let e be a vector in Fnqm that has a support suppSR(e), a sum-rank
weight wtSR(e) = t, and a weight decomposition te. Let s be an integer such that
t ≤ s ≤ `SRµSR and let F be a super-support obtained by Algorithm 3. Then, the
inverse of the probability that F is a super-support of suppSR(e) can be bounded by

|Tt,`SR,µSR |−1Qt,`SR,µSR ≤ Pr(suppSR(e) ⊆ F)−1 ≤ Qt,`SR,µSR ,

where Qt,`SR,µSR is defined as in (3.6).

Proof. Let t be a random variable with the probability distribution pt and let p̃f denote
the probability mass function of f = ScompµSR

(t, s). From (3.2) follows that

Pr(suppSR(e) ⊆ F) =
∑

t∈Ts,`SR,µSR

pt%q,µSR(ScompµSR
(t, s), te)

≥ pte%q,µSR(ScompµSR
(te, s), te) = Q−1

t,`SR,µSR
,

which means Pr(suppSR(e) ⊆ F)−1 ≤ Qt,`SR,µSR . Furthermore, from Lemma 3.7 follows
that

%q,µSR(ScompµSR
(t, s), te) ≤ %q,µSR(ScompµSR

(t, s), t) = %q,µSR,s(t),
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and therefore,

Pr(suppSR(e) ⊆ F) =
∑

t∈Ts,`SR,µSR

pt%q,µSR(ScompµSR
(t, s), te)

≤
∑

t∈Ts,`SR,µSR

pt%q,µSR,s(t) =
∑

t∈Ts,`SR,µSR

Q−1
t,`SR,µSR

,

where ∑t∈Ts,`SR,µSR
Q−1
t,`SR,µSR

= |Tt,`SR,µSR|Q−1
t,`SR,µSR

. �

Note that an efficient algorithm for computing the bounds which are derived in
Proposition 3.8 is proposed in [155, Sec. V].

A Simple Upper Bound on the Success Probability

In the following proposition, we state a simple upper bound on Qt,`SR,µSR .

Proposition 3.9. For any t ≤ s ≤ `SRµSR, we have

max
t∈Tt,`SR,µSR

%q,µSR,s(t)−1 ≤ 4`SRq
t(µSR− s

`SR
)
,

and
Qt,`SR,µSR ≤

(
`SR+t−1
`SR−1

)
4`SRq

t(µSR− s
`SR

)
.

Proof. By Lemma 3.6, we have

max
t∈Tt,`SR,µSR

%q,µSR,s(t)−1 ≤ 4`SR max
t∈Tt,`SR,µSR

{
q
∑`SR

i=1 ti(µSR−fi) | f = ScompµSR
(t, s)

}

= 4`SRqtµSRq
−mint∈Tt,`SR,µSR

{∑`SR
i=1 tifi | f=ScompµSR (t,s)

}
,

where the last exponent satisfies

min
t∈Tt,`SR,µSR


`SR∑
i=1

tifi | f = ScompµSR
(t, s)

 ≥ ts

`SR
.

We prove this by relaxing the variables to real numbers and considering only the
ordered vectors t. Define the set

T (R,ord)
t,`SR,µSR

:=
t ∈ R`SR

≥0 :
`SR∑
i=1

ti = t, ti ≤ µSR, t1 ≥ t2 ≥ · · · ≥ t`SR


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and the mapping

Scomp(R)
µSR

: T (R,ord)
t,`SR,µSR

→ R`SR
≥0 ,

t 7→
[
µSR, . . . , µSR︸ ︷︷ ︸

h times

, th+1 + ξ + 1, . . . , th+g + ξ + 1︸ ︷︷ ︸
g times

,

th+g+1 + ξ + δ, . . . , th+f + ξ + δ︸ ︷︷ ︸
f−g times

, th+f+1, . . . , t`SR

]
,

where

h := max
h′ ∈ [0 :`SR] :

h′∑
i=1

(µSR − ti) ≤ s− t, th′ > th′+1, t0 := µSR, t`SR+1 := −1
 ,

f := max{f ′ ∈ {1, . . . , `SR} : tf ′ = th+1} − h,

srem := s− t−∑h
i=1(µSR − ti), ξ :=

⌊
srem
f

⌋
, g := bsremc − ξf , and δ := srem−bsremc

f−g .

Note that Scomp(R)
µSR

agrees with a deterministic variant5 of ScompµSR
on T (R,ord)

t,`SR,µSR
∩

Z`SR . Since ∑`SR
i=1 tifi|f=ScompµSR (t,s) is independent of the ordering of the entries of t

and the set of sorted elements of Tt,`SR,µSR are subset of T (R,ord)
t,`SR,µSR

, we have

min
t∈Tt,`SR,µSR


`SR∑
i=1

tifi | f = ScompµSR
(t, s)

 ≥ min
t∈T (R,ord)

t,`SR,µSR


`SR∑
i=1

tifi | f = Scomp(R)
µSR

(t, s)
 .

For t ∈ T (R,ord)
t,`SR,µSR

and f = Scomp(R)
µSR

(t, s), we have

`SR∑
i=1

tifi = µSR

h∑
i=1

ti +
h+g∑
i=h+1

(ti + ξ + 1)ti +
h+f∑

i=h+g+1
(ti + ξ + δ)ti +

`SR∑
i=h+f+1

t2i . (3.7)

Since ti+1 ≤ ti + ξ + δ ≤ ti + ξ + 1 ≤ µSR, it follows that (3.7) is minimized by a
sequence in T (R,ord)

t,`SR,µSR
with smallest-possible h. Among these sequences with minimal

h, it is minimized by sequence with largest f . Since ti are non-increasing, these
requirements directly imply that (3.7) is minimized for

t =
[
t
`SR
, . . . , t

`SR

]
,

5The outputs are equal if we choose j ← min
{
j : fj = max{fi : fi < µSR, i ∈ [1 : `SR]}

}
instead of

a random choice in Line 4 of Algorithm 2.

43



3 Coding-Theoretic Problems with Applications in Cryptography

for which we have
`SR∑
i=1

tifi = t

`SR

`SR∑
i=1

fi = ts

`SR
.

This proves the first claim. We get the bound on Qt,`SR,µSR by

Qt,`SR,µSR =
∑

t∈Tt,`SR,µSR

1
%q,µSR,s(t)

≤|Tt,`SR,µSR| max
t∈Tt,`SR,µSR

1
%q,µSR,s(t)

≤
(
`SR+t−1
`SR−1

)
4`SRq

t(µSR− s
`SR

)
. �

In the following theorem, we derive bounds on the average complexity of Algo-
rithm 1.

Theorem 3.10. Let H ∈ F(n−k)×n
qm be a parity-check matrix of an [n, k, dSR

min]SR
Fqm code

C, let e be a vector in Fnqm with wtSR(e) = t, let s = eH>, and let s be an integer
such that t ≤ s < dSR

min. Then, Algorithm 1 returns a vector e′ such that wtSR(e′) ≤ t

and s = e′H> with an average complexity of WSR operations in Fq. The average
complexity is bounded by W (LB)

SR ≤ WSR ≤ W
(UB)
SR ≤ W

(UB,simple)
SR , where

W
(LB)
SR := |Tt,`SR,µSR |−1Qt,`SR,µSR ,

W
(UB)
SR := n3m3Qt,`SR,µSR , and

W
(UB,simple)
SR := n3m3

(
`SR+t−1
`SR−1

)
4`SRq

t(µSR− s
`SR

)
,

for µSR = min{ηSR,m}.

Proof. Because the probability that a super-support of e is drawn is larger than 0
and erasure decoding has a unique result for a super-support of weight s < dSR

min, see
Theorem 3.4 and Theorem 3.5, it follows that Algorithm 1 always outputs a vector e′

such that wtSR(e′) ≤ t and s = eH>.
The average complexity WSR is the complexity of one iteration WIter times the

average number of iterations. From Theorem 3.4, Theorem 3.5, and [155, Prop. 23]
follows that the quantity WIter is bounded by 1 ≤ WIter ≤ O

(
n3m3

)
operations in Fq.

Furthermore, the applied bounds on the expected number of iterations are derived in
Proposition 3.8 and Proposition 3.9. �
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3.1.3 Comparison to Other Decoding Algorithms

To benchmark the performance of Algorithm 1, we compare it to other decoding
strategies, as well as to known generic decoders in the cases `SR = 1 and `SR = n,
respectively.
A naïve decoding strategy is to brute-force all vectors e with wtSR(e) = t. Since the

number of such vectors is Nq,ηSR,m(t, `SR) ≤
(
`SR+t−1
`SR−1

)
4`SRq

t(m+ηSR− t
`SR

) and checking if
e fulfills the parity-check equations requires at most O(n3m3) operations in Fq, the
average complexity of this approach is at most

WError = n3m3Nq,ηSR,m(t, `SR) ≤ n3m3
(
`SR+t−1
`SR−1

)
4`SRq

t(m+ηSR− t
`SR

)

operation is Fq.
Our proposed decoding algorithm uses an efficient but suboptimal support-drawing

algorithm. For small parameters, one can replace this suboptimal algorithm by an
optimal support-drawing algorithm based on linear programming, see Appendix B.2.
The complexity of this approach is denoted by W (optimal)

SR .
In the case `SR = n, the sum-rank metric and the Hamming metric coincide, and

Prange’s ISD algorithm [134] can be applied.6 Assuming that there is only one solution
to the problem, the algorithm has an average complexity of approximately WPrange

operations in Fq, where t ≤ s ≤ n−k, see (2.5) in Section 2.2.4. Note that for `SR = n,
the set Tt,`SR,µSR contains all binary vectors of Hamming weight t, and therefore, it holds
that |Tt,`SR,µSR | =

(
n
t

)
. Furthermore, for t ∈ Tt,`SR,µSR and t ≤ s ≤ n− k, Algorithm 2

outputs a random binary vector f of Hamming weight s whose Hamming support is a
super-support of t. It follows that Algorithm 1 repeatedly samples a binary vector of
length n and of Hamming weight s. It succeeds if and only if the Hamming support
of the sampled vector is a Hamming super-support of an error e′ such that wt(e′) ≤ t

and s = e′H>. This implies that for `SR = n, the average complexity of Algorithm 1
is equal to the average complexity of Prange’s algorithm.
In the case `SR = 1, the sum-rank metric is equal to the rank metric, and the

problem SeaSDSR can be solved by the basic version of the combinatorial rank syn-
drome decoder by Gaborit, Ruatta, and Schrek [139]. The average complexity of

6ISD algorithms like Lee and Brickell’s algorithm [160] or Stern’s algorithm [161] can also be applied
to solve instances with `SR = n. However, for the example parameters that we consider, the field
size is so large so that the complexity of both algorithms is minimized if no errors are allowed in
the information set. In this case, both algorithms are equal to Prange’s algorithm, and thus, we
do not show them separately.
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Figure 3.2: Comparison of different generic decoding strategies for q = 2, m = 60,
n = 60, k = 30, t = 10, s = 30, where we choose the row support for all
values of `SR in the proposed algorithm. The work factor WError is equal
to 21138 for `SR = 1.

the Gaborit–Ruatta–Schrek decoder is approximately WGRS operations in Fq, where
t ≤ s ≤ min

{
n− k,

⌊
m
n

(n− k)
⌋}

, see (2.6) in Section 2.2.4. Note that for `SR = 1,
the set Tt,`SR,µSR = {[t]}, and thus, our proposed algorithm coincides with the basic
combinatorial decoding algorithm in [139].

In Figures 3.2, 3.3, and 3.4, we show the bounds on the complexity of Algorithm 1
stated in Theorem 3.10 as well as the expected complexities of the other decoding
strategies as a function of `SR for different values of q, m, n, k, t, and s. We observe
that our algorithm is more efficient than the approach of brute-forcing all vectors of
sum-rank weight t and that our suboptimal support-drawing method is close to the
optimal support-drawing method. Furthermore, for `SR = 1 and `SR = n, the values
of the upper bound on the complexity of the proposed algorithm are close to the true
complexities WGRS and WPrange, respectively.

For arbitrary `SR and t ≤ s ≤ min
{
n− k, b m

ηSR
(n− k)c

}
, the simple upper bound

on the complexity given in Theorem 3.10 is

W
(UB,simple)
SR = n3m3

(
`SR+t−1
`SR−1

)
4`SRq

t(µSR− s
`SR

)
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Figure 3.3: Comparison of different generic decoding strategies for q = 2, m = 80,
n = 60, k = 30, t = 10, s = 30, where we choose the row support for all
values of `SR in the proposed algorithm. The work factor WError is equal
to 21339 for `SR = 1.
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Figure 3.4: Comparison of different generic decoding strategies for q = 2, m = 40,
n = 60, k = 30, t = 10, s = 20, where we choose the column support for
`SR = 1 (gray pattern) and the row support for `SR > 1 in the proposed
algorithm. The work factor WError is equal to 2936 for `SR = 1.
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≤ n3m3
(
`SR+t−1
`SR−1

)
4`SRq

t
max{n,`SRm}−s

`SR .

For constant `SR, the factor
(
`SR+t−1
`SR−1

)
4`SR is polynomial in the code length, and can be

neglected compared to the exponential term. Hence, the exponent of the sum-rank-
metric generic decoder is roughly a factor `SR smaller than in the rank-metric case
(`SR = 1). Note that the bound W (UB,simple)

SR appears to be a loose approximation of
the actual work factor for large `SR (cf. Figure 3.2, 3.3, and 3.4). Therefore, we refrain
from a discussion of W (UB,simple)

SR for these values of `SR, as this does not necessarily
give a good intuition about the work factor.

3.1.4 A Hardness Reduction to DecSDSR

In [136], Gaborit and Zémor probabilistically reduced DecSDH to DecSDR, where
DecSDH and DecSDR are defined in Problem 2.1 and in Problem 2.3, respectively.
In this section, we propose a similar reduction of DecSDH to DecSDSR as defined in
Problem 3.1. More precisely, we first present a reduction algorithm that proves that
if a coRP-algorithm for solving DecSDSR exists, then a coRP-algorithm for DecSDH

also exists. Then, we propose another reduction routine which shows that if a RP-
algorithm for solving DecSDSR exists, then a RP-algorithm for DecSDH also exists.
Since ZPP = coRP ∩ RP ⊃ P, it follows that if DecSDSR would be in ZPP, then
DecSDH would also be in ZPP. And since DecSDH is known to be NP-complete, this
would imply that ZPP = NP, which is believed to be wrong. In other words, if the
widely believed conjecture ZPP 6= NP is true, then DecSDSR is in NP \ ZPP ⊂ NP \ P.
We require the following lemma to derive and prove the correctness of the proposed

reduction algorithms.

Lemma 3.11. Let ε be a constant positive real number, let m,n, and `SR be positive
integers such that m ≥ n2`SR

−1 +n logq(8n)+logq(2ε−1), let H ∈ F(n−k)×n
q be a parity-

check matrix, and let s ∈ Fn−kq . Furthermore, let the vector x ∈ Fnq be of minimum
Hamming weight tH such that xH> = s, let the vector β $←− (F∗qm)n, and let the vector
x′ ∈ Fnqm be of minimum sum-rank weight such that x′

(
H diag(β)

)>
= s. Then, the

probability
Pr
(

wtSR(x′) < tH
)
≤ ε.

Proof. Let H , s, tH be fixed, let Ea denote the event that for a fixed vector a ∈ Fnqm
and a random vector β $←− (F∗qm)n, the equality a

(
H diag(β)

)>
= s holds, and let the
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set X (tH − 1) := {a ∈ Fnqm : wtSR(a) < tH}. Then, the probability

P := Pr
(
∃x′ ∈ Fnqm : x′

(
H diag(β)

)>
= s ∧ wtSR(x′) < tH

)

= Pr
 ⋃
x′∈X (tH−1)

Ex′
 ≤ ∑

x′∈X (tH−1)
Pr(Ex′),

where the randomness is in β.

If there is no β ∈ (F∗qm)n such that x′
(
H diag(β)

)>
= s, then Pr(Ex′) = 0. If a

vector β ∈ (F∗qm)n such that x′
(
H diag(β)

)>
= s exists, then there must be a set

W ⊆ suppH(x′) with |W| = tH such that that the matrix HW ∈ F(n−k)×tH
q has full

rank, where HW is a submatrix of H and consists of the columns of H indexed by
W [136, Lem. 4]. Thus, for a fixed x′, the cardinality∣∣∣∣{x′(H diag(β)

)>
: βi ∈ F∗qm∀i ∈ W ∧ βj are fixed ∀j /∈ W ,

}∣∣∣∣ =
(
qm − 1

)tH
,

and we can bound Pr(Ex′) ≤ (qm − 1)−tH for β $←− (F∗qm)n. Since m ≥ tH, it holds that

Γ(q,m, tH) := qmtH

(qm − 1)tH ≤
1

(1− q−m)m = 1∑m
i=0

(
m
i

)
(−q−m)i

(i)
≤ 1

1−mq−m
(ii)
≤ 2,

where inequality (i) holds, since for increasing i, the quantity
∣∣∣(m

i

)
(−q−m)i

∣∣∣ is strictly
monotonically decreasing and the sign of

∣∣∣(m
i

)
(−q−m)i

∣∣∣ is alternating. Furthermore,
inequality (ii) holds due to mq−m ≤ 1

2 . Then, combining the aforementioned results
gives

P ≤ 1
(qm − 1)tH |X (tH − 1)|

= Γ(q,m, tH) 1
qmtH

tH−1∑
i=1
Nq,ηSR,m(i, `SR)

≤ 2 1
qmtH

(tH − 1) max
i∈[1:tH−1]

Nq,ηSR,m(i, `SR)

≤ 2 1
qmtH

(tH − 1)
(
`SR + tH − 2
`SR − 1

)
4`SRq

(tH−1)(m+ηSR−
tH−1
`SR

)

= 2(tH − 1)
(
`SR + tH − 2
`SR − 1

)
4`SRq

−m+(tH−1)ηSR−
(tH−1)2
`SR
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≤ 2(tH − 1)
(
`SR + tH − 2
`SR − 1

)
4`SRq

−m+ n2
`SR
− (tH−1)2

`SR

≤ 2 (tH − 1)︸ ︷︷ ︸
≤ `SR+tH−2

(`SR + tH − 2)`SR−14`SRq
−m+ n2

`SR
− (tH−1)2

`SR

≤ 2[4(`SR + tH − 2)]`SRq
−m+ n2

`SR
− (tH−1)2

`SR

≤ 2q−m+ n2
`SR
− (tH−1)2

`SR
+`SR logq [4(`SR+tH−2)]

≤ 2q−m+ n2
`SR

+`SR logq [4(`SR+tH−2)]

≤ 2q−m+ n2
`SR

+n logq(8n)

≤ ε. �

In the following lemma, we consider the coRP reduction.

Lemma 3.12. Let `SR < n, let m > n2`SR
−1 + n logq(8n) + logq(2) and suppose that

DecSDSR is in coRP. Then, the problem DecSDH is also in coRP.

Proof. Let H ∈ F(n−k)×n
q , s ∈ Fn−kq , t ∈ Z>0, and let tH be the minimum Hamming

weight of the vectors x ∈ Fnq such that xH> = s. Let H ′ ∈ F(n−k)×n
qm and let tSR

denote the minimum sum-rank weight of the vectors x′ ∈ Fnqm such that x′H ′> = s.
Let ε̃ be a fixed non-negative constant and let AcoRP

H be defined as in Algorithm 4.
Furthermore, let AcoRP

SR denote a coRP-algorithm for DecSDSR, i.e., AcoRP
SR takes as

inputs (H ′, s, t), it always returns true if tSR ≤ t, and it outputs false with probability
at least 1− ε̃ if tSR > t.
To show that AcoRP

H is a coRP-algorithm for DecSDH, we prove that (i) the algorithm
always outputs true if tH ≤ t, and (ii) returns false with at least some non-zero constant
probability if tH > t. The first requirement on AcoRP

H is fulfilled since if tH ≤ t, then
tSR ≤ t, and thus, both AcoRP

SR and AcoRP
H output true. For the second requirement,

we observe that if tH > t, the equality tSR = tH > t holds with probability at least
1 − ε, see Lemma 3.11. By choosing a non-negative constant ε < 1 such that m ≥
n2`SR

−1 + n logq(8n) + logq(2ε−1), the algorithm AcoRP
H outputs false with probability

at least (1− ε)(1− ε̃), which is a constant. �

The RP reduction is shown in the following.

Lemma 3.13. Let `SR < n, let m ≥ n2`SR
−1 + n logq(8n) + logq(4n) and suppose that

DecSDSR is in RP. Then, the problem DecSDH is also in RP.
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Algorithm 4: AcoRP
H

Input : Parity-check matrix H ∈ F(n−k)×n
q

Syndrome vector s ∈ Fn−kq

Non-negative integer t
Output: Boolean true or false

1 β
$←− (F∗qm)n

2 H ′ ←H diag(β) ∈ F(n−k)×n
qm

3 return AcoRP
SR (H ′, s)

Proof. Let H ∈ F(n−k)×n
q , s ∈ Fn−kq , t ∈ Z>0, and let tH be the minimum Hamming

weight of the vectors x ∈ Fnq such that xH> = s. Let H ′ ∈ F(n−k)×n
qm and let tSR

denote the minimum sum-rank weight of the vectors x′ ∈ Fnqm such that x′H ′> = s.
Let ε̃ be a fixed non-negative constant, and let ARP

H be defined as in Algorithm 5,
where the function Cols(H , T ) returns a sub-matrix of H consisting of the columns
indexed by the set T . Furthermore, let ARP

SR denote a RP-algorithm for DecSDSR, i.e.,
ARP

SR takes as inputs (H ′, s, t), it always returns false if tSR > t, and it outputs true
with a probability of at least 1− ε̃ if tSR ≤ t. Note, we can assume that ε̃ < 1

2n , if A
RP
SR

is called at most O(log n) times. To show that ARP
H is an RP-algorithm for DecSDH,

we prove that (i) the algorithm always outputs false if tH > t, and (ii) it returns true
with at least some constant non-zero probability if tH ≤ t.
The goal of Algorithm 5 is to find a Hamming super-support S of a vector x ∈ Fnq

such that |S| ≤ t and xH> = s. From Lines 9–12 follows that only if such a super-
support is determined, thenARP

H returns true. This implies that if tH > t, the algorithm
always returns false, which means (i) is fulfilled.
To see that (ii) is fulfilled, suppose tH ≤ t. In the Lines 3–7, the algorithm tries to

determine whether the set S\{i} is a super-support of a vector x ∈ Fq with wtH(x) ≤ t

and syndrome s = xH>. If the algorithm determines this in all iterations of the loop
correctly, then the set S is the support of a vector x with wtH(x) ≤ t and syndrome
s = xH>. In case the algorithm determines a wrong result one or more times, then
it is not guaranteed that S has this property. In case S does not have this required
property, it is detected by the algorithm in Lines 9–12.
In the following, we prove that in Lines 3–7, the algorithm ARP

H determines whether
S has the required property in all iterations of the loop correctly with a probability of
at least a constant. Given s ∈ Fn−kq , S, i, β ∈ F|S|−1

qm , let t̃H be the smallest Hamming
weight of a vector x̃ ∈ F|S|−1

q such that x̃H̄> = s, and let t̃SR be the smallest sum-rank
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Algorithm 5: ARP
H

Input : Parity-check matrix H ∈ F(n−k)×n
q

Syndrome vector s ∈ Fn−kq

Non-negative integer t
Output: Boolean true or false

1 S = {1, . . . , n}
2 for i = 1, . . . , n do
3 H̄ ← Cols(H ,S \ {i}) ∈ F(n−k)×(|S|−1)

q

4 β
$←− (F∗qm)|S|−1

5 H̄
′ ← H̄ diag(β) ∈ F(n−k)×(|S|−1)

qm

6 if ARP
SR(H̄ ′, s, t) = true then

7 S ← S \ {i}

8 H̄ ← Cols(H ,S) ∈ F(n−k)×|S|
q

9 if 1 ≤ |S| ≤ t ∧ ∃x ∈ F|S|q s.t. xH̄> = s then
10 return true
11 else
12 return false

weight of a vector x̃′ ∈ F|S|−1
qm such that x̃′H̄ ′> = s. First, consider the case t̃H ≤ t.

Since t̃SR ≤ t̃H ≤ t, the algorithm ARP
SR(H̄ ′, s, t) outputs the correct answer true with

a probability of at least 1 − ε̃ > 1 − 1
2n , where the randomness is in ARP

SR. Second,
consider the case t̃H > t. From Lemma 3.11 follows that the vector β is sampled such
that t̃SR = t̃H with probability greater than 1− 1

2n , where we chose ε = 1
2n . Since the

algorithm ARP
SR(H̄ ′, s, t) always outputs the correct answer false for t̃SR = t̃H > t, the

probability that ARP
SR(H̄ ′, s, t) outputs the correct answer false for t̃H > t is greater

than 1− 1
2n = 1− ε, where the randomness is in the sampling of β.

This proves that in Lines 3–7, the algorithm ARP
H determines whether S has the

required properties correctly with probability greater than 1 − 1
2n . Since ARP

H has to
determine this at most n times, the overall success probability is at least 1− n

2n = 1
2 . �

Using the derived lemmata, we can now prove our main statement about the hard-
ness of DecSDSR.

Theorem 3.14. Let `SR < n, let m ≥ n2`SR
−1 + n logq(8n) + logq(4n), and suppose

that DecSDSR is in ZPP = RP ∩ coRP. Then, it holds that NP = ZPP.
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Proof. Since DecSDH is NP-complete, Lemma 3.12 and Lemma 3.13 imply that ZPP ⊇
NP and since it is well-known that ZPP ⊆ NP, the equality NP = ZPP holds. �
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3.2 Syndrome Decoding of High-Order Interleaved
Rank-Metric Codes

In this section, we investigate the problem of decoding any high-order interleaved code
in the rank metric. The decisional version of this problem reads as follows:

Problem 3.3 (Decisional Interleaved Rank Syndrome Decoding (DecISDR) Problem).

Given: • Parity-check matrix H ∈ F(n−k)×n
qm of an [n, k, dR

min]RFqm code C
• Non-negative integer t with 0 ≤ t ≤ min{u, dR

min − 2}
• Matrix S ∈ F(n−k)×u

qm

Question: Is there an E ∈ Fu×nqm such that rkq(E) = rkqm(E) ≤ t and S = HE>?

In [136], it is proven that the non-interleaved syndrome decoding problem DecSDR

is a difficult problem. We show that the interleaved variant of DecSDR as defined
in Problem 3.3 can be solved in polynomial time. For this purpose, we propose an
efficient algorithm that solves the associated search problem.

Problem 3.4 (Search Interleaved Rank Syndrome Decoding (SeaISDR) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of an [n, k, dR
min]RFqm code C

• Non-negative integer t with 0 ≤ t ≤ min{u, dR
min − 2}

• Matrix S = HE> ∈ F(n−k)×u
qm , where rkq(E) = rkqm(E) = t

Objective: Search for an E′ ∈ Fu×nqm such that rkq(E′)=rkqm(E′)≤ t and S=HE′>.

The proposed algorithm can be seen as an adaption of Metzner and Kaputrowski’s
Hamming metric decoder [162] (Metzner and Kaputrowski’s algorithm was also derived
in [163] and generalized to dependent errors in [164, 165]). It is similar to many other
decoding algorithms in the sense that it first determines the row rank support of the
error, i.e., the subspace supp(R)

R (E), and then recovers the entire error matrix E using
an erasure decoding algorithm.

3.2.1 A New Algorithm for Solving SeaISDR

In the following, we construct an efficient algorithm for solving the SeaISDR problem.
The decoding routine is presented in Algorithm 6, and the correctness and the com-
plexity of the algorithm are proven in Theorem 3.20. Since the proof is quite technical,
we first derive some intermediate results.
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Algorithm 6: Generic High-Order Interleaved Rank Syndrome Decoder
Input : Parity-check matrix H ∈ F(n−k)×n

qm

Non-negative integer t
Syndrome matrix S ∈ F(n−k)×u

qm

Output: Matrix E′ ∈ Fu×nqm

1 Determine P ∈ F(n−k)×(n−k)
qm s.t. PS = ref(S)

2 Hsub ← (PH)[t+1:n−k],: ∈ F(n−k−t)×n
qm

3 Determine B′ ∈ Ft×nq s.t. extqm/q(Hsub)B′> = 0 and rkq(B′) = t

4 Determine A′ ∈ Fu×tqm s.t. HB′>A′> = S

5 E′ ← A′B′ ∈ Fu×nqm

6 return E′

In the following lemma, we show a well-known statement about erasure decoding of
interleaved codes in the rank metric.

Lemma 3.15. Let H ∈ F(n−k)×n
qm be a parity-check matrix of an [n, k, dR

min]RFqm code C,
let E ∈ Fu×nqm be an error matrix with wtR(E) = t ≤ dR

min−1, let S = HE> ∈ F(n−k)×u
qm ,

and let the rows of the matrix B ∈ Ft×nq be a basis of the row rank support of E ∈ Fu×nqm .
Then, the error can be written as E = AB, where A ∈ Fu×tqm is the unique solution of
S = (HB>)A>, and E can be determined from B, H, and S in O(max{un2, n3})
operations in Fqm.

Proof. See, e.g., [86]. �

The previous lemma proves that if we know the row rank support of the error, then
we can compute the error in polynomial time. To determine the row rank support
of the error, we first transform S into reduced row echelon form and apply the same
row operations to the parity-check matrix H . Then, we use the matrix Hsub to
determine supp(R)

R (E), where Hsub consists of the rows of the transformed matrix H
that correspond to the zero rows of the echelon form of S. The mentioned steps are
illustrated in Figure 3.5.
In the following lemma, we state a property of Hsub that we need for proving the

correctness of the proposed algorithm.

Lemma 3.16. LetH ∈ F(n−k)×n
qm be a parity-check matrix of an [n, k, dR

min]RFqm code, let
E ∈ Fu×nqm be an error matrix with rkq(E) = t < n − k and let S = HE> ∈ F(n−k)×u

qm

be the corresponding syndrome matrix. Furthermore, let P ∈ F(n−k)×(n−k)
qm be a full
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Figure 3.5: Illustration of Lemma 3.16.

Fqm-rank matrix such that PS is in row echelon form, and let Hsub be the rows of
PH corresponding to the zero rows in PS. Then, at least n− k − t rows of PS are
zero, and the rows of Hsub form a basis of Kqm(E) ∩ C⊥.

Proof. Since rkq(E) = t, it follows that the Fqm-rank of E and of S is at most t, and
thus, at least n − k − t rows of PS are zero. The rows of PH are in the row space
of H , and since HsubE

> = 0, it follows that the row space of Hsub is in the kernel of
E, i.e., Rqm(Hsub) ⊆ Kqm(E) ∩ C⊥.
To show that the rows ofHsub span the entire intersection Kqm(E)∩C⊥, we observe

that

PS =
S′

0

 and PH =
 H ′
Hsub

 ,
where the matrix S′ = H ′E> has full Fqm-rank and has the same number of rows
as H ′. Let the vector h := [v1,v2][H ′>,H>sub]> be in the kernel of E, i.e., h ∈
Kqm(E) ∩ C⊥. Since HsubE

> = 0, it holds that

0 = hE> = [v1,v2]
 H ′
Hsub

E> = v1H
′E> = v1S

′,
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and because the rows of S′ are linearly independent, the vector v1 = 0. Therefore,
the vector h must be in the row space of Hsub, i.e., Kqm(E) ∩ C⊥ ⊆ Rqm(Hsub). �

Lemma 3.16 indicates that the matrix Hsub is connected to the right kernel of E.
We show in the next lemma that if rkqm(E) = t, then the right kernel of E allows us
to determine the right kernel of the row rank support of the error.

Lemma 3.17. Let E ∈ Fu×nqm be an error with rkq(E) = rkqm(E) = t, and let the
integer u ≥ t. Then, we have Kqm(E) = Kqm(B), where B is a basis of the row rank
support of E.

Proof. Let A ∈ Fu×tqm with rkq(A) = t and B ∈ Ft×nq with rkq(B) = t such that
E = AB. Since the Fqm-rank of E is equal to t, it follows that A has full Fqm-rank
and since u ≥ t, the kernel Kqm(A) = 0. Therefore, for all vectors v ∈ Fnqm , it holds
that Bv> = 0 if and only if (AB)v> = 0, which implies that Kqm(E) = Kqm(B). �

To prove that the row rank support of the error can be determined from Hsub, we
need the following property of the matrix extqm/q(Hsub).

Lemma 3.18. LetHsub be a matrix in F(n−k−t)×n
qm , and let h be a vector in Rqm(Hsub).

Then, each row of the matrix extqm/q(h) ∈ Fm×nq is in Rq(extqm/q(Hsub)).

Proof. Since h is in the Fqm-rowspace of Hsub, the vector h can be written as a Fqm-
linear combination of the rows ofHsub, i.e., h = ∑n−k−t

i=1 aiHsub,i, where a1, . . . , an−k−t ∈
Fqm and Hsub,i is the i-th row of the matrix Hsub. This expression can be mapped to
extqm/q(h) = ∑m

i=1M ai extqm/q(Hsub,i), where M ai ∈ Fm×mq is the matrix representa-
tion of ai over Fq for a given basis γ [166]. Since the entries of M a1 , . . . ,M am are in
Fq, each row of extqm/q(h) must be in the Fq-rowspace of extqm/q(Hsub). �

The previous lemmata enable us to prove the following theorem, which states that
the row rank support of E can be determined from Hsub if u ≥ t and rkqm(E) = t.
An illustration of the theorem is given in Figure 3.6.

Theorem 3.19. Let H ∈ F(n−k)×n
qm be a parity-check matrix of an [n, k, dR

min]RFqm code,
let E ∈ Fu×nqm be an error with rkq(E) = rkqm(E) = t ≤ dR

min − 2, and let u ≥ t. Then,
the row rank support supp(R)

R (E) = Kq(extqm/q(Hsub)), where Hsub is defined as in
Lemma 3.16.
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u

n

E

=

t

A

· t

n

B

Fq

Hsub =

Hsub,1

...
Hsub,n−k−t

7→ extqm/q(Hsub) =

gen. set of
supp(R)

R (Hsub,1)

...

gen. set of
supp(R)

R (Hsub,n−k−t)

⇒ supp(R)
R (E) =

∑
i

supp(R)
R (Bi) =

(∑
i

supp(R)
R (Hsub,i)

)⊥

Figure 3.6: Illustration of Theorem 3.19.

Proof. From Lemma 3.16 and Lemma 3.17 follows that

Rqm(Hsub) = Kqm(B) ∩ C⊥. (3.8)

In the following, we show that Rq(extqm/q(Hsub)) = Kq(B). First, we prove that the
Fq-linear row space of extqm/q(Hsub) is a subspace of Kq(B), where it is sufficient to
show that any row of extqm/q(Hsub) is in Kq(B). Denote such a row of extqm/q(Hsub)
by vi, and let vi also be a row of extqm/q(v), where v ∈ Rqm(Hsub). Since vi ∈ Fnq
and v ∈ Kqm(B) (see (3.8)) it follows that extqm/q(Bv>) = B extqm/q(v)> = 0, and
thus, Bv>i = 0.
Second, we prove that Kq(B) ⊆ Rq(extqm/q(Hsub)) by showing that

r := dim
(
Rq(extqm/q(Hsub))

)
= dim(Kq(B)) = n− t.

Because Rq(extqm/q(Hsub)) ⊆ Kq(B), we observe that r > n− t is not possible, and it
is left to show that r < n− t is not possible either. Let h1, . . . ,hr ∈ Fnq form a basis
of Rq(extqm/q(Hsub)) and assume r < n− t. From the basis extension theorem follows
that there must be a matrix B′′ ∈ F(n−t)×n

q such that B′ :=
[
B>,B′′>

]
∈ Fn×nq and
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rkq(B′) = n. Since rkq(B′) = n, it follows that the matrix

H ′ =


h′1
...
h′r

 :=


h1
...
hr

B′ =

h1B

> h1B
′′>

... ...
hrB

> hrB
′′>

 ∈ Fr×nq

has Fq-rank r. Due to h1, . . . ,hr ∈ Kq(B), we have

H ′ =


0 . . . 0 h′1,t+1 h′1,t+2 . . . h′1,n
... . . . ... ... ... . . . ...
0 . . . 0 h′r,t+1 h′1,t+2 . . . h′r,n

 ∈ Fr×nq .

By assumption, we have r < n−t, and thus, there is a full Fq-rank matrix
[
I>J>

]>
∈

Fn×nq such that

H̃ := H ′

I
J

 =


0 . . . 0 0 h′1,t+2 . . . h′1,n
... . . . ... ... ... . . . ...
0 . . . 0 0 h′r,t+2 . . . h′r,n

 ∈ Fr×nq , (3.9)

where I ∈ Ft×nq denotes a matrix that consists of an identity matrix in the first t
columns and a zero matrix in the last n − t columns, and J ∈ F(n−t)×n

q has full Fq-
rank. Furthermore, the matrix

D :=
[
B>B′′>

] I
J

 ∈ Fn×nq

has Fq-rank n, which implies that

H̃ =


h1
...
hr

D =


h1D
...

hrD

 ∈ Fr×nq

has Fq-rank r. It follows from (3.9) that

hiD
′ = [0 . . . 0 0] ∈ Ft+1

q , (3.10)

for i ∈ [1 :r], where the matrix D′ := D:,[1:t+1] ∈ Fn×(t+1)
q has Fq-rank t+ 1. Thus, for
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all h̃ ∈ Rq(extqm/q(Hsub)), it holds that h̃D′ = 0.
However, since H ∈ F(n−k)×n

qm is a parity-check matrix of an [n, k, dR
min]RFqm code and

rkq(D′) is equal to t+ 1 ≤ dR
min− 1, we observe that rkqm(HD′) = t+ 1 [86, Theorem

1], and there must be a vector g ∈ Rqm(H) such that

gD′ = [0 . . . 0 g′t+1] ∈ Ft+1
qm , (3.11)

where g′t+1 ∈ Fqm \ {0}. Since, B′ =
[
B>,B′′>

]
has full Fq-rank, the columns of

B> and B′′> are Fq-linearly independent. Thus, gD′:,[1:t] = g(B> +B′′>J :,[1:t]) = 0
implies that g ∈ Kqm(B) and g ∈ Kqm(B′′). Thus, according to (3.8),

g ∈ Kqm(B) ∩Rqm(H) = Kqm(B) ∩ C⊥ = Rqm(Hsub).

Then, (3.11) implies that

extqm/q(g)D′ = extqm/q(gD′) =


0 . . . 0 g′1,t+1

0 . . . 0 g′2,t+1
... . . . ... ...
0 . . . 0 g′m,t+1

 ∈ Fm×(t+1)
q , (3.12)

where extqm/q(g′t+1) = [g′1,t+1, . . . , g
′
m,t+1]> ∈ Fm×1

q . If gi is the i-th row of the matrix
extqm/q(g) with g′i,t+1 6= 0, then giD′ = [0, . . . , 0, g′i,t+1] 6= 0, see (3.12). This consti-
tutes a contradiction since we have on the one hand that gi is in the Fq-linear row
space of extqm/q(Hsub) according to Lemma 3.18, and we have on the other hand that
for all gi ∈ Rq(extqm/q(Hsub)), it must hold that giD′ = 0 according to (3.10). It
follows that r < n− t is not possible, and thus, Rq(extqm/q(Hsub)) = Kq(B), which is
equivalent to supp(R)

R (E) = Rq(B) = Kq(extqm/q(Hsub)). �

The previous statements allow us to prove the correctness and the complexity of
Algorithm 6.

Theorem 3.20. Let H ∈ F(n−k)×n
qm be a parity-check matrix of an [n, k, dR

min]RFqm code,
let t and u be integers such that 0 ≤ t ≤ min{u, dR

min−2}, let E ∈ Fu×nqm be an error ma-
trix with rkq(E) = rkqm(E) = t, and let the syndrome matrix S = HE> ∈ F(n−k)×u

qm .
Then, given H, S, and t, Algorithm 6 returns a matrix E′ such that rkq(E′) =
rkqm(E′) ≤ t and S = HE′> in O(max{n3, n2u}m2) operations in Fq.
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Proof. Algorithm 6 determines E′ = A′B′ in two steps. First, it computes a basis of
the row rank support of the error in Lines 1–3, and then, it applies erasure decoding
to obtain the matrix A′ in Line 4.
To obtain the row space of B′, the algorithm determines a transformation matrix P

such that PS is in reduced row echelon form in Line 1 and chooses the matrixHsub as
the last n−k−t rows of PH in Line 2. Then, the algorithm computes B′ by finding a
basis of Kq(extqm/q(Hsub)), which is possible due to Theorem 3.19. To determine A′,
the algorithm solves the linear system of equations S = (HB′>)A′> for A′ in Line 4,
which has a unique solution according to Lemma 3.15. Finally, Algorithm 6 returns
E′ = A′B′ in Line 6.
Algorithm 6 is only based on linear operations, where Line 4 requires

O(max{n3, n2u}m2)

operations in Fq and determines the complexity of the algorithm, as it is the most
expensive step. �

3.2.2 Further Results and Remarks

In the following, we discuss some properties of the proposed decoding algorithm and
compare it to other known decoding algorithms.

Generalization of Problem 3.4

Let C(u) be a [u;n, k]Fqm interleaved code with minimum rank distance dR
min, and let

R = C + E ∈ Fu×nqm , where C ∈ C(u) and rkq(E) = t with t ≤ min{u, dR
min − 2}.

If rkqm(E) = t, then it is well-known that decoding R in C(u) can be reduced to the
problem SeaISDR. However, in many channel models, the error E is sampled uniformly
from the set {X ∈ Fu×nqm : rkq(X) = t}, which implies that rkqm(E) could be smaller
than t. In the following theorem, we derive a lower bound on the probability that our
proposed algorithm also succeeds for this error model.

Theorem 3.21. Let C(u) be a [u;n, k]Fqm code with minimum rank distance dR
min,

let the integer t ≤ min{u, dR
min − 2}, and let R = C + E, where C ∈ C(u) and

E
$←− {X ∈ Fu×nqm : rkq(X) = t}. Then, the codeword C can be uniquely reconstructed
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from R using Algorithm 6 with a probability of at least

t−1∏
i=0

(1− qm(i−u)) ≥ 1− tqm(t−1−u).

Proof. From Theorem 3.20 follows that if rkqm(E) = t, then C can be uniquely re-
constructed from R using Algorithm 6. Let A ∈ Fu×tqm and B ∈ Ft×nq such that
E = AB. Then, the matrix E has Fqm-rank t if and only if rkqm(A) = t. Fur-
thermore, let B be fixed and let the rows of B be a basis of the subspace V ⊆ Fnq .
Then, the function A 7→ AB bijectively maps from {A ∈ Fu×tqm : rkqm(A) = t} to
the set of errors E ∈ Fu×nqm with row rank support V . It follows that sampling E
uniformly from {X ∈ Fu×nqm : rkq(X) = t} is equivalent to choosing E = AB, where
B

$←− {X ∈ Ft×nq : rkq(X) = t} and A $←− {X ∈ Fu×tqm : rkq(X) = t}. Thus, we have

Pr(rkqm(E) = t) = Pr(rkqm(A) = t) ≥
t−1∏
i=0

(1− qm(i−u)) ≥ 1− tqm(t−1−u),

see [167, Lemma 3.13]. �

Decoding Beyond dR
min − 2

It is shown [168] that certain types of locally repairable codes are able to correct most
errors of Hamming weight up to n − k − 1 by high-order interleaving and using the
Hamming-metric variant of the proposed algorithm. The key observation in [168] is
that the upper bound on the Hamming weight of the error can be relaxed into a weaker
condition on the error positions. For the codes in [168], most error patterns of weight
at most n − k − 1 fulfill this condition. Likewise, in the rank metric, we can replace
the condition t ≤ dR

min − 2 by

rkqm
(
H
[
B>, b>

])
= t+ 1 ∀ b ∈ Fnq \ Rq(B), (3.13)

see the proof of Theorem 3.19. Therefore, the proposed decoder is able to correct
errors of rank weight t > dR

min − 2 if (3.13) holds and if u ≥ t and rkqm(E) = t is
fulfilled.
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Generic Decoding of Fqmu-Linear Codes in the Rank Metric

It is shown in [169] that an interleaved RS code can be viewed as an RS code over an
extension field. Similarly, a u-interleaved code with an Fqm-linear constituent code,
can be viewed as an Fqmu-linear code in Fnqmu with the same minimum rank distance
as the constituent code. Therefore, for large u, the results shown in this section imply
that the proposed decoder can be used to efficiently correct up to dR

min − 2 errors in
any Fqmu-linear code with high probability.

Decoding High-Order Interleaved Gabidulin Codes

Let G(u)
k (g) be a [u;n, k]Fqm Gabidulin code with minimum rank distance dR

min, and
let R = C + E ∈ Fu×nqm , where C ∈ G(u)

k (g) and rkq(E) = rkqm(E) = t with t ≤
min{u, dR

min − 2}. Then, it is well-known that decoding R in G(u)
k (g) is equivalent to

solving SeaISDR, where the input matrix H is chosen to be a parity-check matrix of
G(u)
k (g) and the input matrix S = HR>. We show in the next theorem that there are

multiple algorithms known to solve this particular instance of SeaISDR.

Theorem 3.22. Let t and u be integers such that 0 ≤ t ≤ u, let C be a codeword of an
[u;n, k]Fqm Gabidulin code G(u)

k (g) with minimum rank distance dR
min, and let E ∈ Fu×nqm

be an error matrix with rkq(E) = rkqm(E) = t ≤ dR
min − 2. Then, C can be uniquely

retrieved from R = C + E using the Loidreau–Overbeck [105], Sidorenko–Bossert7

[108], or Wachter-Zeh–Zeh [116] decoder.

Proof. To prove that all three algorithms succeed under the given conditions, it is
sufficient to show that the Loidreau–Overbeck decoder succeeds, as this implies that
the other two algorithms also succeed [99, Lemma 4.1], [99, Lemma 4.8].

As proven in [105], the Loidreau–Overbeck decoder retrieves C from R uniquely if

7In order to work with the error model assumed here, we must use the variant described in [99,
Section 4.1].
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and only if

rkqm





g[0]

g[1]

...
g[n−t−2]

E[0]

E[1]

...
E[n−k−t−1]





= n− 1,

where the superscript [i] indicates that each entry of this vector or of this matrix is
raised to the power of qi.
To show that this holds, we prove that the submatrix G̃ :=

[
g[0]>g[1]> . . . g[n−t−2]>

]>
has Fqm-rank n− t− 1 and that the submatrix Z :=

[
E[0]>E[1]> . . .E[n−k−t−1]>

]>
has

Fqm-rank t. Then, it is left to show that the rows of G̃ and the rows of Z are linearly
independent.
First, we observe that G̃ is a generator matrix of an [n, n− t−1, t+2]RFqm Gabidulin

code which implies that rkqm(G̃) = n − t − 1 and each Fqm-linear combination of
g, . . . , g[n−t−2] has a rank weight of at least t+ 2.
Second, since rkqm(E) = t, it follows that rkqm(Z) ≥ t. Furthermore, from rkq(E) =

t follows that there must be a full-rank matrix P ∈ Fn×nq such that

EP =
[
Ẽ 0u,n−t

]
,

where Ẽ ∈ Fu×tqm , and 0u,n−t denotes the u×(n−t) zero matrix. Since Ẽ has t columns,

rkqm(Z) = rkqm(ZP )

= rkqm




Ẽ 0u,n−t
Ẽ

[1] 0u,n−t
... ...

Ẽ
[n−k−t−1] 0u,n−t




≤ t.

This implies that rkqm(Z) = t, and each Fqm-linear combination has a rank weight of
at most t. We conclude that each Fqm-linear combination of the rows of G̃ has a rank
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weight of at least t + 2, and each linear Fqm-linear combination of the rows of Z has
a rank weight of at most t. Thus, the rows of G̃ and the rows of Z must be linearly
independent. �

Theorem 3.22 shows that for high-order interleaved Gabidulin codes, the proposed
generic decoding algorithm has the same error correction capability as all currently
known decoding algorithms which are tailored to interleaved Gabidulin codes.
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3.3 Decoding of Gabidulin Codes Beyond the Unique
Decoding Radius

In this section, we investigate the problem of decoding Gabidulin codes, where the rank
weight of the additive errors is larger than half the minimum distance of the respective
Gabidulin codes. We define the decisional version of this problem as follows:

Problem 3.5 (Decisional Gabidulin Decoding (DecGab) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of a Gabidulin code Gk(g) ⊂ Fnqm
• Non-negative integer t with n−k

2 < t < n− k
• Vector s ∈ Fn−kqm

Question: Is there an e ∈ Fnqm such that wtR(e) ≤ t and s = eH>?

As for the previous problems, we solve the decisional problem DecGab by trying to
find a solution to the associated search problem.8

Problem 3.6 (Search Gabidulin Decoding (SeaGab) Problem).
Given: • Parity-check matrix H ∈ F(n−k)×n

qm of a Gabidulin code Gk(g) ⊂ Fnqm
• Non-negative integer t with n−k

2 < t < n− k
• Vector r = c+ e ∈ Fnqm, where cH> = 0 and wtR(e) = t

Objective: Search for an e′ ∈ Fnqm such that wtR(e′) ≤ t and (r − e′)H> = 0.

In the following, we provide new details about the complexity of the latter prob-
lem by proposing a Las Vegas-type algorithm and analyzing the work factor of the
algorithm.

3.3.1 A New Algorithm for Solving SeaGab

In Problem 3.6, the vector r can be interpreted as the sum of a codeword c of the
Gabidulin code Gk(g) and an error e with wtR(e) = t =: ξ+ n−k

2 > n−k
2 . Furthermore,

we do not have any knowledge about the row or the column rank support of the error,
which implies that the known decoders are not able to decode r in Gk(g) efficiently.
The idea of our proposed algorithm is thus as follows: We repeatedly guess parts

8Note that Problem 3.5 has a vector s as input, which can be interpreted as a syndrome, whereas
Problem 3.6 has a vector r as input, which can be seen as received vector, i.e., a codeword that
is corrupted by an error of rank weight t. Thus, Problem 3.5 can be solved by trying to find a
solution to Problem 3.6, where the input r of Problem 3.6 is chosen to be a vector from the set
{x ∈ Fn

qm : xH> = s}. We use this alternative definition of Problem 3.6, as it simplifies the
derivation and the analysis of our proposed algorithm.

66



3.3 Decoding of Gabidulin Codes Beyond the Unique Decoding Radius

of the row and/or the column rank support of the vector e and try to correct the
corresponding error and column/row erasures using a basis for the guessed spaces, see
Lemma 2.4. In case the dimension of the intersection of the guessed spaces and the
rank supports of the error is large enough, the algorithm outputs a solution to the
problem.9

In the following analysis, we use the notation and the well-known statements about
error-erasure decoding of Gabidulin codes which are given in Section 2.2.2. Further-
more, we focus on guessing only the row rank support of the error, which means δE = γE

and ρE = 0 in (2.3). Later we show that this approach minimizes the expected work
factor of our algorithm.
A formal description of our decoding approach is shown in Algorithm 7, where the

function ErrEraDec(r, âR, B̂C) refers to an error-erasure decoder for the Gabidulin
code Gk(g) that has the error correction capability stated in Lemma 2.4. Depending
on âR and B̂C, the function ErrEraDec outputs either a codeword in rank distance of
at most t from r or 0. Furthermore, the integer δE specifies the sum of the dimensions
of the guessed row and column rank support.

Algorithm 7: Randomized Gabidulin Decoder
Input : Parity-check matrix H ∈ F(n−k)×n

qm of the Gabidulin code Gk(g)
Vector r ∈ Fnqm
Non-negative integer δE
Non-negative integer t

Output: Vector ê ∈ Fnqm
1 ê← 0
2 while wtR(ê) > t ∨ (r − ê)H> 6= 0 do
3 U $←− Grq(Fnq , δE)
4 B̂C ← full-rank matrix whose row space equals U
5 ĉ← ErrEraDec(r,0, B̂C)
6 ê← r − ĉ
7 return ê

We denote the dimension of the intersection of our guess and the true rank supports

9Our approach is a generalization of the algorithm presented in [170]. The algorithm in [170] applies
criss-cross erasures, and therefore, it is only capable of decoding a tiny fraction of error patterns
with a rank weight larger than the unique decoding radius.
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of the error by εInt. It follows that if

2(t− εInt) + δE ≤ n− k, (3.14)

a Gabidulin error-erasure decoder is able to correct the error, see Lemma 2.4. To
derive the work factor of the proposed algorithm, we require the following lemma:

Lemma 3.23. Let V be a subspace chosen uniformly at random from the Grassman-
nian Grq(Fq` , v) and fix U as a u-dimensional Fq-linear subspace of Fq`. Then, the
probability

Pr(dim(U ∩ V) ≥ ω) =

min{u,v}∑
i=ω

`− u
v − i


q

u
i


q

q(u−i)(v−i)

`
v


q

≤ 16(min{u, v}+ 1− ω)q(j∗−v)(`−u−j∗),

where j∗ := min{v − ω, 1
2(`+ v − u)}.

Proof. For a fixed subspace U of dimension u, the probability

Pr(dim(U ∩ V) ≥ ω) =

∣∣∣{V ∈ Grq(Fq` , v) : dim(U ∩ V) ≥ ω
}∣∣∣

|Grq(Fq` , v)|

=

min{u,v}∑
i=ω

`− u
v − i


q

u
i


q

q(u−i)(v−i)

`
v


q

=

v−ω∑
j=max{0,v−u}

`− u
j


q

 u

v − j


q

qj(u−v+j)

`
v


q

,

where the cardinality |{V ∈ Grq(Fq` , v) : dim(U ∩ V) ≥ ω}| is derived in [171]. This
expression can be upper bounded by applying the bounds on the Gaussian coefficient
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given in [68, Lemma 4], i.e.,

Pr(dim(U ∩ V) ≥ ω) ≤ 16
v−ω∑

j=max{0,v−u}
qj(`−u−j)+v(u−v+j)−v(`−v)

= 16
v−ω∑

j=max{0,v−u}
q(j−v)(`−u−j)

≤ 16 (min{u, v}+ 1− ω)q(j∗−v)(`−u−j∗),

where j∗ := min{v − ω, 1
2(`+ v − u)}. �

In the next lemma, we derive the probability that an error-erasure decoder which
uses a single random guess of the row rank support outputs exactly the transmitted
codeword.

Lemma 3.24. Let r′ = c′ + e′ ∈ Fnqm, where c′ ∈ Gk(g) ⊂ Fnqm, wtR(e′) = j and
e′ = a′B′ with a′ ∈ Fjqm, B′ ∈ Fj×nq . Furthermore, let δE ∈ [2j − (n − k) : n − k],
let Rq(B̂C) be a random δE-dimensional subspace of Fnq , and suppose that no part of
the row or the column rank support of e′ is known. Then, the probability that an
error-erasure decoder that uses B̂C outputs c′ is

Pn,k,δE,j :=

min{δE,j}∑
i=
⌈
j−n−k2 + δE

2

⌉
n− j
δE − i


q

j
i


q

q(j−i)(δE−i)

 n
δE


q

≤ 16nq−
(⌈

δE
2 +j−n−k2

⌉)(
n+k

2 −
⌈
δE
2

⌉)
,

if 2j + δE > n− k, and Pn,k,δE,j := 1 otherwise.

Proof. To derive the success probability for the case 2j + δE > n − k, we define
ξ′ := j− n−k

2 , and thus, it follows from (3.14) that error-erasure decoding is successful
if

2j − 2εInt + δE = n− k + 2ξ′ − 2εInt + δE ≤ n− k, (3.15)

where εInt := Rq(B̂C) ∩Rq(B′). Since εInt ≤ δE, the integer δE must satisfy

2ξ′ ≤ 2εInt − δE ≤ δE ≤ n− k,
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see (3.15). The same equation implies further that the space Rq(B̂C) does not need
to be a subspace of Rq(B′), but it is sufficient that their intersection is large enough,
i.e., εInt ≥ ξ′ + δE

2 . Thus, the probability that the dimension of the intersection of a
randomly chosen space and the row rank support of e′ is large enough such that an
error-erasure decoder outputs c′ is

min{δE,j}∑
i=
⌈
ξ′+ δE

2

⌉
n− j
δE − i


q

j
i


q

q(j−i)(δE−i)

 n
δE


q

≤16
(

min{j, δE}+ 1−
(
ξ′ + δE

2

))
q
−
(⌈

δE
2 +ξ′

⌉)(
n+k

2 −
⌈
δE
2

⌉)

≤16nq−
(⌈

δE
2 +ξ′

⌉)(
n+k

2 −
⌈
δE
2

⌉)
,

see Lemma 3.23. The probability Pn,k,δE,j = 1, for 2j + δE ≤ n − k, follows directly
from Lemma 2.4. �

We observe that Lemma 3.24 states the probability that an error-erasure decoder
outputs exactly the transmitted codeword c′. However, in Problem 3.6, it is not
necessary to exactly determine c′, but it is sufficient to find any codeword of Gk(g)
in rank distance at most t to r. To derive a lower bound on the work factor of
the proposed algorithm, we derive an upper bound on its success probability in the
following lemma.

Lemma 3.25. Let the vector r be chosen uniformly at random from Fnqm, let the integer
δE ∈ [2ξ :n − k], and let Rq(B̂C) be a random δE-dimensional subspace of Fnq . Then,
an error-erasure decoder that uses B̂C decodes r to c ∈ Gk(g) such that dR(c, r) ≤ t

with a probability of at most

t∑
j=0

ĀjPn,k,δE,j ≤ 64nqm(k−n)+t(n+m)−t2−
(⌈

δE
2 +t−n−k2

⌉)(
n+k

2 −
⌈
δE
2

⌉)
,

where Āj := qm(k−n)∏j−1
i=0

(qm−qi)(qn−qi)
qj−qi .
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Proof. Define Ĉ as the set

Ĉ := {c ∈ Gk(g) : dR(c, r) ≤ t} = {ĉ1, . . . , ĉNR},

Xi as the event that an error-erasure decoder decodes r to ĉi where i ∈ [1 :NR], and
NR is defined in (2.7). Furthermore, let Aj denote the set of codeword indices that
refer to codewords of rank distance j, i.e., Aj := {i : dR(ĉi, r) = j}. By recalling
the definition of Pn,k,δE,j given in Lemma 3.24, we observe that Pr(Xi) = Pn,k,δE,j for
i ∈ Aj. Then, we can apply a union bound argument to upper bound the success
probability

Pr(success) = Pr
NR⋃
i=1

Xi

 ≤ NR∑
i=1

Pr(Xi) =
t∑

j=0
|Aj|Pn,k,δE,j.

Furthermore, we denote the average size of the set Aj by Āj, which can be bounded
by

Āj = qm(k−n)
j−1∏
i=0

(qm − qi)(qn − qi)
qj − qi

≤ 4qm(k−n)+j(n+m)−j2
.

Finally, we can approximate the success probability by

Pr(success) = ĀtPn,k,δE,t

≤ 64nqm(k−n)+t(n+m)−t2−
(⌈

δE
2 +t−n−k2

⌉)(
n+k

2 −
⌈
δE
2

⌉)
,

using the fact that Āt is exponentially larger than Āt−i for any positive integer i. �

By combining the derived lemmata, we can lower bound the average work factor of
the proposed algorithm as follows.

Theorem 3.26. Let H ∈ F(n−k)×n
qm be a parity-check matrix of an [n, k]Fqm Gabidulin

code Gk(g) ⊂ Fnqm, let r be drawn uniformly at random from Fnqm, and let t and δE be
integers such that n−k

2 < t < n− k and 2ξ ≤ δE ≤ n− k. Then, Algorithm 7 outputs
e′ ∈ Fnqm such that wtR(e′) ≤ t and (r − e′)H> = 0 with, on average, at least

WRD = min
δE∈[2ξ:n−k]

{
n2∑t

j=0 ĀjPn,k,δE,j

}
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= min
δE∈[2ξ:n−k]



n2
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+
t∑
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⌋
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. . .
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(qm − q`)(qn − q`)
qj − q`

 min{δE,j}∑
i=
⌈
j−n−k2 + δE

2

⌉
n− j
δE − i


q

j
i


q

q(j−i)(δE−i)




operations in Fqm, where Āj and Pn,k,δE,j are defined as in Lemma 3.25.

Proof. We derived in Lemma 3.25 that an error-erasure decoder that uses a random
δE-dimensional subspace of Fnq outputs c ∈ Gk(g) such that dR(c, r) ≤ t only with a
certain probability. This implies that we have to sample, on average, at least

min
δE∈[2ξ:n−k]

{
1∑t

j=0 ĀjPn,k,δE,j

}

δE-dimensional subspaces of Fnq in order to determine a codeword in rank distance of
at most t to r. Because error-erasure decoding requires O(n2) operations in Fqm , it
follows that the work factor of the proposed algorithm is equal to

WRD = min
δE∈[2ξ:n−k]

{
n2∑t

j=0 ĀjPn,k,δE,j

}
. �

A closed form expression of a lower bound on the work factor is given in the following
corollary.

Corollary 3.27. Let H ∈ F(n−k)×n
qm be a parity-check matrix of an [n, k]Fqm Gabidulin

code Gk(g) ⊂ Fnqm, let r be drawn uniformly at random from Fnqm, and let t and δE

be an integers such that n−k
2 < t < n − k and 2ξ ≤ δE ≤ n − k. Then, Algorithm 7
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outputs e′ ∈ Fnqm such that wtR(e′) ≤ t and (r− e′)H> = 0 with, on average, at least

WRD ≥
n

64 · q
m(n−k)−t(n+m)+t2+min{2ξ(n+k

2 −ξ),tk}

operations in Fqm.

Proof. This follows directly from Theorem 3.26 and the fact that the upper bound on
the probability given in Lemma 3.25 is convex in δE, and thus, it is maximized for
either 2ξ or n− k. �

Similarly to the previous corollary, we can also give a closed form expression of an
upper bound on the complexity of the proposed algorithm.

Corollary 3.28. Let H ∈ F(n−k)×n
qm be a parity-check matrix of an [n, k]Fqm Gabidulin

code Gk(g) ⊂ Fnqm, let r be drawn uniformly at random from Fnqm, and let t and δE

be an integers such that n−k
2 < t < n − k and 2ξ ≤ δE ≤ n − k. Then, Algorithm 7

outputs e′ ∈ Fnqm such that wtR(e′) ≤ t and (r− e′)H> = 0 with, on average, at most

WRD ≤ n2qm(n−k)−t(n+m)+t2+min{2ξ(n+k
2 −ξ),tk},

operations in Fqm.

Proof. The expression can be derived by combining the arguments of Lemma 3.24,
Lemma 3.25, and Theorem 3.26. However, we apply lower bounds instead of upper
bounds on the Gaussian binomial coefficient (see [68, Lemma 4]), we use the maximal
instead of the minimal terms in the sums, and we consider the maximal probability of
events instead of union-bounds. �

In the definition of Problem 3.6, the vector r is the sum of a Gabidulin codeword
and an error of rank t, where neither parts of the row nor the column rank support of
the error are known. In this case, the vector r ∈ Fnqm can be interpreted as a vector
drawn uniformly at random from the set Fnqm . It follows that the complexity that
is derived in Theorem 3.26 can be used as an estimation of the work factor to solve
Problem 3.6. The simulation results given in Section 3.3.2 verify that this assumption
is sound and the resulting estimation is accurate.

73



3 Coding-Theoretic Problems with Applications in Cryptography

3.3.2 Comparison to Other Algorithms

In the following, we compare the proposed Algorithm 7 with known approaches to solve
Problem 3.6. Besides comparing our algorithm to generic rank syndrome decoders,
see Section 2.2.4, we also take an algorithm based on solving the key equation into
consideration.

Key Equation Based Decoding

There exists a family of decoding algorithms of Gabidulin codes that are based on
solving the key equation [86, Lemma 4]. This equation refers to a linear system of
n− k − t equations with t unknowns. If t ≤ bn−k2 c, the system is overdetermined and
has exactly one solution. However, in the setting described by Problem 3.6, we have
t > bn−k2 c unknowns meaning that the linear system has a solution space of dimension
t − (n − k − t) = 2ξ and all codewords c ∈ Gk(g) such that dR(c, r) ≤ t are in this
space [172]. Thus, solving Problem 3.6 requires to iterate through all elements of the
solution space to find such a codeword. This leads to a complexity of

WKey = n2qm2ξ

NR
,

where each iteration requires O(n2) operations in Fqm and NR is defined in (2.7).

Numerical Results

In order to validate the accuracy of our complexity estimation of Algorithm 7, we
conducted simulations using the error-erasure decoder proposed in [99]. In the first
row of Table 3.1, we observe that the true complexity of Algorithm 7, which is de-
noted by WSim, is very close to our theoretical estimation WRD. The remaining rows
of Table 3.1 refer to parameter sets which are proposed in [152, 153]. The results
indicate that Algorithm 7 requires, on average, a significantly smaller number of oper-
ations compared to key equation based decodingWKey, combinatorial generic decoding
WCRSD and algebraic generic decoding WARSD, see Section 2.2.4.

3.3.3 Possible Modifications to the Algorithm

Since error-erasure decoding algorithms are capable of decoding row and column era-
sures at the same time, Algorithm 7 can be modified such that parts of the row and
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Table 3.1: Operations in Fq required by different algorithms for solving Problem 3.6.
The value of WSim was obtained by simulating 6844700 iterations that led
to 4488 successes. The parameter q = 2 is used for all sets.

m n k t ξ δE WSim WRD WCRSD WARSD WKey

24 24 16 6 2 4 228.91 228.82 243.74 2108.94 252.57

64 64 32 19 3 6 - 2269.21 2574.21 2460.01 2383.21

80 80 40 23 3 6 - 2414.49 2900.93 2576.15 2505.29

96 96 48 27 3 6 - 2591.55 21266.51 2694.93 2602.34

82 82 48 20 3 6 - 2303.64 2842.35 2504.70 2423.64

the column rank support of the error are guessed jointly. In the following, we analyze
the success probability of that approach.

Lemma 3.29. Let r′ = c′ + e′ ∈ Fnqm, where c′ ∈ Gk(g) ⊂ Fnqm, wtR(e′) = j and
e′ = a′B′ with a′ ∈ Fjqm, B′ ∈ Fj×nq . Furthermore, let δE ∈ [2j − (n − k) : n − k],
let Rq(B̂C) be a random δrE-dimensional subspace of Fnq , let Rq(extqm/q(âR)>) be a
random δcE-dimensional subspace of Fmq such that δrE + δcE = δE, and suppose that no
part of the row or column rank support of e′ is known. Then, the probability that an
error-erasure decoder that uses B̂C and âR outputs c′ is at most

min{δE, j}∑
i=
⌈
ξ+ δE

2

⌉ ∑
0≤tr,tc≤i
tr+tc=i

 n− j
δrE − tr


q

 j
tr


q

q(j−tr)(δrE−tr)

m− j
δcE − tc


q

j
tc


q

q(j−tc)(δcE−tc)

 n
δrE


q

m
δcE


q

.

Proof. The lemma can be proven similarly to Lemma 3.24. The probability that two
randomly drawn vector spaces of dimension δrE and δcE intersect with the row and
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column rank support of the error in exactly tr and tc dimensions is given by n− j
δrE − tr


q

 j
tr


q

q(j−tr)(δrE−tr)

m− j
δcE − tc


q

j
tc


q

q(j−tc)(δcE−tc)

 n
δrE


q

m
δcE


q

.

Summing up over all positive integers tr and tc such that tr + tc ≥
⌈
ξ + δE

2

⌉
gives then

an upper bound on the success probability. �

Note that the proof of Lemma 3.29 uses the optimistic argument that correctly
guessing tr dimensions of the row and tc dimensions of the column rank support of the
error reduces the rank of the error by tr + tc, which is not always the case.
We do not know how to prove that guessing the column and row rank support of

the error is never advantageous over guessing only the row rank support of the error.
However, this was the case for all parameter sets we investigated. For instance, for
the following set of parameters.

Example 3.1. Let q = 2, m = n = 24, k = 16 and t = 6. Then, an error-
erasure decoder succeeds with probability 1.66 · 10−22 if we draw δE = 4 dimensional
subspaces Rq(B̂C) uniformly at random. In case we use δrE = δcE = 2, the error-erasure
algorithms only decodes correctly with probability 1.93 · 10−22.

A further approach is to only guess the column rank support of the error. To analyze
the work factor, we need to replace n by m in Lemma 3.24 and in the probability
Pj in the proof of Theorem 3.26. Since n ≤ m for Gabidulin codes, this approach
cannot decrease the resulting work factor, and it is clear that this approach is never
advantageous over only guessing the row space.

76



3.4 Concluding Remarks

3.4 Concluding Remarks

In Chapter 3, we have investigated three different problems in coding theory with
potential applications in cryptography. The first problem that we have considered
was generic decoding in the sum-rank metric, where we proposed a non-trivial algo-
rithm that solves this problem in exponential time. This algorithm can be seen as
a combination of Prange’s generic decoding algorithm in the Hamming metric [134]
and Gaborit, Ruatta, and Schrek’s basic generic decoding algorithm in the rank met-
ric [139]. Furthermore, we have presented a randomized reduction of the decisional
Hamming syndrome decoding problem to the decisional sum-rank syndrome decod-
ing problem, which implies that if the widely believed conjecture ZPP 6= NP is true,
then the latter problem is in NP \ ZPP ⊂ NP \ P. Although it is an open problem
whether there is a deterministic reduction from an NP-hard problem to the decisional
sum-rank syndrome decoding problem, our result strongly motivates future studies
of cryptographic schemes based on the sum-rank metric. A further open problem is
the incorporation of the improvements of the algorithms presented in [134] and [139]
into our proposed algorithm, and the adaption of the algebraic decoding algorithm
presented in [142] to the sum-rank metric.
In the second part of this chapter, we have addressed the problem of generic decod-

ing of high-order interleaved rank-metric codes. We have devised a polynomial-time
decoding algorithm that enables us to correct errors of rank weight up to dR

min − 2
in any interleaved code of minimum rank distance dR

min if the error fulfills two condi-
tions: First, the rank weight of the error is at most the interleaving order; and second,
the rank of the error over the large field is equal to the rank weight of the error.
Furthermore, we have proved that for a random error of rank weight of at most the
interleaving order, it holds with high probability that the rank of this error over the
large field is equal to its rank weight. This finding implies that our decoding algorithm
can even correct errors of this kind with high probability. The presented analysis has
an impact on rank-based McEliece or Niederreiter schemes, as it shows that in case of
multiple encryptions, the row rank supports of the errors have to be generated inde-
pendently to ensure secure encryptions; otherwise these systems will be unsecure with
high probability. An open problem is the adaption of our algorithm to errors whose
rank over the large field is smaller than their rank weight.10 Furthermore, the adaption
to instances with an interleaving order smaller than the rank weight of the error is left
10This problem was solved for the Hamming metric in [164].

77



3 Coding-Theoretic Problems with Applications in Cryptography

for future work. The latter problem is of interest, as there exist cryptosystems based
on the hardness of generic decoding of rank metric codes with a small interleaving
order, e.g., [107]. In addition, there are cryptographic schemes whose security relies
on the hardness of syndrome decoding of interleaved codes in the rank metric, where
the errors share the same column rank-support [157, 173]. Therefore, it would be of
interest to modify our proposed algorithm such that it is capable of decoding such
errors.
In the third part of Chapter 3, we have considered the problem of decoding Gabidulin

codes beyond their unique decoding radius. The complexity of this problem is of im-
portance to rank-based cryptography, as cryptosystems exist that rely on the afore-
mentioned problem, e.g., [106, 152, 153]. To obtain an upper bound on the complexity
of decoding Gabidulin codes beyond their unique error-correction radius, we have de-
veloped a new algorithm that introduces random row or column erasures to decrease
the rank of the error in order to enable polynomial-time Gabidulin code error-erasure
decoding. The proposed algorithm improves upon generic rank-metric decoders and
other known approaches by an exponential factor. It should be noted that there is
a list decoding algorithm for Gabidulin codes based on Gröbner bases that can also
correct errors beyond the unique decoding radius [174]. However, the authors provide
no upper bound on the list size, and therefore, the work factor of this algorithm cannot
be evaluated. In future work, the work factor of the algorithm proposed in [174] could
be determined which would help to asses the hardness of the problem of decoding
Gabidulin codes beyond their unique decoding radius. Furthermore, there are only
some complexity results known for this problem [175–177] but no proper reduction to
it. Therefore, a formal hardness proof should be developed in future work. In addition,
the idea of our decoding algorithm can easily be adapted to all code classes that fea-
ture error-erasure decoders. For instance, one can adapt the idea to decode RS codes
in the Hamming metric. For these codes, it is well known that there are error weights
in the interval [n−

√
n(k − 1) : n−k] where the problem of decoding RS codes cannot

be solved in polynomial time unless the polynomial hierarchy collapses [77, 178, 179].
The adaption of the proposed algorithm to RS codes would allow us to solve these
instances in exponential time.
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4
Attacks on Hamming-Based
Encryption Schemes

Virtually all Hamming-based encryption schemes deploy the syndrome decoding prob-
lem as the trapdoor function. In these systems, the problem of syndrome decoding is
instantiated in such a way that given a parity-check matrix of a publicly known code
and a syndrome, it is hard to determine a valid error vector1 that fulfills the parity-
check equations unless some secret is known. Currently, there are two main families
of Hamming-based encryption schemes. The first family developed from McEliece’s
original proposal [13], where the aforementioned secret is the structure of the publicly
known code which is required for efficient decoding. For the second family, the struc-
ture of the public code is common knowledge, but the secret is the structure of the
error.
The security of McEliece’s original proposal is based on the hardness of retrieving the

code locators of a Goppa code from its scrambled parity-check matrix [13]. Although
this system is still considered to be secure and is a promising candidate in the third
round of the NIST competition [135], it suffers from large key sizes. To overcome
this issue, researchers have investigated most of the known code classes to replace
Goppa codes. In the first part of this chapter, we consider the system introduced by
Beelen et al. in [84]. The authors propose to replace Goppa codes by TRS codes

1The problem can also be stated as given a generator matrix and the sum of a codeword and an
error, the task is to retrieve the codeword.
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to reduce the key sizes. They show that the applied TRS codes are different from
GRS codes, and therefore, the attack by Sidelnikov and Shestakov [15] cannot be
applied to their system. Furthermore, the authors prove that shortenings of these
codes up to two positions have maximal Schur square dimension [180], meaning that
the proposed system is invulnerable to the attack presented by Couvreur et al. in [181].
In addition, Beelen et al. give evidence that the proposed system is unassailable to
the methods introduced by Wieschebrink in [17, 182]. Since the known structural
attacks on variants of the McEliece scheme cannot be mounted on [84], we analyze
the security of this scheme. More precisely, we develop a new efficient key-recovery
attack on the cryptosystem based on TRS codes, which recovers the structure of
a well-chosen subfield subcode of the public TRS code. We show that this subfield
subcode is a subspace of low codimension contained in an RS code, and we prove that
the Wieschebrink squaring method can always be applied to this subfield subcode
to recover an algebraic description of the RS code. By an analysis of equivalent
representations of TRS codes, we finally determine an algebraic description of the
public TRS code that is sufficient to break the proposed system.
The development of the second family of Hamming-based encryption schemes started

with a proposal by Augot and Finiasz [61] in 2003. The authors propose an RS code
as public code and choose the ciphertext as the sum of a codeword of this RS code
and an error of large Hamming weight but with a certain structure. At a first glance,
the system seemed to be promising, as the authors proposed parameters that led to
small key sizes, but the system was broken only one year later [64]. In the same year
when Augot and Finiasz published their paper, Alekhnovich proposed a framework
that only relies on the difficulty of decoding random codes [60]. Although this system
is not practical, it is the starting point of the HQC scheme [63]. HQC is a promising
candidate in the NIST competition, as it features small key sizes and allows precise
estimations of its decryption failure rate. Since so far no mathematical weaknesses
have been observed, we investigate the security of the implementation of HQC which
was proposed in [183]. Recent attacks on the implementation of HQC use a timing
side-channel of the applied decoder to gather information about the decryption [184,
185]. Utilizing this information, both attacks are able to successfully retrieve the
private key. However, this attack vector has been removed, as the authors of [185]
provide a constant-time implementation of the decoder, which has been merged into the
HQC reference implementation [183]. In our attack,2 we utilize the method presented

2Please note that the presented attack specifically targets the IND-CCA2-secure KEM version of
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in [187], which exploits a power side-channel to construct an oracle that takes as input
a ciphertext and returns information about the error that is corrected in the decryption
algorithm. Based on this oracle, we derive a chosen-ciphertext attack that allows us to
determine the private key in case of error-free side-channel information. However, in
case of noisy side-channel information, the proposed attack potentially retrieves only a
part of the private key. For these cases, we present modifications of Prange’s [134], Lee
and Brickell’s [160], and Stern’s [161] ISD algorithms that are capable of utilizing the
determined part of the private key, and thus, achieve a complexity below the claimed
security level. Furthermore, theoretical thoughts regarding a potential countermeasure
against the proposed attacks are stated at end.
The results shown in Section 4.1 are published in the journal Designs, Codes and

Cryptography [188]. The author of this dissertation contributed both the presented
attack and the respective analysis. The cited publication contains an additional se-
curity analysis of an attempt to repair the considered system, where the repair was
proposed by the authors of [84] after they had been notified about the attack. This
discussion is not presented in this thesis, as it was mainly conducted by the author
Julien Lavauzelle. Furthermore, the paper [188] comprises a discussion about the fea-
sibility of adapting the proposed attack to a variant of the McEliece scheme based on
twisted Gabidulin codes. This discussion is outside the scope of this thesis, and thus,
it is also not contained in this thesis.
Parts of Section 4.2 are published in the proceedings of the 2020 International

Conference on Smart Card Research and Advanced Applications (CARDIS) [189]. The
attack that is proposed in the cited paper is based on side-channel information which
is gained from a power analysis. As this power analysis was performed by the other
authors of [189], no details about this analysis are presented in this thesis. In order
to still work with the acquired side-channel information, we model it as an oracle in
Section 4.2. The attacks given in [189] are then described using this oracle. The attack
which requires error-free side-channel information was jointly developed by Thomas
Schamberger and the author of this thesis. The other attack, which is also applicable in
case of noisy side-channel information, was solely derived by the author of this thesis.
In addition to the attacks that are given in [189], two even more powerful attacks
are presented in Section 4.2. These attacks are partly based on [190, Sec. 4], which
has been accepted to the 2021 International Workshop on Code-Based Cryptography

HQC, as it has already been shown that the IND-CPA-secure public-key encryption version is
assailable to chosen-ciphertext attacks [186].
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(CBCrypto), and were solely developed by the author of this thesis. The remaining
content of [190] is not shown, as it is outside the scope of this dissertation. The
theoretical thoughts about potential countermeasures at the end of Section 4.2 are not
included in [189] and were solely devised by the author of this thesis.
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4.1 Cryptanalysis of a McEliece System Based on TRS Codes

4.1 Cryptanalysis of a McEliece System Based on TRS
Codes

In this section, we present a feasible attack on the variant of the McEliece encryption
scheme based on TRS codes [84]. We first recall the aforementioned variant, and then,
we derive the attack and analyze its complexity.

4.1.1 The Variant of the McEliece System Based on TRS Codes

We denote the TRS-based McEliece encryption scheme by ΠEnc
TRS. The setup of ΠEnc

TRS is
as follows: Let q0 be a prime power, and let k and n be integers that fulfill n ≤ q0− 1
and 2

√
n+ 6 < k ≤ n

2 − 2. Furthermore, let `T be a positive integer such that

n+ 1
k −
√
n
< `T + 2 < min

{
k + 3, 2n

k
,
√
n− 2

}
.

Choose qi := q2
i−1 = q2i

0 , for i ∈ [1 :`T], such that Fq0 ⊂ Fq1 ⊂ . . . ⊂ Fq`T = Fq is a chain
of subfields, and choose τi = (i+ 1)(rT− 2)− k+ 2 and πi = rT− 1 + i, for i ∈ [1 :`T],
where rT :=

⌈
n+1
`T+2

⌉
+ 2. Integers q0, n, k, and `T and vectors τ = [τ1, . . . , τ`T ] and

π = [π1, . . . , π`T ] that fulfill the above restrictions are considered as valid parameters
of the cryptosystem and are public knowledge [84].
The encryption scheme is defined as

ΠEnc
TRS := (KeyGenTRS, EncryptTRS, DecryptTRS),

where the key-generation, encryption, and decryption algorithms are stated in Al-
gorithm 8, Algorithm 9, and Algorithm 10, respectively. Note that the function
DecodeTRS refers to the decoding algorithm of T RSk(α, τ ,π,η) proposed in [84].
In [84], the designers of ΠEnc

TRS propose parameters which are shown in Table 4.1.
There are two crucial reasons for a small number of twists `T. First, the decoding
algorithm presented in [84] has a complexity in

O
(
q`T2`T

0 n log2(n) log
(

log(n)
))
,

and therefore, the complexity of Algorithm 10 increases doubly exponentially in the
number of twists `T. Second, the cardinality of the largest field Fq scales exponentially
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4 Attacks on Hamming-Based Encryption Schemes

Algorithm 8: KeyGenTRS
Input : Integers q0, n, k

Vector τ ∈ [1 :n− k]`T
Vector π ∈ [0 :k − 1]`T

Output: Private key (S,α,η) ∈ Fk×kq × Fnq0 × F`Tq
Public key Gpub ∈ Fk×nq

1 S
$←−
{
X ∈ Fk×kq : rkq(X) = k

}
2 α

$←−
{
x ∈ Fnq0 : xi 6= xj, for i, j ∈ [1 :n] and i 6= j

}
3 η

$←−
{
x ∈ F`Tq : xi ∈ Fqi \ Fqi−1 , for i ∈ [1 :`T]

}
4 Gpub ← SGα,τ ,π,η ∈ Fk×nq , where Gα,τ ,π,η is defined in Definition 2.11
5 return Private key (S,α,η), Public key Gpub

Algorithm 9: EncryptTRS

Input : Plaintext vector m ∈ Fkq
Public key Gpub ∈ Fk×nq

Output: Ciphertext vector y ∈ Fnq
1 e′

$←−
{
x ∈ Fnq : wtH(x) =

⌊
n−k

2

⌋}
2 y ←mGpub + e′ ∈ Fnq
3 return Ciphertext y

Algorithm 10: DecryptTRS
Input : Ciphertext vector y ∈ Fnq

Private key (S,α,η) ∈ Fk×kq × Fnq0 × F`Tq
Vector τ ∈ [1 :n− k]`T
Vector π ∈ [0 :k − 1]`T

Output: Plaintext vector m ∈ Fkq
1 m̃← DecodeTRS(y,α, τ ,π,η) ∈ Fkq
2 m← m̃S−1 ∈ Fkq
3 return Plaintext m

with the number of twists, which has a significant impact on the key sizes.

4.1.2 A Feasible Key-Recovery Attack on TRS-Based McEliece

In this section, we derive a key-recovery algorithm on ΠEnc
TRS for the parameters proposed

in [84]. For that, we first prove that multiple private keys exist that can be used in
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4.1 Cryptanalysis of a McEliece System Based on TRS Codes

Table 4.1: Parameters for ΠEnc
TRS proposed in [84]. The designers claim a security ≥ 100

bits.

q0 n k `T τ π

256 255 117 1 [57] [88]

DecryptTRS, and it is sufficient to determine one of them.

Lemma 4.1. Let the vectors α, τ , π, and η be defined as in Definition 2.11. Then,
for any a ∈ F∗q, it holds that

T RSk(α, τ ,π,η) = T RSk(α̂, τ ,π, η̂),

where α̂ = aα and η̂ = [η̂1, . . . , η̂`T ] with η̂j = ηja
−(k−1+τj−πj), for j ∈ [1 :`T].

Proof. Let evα̂(f) ∈ T RSk(α̂, τ ,π, η̂), where f(X) = ∑k−1
i=0 fiX

i+∑`T
j=1 η̂jfπjX

k−1+τj .
We have

f(aX) =
k−1∑
i=0

fi(aX)i +
`T∑
j=1

η̂jfπj(aX)k−1+τj =
k−1∑
i=0

giX
i +

`T∑
j=1

ηjgπjX
k−1+τj = g(X) ,

where gi = fia
i, for i ∈ [0 : k − 1], ηj = η̂ja

k−1+τj−πj , for j ∈ [1 : `T], and g(X) ∈
Pk(τ ,π,η). We have by definition that evα̂(f) ∈ T RSk(α, τ ,π,η), and hence, it fol-
lows that T RSk(α̂, τ ,π, η̂) ⊆ T RSk(α, τ ,π,η). The proof of the converse inclusion
is similar since a is non-zero. �

The key-recovery algorithm works as follows: In the first step, the algorithm com-
putes a linear transformation of the secret code locators α by exploiting structural
properties of the subfield subcode of the public code. In the second step, the presented
routine determines the coefficients of the twist monomials by Lagrange interpolation.
In the final step, the algorithm outputs (Ŝ, α̂, η̂) such that ŜGα̂,τ ,π,η̂ = Gpub. Note,
from Lemma 4.1 follows that (Ŝ, α̂, η̂) is a valid private key and can be used as input
of DecryptTRS to decrypt any ciphertext.

First Step: Recovery of an Affine Transformation of the Secret Locators

To determine a linear transformation of the secret code locators α from Gpub, we need
the following lemma:
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Lemma 4.2. Let Fq be an extension field of Fq0, let the entries α ∈ Fnq0 be distinct,
and let P ∈ Fq[X] have degree smaller than n. Then, the vector evα(P ) is in Fnq0 if
and only if P ∈ Fq0 [X].

Proof. It is easy to see that if P ∈ Fq0 [X], then evα(P ) is in Fnq0 . To prove the converse,
choose c = evα(P ) and suppose that c is in Fnq0 . Since α ∈ Fnq0 and n ≤ q0, there is a
polynomial Q ∈ Fq0 [X] of a degree of at most n such that c = evα(Q). Furthermore,
because evα is injective over the Fq-subspace of polynomials of a degree smaller than
q0, it must hold that P = Q. �

We denote the set of exponents of monomials that do not support any twist by

Ī := [0 :k − 1] \ {π1, . . . , π`T}.

Since k and π1, . . . , π`T are public knowledge, an attacker can compute the set Ī.
Because πi = rT − 1 + i, for i ∈ [1 : `T], it holds for valid parameters that Ī = [0 :
rT − 1] ∪ [rT + `T :k − 1].

Proposition 4.3. Let q0, n, k, `T, α, τ , π, and η be chosen according to the pa-
rameter restrictions shown in Section 4.1.1, and choose Ī = [0:k − 1] \ {π1, . . . , π`T}.
Then, the intersection

T RSk(α, τ ,π,η) ∩ Fnq0 = 〈{evα(X i), i ∈ Ī}〉q0 .

Proof. Since α is in Fnq0 and evα(X i) ∈ T RSk(α, τ ,π,η), for i ∈ Ī, it holds that
evα(X i) ∈ Fnq0 , and thus, 〈{evα(X i), i ∈ Ī}〉q0 ⊆ T RSk(α, τ ,π,η) ∩ Fnq0 . To prove
the converse, let f ∈ Pk(τ ,π,η), and let c = evα(f) ∈ T RSk(α, τ ,π,η)∩ Fnq0 . Since
deg(f) < n for valid parameters, it follows that the polynomial f is in Fq0 [X], see
Lemma 4.2, and Fq0 [X] ∩ Pk(τ ,π,η) = 〈{X i, i ∈ Ī}〉q0 . �

The previous proposition implies that the subfield subcode

Csub := T RSk(α, τ ,π,η) ∩ Fnq0

is a subcode of the RS code RSk(α). Let C ′ denote a random subcode of RSk(α).
In [17], Wieschebrink showed that the square code C ′(?2) is an RS code with high
probability and the Sidelnikov–Shestakov attack can be applied to C ′(?2) to recover
the code locators [15]. In the following proposition, we show that for all practical
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parameters, the square code C(?2)
sub is an RS code and the Sidelnikov–Shestakov attack

can be mounted.

Proposition 4.4. Let q0, n, k, `T, α, τ , π, and η be chosen according to the pa-
rameter restrictions shown in Section 4.1.1, let Ī = [0 :k − 1] \ {π1, . . . , π`T}, and let
Csub = T RSk(α, τ ,π,η) ∩ Fnq0. If `T ≤ 1

2(
√
n− 3), then it holds that

(Csub)(?2) = RS2k−1(α).

Proof. By definition,

(Csub)(?2) = 〈{evα(X i) ? evα(Xj) : i, j ∈ Ī}〉q0 = 〈{evα(X i) : i ∈ Ī + Ī}〉q0 .

It is left to show that Ī + Ī = [0 : 2k − 2]. For valid parameters, it holds that
2k − 1 ≤ n − 3, Ī = Ī1 ∪ Ī2, where Ī1 := [0 : rT − 1], Ī2 := [rT + `T : k − 1], and
rT = d n+1

`T+2e+ 2. Since {0}+ Ī1 = [0:rT − 1], we have Ī1 + Ī2 = [rT + `T :k + rT − 2],
{k − 1}+ Ī2 = [k + rT + `T − 1:2k − 2], and

[0 :rT − 1] ∪ [rT + `T :k + rT − 2] ∪ [k + rT + `T − 1:2k − 2]
= [0 :2k − 2] \

(
[rT :rT + `T − 1] ∪ [k + rT − 1:k + rT + `T − 2]

)
is a subset of Ī+ Ī. Furthermore, if `T ≤ rT−1, then [rT :rT +`T−1] ⊆ Ī1 + Ī1, where
`T ≤ rT − 1 is always fulfilled for valid parameters since `T <

√
n − 3 and rT >

√
n.

From the assumption `T ≤ 1
2(
√
n− 3) follows that `T ≤ k−rT−1

2 due to the constraints
on valid parameters. The latter inequality implies that 2(rT +`T) ≤ 2rT +k−rT−1 =
k+ rT− 1, and therefore, we have [k+ rT− 1:k+ rT + `T− 2] ⊆ [2rT + 2`T :2k− 2] =
Ī2 + Ī2. �

Note that the assumption `T ≤ 1
2(
√
n − 3) is not restrictive in practice, as the

decryption algorithm is only feasible for `T � log n.
For valid parameters, we have 2k − 1 ≤ n − 3, and thus, the Sidelnikov–Shestakov

attack can be mounted on C(?2)
sub ⊆ Fnq0 . The attack returns a vector of code locators

α′ ∈ Fq0 which is an affine transformation of the secret locators α, see Theorem 2.1.
Stated differently, it holds that α′ = aα + b1 for some a ∈ F∗q0 and some b ∈ Fq0 ,
where 1 := [1, . . . , 1] ∈ Fnq0 .
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Second Step: From an Affine to a Linear Transformation of the Secret Locators

According to Lemma 4.1, if α̂ = aα for a non-zero a ∈ Fq0 , then a vector η̂ exists
such that T RSk(α, τ ,π,η) = T RSk(α̂, τ ,π, η̂). Thus, given α′ = aα+ b1, we need
to search for a b ∈ Fq0 such that α′ − b1 = aα. As q0 is small, this search can be
conducted as follows: For a given vector α′, repeatedly sample b from Fq0 and compute
the code

Ab := 〈{evα′−b1(X i) : i ∈ Ī}〉q0

until Ab ⊆ Cpub is fulfilled. If Ab ⊆ Cpub holds, then α′ − b1 = α̂.

Third Step: Recovery of a Valid Pair (α̂, η̂)

Using the previous steps, we can determine a vector α̂ ∈ Fnq0 whose entries can be used
as code locators for the public TRS code. With the following result, we can obtain a
vector η̂ ∈ Fnq such that T RSk(α, τ ,π,η) = T RSk(α̂, τ ,π, η̂).

Lemma 4.5. Let 1 ≤ `T, and let P (X) = ∑k−1
i=0 uiX

i+∑`T
j=1 ηjuπjX

k−1+τj ∈ Pk(τ ,π,η)
such that uπj 6= 0. Furthermore, let p̂πj and p̂k−1+τj be the coefficients of the mono-
mials Xπj and Xk−1+τj in the polynomial P̂ (X) = P (a−1X), respectively. Then, it
follows that

η̂j = ηja
−(k−1+τj−πj) =

p̂k−1+τj

p̂πj
.

Proof. The statement holds since

P̂ (X) = P (a−1X)

=
k−1∑
i=0

uia
−iX i +

`T∑
j=1

ηjuπja
−(k−1+τj)Xk−1+τj

=
k−1∑
i=0

ûiX
i +

`T∑
j=1

η̂jûπjX
k−1+τj ,

where ûi = uia
−i for i ∈ [0 :k − 1] and η̂j = ηja

−(k−1+τj−πj) for j ∈ [1 :`T]. �

Lemma 4.5 implies that we can determine a vector of coefficients η̂ such that

T RSk(α, τ ,π,η) = T RSk(α̂, τ ,π, η̂)
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as follows: We randomly sample a codeword c = evα(P ) from Cpub, and we interpolate
this codeword c = evα̂(P̂ ) as a polynomial evaluated over the code locators α̂. Since
P̂ (X) = P (a−1X), we obtain the coefficient η̂j for each non-zero coefficient uπj of P .
Note that if c is sampled uniformly from Cpub, then the probability that uj = 0 is

approximately 1/q. Since `T � q, a random codeword c leads to the recovery of the
whole vector η̂ with high probability.

Final Step: Recovery of an Alternative Private Key (Ŝ, α̂, η̂)

After we have obtained α̂ and η̂, we choose the matrix Ŝ such that ŜGα̂,τ ,π,η̂ = Gpub.
It follows that (Ŝ, α̂, η̂) can be used as a valid private key in DecryptTRS to retrieve
any secret plaintext m from its ciphertext y.

4.1.3 Analysis of the Key-Recovery Attack

The described attack is summarized in Algorithm 11, where the definitions of the
applied functions are given in Table 4.2.

Theorem 4.6. Let α, τ , π, and η be defined as in Section 4.1.1, and let Gpub ∈
Fk×nq be a generator matrix of a TRS code Cpub = T RSk(α, τ ,π,η) ⊆ Fnq . Then,
Algorithm 11 determines a tuple (Ŝ, α̂, η̂) fromGpub such that ŜGα̂,τ ,π,η̂ is a generator
matrix of Cpub in O(max{q0, 2`T , n}n3) operations in Fq.

Proof. The correctness of Algorithm 11 was already proven in Section 4.1.2, and there-
fore, it is left to prove its complexity. For that, we analyze the complexity of each
line.

• Line 1 requires O(n2(k+n)) ⊆ O(n3) operations in Fq and O(n2(2`T(n− k) +n)) ⊆
O(2`Tn3) operations in Fq0 .

• Line 2 requires to find a basis of 〈{(Gsub){i},: ? (Gsub){j},:, i, j ∈ [1 : dim Csub]}〉q0 .
Such a basis can be determined in an iterative fashion, where updating the basis
with a new element is in O(n3) operations in Fq0 and needs to be executed O(n)
times. Furthermore, rejecting candidates is in O(n2) operations in Fq0 and needs to
be executed O(n2) times.

• Line 3 requires O((2k − 2)4 + (2k − 2)n) ⊆ O(n4) operations in Fq0 [15].
• Line 4 to Line 8 are in O(q0n

3) operations in Fq0 , as the computation of α̂ ∈ Fnq0 needs
O(n) operations in Fq0 , building G′ ∈ F(k−`T)×n

q0 requires O((k− `T)n) operations in
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Algorithm 11: Key-Recovery Attack on TRS-based McEliece
Input : Public key Gpub ∈ Fk×nq

Output: Private key (Ŝ, α̂, η̂) ∈ Fk×kq × Fnq0 × F`Tq

Step 1: Determine an affine transformation of the secret locators
1 Gsub ← SubfieldSubcode(Gpub) ∈ F(k−`T)×n

q0

2 Gsq ← Square(Gsub) ∈ F(2k−1)×n
q0

3 α′ ← SidelShest(Gsq) ∈ Fnq0

Step 2: Determine a linear transformation of the secret locators
4 for b ∈ Fq0 do
5 α̂← (α′1 − b, . . . , α′n − b) ∈ Fnq0

6 G′ ← GenSub(α̂) ∈ F(k−`T)×n
q0

7 if G′(G⊥sub)> = 0 then
8 break

Step 3: Determine η̂
9 J ← [1 :`T]

10 for i ∈ [1 :k] do
11 ri ← row i of Gpub
12 P (X)← Interpolate(α̂, ri) ∈ Fnq
13 for j ∈ J do
14 if pπj 6= 0 then
15 η̂j ←

pk−1+τj
pπj

∈ Fq
16 J ← J \ {j}

17 if J = ∅ then
18 break

Step 4: Determine Ŝ
19 ĜTRS ← GTRS(α̂, η̂) ∈ Fk×nq

20 Ŝ ← SolveLeft(ĜTRS,Gpub) ∈ Fk×kq

21 return Private key (Ŝ, α̂, η̂)

Fq0 , the matrix multiplication G′(G⊥sub)> is in O((k − `T)(n − k + `T)n) ⊆ O(n3)
operations in Fq0 , and in the worst case, these computations have to be performed
q0 times.

• Line 10 to Line 18 are in O(`Tn
3) operations in Fq since a single interpolation is in
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Table 4.2: List of functions used in Algorithm 11.
Function Description

SubfieldSubcode For a generator matrix of Cpub, it outputs a generator
matrix of the subfield subcode of Cpub.

Square For a generator matrix of Csub, it outputs a generator
matrix of the code C(?2)

sub .
SidelShest For a generator matrix G of an RS code, it outputs a

vector of locators α′ describing the code.
GenSub For a vector a = [a1, . . . , an] ∈ Fnq0 , it outputs a ma-

trix A ∈ F(k−`T)×n
q0 whose rows are [aj1, . . . , ajn], for

j ∈ I = [0:k − 1] \ {π1, . . . , π`T}.
Interpolate For vectors a, b ∈ Fnq , it outputs P (X) such that

deg(P ) < n and P (ai) = bi, for i ∈ [1 :n].
GTRS For vectors α̂ and η̂, it outputs the generator matrix

Gα̂,τ ,π,η̂ of the corresponding TRS code.
SolveLeft For matricesA andB, whereA andB have the same

rowspace, it outputs a matrix D such that DA = B.

O(n2), and in the worst case, `Tk ≤ `Tn interpolations have to be performed.
• Line 19 is in O(kn) ⊆ O(n2) operations in Fq.
• Line 20 can be performed by reducing the matrix

[
Ĝ
>
TRSG

>
pub

]
∈ Fn×2k

q to row
echelon form and is therefore in O(n2(2k)) ⊆ O(n3) operations in Fq. �

Note that in order to obtain moderate key sizes and to ensure an acceptable de-
cryption time, the parameters `T and q0 = q1/2`T need to be small, e.g., `T = 1 and
q0 = n + 1 = 28 as proposed in [84]. Therefore, Algorithm 11 has a complexity in
O(n4) for practical parameters.
We have implemented our attack in the computer algebra system SageMath [191].

Although the implementation is not optimized, it is capable of recovering a valid
private key within a few minutes for the proposed parameters, see Table 4.3.
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Table 4.3: Average runtime of Algorithm 11 required on an Intel(R) Core(TM) i7-
7600U CPU @ 2.80GHz. The first row refers to parameters suggested by the
designers of the system [84]. The remaining security levels were determined
according to the formulae given in [84].

q0 n k `T wtH(e) Claimed
security level

Runtime of
Algorithm 11

28 255 117 1 83 128 bits 133 seconds
28 255 117 2 83 128 bits 141 seconds
29 511 200 3 192 192 bits 2260 seconds
29 511 170 3 217 256 bits 1532 seconds
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4.2 A Power Side-Channel Attack on the HQC KEM
In this section, we derive a power-based side-channel chosen-chiphertext attack on the
HQC encryption scheme and on the HQC KEM [183]. For this purpose, we first review
the definition of the systems and the underlying security assumptions.

4.2.1 The HQC Encryption Scheme

The HQC scheme relies on two distinct codes. It is based on a public code CHQC ⊆ Fn2
of dimension k and length n, where an efficient encoding algorithm EncHQC and
an efficient decoding algorithm DecHQC are public knowledge. The second code has
dimension n, length 2n, and a parity-check matrix [I, rot(h)] ∈ Fn×2n

2 , where I ∈ Fn×n2

denotes the identity matrix and h is uniformly sampled from Fn2 . Contrary to CHQC,
one assumes that no party knows an efficient decoding algorithm for the latter code.
In particular, an adversary must not possess an efficient algorithm since otherwise
the HQC system would be insecure. Note that an efficient decoding of the code with
parity-check matrix [I, rot(h)] ∈ Fn×2n

2 is neither needed in the encryption nor in the
decryption algorithm of HQC.
In the following, we state the IND-CPA-secure variant of the HQC public-key en-

cryption scheme ΠEnc
HQC as it was submitted to the second round of the NIST post-

quantum cryptography standardization [183]. The proposal is defined by

ΠEnc
HQC := (KeyGenHQC, EncryptHQC, DecryptHQC),

where the algorithms KeyGenHQC, EncryptHQC, and DecryptHQC are given in Algo-
rithms 12 to 14. The algorithms encode in and decode in CHQC using the functions
EncHQC and DecHQC, which are formally defined in Section 4.2.2. The parame-
ter sets for the security levels 128 bit, 192 bit, and 256 bit are shown in Table 4.4.
In [192], Hofheinz et al. present a generic transformation of IND-CPA-secure encryp-
tion schemes into IND-CCA2-secure KEMs. This transformation is utilized in the
HQC proposal and leads to the encapsulation and decapsulation algorithms of the
HQC KEM described in [183]. Note that our attack exploits side-channel information
that is leaked in the algorithm DecryptHQC. Since the execution of DecryptHQC is the
first step in the decapsulation algorithm of the KEM variant of HQC, it suffices to
derive the attack based on the IND-CPA-secure encryption scheme of HQC. The pro-
posed attack can then be mounted in the same way on the IND-CCA2-secure KEM
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variant of HQC.

Table 4.4: Parameter sets for HQC presented in [183].

Instance n1 n2 n k m wy wr we δ

HQC-128 766 31 23869 256 10 67 77 77 57
HQC-192 766 59 45197 256 10 101 117 117 57
HQC-256 796 87 69259 256 10 133 153 153 60

Algorithm 12: KeyGenHQC

Input : Non-negative integers n1, n2, n, k, δ, wy, wr, we
Output: Private key (x,y) ∈ Fn2 × Fn2

Public key (h, s) ∈ Fn2 × Fn2
1 Choose the [n, k]F2 code CHQC and make the code public
2 h

$←− Fn2
3 x

$←− {a ∈ Fn2 : wtH(a) = wy}
4 y

$←− {a ∈ Fn2 : wtH(a) = wy}
5 s← x+ hy ∈ Fn2
6 return Private key (x,y), Public key (h, s)

Algorithm 13: EncryptHQC

Input : Non-negative integers n, k, δ, wy, wr, we
Plaintext vector m ∈ Fk2
Public key (h, s) ∈ Fn2 × Fn2

Output: Ciphertext (u,v) ∈ Fn2 × Fn2
1 e′

$←− {a ∈ Fn2 : wtH(a) = we}
2 r1

$←− {a ∈ Fn2 : wtH(a) = wr}
3 r2

$←− {a ∈ Fn2 : wtH(a) = wr}
4 u← r1 + hr2 ∈ Fn2
5 v ← EncHQC(CHQC,m) + sr2 + e′ ∈ Fn2
6 return Ciphertext (u,v)
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Algorithm 14: DecryptHQC

Input : Ciphertext (u,v) ∈ Fn2 × Fn2
Private key (x,y) ∈ Fn2 × Fn2

Output: Plaintext vector m ∈ Fk2
1 v′ ← v − uy ∈ Fn2
2 m← DecHQC(CHQC,v

′) ∈ Fk2
3 return Plaintext vector m

4.2.2 The Error-Correcting Code CHQC

In the original proposal, the code CHQC is chosen as a product code of a shortened Bose–
Chaudhuri–Hocquenghem (BCH) code C1, which has a generator matrix G1 ∈ Fk×n1

2

and an error correction capability δ, and a repetition code C2 of length n2. Note that
the HQC proposal was recently modified and now comprises of an additional variant
called HQC-RMRS. The aforementioned modification deploys a code concatenation
of a Reed–Muller code and an RS code for the error-correcting code CHQC. This
modification does not result from security concerns regarding the original HQC scheme
but allows one to reduce the parameter sizes due to an improved error correction
capability of CHQC. Attacking the new variant is beyond the scope of this dissertation,
and therefore, we consider only the original proposal in the following.

Encoding algorithm

To encode information vectors into codewords of CHQC, the mapping

EncHQC : Fk2 → Fn2 ,

m 7→ [m′1, . . . ,m′1︸ ︷︷ ︸
n2 times

,m′2, . . . ,m
′
2︸ ︷︷ ︸

n2 times

,m′3, . . . ,m
′
n1 , 0, 0, . . . , 0︸ ︷︷ ︸

n− n1n2 times

]

is applied, where m′ = [m′1, . . . ,m′n1 ] = mG1, and G1 ∈ Fk×n1
2 is a generator matrix

of the shortened BCH code C1.

Decoding algorithm

Given the vector v′ = [v′1, . . . ,v′n1 ,v
′
n1+1] ∈ Fn2 , where v′1, . . . ,v′n1 ∈ Fn2

2 and v′n1+1 ∈
Fn−n1n2

2 , the applied decoding routine DecHQC : Fn2 → Fk2 consists of two consecutive
algorithms. In the first algorithm, the vectors v′1, . . . ,v′n1 are decoded separately in the
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repetition code C2 to a vector ṽ = [ṽ1, . . . , ṽn1 ] ∈ Fn1
2 , where ṽi is 1 if wtH(v′i) ≥

⌈
n2
2

⌉
and 0 otherwise. In the second algorithm, the vector ṽ is decoded in the BCH code C1

to the vector m ∈ Fk2. In the proposal, a key equation based approach is applied for
the decoding of C1. In this algorithm, the syndromes are computed by the transpose of
the additive fast Fourier transformation [193], the error locator polynomial is obtained
by a modification of Berlekamp’s algorithm, and the error values are determined with
an additive fast Fourier transformation.

4.2.3 The Security of HQC

In [183, Thm. 4.1], it is shown that the public-key encryption version of HQC is
IND-CPA secure under the assumption that both the problem Decisional 2-Quasi-
Cyclic Hamming Syndrome Decoding (Dec2QCSDH) [183, Def. 2.1.15] and the problem
Decisional 3-Quasi-Cyclic Hamming Syndrome Decoding [183, Def. 2.1.17] are hard.
For our attack, it is crucial to observe that retrieving the private key (x,y) from the
public key (h, s) is equal to solving an instance of the search version of the former
problem, where we denote the search version by Sea2QCSDH. This can be seen by

s = x+ hy = [x,y]

 I

rot(h)>

 = eH>,

where e := [x,y] ∈ F2n
2 with wtH(x) = wtH(y) = wy and H := [I, rot(h)] ∈ Fn×2n

2 . It
follows that the vector s can be interpreted as the syndrome of the error vector e and
the parity-check matrix H .
The Sea2QCSDH problem can be solved by ISD algorithms, e.g., Prange’s ISD al-

gorithm [134] or one of its improvements (for instance [160, 161, 194–196]). The idea
of Prange’s ISD algorithm is to guess an error-free information set, see Section 2.2.4.
For an error weight wtH(e) = 2wy, the probability that a set of cardinality n which
is drawn uniformly at random from [1 : 2n] is an error-free information set is approx-
imately

(
n

2wy

)/(
2n

2wy

)
. To check whether a set of indices is an error-free information

set has a complexity in O((2n)3). It follows that the average complexity of Prange’s
algorithm for solving the Sea2QCSDH problem is approximately (2n)3

(
2n

2wy

)/(
n

2wy

)
, cf.

Section 2.2.4.
The considered power side-channel attack determines information about the support

of y, which can be incorporated in ISD algorithms to reduce their complexity. We later
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state the exact information that we retrieve by the side-channel attack, but for now,
it suffices to consider the following generalized version of the Sea2QCSDH problem.

Problem 4.1 (Search 2 Hamming Syndrome Decoding (Sea2SDH) Problem).
Given: • Parity-check matrix H ∈ F(n+n′−k′)×(n+n′)

2 of an [n+ n′, k′]F2 code C
• Non-negative integers n, n′, wy, w′

• Syndrome vector s = [x,y]H>∈Fn+n′−k′
2 , where x∈Fn2 , wtH(x)=wy,

y ∈ Fn′2 , and wtH(y) = w′

Objective: Search for an e′ ∈ Fn+n′
2 such that wtH(e′) ≤ wy + w′ and s = e′H>.

To solve the Sea2SDH problem, we propose modifications of Prange’s algorithm [134],
Lee and Brickell’s algorithm [160], and Stern’s algorithm [161] in Algorithm 15, 16,
and 17, respectively.
As in the algorithm proposed by Prange, the goal of Algorithm 15 is to obtain an

error-free information set. We keep the part of the algorithm by Prange which tests
whether a chosen set is an error-free information set, but we modify the method of
choosing the indices. In the following theorem, we prove that Algorithm 15 finds a
solution to the Sea2SDH problem and derive the complexity of the algorithm.

Algorithm 15: Modified Prange Algorithm
Input : Parity-check matrix H ∈ F(n+n′−k′)×(n+n′)

2
Non-negative integers n, n′, wy, w′
Syndrome vector s ∈ Fn+n′−k′

2
Non-negative integer k1

Output: Vector e′ ∈ Fn+n′
2

1 e′ ← 0 ∈ Fn+n′
2

2 while wtH(e′) > wy + w′ ∨ s 6= e′H> do
3 X1

$←− {S ⊆ [1 :n] : |S| = k1}
4 X2

$←− {S ⊆ [n+ 1:n+ n′] : |S| = k′ − k1}
5 e′ ← Iteration of the original Prange algorithm w.r.t. the set X1 ∪ X2

6 return e′

Theorem 4.7. Let k1 be a non-negative integer such that k′ − n′ ≤ k1 ≤ min{k′, n},
and suppose that there is only one solution to the considered instance of the Sea2SDH

problem. Then, Algorithm 15 solves the Sea2SDH problem with, on average, approxi-

97



4 Attacks on Hamming-Based Encryption Schemes

mately

WModPr = (n+ n′)3

(
n
wy

)(
n′

w′

)
(
n−k1
wy

)(
n′−k′+k1

w′

)
operations in F2.

Proof. Instead of drawing k′ indices uniformly at random from [1 : n + n′] as in the
original algorithm by Prange, Algorithm 15 draws k1 indices uniformly at random
from [1 :n] and k2 indices uniformly at random from [n + 1 :n + n′], where k1 + k2 =
k′. Then, the probability of drawing an error-free information set is approximately(
n−k1
wy

)/(
n
wy

)
·
(
n′−k2
w′

)/(
n′

w′

)
, and it follows that the complexity of this modified algorithm

is given by

WModPr = (n+ n′)3

(
n
wy

)(
n′

w′

)
(
n−k1
wy

)(
n′−k2
w′

) = (n+ n′)3

(
n
wy

)(
n′

w′

)
(
n−k1
wy

)(
n′−k′+k1

w′

) . �

Algorithm 16: Modified Lee–Brickell Algorithm
Input : Parity-check matrix H ∈ F(n+n′−k′)×(n+n′)

2
Non-negative integers n, n′, wy, w′
Syndrome vector s ∈ Fn+n′−k′

2
Non-negative integers k1, pLB

Output: Vector e′ ∈ Fn+n′
2

1 e′ ← 0 ∈ Fn+n′
2

2 while wtH(e′) > wy + w′ ∨ s 6= e′H> do
3 X1

$←− {S ⊆ [1 :n] : |S| = k1}
4 X2

$←− {S ⊆ [n+ 1:n+ n′] : |S| = k′ − k1}
5 e′ ← Iteration of the original Lee–Brickell algorithm w.r.t. the set X1 ∪ X2

and the parameter pLB

6 return e′

Furthermore, the Lee–Brickell algorithm [160] can also be used to solve the aforemen-
tioned Sea2SDH problem. This algorithm is similar to Prange’s algorithm but allows
pLB errors in the drawn information set. This relaxation implies that the probability of
drawing such an information set is increased compared to Prange’s algorithm, but the
complexity of one iteration is also slightly higher [160]. We modify the Lee–Brickell
algorithm in the same way as Prange’s algorithm, which means that we keep the part
of the algorithm by Lee–Brickell which checks whether a chosen set is of the desired
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form, but we change the method of sampling the indices. In the next theorem, we
prove the correctness of the modified Lee–Brickell algorithm and state its complexity.

Theorem 4.8. Let k1 and pLB be non-negative integers such that k′ − n′ ≤ k1 ≤
min{k′, n} and pLB ≤ w′ + wy, and suppose that there is only one solution to the
considered instance of the Sea2SDH problem. Then, Algorithm 16 solves the Sea2SDH

problem with, on average, approximately

WModLB := WLB,Iter

PLB

operations in F2, where

WLB,Iter := (n+ n′)3 + (n+ n′ − k′)(pLB + 1)
(
k′

pLB

)

and

PLB :=
∑
a∈N2

0
a1≤wy
a2≤w′

a1+a2=pLB

(
k1
a1

)(
n−k1
wy−a1

)
(
n
wy

)
(
k′−k1
a2

)(
n′−k′+k1
w′−a2

)
(
n′

w′

) .

Proof. Instead of drawing k′ indices uniformly at random from [1 : n + n′] as in the
original algorithm by Lee and Brickell, Algorithm 16 draws k1 indices uniformly at
random from [1 : n] and k2 indices uniformly at random from [n + 1 : n + n′]. As we
allow exactly pLB errors among these k1 + k2 = k′ positions, the success probability of
drawing a set in the desired form is approximately

PLB :=
∑
a∈N2

0
a1≤wy
a2≤w′

a1+a2=pLB

(
k1
a1

)(
n−k1
wy−a1

)
(
n
wy

)
(
k2
a2

)(
n′−k2
w′−a2

)
(
n′

w′

) =
∑
a∈N2

0
a1≤wy
a2≤w′

a1+a2=pLB

(
k1
a1

)(
n−k1
wy−a1

)
(
n
wy

)
(
k′−k1
a2

)(
n′−k′+k1
w′−a2

)
(
n′

w′

) .

As we adapt the original Lee–Brickell algorithm only by changing the selection of the
information set, the cost per iteration

WLB,Iter := (n+ n′)3 + (n+ n′ − k′)(pLB + 1)
(
k′

pLB

)

99



4 Attacks on Hamming-Based Encryption Schemes

stays the same [197, Thm. 2.7], and we get a complexity of

WModLB := WLB,Iter

PLB

operations in F2. �

Note that PLB can be computed in polynomial time [155].

Algorithm 17: Modified Stern Algorithm
Input : Parity-check matrix H ∈ F(n+n′−k′)×(n+n′)

2
Non-negative integers n, n′, wy, w′
Syndrome vector s ∈ Fn+n′−k′

2
Non-negative integers k1, pLB, νSt,1, νSt,2

Output: Vector e′ ∈ Fn+n′
2

1 e′ ← 0 ∈ Fn+n′
2

2 while wtH(e′) > wy + w′ ∨ s 6= e′H> do
3 X1

$←− {S ⊆ [1 :n] : |S| = bk1/2c}
4 Y1

$←− {S ⊆ [1 :n] \ X1 : |S| = dk1/2e}
5 Z1

$←− {S ⊆ [1 :n] \ (X1 ∪ Y1) : |S| = νSt,1}
6 X2

$←− {S ⊆ [n+ 1:n+ n′] : |S| = b(k′ − k1)/2c}
7 Y2

$←− {S ⊆ [n+ 1:n+ n′] \ X2 : |S| = d(k′ − k1)/2e}
8 Z2

$←− {S ⊆ [n+ 1:n+ n′] \ (X2 ∪ Y2) : |S| = νSt,2}
9 e′ ← Iteration of the original Stern algorithm w.r.t. the sets X1 ∪ X2,

Y1 ∪ Y2, Z1 ∪ Z2 and the parameters pLB and νSt = νSt,1 + νSt,2

10 return e′

Another algorithm to solve the Sea2SDH problem is Stern’s algorithm [161]. This
algorithm uses two parameters pSt and νSt to draw an information set. Again, there
can be some errors in the information set, but now, the error positions outside the
information set are restricted. Stern’s algorithm divides the information set into two
equal-size subsets X and Y and looks for vectors of Hamming weight pSt at the indices
in X , of Hamming weight pSt at the indices in Y , and of Hamming weight 0 on a
fixed uniform random set Z of νSt positions outside the information set. As before,
we keep the part of the algorithm by Stern which examines whether a chosen set is of
the desired form, but we change the way of sampling the indices of the set.
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Theorem 4.9. Let k1, pLB, νSt,1, and νSt,2 be non-negative integers such that k′ −
n′ ≤ k1 ≤ min{k′, n}, pLB ≤ wy + w′, νSt,1 ≤ n − k1, and νSt,2 ≤ n − k′ + k1.
Furthermore, suppose that there is only one solution to the considered instance of the
Sea2SDH problem. Then, Algorithm 17 solves the Sea2SDH problem with, on average,
approximately

WModSt := WSt,Iter

PSt

operations in F2, where

WSt,Iter := (n+ n′)3 + (νSt,1 + νSt,2)
( pSt∑
i=1

(
M1

i

)
+

pSt∑
i=1

(
M2

i

)
− k′ +

(
M2

pSt

))

+ 21−νSt,1−νSt,2

(
M1

pSt

)(
M2

pSt

)
(wy + w′ − 2pSt + 1)(2pSt + 1),

the quantities M1 = bk1/2c+ b(k′ − k1)/2c and M2 = dk1/2e+ d(k′ − k1)/2e, and

PSt :=
∑
a∈N2

0
a1≤wy
a2≤w′

a1+a2=pSt

∑
b∈N2

0
b1≤wy−a1
b2≤w′−a2
b1+b2=pSt

(
bk1/2c
a1

)(
dk1/2e
b1

)(
n−k1−νSt,1
wy−a1−b1

)
(
n
wy

)
(
b(k′−k1)/2c

a2

)(
d(k′−k1)/2e

b2

)(
n′−k′+k1−νSt,2

w′−a2−b2

)
(
n′

w′

) .

Proof. Instead of drawing k′ indices uniformly at random from [1 : n + n′] as in the
original algorithm by Stern, Algorithm 17 draws

X1
$←− {S ⊆ [1 :n] : |S| = bk1/2c}

Y1
$←− {S ⊆ [1 :n] \ X1 : |S| = dk1/2e}

Z1
$←− {S ⊆ [1 :n] \ (X1 ∪ Y1) : |S| = νSt,1}

X2
$←− {S ⊆ [n+ 1:n+ n′] : |S| = bk2/2c}

Y2
$←− {S ⊆ [n+ 1:n+ n′] \ X2 : |S| = dk2/2e}

Z2
$←− {S ⊆ [n+ 1:n+ n′] \ (X2 ∪ Y2) : |S| = νSt,2},

where k1 +k2 = k′, until there are exactly pSt error positions in X1∪X2 and in Y1∪Y2

and no error positions in Z1 and Z2. The probability that an iteration fulfills this
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condition is approximately given by

PSt =
∑
a∈N2

0
a1≤wy
a2≤w′

a1+a2=pSt

∑
b∈N2

0
b1≤wy−a1
b2≤w′−a2
b1+b2=pSt

(
bk1/2c
a1

)(
dk1/2e
b1

)(
n−k1−νSt,1
wy−a1−b1

)
(
n
wy

)
(
bk2/2c
a2

)(
dk2/2e
b2

)(
n′−k2−νSt,2
w′−a2−b2

)
(
n′

w′

)

=
∑
a∈N2

0
a1≤wy
a2≤w′

a1+a2=pSt

∑
b∈N2

0
b1≤wy−a1
b2≤w′−a2
b1+b2=pSt

(
bk1/2c
a1

)(
dk1/2e
b1

)(
n−k1−νSt,1
wy−a1−b1

)
(
n
wy

)
(
b(k′−k1)/2c

a2

)(
d(k′−k1)/2e

b2

)(
n′−k′+k1−νSt,2

w′−a2−b2

)
(
n′

w′

) .

As we modified Stern’s original algorithm only by adapting the sampling of the infor-
mation set, the complexity per iteration [197, Thm. 2.8] remains equal to

WSt,Iter := (n+ n′)3 + (νSt,1 + νSt,2)
( pSt∑
i=1

(
M1

i

)
+

pSt∑
i=1

(
M2

i

)
− k′ +

(
M2

pSt

))

+ 21−νSt,1−νSt,2

(
M1

pSt

)(
M2

pSt

)
(wy + w′ − 2pSt + 1)(2pSt + 1),

where M1 = bk1/2c + b(k′ − k1)/2c and M2 = dk1/2e + d(k′ − k1)/2e, which gives an
overall complexity of

WModSt := WSt,Iter

PSt

operations in F2. �

In [190], the proposed modifications to Prange’s, Lee and Brickell’s, and Stern’s
algorithms are generalized to cases in which the Hamming weight of more than two
error blocks is known.

4.2.4 A Side-Channel Attack on HQC

In this section, we derive Algorithm 18, which is an attack that exploits side-channel
information to retrieve the private key (x,y). In this attack, the vector y is decom-
posed into y =

[
y(1),y(2)

]
∈ Fn2 , where y(1) ∈ Fn1n2

2 and y(2) ∈ Fn−n1n2
2 . We first

determine the vector y(1) with high probability given a decoding oracle ODec
(x,y). This

oracle is defined in Definition 4.1, and a technique of how to build ODec
(x,y) through a

power side-channel is shown in [187] and [189, Sec. 4]. In case y(1) was successfully
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recovered, we retrieve y(2) using linear algebra. If the support of y(1) was only partly
recovered, we run a modified ISD algorithm.

Algorithm 18: Power Side-Channel Attack on HQC
Input : Non-negative integers n1, n2, n, wy

Public key (h, s) ∈ Fn2 × Fn2
Oracle access ODec

(x,y)
Output: Private key (x,y) ∈ Fn2 × Fn2 or failure ⊥

1 Ŝy(1) ← {}
2 for i ∈ [1 :n1] do
3 S̃yi ← FindSuperSupport

(
i, (n1, n2, n),ODec

(x,y)

)
(see Alg. 19)

4 if |S̃yi | > 1 then
5 Ŝyi ← FindSupport

(
i, S̃yi , (n1, n2, n),ODec

(x,y)

)
(see Alg. 20)

6 Ŝy(1) ← Ŝy(1) ∪
(
{(i− 1)n2}+ Ŝyi

)
7 if |Ŝy(1) | < wy then
8 Ŝy ← Ŝy(1) ∪ FindRemainingSupport

(
Ŝy(1) , (n1, n2, n, wy), (h, s)

)
(see Alg.

21)
9 else

10 Ŝy ← Ŝy(1)

11 ŷ ← Vector in Fn2 with support Ŝy
12 x̂← s− ŷh
13 if wtH(x̂) = wy ∧ wtH(ŷ) = wy ∧ x̂+ ŷh = s then
14 return (x̂, ŷ)
15 else
16 return ⊥

The main statement of this section is Theorem 4.13, which proves the success prob-
ability of Algorithm 18. Since the proof of this theorem is rather long, we provide
some intermediate statements before.

Distribution of the Support of y

The success of the attack depends on the positions of the non-zero entries in the private
vector y. To analyze the support of y, we decompose the vector into

y =
[
y

(1)
1 , . . . ,y(1)

n1 ,y
(2)
]
∈ Fn2 ,
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Table 4.5: Estimated probabilities that y(1)
1 , . . . ,y(1)

n1 have a Hamming weight of at
most 1, 2, or 3 for the parameter sets given in Table 4.4.

max
j′∈[1:n1]

{
wtH

(
y

(1)
j′

)}
HQC-128 HQC-192 HQC-256

1 5.59% 0.11% 0.00%
2 93.20% 77.98% 58.99%
3 99.86% 99.25% 97.99%

where y(1)
1 , . . . ,y(1)

n1 ∈ Fn2
2 , and y(2) ∈ Fn−n1n2

2 . From the parameters shown in Ta-
ble 4.4, we conclude that y is a sparse vector, and the vectors y(1)

1 , . . . ,y(1)
n1 ,y

(2)

have a Hamming weight close to zero with high probability. We performed Monte-
Carlo simulations by generating 107 private keys to estimate the weight distribution
of y(1)

1 , . . . ,y(1)
n1 , where we observed that less than 3% of the private keys have a vector

y
(1)
1 , . . . ,y(1)

n1 of Hamming weight of more than 3, see Table 4.5, and the probability that
wtH

(
y(2)

)
> 0 is approximately 29.23%, 0.69%, and 1.52% for HQC-128, HQC-192,

and HQC-256, respectively.

Retrieving a Super-Support of y(1) Using a Decoding Oracle

To retrieve y(1) =
[
y

(1)
1 , . . . ,y

(1)
n1

]
, we conduct a chosen-ciphertext attack that is based

on the decoding oracle ODec
(x,y).

Definition 4.1 (HQC Decoding Oracle ODec
(x,y)[187] [189, Sec. 4]). Let (x,y) and (h, s)

be a private and public key pair generated by KeyGenHQC, and let (u,v) be a ciphertext
computed by EncryptHQC using (h, s). If (u,v) is queried to ODec

(x,y), then ODec
(x,y) outputs

1 if the BCH decoder in DecryptHQC corrects an error for (u,v), (x,y), and (h, s),
and 0 otherwise.

Our proposed attack first determines a Hamming super-support of y(1)
i , for i ∈ [1 :

n1], using Algorithm 19.

Lemma 4.10. Let i be an element of [1 : n1] and n1, n2, n, k, wy, wr, we, and δ

be parameters chosen according to Table 4.4. Let (x,y) and (h, s) be a private and
public key pair generated by KeyGenHQC for the chosen parameters. Furthermore, let
ODec

(x,y) be defined as in Definition 4.1 and maxj′∈[1:n1]
{

wtH
(
y

(1)
j′

)}
≤ 2. Then, given

i, n1, n2, n, and oracle access ODec
(x,y), Algorithm 19 requires O(n) operations in F2 and

six queries to ODec
(x,y) in order to output a super-support of y(1)

i of size at most n2+1
2 .
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Algorithm 19: FindSuperSupport
Input : Non-negative integer i

Non-negative integers n1, n2, n
Oracle access ODec

(x,y)
Output: Super-support S̃yi

1 u← [1, 0, . . . , 0] ∈ Fn2
2 v = [v1, . . . ,vn1 ,vn1+1]← 0n ∈ Fn2 , where v1, . . . ,vn1 ∈ Fn2

2 and
vn1+1 ∈ Fn−n1n2

2
3 p← 06 ∈ F6

2
4 for ` ∈ [1 :6] do
5 vi ← Vector in Fn2

2 with support according to the pattern ` given in
Table 4.6

6 p` ← Output of ODec
(x,y) on the query (u,v)

7 S̃yi ← Super-support according to the row p in Table 4.7
8 return S̃yi

Table 4.6: Patterns of vi used in Algorithm 19 to determine a super-support of y(1)
i , for

i ∈ [1 :n1]. An illustration of the patterns is shown Figure 4.1 for n2 = 31.
Pattern suppH(vi)

1
[
1:
⌈
n2
2

⌉]
2

[⌈
n2
2

⌉
:n2

]
3

[⌈
n2
4

⌉
:
⌈
n2
2

⌉
− 1

]
∪
[⌈

3n2
4

⌉
:n2

]
4

[
1:
⌈
n2
4

⌉]
∪
[⌈

3n2
4

⌉
:n2

]
5

[⌈
n2
4

⌉
:
⌈
n2
2

⌉
− 1

]
∪
[⌈

n2
2

⌉
+ 1:

⌈
3n2

4

⌉]
6

[
1:
⌈
n2
4

⌉]
∪
[⌈

n2
2

⌉
+ 1:

⌈
3n2

4

⌉]
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Table 4.7: Mapping of p ∈ F6
2 to a super-support of y(1)

i , where p results from the
outputs of the oracle ODec

(x,y) queried on the six patterns of vi (see Table 4.6
and Figure 4.1). An asterisk indicates that the entry in p can be either 0
and 1.

p1 p2 p3 p4 p5 p6 Super-support S̃yi
1 1 1 1 1 1 { }
0 0 ∗ ∗ ∗ ∗

{
n2+1

2

}
0 1 ∗ ∗ ∗ ∗

[
1: n2+1

2

]
1 0 ∗ ∗ ∗ ∗

[
n2+1

2 :n2
]

1 1 0 1 1 1
[
n2+1

4 + 1: n2+1
2 − 1

]
∪
[

3(n2+1)
4 + 1:n2

]
1 1 1 0 1 1

[
1: n2+1

4 − 1
]
∪
[

3(n2+1)
4 + 1:n2

]
1 1 1 1 0 1

[
n2+1

4 + 1: n2+1
2 − 1

]
∪
[
n2+1

2 + 1: 3(n2+1)
4 − 1

]
1 1 1 1 1 0

[
1: n2+1

4 − 1
]
∪
[
n2+1

2 + 1: 3(n2+1)
4 − 1

]
1 1 0 0 1 1

[
n2+1

4

]
∪
[

3(n2+1)
4 + 1:n2

]
1 1 0 1 0 1

[
n2+1

4 + 1: n2+1
2 − 1

]
∪
[

3(n2+1)
4

]
1 1 1 0 1 0

[
1: n2+1

4 − 1
]
∪
[

3(n2+1)
4

]
1 1 1 1 0 0

[
n2+1

4

]
∪
[
n2+1

2 + 1: 3(n2+1)
4 − 1

]
1 1 0 0 0 0

[
n2+1

4

]
∪
[

3(n2+1)
4

]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1

2

3

4

5

6

Figure 4.1: Illustration of the patterns of vi ∈ Fn2
2 that are used to obtain a super-

support of y(1)
i for n2 = 31. The gray parts refer to non-zero entries, and

the white parts indicate zero entries.
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Proof. In Algorithm 19, the vector u ∈ Fn2 is chosen to [1, 0, . . . , 0] ∈ Fn2 such that the
input of the decoder of CHQC is equal to the first n1n2 entries of

v′ = [v′1, . . . ,v′n1 ,v
′
n1+1] =

[
v1 − y

(1)
1 , . . . ,vn1 − y

(1)
n1 ,vn1+1 − y

(2)] = v − y ∈ Fn2 ,

where v′j′ ,vj′ ,y
(1)
j′ ∈ Fn2

2 , for j′ ∈ [1 :n1], see Algorithm 14. Furthermore, the vectors
vj = 0n2 ∈ Fn2

2 , for j ∈ [1 :n1]\ i. Then, the oracle ODec
(x,y) is queried on the six different

patters of vi given in Table 4.6 (these patterns are illustrated in Figure 4.1). The
outputs of the oracle are then mapped to a set according to Table 4.7.
To see that the obtained set is a super-support of y(1)

i , recall that CHQC is chosen as
a product code of a length-n2 repetition code C2 and a length-n1 BCH code C1. The
algorithm used for decoding CHQC first decodes the vectors v′1, . . . ,v′n1 ∈ Fn2

2 separately
in the repetition codes to ṽ1, . . . , ṽn1 ∈ F2. By assumption, we have

max
j∈[1:n1]\{i}

{
wtH

(
v′j
)}

= max
j∈[1:n1]\{i}

{
wtH

(
vj − y(1)

j

)}
= max

j∈[1:n1]\{i}

{
wtH

(
y

(1)
j

)}
≤ 2,

and therefore, the output of the repetition decoder ṽj = 0, for j ∈ [1 : n1] \ i. The
outputs ṽ1, . . . , ṽn1 are then fed into the decoder of the BCH code C1. Since the
vector 0 ∈ Fn1

2 is a codeword of C1, and vectors of Hamming weight one3 are not
in C1, we conclude the following: The oracle ODec

(x,y) outputs 0 (meaning no error is
corrected in the BCH code) if and only if ṽi = 0, and ṽi = 0 holds if and only if
wtH(v′i) = wtH(vi−yi) < dn2

2 e. This in turn implies that
∣∣∣suppH

(
y

(1)
i

)
∩ suppH(vi)

∣∣∣ >
wtH

(
y

(1)
i

)/
2, since wtH(vi) = dn2

2 e. Furthermore, by the same arguments as before,
the oracle ODec

(x,y) outputs 1 if and only if wtH(v′i) ≥ dn2
2 e, which means

∣∣∣suppH

(
y

(1)
i

)
∩

suppH(vi)
∣∣∣ ≤ wtH

(
y

(1)
i

)/
2. This observation directly implies that the obtained set is

a super-support of y(1)
i .

Since Line 5 and 7 can be performed in O(n) operations and ` ∈ [1 :6], the algorithm
requires O(n) operations in F2 and 6 queries to the oracle. �

Retrieving the Support of y(1) Using a Decoding Oracle

From Lemma 4.10 follows that for maxj′∈[1:n1]
{

wtH
(
y

(1)
j′

)}
≤ 2, Algorithm 19 returns

a Hamming super-support of y(1)
i . The next lemma shows that Algorithm 20 retrieves

the support of y(1)
i given the super-support from Algorithm 19.

3This follows from the fact that the used BCH code has a minimum distance larger than 1.
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Algorithm 20: FindSupport
Input : Non-negative integer i

Super-support S̃yi
Non-negative integers n1, n2, n
Oracle access ODec

(x,y)

Output: Support Ŝyi
1 u← [1, 0, . . . , 0] ∈ Fn2
2 v = [v1, . . . ,vn1 ,vn1+1]← 0n ∈ Fn2 , where v1, . . . ,vn1 ∈ Fn2

2 and
vn1+1 ∈ Fn−n1n2

2
3 v̄i ← Vector in Fn2

2 with weight dn2
2 e − 2 and support contained in [1 :n2] \ S̃yi

4 for {j1, j2} ∈ {J ′ ⊆ S̃yi : |J ′| = 2} do
5 vi ← v̄i
6 j1-th and j2-th element of vi ← 1
7 p← Output of ODec

(x,y) on the query (u,v)
8 if p = 0 then
9 j1-th element of vi ← 0

10 p′ ← Output of ODec
(x,y) on the query (u,v)

11 if p′ = 1 then
12 Ŝyi ← {j1}
13 else
14 j1-th element of vi ← 1
15 j2-th element of vi ← 0
16 p′′ ← Output of ODec

(x,y) on the query (u,v)
17 if p′′ = 1 then
18 Ŝyi ← {j2}
19 else
20 Ŝyi ← {j1, j2}

21 return Ŝyi

22 return Ŝyi ← {}

Lemma 4.11. Let i be an element of [1 : n1] and n1, n2, n, k, wy, wr, we, and
δ be parameters chosen according to Table 4.4. Let (x,y) and (h, s) be a private
and public key pair generated by KeyGenHQC for the chosen parameters. Furthermore,
let ODec

(x,y) be defined as in Definition 4.1, maxj′∈[1:n1]
{

wtH
(
y

(1)
j′

)}
≤ 2 and S̃yi be a

Hamming super-support of y(1)
i obtained by Algorithm 19. Then, given i, S̃yi, n1, n2,

n, and oracle access ODec
(x,y), Algorithm 20 requires O (nn2

2) operations in F2 and at
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most 2n2
2 + 2 queries to ODec

(x,y) in order to output the support of y(1)
i .

Proof. As in Algorithm 19, the vector u ∈ Fn2 is chosen to be [1, 0, . . . , 0] ∈ Fn2 , and the
vector vj = 0n2 ∈ Fn2

2 , for j ∈ [1 :n1] \ i. Then, the oracle ODec
(x,y) is queried on different

patterns of vi. The patterns have weight dn2
2 e and are designed such that dn2

2 e − 2
entries in vi whose indices are not in S̃yi are fixed to 1 and |suppH(vi) ∩ S̃yi | = 2 (see
Figure 4.2 for n2 = 31 and S̃yi = [1 : 16]). If ODec

(x,y) outputs 1 (meaning an error is
corrected in the BCH code) for a query, it follows that ṽi = 1, and ṽi = 1 holds if and
only if wtH(v′i) = wtH(vi−yi) ≥ dn2

2 e. This implies that
∣∣∣suppH

(
y

(1)
i

)
∩suppH(vi)

∣∣∣ is at
most wtH

(
y

(1)
i

)
/2, since wtH(vi) = dn2

2 e. Therefore, it holds that suppH(vi) ∩ S̃yi +
suppH

(
y

(1)
i

)
. Whereas if ODec

(x,y) outputs 0, it holds that
∣∣∣suppH

(
y

(1)
i

)
∩ suppH(vi)

∣∣∣
is greater than wtH

(
y

(1)
i

)
/2, and thus, it can be deduced that suppH(vi) ∩ S̃yi ⊇

suppH

(
y

(1)
i

)
.

Let j1 and j2 be two distinct indices in suppH(vi) such that |{j1, j2} ∩ S̃yi| = 2 and
ODec

(x,y) outputs 0. To determine suppH

(
y

(1)
i

)
, the algorithm chooses the j1-th element

of vi to 0 and queries the oracle on (u,v). If ODec
(x,y) outputs 1 for this query, it implies

that the BCH decoder corrected an error, and therefore, {j2} 6⊂ suppH

(
y

(1)
i

)
and

{j1} = suppH

(
y

(1)
i

)
. If ODec

(x,y) outputs 0, it follows that {j2} ∈ suppH

(
y

(1)
i

)
. Then, the

algorithm chooses the j1-th element of vi to be 1, the j2-th element of vi to be 0 and
queries the oracle on (u,v). If ODec

(x,y) outputs 1, it must hold that {j1} 6⊂ suppH

(
y

(1)
i

)
and {j2} = suppH

(
y

(1)
i

)
. If ODec

(x,y) outputs 0, it means {j1, j2} = suppH

(
y

(1)
i

)
.

Since |{J ′ ⊆ S̃yi : |J ′| = 2}| ≤
(
n2
2

)
≤ 2n2

2, the algorithm requires O (nn2
2) opera-

tions in F2 and at most 2n2
2 + 2 queries to the oracle. �

Retrieving y(2) Using Linear Algebra

Since only the first n1n2 positions of v′ ∈ Fn2 are decoded in the code CHQC, the last
n− n1n2 positions of y cannot be determined with the previously described strategy.
Therefore, we present Algorithm 21, which retrieves suppH

(
y(2)

)
under the assumption

that suppH

(
y(1)

)
is known. In this algorithm, h` ∈ Fn2 denotes the `-th column of the

matrix H ∈ Fn×2n
2 .

Lemma 4.12. Let n1, n2, n, k, wy, wr, we, and δ be parameters chosen according to
Table 4.4. Furthermore, let (x,y) and (h, s) be a private and a public key pair gener-
ated by KeyGenHQC for the chosen parameters, and let Ŝy(1) be the Hamming support
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Algorithm 21: FindRemainingSupport
Input : Support Ŝy(1)

Parameters n1, n2, n, wy
Public key (h, s) ∈ Fn2 × Fn2

Output: Support Ŝy
1 τ ← |Ŝy(1)|
2 {j1, . . . , jτ} ← Ŝy(1)

3 H ← [I, rot(h)] ∈ Fn×2n
2

4 s̃← s+ h>n+j1 + . . .+ h>n+jτ ∈ Fn2 , where h` is the `-th column of H
5 for {l̂1, . . . , l̂wy−τ} ∈ {L′ ⊆ [n1n2 + 1:n] : |L′| = wy − τ} do
6 x̂← s̃+ h>

n+l̂1 + . . .+ h>
n+l̂wy−τ

∈ Fn2 , where h` is the `-th column of H
7 ŷ ← Vector in Fn2 with support Ŝy(1) ∪ {l̂1, . . . , l̂wy−τ}
8 if wtH(x̂) = wy ∧ x̂+ ŷh = s then
9 Ŝy ← Ŝy(1) ∪ {l̂1, . . . , l̂wy−τ}

10 return Ŝy

11 return Ŝy ← {}

of y(1) with |Ŝy(1)| = τ . Then, given Ŝy(1), n1, n2, n, wy, and (h, s), Algorithm 21
requires

O

(
n(wy − τ)

(
n− n1n2

wy − τ

))

operations in F2 in order to output the support of y(2).

Proof. Let {j1, . . . , jτ} = Ŝy(1) ⊆ [1 : n1n2] be the known support of y(1), and let the
unknown support of y(2) be denoted by L = {l1, . . . , lwy−τ} ⊆ [n1n2 + 1 :n]. It holds
that

s = x+ hy = x+ h>n+j1 + . . .+ h>n+jτ + h>n+l1 + . . .+ h>n+lwy−τ
,

where h` ∈ Fn2 is the `-th column of the matrixH = [I, rot(h)] ∈ Fn×2n
2 , for ` ∈ [1 :2n].

By assumption, the vector s, the vector h, and the set Ŝy(1) are known, and therefore,
the vector

s̃ = s+ h>n+j1 + . . .+ h>n+jτ = x+ h>n+l1 + . . .+ h>n+lwy−τ
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

...

1

2

120

Figure 4.2: Illustration of the patterns used to obtain suppH

(
y

(1)
i

)
from S̃yi for n2 = 31

and S̃yi = [1 : 16]. The gray parts refer to non-zero entries, and the white
parts indicate zero entries.

can be computed by the algorithm. Then, the algorithm computes

x̂ := s̃+ h>
n+l̂1 + . . .+ h>

n+l̂wy−τ

for {l̂1, . . . , l̂wy−τ} ∈ {L′ ⊆ [n1n2 + 1:n] : |L′| = wy − τ} until both wtH(x̂) = wy and
x̂+ŷh = s are fulfilled, where ŷ ∈ Fn2 has support Ŝy(1)∪{l̂1, . . . , l̂wy−τ}. Since

(
2n

2wy

)
�

2n for the parameters in Table 4.4, it holds that x̂ = x and ŷ = y with high probability.
Furthermore, the set {l̂1, . . . , l̂wy−τ} is equal to L and Ŝy(1)∪{l̂1, . . . , l̂wy−τ} = suppH(y).
The probability that a randomly drawn set {l̂1, . . . , l̂wy−τ} is equal to L is given

by
(
n−n1n2
wy−τ

)−1
and examining whether {l̂1, . . . , l̂wy−τ} corresponds to L needs wy − τ

column additions, which is in O(n(wy− τ)). Therefore, the complexity of this method
is given by

n(wy − τ)
(
n− n1n2

wy − τ

)
. �

Remark 4.1. Although Algorithm 21 has an exponential complexity, it is feasible
since n− n1n2 is a small number for all parameter sets,4 and therefore, wy − τ has a
value close to zero with high probability. Assuming wy − τ ≤ 2, the complexity of this
approach is 228.42, 218.05, and 221.47 for the parameter sets of HQC-128, HQC-192, and
HQC-256, respectively.

4For HQC-128, HQC-192, and HQC-256, the variable n−n1n2 is equal to 123, 3, and 7, respectively.

111



4 Attacks on Hamming-Based Encryption Schemes

Success Probability and Complexity of Algorithm 18

Using the intermediate results from above, we are able to prove the main statement
of this section.

Theorem 4.13. Let n1, n2, n, k, wy, wr, we, and δ be parameters chosen accord-
ing to Table 4.4. Let (x,y) and (h, s) be a private and public key pair generated by
KeyGenHQC for the chosen parameters. Furthermore, let ODec

(x,y) be defined as in Defi-
nition 4.1. Then, given n1, n2, n, wy, (h, s), and oracle access ODec

(x,y), Algorithm 18
requires at most 2n1n

2
2 + 8n1 queries to ODec

(x,y) to retrieve the private key (x,y) with a
probability of at least 93.20%, 77.98%, and 58.99% for security levels of 128 bit, 192
bit, and 256 bit, respectively.

Proof. First, from Lines 13–16 of Algorithm 18 follows that Algorithm 18 outputs
(x̂, ŷ) only if wtH(x̂) = wy, wtH(ŷ) = wy, and x̂ + ŷh = s. Since

(
2n

2wy

)
� 2n for the

parameters of HQC-128, HQC-192, and HQC-256, it holds that x̂ = x and ŷ = y with
high probability. This means that with high probability, Algorithm 18 either outputs
the private key or a failure.
From Table 4.5 follows that the probability that max

j′∈[1:n1]

{
wtH

(
y

(1)
j′

)}
≤ 2 is equal

to 93.20%, 77.98%, and 58.99% for the parameter sets HQC-128, HQC-192 and HQC-
256, respectively. Then, Lemma 4.10, 4.11, and 4.12 directly imply that Algorithm 18
determines (x̂, ŷ) such that wtH(x̂) = wy, wtH(ŷ) = wy, and x̂ + ŷh = s with
probability at least 93.20%, 77.98%, and 58.99% for security levels of 128 bit, 192 bit,
and 256 bit using at most 2n1n

2
2 + 8n1 queries to ODec

(x,y). �

Remark 4.2. Note that we conjecture that Algorithm 18 can easily be extended to cases
with max

j′∈[1:n1]

{
wtH

(
y

(1)
j′

)}
> 2. To do so, the number of patterns shown in Table 4.6

must be increased and refined. Furthermore, the mapping given in Table 4.7 must
be adapted to these patterns. However, this comes at the disadvantage of a higher
complexity and more queries to the oracle ODec

(x,y).

ISD Attacks on HQC

There are scenarios in which we are only able to obtain a subset P = {p1, . . . , pτ} (
suppH(y). This may be due to errors during the power measurements5 or due to private

5Errors during the power measurements imply that the oracle ODec
(x,y) does not always return the

correct answer.
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4.2 A Power Side-Channel Attack on the HQC KEM

keys with vectors y(1)
i of rather large Hamming weight. In these cases, we can exploit

the knowledge of P to reduce the complexity of ISD algorithms in order to recover the
support of y. For that, we compute s′ = s+h>n+p1 + . . .+h>n+pτ , where h` ∈ Fn2 is the
`-th column of the matrix [I, rot(h)] ∈ Fn×2n

2 , for ` ∈ [1 : 2n]. It holds that s′ is the
syndrome of the parity-check matrix H ∈ Fn×2n

2 and the error [e′1, e′2], where e′1 ∈ Fn2
has Hamming weight wy and e′2 ∈ Fn2 has Hamming weight wy − τ . Then, we can use
the proposed modifications of Prange’s, Lee and Brickell’s, and Stern’s algorithms (see
Algorithm 15, 16, and 17 in Section 4.2.3), which have a complexity of

WHQC,Pr := min
k1

(2n)3

(
n
wy

)
(
n−k1
wy

)
(

n
wy−τ

)
(

k1
wy−τ

) ,

WHQC,LB := min
k1,pLB

(2n)3 + n(pLB + 1)
(
n
pLB

)
∑
a∈N2

0
a1≤wy

a2≤wy−τ
a1+a2=pLB

(k1
a1)(

n−k1
wy−a1)

( n
wy)

(n−k1
a2 )( k1

wy−τ−a2)
( n
wy−τ)

,

and

WHQC,St := min
k1,pSt,νSt,1,νSt,2

(2n)3 + (νSt,1 + νSt,2)
(pSt∑
i=1

(
M1
i

)
+

pSt∑
i=1

(
M2
i

)
− n+

(
M2
pSt

))
· · ·

∑
a∈N2

0
a1≤wy

a2≤wy−τ
a1+a2=pSt

∑
b∈N2

0
b1≤wy−a1

b2≤wy−τ−a2
b1+b2=pSt

(bk1/2c
a1 )(dk1/2e

b1 )(n−k1−νSt,1
wy−a1−b1

)
( n
wy)

· · ·

· · ·+ 21−νSt,1−νSt,2
(
M1
pSt

)(
M2
pSt

)
(2wy − τ − 2pSt + 1)(2pSt + 1)

· · · ×
(b(n−k1)/2c

a2 )(d(n−k1)/2e
b2 )( k1−νSt,2

wy−τ−a2−b2
)

( n
wy−τ)

,

where M1 = bk1/2c+ b(n− k1)/2c and M2 = dk1/2e+ d(n− k1)/2e.

We show the complexities of the modified ISD algorithms for the parameters of
HQC-128, HQC-192, and HQC-256 as a function of τ in the Figures 4.3, 4.4, and
4.5, respectively. We observe that the modification of Stern’s algorithm requires con-
siderably fewer operations than the modifications of Prange’s algorithm and Lee and
Brickell’s algorithm. Furthermore, the complexity of the modification of Stern’s al-
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Figure 4.3: Complexities of the modifications of Prange’s, Lee and Brickell’s, and
Stern’s algorithms (Algorithm 15, 16, and 17) for the parameter set of
HQC-128 as a function of τ , where τ is the number of known non-zero
entries in y.

gorithm is already below the security level if approximately 20 non-zero entries in
y are known, and the complexity of all considered algorithms is far lower than the
claimed security level if τ is close to wy. Note that the shown values are conservative
estimations of the ISD complexity since we assume that per guess of an information
set, we have to solve a large system of equations, which can be replaced by a more
sophisticated algorithm as shown in [198].

4.2.5 A Potential Countermeasure Against the Proposed Attacks

The proposed attacks rely on the oracleODec
(x,y). To realizeODec

(x,y), a power analysis of the
syndrome-based decoding of the BCH code in the decryption algorithm is used [187],
[189, Sec. 4]. This analysis builds on the fact that the applied BCH decoder first
computes the syndrome, and then, it determines the error using only this syndrome
and independently of the codeword. This directly implies that codeword masking in
combination with the currently applied syndrome-based decoder cannot prevent the
proposed attack. However, the author of this thesis believes that codeword masking in
combination with an interpolation-based decoding [75] of the BCH code constitutes a
potential countermeasure against the proposed attacks. Such a modified decryption al-
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Figure 4.4: Complexities of the modifications of Prange’s, Lee and Brickell’s, and
Stern’s algorithms (Algorithm 15, 16, and 17) for the parameter set of
HQC-192 as a function of τ , where τ is the number of known non-zero
entries in y.
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Figure 4.5: Complexities of the modifications of Prange’s, Lee and Brickell’s, and
Stern’s algorithms (Algorithm 15, 16, and 17) for the parameter set of
HQC-256 as a function of τ , where τ is the number of known non-zero
entries in y.
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gorithm is shown in Algorithm 22, where the interpolation-based decoder InterDecHQC
is presented in Algorithm 23, and GetCodeLocators refers to a function that outputs
the code locators used to construct the BCH code. It can be observed that the mod-
ified decoding of the BCH code strongly dependents on the (random) codeword, and
therefore, the measure prevents the construction of the oracle ODec

(x,y) using the power
analysis shown in [187], [189, Sec. 4].
Note that the described countermeasure is only a theoretical thought at this stage,

and side-channel analyses of implementations of this measure are required to evaluate
its efficacy. However, this is beyond the scope of this dissertation and left for future
research.

Algorithm 22: ModifiedDecryptHQC

Input : Ciphertext (u,v) ∈ Fn2 × Fn2
Private key (x,y) ∈ Fn2 × Fn2

Output: Plaintext vector m ∈ Fk2
1 m′ ← Fk2
2 y′ ← EncHQC(CHQC,m

′) + uy ∈ Fn2
3 v′ ← v − y′ ∈ Fn2
4 m̂← InterDecHQC(CHQC,v

′) ∈ Fk2
5 m← m̂+m′ ∈ Fk2
6 return Plaintext vector m
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Algorithm 23: InterDecHQC
Input : Code CHQC ⊆ Fn2

Received word v′ = [v′1, . . . ,v′n1 ,v
′
n1+1] ∈ Fn2

Output: Message m ∈ Fk2
Step 1: Majority-based decoding of the repetition code

1 ṽ = [ṽ1, . . . , ṽn1 ]← 0 ∈ Fn1
2

2 for i ∈ [1 :n1] do
3 if wtH(v′i) ≥ dn2

2 e then
4 ṽi ← 1
5 else
6 ṽi ← 0

Step 2: Interpolation-based decoding of the [n1, k]F2 BCH code
7 τRS ← bn1−k

2 c
8 N ← 0 ∈ Fn1×(2(n1−τRS)−k+1))

2m

9 [α1, . . . , αn1 ]← GetCodeLocators(CHQC) ∈ Fn1
2m

10 for i ∈ [1 :n1] do
11 for j ∈ [1 :n1 − τRS] do
12 Ni,j = αj−1

i

13 for j ∈ [1 :n1 − τRS − k + 1] do
14 Ni,(n1−τRS+j) = ṽiα

j−1
i

15 q = [q1, . . . , q2(n−τRS)−k+1] $←− K2m(N )
16 Q1(X)← ∑n1−τRS

i=1 qiX
i−1 ∈ F2m [X]

17 Q2(X)← ∑n1−τRS−k+1
i=1 qn1−τRS+iX

i−1 ∈ F2m [X]
18 M(X) = ∑k

i=1 miX
i−1 ← −Q1(X)/Q2(X) ∈ F2m [X]

19 return Message m = [m1, . . . ,mk]
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4.3 Concluding Remarks

In the first part of this chapter, we proposed an efficient key-recovery attack on the
McEliece variant that deploys TRS codes [84]. The attack does not disprove the
structural properties derived in [84], but constitutes a method to retrieve the structure
of a subfield subcode of the public TRS code. This structure, in turn, allows us to
determine a description of the supercode. We proved that this attack recovers a valid
private key from the public key for all practical parameters in O(n4) field operations.
Furthermore, we confirmed the feasibility of the attack by experiments, where we
recovered a valid private key for a claimed security level of 128 bits within a few
minutes. The presented subfield subcode approach disproves the widespread belief
that the restriction of a code to a subfield is an operation that breaks its algebraic
structure. Our cryptanalysis shows that subfield subcodes, as well as punctured codes
and shortened codes, must also be considered when assessing the security of variants of
the McEliece cryptosystem. Although we have shown that the variant of the McEliece
cryptosystem based on the subfamily of TRS codes proposed in [84] is not secure, this
does not imply that any subfamily of TRS codes is not suitable. In fact, TRS codes
represent a very large family of codes, and further research is required to determine if
other subfamilies exist that could be used in the design of secure McEliece systems.
In [199], a rank-based McEliece system that deploys a subfamily of twisted Gabidulin
codes was proposed. It was shown in [188, Sec. 5.2] that the presented attack cannot
straightforwardly be applied to the aforementioned system, but the authors of [188]
stated potential weaknesses that could be analyzed in a future work.
In the second part of this chapter, we presented the first power side-channel attack

against the HQC encryption scheme and its KEM version. The presented attack
exploits a power side-channel to construct an oracle that returns whether the BCH
decoder in the decryption algorithm of HQC corrects an error for a chosen ciphertext.
Based on the applied decoding algorithm of the product code, we showed how to design
queries to the oracle such that its output allows us to recover a large part of the private
key. The remaining part of the key can then be determined by an algorithm based
on linear algebra. We observed that the success of the shown attack depends on the
Hamming support of the private key, and the attack retrieves 93.20%, 77.98%, and
58.99% of the private keys of HQC-128, HQC-192, and HQC-256, respectively. For
the remaining keys or in case of noisy side-channel information, we proposed to apply
the presented modifications of Prange’s, Lee and Brickell’s, and Stern’s algorithms
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in order to determine a valid private key with significantly less operations than the
claimed security level. In future work, the presented attack could be adapted to the
new variant of HQC, which uses a code concatenation of a Reed–Muller and an RS
code instead of the originally proposed product code. Furthermore, the described
countermeasure could be implemented and analyzed with respect to its performance
and its vulnerability to side-channel attacks.
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5
LIGA: A Rank-Metric Code-Based
Encryption Scheme

The FL rank-based encryption scheme [62, 200] relies on the problem of reconstructing
linearized polynomials and constitutes the linearized equivalent of the broken Augot–
Finiasz cryptosystem [61]. While the Augot–Finiasz encryption scheme is closely con-
nected to list decoding of RS codes, the FL system is based on the difficulty of list
decoding of Gabidulin codes. In contrast to the original McEliece encryption scheme,
where the public key is a matrix [13], in the FL system, the public key is only a vector,
resulting in a much smaller public key size. When the FL scheme was proposed for the
first time, it was only conjectured that Gabidulin codes cannot be list decoded effi-
ciently. As this was proven in the last years for many families of Gabidulin codes [175–
177], the FL system could be a promising post-quantum secure public-key cryptosys-
tem. However, the recent attack by Gaborit, Otmani, and Talé Kalachi (GOT) [65]
retrieves an alternative public key in cubic time complexity.
In this chapter, we present the new rank-based encryption scheme LIGA, which is

based on the original FL system. The security of the FL system relies on the proven
hardness of list decoding Gabidulin codes, but it is vulnerable to the attack from [65].
To derive the new system, we first propose a new coding-theoretic interpretation of
the original FL system, and we develop an alternative decryption algorithm. Then,
we show that the public key is equivalent to a corrupted codeword of an interleaved
Gabidulin code, and we show that the failure condition of the GOT attack [65] is
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equal to the failure condition of decoding the public key as a corrupted interleaved
Gabidulin codeword. This observation allows us to design the new rank-based public-
key encryption scheme as well as the corresponding KEM, which are based on the
hardness of list and interleaved decoding of Gabidulin codes. Under the hardness
assumptions of problems related to list and interleaved decoding of Gabidulin codes,
we show that the encryption version of LIGA is IND-CPA secure in the standard model
and the KEM variant is IND-CCA2 secure in the random oracle model. We investigate
possible exponential-time attacks on the aforementioned hard problems, provide sets
of parameters for security levels 128 bit, 192 bit, and 256 bit and compare them to the
NIST proposals RQC [151], ROLLO [150], BIKE [148], and Classic McEliece [135] as
well as to Loidreau’s McEliece-like system [51, 201].
The results of Chapter 5 are partly published in the proceedings of the 2018 IEEE

International Symposium on Information Theory (ISIT) [152] and in the journal De-
signs, Codes and Cryptography [106]. The author of this dissertation significantly
contributed to the design of the encryption variant of LIGA and the analysis of ex-
isting attacks on it. He solely developed the KEM variant of LIGA, and he solely
proved that the encryption variant is IND-CPA secure and that the KEM variant is
IND-CCA2 secure under some hardness assumptions of problems related to list and
interleaved decoding of Gabidulin codes. Furthermore, he implemented the encryption
scheme in software, and he designed the parameter sets of LIGA and compared them
to the parameter sets of other code-based encryption schemes.
Note that Bombar and Couvreur derived a new message recovery attack on the pre-

sented encryption scheme LIGA [202]. The authors are not disproving the IND-CPA
and IND-CCA2 security claims under the assumption that the underlying problems
are hard. They rather devise an efficient decoding routine for certain Gabidulin su-
percodes, which shows that the underlying hardness assumptions are incorrect. In
addition, this new routine enables them to develop an efficient plaintext recovery at-
tack on the system.

5.1 Key Generation in the FL System

In this section, we review the key-generation algorithm of the original FL encryp-
tion scheme, and we give a coding-theoretic interpretation of the original public key.
Furthermore, we analyze the success condition of the GOT attack [65].
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Table 5.1: Summary of the publicly known parameters of LIGA.

Name Use Restriction
q small field size prime power
m extension degree 1 ≤ m
n code length n ≤ m
k code dimension k < n
u extension degree 2 ≤ u < k

w error weight in public key w ≥ max
{
n− k − k−u

u−1 ,
⌊
n−k

2

⌋
+ 1

}
w < u

u+2(n− k)
tpub error weight in ciphertext tpub =

⌊
n−k−w

2

⌋
ζ

Fqm-dimension of error vector
in the public key ζ < w

n−k−w and ζqζw−m ≤ 1
2

5.1.1 The Original Algorithm

Let q,m, n, k, u, w, and tpub be positive integers that fulfill the restrictions given in
Table 5.1. Then, the original FL key generation routine is shown in Algorithm 24,
where 0n−w is the zero vector of length n− w.

Algorithm 24: Original FL Key Generation
Input : Integers q,m, n, k, u, w as in Table 5.1
Output: Private key (x,P :,[w+1:n]) ∈ Fkqmu × Fn×(n−w)

q

Public key (g,kpub) ∈ Fnqm × Fnqmu
1 g

$←− {a ∈ Fnqm : rkq(a) = n}
2 x

$←− {a ∈ Fkqmu : dimqm(〈ak−u+1, . . . , ak〉qm) = u}
3 s

$←− {a ∈ Fwqmu : rkq(a) = w}
4 P

$←− {A ∈ Fn×nq : rkq(A) = n}
5 GG ←Mk,q (g)
6 z ← [s,0n−w] · P−1

7 kpub ← x ·GG + z ∈ Fnqmu
8 return Private key (x,P :,[w+1:n]), Public key (g,kpub)
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5.1.2 Coding-Theoretic Interpretation of the Original Public Key

The public key kpub of the FL system is a corrupted codeword of a u-interleaved
Gabidulin code. To our knowledge, this connection between the public key and inter-
leaved Gabidulin codes has not been known before. This interpretation is central to
this chapter and is used in Section 5.2.1 to define the public key of LIGA such that is
not vulnerable against the GOT attack [65].

Theorem 5.1. Fix a basis γ of Fqmu over Fqm. Let γ∗ be a dual basis to γ and write
kpub = ∑u

i=1 k
(i)
pubγ

∗
i . Then, 

k
(1)
pub

k
(2)
pub
...

k
(u)
pub

 =


c

(1)
G

c
(2)
G
...
c

(u)
G

+


z1

z2
...
zu

 , (5.1)

where c(1)
G , . . . , c

(u)
G ∈ Fnqm are codewords of the Gabidulin code Gk(g) with generator

matrix GG, and z1, . . . ,zu ∈ Fnqm are obtained from the vector z ∈ Fnqmu by z =∑u
i=1 ziγ

∗
i .

Proof. Recall the definition of the public key

kpub = x ·GG + z,

where x ∈ Fkqmu , GG ∈ Fk×nqm is a generator matrix of the code Gk(g), and z ∈ Fnqmu
with rkq(z) = w.
Let x = ∑u

i=1 xiγ
∗
i , where x1, . . . ,xu have coefficients in Fqm . Then, we obtain the

following representation of the public key kpub as a u× n matrix in Fqm :
k

(1)
pub

k
(2)
pub
...

k
(u)
pub

 =


x1

x2
...
xu

·GG +


z1

z2
...
zu

 =


x1 ·GG
x2 ·GG

...
xu ·GG

+


z1

z2
...
zu

 .

Since xi ·GG is a codeword of the code Gk(g), ∀i ∈ [1 :u], the matrix representation
of kpub can be seen as a codeword from the code G(u)

k (g), corrupted by an additive
error. �
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Note that the error [z>1 , . . . ,z>u ]> in (5.1) has Fq-rank at most w due to the structure
of z = [s,0n−w]P−1.

5.1.3 Efficient Key Recovery of the Original Public Key

The GOT attack [65] on the original FL system is an efficient structural attack which
computes a valid private key of the FL system in cubic time if the public key fulfills
certain conditions. We recall this attack in the following and derive an alternative,
equally powerful, attack based on the decoding of interleaved Gabidulin codes. We
prove that the failure conditions of both attacks are equivalent. The interleaved de-
coding attack does not have any advantage in terms of cryptanalysis compared to the
GOT attack, but enables us to exactly predict for which public keys both attacks work
and for which the attacks fail.

GOT Attack

The GOT attack [65] is shown in Algorithm 25 and succeeds under the conditions of
the following theorem.

Algorithm 25: GOT Attack
Input : Public key (g,kpub) ∈ Fnqm × Fnqmu
Output: Private key (x,P :,[w+1:n]) ∈ Fkqmu × Fn×(n−w)

q

1 Choose γ1, . . . , γu to be a basis of Fqmu over Fqm
2 for i ∈ [1 :u] do
3 k

(i)
pub ← Tr(γikpub)

4 GG ←Mk,q (g)
5 Pick at random a non-zero vector h̃ ∈ Fnqm such that

Mn−w−k,q




GG
k

(1)
pub
...

k
(u)
pub



 · h̃
> = 0.

6 Choose P ∈ Fn×nq and h′ ∈ Fn−wqm such that h̃
(
P−1

)>
= [0,h′]

7 Choose x such that xGGP ′ = kpubP
′, where P ′ = P :,[w+1:n] ∈ Fn×(n−w)

q

8 return Private key (x,P :,[w+1:n])
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Theorem 5.2 (Success Condition of the GOT Attack [65, Thm. 1]). Let γ1, . . . , γu ∈
Fqmu be a basis of Fqmu over Fqm and let zi = Tr(γiz), for i ∈ [1 : u]. If the matrix
Z ∈ Fu×nqm with z1, . . . ,zu as rows, satisfies

rkqm(Mn−k−w,q (Z)) = w,

then (x,P :,[w+1:n]) can be recovered from (g,kpub) with O(n3) operations in Fqmu by
using Algorithm 25.

From Theorem 5.2 follows that if the key is generated by Algorithm 24, the GOT
attack breaks the original FL system with high probability.

Interleaved Decoding Attack

Recall from Theorem 5.1 that the public key kpub is a corrupted interleaved codeword.
Based on this observation, we derive a structural attack on the original FL system
to which we refer as Interleaved Decoding Attack in the following. We prove that
interleaved decoding and the GOT attack fail for the same public keys. The idea is to
decode kpub in an interleaved Gabidulin code. Since w ≤ u

u+1(n− k), such a decoder
returns x with high probability, but fail in certain cases. Since rkqm(Mn−w−1,q (g)) =
n− w − 1, the interleaved decoder fails if

rkqm
(
Z̃
)

:= ϕ < w, (5.2)

where

Z̃ =


Mn−k−w,q (z1)
Mn−k−w,q (z2)

...
Mn−k−w,q (zu)

 , (5.3)

see Lemma 2.5

Equivalence of the GOT Attack and the Interleaved Decoding Attack

In the following, we prove that the failure condition of the GOT attack is equivalent
to the condition that decoding kpub in an interleaved Gabidulin code fails.

Theorem 5.3. The GOT attack [65] fails if and only if the interleaved decoding attack
fails. In particular, both fail if (5.2) holds.
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Proof. The matrix Mn−k−w,q (Z) from Theorem 5.2 and the matrix Z̃ in (5.3) only
differ in row permutations, and therefore, they have the same rank. Furthermore, the
rank of the matrix Z̃ in (5.3) cannot be larger than w since any vector in the right
kernel of this matrix has rank weight at least n− w [167, Algorithm 3.2.1]. It follows
that the failures of Theorem 5.2 and Lemma 2.5 are equivalent. �

In the next section, we exploit the observation of Theorem 5.3 to propose a new
key-generation algorithm that avoids public keys that can be efficiently decoded by an
interleaved decoder, thereby rendering the GOT attack useless.

5.2 The New System LIGA
In this section, we propose the encryption scheme

ΠEnc
LIGA = (KeyGenLIGA,EncryptLIGA,DecryptLIGA).

The system is based on the original FL system [62], where we keep both the origi-
nal encryption and decryption algorithm, but we replace the insecure key-generation
algorithm. Furthermore, we present a KEM version of LIGA, which we denote by

ΠKEM
LIGA = (KeyGenLIGA,EncapsLIGA,DecapsLIGA).

In Section 5.3, we analyze the security of the system. We single out problems from
coding theory, and we prove that the encryption version is IND-CPA secure and the
KEM version is IND-CCA2 secure under the assumption that the stated problems are
hard. Furthermore, we study new and known attacks on these problems and show
that they all run in exponential time, see Section 5.4.

5.2.1 The New Key-Generation Algorithm

We introduce a new key-generation algorithm that is based on choosing z = ∑u
i=1 ziγ

∗
i

such that ϕ < w, where ϕ is the rank of the interleaved Moore matrix of the errors
z1, . . . ,zu in the public key, see (5.3). Based on the dimension of the span of z1, . . . ,zu,
we upper bound ϕ in the following Theorem 5.4. Recall that when ϕ < w, the GOT
attack [65] and interleaved decoding of the public key fail, see Theorem 5.3. In this
case, retrieving any knowledge about the private key from the public key requires
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5 LIGA: A Rank-Metric Code-Based Encryption Scheme

to solve Problem 5.2 (defined later), which corresponds to decoding the interleaved
codeword when error patterns occur for which all known decoders fail.

Theorem 5.4. Let dimqm(〈z1, . . . ,zu〉qm) = ζ. Then

ϕ = rkqm
(
Z̃
)
≤ min{ζ(n− k − w), w}.

Proof. The dimension of 〈z1, . . . ,zu〉qm implies that at most ζ(n − k − w) rows of Z̃
are linearly independent over Fqm , meaning that ϕ ≤ ζ(n− k − w). The definition of
z = [s,0n−w] · P−1 leads to

ϕ = rkqm(Z̃) = rkqm



Mn−k−w,q (s1) , 0

... ...
Mn−k−w,q (su) , 0

P−1

 ≤ w,

where the last inequality holds since s1, . . . , su are vectors of length w. �

We propose the following modification to Line 3 of the original key-generation algo-
rithm, depending on the parameter ζ:

3 A $←−{
subspace U ⊆ Fwqm : dimqm U = ζ, U has a basis of full-Fq-rank elements

}

3’


s1
...
su

 $←−



s′1
...
s′u

 : 〈s′1, . . . , s′u〉qm = A, rkq(s′i) = w, ∀ i ∈ [1 :u]


Clearly, dimqm(〈z1, . . . ,zu〉qm) = ζ in this case. To avoid that the GOT attack [65]

runs in polynomial time, Theorem 5.4 implies that the parameter ζ must be chosen
such that ζ < w

n−k−w . In Section 5.4, we discuss several further exponential-time
attacks on LIGA. Some of these attacks have a work factor depending on ζ, which
must be considered in the parameter design.
Furthermore, the condition rkq(s′i) = w ensures that rkq(zi) = w, for i ∈ [1 : u].

This choice maximizes the work factor of generic decoding attacks on the rows of the
public key, see Section 5.4.
The restriction of the choice of A to subspaces that contain a basis of full-Fq-rank

codewords is to ensure that the set from which we sample in Line 3’ is non-empty.
Hence, the key generation always works.
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Compared to the choice of z in Line 3 of the original key-generation algorithm
(Algorithm 24), we restrict the choice of z. However, we show in Section 5.4 that there
are still enough possibilities for z to prevent an efficient naïve brute-force attack.
Appendix C.1 contains a more detailed discussion on how to realize Lines 3 and 3′

in practice.

5.2.2 The Public-Key Encryption Version ΠEnc
LIGA

The new key-generation algorithm KeyGenLIGA, the encryption algorithm EncryptLIGA,
and the decryption algorithm DecryptLIGA are shown in Algorithm 26, Algorithm 27,
and Algorithm 28, respectively. Compared to the original key-generation algorithm,
the algorithm KeyGenLIGA has one more input parameter ζ (cf. Section 5.2.1).

Algorithm 26: KeyGenLIGA
Input : Integers q,m, n, k, u, w, tpub, ζ as in Table 5.1
Output: Private key (x,P :,[w+1:n]) ∈ Fkqmu × Fn×(n−w)

q

Public key (g,kpub) ∈ Fnqm × Fnqmu
1 g

$←− {a ∈ Fnqm : rkq(a) = n}
2 x

$←− {a ∈ Fkqmu : dimqm(〈ak−u+1, . . . , ak〉qm) = u}
3 A $←−{

subspace U ⊆ Fwqm : dimqm U = ζ, U has a basis of full-Fq-rank elements
}

3’


s1
...
su

 $←−



s′1
...
s′u

 : 〈s′1, . . . , s′u〉qm = A, rkq(s′i) = w ,∀i ∈ [1 :u]


4 s← ∑u

i=1 siγ
∗
i

5 P
$←− {A ∈ Fn×nq : rkq(A) = n}

6 GG ←Mk,q (g)
7 z ← [s,0n−w] · P−1

8 kpub ← x ·GG + z ∈ Fnqmu
9 return Private key (x,P :,[w+1:n]), Public key (g,kpub)

The proposed system has no decryption failures as proven in the following theorem.

Theorem 5.5 (Correctness of DecryptLIGA [62]). Algorithm 28 returns the plaintextm.

Proof. Line 1 computes

cP = (m+ Tr(αx))GGP + [Tr(αs),0n−w] + eP ,
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5 LIGA: A Rank-Metric Code-Based Encryption Scheme

Algorithm 27: EncryptLIGA

Input : Plaintext m ∈ Fk−uqm

Public key (g,kpub) ∈ Fnqm × Fnqmu
Randomness θ

Output: Ciphertext c ∈ Fnqm
1 α

$←− Fqmu using θ
2 e

$←− {a ∈ Fnqm : rkq(a) = tpub} using θ
3 GG ←Mk,q (g)
4 c← [m,0u] ·GG + Tr(αkpub) + e ∈ Fnqm
5 return Ciphertext c

Algorithm 28: DecryptLIGA
Input : Ciphertext c ∈ Fnqm

Private key (x,P :,[w+1:n]) ∈ Fkqmu × Fn×(n−w)
q

Output: Plaintext m ∈ Fk−uqm

1 c′ ← cP :,[w+1:n]
2 G ′ ← Gabidulin code generated by GGP :,[w+1:n]
3 m′ ← decode c′ in G ′
4 α← ∑k

i=k−u+1 m
′
ix
∗
i

5 m← (m′ − Tr(αx)):,[1:k−u] ∈ Fk−uqm

6 return Plaintext m

whose last n− w columns are given by

c′ = (m+ Tr(αx))G′ + e′,

where G′ := GGP :,[w+1:n] ∈ Fk×(n−w)
qm and e′ := eP :,[w+1:n]. By decoding the vector c′

in the Gabidulin code generated by GGP :,[w+1:n], we thus obtain the vector

m′ = m+ Tr(αx).

Since the last u positions of the plaintext m are zero, we get α = ∑k
i=k−u+1 m

′
ix
∗
i ,

where {x∗k−u+1, . . . , x
∗
k} is a dual basis to {xk−u+1, . . . , xk}. As we know α and x, we

can compute the plaintext m. �

Remark 5.1. Steps 1 to 3 of Algorithm 28 can be interpreted as an error-erasure
decoder of a Gabidulin code. As this observation may have advantages, especially for
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5.2 The New System LIGA

implementations, we present this connection formally in Appendix C.2.

A SageMath v8.8 [191] implementation of the public-key encryption version of LIGA
can be downloaded from https://bitbucket.org/julianrenner/liga_pke. The purpose
of this implementation is to clarify the shown algorithms but not to provide a secure
and efficient instance. Developing an implementation that offers these two properties
and can serve for a performance comparison with other schemes is outside the scope
of this work and is left for future research.

5.2.3 The KEM Version ΠKEM
LIGA

In [192], generic transformations of IND-CPA-secure public-key encryption schemes
into IND-CCA2-secure KEMs are proposed. In the following, we apply one of the trans-
formations directly to ΠEnc

LIGA to obtain ΠKEM
LIGA = (KeyGenLIGA,EncapsLIGA,DecapsLIGA).

Later, in Section 5.3.2, we prove that ΠEnc
LIGA fulfills the requirements such that the ap-

plied transformation is secure.
In Algorithm 29 and Algorithm 30, we show the encapsulation and the decapsulation

algorithms of ΠKEM
LIGA, where L, H, and K denote hash functions and L 6= H.1 The

algorithm KeyGenLIGA remains Algorithm 26.

Algorithm 29: EncapsLIGA

Input : Public key (g,kpub) ∈ Fnqm × Fnqmu
Output: Ciphertext (c,d) ∈ Fnqm × F512

2
Shared key K

1 m
$←− Fk−uqm

2 θ ← L(m)
3 c← EncryptLIGA(m, (g,kpub), θ)
4 K ← K(m, c)
5 d← H(m)
6 return Ciphertext (c,d), Shared key K

5.2.4 Running Time and Complexity

Timing Attacks

Resistance against timing attacks is essential in many applications, and systems that
1E.g., one can use SHA3-512 for L and SHA512 for H as proposed in [151].
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Algorithm 30: DecapsLIGA

Input : Ciphertext (c,d) ∈ Fnqm × F512
2

Private key (x,P :,[w+1:n]) ∈ Fkqmu × Fn×(n−w)
q

Public key (g,kpub) ∈ Fnqm × Fnqmu
Output: Shared key K

1 m′ ← DecryptLIGA(c, (x,P :,[w+1:n]))
2 θ′ ← L(m′)
3 c′ ← EncryptLIGA(m′, (g,kpub), θ′)
4 if c 6= c′ ∨ d 6= H(m′) then
5 K ← ⊥
6 else
7 K ← K(m′, c′)
8 return Shared key K

do not enable a constant-time implementation are therefore considered as insecure.
Due to the fact that Step 4 of Algorithm 27 can be easily implemented in constant
time, the proposed encryption algorithm does not reveal any secret knowledge through
timing attacks. The same holds for the presented decryption algorithm since there is
an efficient constant-time decoding algorithm for Gabidulin codes [203], and all other
steps of Algorithm 28 can be realized in constant time as well.

Asymptotically Fastest Methods

In some scenarios, a constant-time implementation of the system may not be required,
but we want that the key generation, the encryption, and the decryption are as fast
as possible. The following results were not known when the original FL system was
proposed, but they could have an impact on its efficiency.
The complexity of the key generation and the encryption is dominated by the

cost of encoding a Gabidulin code (Line 8 of Algorithm 26 and Line 4 of Algo-
rithm 27).2 The asymptotically fastest-known algorithms [97, 98, 204] for this require
O∼(nmin{ω+1

2 ,1.635}) operations in Fqm or O∼(nω−2m2) operations in Fq in general,3 and
O∼(n) operations in Fqm if the entries of g are a normal basis of Fqm/Fq, where ω is

2Note that since x and z have coefficients in the large field Fqmu , this line can be realized as encoding
u messages over Fqm with the generator matrix GG ∈ Fk×n

qm and corrupting these codewords with
an error.

3Which of the two algorithms is the fastest depends on the relation between n and m, as well as the
used basis of Fqm over Fq.
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the matrix multiplication exponent and O∼ means that log factors are neglected.
The bottleneck of the decryption is error-erasure decoding of a Gabidulin code

(Line 3 of Algorithm 28, see also Appendix C.2), where the asymptotically fastest al-
gorithm costs O∼

(
nmin{ω+1

2 ,1.635}
)
operations in Fqm [97, 98] or O∼(nω−2m2) operations

in Fq.
For small lengths n, the algorithms from [101, 205, 206], which have quadratic com-

plexity over Fqm (or cubic complexity over Fq), could be faster than the mentioned
algorithms due to smaller hidden constants in the O-notation. This concern is sup-
ported by the results shown in [207].

5.3 Difficult Problems & Semantic Security of LIGA
In this section, we introduce problems in the rank metric that are considered to be
difficult. Furthermore, we prove that the public-key encryption version of LIGA is
IND-CPA secure in the standard model and the KEM version is IND-CCA2 secure
in the random oracle model under the assumption that no PPT algorithm can solve
them. A detailed complexity analysis of existing and new algorithms solving the stated
problems is given in Section 5.4.

5.3.1 Difficult Problems in the Rank Metric

LIGA is based on several difficult problems which are stated in this section. Note that
the search variants of the problems correspond exactly to retrieving information about
the private key from the public key (not necessarily a valid private key as explained
in the following) or the plaintext from the ciphertext. The decisional problems are
equivalent to distinguishing the public key or the ciphertext from random vectors.

Definition 5.1 (Restricted Interleaved Gabidulin Decoding (RIGab) Distribution).
Given: q,m, n, k, w > bn−k2 c, ζ <

w
n−k−w , u < w.

Sample uniformly at random

• G
$←− G, where G is the set of all generator matrices of [n, k]Fqm Gabidulin codes

• M
$←− {X ∈ Fu×kqm : rkqm(X :,[k−u+1:k]) = u}

• A $←− {subspace U ⊆ Fwqm : dimqm U = ζ, U has a basis of full-Fq-rank elements}

• Z̄
$←−



s′1
...
s′u

 ∈ Fu×wqm : 〈s′1, . . . , s′u〉qm = A, rkq(s′i) = w ,∀ i ∈ [1 :u]


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• Q
$←− {A ∈ Fw×nq : rkq(A) = w}

• Z ← Z̄Q

Output: (G,MG+Z).

Problem 5.1 (Decisional Restricted Interleaved Gabidulin Decoding (DecRIGab)).
Given: (G,Y )∈Fk×nqm ×Fu×nqm , where G is a generator matrix of a Gabidulin code.
Objective: Decide with non-negligible advantage whetherY came from the RIGab dis-

tribution with input q,m, n, k, w, ζ, u or the uniform distribution over the
set of matrices Fu×nqm .

To solve DecRIGab, we do not know a better approach than trying to solve the
associated search problem SeaRIGab, which is usually done for all decoding-based
problems.

Problem 5.2 (Search Restricted Interleaved Gabidulin Decoding (SeaRIGab)).
Given: (G,Y ) from the RIGab distribution with input q,m, n, k, w, ζ, u.
Objective: Find M ′ ∈ Fu×kqm and Z ′ ∈ Fu×nqm s.t. rkq(Z ′) ≤ w and M ′G+Z ′ = Y .

The problem SeaRIGab is equivalent to decoding a codeword of a u-interleaved
Gabidulin code that is corrupted by an error and is the underlying problem of the
structural attacks from Section 5.1.3.
Note however that not necessarily every solution of this problem can be used directly

as a valid private key since some additional structure on M is introduced in LIGA,
i.e., Problem 5.2 is easier to solve than retrieving a valid private key of LIGA.

Definition 5.2 (Restricted Error (ResErr) Distribution).
Given: q,m, n, k, w, tpub, u, (G,K) from the RIGab distribution.
Sample uniformly at random

• e
$←− {x ∈ Fnqm : rkq(x) = tpub}

• α
$←− Fqmu

• k← ext−1
qmu/qm(K)

• y ← Tr(αk) + e = Tr(αm)G+ Tr(αz) + e
Output: y.

Problem 5.3 (Decisional Restricted Gabidulin Decoding (DecRGab)).
Given: q,m, n, k, w, tpub, u, (G,K) from the RIGab distribution, y ∈ Fnqm.
Objective: Decide with non-negligible advantage whether y came from the ResErrdis-

tribution with input q,m, n, k, w, tpub, u, (G,K) or the uniform distribu-
tion over the set of vectors Fnqm.
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As before, we are not aware of a faster approach to solve DecRGab than through the
solution of the associated search problem.

Problem 5.4 (Search Restricted Gabidulin Decoding (SeaRGab)).
Given: q,m, n, k, w, tpub, u, (G,K) from the RIGab distribution, y from the ResErr

distribution with input (G,K).
Objective: Find m′∈Fkqm and e′∈{x ∈ Fnqm : rkq(x) ≤ tpub} such that m′G+ e′=y.

Problem 5.4 is equivalent to decoding a codeword of a Gabidulin code that is cor-
rupted by an error that has with high probability a rank weight greater than (n−k)/2,
see Appendix C.3.
We see in the following that LIGA is IND-CCA2 secure under the assumption that

the problem DecRGab is difficult. As mentioned, there is an obvious reduction of
DecRGab to SeaRGab, which can again be efficiently reduced to SeaRIGab. In fact, all
relevant attacks studied in Section 5.4 make use of this chain of reduction and aim at
solving one of the two search problems.
We are not aware of a reduction of DecRIGab to SeaRIGab or to one of the other

problems. Hence, it could be that DecRIGab is significantly easier than the other
problems. In Section 5.4.3, we show that there is a distinguisher for DecRIGab that is
efficiently computable if the system parameter ζ is chosen too small. Due to the missing
reduction, it is not clear whether or not this distinguisher influences the security of
the system.

5.3.2 Semantic Security

In this section, we prove that the public-key encryption system ΠEnc
LIGA is semantically

secure against chosen-plaintext attacks in the standard model under the assumption
that DecRGab (Problem 5.3) is difficult. In addition, we show that the IND-CCA2
security of ΠKEM

LIGA reduces tightly to the IND-CPA security of ΠEnc
LIGA in the random

oracle model.

IND-CPA Security of ΠEnc
LIGA

To show that ΠEnc
LIGA is secure against chosen-plaintext attacks, we use the definition

of admissibility as in [208].
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Definition 5.3 (Admissibility [208]). The public-key encryption scheme ΠEnc
LIGAwith a

message space M and a random space R is called admissible if there is a pair of de-
terministic polynomial-time algorithms Encrypt1 and Encrypt2 satisfying the following
property:

• Partible: Encrypt1 takes as input a public key pk and r ∈ R, and outputs a p(λ) bit-
string, where λ is the security parameter. Encrypt2 takes as input pk and m ∈ M
and outputs a p(λ) bit-string. Here p is some polynomial in the security parameter
λ. Then, for any pk given by KeyGenLIGA, r ∈ R, and m ∈ M, it must hold that
Encrypt1(pk, r) + Encrypt2(pk,m) = EncryptLIGA(pk,m, r).

• Pseudorandomness: Let D be a probabilistic algorithm and let

AdvIND
D,Encrypt1

(λ)=Pr
(
D(pk,Encrypt1(pk, r)) =1 |r $←−R, (sk, pk)←KeyGenLIGA

(
1λ
))

− Pr
(
D(pk, s) = 1 |s $←− Up(λ), (sk, pk)← KeyGenLIGA

(
1λ
))
,

where KeyGenLIGA

(
1λ
)
indicates that the key-generation algorithm of LIGA is run

with parameters that are chosen according to the security level λ. Furthermore, we
define the advantage function of the problem as follows. For any time-complexity t,

AdvIND
Encrypt1

(λ, t) = max
D

{
AdvIND

D,Encrypt1
(λ)

}
,

where the maximum is taken over all D. If AdvIND
Encrypt1

(λ, t) is negligible for every
polynomial bounded by t and every sufficiently large λ, then Encrypt1 fulfills the
properties of pseudorandomness.

In the following we prove that ΠEnc
LIGA is IND-CPA secure by showing that it fulfills

the definition of admissibility.

Theorem 5.6. The system ΠEnc
LIGA = (KeyGenLIGA,EncryptLIGA,DecryptLIGA) is an

IND-CPA-secure encryption scheme in the standard model under the assumption that
DecRGab is a difficult problem.

Proof. Let Encrypt1 := Tr(αkpub) + e and Encrypt2 := mGG. Then, one observes that
EncryptLIGA = Encrypt1 + Encrypt2, and therefore, ΠEnc

LIGA is partible. Since DecRGab
(Problem 5.3) is assumed to be difficult, the encryption scheme fulfills pseudorandom-
ness, and it follows that the system is admissibile. As proven in [208, Lemma 1], if
ΠEnc

LIGA fulfills Definition 5.3, then it is an IND-CPA-secure encryption scheme. �
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IND-CCA2 Security of ΠKEM
LIGA

We use a transformation proposed in [192] to transform the public-key encryption
scheme ΠEnc

LIGA into the KEM ΠKEM
LIGA. In the following, we prove that ΠKEM

LIGA is IND-
CCA2 secure in the random oracle model.
The applied transformation requires that the encryption scheme ΠEnc

LIGA is γ-spread,
which is proven in the following.

Definition 5.4 (γ-spread, [192, 209]). For valid (sk, pk) and m, the min-entropy
function of EncryptLIGA is defined by

fent(m, pk) := − log2 max
c∈ĈJ

Pr(c = EncryptLIGA(m, pk, r)),

where the randomness is in r ∈ R, and ĈJ is the set of possible ciphertexts. A public-
key encryption scheme is called γ-spread if for every valid key pair (pk, sk) and every
message m ∈ M, it holds that fent(m, pk) ≥ γ. It follows that for all c ∈ ĈJ, the
inequality

Pr(c = EncryptLIGA(m, pk, r)) ≤ 2−γ

must be fulfilled.

Lemma 5.7. The public-key encryption system ΠEnc
LIGA is γ-spread, where γ = m(tpub−

u) + tpub(n− tpub − 1).

Proof. We observe that

max
c∈ĈJ

Pr(c = EncryptLIGA(m, pk, r))= max
c∈ĈJ

Pr(c = [m,0u]GG + Tr(αkpub) + e)

(i)
≤max
c′∈Ĉ′J

qmu Pr(c′ = [m,0u]GG + e)

= qmu
1

|{e ∈ Fnqm : rkq(e) = tpub}|
,

where Ĉ ′J is the set of all vectors in rank distance tpub from [m,0u]GG, and (i) follows
from the fact that there are at most qmu choices for α. In [35, Section IV.B], a
constructive way of obtaining rank-tpub matrices is given. More precisely, an injective
mapping ϕ : Ft(n+m−t−1)

q → {A ∈ Fm×nq : rkq(A) = t} is given. Hence, we have

|{e ∈ Fnqm : rkq(e) = tpub}| ≥ qtpub(n+m−tpub−1),
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and it follows that

qmu

|{e ∈ Fnqm : rkq(e) = tpub}|
≤ qmu

qtpub(n+m−tpub−1)

= q−m(tpub−u)−tpub(n−tpub−1)

≤ q−γ. �

Theorem 5.8. The KEM scheme ΠKEM
LIGA = (KeyGenLIGA,EncapsLIGA,DecapsLIGA) is

IND-CCA2 secure in the random oracle model under the assumption that the Problem
DecRGab problem is difficult.

Proof. Assuming the DecRGab is difficult, the encryption ΠEnc
LIGA is IND-CPA secure,

see Theorem 5.6. Furthermore, it is proven in Lemma 5.7 that ΠEnc
LIGA has γ-spread

encryptions. Thus, the system ΠKEM
LIGA can be tightly reduced to ΠKEM

LIGA in the random
oracle model as shown in [192]. �

5.4 Security Analysis of LIGA

In this section, we analyze the security of LIGA. As proven in Theorem 5.6 and 5.8,
the encryption version is IND-CPA secure and the KEM version is IND-CCA2 secure
under the assumption that DecRGab is difficult. Since there are obvious reductions
from DecRGab to SeaRGab and from DecRGab to SeaRIGab, we study the hardness of
these two search problems in this section (Section 5.4.1 for SeaRIGab and Section 5.4.2
for SeaRGab). In fact, we are not aware of a more efficient method to solve DecRGab
than through these two search problems.
Although no formal reduction from any of the other three studied problems to

DecRIGab is known, we study also the hardness of DecRIGab (Section 5.4.3). We
derive a distinguisher for the public key with exponential complexity in the system
parameters, which can be avoided by proper parameter choice.
Due to the nature of the encryption, there are public keys for which the probability

that the work factor of some ciphertext attacks is below the designed minimal work
factor is greater than 2−λ. We show in Section 5.4.4 that these weak keys occur with
negligible probability, i.e., smaller or equal to 2−λ, during the random key generation
if the parameters are chosen in a suitable way.
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5.4.1 Exponential-Time Attacks on SeaRIGab

We propose new and summarize known methods that solve SeaRIGab (Problem 5.2).
All studied algorithms have exponential complexity in the code parameters.
Recall that in the decryption algorithm of LIGA, the last u positions of the private

key x have to be a basis of Fqmu over Fqm . Therefore, not every solution of SeaRIGab
can be used as valid private key, and thus, it is a strictly easier problem than retrieving
a valid private key corresponding to a given public key.

Brute-Force the Vector z Attack

The number of vectors z ∈ Fnqmu that fulfill the conditions stated in Section 5.2.1
is equal to the number of possible vectors s ∈ Fwqmu times the number of full rank
matrices in Fw×nqm in reduced row echelon form. Formally, the number of vectors z is

|{z : z can occur in Alg. 26}|︸ ︷︷ ︸
≥1

· |{P : P can occur in Alg. 26}|︸ ︷︷ ︸
≥

n
w


q

≥

n
w


q

.

Thus, brute-forcing a vector z that is a solution to SeaRIGab has work factor

Wz ≥

n
w


q

N ′R
≥ qw(n−w)

N ′R
,

where the latter inequality follows from a lower bound on Gaussian binomial coeffi-
cients [68, Lem. 4], and

N ′R := max



w∑
i=0

[
i−1∏
j=0

(qmu − qj)
] n

i


q

qmu(n−k) , 1


(5.4)

is the average number of interleaved codewords in a ball of radius w around a uniformly
at random chosen interleaved received word.
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Interleaved Decoding Attack

As described in Section 5.1.3, an attacker can apply an interleaved decoder on kpub

to retrieve an alternative private key. A major ingredient of LIGA is that the public
key is chosen in a way that this decoding always fails, i.e., the corresponding linear
system of equations does not have a unique solution. However, it is still possible to
brute-force search in the solution space of the involved system of equations. This is
analyzed in the following. Notice thereby that any interleaved codeword in radius at
most w is a solution to SeaRIGab.
Problem 5.2 (SeaRIGab) is equivalent to decoding a codeword of a u-interleaved

Gabidulin code that is corrupted by an error E. This error E fulfills⌊
n− k

2

⌋
< rkq(E) ≤ u

u+ 1(n− k) and rkqm(E) < w

n− k − w
< w,

and therefore, no known algorithm is able to correct it efficiently.
The crucial point of the interleaved decoding algorithms from [105, 115] is solving a

linear system of equations based on the syndromes with w+1 unknowns and ϕ linearly
independent equations which is equivalent to finding the kernel of the matrix in (5.3),
cf. [99, Section 4.1]. For ζ ≥ w

n−k−w , the dimension of the solution space is one and all
solutions are valid for the remaining decoding steps. For ζ < w

n−k−w , the dimension of
the solution space is w + 1 − ϕ but each valid solution forms only a one-dimensional
subspace. An attacker can therefore search in the solution space for a valid solution
which requires on average

(qm)w+1−ϕ

qm ·N ′R
= qm(w−ϕ)

N ′R

trials, where N ′R is the average number of interleaved codewords, see (5.4). In this
case, the search through the solution space has a work factor of

WILD = qm(w−ζ(n−k−w))

N ′R
.

Since the size of the solution space is maximal for ϕ = n − k − w, the repair from
Section 5.2.1 with the explicit parameter value ζ = dimqm

(
〈z1, . . . ,zu〉qm

)
= 1 is the

most secure choice in this sense. However, we keep the choice of ζ flexible, as the
pair-wise linear dependence of z1, . . . ,zu could decrease the security.
Besides the syndrome-based interleaved decoding algorithms in [99, 105, 115], there
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is an interpolation-based decoding algorithm [99, Section 4.3 (page 72)]. The latter
algorithm can be interpreted both as a list decoder of interleaved Gabidulin codes
with exponential worst-case and average list size or as a probabilistic unique decoder.
The probabilistic unique interpolation-based decoder fails if and only if the decoding
algorithms in [99, 105, 115] fail, and therefore, the previous analysis applies here as
well. For the list decoder, cf. [99, Lemma 4.5], the work factor of the resulting attack
is

Wlist, public key ≤
qm(u−1)k

N ′R
.

Notice that the list of size qm(u−1)k contains many words which are not valid codewords,
but we have to go through the whole list to find all valid codewords within radius w.

List Decoding of the Public Key Attack

Recall that kpub = x · GG + z. Previously, we have explained why this vector is a
corrupted version of a codeword of a u-interleaved Gabidulin code. At the same time,
x ·GG can be seen as a short Gabidulin code over a large field Fqmu , and therefore,
one could apply a list decoding algorithm, if one exists, to decode kpub and obtain x.
The weight of the error z is larger than the unique decoding radius, and therefore, a
unique decoder cannot be applied to reconstruct x and a list decoder for radius w is
required.
However, such an algorithm has not been found yet. It was even shown in [175–

177] that for most classes of Gabidulin codes such a polynomial-time list decoding
algorithm cannot exist. Note that these results were not known when the original FL
cryptosystem was proposed. These results also imply that there is no polynomial-time
list decoding algorithm for arbitrary Gabidulin codes beyond the unique decoding
radius (such as the Guruswami–Sudan algorithm for RS codes).

Randomized Gabidulin Decoding Attack on the Public Key

The public key can be seen as the sum of a Gabidulin codeword over the field Fqmu
and an error of weight w > n−k

2 . Alternatively, as shown in Section 5.1.2, the public
key can be seen as an interleaved Gabidulin codeword that is corrupted by an error of
weight w = ξ+ n−k

2 , where ξ > 0. Each row of (5.1) is a codeword of a Gabidulin code
over Fqm that is corrupted by an error of rank weight w. Both the corrupted Gabidulin
codeword over Fqmu as well as over Fqm can be decoded using the randomized decoding
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approach proposed in [158]. Since applying the attack on each row of the unfolded
public key is more efficient, we conclude that the randomized Gabidulin decoding
attack on the public key has an average complexity of

WRGD = n

64 · q
m(n−k)−w(n+m)+w2+min{2ξ(n+k

2 −ξ),wk}

over Fqm .

Moving to Another Close Error Attack

The following attack was suggested by Rosenkilde [210]. It tries to move the vector
z to a close vector of the same or smaller rank weight w for which the interleaved
decoder for kpub does not fail.

The idea is to find a vector y ∈ Fu×nqm such that z′ := z + y still has rank weight
rkq(z′) ≤ w and that the rank of the matrix from (5.3) over Fqm is at least w. To
guarantee the first condition, we want to construct y such that its extended um × n
matrix over Fq has a row space R̂ that is contained in the one of z. Since the matrix
(5.3) has rank ϕ ≤ ζ(n − k − w) for the original error z, the space R̂ must have at
least Fq-dimension w − ϕ ≥ w(ζ + 1)− ζ(n− k). By choosing a random R̂ with this
property and taking a random vector y whose extended matrix has Fq-row space equal
to R̂, the second condition is fulfilled with high probability.

The complexity of the attack is hence dominated by the complexity of finding a
subspace R̂ ⊆ Fnq of dimension w−ϕ that is contained in the w-dimensional row rank
support of z. Since this is unknown, we can find it in a Las-Vegas fashion by repeatedly
drawing a subspace uniformly at random. The expected number of iterations until we
find a suitable row space is one over the probability that a random (w−ϕ)-dimensional
subspace of Fnq is contained in a given w-dimensional subspace, which is (cf. [171, Proof
of Lemma 7])

 w

w − ϕ


q n

w − ϕ


q

≈ qϕ(w−ϕ)

q(n−w+ϕ)(w−ϕ) = q−(n−w)(w−ϕ) ≤ q−(n−w)(w(ζ+1)−ζ(n−k)).
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Hence, the attack has work factor

WMCE = q(n−w)(w−ϕ) ≥ q(n−w)(w(ζ+1)−ζ(n−k)).

5.4.2 Exponential-Time Attacks on SeaRGab

Retrieving information about the plaintext from the ciphertext and the public key is
equal to solving SeaRGab (Problem 5.3). In this section, we summarize methods to
solve this problem.

Randomized Gabidulin Decoding Attack on the Ciphertext

Each ciphertext of LIGA can be seen as a Gabidulin codeword over Fqm plus an error:

c = [m,0u] ·GG + Tr(αkpub) + e
= ([m,0u] + Tr(αx)) ·GG︸ ︷︷ ︸

codeword

+ Tr(αz) + e︸ ︷︷ ︸
error

.

Let w̃ := rkq(Tr(αz)+e). Then, we can use the decoding algorithm proposed in [158],
which requires, on average, at least

n

64 · q
m(n−k)−w̃(n+m)+w̃2+min{2ξ(n+k

2 −ξ),w̃k} (5.5)

operations in Fqm .
Clearly, the complexity of the algorithm strongly depends on the value w̃, which in

turn depends on the generated keys. In general, w̃ = w+ tpub, but for some choices of
z, α, and e, the rank w̃ is smaller. For this issue, we study the probability that w̃ is
small, both for randomness in the encryption (random choice of α and e) and the key
generation (random choice of z), in Section 5.4.4 and Appendix C.3. Some extremely
rarely occurring keys thereby result in relatively high probabilities that w̃ is small.
However, we can choose the system parameters such that both the probability of a

weak key as well as the conditional probability that w̃ < w, given a non-weak key, is
below 2−λ. Hence, with overwhelming probability, a random key and ciphertext result
in a ciphertext error of rank weight w̃ ≥ w, and the work factor of this attack is at
least as large as the “Randomized Gabidulin Decoding Attack on the Public Key” in
Section 5.4.1.
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List Decoding of the Ciphertext Attack

As described above, the ciphertext of LIGA is a codeword of a Gabidulin code, cor-
rupted by an error of rank weight w̃. Hence, an attacker can try to decode the ci-
phertext directly. Since w̃ is always greater than the unique decoding radius

⌊
n−k

2

⌋
of the Gabidulin code, this would require the existence of an efficient (list) decoding
algorithm up to radius w̃. As explained previously, there is no such algorithm and
bounds on the list size prove that there cannot exist a generic list decoding algorithm
for all Gabidulin codes, which indicates that list decoding is a difficult problem.
However, to be secure, we have considered list decoding as follows for the security

level of our system. The list size L c,worst denotes a lower bound on the worst-case
work factor of list decoding. For example, for a Gabidulin code with parameters n | m
and gcd(n, n− w̃) ≥ 2, there is a received word such that there are at least

L c,worst ≥ max



 n/g

(n− w̃)/g


qg

qn(w̃/g−1) : g ≥ 2, g | gcd(n, n− w̃)


(5.6)

codewords in rank distance at most w̃ to it.
Although L c,worst does not imply any statement about the average list size/average

work factor, it provides an estimate of the order of magnitude of the work factor of
a hypothetical list decoding attack. For our suggested parameters, we have ensured
that the value of L c,worst is sufficiently large in the proposed sets of parameters in
Section 5.5.

Combinatorial Rank Syndrome Decoding Attack

The ciphertext c ∈ Fnqm can be interpreted as a corrupted codeword from an [n, k]Fqm
code generated by the matrix

GRSD :=


Mk−u,q (g)
Tr(γ1kpub)

...
Tr(γukpub)

 ,
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see [62]. This can be transformed into an instance of SeaSDR, where we choose G⊥RSD

as the parity-check matrix, c(G⊥RSD)> as the syndrome vector, and tpub as the non-
negative integer. Thus, the ciphertext can be decoded with the combinatorial syn-
drome decoding attack from [140] whose complexity is in the order of

WCRSD = n3m3qtpubd (k+1)m
n e−m.

Algebraic Rank Syndrome Decoding Attack

As described above, the SeaRGab problem can be solved by decoding an error of
rank weight tpub in an [n, k]Fqm code. Beside the combinatorial approach, there exist
algebraic algorithms to solve the Problem. The complexity of this approach is given
in Appendix A.1. For completeness, we also state the work factor of this approach in
the following.
In [141], the SeaSDR problem is expressed as a multivariate polynomial system and

is solved by computing a Gröbner basis. In case there is a unique solution to the
system, then the work factor of the algorithm is

WGr =


[

((m+n)tpub)tpub

tpub!

]µ
, if m

(
n−k−1
tpub

)
≤
(

n
tpub

)
,[

((m+n)tpub)tpub+1

(tpub+1)!

]µ
, otherwise,

where µ is the exponent in the complexity expression of the used matrix multiplication
algorithm. Like the authors of [141], we use µ = 2.807 to compute the work factors
since it corresponds to Strassen’s algorithm, which is in practice the fastest algorithm
for large matrix sizes.
Recently, a new algebraic algorithm was proposed to solve the SeaSDR problem [142].

It divides the problem instances into two categories. If

m

(
n− k − 1
tpub

)
≥
(
n

tpub

)
− 1,

we are in the overdetermined case and the proposed algorithm has work factor

WWogr = m

(
n− p− k − 1

tpub

)(
n− p
tpub

)µ−1
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in Fq, where p = min
{
i ∈ [1 :n] : m

(
n−i−k−1
tpub

)
≥
(
n−i
tpub

)
− 1

}
. Otherwise, we are in the

underdetermined case in which the algorithm has work factor

WWogr = min{WUnder,WHybrid}.

We have
WHybrid = qatpubm

(
n− k − 1
tpub

)(
n− a
tpub

)µ−1

with a = min
{
i ∈ [1 :n] : m

(
n−k−1
tpub

)
≥
(
n−i
tpub

)
− 1

}
. Furthermore, for 0 < b < tpub + 2

and Ab − 1 ≤ Bb + Cb,

WUnder =
Bb

(
k+tpub+1
tpub

)
+ Cb(mk + 1)(tpub + 1)
Bb + Cb

 b∑
j=1

(
n

tpub

)(
mk + 1

j

)2

,

where Ab := ∑b
j=1

(
n
tpub

)(
mk+1
j

)
, Bb := ∑b

j=1 m
(
n−k−1
tpub

)(
mk+1
j

)
and

Cb :=
b∑

j=1

j∑
i=1

(−1)i+1
(

n

tpub + i

)(
m+ i− 1

i

)(
mk + 1
j − i

).

We denote the minimum of the work factors of the two algorithms as the work factor
of the algebraic rank syndrome decoding attack, i.e.,

WARSD = min{WGr,WWogr}.

Note that for algebraic decoding, it is neither known how to improve the complexity
by using the fact that there are multiple solutions, nor it is known how to speed up
the algorithm in the quantum world.

Linearization Attack

In [62], a message attack was proposed, which succeeds for some parameters with high
probability in polynomial time.
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Lemma 5.9 (Linearization Attack [62]). Let k(i)
pub = Tr(γikpub), for i ∈ [1 :u], and

M =



Mtpub+1,q (c)
−Mtpub+1,q

(
k

(1)
pub

)
...

−Mtpub+1,q
(
k

(u)
pub

)
−Mk+tpub−u,q (g)


. (5.7)

Then, the encrypted message m can be efficiently recovered if the left kernel of M has
dimension 1.

If (u + 2)tpub + k > n, then M has at least two more rows than columns, and we
have that the dimension of the left kernel of M is greater than 1. If kpub is random
and (u+ 2)tpub + k ≤ n, the attack is efficient with high probability [62].

Lemma 5.10. Let M be as in (5.7). Then,

rkqm(M ) ≤ min{ϕ+ k + 2tpub − u, n}.

Proof. We can write

k
(i)
pub = Tr(γikpub) = Tr(γix) · Mk,q (g) + zi,

for i ∈ [1 :u]. By elementary row operations, we can transform M into

M ′ =



Mtpub+1,q (c)
−Mtpub+1,q (z1)

...
−Mtpub+1,q (zu)
−Mk+tpub−u,q (g)


.

Due to w+ 2tpub < n− k, the matrixMtpub+1,q (zi) is a sub-matrix ofMn−k−w,q (zi),
and the rank rkqm(M ) is equal to

rkqm(M ′) ≤ ϕ+ rkqm(Mtpub+1,q (c)) + rkqm(Mk+tpub−u,q (g)) = ϕ+ k + 2tpub − u.

Furthermore, since the number of columns of M is equal to n, rkqm(M) ≤ n. �

147



5 LIGA: A Rank-Metric Code-Based Encryption Scheme

The linearization attack is inefficient if the rank ofM is smaller than its number of
rows, which implies the following, stronger version of the original statement in [62].

Theorem 5.11. If tpub >
n−k
u+2 or ϕ < u(tpub + 1), the linearization attack in [62] is

inefficient and its work factor is

WLin = qm·max{utpub+u+1−ϕ,(u+2)tpub+k+1−n}.

The first condition in Theorem 5.11 is again fulfilled by the choice of w in Table 5.1.
The second one reads as tpub >

ϕ
u

+ 1, and for any valid ϕ, there are choices of w such
that tpub fulfills this inequality for any u > 1.

Algebraic Attacks

Faure and Loidreau [62] also described two message attacks of exponential worst-case
complexity. The first one is based on computing Greatest Common Divisors (GCDs)
of polynomials of degrees

WGCD = qm(u−1) q
tpub+1 − 1
q − 1 . (5.8)

Since computing the GCD of two polynomials can be implemented in quasi-linear time
in the degree of the polynomials, Equation (5.8) gives an estimate on the work factor of
this attack. The second algebraic attack is based on finding Gröbner bases of a system
of np =

(
n

k+2tpub−u+1

)
many polynomials of degree approximately dp = q

tpub+1−1
q−1 . The

attack is only efficient for small code parameters, cf. [62, Sec. 5.3]. Since the average-
case complexity of Gröbner bases algorithms is hard to estimate, we cannot directly
relate np and dp to the work factor of the attack. Faure and Loidreau choose the code
parameters such that np ≈ 232 and dp = 127 and claim that the attack is inefficient
for these values. Our example parameters in Section 5.5 result in values of at least
this size.

Overbeck-like Attack

The key attack described in [200, Ch. 7, Sec. 2.1] is based on a similar principle as the
one Overbeck uses to attack the McEliece cryptosystem based on Gabidulin codes [44].
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The attack from [200, Ch. 7, Sec. 2.1] cannot be applied if

w ≥ n− k − k − u
u− 1 .

Note that in the proposed parameter sets, this inequality is fulfilled.

Brute-Force Attack on the Element α

An attacker can brute-force α ∈ Fqmu , which has a complexity of

Wα = qmu.

By knowing α, he just needs to apply an efficient decoding algorithm on c̃ = c −
Tr(αkpub) to retrieve the secret message.

5.4.3 Exponential-Time Attacks on DecRIGab

We have seen in Section 5.3 that LIGA is IND-CCA2 secure under the assumption
that DecRGab is a difficult problem. The two previous subsections analyzed all known
attacks on the SeaRGab and SeaRIGab problems, which are relevant since there is an
obvious reduction of DecRGab to these search problems.
In the following, we study the Problem DecRIGab, which is different in the sense that

we do not know an efficient reduction from DecRGab or one of the search problems to
DecRIGab. In other words, even if distinguishing the public key is easy, it could still be
hard to distinguish the ciphertext. Nevertheless, we study the hardness of DecRIGab
in the following and present a distinguisher, which is efficient to compute if ζ is small.
The distinguisher is as follows.
Recall the choice of kpub in Algorithm 26,

kpub = x ·GG + z ∈ Fnqmu .

Expand kpub into a u × n matrix over Fqm and choose any ζ + 1 rows. As the Fqm-
expansion of the error z has Fqm-rank ζ, there are at least qm − 1 many non-trivial
Fqm-linear combinations of these ζ + 1 rows that are codewords of Gk(g). This is not
true with high probability for a random u× n matrix over Fqm .
Thus, by repeatedly forming random linear combinations of these ζ + 1 rows and
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checking whether the result is a codeword of Gk(g), we obtain a Monte-Carlo algorithm
with an expected work factor of

Wkpub,distinguisher = qmζ ,

neglecting the cost of checking whether a vector in Fnqm is a codeword. Hence, if mζ
is smaller than the security parameter of the system, this distinguisher is feasible to
compute.

5.4.4 Avoiding Weak Keys

As already discussed in Section 5.4.2, the work factors of the “Randomized Gabidulin
Decoding Attack on the Ciphertext” and the “List Decoding of the Ciphertext Attack”
depend on the rank of the error part Tr(αz) + e of the ciphertext. Generically, this
error has weight tpub + w, but due to the trace operation and the addition, the rank
could be smaller.
In Appendix C.3, we analyze the probability that for a given key and a random

encryption, the rank is significantly smaller than expected (we use w as a threshold,
see Section 5.4.2). It turns out that this probability heavily depends on the minimum
distance of the code A used to generate z in Algorithm 26. The smaller this minimum
distance, the larger the probability that the rank is low. More precisely, for a given A
of minimum distance 2 ≤ t ≤ w − ζ + 2, the probability

Pr(rkq(Tr(αz) + e) < w) ≤ q−mζ + 256 min{t, tpub}2q
−(t+tpub−w+1)

(
n+
−t−w−tpub+1

2

)
,

cf. Theorem C.9 in Appendix C.3.
Due to the above discussion, we call a key with Pr(rkq(Tr(αz) + e) < w) > 2−λ a

weak key. In Appendix C.3, we derive an upper bound on the probability of choosing
a weak key in Algorithm 26. For ζqζw−m ≤ 1

2 , this bound is roughly

Pr(weak key) ≤ Θ
(
qm[t−(w−ζ+2)]

)
,

cf. Remark C.1 in Appendix C.3, where t is the smallest minimum distance for which
the key is not weak.
It can be seen that the parameters of LIGA can be chosen such that there is a t with

2 ≤ t ≤ w − ζ + 2 and both Pr(rkq(Tr(αz) + e) < w) and Pr(weak key) are smaller
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than 2−λ. This is the case for all parameters proposed in Table 5.3.

5.4.5 Summary of the Work Factors

In this section, we recall the conditions on the choice of the parameters such that all
known attacks are inefficient and summarize their work factors. Furthermore, we give
specific parameters and compare LIGA to other code-based encryption schemes.
In the following, we choose the parameters q, m, n, k, u, w, and tpub as in Table 5.1.

Recall that this choice of w prevents the Overbeck-like attack (Section 5.4.2) and
results in an exponential work factor of the linearization attack (Section 5.4.2).
Furthermore, we choose ζ to be small such that the work factor of searching the

exponentially large output of the interleaved decoding attack (Section 5.4.1) is large.
Note that this attack returns an exponentially-large output if and only if the GOT
[65] attack fails, cf. Theorem 5.3.
The resulting work factors are summarized in Table 5.2. In addition to these work

factors, we have considered the following requirements:

• The work factor of the second algebraic attack in [62] (cf. Section 5.4.2) is un-
known. Hence, we choose the code parameters such that the resulting non-linear
system of equations occurring in the attack consists of more than np ≈ 232 many
polynomials of degree at least dp = 127. This is the same choice as in [62].

• Since there is no efficient list decoder for Gabidulin codes, the work factor of the
list decoding of the public key or the ciphertext in Section 5.4.2 is not known.
However, we do have a lower bound on the worst-case work factor for some codes,
which is given by the maximal list size L c,worst in (5.6). In all examples for which
the bound holds, we chose the parameters such that log2(L c,worst) is much larger
than the claimed security level.

• The probability of generating a weak key should be negligible. Thus, we choose
the parameters such that ζqζw−m ≤ 1

2 and

Pr(weak key) ≤ qmζ − 1
(qm − 1)(qmw − 1)

t−1∑
i=0

w
i


q

i−1∏
j=0

(
qm − qj

)
− 1


≤ 2−λ,
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Table 5.2: Summary of the work factors of the discussed attacks.

Name of the attack Work factor

Brute-force z (Sec. 5.4.1) Wz = qw(n−w)

N ′R

Interleaved Decoding (Sec. 5.4.1) WILD = qm(w−ζ(n−k−w))

N ′R

Randomized Decoding (Sec. 5.4.1) WRGD = n
64q

m(n−k)−w(n+m)+w2+min{2ξ(n+k
2 −ξ),wk}

Moving to Close Error (Sec. 5.4.1) WMCE = q(n−w)(w(ζ+1)−ζ(n−k))

Combinatorial RSD (Sec. 5.4.2) WCRSD = n3m3qtpubd (k+1)m
n e−m

Algebraic RSD (Sec. 5.4.2) WARSD

Linearization (Sec. 5.4.2) WLin = qm·max{utpub+u+1−ϕ,(u+2)tpub+k+1−n}

GCD based attack (Sec. 5.4.2) WGCD = qm(u−1) qtpub+1−1
q−1

Brute-force α (Sec. 5.4.2) Wα = qmu

Distinguisher for kpub (Sec. 5.4.3) Wkpub,distinguisher = qmζ

where λ is the security parameter and

t := min
{
t ∈ Z : q−mζ + 256 min{t, tpub}2q

−(t+tpub−w+1)
(
n+
−t−w−tpub+1

2

)
≤ 2−λ

}
.

5.5 Parameters and Key Sizes
We propose parameters for security levels of 128 bit, 192 bit, and 256 bit in Table 5.3,
where R = k−u

n
denotes the rate. The parameters are chosen such that we can send

at least 256 bit of information, and therefore, the system can be used as a KEM.
Furthermore, we use a security margin of at least 20 bits. For all parameters, the
algebraic attack based on computing GCDs of polynomials is the most efficient attack.
To evaluate the performance of LIGA, we compare it to the IND-CCA2-secure version

of Loidreau’s system [51, 201] and the NIST proposals RQC [151], ROLLO [150],
BIKE [148], and Classic McEliece [135]. To do so, we present the sizes of the private
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Table 5.3: Parameter sets for 128 bit, 192 bit, and 256 bit security.

Parameter Set q u k n m ζ w tpub R

LIGA-128 2 5 53 92 97 2 27 6 0.52
LIGA-192 2 5 69 120 127 2 35 8 0.53
LIGA-256 2 5 85 148 149 2 43 10 0.54

Table 5.4: Comparison of the memory costs of the private key sk, the public key pk,
and the ciphertext ct in bytes with IND-CCA2-secure Loidreau [201] and
the NIST proposals RQC [151], ROLLO [150], BIKE [148], and Classic
McEliece [135]. The entry ’yes’ in the column DFR indicates that a scheme
has a decryption failure rate larger than 0.

System name sk pk ct Security DFR
LIGA-128 40 5618 1116 128 bit no
RQC-I 40 1834 3652 128 bit no
ROLLO-I-128 40 696 696 128 bit yes
Loidreau-128 — 6720 464 128 bit no
BIKE-2 Level 1 249 1271 1271 128 bit yes
McEliece348864 6452 261120 128 128 bit no
LIGA-192 40 9565 1905 192 bit no
RQC-II 40 2853 5690 192 bit no
ROLLO-I-192 40 958 958 192 bit yes
Loidreau-192 — 11520 744 192 bit no
BIKE-2 Level 2 387 2482 2482 192 bit yes
McEliece460896 13568 524160 188 192 bit no
LIGA-256 40 13823 2757 256 bit no
RQC-III 40 4090 8164 256 bit no
ROLLO-I-256 40 1371 1371 256 bit yes
Loidreau-256 — 16128 1024 256 bit no
BIKE-2 Level 3 513 4094 4094 256 bit yes
McEliece6688128 13892 1044992 240 256 bit no
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key sk,4 the public key pk, and the ciphertext ct in Table 5.4. Note that we can use
a similar representation of the private key and the public key as in RQC [151, Sec.
2.3.3]. More precisely, we just store a seed of size 40 bytes to generate the private key
sk = (x,P :,[w+1:n]) which leads to a private key size of 40 bytes. The vector g in the
public key pk = (g,kpub) can be also stored as a seed of size 40 bytes. Thus, the size
of the public key pk is equal to

⌈
mnu log2(q)

8

⌉
+ 40 bytes. The size of the ciphertext ct is

given by
⌈
nm log2(q)

8

⌉
bytes.

In [211], a generalization of Grover’s algorithm is proposed that finds the roots of a
function f in

√
2b/r function evaluations on average, where r is the number of roots

and 2b is the number of possible inputs of f . Thus, in a post-quantum world, all shown
attacks on LIGA may be accelerated using Grover’s algorithm except the GCD based
attack and the Algebraic Rank Syndrome Decoding attack. Similar to the quantum
ISD algorithm described in [212], the mentioned attacks have in common that they
guess an element from a large set, and then, evaluate in polynomial time whether the
guess leads to the desired outcome. If the desired outcome is obtained, the system
can be broken in polynomial time using exactly this guess. Thus, the work factor of
these algorithms is the product of the complexity of checking whether the guess leads
to the desired outcome times the inverse of the probability that the guess leads to the
desired outcome. We can easily construct a function f that takes as input a guess and
checks in polynomial time whether the guess is as desired. If this is the case, f outputs
0 and otherwise anything except 0. Then, we can apply Grover’s algorithm to find a
root of that function f . Such a root is an element of the set that leads to the desired
outcome. In this way, Grover’s algorithm reduces the work factor to the product of the
polynomial time required for checking the guess times the square-root of the inverse
of the probability that the guess is as desired. For the GCD based attack, we do
not know how to improve the work factor by a quantum computer since the stated
complexity already assumes a running time linear in the degree of the polynomials.
Furthermore, at the current state of research, there is no quantum speed up known for
the Algebraic Rank Syndrome Decoding attack [151, Sec. 6.3]. Using the described
work factors, we obtain a post-quantum security level of 97.5 bit, 127.5 bit, and 157.5
bit for LIGA-128, LIGA-192, and LIGA-256, respectively, where Moving to Close Error
is the most efficient attack for all three parameter sets.

4The size of the private key of Loidreau’s system is not shown since the authors of [201] do not state
how they represent sk.
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5.6 Concluding Remarks
In this chapter, we presented LIGA, a new rank-metric code-based encryption scheme.
LIGA uses a new coding-theoretic interpretation of the FL system. We showed that
the ciphertext is a corrupted codeword of a Gabidulin code, where, to an unauthorized
receiver, the error weight is too large to be correctable. The authorized user knows
the row space of a part of the error and is thus able to correct the error. Furthermore,
we derived that the public key can be seen as a corrupted codeword of an interleaved
Gabidulin code and that in the original FL system, an interleaved Gabidulin decoder
can efficiently recover the private key from the public key with high probability. We
proved that the condition under which interleaved Gabidulin decoders fail is equal to
the condition under which the severe attack by Gaborit, Otmani, and Talé Kalachi
fails. Based on this observation, we chose the key generation algorithm of LIGA such
that interleaved Gabidulin decoders fail, which in turn implies that the attack by
Gaborit et al. fails.
We proposed two versions of LIGA and proved that the public-key encryption version

is IND-CPA secure in the standard model and the KEM version is IND-CCA2 secure
in the random oracle model under the assumption that the DecRGab problem is hard.
We extensively analyzed the security of this decisional problem by studying attacks
on SeaRGab, SeaRIGab, and DecRIGab. All studied attacks have an exponential work
factor in the proposed parameter ranges and can be avoided by a suitable parameter
choice.
Finally, we presented parameters for security levels of 128 bit, 192 bit, and 256 bit

and compared them to the NIST proposals RQC, ROLLO, BIKE, Classic McEliece,
and a rank-metric McEliece-like system proposed by Loidreau. It was observed that
LIGA has small ciphertext sizes as well as relatively small key sizes. The encryption and
decryption correspond to encoding and decoding of Gabidulin codes, for which efficient
and constant-time algorithms exist. Furthermore, the proposed system guarantees
decryption and is not based on hiding the structure of a code.

A New Polynomial-Time Attack on LIGA

In [202], Bombar and Couvreur present a new message recovery attack on the proposed
cryptosystem LIGA. The authors are not disproving the IND-CCA2 security claim
under the assumption that the underlying problems are hard. They rather derive
a unique algorithm that can decode certain Gabidulin supercodes efficiently. Using
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this algorithm, they can solve SeaRGab efficiently, and therefore, they prove that the
hardness assumptions of SeaRGab and DecRGab are incorrect. Furthermore, their new
decoder allows them to mount a polynomial-time message recovery attack on LIGA.
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6
Conclusions

In this thesis, we considered general coding-theoretic problems with applications in
cryptography, we cryptanalyzed two existing code-based cryptographic schemes, and
we proposed a new rank-metric encryption scheme.
The first part of Chapter 3 covered the problem of syndrome decoding in the sum-

rank metric. We presented new findings about erasure decoding in the sum-rank
metric and used these observations to devise a non-trivial generic decoding algorithm.
We showed that our algorithm has a significantly lower complexity than known naïve
approaches for most parameters and that the problem of syndrome decoding in the
Hamming metric can be reduced to the considered problem in a randomized fashion.
In the second part of this chapter, we considered the problem syndrome decoding of
high-order interleaved rank-metric codes. We devised a new generic decoding algo-
rithm and stated conditions under which the algorithm solves the problem in poly-
nomial time. For high-order interleaved Gabidulin codes, we proved that our generic
algorithm has the same error correction capability as all known decoding strategies
that are tailored to Gabidulin codes. In the third part, we devised a novel strategy for
decoding Gabidulin codes beyond the unique decoding radius and discussed possible
modifications to it. We observed that this decoding strategy has a considerably lower
complexity than all known algorithms for most parameters. A short summary and
open problems related to all three problems concluded this chapter.
Chapter 4 was dedicated to the cryptanalysis of two encryption schemes in the

Hamming metric. The first system that we considered was a variant of McEliece’s
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encryption scheme based on TRS codes. We devised a feasible key-recovery attack on
this system, where our attack is the first of its kind to exploit structural weaknesses
of subfield subcodes of the public code. We proved that for all practical parameters
proposed by the designers, the attack recovers a valid private key and has a complexity
that is quartic in the code length. Furthermore, we observed that the average runtime
of the attack implemented on a general purpose processor is only a few minutes.
In the second part of this chapter, we investigated the IND-CPA-secure encryption
version and the IND-CCA2-secure KEM version of HQC. After recalling the security
assumptions of the system, we developed the first power-based side-channel chosen-
ciphertext attack on both variants of HQC. We gave a detailed analysis about the
success probability of the attack and its runtime, where we observed that the attack
recovers more than 93% of the possible keys of HQC-128. This chapter ended with
remarks on both systems and related open problems.
In Chapter 5, we proposed a new rank-metric encryption scheme called LIGA. The

system constitutes a variant of the broken FL system, and its security does not rely
on hiding the structure of a code but is based on the difficulty of list decoding and
interleaved decoding of Gabidulin codes. We proved that the public-key encryption
variant of LIGA is IND-CPA secure in the standard model and the KEM variant
is IND-CCA2 secure in the random oracle model, both under hardness assumptions
of formally defined problems. We analyzed several exponential-time attacks on the
aforementioned problems, summarized their average complexities, and compared the
resulting parameters to Loidreau’s system and the NIST proposals RQC, ROLLO,
BIKE, and Classic McEliece. We observed that LIGA features short ciphertext sizes,
small key sizes, and no decryption failures. We concluded this chapter with a summary
and a description of a new polynomial-time attack, which was proposed by Bombar
and Couvreur.
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A
Remarks on Chapter 2

A.1 Complexity of Algebraic Rank Syndrome Decoding

In [141], Bardet et al. reformulate the DecSDR problem as a multivariate polynomial
system and solve it by determining a Gröbner basis. They show that if there exists a
unique solution to the system, then their algorithm has a complexity of

WGr =


[

((m+n)t)t
t!

]µ
if m

(
n−k−1

t

)
≥
(
n
t

)
− 1[

((m+n)t)t+1

(t+1)!

]µ
otherwise,

where µ refers to the exponent in the complexity expression of the matrix multiplica-
tion algorithm and is assumed to be µ = 2.807.
In [142], an algorithm is presented that builds upon [141]. The complexity of the

algorithm depends on the parameter set and can be divided into two cases. If the
inequality

m

(
n− k − 1

t

)
≥
(
n

t

)
− 1 (A.1)

holds, then we are in the overdetermined case, and the algorithm solves the DecSDR

instance with an average complexity of

WWogr = m

(
n− p− k − 1

t

)(
n− p
t

)µ−1
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operations in Fq, where p = max
{
i ∈ [1 :n] : m

(
n−i−k−1

t

)
≥
(
n−i
t

)
− 1

}
. In case (A.1)

does not hold, the underdetermined case occurs, and the algorithm requires, on aver-
age,

WWogr = min{WHybrid,WUnder} (A.2)

operations in Fq. The first term refers to the complexity of using an exponential-
time brute-force step to transform the underdetermined instance to an overdetermined
instance. The work factor of this approach is equal to

WHybrid = qatm

(
n− k − 1

t

)(
n− a
t

)µ−1

,

where a = min
{
i ∈ [1 : n] : m

(
n−k−1

t

)
≥
(
n−i
t

)
− 1

}
. For a parameter set satisfying

q = 2, 0 < b < t+ 2 and Ab − 1 ≤ Bb + Cb, the second quantity of (A.2) evaluates to

WUnder = min
(Bb + Cb)At−1

b ,
Bb

(
k+t+1
t

)
+ Cb(mk + 1)(t+ 1)
Bb + Cb

A2
b

,
where Ab := ∑b

j=1

(
n
t

)(
mk+1
j

)
, Bb := ∑b

j=1 m
(
n−k−1

t

)(
mk+1
j

)
and

Cb :=
b∑

j=1

j∑
i=1

(
(−1)i+1

(
n

t+ i

)(
m+ i− 1

i

)(
mk + 1
j − i

))
.

We refer to the minimum of WGr and WWogr as the work factor of algebraic rank
syndrome decoding, i.e.,

WARSD = min{WGr,WWogr}.

Note that it is not known how to improve the complexity of the algorithm by using
the fact that there are multiple solutions to problem.
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B
Remarks on Chapter 3

B.1 Generating Uniformly at Random Errors of a Given
Sum-Rank Weight

Algorithm 31: Drawing Uniformly at Random a Vector of Given Sum-Rank Weight
Input : Parameters q,m, k, n, `SR, t

Output: Vector e $←− {e′ ∈ Fnqm : wtSR(e′) = t}
1 D(1) $←− [1 : Nq,ηSR,m(t, `SR)]
2 t(1) ← t
3 for j ∈ [1 :`SR] do
4 tj ← max

{
t′′ ∈

[
0: t(j)

]
: D′(t′′, j) < D(j)

}
(D′(t′′, j) is defined in (B.1))

5 D(j+1) ← D(j) −D′(tj, j)
6 t(j+1) ← t(j) − tj
7 for j ∈ [1 :`SR] do
8 aj

$←− {a ∈ Ftjqm : rkq(a) = tj}
9 Bj

$←− {B ∈ Ftj×ηSR
q : rkq(B) = tj}

10 e← [a1B1,a2B2, . . . ,a`SRB`SR ] ∈ Fnqm
11 return e

The recursion in Theorem 3.1 can be turned into a variant of enumerative encoding
[213] to efficiently draw uniformly at random from the set of sum-rank vectors of weight
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t. Such an algorithm is outlined in Algorithm 31, where

D′(t′′, j) :=
t′′−1∑

t′=t(j)−µSR(`SR−j)
NMq(m, ηSR, t

′)Nq,ηSR,m(t(j) − t′, `SR − j). (B.1)

The correctness of Algorithm 31 is proven in the following proposition:

Proposition B.1. Let q,m, k, n, `SR, and t be integers such that `SR | n and t ≤
µSR`SR. Furthermore, let D′(t′′, j) be defined as in (B.1). Then, Algorithm 31 outputs
a vector e ∈ Fnqm drawn uniformly at random from {e′ ∈ Fnqm : wtSR(e′) = t}.

Proof. The set {e′ ∈ Fnqm : wtSR(e′) = t} has cardinality Nq,ηSR,m(t, `SR). Let

ϕ : [1 : Nq,ηSR,m(t, `SR)]→ {e′ ∈ Fnqm : wtSR(e′) = t}

be a bijective mapping. If we know an efficient algorithm to realize the mapping ϕ,
then the drawing can be realized by uniformly sampling D(1) from [1 : Nq,ηSR,m(t, `SR)]
and outputting ϕ(D(1)). However, the drawing algorithm can also be realized with a
different method.
Let φ : {e ∈ Fnqm : wtSR(e) = t} → Tt,`SR,µSR , e 7→ [rkq(e1), . . . , rkq(e`SR)]. Then, the

drawing can be conducted by computing t = (φ ◦ ϕ)(D(1)) and sampling aj $←− {a ∈
Ftjqm : rkq(a) = tj} and Bj

$←− {B ∈ Ftj×ηSR
q : rkq(B) = tj}, for j ∈ [1 :`SR]. Since ej =

ajBj ∈ FηSR
qm is a vector drawn uniformly at random from {e′ ∈ FηSR

qm : rkq(e′) = tj},
it follows that e = [a1B1, . . . ,a`SRB`SR ] is a vector drawn uniformly at random from
{e′ ∈ Fnqm : wtSR(e′) = t}.
To derive the mapping φ ◦ϕ : [1 : Nq,ηSR,m(t, `SR)]→ Tt,`SR,µSR suppose that t ≤ µSR.

Then, the number of vectors that have a weight decomposition [0, . . . , 0, t] is equal
to NMq(m, ηSR, t), and therefore, we map the elements of the set [1 : NMq(m, ηSR, t)]
to the vector [0, . . . , 0, t]. Furthermore, the number of vectors that have a weight
decomposition [0, . . . , 0, 1, t − 1] is equal to NMq(m, ηSR, 1)NMq(m, ηSR, t − 1), which
means that we map elements of the set

[NMq(m, ηSR, t) + 1:NMq(m, ηSR, t) + NMq(m, ηSR, 1)NMq(m, ηSR, t− 1)]

to the vector [0, . . . , 1, t− 1].
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D′(0, 1) D′(1, 1) D′(2, 1)

t1 = 0 t1 = 1
. . .

D′(t(1) − 1, 1) D′(t(1), 1)

t1 = t(1) D(1)

D′(0, 2) D′(1, 2) D′(2, 2)

t2 = 0 t2 = 1
. . .

D′(t(2) − 1, 2) D′(t(2), 2)

t2 = t(2) D(2)

. .
.

D′(0, `) D′(1, `) D′(2, `)

t` = 0 t` = 1
. . .

D′(t(`) − 1, `) D′(t(`), `)

t` = t(`)
D(`)

Figure B.1: Illustration of the mapping φ ◦ ϕ : [1 :Nq,ηSR,m(t, `SR)]→ Tt,`SR,µSR , D
(1) 7→

t. The variables are defined as in Algorithm 31, and the function D′(t′′, j)
is defined in (B.1).

It follows by induction that we maptj−1∑
t′=0

NMq(m, ηSR, t
′)Nq,ηSR,m(t−t′, `SR−j)+1:

tj∑
t′=0

NMq(m, ηSR, t
′)Nq,ηSR,m(t−t′, `SR−j)


to [0, . . . , 0, tj, . . . , t`SR ], where ∑`SR

i=j+1 ti = t− tj.

Algorithm 31 performs this routine. In Line 1, the integer D(1) is drawn uniformly at
random from [1:Nq,ηSR,m(t, `SR)], and in Lines 2 to 6, the respective weight distribution
vector (φ ◦ ϕ)(D(1)) is determined (the case t > µSR is taken into account by starting
to sum from t(j)− µSR(`SR− j) instead of 0). The method to compute (φ ◦ϕ)(D(1)) is
illustrated in Figure B.1. In Lines 7 to 10, the vectors ej ∈ FηSR

qm are drawn uniformly
at random from the set of vectors of rank weight tj, and the vector [e1, . . . , e`SR ] is
returned. �
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B.2 Optimal Support-Drawing Algorithm

In Section 3.1.2, it was shown that the worst-case expected number of iterations of a
super-support drawing algorithm that first draws a vector f ∈ Ts,`SR,µSR according to
a probability distribution p̃f and then F $←− Ξq,µSR(f), is equal to

max
e∈Fn

qm
:

wtSR(e)=t

E[#iterations] = max
t∈Tt,`SR,µSR

 ∑
f∈Ts,`SR,µSR

p̃f%q,µSR(f , t)
−1

.

Section 3.1.2 presented an efficient but suboptimal method to choose p̃f . In the follow-
ing, we reformulate the optimization problem into a linear programming instance. The
solution to this problem is optimal but obtaining the solution has a super-polynomial
complexity.

Theorem B.2. Let f 1, . . . ,f |Ts,`SR,µSR |
∈ Ts,`SR,µSR, t1, . . . , t|Tt,`SR,µSR | ∈ Tt,`SR,µSR, and

choose

c = [0, . . . , 0, 1]> ∈ R(|Ts,`SR,µSR |+1)×1, b = [0, . . . , 0, 1,−1]> ∈ R|Tt,`SR,µSR |×1,

and A ∈ R(|Tt,`SR,µSR |+2)×(|Ts,`SR,µSR |+1) is equal to

−%q,µSR(f 1,t1) −%q,µSR(f 2,t1) . . . −%q,µSR(f |Ts,`SR,µSR |
,t1) 1

−%q,µSR(f 1,t2) −%q,µSR(f 2,t2) . . . −%q,µSR(f |Ts,`SR,µSR |
,t2) 1

... ... . . . ... ...
−%q,µSR(f 1,t|Tt,`SR,µSR |) −%q,µSR(f 2,t|Tt,`SR,µSR |) . . . −%q,µSR(f |Ts,`SR,µSR |

,t|Tt,`SR,µSR |) 1
1 1 . . . 1 0
−1 −1 . . . −1 0


.

Furthermore, let x ∈ R(|Ts,`SR,µSR |+1)×1 be a solution to the linear program

Maximize c>x

subject to Ax ≤ b (B.2)
and x ≥ 0.

Then p̃f i = xi, for all i ∈ [1 : |Ts,`SR,µSR |], is a distribution that maximizes (3.2), and it
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holds that

x−1
|Ts,`SR,µSR |+1 = min

 max
t∈Tt,`SR,µSR

 ∑
f∈Ts,`SR,µSR

p̃f%q,µSR(f , t)
−1

: p̃f ∈ [0, 1]

∀f ∈ Ts,`SR,µSR ,
∑

f∈Ts,`SR,µSR

p̃f = 1
.
(B.3)

Proof. Let p̃f i = xi and ξ = x|Ts,`SR,µSR |+1 for a solution x of the linear program. The
last two rows of the matrix A are equal to

|Ts,`SR,µSR |∑
i=1

p̃f i = 1.

Since x ≥ 0, it holds that p̃f i is a valid discrete probability mass function. The first
|Tt,`SR,µSR | rows of the matrix A represent the constraints

|Ts,`SR,µSR |∑
i=1

p̃f i%q,µSR(f i, tj) ≥ ξ ∀ j ∈ [1 : |Tt,`SR,µSR|].

Since ξ is the largest value for which this constraint is fulfilled for all j ∈ [1 : |Tt,`SR,µSR |]
and solutions p̃f i , it follows that

ξ = max
 min
j∈[1:|Tt,`SR,µSR |]


|Ts,`SR,µSR |∑

i=1
p̃f i%q,µSR(f i, tj)

 : p̃f i ∈ [0, 1]∀i ∈ [1 : |Ts,`SR,µSR|],

|Ts,`SR,µSR |∑
i=1

p̃f i = 1


which is equivalent to (B.3). �

The linear program (B.2) in Theorem B.2 can be solved in polynomial time in the
number of variables |Ts,`SR,µSR | + 1. However, depending on s, µSR, and `SR, this
quantity can grow super-polynomially in s, and thus, it is usually not possible to solve
the linear program efficiently for large code parameters.
Nevertheless, we consider this optimal solution to the design of p̃f in the discussion

in Section 3.1.3 for all values of `SR, µSR, s for which we can determine a solution. The
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complexity of this approach is approximately

W
(optimal)
SR := WIter x

−1
|Ts,`SR,µSR |+1,

where x1, . . . , x|Ts,`SR,µSR |+1 is a solution vector to the optimization problem in Theo-
rem B.2, and WIter is the cost of one iteration. The latter value is at least the cost of
erasure decoding, but the real cost could be larger due to the cost of drawing from the
distribution p̃f .
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C
Remarks on Chapter 5

C.1 Practical Considerations on the Key Generation
We discuss practical aspects related to the following lines of the modified key-generation
algorithm (Algorithm 26):

3 A $←−
{
subspace U ⊆ Fwqm : dimU = ζ, U has a basis of full-Fq-rank elements

}

3’


s1
...
su

 $←−



s′1
...
s′u

 : 〈s′1, . . . , s′u〉qm = A, rkq(s′i) = w ,∀ i ∈ [1 :u]


We conjecture that the set from which A is sampled is almost the set of [w, ζ]Fqm

codes. Using a combinatorial argument on the known number of full-rank codewords
of MRD codes, we prove in Lemma C.6 (Appendix C.3) that MRD codes always have
a basis consisting of full-rank codewords. Since the weight enumerator is not known
in general for non-MRD codes, we cannot give a proof, but we expect that most codes
that are close to MRD also have such a basis. The conjecture is then implied by the
fact that close-to MRD codes constitute the majority of linear codes for the parameters
considered here [214, 215].
Since it is hard to check if a randomly drawn code admits a basis of full-Fq-rank

codewords in the worst case, these arguments also imply a practical method on how
to implement Lines 3 and 3′ in practice: sample uniformly at random from the set of
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[w, ζ]Fqm codes. With overwhelming probability, the code is close to MRD, and a large
proportion of its codewords have full Fq-rank. Randomly choosing u codewords thus
gives a generating set consisting of full-rank codewords with high probability. Only if
no basis is found after a given number of trials, one needs to formally check if the code
does not admit a generating set of full-Fq-rank codewords. This gives a Las-Vegas-type
algorithm with small expected running time.
The worst case of this algorithm occurs with extremely small probability.1 Never-

theless, the worst-case complexity is still quite large. Alternatively, one can draw a
new code A if no generating set is found after a given number of trials. This, however,
slightly changes the random experiment from which the code A is drawn. The only
part of Chapter 5 which is influenced by such a modification is Section 5.4.4, which
studies weak keys, i.e., keys for which there is a non-negligible probability that the
error part of the ciphertext has too low rank and is vulnerable to a feasible ciphertext
attack. A key is weak only if the minimum distance of A is small. By parameter
choice, the probability that such a key is generated can be made arbitrarily small, see
Appendix C.3. By the same arguments as above, we conjecture that if the probabil-
ity of obtaining a generating set of full-Fq-rank codewords by drawing u codewords
uniformly at random is small, then also the minimum distance of the code must be
small. In summary, we expect that this change of drawing procedure results in an
even smaller weak-key probability than predicted by Theorem C.9 in Appendix C.3.

C.2 Decryption as Error-Erasure Decoding
In the following, we give a coding-theoretic interpretation of the ciphertext of the
original FL system and of LIGA, which—to the best of our knowledge—has not been
observed before.

Lemma C.1. The ciphertext can be written in the form

c = cG + aCBC + e,

where

• cG = (m+ Tr(αx) ·GG) ∈ Fnqm is unknown and a codeword of a Gabidulin code,
1It can be proven that it is close to the probability of drawing a non-MRD code at random, and it
could be even smaller in reality since also “near-MRD” could have suitable bases.
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• aC = Tr(αs) ∈ Fwqm is unknown,
• BC = (P−1)[1:w],: ∈ Fw×nq is known, and
• e ∈ Fnqm is unknown.

Proof. Due to the Fqm-linearity of the trace map Tr and the fact that the entries of
the matrices GG and P−1 are in Fqm , we can write

c = mGG + Tr(αkpub) + e

= mGG + Tr(αxGG + αz) + e

= (m+ Tr(αx))GG + Tr(αz) + e

= (m+ Tr(αx))GG + Tr(α(s,0)P−1) + e

= (m+ Tr(αx))GG + Tr(αs(P−1)[1:w],:) + e

= (m+ Tr(αx))GG + Tr(αs)(P−1)[1:w],: + e.

Since the entries of (P−1)[1:w],: are in Fq, the ciphertext can be written as above. �

Theorem C.2. The message vector m can be reconstructed by error-erasure decoders
and Steps 4 and 5 of Algorithm 28.

Proof. As seen in Lemma C.1, we can decompose the ciphertext into a codeword plus
an error that is partially known. Therefore, the vectorm+Tr(αx) can be reconstructed
by error-erasure decoders since the decoding condition reads as

w + 2 rkq(e) = w + 2tpub ≤ n− k,

see Lemma 2.4, and is fulfilled by Table 5.1. The message m can then be recovered
from m+ Tr(αx) using the same steps as in Algorithm 28. �

Theorem C.2 leads to the following observation. With high probability, the cipher-
text is a codeword plus an error of rank weight w + tpub, which is beyond the unique
decoding radius. The legitimate receiver can only decrypt since she knows the w-
dimensional row space of a part of the error. Although the attacker knows the code,
she cannot recover the message since she has no further knowledge about the structure
of the error.
The procedure implied by Theorem C.2 could have a practical advantage compared

to the original decryption algorithm. The code G ′ used for decoding in Algorithm 28
depends on the private key. In Theorem C.2, the code is given by g, which is public and
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in fact does not need to be chosen randomly in the key generation.2 Depending on the
used algorithm and type of implementation (e.g., in hardware), it can be advantageous
in terms of complexity or implementation size if the code is fixed.

C.3 Probability of Large Enough Ciphertext Error
Weight

In this section, we analyze the probability that the error part Tr(αz) + e of the
ciphertext

c = [m,0u] ·GG + Tr(αkpub) + e
= ([m,0u] + Tr(αx)) ·GG︸ ︷︷ ︸

codeword

+ Tr(αz) + e︸ ︷︷ ︸
error

has a large enough rank to avoid the ciphertext attacks discussed in Section 5.4. The
results of this appendix are summarized in Section 5.4.4.
For random choices of kpub, α, and e, we have rkq(Tr(αz)) = w, rkq(e) = tpub, and

rkq(Tr(αz) + e) = w+ tpub with probability close to 1. However, there is a very small
probability that the error has a significantly smaller rank than in the generic case.
Our aim is to design the system parameters such that this probability is sufficiently
small, e.g., 2−λ, to avoid attacks utilizing this behavior.
As we see in this section, the choice of z in the public key significantly influences

this probability (fixed z, randomness in α and e). Since also z is drawn using a
random experiment during the key generation, we are interested in the probability
that this key is strong, i.e., whether the rank of Tr(αz) + e is large with sufficiently
high probability, where the randomness is only in α and e.
We start with a lemma that shows that the probability mass function of the Fq-rank

of Tr(αz) for a uniformly drawn α only depends on the weight distribution of the code
spanned by a1, . . . ,aζ , which are the Fqm-linearly independent vectors over Fqm from
which z is constructed.

Lemma C.3. Let z be constructed using the randomly chosen [w, ζ]Fqm code A as in
Algorithm 26. Denote by A0, . . . , Aw the rank-weight distribution of A. For α chosen

2Note that we described the key generation as in [62], where g is chosen at random, but this is not
necessary for the security of the system.
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uniformly at random from Fqmu, we have

Pr
(

rkq
(

Tr(αz)
)

= i
)

= Ai
qmζ

.

Proof. We use the notation (z, s, A, P , and S) from Algorithm 26. First, we observe
that Tr(αz) = Tr(α[s,0n−w])P , and hence, it holds that rkq(Tr(αz)) = rkq(Tr(αs)).
We can expand α ∈ Fqmu in the dual basis γ∗i as α = ∑u

i=1 αi γ
∗
i . Then,

Tr(αs) =
u∑
i=1

αisi = [α1, . . . , αu]


s1
...
su

 = [α1, . . . , αu]S


a1
...
aζ

 ,

where a1, . . . ,aζ is a basis of A and S ∈ Fu×ζqm is a matrix of full rank ζ. As α is chosen
uniformly at random from Fqmu , the αi are chosen independently and uniformly at
random from Fqm . As rkqm(S) = ζ, this is equivalent to saying that

[β1, . . . , βζ ] := [α1, . . . , αu]S

is chosen uniformly at random from Fζqm . Hence, we have

Tr(αs) = [β1, . . . , βζ ]


a1
...
aζ

 ,

i.e., Tr(αs) is a codeword of A, chosen uniformly at random. This immediately implies
the claim. �

A direct consequence of the lemma above is the following statement.

Corollary C.4. With notation as in Lemma C.3, let d be the minimum rank distance
of the [w, ζ]Fqm code A. Then,

Pr
(

rkq
(

Tr(αz)
)
< d

)
= q−mζ .

Corollary C.4 shows that we can bound the probability that Tr(αz) has a small
Fq-rank if the code A (as defined in Lemma C.3) has a large minimum rank distance.
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Loosely speaking, if the minimum rank distance of the code is small, we can consider
this key to be weak, and strong otherwise. Since the code is chosen uniformly at
random from the set of all [w, ζ]Fqm codes, we can use the following result from [215]
to bound the probability that the key is weak. In the following, we denote by dR,min(C)
the minimum rank distance of the code C.

Lemma C.5 ([215, Cor. 5.4]). Let 1 ≤ k ≤ n and 2 ≤ d ≤ n− k+ 2, and let C ∈ Fnqm
be drawn uniformly at random from the set of [n, k]Fqm codes. Then,

n
k

−1

qm

d−1∑
h=1

d− 1
h


qm

d−1∑
s=h

d− 1− h
s− h


qm

n− s
n− k


qm

(−1)s−hqm(s−h2 ) ≤

Pr
(

dR,min(C) < d
)
≤ qmk − 1

(qm − 1)(qmn − 1)

d−1∑
i=0

n
i


q

i−1∏
j=0

(
qm − qj

)
− 1

 .
Since the code in Lemma C.5 is chosen uniformly at random, it does not exactly

match the distribution of the code A in Algorithm 26. Hence, we need the following
lemma and theorem to estimate the probability of a small minimum rank distance in
our case.

Lemma C.6. If an [n, k]Fqm code is MRD, then it has a basis consisting of codewords
of Fq-rank n.

Proof. We show that the number of full-rank codewords is at least qm(k−1). Since these
codewords are all non-zero, their Fqm-span must have cardinality at least qmk and is
hence the entire code.
The weight distribution of an MRD code of length n and minimum distance d is

given by

Ad+s =
 n

d+ s


q

s∑
j=0

(−1)j+s
d+ s

d+ j


q

q(s−j)(s−j−1)/2(qm(j+1) − 1), (C.1)

where s ∈ [0 :n − d], m is the order of the extension field, n ≤ m, and Ad+s denotes
the number of rank-(d+ s) codewords [86].
We are interested in a lower bound on the number of full-rank codewords, i.e.,

s = n−d. The sum in (C.1) is an alternating sum whose terms increase in j. Therefore,
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we can be lower bound the sum by

Ad+s ≥

 n

d+ s


q

(qm(s+1) − 1)−
 d+ s

d+ s− 1


q

(qms − 1)

 .
Hence, for s = n− d, we obtain

An ≥

n
n


q

(qm(n−d+1) − 1)−
 n

n− 1


q

(qm(n−d) − 1)


= qmk − 1−

 n

n− 1


q

(qm(k−1) − 1)

= qmk − 1− (qn − 1)qm(k−1)

q − 1 + qn − 1
q − 1

≥ qmk − (qn − 1)qm(k−1)

q − 1

≥ qm(k−1)
(
qm − qn − 1

q − 1

)
︸ ︷︷ ︸
≥1 since m≥n and q≥2

≥ qm(k−1). �

Theorem C.7. Let m, ζ, and w be chosen such that

1− ζqζw−m ≥ 1
2 . (C.2)

Let A be chosen as in Algorithm 26, i.e., uniformly at random from the set of [w, ζ]Fqm
codes that have a basis consisting only of codewords with Fq-rank w. Furthermore, let
2 ≤ t ≤ w − ζ + 2. Then,

Pr
(

dR,min(A) < t
)
≤ 2 qmζ − 1

(qm − 1)(qmw − 1)

t−1∑
i=0

w
i


q

i−1∏
j=0

(
qm − qj

)
− 1

 .

Proof. We define an alternative random experiment, where a code A′ is chosen uni-
formly from all [w, ζ]Fqm codes. The sought probability is then given by the conditional
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probability

Pr
(

dR,min(A′) < t | S
)
,

where S is the event that A′ has a basis of maximal-rank codewords. We derive the
result using the relation

Pr
(

dR,min(A′) < t
)
≥ Pr

(
dR,min(A′) < t | S

)
Pr
(
S
)
. (C.3)

First, note that Lemma C.5 gives us

Pr
(

dR,min(A′) < t
)
≤ qmζ − 1

(qm − 1)(qmw − 1)

t−1∑
i=0

w
i


q

i−1∏
j=0

(
qm − qj

)
− 1

 .
By Lemma C.6, we have

Pr
(
S
)
≥ Pr

(
A′ is MRD

)
.

Using [214, Thm. 21], we can lower-bound this probability by

Pr
(
A′ is MRD

)
≥ 1− ζqζw−m ≥ 1

2 ,

where the last inequality follows from (C.2). The claim follows by combining the two
bounds with (C.3). �

The last building block for a general bound on the probability of Tr(αz) +e having
small rank is the following lemma, which gives a bound on this probability conditioned
on the event that Tr(αz) has a given rank.

Lemma C.8. Let kpub = x ·GG + z be fixed as in Algorithm 27, and let α be chosen
such that rkq(Tr(αz)) = t. For e $←− {a ∈ Fnqm : rkq(a) = tpub}, we have

Pr
(
rkq

(
Tr(αz) + e

)
< w

∣∣∣ rkq (Tr(αz)
)

= t, rkq(e) = tpub
)

≤ 256 min{t, tpub}2q
−(t+tpub−w+1)

(
n+
−t−w−tpub+1

2

)
.
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Proof. For simplicity, we write

e1 := Tr(αz), E1 := extqm/q(e1), EC
1 := Rq

(
E>1

)
⊆ Fmq

ER
1 := Rq(E1) ⊆ Fnq

e2 := e, E2 := extqm/q(e2), EC
2 := Rq

(
E>2

)
⊆ Fmq

ER
2 := Rq(E2) ⊆ Fnq .

It is clear that rkq(e1 + e2) = rkq(E1 +E2) and, since rkq(e1) = rkq(E1) = t and
rkq(e2) = rkq(E2) = tpub, we have

dimq

(
EC

1

)
= dimq

(
ER

1

)
= t

dimq

(
EC

2

)
= dimq

(
ER

2

)
= tpub.

Note that in our probabilistic model, the spaces EC
1 and ER

1 are fixed. It follows that
EC

2 and ER
2 are random variables that are uniformly distributed on the set of tpub-

dimensional subspaces of Fmq and Fnq , respectively, and stochastically independent.
Due to [216, Thm. 1], for

dim
(
EC

1 ∩ EC
2

)
= i and dim

(
ER

1 ∩ ER
2

)
= j,

we have

rkq(E1) + rkq(E2)− i− j ≤ rkq(E1 +E2) ≤ rkq(E1) + rkq(E2)−max{i, j}.

Since rkq(E1) + rkq(E2) = t+ tpub, this implies

Pr
(
rkq

(
E1 +E2

)
< w

∣∣∣ rkq (E1
)

= t, rkq(E2) = tpub
)

≤ Pr
(

dim
(
EC

1 ∩ EC
2

)
+ dim

(
ER

1 ∩ ER
2

)
> t+ tpub − w

)
=

min{t,tpub}∑
i,j=0

i+j>t+tpub−w

Pr
(

dim
(
EC

1 ∩ EC
2

)
= i

)
Pr
(

dim
(
ER

1 ∩ ER
2

)
= j

)
.
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Due to [171, Proof of Lemma 7], we have

Pr
(
dim

(
EC

1 ∩ EC
2

)
= i

)
=

 m− t
tpub − i


q

t
i


q

q(t−i)(tpub−i)

 m
tpub


q

≤ 16q
(tpub−i)(m−t−tpub+i)+i(t−i)+(t−i)(tpub−i)

qtpub(m−tpub)

= 16q−i(m−t−tpub+i).

Likewise, we have

Pr
(
dim

(
ER

1 ∩ ER
2

)
= i

)
≤ 16q−i(n−t−tpub+i).

Due to n ≤ m, we obtain

Pr
(
rkq

(
E1 +E2

)
< w

∣∣∣ rkq (E1
)

= t, rkq(E2) = tpub
)

≤ 256
min{t,tpub}∑

i,j=0
i+j>t+tpub−w

q−i(n−t−tpub+i)q−j(m−t−tpub+j)

≤ 256
min{t,tpub}∑

i,j=0
i+j>t+tpub−w

q−i(n−t−tpub+i)q−j(n−t−tpub+j)

≤ 256
min{t,tpub}∑

i,j=0
i+j>t+tpub−w

q−(i+j)(n−t−tpub)−(i2+j2)

≤ 256 min{t, tpub}2q−(t+tpub−w+1)(n−t−tpub)−
(t+tpub−w+1)2

2

≤ 256 min{t, tpub}2q
−(t+tpub−w+1)

(
n+
−t−w−tpub+1

2

)
. �

Summarized, we have the following:

Theorem C.9. Let m, ζ, and w be chosen such that 1 − ζqζw−m ≥ 1
2 . Choose z of
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the public key as in Algorithm 26. Let 2 ≤ t ≤ w − ζ + 2. With probability at least

Pstrong,key(t) ≥ 1− 2 qmζ − 1
(qm − 1)(qmw − 1)

t−1∑
i=0

w
i


q

i−1∏
j=0

(
qm − qj

)
− 1


the public key has the following property:
Sample α $←− Fqmu and e $←− {a ∈ Fnqm : rkq(a) = tpub}, both uniformly at random.

Then, the probability that Tr(αz) + e has Fq-rank at least w is lower-bounded by

Pr
(

rkq
(

Tr(αz) + e
)
≥ w

)
≥ 1− q−mζ − 256 min{t, tpub}2q

−(t+tpub−w+1)
(
n+
−t−w−tpub+1

2

)
.

Proof. This follows directly by combining Corollary C.4, Lemma C.5, Lemma C.8, and
a union-bound argument. �

Remark C.1. By the asymptotical analysis in [215], we have

Pstrong,key(t) ≥ 1−Θ
(
qm[t−(w−ζ+2)]

)
.

Since the hidden constant strongly depends on q, this asymptotic value should only
be used for a rough estimation of the strong-key probability, and the exact formula in
Theorem C.9 should be used for the parameter design.
Nevertheless, the formula shows that 1 − Pstrong,key(t) decreases exponentially in m

times the difference of t and w − ζ + 2. Hence, usually we can choose t close to the
maximal value w− ζ + 2 to achieve a given designed probability for a key to be strong.
For instance, we can choose t ≈ (w − ζ + 2)− λ

m
logq(2) for

Pstrong,key(t) ≥ 1− 2−λ,

where λ is the security parameter.
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D
Notation, Variables, and Abbreviations

In the following, we list the notation, the variables, and the abbreviations that are
used throughout this dissertation. Notation and variables that only appear close to
their definitions are not listed. Furthermore, the notation and the variables defined in
Chapters 3, 4, and 5 are only valid within the scope of the respective chapter. Only
the definitions from Chapter 2 are valid throughout the whole thesis.

Mathematical Notation
Sets and Finite Fields

q Power of a prime.
m, n, u Integers.
[n :m] Set of integers {n, n+ 1, . . . ,m}.
I + J Sumset of the finite subsets of integers I and J .
i

$←− I Sampling uniformly from the set I and assigning it to i.
Z Set of all integers.
N Set of all natural numbers.
R Set of all real numbers.
Fq, Fqm , Fqmu Finite fields of size q, qm, qmu.
F∗q, F∗qm , F∗qmu Multiplicative groups of Fq, Fqm , Fqmu .



D Notation, Variables, and Abbreviations

Fm×nq Set of all m× n matrices over Fq.
Fnqm = F1×n

qm Set of all row vectors of length n over Fqm .

Sets, Matrices, and Vectors

A Matrix.
A> Transpose of the matrix A.
A⊥ Matrix whose rows form a basis of the right kernel of A.
Ai,j Element in the i-th row and the j-th column of A.
A[a:b],[c:d] Matrix A restricted to the rows a, a + 1, . . . , b and to the

columns c, c+ 1, . . . , d.
A[a:b],: Matrix A restricted to the rows a, a+ 1, . . . , b.
A:,[c:d] Matrix A restricted to the columns c, c+ 1, . . . , d.
rkq(A) Fq-rank of the matrix A.
ref(A) Reduced row echelon form of the matrix A.
NMq(m,n, i) Number of m× n matrices over Fq of rank i.
a = [a1, . . . , an] Vector of length n.
[a,d] Concatenation of the vectors a and d.
rot(a) Circulant matrix induced by a.
ad :=a rot(d)> Product of the vectors a and d.
a ? d Componentwise product of the vectors a and d.
Ms,q (a) Moore matrix with s rows and q-powers for the vector a.
diag(a) Diagonal matrix with the elements of a on the main diagonal.
extqm/q(a) Extension of the vector a ∈ Fnqm over the field Fq.
Tr(b) Trace of the vector b ∈ Fnqmu to Fnqm .
0n Zero vector of length n.

Polynomials, Probability Theory, and Vector Spaces

Fq[X], Fqm [X] Sets of all univariate polynomials over Fq and Fqm .
deg(f) Degree of the polynomial f ∈ Fq[X].
evα(f) Evaluation map of f ∈ Fq[X] for the vector α ∈ Fnq .
Pr(A) Probability of the event A.
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E[B] Expectation of the random variable B.
〈a1, . . . ,a`〉q Fq-linear vector space spanned by a1, . . . ,a`.
〈S〉q Fq-linear vector space generated by the elements of the set S.
V⊥ Dual space of the vector space V .
dimq(V) Fq-dimension of the vector space V .
Rq(A) Fq-linear row space of the matrix A.
Kq(A) Right Fq-kernel of the matrix A.
rkq(a) Dimension of the Fq-linear space spanned by the entries of a.
Grq(V , k) Set of all k-dimensional Fq-linear subspaces of the space V .j
i


q

Gaussian binomial coefficient.

Linear Codes

[n, k]Fqm Fqm-linear code of length n and dimension k over Fqm .
C⊥ Dual code of the linear code C.
[u;n, k]Fqm (Vertically) u-interleaved [n, k]Fqm code.
C(u) (Vertically) u-interleaved code of C.
C(?2) Schur-square (or Hadamard-square) of C.
suppH(c) Hamming support of the vector c.
wtH(c) Hamming weight of the vector c.
dH(c,d) Hamming distance of the vectors c and d.
[n, k, dmin]HFqm [n, k]Fqm code with minimum Hamming distance dmin.
RSk(α) RS code of dimension k with locators α.
T RSk(α, τ ,π,η) TRS code of dimension k with locators α, twists τ , hooks π,

and field coefficients η.
Gα,τ ,π,η A generator matrix of T RSk(α, τ ,π,η).
supp(C)

R (c) Column rank support of the vector c.
supp(R)

R (c) Row rank support of the vector c.
wtR(c) Rank weight of the vector c.
dR(c,d) Rank distance of the vectors c and d.
[n, k, dmin]RFqm [n, k]Fqm code with minimum rank distance dmin.
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dR,min(C) Minimum rank distance of the code C.
Gk(g) Gabidulin code of dimension k with locators g.
GG A generator matrix of Gk(g).
G(u)
k (g) (Vertically) u-interleaved code of Gk(g).
`SR Blocking parameter.
ηSR Block size.
µSR Minimum of ηSR and m.
supp(C)

SR (c) Column sum-rank support of the vector c.
supp(R)

SR (c) Row sum-rank support of the vector c.
wtSR(c) Sum-rank weight of the vector c.
dSR(c,d) Sum-rank distance of the vectors c and d.
[n, k, dmin]SR

Fqm [n, k]Fqm code with minimum sum-rank distance dmin.
Tt,`SR,µSR The set of weight decompositions of sum-rank weight t.
Ξq,µSR(f) Set of products of subspaces of FµSR

q with weight decomposi-
tion f .

Coding-Theoretic Problems

DecGab Decisional Gabidulin Decoding.
DecSDH Decisional Hamming Syndrome Decoding.
DecSDR Decisional Rank Syndrome Decoding.
DecISDR Decisional Interleaved Rank Syndrome Decoding.
DecRGab Decisional Restricted Gabidulin Decoding.
DecRIGab Decisional Restricted Interleaved Gabidulin Decoding.
DecQCSDH Decisional Quasi-Cyclic Hamming Syndrome Decoding.
DecSDSR Decisional Sum-Rank Syndrome Decoding.
SeaGab Search Gabidulin Decoding.
SeaISDR Search Interleaved Rank Syndrome Decoding.
SeaQCSDH Search Quasi-Cyclic Hamming Syndrome Decoding.
SeaRGab Search Restricted Gabidulin Decoding.
SeaRIGab Search Restricted Interleaved Gabidulin Decoding.
SeaSDSR Search Sum-Rank Syndrome Decoding.
Sea2SDH Search 2 Hamming Syndrome Decoding.
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Complexity Classes

P Polynomial time.
RP Randomized polynomial time.
coRP Co-randomized polynomial time.
ZPP Zero-error probabilistic polynomial time.
NP Non-deterministic polynomial time.

Cryptographic Systems

λ Security level of a cryptographic scheme.
sk Private key.
pk Public key.
KeyGen Key-generation algorithm.
Encrypt Encryption algorithm.
Decrypt Decryption algorithm.
Encaps Key-encapsulation algorithm.
Decaps Key-decapsulation algorithm.
⊥ Decryption or decapsulation failure.
ΠEnc Public-key encryption scheme.
ΠKEM Key-encapsulation mechanism.
PubEncCPA

A,ΠEnc(λ) The indistinguishability under chosen-plaintext attack game
for public-key encryption schemes.

KEMCCA2
A,ΠKEM(λ) The indistinguishability under adaptive chosen-ciphertext at-

tack game for key-encapsulation mechanisms.

Abbreviations

BCH Bose–Chaudhuri–Hocquenghem.
BIKE Bit Flipping Key Encapsulation.
FL Faure–Loidreau.
GCD Greatest Common Divisor.
GOT Gaborit, Otmani, and Talé Kalachi.
GRS Generalized Reed–Solomon.
HQC Hamming Quasi-Cyclic.
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IND-CCA2 Indistinguishability under Adaptive Chosen-Ciphertext At-
tack.

IND-CPA Indistinguishability under Chosen-Plaintext Attack.
ISD Information-Set Decoding.
KEM Key-Encapsulation Mechanism.
LAKE Low Rank Parity Check Codes Key Exchange.
LOCKER Low Rank Parity Check Codes Encryption.
LRPC Low-Rank Parity-Check Codes.
MDPC Moderate-Density Parity-Check Codes.
MDS Maximum Distance Separable.
MRD Maximum Rank Distance.
NIST National Institute of Standards and Technology.
PPT Probabilistic Polynomial Time.
RAMESSES Rank Metric Encryption Scheme with Short Keys.
ROLLO Compilation of Rank-Ouroboros, LAKE, and LOCKER.
RQC Rank Quasi-Cyclic.
RSA Rivest–Shamir–Adleman.
RS Reed–Solomon.
TRS Twisted Reed–Solomon.
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