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1 Introduction and Scope

Mobility is in constant flux in the current era. New drive concepts such as e-mobility as well

as increasing automation are one of the central aspects of current development. With further

electrification and automation, there is a need for safety criteria and mechanisms to grow along

with it.

Every 24 seconds, on average, someone dies on the roads according to the latest road safety

report [1, p. 4] published by the World Health Organization (WHO) in 2018. One of the key

visions in the domain of automated driving is to obtain a flawless, accident-free traffic. In 1995,

the Swedish government launched the so-called Vision Zero for the road transport sector with

the aim of achieving zero road deaths and zero serious injuries [2]. This may sound utopian and

the originally targeted deadline, the year 2015, already passed by. Nevertheless, it describes

the philosophy that has been increasingly pursued since then.

Over the years, the introduction of passive safety mechanisms like seat-belts or improvements

of the vehicle body frame led to a decline in fatal accidents [3, p. 600]. However, the human as a

driver makes mistakes by nature. Although these do not necessarily lead to an accident, if they

do, they should be prevented from doing so by appropriate intervention of a safety system. In

the last couple of decades numerous Advanced Driver Assistance Systems (ADAS) have found

their way into production vehicles. Several studies [4, pp. 7-20, 5, p. 364, 6, p. 8] have shown

that ADAS help to reduce the number of traffic accidents further. A next step in this direction is

full automation, with the goal of reducing the traffic mortality rate even more.

Industry and academics dedicate their research and development to the field of automated

driving and the attained research interest is constantly growing. However, Automated Driving

Systems (ADSs) are far from being capable to handle every situation flawlessly yet. Currently,

there are only a few ADSs registered in public road traffic. For most of the systems currently

operating in road traffic, the driving task has to be continuously monitored by a human being.

Nevertheless, the automated driving function of some level 2 (term definition in Section 2.1)

vehicles [7–10] and level 3 vehicles [11, 12] was found as one of the root causes (despite lacking

supervision by the human) for fatal accidents that occurred in the past years.

The reason for the safety of ADS being such a challenging task is the result of a complex Software

(SW) paired with an infinite amount of possible situations a vehicle can face during operation.

The range of methods used in this domain is wide. In the domain of motion planning alone,

there exist various search-based, optimization-based and even Artificial Intelligence (AI)-based

approaches [13, 14]. Furthermore, it is expected that the share of AI-based methods will grow

continuously in the coming years. As soon as the human no longer acts as a monitor and fallback

for the system, public acceptance requires evidence that the system is safer than a human driver

by a significant factor. However, since human road traffic accidents are extremely rare events—in

Germany, for example, in 2019 a fatal accident occurred only every 250× 106 km [15]—an ADS

would have to pass a 2.5× 109 km test drive, to show with 5 % probability of error that an ADS

causes less accidents than an average human driver [16]. Winner [16, pp. 1174-1177] provides
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1 Introduction and Scope

further mathematical background and reasoning for the derivation of the required ratio between

manual incident-free kilometers and required autonomous test kilometers.

Opposed to the development towards enhanced efficiency and functionality, the safeguarding and

approval of such complex and frequently changing (online learning and/or updates) SW stacks

gets progressively more challenging [17]. Relying on standard methods, approval would require

unbearably many test cases and systems continuing their learning process at the consumer

are not tackled at all. Furthermore, the more complex an ADS function is, the more often SW

updates are inevitable, which render previous post-release evaluations and tests invalid and

require a new review. This trend indicates the need of new safeguarding and approval methods

[18, p. 21, 19]. Consequently, the superordinate guiding thesis to be supported in this work is:

T 1: Complex and frequently changing SW for driving functions of ADSs can be safe-

guarded, while taking into account applicable standards.

Based on the analysis of related work (Chapter 2), Online Verification (OV) emerges as one of

the most promising but as yet little holistically studied methods for safeguarding of complex and

frequently changing SW. This fact is investigated to support the second guiding thesis:

T 2: A procedure can be found for the development of an OV method for safeguarding

ADS functions, taking into account applicable standards.

After a generic approach to OV of driving functions has been elaborated, the required steps for

the illustrative implementation for a trajectory planner of a real-world automated race vehicle

are elaborated. The objective of the implementation is to show a concrete application of the

OV concept with all the challenges of a real-world setting and to serve as a proof of concept.

Research in this regard serves to support the third guiding thesis:

T 3: A prototypical implementation of an OV for the trajectory planner of a real-world

automated race vehicle demonstrates the viability and serves as proof of concept.

On the way of supporting the guiding theses stated above, this paragraph outlines some of the

challenges faced for a stringent safety approval for trajectory planners. In particular, AI-based

and complex methods are not yet covered by current standards. In order to guarantee safety

within a certain context given applicable standards, transparent and deterministic approaches

have to be applied. Due to the inherently unsafe nature of road traffic, deterministic OV methods

that rely on worst-case assumptions for other Traffic Participants (TPs) would not always allow a

safety approval paired with fluent traffic flow. In an unconstrained scenario, every TP has the

possibility to crash into another vehicle on purpose [20, p. 2]. Therefore, a deterministic and

conservative rating would always declare such situations as unsafe. A schematic illustration

for this problem is depicted in Figure 1.1, where two race vehicle drive alongside. By nature,

this is a common situation in a race that most drivers handle without problems. However, if the

behavior of the vehicles is unconstrained (no rules or knowledge applied) and unknown, all

physically possible maneuvers have to be considered (Figure 1.1a). Since this situation could

potentially result in a collision (the trajectory of the ego-vehicle intersects the determined set), it

has to be rated as unsafe. By contrast, if the vehicles know or share their plans via Vehicle-to-

Vehicle (V2V)-communication or constrain their motion via rules, the situation can be classified

as safe (Figure 1.1b). Within this thesis, the focus is on a deterministic implementation with

guarantees, while not relying on knowledge about other vehicles’ actually intended maneuvers.

This is enabled by relying on a not-at-fault policy given applicable regulations, i.e. accidents

caused by the ego-vehicle in accordance with applicable regulations have to be avoided.
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1 Introduction and Scope

(a) Unknown behavior of the gray vehicle, the green shapes
symbolize the states physically reachable by the vehicle.

(b) Known behavior of the gray vehicle, the gray path represents
the planned maneuver of the vehicle.

Figure 1.1: Schematic illustration of differences in safety challenges for the ego-vehicle (blue) between

unknown and known behavior of a TP (gray).

The developed framework for OV of an ADS component targets on a generic principle, serving

as a template for the development of any OV module. One specific and illustrative realization is

showcased on the use-case of safeguarding the trajectory planner of a real-world autonomous

race vehicle. The next chapter highlights related work from which the research questions and

methodology of this thesis are derived in Chapter 3. In this context, the outline of this thesis is

worked out and presented there.
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2 Related Work

In this section it is deduced why the developed OV framework for trajectory planners poses a

meaningful contribution to the research of ADS’s safety. First, terms necessary for an equal basis

of interpretation are defined (Section 2.1). Providing further fundamentals, a brief introduction

to the automated driving SW architecture (Section 2.2) and principles as well as challenges

of motion planning concepts (Section 2.3) are given. Subsequently, Section 2.4 provides an

overview in the domain of automotive safety. This includes currently applied standards and

procedures as well as safety assessment techniques actively developed in the research domain.

In Section 2.5, a special focus will be placed on the research work carried out to date in the field

of online monitoring approaches for safety assessment.

It should be noted that this related work section is intended to provide an overview in order

to stringently point out the research gaps and to derive the guiding theses and questions for

this work. Accordingly, this section does not necessarily go into depth and mathematical details.

Where mathematical details from related work are required for the purpose of this thesis, they

are separately presented in preliminaries in the respective methods section.

2.1 Terms and Definitions

In order to establish a consistent base of understanding, the most relevant terms for the scope

of this work are defined in the following. The definitions follow common usage and definitions in

related work. It should be noted that in the case of multiple interpretations of a term in usage or

literature, only the one specified here is valid in the context of this work. The terms and definitions

are presented in a logical order and are therefore not sorted alphabetically.

Artificial Intelligence (AI): Any algorithm that simulates smart behavior is called AI [21, p. 15].

Machine Learning (ML) is a subclass in which algorithms learn and modify itself over time

without human input [22, p. 7]. Neural Networks (NNs) have proven to be a particularly

efficient method for mapping complex relationships in the field of ML [22, pp. 12-15]. Deep

learning is the subclass of multi-layer NNs that are used in particular for image processing.

Figure 2.1 depicts an overview of these fields. Popular methods are assigned to the clusters

without further explanation.

Complex SW: In the context of this work, a SW or function is interpreted as complex, if it holds

properties conforming to the conception in ISO 26262-6:2018, 7.4.3 [23]. Accordingly, the

following properties are a selection of indications for a complex SW:

• Highly branched data flow

• High number of parameters

• Comprehensible only to a few experts or project members
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systems

Figure 2.1: Subdivision and classification of terms in the field of AI, based on [22, p. 6]. Popular methods

are assigned to the clusters, but are not explained any further.

Automation Levels: In 2014, the Society of Automotive Engineers (SAE) published the first

version of a standard [24, p. 17] defining a taxonomy for levels of automation for driving

automation systems. In the meantime, the terms have become well established and widely

used in the automotive domain. The SAE distinguishes between the following six levels:

• Level 0: No automation

• Level 1: Driver assistance (either longitudinal or lateral automation)

• Level 2: Partial automation (human supervision and human fallback)

• Level 3: Conditional automation (no human supervision, but human fallback)

• Level 4: High automation (limited Operational Design Domain (ODD))

• Level 5: Full automation

Consequently, current driver assistance systems such as lane keeping assist or distance

control systems are classified as level 1 and systems that combine these, such as the

Tesla Autopilot [25], are classified as level 2. In the context of this work, the notation with an

appended “+” sign describes the corresponding level and all levels above it, for example,

level 3+ includes levels 3, 4, and 5.

Automated Driving System (ADS): According to the declaration of SAE [24, p. 3] a Hardware

(HW) and SW that is collectively capable of level 3+ automation is referred to as ADS.

When referring to the ADS operated on a test vehicle, this work refers to this specific

vehicle as “ego-vehicle”. The vehicles deployed for the use-case of this work are operated

corresponding to SAE level 4, but the described procedure is valid for the generic class

of ADS. It should be noted that, in contrast, the term “driving automation system” in the

context of this work refers to level 1+ vehicles. Apart from the definitions of the SAE, in this

work ADAS are systems conforming to level 1 or 2.

Operational Design Domain (ODD): The ODD limits the permissible operating conditions for

an ADS to a set specified by the manufacturer [24, p. 12]. The restrictions can be of

different nature and may, for example, include spatial restrictions (e.g. certain roads), but

also temporal restrictions (e.g. only during the day) or weather-related restrictions (e.g. not

during rain).
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2 Related Work

Scene: Following the notion of Ulbrich et al. [26], a scene (Figure 2.2a) describes a snapshot

of the environment at a specific point in time. In this context, all static entities in the

environment (road, obstacles, etc.) as well as all dynamic elements (vehicles, pedestrians,

etc.) are specified.

Situation: A situation is derived from a specific scene and describes an element’s point of

view [26]. A schematic situation for the orange vehicle in Figure 2.2a is depicted in Fig-

ure 2.2b.

Scenario: According to the interpretation of Ulbrich et al. [26], a scenario is consequently

described as the temporal development of several scenes in a sequence. The scenario

starts with an initial scene and is modified by actions, events, goals, and values. A scenario

spans a finite time interval. Figure 2.2c shows a schematic scenario based on the initial

scene from Figure 2.2a.

(a) Scene. (b) Situation.

t

(c) Scenario.

Figure 2.2: Schematic illustration of the terms scene, situation, and scenario.

Verification: Verification describes the process of examining whether a system meets the

specification/requirements [27]. An exemplary simplified verification process is shown in

Figure 2.3.

Validation: Validation describes the process of examining whether the expectations and the

specific intended purposes of the customer/developer are fulfilled [27]. In this process,

tests are not performed against individual, concretely derived requirements, but rather an

entire or real system is typically evaluated. An example of a simplified validation process is

shown in Figure 2.3

Safety Assessment: Safety assessment is a widely used term in related work and is conse-

quently adopted as an umbrella term in this thesis. Accordingly, it is used to describe the

process of a safety rating in any form. This measure can be performed both online via

a monitor as well as offline via evaluation tests or detailed analyses. It is important to

note that methods in this group do not necessarily have to be exhaustive or provide a

comprehensive or totaling safety score. Accordingly, the evaluation of a certain aspect

(e.g. a collision risk w.r.t. other TPs) is also covered by this term. However, depending on

the scope and derivation of the measure, it can provide safety guarantees and thus be

qualified as a safeguarding measure.

Safeguarding: In this work, safeguarding describes an extension of a basic “safety assessment”

by further measures that provide safety guarantees. This includes methods which, in addi-

tion to the safety assessment, guarantee by means of suitable measures or observations

in evaluations that a specified part of a system or the entire system operates within a safe

state-space at any time (under given constraints).
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Expectations

Customer
Specification Product

Development

Validation process

Requirements process Verification process

Figure 2.3: Simplified schematic illustration of the difference between verification and validation, based

on [27]. Here shown for a single-stage development process. With multi-layer development

processes (e.g. in accordance with the V-model) the verification can also take place between

different layers against the respective requirement.

Approval: Approval or type approval (also known as homologation) describes the process of

measures that are necessary in a final step for a regulatory permission for market intro-

duction. This process is therefore primarily relevant for systems with a valid safeguarding

concept.

2.2 Automated Driving Software Architecture

ADSs follow the basic robot control paradigm sense-plan-act, originating in the late 1980’s [21,

p. 105]. A widely used adoption of this deliberative scheme for ADSs is shown in Figure 2.4.

In this variant the “sense”-component is split into a “sensors” and “perception” block and the

“act”-component is represented by “control” and “actuators”. In the following, the three (inner)

automated driving software blocks will be outlined briefly along with references to methods that

have been used to date. In this section, the references are limited to the racing domain, which is

also the domain of the use-case in this thesis, without loss of generality (similar SW architectures).

Interested readers are referred to a survey by Pendleton et al. [28] for a comprehensive overview

of all SW components including examples in regular road traffic.

Automated driving software

Sensors Perception Planning Control Actuators

Figure 2.4: Basic automated driving architecture.

Perception: The perception module contains all the functions necessary to perceive relevant

aspects of the environment and to localize the ego-vehicle within it.

8



2 Related Work

In this process, the drivable space is to be identified [29] and, depending on the application

together with further aspects, stored in a map [30, 31]. During runtime, the vehicle uses this

map to plan trajectories in the drivable space and/or to localize itself in it. The localization

is done globally via dedicated sensors (e.g. Differential Global Positioning System (DGPS)

systems) or relatively via Light Detection and Ranging (LIDAR) [32–36] and/or camera

localization [33] by comparing features in the perceived situation with features in the map.

A fusion of multiple sources of localization data is done for instance by a particle [33,

37] or Kalman [35, 38] filter. So-called Simultaneous Localization and Mapping (SLAM)

methods [39, 40] combine mapping and localization by extending the map at runtime.

A further major aspect is to detect certain static objects [37, 41–43] and/or vehicles [44,

45]. This is commonly accomplished using NNs on camera or LIDAR data. The result is

typically a list containing the coordinates and other properties of relevant objects in the

scene.

Planning: The planning module, also known as motion planning module, is responsible for

generating movement plans for the vehicle to follow. In this context, global planning is often

distinguished from local planning.

In global planning, a rough route from start to goal is generated without taking dynamic

obstacles into account. In racing, for example, the global planner generates an optimal

race line for an entire lap. In this process, details such as the exact velocity or acceleration

of the vehicle at individual points are less relevant.

In local planning, dynamic obstacles are taken into account and a detailed trajectory is

generated for a specific, limited planning horizon. The local plan may be similar or identical

to the global plan in the case of no other TPs nearby, but will usually deviate from it in their

vicinity.

Since the use-case in this work is oriented towards the planning module, Section 2.3 details

further on motion planning techniques.

Control: The controller has the task of guiding and stabilizing the vehicle along a planned

trajectory (spatial path and temporal course of velocity). In this process, it is necessary

to generate suitable command signals for the actuators of the vehicle on the basis of the

planning data. A number of approaches have been established for this purpose. Among

the currently studied approaches are classical path tracking controllers [46–51], model

predictive control [52–58], and learning-based methods [59–65].

In addition to controllers that perform the pure driving task, there are also individual

dedicated approaches that investigate special applications, for example, stable drifting [66–

68].

2.3 Motion Planning

In the domain of motion planning, a vast variety of approaches have been developed in the

past decades. Recent surveys [13, 69, 70] distinguished four types of underlying concepts. As

presented in previous work [71], a combination of their findings results in the following four

clusters of motion-planning approaches:

• Sampling-based approaches / incremental search

• Interpolation methods
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• Numerical optimization / variation-based methods

• Graph-based approaches

Besides these classic motion planning approaches, several ML-based approaches are emerging

recently [72]. Subsection 2.3.1 details on the four clusters of classic motion planning approaches,

while Subsection 2.3.2 outlines the findings in the domain of ML-based motion planning. This

section includes references from the field of automated driving in road traffic as well as from

racing.

2.3.1 Classic Approaches

Sampling-based methods incrementally explore the surrounding space by placing samples and

connecting them with path segments. Once the desired goal is reached by repeating this process,

the identified path is further optimized and selected as final solution. Commonly this approach

is used for unstructured or unknown environments [73] and is challenging when targeting the

generation of smooth or curvature minimal paths. The Rapidly-Exploring Random Tree (RRT) is

best known in this domain and often used for global planning tasks [74–76] or between remote

waypoints [77]. Nevertheless, there are approaches [78–81] that investigate the use of RRT as

basis for local planning in simulation.

Interpolation-based methods generate paths or trajectories for given coordinates while fulfilling

given constraints. Therefore, their primary focus is not on the actual planning task, but rather

on the establishment of a smooth transition between multiple coordinates. This is why these

approaches are also found within graph or sampling-based methods when generating the final

path from identified nodes or samples. Among the most known strategies are Béziers [82–84],

polynomial splines [85, 86], and clothoids [87].

Numerical optimization approaches describe the motion-planning task as a mathematical mini-

mization or maximization problem. Since these methods tend to detect local minima only, the

problem is often formulated in a convex manner, which in turn reduces the solution space.

The spectrum of optimization-based motion planning approaches itself is broad and addressed

in a large number of publications. Among these, Model Predictive Control (MPC) is one of the

most common and promising. The most prominent application of MPC is for urban or highway

motion planning problems [13, 69, 70]. Depending on the planning task, different boundary

conditions and requirements have to be met. Optimization-based approaches, including learning

MPC, have been also applied to automated racing projects [88–92]. However, dynamical objects

are not considered in any of these approaches. In order to cope with dynamic objects at high

velocities, far planning horizons are required, which in turn challenge the real-time capability.

While the optimization approaches described above represent local planners, optimization is

furthermore especially popular in the race domain for generating time- [93–98] or curvature-

optimal [99–101] global race lines.

Graph-based methods make use of a spacial or spatio-temporal mesh that overlays the drivable

area. Usually, the mesh is realized in form of a one-dimensional or hierarchical tree, with each

edge assigned to a cost value. Standard search algorithms are used to solve for the path that

minimizes the cost between a start and end node. Graph-based approaches have proven to be

effective for trajectory planning [102–106].

Spatial, one-layered graphs [102–104] are established by sampling smooth transitions to various

laterally and sometimes longitudinally distributed states within the track boundaries. Some of
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them allow for interaction with other dynamic objects within a short time horizon. Gu et al. [105]

stack multiple spatially arranged nodes and obtain a hierarchical tree. The edges are described by

straight line segments, which are used as an input to an adjacent path optimization. McNaughton

et al. [106] add the time dimension to the graph and result in a spatio-temporal hierarchical tree.

The solution to this graph is a trajectory holding a globally optimal velocity profile. However, it

should be noted, that due to the curse of dimensionality, the discretization of time and spatial

domain cannot be chosen arbitrarily small.

Within the Roborace Season Alpha [107], the first full-scale automated racing series, the author

developed a graph-based trajectory planner, that addresses shortcomings of existing approaches

by spanning a spatial hierarchical tree with a far planning horizon [71, 108]. The temporal problem

is solved in an adjacent step. Since a large portion of the real-world evaluation data (Chapter 6)

is generated with this planner, the concept is outlined in the following. A detailed elaboration can

be found in [71]. In order to reduce the online computation load, the planner is split into an offline

and online phase (Figure 2.5a).

Generate state lattice

Calculate splines

Calculate cost

Offline

Fetch updates

Local node template

Set action templates

Online

For every primitive

Execute graph search

Calculate curvature

continous splines

Calculate

velocity profile

(a) Flowchart of the graph-based local trajectory planner.
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(b) Excerpt of a graph mesh. Edges originating from an

arbitrarily chosen node are highlighted in orange.

Figure 2.5: Flowchart and lattice visualization of the developed graph-based trajectory planner [71].

The offline process starts with generating a state lattice overlaying the whole driving space.

First, the imported track, defined by a reference line (Refline) holding normal vectors (Normals)

with a specified extension to the left and right (Bounds) [109], is used to set the graph’s nodes.

Therefore, equally spaced nodes are distributed on the track’s normal vectors. The discretization

is chosen around the race line of the global planner in such a way that it is guaranteed that one

node per layer lies on the race line (Raceline). Second, edges are generated by calculating C1
continuous cubic splines between the nodes of adjoining layers (Figure 2.5b). Finally, each edge

in the graph is linked to a cost value, which represents the effort of the vehicle following that

segment. The curvature as well as the lateral displacement to the time-optimal race line are one

of the most crucial parameters defining the cost of an edge.

11



2 Related Work

In the online phase, a set of trajectories is generated by relying on the offline graph. The following

steps are executed in an iterative manner: First, a local portion, ranging from the pose of the

ego-vehicle to a specified planning horizon, is pulled out of the full offline graph via a local node

template. Second, the nodes and edges in the planning range are manipulated (filtered out or

altered cost) based on other objects and behavioral intents. For example, in order to overtake

another vehicle on the left side, the vehicle to be overtaken (including its prediction) as well as

all edges to the right of the vehicle are removed. That way, it is possible to plan various action

primitives, like “straight”, “left” and “right” (here called action templates). Third, a cost optimal

path along the graph’s edges is found in the remaining set of edges by executing a graph search

(e.g., Dijkstra or A*). Finally, the generated paths are refined by calculating a C2 continuous

spline and completed to a trajectory by computing a matching velocity profile. The velocity profile

thereby maximizes the feasible acceleration by applying a forward-backward solver [101].

2.3.2 Machine-Learning-Based Approaches

Classic motion planning algorithms may reach their limits in daily traffic soon. According to

Nessler [110], rule-based, conventional, path planning is no longer sufficient when aiming for

complex planning tasks in an all-encompassing environment with countless constellations and

circumstances. According to his findings, ML methods are promising in this regard, but still need

time for development and elaboration. In the following, an insight into current approaches for

ML-based motion planning is provided and their challenges are pointed out.

In the late 1980s, the first end-to-end approach called ALVINN [111] was presented for the

navigation of an ADS. A NN is fed with image data and LIDAR data and generates a steering

angle from this, i.e. combining perception, planning, and control in one single module. NVIDIA

published a similar approach with extended computing capacities and therefore larger NNs in

the modern era [112]. End-to-end approaches have also been tested in a racing environment, for

example in a realistic racing computer game [113–115] or with small scale vehicles [116]. While

end-to-end approaches deliver remarkable results given their straightforward architecture, the

approaches still suffer from lack of robustness [112]. In addition, there is the problem that the

system is not interpretable and no foresighted planning is generated. Thus, individual incorrect

decisions can lead to abrupt critical maneuvers without any feasible emergency maneuver.

Accordingly, the approaches of this category are not in the scope of this work, as is the case

with safety experts from well-known Original Equipment Manufacturers (OEMs) [117].

By contrast, ML approaches that only perform individual tasks of the driving stack offer more

transparency. In the area of behavior planning, deep Reinforcement Learning (RL) approaches

can be found. In a merging scenario, for example, such approaches are used to generate the

decisions in the merging process using previously learned experiences [118–120]. When using

ML for pure behavior planning, decision making may be not interpretable, but a trajectory can

still be generated that describes the future intended behavior of the ego-vehicle.

However, there are also approaches that generate trajectories, similar to classical approaches.

Cai et al. [121] use several NNs that generate trajectories from actual camera images. Another

concept that Waymo has presented is trajectory planning using NNs [14]. In this process, the

environment is represented in a simplified bird’s-eye view and made available to the NN as input.

The NN then generates trajectory points based on previously learned weights. A similar approach

is taken by Chen et al. [122]. While in these approaches, as with end-to-end approaches, the

decision-making itself is not interpretable, there is a trajectory that clearly describes the future
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intentions of the vehicle. By planning ahead in this way, there is a chance to identify abrupt or

incorrect decisions upfront and to trigger appropriate emergency maneuvers.

Since a trajectory planner behaves differently depending on the situation, the risk that the system

might behave critically in certain situations is to be minimized. This applies to both classic and, in

particular, AI-based planners. Since there is a wide variety of possible scenarios and situations an

ADS could face, safeguarding is a major ongoing challenge. In the following, existing standards in

the area of safeguarding and approval are first outlined and then their constraints and limitations

are discussed.

2.4 Automotive Safety

Within the engineering domain, “safety” is understood as the absence of unacceptable risks [123,

p. 3]. Since unacceptable risks are intolerable in public traffic, safety assessment and approval

for ADSs is one of the key factors influencing whether such agents will hit the public roads or

not. Industry and several research institutions proposed theorems, methods and approaches

addressing this domain [124]. The following sections will cover existing safeguarding standards

and procedures applied in industry (Subsection 2.4.1) as well as published safety assessment

techniques in the research domain (Subsection 2.4.2).

2.4.1 Regulations and Approval Procedures

During the 20th century, few, if any, electric or SW parts have been embedded in commercial

vehicles. Thus, proper mechanical design with high safety factors ensured safety. Up till now,

opposed to electrical parts, properly built mechanical devices are considered as safe and do not

need any additional safety precautions [23]. Once Electrical and/or Electronic (E/E) systems are

added, it becomes clear that these systems continue to be vulnerable to failure or misbehavior.

Therefore, before commercial vehicles are introduced to the market, they have to pass a type-

approval (also known as homologation or certification) that guarantees a minimum level of

safety. For this approval, the legislator defines a set of requirements that have to be verified

within specified tests. Based on the country, the homologation is achieved by self-certification

(executed by the OEM) or certification by an independent third party [125]. The latter one is

common in Europe and executed by a technical service. The framework for the tests is provided

by the United Nations Economic Commission for Europe (UNECE). As part of the so-called

1958 Agreement [126], there are 159 regulations that have to be fulfilled before a vehicle can be

released for sale (as of September 2021). However, SW approval does not guarantee safety

thoroughly, but rather provides a confirmation of a minimum level of safety by testing selective

samples. A comprehensive safeguarding has to be carried out by the OEM in the context of

product liability. This aspect—the creation of a system that is safe and ready for type approval

and certification—is also the focus of this thesis as opposed to the more political venture of

implementing type approval and certification.

ISO Standards

In the spirit of uniform safety and security standards, the automotive industry subsequently

launched specific standards that provide recommendations for detecting possible hazards and

developing suitable steps to ensure a certain degree of safety. In this domain, safety and security
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is considered as the interplay of three partial aspects (Figure 2.6), each addressed in a dedicated

standard [123, 127]:

• Functional Safety (FuSa) - ISO 26262 [23]

• Safety of the Intended Functionality (SOTIF), also known as “safety in use” and

“functional performance” - ISO/WD PAS 21448 [128]

• (Cyber-)Security - ISO/SAE AWI 21434 [129, 130]

Safety & Security (German: „Sicherheit“)

Safety (Cyber-)Security

Functional Safety

(FuSa)

Safety of the Intended 

Functionality (SOTIF)

System

Hazard!

System

Hazard!

System

Hazard!

Figure 2.6: Overview of the three types of safety and security with associated standards. The meaning

of the individual terms is illustrated by a symbolic system that transitions into a hazard. In

this context, a possible cause of error and its location is represented by an orange lightning

bolt.

This thesis addresses the “operational safety”: FuSa and SOTIF, excluding the field of security.

Nevertheless, it should be noted that cybersecurity (protection against potential hazards caused

by external interventions) is an important aspect and hosts a large field of research itself [131,

132]. Furthermore, since safety approval of HW components, including E/E HW tackled in the

ISO 26262, is state of the art (as elaborated in the first paragraph), the author narrows the focus

on SW development. This branch of safety is called algorithmic safety in the context of this thesis.

In the following, the two most relevant standards ISO 26262 and ISO 21448 along with their core

topics FuSa and SOTIF are outlined1.

The goal of the FuSa (Figure 2.6, left) is to protect against potential hazards due to faults in

the system. The ISO 26262 is designed to specify and support FuSa in the entire life-cycle

of electronic and electrical safety-related systems in consumer passenger cars. In this regard,

the norm is aligned with the V-model [134] and deals with functional safety aspects on every

development step in the model (including requirements, design, implementation, integration,

verification, validation, and operation). Furthermore, it defines an approach to determine and

rate the risk of individual system functions with Automotive Safety Integrity Levels (ASILs). The

ASILs—four levels, ranging from A to D—are used to assign the required safety measures for

the rated item in order to attain a defined acceptable residual risk. In addition, the norm specifies

validation procedures ensuring an acceptable and sufficient level of safety.

The goal of SOTIF (Figure 2.6, middle) is to protect against potential hazards caused by the

system without a fault. The ISO 21448 covers the central aspect of SOTIF, which is the goal of

1It should be noted, that further standards like the UL 4600 [133] exist, but are less common in the European

countries.
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finding a way to specify, develop, verify, and validate a target function such that it is considered

sufficiently safe. The causes for unacceptable risks are sought in particular in inadequacies of

the intended function or through foreseeable misuse by the operator. In order to turn for the

better, the standard provides information on the desired features of a product as well as on a

holistic testing and development process, reducing the risk of missing out some risks. In doing

so, the following four main fields are worked with: known safe scenarios (to be maximized during

development), known uncertain scenarios (to be mastered), unknown safe scenarios (no further

measures), and unknown uncertain scenarios (to be uncovered and moved to any of the other

classes).

In the course of this thesis, the scheme used to reference individual clauses within the standards

is adopted from the standards themselves. Accordingly, “ISO 26262-4:2018, 8.4.3.4” refers to

clause 8.4.3.4 in part 4 of the 2018 version of ISO 26262.

Limits of the Standards

The further the development of automation advances, the more complex becomes the SW to

fulfill the driving task. Some tasks are targeted by AI algorithms, with the underlying decision

metric not being explainable by human experts [135]. The current standards—especially the

ISO 26262, derived from principles developed in the 1990s—reach their limit at that point [117,

136–143]. The following four paragraphs highlight some exemplary weak spots of the ISO 26262.

New types of hazards.According to the ISO 26262, harms are “caused by malfunctioning behavior

of the item” [23]. However, following the findings of Salay et al. [136], ML can cause new types

of hazards. For example, faults in the reward function of a RL framework can cause the agent to

negatively affect the environment in order to achieve its goal [144, p. 3]. An illustrative example

is a hypothetical vacuum cleaner robot, which is equipped with a RL function: If the reward

is defined by the amount of dirt collected, the robot will adjust its behavior to primarily clean

particularly dirty areas and skip other areas. A suitably selected reward function would therefore

have to aim for reduction of uncleaned areas. Since these behavioral changes take effect during

online training, after the validation phase, standard validation procedures are undermined and it

cannot be guaranteed that the system stays within safe bounds [145, 146].

Training data hinders specification. The ISO 26262 builds upon the V-model, which is based

on the premise that a component is fully specified on any level in the process. A key principle

in the standard is to verify every refinement against the specification of its parent [147]. Only

if this connection is intact, it is possible to trace and link hazards or safety goals to the actual

implementation. However, when making use of ML, the algorithms alone do not allow for a

detailed specification of the behavior. The behavior of the SW is significantly affected by the

training set, which inevitably has gaps and no proof of consistent hazard avoidance can be

provided [136, 148, 149].

Transparency of algorithms is lost. In order to have a manageable, contained, and safe SW

architecture, the ISO 26262 demands the use of a modular structure. Furthermore, the standard

restricts the allowed size of these modules in order to keep the transparency and internal

cohesion high. However, when deploying complex, stochastic, or even AI-based approaches,

even a single module can become non-transparent and leave the range of what can be explained

by human experts [146, 148–151].

Development techniques tailored for manual vehicles. The current version 2018 of the ISO 26262

is designed for manual vehicles with simple algorithms only. Within part 6 of the standard, SW
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development techniques are recommended in order to mitigate the onset of errors. However,

according to Salay et al. [136], several of those techniques cannot be applied to complex or

ML-based approaches. Likewise, the ASIL assessment in the concept phase of the standard

is strongly focused on manual vehicles. The controllability is one of the three evaluation pillars

for this metric and describes the handling of a hazard situation by the driver. Monkhouse et al.

[137] emphasize that in the case of SAE level 3+ vehicles, the concept of controllability is not

designed for ADSs and needs to be adapted.

The ISO/WD PAS 21448 (SOTIF) differs a lot from the ISO 26262 in regards of instructions

and applicability to SAE level 3+ vehicles. The SOTIF standard allows the application for ADSs,

although further measures might be necessary in individual cases (ISO/PAS 21448-1:2019 [128]).

Therefore, the standard faces fewer issues compared to the ISO 26262, as elaborated above.

However, the first version of the standard is vague in its recommendations or requirements and

leaves the user a lot of flexibility in interpretation. Therefore, concrete implementations have not

been made so far.

In conclusion, the following two key properties of a driving function hinder the usage/integration

according to existing standards:

Online adaptation: Systems that continue learning after the validation phase can develop an

unsafe behavior (new types of hazards and no specification possible due to training data).

Complex or non-transparent: The module cannot be formally approved by an expert (non-

transparent functions and standards tailored for manual vehicles).

As a consequence, new safeguarding approaches have to be developed. The following section

gives an overview of existing safety assessment approaches in the research domain.

2.4.2 Safety Assessment Techniques

In related work, there exist multiple techniques assessing SOTIF- and FuSa-related capabilities

of ADSs. Each of the existing approaches copes differently well with the issues elaborated in

the previous section. This section gives an overview of existing approaches. Both currently

applied methods and active research fields are listed. Not all of the approaches shown have

been fully solved and guarantee safety. Consequently, the methods are classified with respect to

their challenges and the set of techniques further investigated in this thesis is narrowed down

accordingly. In this spirit, the author fused and clustered the approaches (Figure 2.7) summarized

in existing survey papers [152–156]. Each of the clusters is further elaborated in the following.

Validation/Tests

One of the most prominent approaches to verify sufficiently safe behavior is based on tests.

Initially, these tests took place primarily in the real world, but recently concepts for simulative

testing have also been developed. The following paragraphs cover prominent techniques from

both domains.

A straight forward real world approach to prove that an ADS is equally safe or better compared

to human drivers is to produce a statistically significant result based on kilometers driven. Since

human drivers are on average involved in fatal accidents every 614× 106 km on highways, a

statistically significant statement for an ADS outperforming a human can only be made with

several billions of test-kilometers driven in autonomous mode [157]. This phenomenon is referred
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Figure 2.7: Clustered overview of existing safety assessment approaches.

to as the “approval trap” by Winner [19], since in order to generate that many test kilometers

market introduction would be required before approval.

Due to this contradiction there are attenuated approaches that pursue this goal. One method is

termed “shadow mode” and considers the use of the sensors of a level-5-capable vehicle that

runs in manual mode. While a human driver steers the vehicle, the perceived sensor data is

used to calculate maneuvers, which are then evaluated for possible collisions. This approach is

not only introduced in research [158], but also Tesla claimed at the “Tesla Autonomy Day” [159]

that this technique is applied.

A further approach is the staged introduction, where the ODD is deliberately limited (e.g., initially

only on the freeway up to 60.0 kmh−1 or a well mapped specific region), such that considerably

less tests are necessary in advance. When the public fleet has accumulated many operating

hours in the limited ODD, the ODD can be expanded step by step [160, p. 16, 161].

Even though the two methods presented are already actively applied and are achieving first

successes, they bear limitations. With the shadowmode, the prediction of other TPs assumes/sim-

ulates a behavior that will not always correspond to reality. Furthermore, the actual behavioral

reactions of the TPs to a deviating (calculated) behavior of the ego-vehicle compared to the

human driver are missing. For these reasons, such tests primarily validate the virtual version of

traffic but less the actual reality. Also, the staged introduction only scales up to a certain extent.

Since highly accurate maps and specific tests have to be carried out on all routes for each of

these stages, expansion is only possible on a feasible scale.

Besides relying on long runs in the real world, a well-established procedure examines whether

the specified requirements of a driving function are met. Special test cases and maneuvers are

specified, which are then evaluated on a test site. For ADAS in particular, this principle has been

applied and is defined in corresponding UNECE regulations (e.g. UNECE-R 131 for emergency

brake assistants). Ponn et al. [162] investigated a method to extend such test procedures towards

approval of ADSs.

The challenge of this approach is scalability with the complexity of automated driving. Previous

ADAS are of a relatively simple nature and come with clearly specifiable functionalities in a

defined ODD. In this context, it is possible to cover almost all boundary conditions with dedicated

tests at a manageable cost. However, with complex SW for ADSs, which is supposed to react

adequately in a multitude of scenarios, it is no longer possible to specify these requirements.

Furthermore, there is the problem that once a fixed set of scenarios would be defined that the
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vehicle has to pass, it is likely that the OEM would develop the vehicle in a target-oriented way.

Thus, over-fitting to the test scenarios is possible. Accordingly, the vehicle could master the test

scenarios, but fail to respond adequately in other scenarios.

By using simulation, developers believe that they will be able to master the challenge of approval.

The advantages compared to real tests are obviously the comparatively low costs, the possibility

of parallel execution, and the abstinence of risks (both injuries and costs). Nevertheless, there

are still some difficulties that need to be overcome.

One approach in this area is traffic simulation. The goal is to simulate real traffic in an artificial

world and test the ADS in it [163, 164]. Commonly, however, the intention here is not to test a

single ADS, but rather to assess potential road safety improvements in mixed or purely automated

traffic.

Another approach with many supporters is scenario-based testing. The goal is to generate or

automatically extract critical or challenging scenarios for vehicle testing [165–179]. The idea is

that the number of necessary driven kilometers or operating hours can be significantly reduced

because instead of “boring” driving segments only relevant sequences are tested. Ponn [179,

p. 7] depicts these frequency ratios with a pyramid (Figure 2.8a), whereby corner cases (most

challenging) and challenging scenarios (difficult for an ADS to master) occur significantly less

frequent than the remaining scenarios. Consequently, with the same number of tests, they allow a

statement about the safety of the entire system to be made significantly earlier. Another important

aspect of scenario coverage is the analysis of yet unknown scenarios, as unsafe situations may

arise in these cases. The ISO 21448 [128, p. 7] divides the entire scenario space into known and

unknown situations as well as into safe and unsafe situations (Figure 2.8b) and aims to reduce

unsafe and unknown areas. These are then to be converted into safe known areas, so that this

class represents the largest portion. Most of the approaches are based on simulative scenarios,

because in this case the boundary conditions can easily be defined. Nevertheless, there is also

the possibility to map the found scenarios on a test field and evaluate them in the real world.

All scenarios

Relevant scenarios

Challenging 

scenarios

Corner cases

(a) Illustration of the ratios between chal-

lenging and corner case scenarios to all

scenarios, based on [179, p. 7].

Unsafe Safe

Known 2 1

Unknown 3 4

1

2

3

4

(b) Segmentation of the situation/scenario space in terms of known/unknown
and safe/unsafe, based on [128, p. 7]. The outermost border of the left

representation encompasses the set of all possible scenarios/situations.

Figure 2.8: Subdivision of scenarios/situations with respect to distinct characteristics.

The challenges of simulative testing [180] are, on the one hand, the need for a sufficiently detailed

representation of reality. Only if this gap is small enough it is possible to draw conclusions

about the real system once a vehicle has been approved in simulation. Riedmaier et al. [181]

propose a method to address this challenge, with sensor simulation in particular remaining

difficult/challenging. On the other hand, as with the real tests, the question of the number of

scenarios that have to be passed for approval is still an open research topic [167, 169]. In the
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process, the selection of the types of scenarios is also still an active research topic and there is

a residual risk of omitting individual situations.

In summary, the validation and testing methods offer innovative and promising advancements.

However, all methods still face open challenges. In addition, the methods are not suitable to

sustainable validate online learning AI, as the properties of the function may change for the

worse after passing the tests.

Analytic / Proof

Especially for simple functions, it is possible to formally prove that a system is safe within an

ODD. But there exist approaches [182] that aim to analytically prove safety for more complex

systems.

Shalev-Shwartz et al. [20] use theorems for worst-case behaviors of all traffic agents in order to

formally prove safety for a given planner based on mathematical induction. In a similar manner,

theorem provers have been applied to attest safe conduct of ADASs [183, 184]. Besides, Linear

Temporal Logic (LTL) is used to specify the automated behavior and formally construct safe

functionalities [185, 186]. In some scenarios it is possible to determine barrier certificates, a

function that guarantees to stay within safe states [187, 188].

However, the aforementioned approaches scale poorly with increasing function complexity and

cannot provide safety guarantees for online-learning-based systems. Nevertheless, there exist

some approaches aiming for safe AI. Survey papers [189–191] provide an overview in this

domain. Hendricks et al. [192] target explainable and transparent AI, which in turn would benefit

analytical approval. A classification algorithm is used to generate a descriptive statement about

the reasons the underlying AI uses for generating a certain decision. It should be noted, that

currently this method relies on another ML principle and therefore is hard to approve in total. A

different approach is to establish a safety certification or verification for AI [193–196]. However,

this is currently only possible for selected properties of a NN or limited to simple model structures.

In summary, analytic proofs work well for manageable function blocks but do not scale well to

complex functions or AI. Methods targeting such properties are an active research domain.

Online Monitoring

Some authors [148, 18, p. 13] claim that current approaches are not able to cope with online

learning methods. The reason for this is that the underlying system changes as it learns and

thus invalidates all static validation done beforehand. In order to safeguard online learning or

frequently changing code, system monitoring at runtime is suggested.

Since this type of safety assessment method is the only promising technique when facing online

learning methods, related work in the field of online monitoring is analyzed thoroughly in the next

section.

2.5 Online Monitoring

The findings of Subsection 2.4.2 show that online monitoring is the most promising approach

for safeguarding of online learning and frequently changing functions. Accordingly, existing
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approaches are reviewed and evaluated in this section. In the literature analysis, primarily

methods used in the field of automated driving and motion planning (the use-case elaborated in

the course of this thesis) are evaluated. However, isolated work relevant from other domains, for

instance robotics and aviation applications, are also incorporated.

The remainder of this section details on related work in the two identified main clusters: risk

assessment and OV methods (Figure 2.7). The stochastic online monitoring methods primarily

calculate numerical representations of risk and are therefore referred to as online risk assess-

ment (Subsection 2.5.1) in this section. The deterministic online monitoring methods examine

against specified requirements and are therefore referred to as OV (Subsection 2.5.2) in this

section. Finally, an overall valuation and classification of the presented approaches is given in

Subsection 2.5.3.

2.5.1 Online Risk Assessment

In the domain of stochastic online monitoring approaches, a typical intention is the calculation of

the collision probability or the collision risk. Various underlying techniques are used; the author

identified five groups of approaches. Their basic principles are presented in the following. The

first three clusters (maneuver prediction, stochastic occupation, and motion modeling) rely on

a projection of other TPs into the future in order to relate them to the ego-vehicle for a risk

assessment. The remaining two clusters take a different approach and classify into risk classes

instead of a scalar risk value or calculate a scalar risk score based on available data without

anticipating the position of the TP.

Maneuver prediction: One group of authors use various maneuver recognition algorithms

to predict a TP’s motion and to conclude in a collision probability with the ego-vehicle

(Figure 2.9). The different underlying principles and nuances are summarized below.

Maneuver prediction

Figure 2.9: Illustrative sketch of underlying principles for the maneuver prediction based risk assessment

approach with the ego-vehicle in blue and TP in gray.

Schreier et al. [197] and Schreier [198] use Bayesian inference to select the most probable

maneuver among a set of possible maneuvers for all vehicles in the scene. The most

probable maneuver is then used to calculate a collision probability by using a Monte Carlo

simulation. Annell et al. [199] apply a similar strategy, but use an intention estimation

paired with a probability field for movement prediction. Shangguan et al. [200] rely on

a long-short-term-memory network to determine the movement of other road users, but

then also use Monte Carlo simulation to determine the collision risk. Houenou et al. [201]

apply formalized policies to reason from vehicle motion in relation to road geometry to

detected maneuvers. The recognized maneuvers are then described by cubic polynomials.

A combination with a more accurate physics-based prediction in the short term increases

the accuracy. Again, Monte Carlo simulation is then used to infer the collision risk. Zhang

et al. [202] recognize maneuvers with a simple temporal-spatial correlation of reference

maneuvers and current driving history. Based on the detected maneuver, the motion is
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then predicted with an associated polynomial. As with the approach of Houenou et al. [201],

in the short time horizon, a more accurate physics-based prediction is incorporated. A

proposed risk indicator is calculated by correlating the other vehicles’ prediction with the

ego-vehicle maneuver.

Stochastic occupation: Another group of authors relies on stochastic prediction of other TPs

without identifying a specific maneuver. In comparison to the motion prediction, here the

spatial distribution of the most probable areas to occupy is determined by stochastic means,

instead of deciding on a maneuver. The underlying principles used are reviewed in the

following.

Lambert et al. [203] overlay the ego-motion as well as the position or motion of obstacles

with Probability Density Functions (PDFs) (Figure 2.10a). From the proportion of overlap

of the own PDF with that of the object vehicles, a collision PDF is calculated. Thus not only

the probability of a collision is determined but also its most probable location. Ward et al.

[204] perform a Monte Carlo simulation on the covariance of a Kalman filter based motion

prediction result, while Eidehall and Petersson [205] and Wang et al. [206] perform the

simulation for all feasible primitives (Figure 2.10b).

Stochastic occupation

Superimposed PDFs

(a) Stochastic occupation (PDF).

Stochastic occupation

Monte Carlo simulation

(b) Stochastic occupation (Monte Carlo simulation).

Figure 2.10: Illustrative sketch of underlying principles for two stochastic occupation based online risk

assessment approaches with the ego-vehicle in blue and TP in gray.

Motion modelling: Besides the detection of a single maneuver and the stochastic mapping of

the total set of most probable states, some approaches pursue the modeling of several

maneuvers. In doing so, individual maneuver options are predicted and usually included

in the risk assessment according to their likelihood of occurrence. In the following, the

underlying methods for some approaches are discussed.

Althoff et al. [207] and Kim et al. [208] use Markov chains (Figure 2.11) to generate a

stochastic reachable set, modeling the probability of future occupied states for other TPs.

In order to result in a collision probability, ego-trajectory candidates are matched against

the determined stochastic reachable sets. Laugier et al. [209] also work according to the

same basic principle, but extend the model with hidden states. Here, a hidden Markov

model is used to model possible maneuvers of the TP and derive concrete realizations with

Gaussian processes. The collision risk is then determined according to the probabilities

for all individual actions or based on the most probable maneuver (this would then count

towards the first category of pure motion prediction).

Classification: Another group of authors propose algorithms that assign a certain risk class to

every situation on the basis of defined characteristics or classifiers. In this process, the

movement of the TP does not always necessarily have to be predicted.

Wardzinski [210] use a Constant Velocity (CV) model to predict the other vehicle’s motion

and then classify the situation based on the calculated minimal distance in dedicated

risk classes. Tami et al. [211] and Bao et al. [212], on the other hand, build on dedicated
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Motion modelling

Markov chains

Figure 2.11: Illustrative sketch of underlying principles for the motion modeling (Markov chains) based

approach with the ego-vehicle in blue and TP in gray.

classifiers that assign a risk class based on the current situation and trained behavior. Tami

et al. use an Adaboost classifier, while Bao et al., Baur use a random forest classifier. Yang

et al. [214], as in the previous category, model the behavior of the TP with a hidden Markov

model. However, attention is paid to unusual behaviors. If a vehicle does not behave

according to the model, an anomaly is assumed and the vehicle is put on alert accordingly.

Three different levels of risk are differentiated.

Indicators: A widely used technique is the use of indicators to quantify risk. In particular, the

simplicity of use, due to the absence of complex prediction algorithms, and low computation

time stand out. In the following, a compact summary of relevant work is given.

One of the best-known indicators is the time-to-collision, which indicates the relative time

a collision would occur based on the current velocity difference and bumper-to-bumper

distance, given the assumption of maintaining a collision course and constant velocities.

St-Aubin et al. [215] investigate this and other related indicators. Mattas et al. [216] and

Aramrattana et al. [217] present new indicators that promise improvements over existing

approaches. A more pragmatic and empirically driven approach is taken by Reschka et al.

[218]. In their approach, threshold values for determined performance indications are used

to infer an increased risk and to take appropriate behavioral measures. For example, the

maximum velocity is reduced depending on the temperature in order to counteract the

increased risk of reduced grip.

A first summary of the online risk assessment indicates that the focus is mainly on the probability

of collision between a TP and the ego-vehicle. Therefore there is no focus on safeguarding. In

this course a holistic approach, covering all aspects required for safe operation, is not intended

either.

2.5.2 Online Verification

Besides the risk assessment approaches introduced in the preceding section, which try to predict

the collision risk, there are also formal methods, which aim for a verification against specified

requirements at runtime. The identified clusters of techniques and their properties are elaborated

in the following.

Monitor concept: There are authors that suggest the use of an OV monitor in accordance with

the standards and the objective of type approval. The sources are briefly referenced below.

Hörwick and Siedersberger [219] provide a high level description of safety observers without

going into details. However, this concept demands the online monitor to be developed in

accordance with the standards. Feth et al. [220] describe a concept for a “safety supervisor”

for forward collision mitigation capable of safeguarding AI-based functions. Again, although

22



2 Related Work

the concept is still mainly described in a superficial way, the conformity with the standards

and the intention for approval are mentioned.

Modal logic: A larger number of approaches use modal logic to verify time sequences and

processes against a given specification.

Linear Temporal Logic (LTL) [221–223] and Signal Temporal Logic (STL) [224] are one of

the most prominent approaches to define and monitor temporal flows. Kane et al. [221]

monitor with a LTL based monitor the validity of switching operations between automated

and manual modes as well as heartbeats to detect dropped packages during transmission.

Esterle et al. [222] present a semantic abstraction of traffic and applicable traffic rules with

LTL and check online whether the maneuvers comply with the formalized regulations. For

example, the approach was used to verify the traffic rule that prohibits overtaking via the

right lane on the German Autobahn. Mao and Chen [223] specify desired characteristics

of an adaptive cruise control system and formalize them using LTL. At runtime, it is then

verified whether the system acts according to the specification. Watanabe et al. [224]

describe the general application domain of STL and show an example using the logic to

avoid collisions. Maierhofer et al. [225] use a further variant of the temporal modal logic,

the so-called metric temporal logic. The authors formalize the traffic rules that apply on the

German Autobahn and check their compliance at runtime. Xu et al. [226] use a custom

defined spatial logic to verify behavioral actions like entering a roundabout. Verification

logic has also been applied in the aviation domain [227].

Formal rules: Another group of authors mathematically formulate necessary boundary con-

ditions, for example, distance to the vehicle in front, which has to be met to ensure safe

operation (Figure 2.12a). At runtime, compliance with these boundary conditions is checked.

In the following, studies in this category are listed.

Shalev-Shwartz et al. [20] address the approval aspect with a formal mathematical ap-

proach based on worst-case assumptions, called Responsibility-Sensitive Safety (RSS).

In longitudinal and lateral direction, a required safe distance based on the current veloci-

ties, brake potentials, and reaction time is designed. The authors provide a proof based

on mathematical induction. Chai et al. [228] investigate the application of RSS to online

monitoring of an adaptive cruise control system. Orzechowski et al. [229] also apply the

RSS framework and combine it with lane-based reachable sets to achieve safe behavior

particularly at intersections. Grieser et al. [230] propose an online monitoring approach that

guarantees safe operation for an end-to-end learning approach. For this purpose, bound-

ary conditions to be met, such as stopping distance and track geometry, are correlated

with the desired actions and accordingly permitted or denied. A similar method is used

by Mirchevska et al. [231] to verify the generated maneuvers of a deep learning based

planner.

Reachable sets: Reachable sets are used to determine all states that can be physically reached

by a TP, i.e., taking into account all possible combinations and sequences of control

variables such as acceleration, braking, and steering. Figure 2.12b sketches the sets of all

reachable states of a TP at different successive time intervals with orange patches. Further

details drawn from related work on this method are described in Subsection 5.3.2. As long

as the driving tube of the planned trajectory of the ego-vehicle does not intersect one of

the reachable sets of other TP, a collision with it is guaranteed to be excluded. For this

reason, this method has a great importance in the field of safety guarantees and has been

investigated and extended by a number of researchers.
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Formal Rules

𝒅
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(a) Formal rules.

Reachable Sets

(b) Reachable sets.

Figure 2.12: Illustrative sketch displaying the underlying principles of two OV approaches with the ego-

vehicle in blue and TP in gray.

On the basis of Althoff [187], a number of approaches focus on the application of reachable

sets [232–239]. With this method all reachable states of other TPs within a temporal

interval are formally determined with an underlying dynamic model. The actions of the

ego-vehicle falling in the same temporal domain are then verified against these sets. In

addition to the dynamic collision analysis, some of the approaches also consider other

aspects such as vehicle dynamics or adherence to track limits. Du et al. [240] investigate

the application of reachable sets to pedestrians in order to make safety guarantees in road

traffic involving pedestrians. The application thereby demonstrates the overall applicability

of the approach. Also for safety guarantees regarding collisions with other TPs when

employing RL planners, reachable states were used in the work of Krasowski et al. [241].

Kojchev et al. [242] pursued a slightly different approach but still with the same basic idea.

Here, reverse reachable sets are used to guarantee safe behavior. Starting from a safe end

state, a set of states is determined in reverse that have to be passed by the ego-vehicle

trajectory in order to be considered safe.

Compared to the online risk assessment methods (Subsection 2.5.1), some approaches in

the OV domain support type approval or consider applicable standards. However, none of the

approaches covers both applicable standards and a detailed implementation to a desired extent.

The following section details more on the open challenges and strengths of the presented

approaches.

2.5.3 Overall Valuation and Classification

In this section, the findings of Subsection 2.5.1 and Subsection 2.5.2 are summarized, the further

focus within these approaches is derived, and the missing aspects in the state of research are

highlighted.

To give this objective more clarity, the relevant papers from related work are clustered and

assessed in Table 2.1. In this context, four essential aspects are assessed. Two of them evaluate

the applicability and preparation for approval. On the one hand, it is assessed whether the

applicable standards were referred to and taken into account and, on the other hand, whether the

central aspect of holistic coverage (not leaving selected aspects out) is addressed. As previously

elaborated (Subsection 2.4.1), in ISO 26262 and ISO PAS 21448 the identification of all aspects

that constitute safety or risks using structured methods is fundamental. Two further aspects

assess the maturity of the work to illustrate whether it is a first concept or whether extensive

testing has already been carried out. In this sense, the maturity of the method as well as the

scope of testing is evaluated. In detail, the following four criteria (first column in Table 2.1) are

graded:
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• Approval/standards: Rating on a scale from approval or applicable standards not

being addressed in the publication ( ) up to a full consideration and implementation

( ).

• Holistic approach: Assessment on a scale from only a single safety aspect being

considered ( ) up to a comprehensive systematic coverage ( ).

• Degree of maturity: Evaluation on a scale from rough concept ( ) to detailed

real-time capable implementation ( ).

• Extent of testing: Assessment on a scale from theoretical consideration ( ) to

validation on real vehicles ( ).

A detailed specification of the individual evaluation levels can be found in the Appendix in

Table A.1. In the following paragraphs, the previously presented work is reviewed and briefly

classified in written form in addition to the detailed evaluation in Table 2.1.

Table 2.1: Overview and evaluation of the addressed aspects in related work regarding online safety

assessment of trajectories for ADSs. Related work is clustered into sections (top two rows)

and rated against four metrics (first column). The resulting rating is indicated via Harvey Balls

( – not addressed to – comprehensively addressed) along with the brightness of the

color in the cell (from light to dark). Details on the rating metric can be found in Table A.1.

Each cell with a Harvey Ball holds the rating for the corresponding metric and method cluster.

The smaller (sub)cells below each Harvey ball cell hold the ratings of the individual papers

via encoded colors only. The subcells are sorted from left to right according to the papers

referenced in the table header and are thus also assigned to a single paper along a vertical

line. The cluster rating is obtained by taking the rounded mean value of the individual ratings.

0 0 0 0 0 3 0 0 1

0 1 1 1 1 2 0 1 1

3 3 3 3 4 1 4 3 3

2 3 3 2 2 1 2 2 3

30→1→2→3→4
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Motion

modelling

[207–209]
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ification

[210–214]
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[215–218]
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concept

[219, 220]
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[221–227]

Formal

rules

[228–231]

Reachable
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Legend:
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Comprehensively

addressed
Averaged cluster rating

Individual paper rating

The risk assessment methods have their strengths in the area of collision assessment among

different TPs. Numerous approaches have been established here. While all of the maneuver-

prediction-based approaches are implemented thoroughly and evaluated at least in simulation,

all of them only cover few aspects of safety (most of them even only one: a collision with

other TPs) and do not tackle the aspect of type approval or applicable standards. As with the

maneuver recognition approaches, the publications in the domain of stochastic occupation

prediction provide a detailed implementation and evaluation, but solely focus on the dynamic

collision aspect without the type approval in scope. Following this scheme, neither applicable
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standards nor holistic coverage are in the scope of motion modeling approaches. Some of the

classification-based approaches were primarily evaluated in simple simulation environments only.

However, in terms of the overall evaluation, the lack of a holistic treatment and approval targeting

is more striking. While the indicator-based approaches are for the most part fully implemented

and are not prone to computational time problems, holistic coverage is clearly a problem, as

only individual aspects are taken into account and correlations are lost. Also, none of the work

intends to address applicable standards with this approach.

In summary, risk assessment approaches have not yet been used to support applicable standards.

Furthermore, the stochastic nature of most approaches introduces difficulties for the approval of

the methods itself (in line with the standards). For these reasons, risk assessment approaches

are not suitable for the purpose of safeguarding complex and AI-based methods.

By contrast, both referenced monitor concepts in the cluster of online verification address the

type approval issue, however, a detailed procedure description or implementation is missing.

While the group of logic-based approaches is strong in their maturity, it mainly focuses on the

verification of state transitions or traffic rules but lacks the holistic view. As a consequence, type

approval is not in the scope of these approaches. Although the formal-rule-based approaches—

especially the RSS approach by Shalev-Shwartz et al.—are structured to guarantee safety under

certain aspects, the methods lack a holistic approach. Only individual aspects, selected without

further explanation, are monitored. In this context, monitoring the collision risk with other TPs is

among the most common. Furthermore, these methods usually do not include crucial aspects

such as feasibility of the trajectories or the consideration of the track geometry, so that it is not

always guaranteed that a feasible emergency maneuver is possible in every situation. Most

of the approaches published so far in the domain of reachable sets are comprehensive and

in some cases not only simulated but also examined in real experiments. However, neither a

holistic coverage nor a structured approach to result in a holistic coverage is provided in any of

the approaches. Furthermore, applicable standards in combination with this method are not in

focus.

In summary, concepts in the area of OV have indicated that the suitability of these methods for

safeguarding—even of complex and AI-based methods—is promising. However, no approach

demonstrated type approval capabilities paired with implementation and evaluation. Furthermore,

it is essential that all safety risks are taken into account and mitigated. In this sense, a holistic

coverage of all safety-relevant features has to be systematically developed. This aspect has not

yet been adequately addressed in related work.

Concluding, the focus in the remainder of this work is on an OV method. The author aims at

covering both suitability for type approval and the evaluation of a comprehensive and holistic

implementation.According to the overview Table 2.1, there are currently no studies that sufficiently

address all aspects of interest at the same time. This is evident, in particular, from the fact that

none of the works considered receives a high rating with regard to all four assessment criteria in

a vertical line. This applies both to the rating of the averaged classes with the Harvey ball shown,

as well as to the individual papers where the rating can be obtained by color coding. The aim

of this work is to achieve a solid rating ( / ) in all four aspects considered. A more specific

derivation of the guiding theses and research questions based on a critical remark of related

work is given in the following section.
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Based on the findings in related work (Chapter 2), open challenges and conclusions for the own

method in this thesis are elaborated in Section 3.1 and Section 3.2.

3.1 Problem Description

In relation to the guiding theses (Chapter 1) and based on the findings gained from related work

(Chapter 2), the research questions of this thesis are elaborated in the following. In each case, a

brief critical remark on the state of science is given, followed by a formulation of a hypothesis

with each one or multiple resulting research questions.

Critical remark: Complex and learning-based driving functions exceed the limits
of existing safeguarding approaches and standards.

Classical safeguarding approaches rely on a mental comprehension of the used functional logic

or SW in order to implement adequate safeguarding mechanisms. In addition, certification is

achieved by passing defined tests. For complex or even AI-based algorithms, these methods

reach their limits. If online learning is used, previously passed tests lose their validity as soon as

a behavioral adaptation takes place. In a similar manner, safety risks arise when updates are

frequently deployed [243], causing validation tests that were previously performed to lose their

validity.

In order to address the critical remark and to take the first steps towards supporting the first

guiding thesis,

T 1: Complex and frequently changing SW for driving functions of ADSs can be safeguarded,

while taking into account applicable standards.

the following research question is to be answered:

Q 1: Which safeguardingmethod is most promising to address the challenges of approval

for complex and learning functions, while taking into account applicable standards?

An initial suggestion in response to the first research question (Q 1) can already be given by

the structured review of related work in the previous chapter. Here, an OV function is proposed

in related work to overcome these shortcomings, and the author considers it to be the most

effective option. However, a conclusive answer to this research question is only possible after a

dedicated study including an actual implementation, which is missing in related work. This leads

to the following critical remark and research questions.
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Critical remark: A comprehensive and thoroughly tested concept for the online
monitoring of a driving function has not yet been investigated.

In related work, OV concepts are referred to as a possible solution to the aforementioned

problems, but detailed and holistic concepts are lacking. A part of the papers in related work are

concepts only and claim that online monitoring in compliance with the standards is a promising

approach, but do not provide any further details or studies. The remaining part of the papers

in related work is detailed, but only addresses individual aspects of detail, without considering

holistic coverage or compliance with applicable standards. The concrete consideration of the

development steps for such an OV (in the area of trajectory planners) including all requirements

for a holistic and homologation-capable evaluation is not available. This work aims to take a step

in this direction with a comprehensive investigation to assess the feasibility and to identify future

directives and challenges.

This critical remark is addressed in two stages, analogous to the guiding theses defined at the

beginning. First, in order to support the second guiding thesis,

T 2: A procedure can be found for the development of an OV method for safeguarding ADS

functions, taking into account applicable standards.

the following research question is to be answered:

Q 2: What development steps does an OV method respecting applicable standards have

to follow, in order to meet the requirements of a comprehensive safety assessment?

Second, after a generic approach has been established and in order to support the third guiding

thesis,

T 3: A prototypical implementation of an OV for the trajectory planner of a real-world automated

race vehicle demonstrates the viability and serves as proof of concept.

the following research questions have to be addressed:

Q 3: What are the specifics of a prototypical implementation of the derived generic OV

method targeting the holistic safety assessment of a trajectory planner?

Q 4: What does the validation of a prototypical OV method involve in order to meet the

purpose of a proof of concept for the overall method?

The derived research questions are going to be answered in the course of this work and revisited

in Section 7.2.

3.2 Methodology and Outline of the Thesis

The goal of this work is to address the problem formulated in the first research question (Q 1).

According to the structured analysis of related work (Chapter 2), OV has been identified as

promising. Since this hypothesis has not yet been comprehensively evaluated in related work,

an OV will be conceived and implemented in the context of this work. The structure and layout

of this thesis is depicted in Figure 3.1 and outlined in the following.

In Chapter 4, a generic development process for an OV framework is elaborated (Q 2). Since

the OV module itself has to comply with the applicable standards, the procedure is aligned with

the V-model used in ISO 26262. In this regard, the requirements for the OV module itself and

28



3 Problem Description and Methodology

the criteria that describe a safe function are first identified. Then, the implementation phase of

an OV with the necessary development steps is compiled. In accordance with the ascending

branch of the V-model, integration into the overall system with corresponding integration tests

follows. Finally, the correct functioning of the OV is certified in a validation phase. To enable

a feasible implementation within this work, particular emphasis is placed on the challenges

regarding the compliance with the standards, which have been elaborated in the related work

section (Subsection 2.4.1). In this course, a detailed implementation of all measures contained in

the standards is not feasible. Accordingly, reference is made to the passages that are expected

to be implemented straightforwardly, and general applicability is pursued.

After the generic procedure has been formulated, a detailed implementation for an example

system is to follow. Consequently, the rest of this work focuses on the OV of trajectories in a

race vehicle in line with the third research question (Q 3).

In Chapter 5, the presented generic development steps are applied to a trajectory planningmodule

(indicated by orange patches between the left and right column in Figure 3.1). In this course, the

criteria that must hold for a trajectory to be considered safe are elaborated. These include but

are not limited to no physical interactions with static or dynamic objects and consideration of

the friction potential. Subsequently, the architecture of the OV module is elaborated. The OV

is integrated in the ADS SW stack in a way that allows the system to safeguard the monitored

driving function. Once the architecture is defined and thereby all available inputs and outputs are

known, evaluation metrics monitoring the criteria for a safe trajectory are implemented. In addition

to metrics that track compliance with track or acceleration limits, evaluating safety in the context

of other dynamic objects is challenging. In order to evaluate the safety of the ego-trajectory,

it must be placed in relation to the maneuvers of other TPs. If the plans of the other TPs are

known, this analysis is straightforward. In reality, however, little is known about the intentions

of the other agents. Accordingly, prediction measures are used. Since an informative detailed

prediction (e.g. single trajectory estimation) excludes possible behaviors and a robust prediction

(e.g. reachable sets) would lock a large portion of the driving space, a method incorporating

applicable rules is proposed. With rule-based reachable sets, rule-compliant safety is guaranteed

by robust estimation and incorporation of informative knowledge. Finally, a classification function

for the classification of the trajectories into safe and unsafe is defined.

The implemented OV framework is examined in Chapter 6 (Q 4). First, the integration into the

SW stack of an ADS is performed and completed by integration tests. The approach is validated

in scenario-based and real-world tests. In scenario-based testing, a wide variety of faults and

critical situations are deliberately injected. In this way, dangerous and expensive/destructive real

tests are avoided and the behavior of the OV module can still be examined in these situations.

Real-world tests, on the other hand, can provide long and realistic data during safe operation.

Accordingly, it is investigated in real-world tests, whether the OV module causes false triggering

that would limit the availability of the system. It should be noted that this chapter is intended

as a result of the specified and implemented OV module. Unlike a classic “results” chapter, the

procedures for testing and validation will also be described in this chapter before the evaluation

results are presented.

The work concludes with a discussion, summary and future research directions in Chapter 7 and 8.
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Figure 3.1: Structure of the thesis. Circles with “Q” indicate the coverage of the respective research

question in the corresponding chapter, circles with “P” indicate an associated first author

publication with the following mapping: P1=[32], P2=[71], P3=[244], P4=[245], P5=[246].
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4 Generic Method for the Development
of a Safeguarding Framework

In this chapter, the second research question is addressed:

Q 2: What development steps does an OV method respecting applicable standards have to

follow, in order to meet the requirements of a comprehensive safety assessment?

The analysis in the related work section has shown that OV is promising for safeguarding complex

and learning driving functions. The core idea is to verify the results generated by an algorithm that

cannot be approved given applicable standards (e.g. AI) by means of a simple and approvable

monitor. In particular, it is always checked whether the system can be transferred to a safe state

after carrying out the action suggested by the algorithm. In this section, a generic method for

such a scheme is elaborated, followed by a concrete implementation for a use-case in the next

section.

In a previous work [244] the author of this thesis presented a concept for OV of driving functions:

the “Supervisor”. This approach consists of a four-stage development process (Figure 4.1),

which follows the procedure of the V-model and thus also the underlying principles of ISO 26262.

Consistent with Figure 4.1 and previous work [244], this chapter describes the elaborated

development process for an OV of driving functions. Each of the following sections deals with a

separate stage (S-1 to S-4) of the procedure depicted in Figure 4.1. Each of the stages consists

of up to three key steps (A, B, C), each tackled in a corresponding subsection in this chapter.

In the course of this thesis, step y of stage x in the development process is referred to by the

notation S-x-y.

Criteria for safe 

operation

Requirements to be 

met by the Supervisor

Requirements

Supervisor architecture

Assessment metrics for 

identified criteria

Implementation

Classification

and selection

Scenario-based 

evaluation

Random-based 

evaluation

Validation

Software stack 

integration

Test of internal and 

external interfaces

Integration and test

Test of the 

requirements

Figure 4.1: Generic method for the development of an OV module, the Supervisor (S), structured into

four stages (1-4 – indexed from left to right), each comprising up to three steps (A, B, C –

indexed from top to bottom), based on [244]. Each step can be indexed with a short notation,

for example S-2-C refers to the “Classification function” step of the “Implementation” stage.
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First, in S-1, the requirements are identified according to the first step of the V-model (Section 4.1).

Here, both the requirements for a safe target function of the algorithm to be monitored and

the requirements for the OV module itself are identified. Second, in S-2, the left branch of the

V-model is traced downward (Section 4.2). Here, measures and architecture are derived from

the requirements of the first step and implemented. Third, in S-2, the right-hand branch of the

V-model is followed upwards again (Section 4.3). The OV module is integrated into the SW stack

and tested against the requirements defined at the beginning. Finally, in S-4, the implemented

OV module is validated (Section 4.4).

4.1 Requirements

At the beginning of the development of an OV module, in S-1, the requirements are identified

and specified in a first step, in line with the V-model. On the one hand, the criteria for a safe

operation of the driving function to be monitored (Subsection 4.1.1) and, on the other hand,

the requirements for the OV module itself (Subsection 4.1.2) are developed. This procedure is

carried out in accordance with the standards, in particular ISO 26262-3:2018 [23] and ISO 26262-

6:2018, 6 [23].

4.1.1 Criteria for Safe Operation

The first step is to identify and define the criteria for a safe operation. This is done under the

aspects of SOTIF and FuSa. According to SOTIF (ISO/PAS 21448-5:2019 [128]), it is first defined

how the proper function of the system is described. In the context of this work, this is in particular

the understanding of safety. Since the utopia of guaranteed safety can never be given [117, p.

74], it is important to determine exactly which objectives are being pursued.

Based on this specification, the criteria for a safe operation are be derived. The particular

challenge here is to identify a holistic list of all potential deficiencies [247]. It can certainly happen

that individual features are overseen and later constitute a safety risk. Accordingly, it is advisable

to proceed in accordance with a structured and systematic procedure. The procedure is closely

related to the determination of safety requirements in ISO 26262-3:2018 [23]. Here, a structured

Hazard Analysis and Risk Assessment (HARA) is proposed for the determination of safety

objectives, from which one or multiple safety requirements are derived. In the case of an OV

module, the criteria to be identified go along with safety requirements of the type “fault detection”

in ISO 26262-3:2018, 7.4.2.3 [23].

If a HARA has already been carried out for the function to be monitored, the results can be directly

derived and adopted. A HARA itself is a comprehensive and lengthy undertaking that usually

requires several experts. For this reason, a reduced structured procedure for identifying the

criteria for a trajectory planner are presented in Section 5.1, which does justice to the prototypical

character of this proof-of-concept.

4.1.2 Requirements to Be Met by the Supervisor

The goal of the proposed online monitoring approach is to reduce the high ASIL requirements

for the system of interest. High ASIL requirements would prohibit the use of non-transparent

methods such as AI [136]. With the method of ASIL decomposition described in ISO 26262 [23],

it is possible to provide the monitored system with lower requirements, if it is coupled to a
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monitor with a high ASIL rating (Figure 4.2) [148]. If this is used to its full potential, a requested

ASIL D rating can be split into a ASIL QM (D) and ASIL D (D) rating. Consequently, the AI-based

or complex algorithm only has to meet basic constraints, while the comprehensive and hard

constraints apply to the deterministic Supervisor.

Supervisor

ASIL D (D)

System

ASIL QM (D)

Inputs Outputs

Verdict

System

ASIL D

Inputs Outputs

ASIL D required, 

but system is not 

ASIL-capable

Figure 4.2: ASIL decomposition [23] can be used to lower the requirements for the system if another

system with high requirements is monitoring it. This scheme is shown here for a combination

of a system with ASIL QM (D) and the Supervisor with ASIL D (D), based on [244].

In the development of the Supervisor itself, the requirements imposed by the respective ASIL

level as well as those resulting from the monitoring task are taken into account. ISO 26262-

4:2018, 6 and ISO 26262-6:2018, 6 [23] state a number of recommended measures to be taken

into account during SW development, graded according to the identified ASIL. These have to

be followed in particular when implementing an OV in series production. For the prototypical

realization in this work, a comprehensive implementation of all features is not feasible.

Hörwick [248] deals with the concept of a safety monitor for ADSs at a high level. This monitor

concept complies with existing regulations, in particular ISO 26262. The work identified seven

overall principles, which summarize the core properties that a safety monitor has to satisfy [248,

p. 26]. Accordingly, these are considered as requirements in the development of the Supervisor.

The principles (S-1-B-1 to S-1-B-7) are listed below:

S-1-B-1 Simplicity and predictability: The lower the complexity, the less error-prone the

system. In addition, the system’s reactions become predictable and detectable,

which enables systematic evaluation of system safety.

S-1-B-2 Complete fault detection: The safety system must be able to detect all faults.

S-1-B-3 Guarantee of a safe state: For each detected fault, an action plan must exist

that can return the vehicle to a safe state.

S-1-B-4 Prevention: The earlier faults are detected, the earlier countermeasures can be

initiated.

S-1-B-5 Real-time capability: To comply with the principle of prevention, the Supervisor

must have real-time capability.

S-1-B-6 Separation from the overall system:A clear separation between the components

of the normal function and the components of the safety concept must be

ensured. The interfaces between these two areas should be well defined and

kept to a minimum (see S-1-B-1).

S-1-B-7 Modularity and adaptability: The safety concept should have a modular character

and be adaptable to special function specifics and system architectures.

It should be noted that these requirements apply generically to any OV method and, unlike safe

operation (S-1-A), do not have to be derived again for each use-case.
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4.2 Implementation

After the requirements for the Supervisor have been specified, the second stage (S-2) deals

with the implementation of the Supervisor. First, the architecture is defined (Subsection 4.2.1),

then the evaluation metrics are established (Subsection 4.2.2) and finally they are integrated

into a classification and selection procedure (Subsection 4.2.3).

4.2.1 Supervisor Architecture

When determining the Supervisor architecture, the interfaces and signal flows for integration

into the ADS SW stack are specified. The general architecture is based on the monitor principle

shown in Figure 4.2. The definition of the starting point (inputs) and end point (outputs) for the

system to be monitored is thereby essential. Based on the previously identified requirements for

a Supervisor (Subsection 4.1.2), the following guidelines are drawn for the definition.

End point:

• As close as possible to the output of the system to be monitored: The complexity

(i.e. also extent) of the SW being monitored should be kept as low as possible to

allow for the simplest feasible verification (S-1-B-1).

• Bottleneck in the system (no parallel paths): For full safety control, it is essential

that there are no parallel signal flows that may shortcut the verification decisions

(S-1-B-3).

Start point:

• As close as possible to the input of the system being monitored: The span of

the modules being monitored should be as small as possible to avoid Supervisor

complexity and to maintain the ability to use established verification methods

(S-1-B-1).

• Modularization: Approach-specific modules should be avoided as a starting point in

order to obtain a generic OVmodule and thus facilitate the exchange or fundamental

update of monitored approaches and/or system.

To illustrate these rules, a fictional SW diagram with possible start and end points is shown

in Figure 4.3. The module shown in blue is to be covered by an OV. After applying the rules

presented above, the relevant end point would be “E4”, since the nodes before do not represent

a straightforward bottleneck and this is the first such node in the sequence. “S2” should be

selected as the starting point, since this is closest to the module to be safeguarded, in order to

keep the complexity low.

Provided that the start and end points of the Supervisor have been found, the rest of the

architecture results from the requirements to be met by the Supervisor (S-1-B). The inputs that

feed the Supervisor have to meet the specifications and requirements that have been derived

for safe operation (S-1-A).

4.2.2 Assessment Metrics for Identified Criteria

After the architecture with the interfaces has been defined, evaluation metrics are established for

the criteria of a safe operation (S-1-A). It is essential that each of the identified characteristics is
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Module 

to be 

safeguarded

E1 E2

E3

E4 E5S2S1

Figure 4.3: Fictional SW diagram with various modules including possible start and end points for an

OV deployment.

covered by at least one metric. In addition, the metrics have to follow the other requirements

(S-1-B and S-2-A). Expert knowledge and insight into the state of the art may be required to find

and develop appropriate metrics. If it is not possible to comply with the elaborated requirements

or to find an evaluation metric for individual criteria, the architecture (S-2-A) has to be revised

in iterative manner. It is noted that this step is the most comprehensive and demanding in the

implementation stage.

4.2.3 Classification and Selection

At the end of the implementation stage, an overarching classification function is developed

that aggregates the individual evaluation metric scores. On the one hand, a binary evaluation

(“safe” or “unsafe”) is generated for the given inputs, and, on the other hand, a mechanism that

guarantees a safe state at all times (S-1-B-3) is developed. Here, especially the behavior in case

of an “unsafe” rating is crucial. For this purpose, based on the evaluation and classification, a

selection of a suitable measure to guarantee a safe condition is carried out.

4.3 Integration and Test

After the implementation phase is completed, the Supervisor is integrated into the SW stack

(Subsection 4.3.1) and the functionality is verified. In the course of this, the interfaces (Sub-

section 4.3.2) as well as the compliance with the defined requirements (Subsection 4.3.3) are

tested.

4.3.1 Software Stack Integration

During integration, the developed Supervisor is assembled according to the steps in the imple-

mentation stage (S-2) and integrated into the overall SW. Accordingly, the interfaces for the

specified inputs are provided and the outputs with the associated safety mechanisms (guarantee

of a safe state) are to be accommodated.A successful integration is then confirmed with adequate

tests.

4.3.2 Test of Internal and External Interfaces

Following integration, the interfaces are first checked for consistent and correct implementation.

This also involves checking the handling of incorrect data (error injection), missing data, and
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timing variations. Further guidelines and recommendations for structured integration and testing

can be found in ISO 26262-4:2018, 7 [23].

4.3.3 Tests of the Requirements

The most important integration test is testing against the requirements. The requirements defined

in the first stage (S-1-A and S-1-B) are examined for their conformance. The requirements should

be evaluated with a requirement-based test as well as with fault injection (ISO 26262-4:2018, 7

and ISO 26262-6:2018, 10 and 11 [23]). Both functional (e.g. detection of a certain behavior) and

non-functional (e.g. real-time capability) requirements can be tested. All requirements should be

verified with at least one corresponding test. Further details and requirements can be found in

the ISO 26262-4:2018, 7 and ISO 26262-6:2018, clause 10 and 11 [23].

4.4 Validation

In order to mitigate design or implementation flaws that could compromise the safety goal,

validation of the entire framework is required (in accordance with ISO 26262-4:2018, 8 [23]). A

selection of validation approaches can be found in ISO 26262-4:2018, 8.4.3.4 [23]. According to

the standard, an “appropriate set” of these methods should be applied. In the context of this work,

the author considers scenario-based approaches (Subsection 4.4.1) as well as random-based

real-world tests (Subsection 4.4.2) as the most promising in accordance with the state of the art

(Subsection 2.4.2).

4.4.1 Scenario-Based Evaluation

The scenario-based approach emerges in related work as one of the most promising for the

validation of ADS functions. The underlying idea is to evaluate critical and challenging scenarios

instead of frequently occurring uninteresting situations. Furthermore, the real vehicle will rarely

or never encounter safety-critical situations. If the scenarios are tested in simulation, it is recom-

mended to evaluate destructive scenarios including collisions. It is primarily in these cases that

the Supervisor is forced to become proactive and therefore provides the greatest informative

value.

In this context, it is advisable to deliberately evaluate critical and unsafe scenarios by means of

error injection. If a safe state exists at the beginning of the scenario, the Supervisor is expected

to succeed in keeping the system in a safe state at all times. The tests therefore follow the

principle of falsification, i.e., one wants to find a scenario where the Supervisor does not detect

an unsafe state (false positive) and therefore fails to transfer the system into a safe state.

One of the more difficult questions is the extent of testing required to certify successful validation.

Related work [167] deals with the question of completeness, but this has not yet been conclusively

clarified.

4.4.2 Random-Based Evaluation

The random-based tests correspond to the field operation, in which the vehicle is tested in

beforehand not further specified situations. This conforms to an evaluation over long periods in
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a typical operational environment. Here, no-fire tests can be used in real operations, so that it is

evaluated whether the Supervisor triggers, but no real intervention takes place.

The main goal of this approach is to evaluate false negatives (judging a situation as unsafe

even though it is safe) during long deployments in a typical real-world environment. Under

normal circumstances, the system to be monitored should be mostly in the safe area during real

operations and should not require any intervention. This test therefore follows the principle of

testing, i.e., one wants to show that the system does not generate any false negatives in regular

use and that the availability is therefore high.

As with the scenario-based evaluation, one of the challenging questions is determining the

necessary extent of testing. In this respect, ISO 26262 does not specify any requirements.

Consequently, this measure is determined according to one’s own expertise or the state of the

art. For testing-based approaches, there are already publications that quantify the theoretically

necessary testing effort [249, 16, pp. 1173-1177, 250, p. 457]. However, it is noted that this effort

can quickly become infeasible from an economic point of view, especially for more complex

systems.

Based on the generic steps for establishing an OV module elaborated in this chapter, the next

chapter goes through the steps specifically for the use-case of a trajectory planner serving an

automated race vehicle.
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In this chapter, the third research question is addressed:

Q 3:What are the specifics of a prototypical implementation of the derived generic OV method

targeting the holistic safety assessment of a trajectory planner?

The goal of this use-case is a prototypical implementation of the generic Supervisor concept

(Chapter 4) as a proof of concept for an automated race vehicle. In particular, the motion

planner of the race vehicle is assumed to be not ASIL-capable (ISO 26262-1:2018, 3.2 [23]) and

considered in the course of this work. Although the planner can be considered complex in terms

of the definition presented (Section 2.1), it is not an online learning AI. In order to examine this

characteristic as well, additional simulative tests with error injection are employed in the results

chapter (6). Furthermore, the Supervisor developed is intended to facilitate safe motion planning

at all times, regardless of the planning approach used. The integration of the planner into the

overall SW of an ADS as well as the basic functionality are discussed in Section 2.2 and 2.3.

The method is applied and evaluated in the context of the Roborace Season Alpha. This is an

autonomous racing series in which autonomous racing vehicles compete against each other on

race tracks under given regulations [107].

Utilizing an automated race vehicle for the proof of concept offers advantages. The biggest

benefit is the ability to test vehicles in its regular environment without putting humans at risk.

The use of the race car usually takes place on Fédération Internationale de l’Automobile (FIA)

approved race tracks where no humans are on the track. Furthermore, at high speeds, there are

no safety drivers on board, which completely eliminates the risk of human injuries, something

that is currently not possible in real road traffic. In addition, the vehicles consistently move at the

dynamic limit of the vehicles. This area is particularly interesting from a safety point of view, but

rarely occurs in regular road traffic (e.g. only during emergency maneuvers). Lastly, the ODD is

limited, allowing for a reasonable prototype implementation. These and other advantages have

been highlighted in a publication [251].

Besides the advantages, however, there are a few aspects to consider. The standards presented

(Subsection 2.4.1) have been developed for road vehicles and are currently not applied to

motorsports. For the proof of concept, the standards are nevertheless applied to race vehicles.

The reason for this is that a large number of the aspects in the standard can be applied generically

to any automotive system. The findings of the feasibility of an OV method can be achieved in the

same way by the proof of concept in this domain and subsequently transferred to other domains.

In the following, the first two stages of the generic development concept presented in the

preceding Chapter 4 are applied in detail to the trajectory planner of an automated race vehicle.

First, the requirements are identified (S-1). Following S-1-A, the criteria of a safe trajectory are

developed (Section 5.1). The requirements for the Supervisor are taken directly from the generic
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concept S-1-B. Subsequently, the implementation stage (S-2) is addressed. After the architecture

of the Supervisor has been defined (Section 5.2), the development of the assessment metrics is

discussed in consecutive sections. Preliminaries are presented in Section 5.3, which provide

the necessary expert knowledge from the state of science. Based on these preliminaries, the

evaluation metrics for a static and a dynamic environment are presented in Section 5.4 and 5.5,

respectively. Finally, the classification and selection of safe trajectories is discussed (Section 5.6).

The procedure goes hand in hand with the basics of a preceding publication [246] by the author

of the thesis, yet offers further details in this work.

5.1 Criteria for Safe Trajectories

Before the criteria of a safe trajectory can be identified, the term “safety” is specified in the

context of motion planning. According to ISO 26262-1:2018, 3.132 [23], safety is the absence of

unreasonable risk. Based on this, the author follows the interpretation of Mobileye published

in a paper by Shalev-Shwartz et al. [20, p. 2]. In the paper it is shown that a vehicle can be

forced into an accident without any fault of its own and thus there can never be guaranteed

absolute safety. A striking example is an ego-vehicle surrounded by four TPs on a multi-lane

highway. As soon as one of the vehicles drives into the ego-vehicle, it cannot avoid the collision.

Consequently, the aim of this work is to avoid accidents that are caused by the ego-vehicle’s

actions given applicable regulations and rules.

Based on this understanding of safety, a holistic list of criteria that a safe trajectory has to fulfill

is established. The challenge in the process of generating a holistic list is that features can be

overlooked at ease. Therefore, it is crucial to use a structured process that makes missing out

individual features less probable. In the standards (ISO 26262 [23] and ISO/PAS 21448 [128]), the

HARA is regarded as a proven structured tool for establishing the corresponding requirements.

However, the HARA has so far only been applied at great expense to simple systems such

as an emergency braking assistant. The application of the HARA for a trajectory planner does

not do justice to the prototypical scope and is not feasible within the given means. Accordingly,

Stasinski and the author ot this thesis developed a more straightforward structured method in

previous work [244, 252], which is outlined below.

The concept developed is based on a structured analysis of the interfaces that a system has

with the environment. For this purpose, the AV and its environment are modeled using a systems

engineering approach [253, p. 265, 254, p. 4]. The subsystems represented in this approach are

derived from related work. Bagschik et al. [255] developed an ontology that defines all relevant

entities for an ADSs in a scene. The entities are represented in six layers: road (L1), traffic

infrastructure (L2), temporal adaptations of L1 and L2 (L3), objects (L4), environment (L5) and

digital information (L6). For the systems engineering approach, all levels except L3 are adopted,

since this is already represented in the entities of L1 and L2. The objects of L4 are split into

static objects and TPs to allow for more differentiation. These entities are put into relation with

the ego-vehicle by defining interfaces between any possible combination of subsystems. Details

about the internal function of the system are not required to be known. For an ADS, the system

with corresponding interfaces displayed in Figure 5.1 is obtained.

The criteria of a safe trajectory are derived by enumerating every connection between the

automated vehicle and all linked subsystems. Each interface and the automated vehicle itself is

examined for possible safety risks in the event of irregularities. The following guiding question
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Figure 5.1: System model and its interfaces based on identified subsystems, based on [244]. Solid lines

indicate a physical interaction and dashed lines an information flow. Directed arrows imply a

physical interaction initiated by the subsystem at the tail.

can be used to help identifying criteria: “What kind of issue with this specific interface could pose

a risk to safe operation in the context of the trajectory?”. For example, the interface [AV-RO]

(connection between automated vehicle and road) may pose a safety risk if the trajectory does

not consider the friction between road and tires. The identifiers used to reference a subsystem

are given in Figure 5.1 in the upper left corner of the respective subsystem, e.g. RO for road. If

the described process is continued for all interfaces in contact with the automated vehicle, the

author obtained the core of the following list of criteria (S-1-A-1 to S-1-A-7) for a safe trajectory

in a previous study [244]:

S-1-A-1 Accurate object list: All objects in the scene must be recognized and perceived

properly ([AV-SO], [AV-TP], [AV-TI], [AV-RO], [AV-DI], [AV-E]).

S-1-A-2 No physical interactions: Physical interactions with static objects or other TPs

initiated by the automated vehicle must not occur at any time ([AV-SO], [AV-TP]).

S-1-A-3 Correct origin: The trajectory must match the actual pose in the real world

([AV-E]).

S-1-A-4 Feasible acceleration request: The trajectory must respect the friction between

road and tires at all times ([AV-RO]).

S-1-A-5 Obeyed rules: Applicable rules of conduct (e.g., traffic or race rules) must be

obeyed ([AV-TI], [AV-DI]).

S-1-A-6 Respected vehicle characteristics: Kinematic and dynamic properties of the

automated vehicle must be respected at all times ([AV]).

S-1-A-7 Intrinsic correctness: The data of the trajectory must be correct (physically

reasonable range) and linked (e.g., velocity and acceleration) ([AV]).

It should be noted here that criteria that were missed at this point will likely be exposed in the

final validation step (S-4). In such a case, however, the entire development process is required

to be conducted again in an iterative manner.
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5.2 Online Verification Architecture

Applying the scheme presented in Subsection 4.2.1 for specification of the OV architecture, the

endpoint of the module to be monitored is determined first. This should be chosen as close as

possible to the output of the module to be monitored as well as to a bottleneck. In this case,

these are the generated trajectories, which are sent to and traced by the controller. Then the

start point is defined, which should be as close as possible to the input of the system to be

monitored while representing a generic (not implementation-specific) data type. The module

to be monitored is the motion planning module including the traffic prediction. A generic input

to this module is the data provided by the perception module. A schematic visualization of the

architecture based on the generic ADS pipeline (introduced in Figure 2.4) is shown in Figure 5.2.

ASIL

Supervisor

Sensors Perception Planning Control Actuators

ASIL ASILASILASIL ASIL

Figure 5.2: Supervisor architecture for the use-case of trajectory OV. The planning module is assumed

to be not ASIL-capable (ISO 26262-1:2018, 3.2 [23]), but by integrating the Supervisor, the

overall system can be approved. Unsafe behavior in the planning module, for example due

to non-transparent or online learning methods, is detected and intercepted by the Supervisor.

The orange dashed lines indicate the distinct interfaces with the rest of the SW stack.

The Supervisor verifies each trajectory against the inputs and guarantees provision of a safe

trajectory to the controller. Since the Supervisor aims at always assuring safety (even in the

case of an invalid trajectory and uncertain turn for the better in subsequent planning steps), the

transition to a safe state has to be available at any time. To enable this, the emergency trajectory

of the planning module in particular has to be verified. Accordingly, the planning module to be

safeguarded has to provide a performance trajectory (regular operation) as well as an emergency

trajectory (transfer to a safe state). Two separate planners are also plausible for this task, both

feeding the Supervisor. The detailed logic for the switching behavior based on the safety rating

of the two trajectories is defined in step S-2-C (Section 5.6).

The inputs and outputs of the planning module and thus also the Supervisor follow a specification.

In this case, it is essential to define a specification as generic as possible for the object list

as input and the trajectory as output. At this point it is also emphasized again that this work is

limited to the safeguarding of the planning module. According to the illustration in Figure 5.2,

the other modules are assumed to be approvable and safe. This has to be ensured by separate

procedures or measures. For this reason, in this work ideal perception data (realizable for testing

via Vehicle-to-Everything (V2X)/V2V communication) and an ideal controller (achievable by

specifying a trajectory corridor, i.e. planning for a wider vehicle, and a controller that guarantees
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path tracking within this corridor [58]) is assumed. The Supervisor’s responsibility is to verify that

the planned trajectory is valid, given the input data provided (regardless of its correctness).

In order to allow a valid correlation or the different input data, it is required that all input data

provided to the Supervisor in one time step originate from the same planning step. As a con-

sequence, the object list provided to the Supervisor is the one used as the planning basis for

the trajectories to be examined. If this is not possible, a synchronization of the trajectories and

the object list is required. The time offset is compensated for by physics-based prediction of the

objects or by moving forward on the trajectory, depending on which of the two hosts more recent

data. The time-stamp used for the synchronization has to originate from the same basis and the

time-stamp of the trajectory corresponds to that of the objects used for the planning step.

The framework derived from the directives described above is depicted in Figure 5.3. The

Supervisor is supplied with perception data (including environment mapM and object listO(t0) for
time-stamp t0), as well as the trajectories (performance trajectory ξperf ([t0, th]) and emergency
trajectory ξem ([t0, th]) for a time interval [t0, th] , t0 < th). If necessary, this data is synchronized.

Subsequently, assessment metrics are evaluated for both trajectories according to the criteria

defined in S-1-A. The evaluation metrics are implemented in a set of Supervisor Modules

(SupMods) Ψ. Depending on the trajectory type, a (sub)set of SupMods is evaluated (Ψperf ⊂ Ψ
and Ψem ⊂ Ψ). Each SupModψi ∈ Ψ returns a boolean safety rating si =ψi (M,O(t0),ξ ([t0, th]))
based on the provided data. Subsequently, the ratings si are aggregated with a classification

and selection method in order to pass a safe trajectory to the controller (Section 5.6). Details of

the evaluation metrics employed in the SupMods are derived in the following three sections (5.3,

5.4, 5.5).

Supervisor
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Figure 5.3: Proposed framework of the Supervisor, based on [246]. The input data (map, object list,

performance trajectory, and emergency trajectory) is processed in dedicated SupMods.

Based on the individual rating, a safe trajectory is selected and sent to the controller.

5.3 Assessment Metrics for Identified Criteria – Pre-
liminaries

As discussed in Subsection 4.2.2, expert knowledge is needed for the implementation of the

evaluation metrics for the requirements defined in S-1-A. After outlining the used general notation

in Subsection 5.3.1, relevant basics from related work are briefly described. In related work

of this thesis, reachable sets have already been considered promising and are introduced in
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Subsection 5.3.2. In Subsection 5.3.3 the basics of past time temporal logic are presented.

Finally, the identified criteria for safe operation (S-1-A) are analyzed and structured into problems

with respect to a static and dynamic environment (Subsection 5.3.4).

5.3.1 General Notation

In line with Pek et al. [256], the state space X ⊂ Rn is defined as the set of possible states ξ. For

the ego-vehicle, U ⊂ Rm denotes the set of admissible control inputs u. Given an input trajectory
u ([t0, th]) for the time interval [t0, th] , t0 < th, the motion of the vehicle along the trajectory is

described by the differential equation

ξ̇(t) = f (ξ(t), u(t)) . (5.1)

The state ξ(t) defined by the solution of Equation (5.1) at time t ∈ [t0, th] with initial state

ξ(t0) = ξ0 and input trajectory u ([t0, th]) is expressed by χ (t,ξ(t0), u ([t0, th])). In contrast to
the input trajectory, which is usually generated by the controller, ξ ([t0, th]) describes the state
trajectory, which usually represents the input to the controller / output of the planner.

The race tracks used for this use-case are defined by a left Bl and right boundary Br, each

represented by a polyline. Any point p on the track can either be referred to by a Cartesian

coordinate 〈x , y〉 or within the Frenet-frame 〈s, n〉. The Frenet-frame is a lane-based coordinate
system with s describing the arc length along a reference line of the track and n describing the

lateral offset to the reference line (both measured with use of the normal vectors based on the

reference line). The notation ·(ξ) expresses the track coordinate for a given state ξ, for example
s(ξ) for the longitudinal coordinate. Furthermore, the lateral offset of the left and right boundary
to the reference line at a coordinate s is denoted with nBl

(s) and nBr
(s), respectively.

The operator E(ξ) : X → P(R2) defines the set of states X occupied by a vehicle at a certain

state ξ, where P(R2) denotes the power set of R2. The occupation operator also holds for a set

X , following the specification E(X ) := {E(ξ) |ξ ∈ X }.

Furthermore, it should be noted that in the context of this work, the integer 1 in equations is

interpreted as a Boolean True and the integer 0 as a Boolean False.

5.3.2 Reachable Sets

Reachable sets have been applied by several authors in the automotive domain [232–239,

257–259]. Commonly, these sets are computed for consecutive time intervals and contain all

reachable states of a considered agent in compliance with an underlying dynamic model.

Following the notation of Althoff et al. [257], within the set of states X a vehicle can reach at any

time, the reachable set R is defined as a subset of this set, R ⊆ X . The states a vehicle can
reach are deduced by following any possible action

u(t) =
�

u1(t) u2(t)
�T

,∀t : u(t) ∈ U , (5.2)

where for an ADS, u1 describes normalized steering and u2 normalized acceleration. Thus, the

exact reachable set Re is defined as the set of states that can be reached from an initial set of

states R0 by executing any possible action u(t):

Re(tf,ξ0,U) := {χ (tf,ξ0, u(·)) |ξ0 ∈R0,∀t ∈ [0, tf] : u(t) ∈ U} . (5.3)

44



5 Online Verification of a Motion Planning Module

Since the exact reachable set Re can only be determined for simple dynamic models [257, 258],

commonly a spatial over-approximation is used:

R(tf,ξ0,U) ⊇Re(tf,ξ0,U). (5.4)

The points occupied by a vehicle at all reachable states are accessed with the previously defined

occupation operator E (Re(tf,ξ0,U)). Althoff and Magdici [260] provide a computation-efficient
over-approximation for the vehicle-specific occupation by the reachable set E (R(tf,ξ0,U)), which
is, for convenience, referenced as RE(tf,ξ0,U) in the course of this work.

The mentioned approach [260] is based on the pure progression of the vehicle pose using a CV

model and applying a superimposed feasible uniform acceleration in all directions. This implies

the assumption that the tire has the same traction in all directions and the engine can provide

the corresponding acceleration. The set of all possible states of the vehicle center applying this

principle is shown in Figure 5.4a. The over-approximation of the reachable set based on this

principle is shown in Figure 5.4b. It should be noted that this reachable set covers the interval

between two time steps.

In order to illustrate that this over-approximation is consistently on the safe side and to what

extent it overestimates, over 400 vehicle trajectories were simulated using a simple vehicle

dynamics model in Figure 5.4c for each time step in order to obtain an approximation of the

real reachable set via sampling. In the process, the actual combined acceleration potential

and kinematic constraints were taken into account. The greatest influence, however, is the

consideration of the engine power. For the acceleration that can be applied via traction, 13.0 ms−2

was assumed in all directions for all models. In the more realistic simulation, the engine power

(positive longitudinal acceleration) was limited to 6.0 ms−2 in accordance with the test vehicle.

For better comparability, a superimposition of the methods explained is shown in Figure 5.4d.

The over-approximation occupies significantly larger areas, especially with a longer time horizon,

but can be calculated efficiently at runtime. Rack [261] and Radecker [262] investigated methods

for slight but computation-efficient reductions of the over-approximated reachable sets. The

simulation of the vehicle poses and intersection checks would, especially for several vehicles in

the environment, require large computing capacities for a real time execution.

5.3.3 Past Time Linear Temporal Logic

For the formalization of temporal relations Past Time Linear Temporal Logic (ptLTL) introduced

by Havelund and Roşu [263] is used in this work. The standard propositional operators like ¬
(negation), ∨ (disjunction), and ∧ (conjunction) are supplemented by further operators1: (previ-

ously) and Ss (strong since). The semantics of ptLTL specific operators are given in the following.

If θ = σ1σ2 . . .σq is a finite sequence of abstract states σi, then θi denotes the trace σ1σ2 . . .σi

for each 1≤ i ≤ q. Given F , being a boolean value, variable, or an arbitrary number of atomic
propositions, then the semantics of the introduced operators are:

θ |= F ⇐⇒ θ ′ |= F, with θ ′ =

(

θm−1, if m> 1

θ , if m= 1
, (5.5)

θ |= F1SsF2 ⇐⇒ (∃ j ∈ [1 . . m] θ j |= F2)∧ (∀i ∈ [ j . . m] θi |= F1). (5.6)

1List limited to the operators used in this work, further operators in the ptLTL can be found in the referenced paper.
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(a) Propagation of the possible vehicle centers with uniform

acceleration in all directions.
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(b) Over-approximated occupancy by the reachable set with
constant acceleration in all directions according to [260].
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(c) Close-to-reality approximation of the reachable set via sim-
ulation of over 400 vehicle trajectories at each time step.

0 20 40 60 80

East in m

−20

0

20

N
o
rt
h
in

m

(d) Overlay of the models shown in subplots (a), (b), and (c) for
the calculation of an approximation of the reachable set.

Figure 5.4: Different approaches for an approximation of the reachable set for a vehicle (orange rectan-

gle) with initial velocity v0 = 25ms−1 and time horizon of t = 2 s at a separation of 0.25 s.

5.3.4 Preparation and Analysis of the Criteria for Safe Operation

As discussed in Section 5.1, each of the metrics developed there (S-1-A) is addressed. In the

following, the previously identified criteria are listed and analyzed in terms of required measures.

In the following two sections, these criteria and the respective metrics are addressed in terms of

a static (Section 5.4) and dynamic (Section 5.5) environment. An assignment of the criteria to

the corresponding sections is given in the following:

S-1-A-1 (Accurate object list): No measures are required. Safeguarding targets the plan-

ning module, perception data is assumed to be approved and ideal (Section 5.2),

in this case guaranteed by V2X communication.

S-1-A-2 (No physical interactions): This requirement is split into two independent sub-

problems. Collision with static, non-movable objects can be examined in a

straightforward manner and is addressed in Subsection 5.4.1. The more com-

plex problem of safeguarding with respect to dynamic objects is addressed

in Section 5.5. Since in case of failing to find a new trajectory the emergency

trajectory is traced terminally, it must be guaranteed that a safe end state is

reached (Subsection 5.4.2).
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S-1-A-3 (Correct origin): No measures are required. Since ideal perception data (i.e.

including localization data) are assumed (S-1-A-1), it is only necessary to check

whether the current position relates to the trajectory origin for approaches that

do not guarantee correspondence per se.

S-1-A-4 (Feasible acceleration request): The maximum acceleration values based on the

friction between track surface and tires must not be exceeded by the trajectory

(Subsection 5.4.3).

S-1-A-5 (Obeyed rules): Monitoring for compliance with traffic rules is covered in Sub-

section 5.4.4.

S-1-A-6 (Respected vehicle characteristics): It must be verified that the trajectory takes

into account the kinematic and dynamic limits of the vehicle (Subsection 5.4.5).

S-1-A-7 (Proper trajectory data): The data of the trajectory must be checked for validity

and whether individual physical quantities are linked properly (Subsection 5.4.6).

The assessment metrics referenced above are each implemented in a dedicated SupMod (as

proposed in Figure 5.3). In the following sections, the individual assessment metrics are derived

and specified.

5.4 Assessment Metrics for Identified Criteria – Static
Environment

This section explains the evaluation metrics that can be evaluated in a static environment,

i.e. the influence of other moving objects must not be taken into account. In the given order,

collisions with static objects (Subsection 5.4.1), a safe end state (Subsection 5.4.2), acceleration

limits (Subsection 5.4.3), kinematic and dynamic vehicle characteristics (Subsection 5.4.5), and

applicable rules (Subsection 5.4.4) are addressed.

5.4.1 Collision with Static Obstacles

When checking against collisions with static, non-movable objects, in the use-case of motorsports,

only the ego-vehicle staying within the track boundaries Bl and Br at each point in time has to

be verified. Given the assumption that each trajectory ξ ([t0, th]) hosts at least one point on the
track, this property can be formally expressed as

∀t ∈ [t0, th] ,∀Bi ∈ {Bl,Br} : E (ξ(t))∩Bi = ;. (5.7)

For analytically precise verification of this property, the vehicle footprint at each individual pose

along the trajectory would have to be checked for overlap with one of the boundaries. Maierhofer

et al. [225] follow a similar approach with the road-compliance checks of their drivability checker.

However, this method is primarily designed for offline use and is computationally demanding.

For a performant online use, a simplified approach that omits the orientation along the poses of

the trajectory is implemented.

For the computationally optimized checks, the spline defined by the sequence of points along the

trajectory ξ ([t0, th]) is inflated by a specified radius dinfl. The resulting inflation I (X ) : X → P(R2)
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contains all points in the R2 domain that fall within the Euclidean distance dinfl to any point in the

given set X . A corresponding implementation of this method is provided by the “buffer” method

of the Python library “Shapely”. If the radius is set equal to the vehicle width, an underestimation

is obtained that only detects definite collisions. If an absolute safety guarantee is required, the

radius is set equal to half the vehicle’s footprint diagonal. A comparison of these two approaches

is shown in Figure 5.5. It can be seen that the underestimating variant only fails in detection on

borderline cases. While the overestimating variant guarantees safety, it can lead to false alarms

in the case of competitive driving behavior. In the context of this work, the underestimating variant

was chosen for the race application, since the race line is commonly planned in the vicinity of

the track boundaries.
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Figure 5.5: Illustration of different approximation methods for collision detection with the track (gray)

boundaries (black). The trajectory of the vehicle is indicated by the orange line. Vehicle

poses are depicted with a black frame at a spacing of 400 ms. A tube around the trajectory

with the width of the vehicle footprint is shown in orange. A tube around the trajectory with

the width of the vehicle footprint diagonal is shown in blue. A frame on the upper left shows

a magnification of one false positive detection where the tube with the vehicle diagonal

(blue) intersects the track boundary, while the real vehicle remains within the track boundary.

The lower right frame displays a false negative detection, in which the tube with the vehicle

width (orange) does not detect a boundary collision, while the vehicle slightly intersects the

boundary.

The Boolean safety rating ψstat(·) resulting from the static collision checks is formally evaluated

by applying the following principle:

ψstat (M,ξ ([t0, th])) =

(

1, if ∀Bi ∈ {Bl,Br} : I (ξ ([t0, th]))∩Bi = ;
0, otherwise

. (5.8)

In order not to miss collisions in states between the mapped support points of a discrete trajectory,

the trajectories are represented as continuous lines using the “Shapely” library. Consequently,

the resulting inflation forms a tube that is checked for collisions with the boundaries.
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At this point it is noted that a wider choice of tube can give more margin for the controller. In

the proof-of-concept applied here, an ideal controller is assumed. With a tightly chosen inflation

radius, there would be little to no room for control errors. However, if this distance is chosen

large enough, there are approaches [58] that guarantee the vehicle to remain within a given

trajectory-tube. Furthermore, it is noted that while only the track boundaries are considered here,

individual (eventually movable) static objects can be modeled with the approach explained in

Section 5.5.

5.4.2 Safe End State

In the event that no valid trajectories are found, the last valid emergency trajectory is executed.

This is carried out until a new valid trajectory is generated. In the worst case it has to be assumed

that the planner cannot find a valid solution anymore. For this reason, the emergency trajectory

is required to be safe for an infinite time horizon. This is attestable by guaranteeing that the

trajectory, among the other criteria of a safe trajectory, ends in a safe end state ξ(th). In this use-
case, standstill on the track is defined as sufficiently safe. An emergency trajectory ξem ([t0, th])
that satisfies the requirements regarding a sufficiently safe end state is formally expressed as

∀t ≥ th : vx (ξem(t)) = 0 ⇐⇒ vx (ξem(th)) = 0, (5.9)

where vx (ξem(t)) denotes the associated longitudinal velocity of state ξem(t).

The Boolean safety ratingψses(·) w.r.t. to a safe end state generated by this SupMod is formalized
as follows:

ψses (ξem ([t0, th])) =

(

1, if vx (ξem(th)) = 0

0, otherwise
. (5.10)

Depending on the application, more complex requirements can also be imposed here. For

example, on a highway it may be more appropriate to navigate to the emergency lane and stop

there. Corresponding requirements can be formalized and employed in this SupMod. Related

work deals with this topic in more detail [264, 265].

5.4.3 Friction and Tire Forces

The planned trajectory has to comply with the specified friction between track surface and tires

at all times. The friction value, or the corresponding acceleration limits, are assumed to be given

by the perception module. A convenient way to guarantee safety is to underestimate the actual

friction potential. A trajectory ξ ([t0, th]) that accounts for the friction limits is formally stated as

∀t ∈ [t0, th] : Fa (ξ(t))≤ Fa,max (ξ(t)) , (5.11)

where Fa (ξ(t)) denotes the combined force acting on the tires of a vehicle, resulting from the

request by the trajectory and Fa,max (ξ(t)) the maximum possible force at state ξ(t).

The combined force Fa (ξ(t)) that a vehicle’s tires have to carry at a state ξ(t) depends primarily on
the lateral ay,tire (ξ(t)) and longitudinal acceleration ax,tire (ξ(t)) acting on the vehicle (Figure 5.6).
The accelerations are defined by the planned velocity vx (ξ(t)) at a given trajectory state ξ(t),
curvature κ (ξ(t)), and the requested longitudinal acceleration ax (ξ(t)), respectively. All the
listed quantities result implicitly from the sequence of states in the trajectory. It should be noted
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that for longitudinal acceleration, drag resulting from air resistance must also be taken into

account. The drag decelerates the vehicle quadratically to the speed and has to be additionally

transferred by the tire if a positive acceleration is requested. When braking, correspondingly less

force has to be exerted by the tire.

Left

turn

Right

turn

𝐹x

𝐹y

Deceleration

Acceleration

Force limit (𝑝 = 2.0)

Force limit (𝑝 = 1.0)

Working point forces

Working point

Figure 5.6: Visualization of simple models (orange, blue) that show the limits of the forces that a tire-road

combination can withstand. The actual resultant force at an operating point (black dot) results

from a lateral (centrifugal force) and a longitudinal (acceleration) component, shown here

(green) as an example for deceleration in a right-hand turn.

The accelerations acting on the tire are determined as

ax,tire (ξ(t)) = ax (ξ(t)) + cd,extvx (ξ(t))
2 and (5.12)

ay,tire (ξ(t)) = vx (ξ(t))
2κ (ξ(t)) , (5.13)

with the extended drag coefficient cd,ext =
cdρA
2m representing a vehicle-specific value based on

reference area A, mass density of the air ρ, and the pure drag coefficient cd.

Assuming a planar and level track, the maximum allowed force Fa,max (ξ(t)) the tire can physically
transmit is defined by the friction coefficient µ (ξ(t)) and the normal force FN:

Fa,max (ξ(t)) = µ (ξ(t)) FN (ξ(t)) . (5.14)

However, it is not trivial to determine the correct friction coefficient, as this depends not only on

the interaction between tire and track surface, but also on other influences such as weather or

temperature. Furthermore, the normal force is dependent on the speed, especially in the case of

race cars with aero equipment. For this reason, the limits are often determined manually with

test drives on the respective vehicle for a specific test track and weather. The acceleration limits

for the tire-road combination are then be approximated with models spanning the entire working

range. One of the most popular and straightforward models is the friction circle [266] (orange,

Figure 5.6). However, test drives with the racing vehicle under consideration by a professional

race driver have shown that the tire transmitted more force in purely lateral and longitudinal cases

than in combined cases [267]. Accordingly, this observation is approximated with a diamond

shape (blue, Figure 5.6). The assessment with regard to compliance with the limits is described
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with the inequality

�
�

�ax,tire (ξ(t))
�

�

ax,max (ξ(t))

�p

+

�
�

�ay,tire (ξ(t))
�

�

ay,max (ξ(t))

�p

≤ 1, (5.15)

where the boundary between rhombus (p = 1) and ideal circle (p = 2) can be continuously

adjusted with the parameter p ∈ [1,2] [268]. The parameter p and the maximum acceleration

values ax,max (ξ(t)) and ay,max (ξ(t)) are determined on site after evaluation of (manual) test run
data. It is noted that the maximum acceleration values may depend on the state ξ(t). On the
one hand, this is position-dependent due to the corresponding friction value µ (ξ(t)) and, on the
other hand, velocity-dependent due to the aero-influenced normal force FN (ξ(t)).

An example application of this procedure is shown in Figure 5.7. The path of a trajectory for

approaching a turn is shown in Figure 5.7a. The corresponding acceleration values in lateral

and longitudinal direction at discrete time points along the trajectory are plotted with crosses in

Figure 5.7b. An acceleration of 15ms−2 with p = 2 is assumed as the limit (orange circle). The

crosses indicate that the vehicle is braking purely longitudinally at the beginning and that there

is a gradual load change to purely lateral acceleration towards the apex of the turn. However,

the points near the apex of the turn exceed the specified limit. Accordingly, this situation is to be

evaluated as unsafe according to the given limits.
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Figure 5.7: Exemplary trajectory with evaluated acceleration request for approaching a turn.

The overall Boolean safety ratingψacc(·) w.r.t. to the acceleration limits calculated by this SupMod
is formalized as follows:

ψacc (ξ ([t0, th])) =







1, if ∀t ∈ [t0, th] :
�
�

�ax,tire(ξ(t))
�

�

ax,max(ξ(t))

�p
+
�
�

�ay,tire(ξ(t))
�

�

ay,max(ξ(t))

�p
≤ 1

0, otherwise.
(5.16)

While this approach guarantees that the planner generates a trajectory that satisfies the input

constraints (acceleration limits in this case), it should be noted that for an overall safety guarantee,

the actual friction value should be underestimated.
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5.4.4 Rules and Regulations

In order to meet the specified safety goal of not causing an accident, the vehicle has to comply

with the set of rules Z in place, formally expressed as

∀zi ∈ Z : zi (ξ ([t0, th])) , (5.17)

where zi (ξ (t)) holds for a rule zi that is obeyed in state ξ (t) of the trajectory.

Applicable rules are first formalized with temporal logic (e.g. ptLTL). At runtime, the trajectories to

be verified are then checked against this specification. Since the formalization and rule verification

is a separate field of research, this work focuses on a limited set of exemplary motorsport rules

(Table 5.1), which serve the illustrative character. Further research and approaches in the field

of rule formalization can be found in related work [222, 225, 269].

Table 5.1: List of exemplary rules zi (ξ (t)) ∈ Z to be obeyed by the ego-vehicle.

Description Mathematical formulation

Maximum velocity

In races, the race control can set a maximum velocity vmax

that may not be exceeded, either permanently or at specific

times or locations (e.g. pit lane).

zvmax (·) =

¨

1, if ∀t ∈ [t0, th] : v(ξ(t))≤ vmax

0, otherwise

No reversing

In most races it is not allowed to reverse (v(ξ(t))< 0). Espe-
cially in automated races, this could lead to fatal accidents,

since the motion models of other vehicles may not reflect this.

zrev (·) =

¨

1, if ∀t ∈ [t0, th] : v(ξ(t))≥ 0

0, otherwise

Maximum deceleration

The maximum deceleration amin < 0 can be fixed in advance

(independently of the track and tires) to allow other vehicles

to make appropriate assumptions.

zamin (·) =

¨

1, if ∀t ∈ [t0, th] : a(ξ(t))≥ amin

0, otherwise

It should be noted that only applicable regulations in a static environment (independent of other

road users) are implemented here. These rules address risks caused by, for example, unexpected

behavior (not represented in behavioral models) or excessive kinetic energies (breaking through

safety barriers). Rules in a dynamic environment are not considered here, since the measures in

Section 5.5 guarantee freedom from self-inflicted collisions under applicable regulations. This is

sufficient for the safety objective to be supported. However, if it is still to be guaranteed that the

planner does not violate any rules (rule violation while still behaving safely), then further rules

regarding the dynamic environment have to be implemented.

The Boolean safety rating ψrule(·) w.r.t. to a set of rules to be monitored by this SupMod is stated
as follows:

ψrule (ξ ([t0, th])) =

(

1, if ∀z ∈ Z : z (ξ ([t0, th]))

0, otherwise.
(5.18)

5.4.5 Kinematic and Dynamic Properties

In order to enable the vehicle and thus also the controller to guide the vehicle along the trajectory,

not only the friction-based acceleration limits have to be obeyed. Especially at slow speeds,

kinematic or dynamic properties of the ego-vehicle can also be a limiting factor. The compliance
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with a set of HW-related limitations L along the trajectory ξ ([t0, th]) is formally stated as

∀t ∈ [t0, th] ,∀li ∈ L : li (ξ (t)) , (5.19)

where li (ξ (t)) holds for a limitation li that is obeyed in state ξ (t) of the trajectory. In this work,
the turn radius of the vehicle as well as the acceleration limits imposed by the power capabilities

of the installed engine are considered in the set of limitations L.

The reciprocal value of the requested turn radius, the curvature κ, is indirectly given in the

trajectory. By tracing the discrete points of a trajectory ξ ([t0, th]), a curvature κ is given, which
is required not to violate the turn radius rturn > 0 at any time:

∀t ∈ [t0, th] : |κ(ξ(t))| ≤
1

rturn
. (5.20)

In addition to the acceleration limits imposed by the tire-road combination (Subsection 5.4.3), it

is checked whether the vehicle’s HW can provide these accelerations. In the case of negative

accelerations, this is never a limiting factor due to safety-related over-dimensioning of the brakes.

However, for positive accelerations, especially in the high-speed range, the motor is usually not

able to provide an arbitrarily high acceleration. Therefore, it is checked whether the requested

acceleration complies with the velocity-dependent acceleration limits ax,lim(v) at all times:

∀t ∈ [t0, th] : a(ξ(t))≤ ax,lim (v (ξ(t))) . (5.21)

It should be noted that a violation of this factor is not always safety critical, the vehicle would

merely be able to accelerate less than requested by the trajectory. However, since there may

be situations in which a collision can only be prevented if the vehicle actually accelerates as

specified in the trajectory, compliance with these limits has to be checked.

The Boolean safety rating ψkd(·) w.r.t. to stated limits generated by this SupMod is formalized as
follows:

ψkd (ξ ([t0, th])) =

(

1, if ∀t ∈ [t0, th] : κ(ξ(t))≤ 1
rturn
∧ a(ξ(t))≤ ax,lim (v (ξ(t)))

0, otherwise.
(5.22)

5.4.6 Data Correctness

To ensure that the tests performed by the SupMods on the trajectory are based on a reliable

basis, the physical correctness of the data in the trajectory is examined. For this purpose, a set

of plausibility checks P are performed on the trajectory. A trajectory ξ ([t0, th]) that satisfies all
requirements at each point in time t is formally stated as:

∀t ∈ [t0, th] ,∀pi ∈ P : pi (ξ (t)) , (5.23)

where pi (ξ (t)) holds for a plausibility check pi that is satisfied in state ξ (t) of the trajectory.

In this work it is assumed that the discrete representation of a trajectory contains the quantities

s-coordinate s (ξ (t)), x-coordinate x (ξ (t)), y-coordinate y (ξ (t)), heading ψ (ξ (t)), curvature
κ (ξ (t)), velocity v (ξ (t)), and acceleration a (ξ (t)) for each discrete state ξ (t) of the trajectory
ξ ([t0, th]). If a different realization is provided, the requirements have to be adapted accordingly.

For each trajectory, the following plausibility checks p are performed:
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• Check of the data format (e.g. the correct number of entities must be provided).

• Check of all individual physical quantities for plausible value ranges (e.g. since

no turns smaller than 1m are expected, the curvature must remain in the range

[0m−1, 1m−1]).

• Correlation of s-coordinate to x- and y-coordinate (the distance between individual
coordinates must correspond approximately to the distance between the corre-

sponding s-coordinates, while accounting for slight deviation due to radian vs.

euclidean distance).

• Correlation of heading to x- and y-coordinate (the orientation imposed by succes-
sive states must be close to the specified heading).

• Correlation of heading and curvature (the change of heading over distance must

be close to the curvature).

• Correlation of velocity, s-coordinate, and acceleration (the acceleration must be
close to the physical correlation of start and end velocity between two states and

their distance).

When defining the checks, it is essential that each physical quantity listed in the trajectory is

correlated with other quantities by at least one check.

The Boolean safety rating ψdc(·) w.r.t. to stated plausibility checks generated by this SupMod is
stated as follows:

ψdc (ξ ([t0, th])) =

(

1, if ∀t ∈ [t0, th] ,∀pi ∈ P : pi (ξ (t))

0, otherwise.
(5.24)

5.5 Assessment Metrics for Identified Criteria – Dy-
namic Environment

The assessment of the dynamic environment is one of the biggest challenges in the OV of

trajectories. The reason for this is the interaction with independently acting agents, whose

intentions and detailed behavioral plans are not known. For trajectory planning, TPs are often

propagated into the future with an informative prediction to lay out their own plan. However, in

order to make safety guarantees independent of the actual actions of other TPs, robust prediction

methods have to be used. The reachable sets (Subsection 5.3.2) represent such an approach.

An emergency trajectory has to be valid regardless of the action another TP takes. In this context,

even worst-case maneuvers have to be assumed, comparable to a kind of rampage driver trying

to hit the ego-vehicle. Accordingly, the emergency trajectories of the ego-vehicle are checked

against the reachable sets of other TPs. The challenge in this case is that reachable sets tend to

expand fast and would make it impossible to overtake or similar. To deal with this, rule-based

reachable sets are introduced in Subsection 5.5.1.

For the performance trajectory, these hard requirements do not have to be met. To detect a

collision as early as possible, trajectories that are guaranteed to result in a collision are marked

as unsafe. This assumption corresponds to a fully cooperative TP. For this purpose, guaranteed

occupied sets are presented in Subsection 5.5.2.
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5.5.1 Rule-Based Reachable Set

As described before, the emergency trajectory ξem ([t0, th]) must not collide with any object o in
the object list O(t). Formally, this is formulated outright with known object states ξo(t):

∀t ∈ [t0, th] ,∀o ∈O(t) : E (ξem(t))∩ E (ξo(t)) = ;. (5.25)

However, since the future states (ξo(t), t > t0) of the other objects o are usually unknown, every
feasible maneuver must be assumed. Reachable sets model corresponding properties. The

problem, however, is the fast growth of the occupied space, especially in the case of race vehicles

with high acceleration capabilities and high speeds (green patches in Figure 5.8). Without further

measures, vehicles cannot get close or even overtake each other without the reachable sets

intersecting the planned (emergency) trajectory. To address this problem, the author presented

rule-based reachable sets in a preceding work [246]. Similar approaches have been outlined

for road traffic [237]. The goal is to restrict the large volume of physically feasible states while

strengthening the superior safety goal (avoidance of accidents caused by the ego-vehicle).
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Figure 5.8: Reachable sets without rule restrictions would not allow overtaking each other, as the sets

soon occupy the entire width of the track. The reachable set (green) of the TP (blue) intersects

the poses along the emergency trajectory (orange line) of the ego-vehicle (orange) at a

certain point in time (red).

To implement this behavior, the occupancy of the reachable setRE is further reduced by applicable

rules K (in this case motorsport rules). In particular, rules that influence TPs play a role here.

Rules that only influence the ego-vehicle are covered in Subsection 5.4.4. Each formalized

rule k ∈ K consists of two parts: a ptLTL triggering condition ck and a mathematical description

of the reduction set Qk ∈ P(R2). The occupancy by the rule-based reachable set RE
K is formally

described as

RE
K (th,ξ0,U) =RE (th,ξ0,U) \

⋃

k∈Kc

Qk, with Kc = {k ∈ K | ck} . (5.26)

For clarity, this formula describes the relationship for the entire time horizon [t0, th] of the
trajectory and the reachable set. In practice, this set difference is carried out for each time

interval, enclosed in [t0, th]. For computational reasons, the rules are evaluated for a given
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state and propagated in time. A detailed implementation would require the evaluation along the

evolution of the reachable sets.

For each rule, a triggering condition ck is implemented that evaluates whether a rule is active

based on the interaction of the ego-vehicle with the surrounding vehicles. To evaluate the

temporal correlations in this context, ptLTL is used. Discrete time steps are used, where each

entity holding time t as argument ·(t) can be interpreted as a discretized series of states. The
time series begins with the launch of the vehicle up to the current time. For each active rule the

corresponding deletion patch Qk is determined according to its mathematical definition. For the

sake of convenience, this patch is defined in the lane-based coordinate system.

In this thesis the implementation of rules originating the Roborace Season Alpha series as

well as the Formula 1 series [270, 271] are analyzed. The implemented rules are listed in

Table 5.2. A verbal description, the trigger condition ck, and the mathematical description of the

reduction set Qk are given for each rule. These illustrative examples are used to demonstrate the

implementation and evaluation of the rules. While these rules cover most situations, there are

other rules that were not implemented in the prototype of this work. However, it should be noted

at this point that the omission of rules does not lead to unsafe behavior, since the reachable

sets without rule influence tend to cover a larger area, leading to more defensive behavior of

the ego-vehicle. Figure 5.9 illustrates an exemplary situation in which the effects of a respective

rule are demonstrated by showing an overtake maneuver with and without rule. The top row

in Figure 5.9 depicts the situations with pure reachable sets without rule application. In these

cases overtaking would not be possible. The bottom row in Figure 5.9 hosts the same scenario

but with consideration of applicable rules. The sequence is similar until the ego-vehicle gets

close to the other vehicle and the “Formula 1 – racing alongside another car” regulation takes

effect (Figure 5.9f).

The overall Boolean safety ratingψreach(·)w.r.t. to a guarantee of not causing a collision generated
by this SupMod is stated as:

ψreach (M,O(t0),ξ ([t0, th])) =











1, if ∀t ∈ [t0, th] ,∀o ∈O(t0) :

E (ξ(t))∩RE
K,o (t,ξ0,U) = ;

0, otherwise
. (5.27)

Here, RE
K,o (t,ξ0,U) represents the concise notation for the prospective occupancy of object o by

the rule-based reachable sets at a time t. For a reachable set discretized in time into successive
intervals within [t0, th],RE

K,o (t,ξ0,U) is understood as the selection of the interval of the reachable
set accommodated for the given time t. The time horizon of the reachable set can be chosen
larger than that of the ego-vehicle’s emergency trajectory, but should not be smaller. The extent

of discretization is a trade off between computational cost and false negative rate. The coarser

the temporal discretization, the more false negatives (rating a safe situation as unsafe) will occur.

Static objects are represented by a single (non-variable) set.

While race vehicles are considered in this work, it should be noted that an extension to road traffic,

especially for highways due to the similar nature, is possible. This would require formalizing and

integrating the applicable traffic rules. For rules that are difficult to formalize, for example, due to

their imprecise or soft specifics, past court decisions can be included [225].
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(a) t = 0 s (b) t = 1 s (c) t = 2 s

(d) t = 0 s (e) t = 1 s (f) t = 2 s

Figure 5.9: Three time instances of an overtaking maneuver of the ego-vehicle (orange) to pass a

TP (blue) with its reachable set (green). Guaranteeing safe conditions without any rule-

knowledge (top row), the ego-vehicle cannot complete the overtaking maneuver because

the emergency trajectory (orange line) intersects the reachable set (red marking). Under

applicable regulations (bottom row), the ego-vehicle can safely complete the overtaking

maneuver. When comparing the last time step of top and bottom row, it can be seen that

the rule “Formula 1 – racing alongside another car” is in effect, which does not allow the

other vehicle to push the ego-vehicle off the track as soon as the vehicles’ footprints overlap

along the s-coordinate. The reachable set is reduced accordingly.

5.5.2 Guaranteed Occupied Set

The guaranteed occupied sets have the same objective of detecting and avoiding imminent

collisions (Equation (5.25)) as targeted with the reachable sets, but the meaning gained is

different. While collisions can be ruled out with reachable sets, only collisions that will inevitably

occur if the trajectory is pursued further are detected with the guaranteed occupied sets. The

guaranteed occupied set describes the set of states that are guaranteed to be occupied by any

part of the vehicle in the future, considering all physically feasible maneuvers of the vehicle.

Based on the exact reachable set Re(tf,ξ0,U), the guaranteed occupied set GE(tf,ξ0,U) can be
considered as the intersection of the state occupancy E (ξ) of all the states ξ contained in it [272,
pp. 30-32], formally stated as:

GE(tf,ξ0,U) =
�
⋂

E (ξ) |∀ξ ∈Re(tf,ξ0,U)
	

. (5.28)

This approach is similar to the inevitable collision states studied in robotics [273–275]. An

inevitable collision state is a state from which there is eventually a collision with an obstacle

independent of the future selected trajectory [273]. In the mentioned concepts in robotics it is

to aim at avoiding to enter such a state. The same objective is pursued with the guaranteed

sets presented here, but the own trajectory candidate is known and incorporated. Thus, when

the occupation along the ego-trajectory intersects the guaranteed occupied set of a TP, the

vehicle must not yet be in an inevitable collision state, since there may exist a trajectory other
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than the checked one that avoids the collision. Schmidt [276, pp. 60-65] and Schmidt et al. [277]

presented a simple underestimation of the guaranteed occupied areas and thus cover one of

the few methods of this nature in the automotive domain.

As shown in Figure 5.10, the guaranteed occupancy shrinks and disappears soon as time

progresses, while the reachable set expands. This phenomenon is particularly eminent in race

vehicles with high accelerations. The underestimation of the guaranteed occupied set presented

by Schmidt [276, pp. 60-65] (building on a circle that lies within the vehicle footprint) would exist

for an even shorter period of time compared to the guaranteed occupancy set demonstrated

here and therefore offers less information value.
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(b) Guaranteed occupied set.

Figure 5.10: Comparison of approximated reachable set (a) and guaranteed occupied set (b). Here

shown for a vehicle (orange) with initial velocity 40 ms−1, a time horizon of 2 s, and a time
interval of 0.1 s.

Since the underestimation of the guaranteed occupied set offers less information value, a more

complex numerical method [272, pp. 30-32] to determine the guaranteed occupied set is used in

this work. In this procedure, starting from an initial state ξ0, a large number (e.g. 1000) of possible
trajectories are numerically simulated up to a given time t i. Thereby all possible acceleration

and steering maneuver combinations are sampled in a fine discretization. This step is necessary,

because the previously presented simplified reachable set R(tf,ξ0,U) does not contain any

heading information of the vehicle anymore. Based on the determined numerical trajectories, the

occupancy E
�

ξ j

�

by the vehicles at the endpoints of the respective trajectories is determined.

The guaranteed occupied set for the time t i is then the intersection of the individual occupation

areas (Figure 5.11). Here, the states that diverge the most are decisive [272, pp. 30-32]. This

procedure is carried out in analogous way for a desired number of discrete time points t i ∈ [t0, th].
Since the calculation is too time-consuming for an online application, this calculation is performed

offline for different finely graduated starting velocities. Online, the recalled result for a given

velocity v(ξ0) is translated and rotated to the corresponding state ξ0.

As mentioned before, the testing of the emergency trajectories with a robust safety criterion—the

rule-based reachable sets—are sufficient for a comprehensive safety guarantee. However, the

guaranteed occupied sets serve for early detection of guaranteed unsafe performance trajectories

(in accordance with requirement S-1-B-4). For the performance trajectories, the procedure also

makes more sense, because the trajectories cover a large time horizon at high speeds. The

reachable sets in these time horizons would become unbearably large, and the evaluation of the

rules taken at this point in time would also reach its limits when adopted into the future.
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Figure 5.11: Illustration of the procedure for determining the guaranteed occupied set on the basis of

two time instances for a vehicle (green) with initial velocity 25 ms−1. The reachable set

generated via simulation of more than 400 vehicle trajectories is shown in light blue (plot of

individual vehicle footprints constitute the surface). The outline of the vehicle footprint of

the respective vehicle poses in the reachable set at the respective time point are displayed

in dark blue. The guaranteed occupied set (orange) is the set intersection of the more than

400 vehicle footprints at the respective point in time.

The overall Boolean safety rating ψocc(·) w.r.t. to an inevitable collision along the given trajectory
by this SupMod is stated as:

ψocc (M,O(t0),ξ ([t0, th])) =











1, if ∀t ∈ [t0, th] ,∀o ∈O(t0) :

E (ξ(t))∩ GE
o (t,ξ0,U) = ;

0, otherwise
, (5.29)

where GE
o (t,ξ0,U) denotes the concise notation for the guaranteed occupied area by object o

at time t. For a guaranteed occupied set discretized in time into successive intervals within

[t0, th], GE
o (t,ξ0,U) is understood as the selection of the interval of the guaranteed occupied set

accommodated for the given time t.

5.6 Classification and Selection

Based on the ratings of the SupMods Ψ presented earlier, each performance and emergency

trajectory is classified as safe or unsafe. This is implemented via a conjunction over the boolean

safety scores si = ψi (M,O(t0),ξ ([t0, th])) generated by the set of SupMods Ψperf ⊂ Ψ and

Ψem ⊂ Ψ relevant for the respective trajectory:

sperf =
∧

ψi∈Ψperf

si = sperf,1 ∧ sperf,2 ∧ · · · ∧ sNperf
, sem =

∧

ψi∈Ψem

si . (5.30)

The SupMods relevant for each trajectory have already been mentioned in the previous sections

and are marked in Figure 5.12. Formally summarized, the respective sets are composed as
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follows:

Ψperf = {ψstat,ψacc,ψrule,ψdc,ψocc} , Ψem = {ψstat,ψses,ψacc,ψrule,ψdc,ψreach} . (5.31)
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Figure 5.12: Overview of all implemented SupMods in schematic representation. The SupMods are

assigned to clusters static and dynamic according to the application in the respective static

or dynamic environment. An identifier in the upper right corner indicates whether the module

is applied for the performance (P) and/or emergency (E) trajectory.

Based on the aggregated scores sperf and sem for performance and emergency trajectory, a safe

candidate is selected based on well established mechanisms [237] and passed to the controller

(Figure 5.13). It should be noted that a safe emergency plan has to exist at any time. Following

this principle, even if the performance trajectory is safe but the emergency trajectory is unsafe, a

stopping maneuver is still carried out on the last valid emergency trajectory. This is necessary,

because it cannot be guaranteed that the underlying trajectory planner will find a new valid

emergency plan in the near future. To facilitate this fallback to an emergency trajectory from

the past time step, it must be guaranteed that the performance and emergency trajectory in

each planning step are congruent for a certain amount of time (safety factor times average

update frequency of the planner). This principle is analyzed and illuminated in more detail in

Figure 5.14. Furthermore, if the planner fails to generate a new pair of trajectories within this

congruent time-interval (timeout via watchdog), the Supervisor also has to switch to the latest

valid emergency trajectory (this aspect, however, is not investigated any further in this work).

In addition, it should be noted for the sake of completeness that this principle only works, if the

first set of trajectories contains a safe emergency trajectory. This condition is straightforward to

meet, if the system is launched from standstill and is not switched on while the vehicle is moving.

In summary, in this chapter the individual steps for the development of an OV for a trajectory

planner of an automated race vehicle were worked through. In doing so, requirements were first

defined and, based on this, the architecture and corresponding metrics were developed. In the

next chapter, the developed modules are to be integrated into the overall system, tested and

evaluated.
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Select safe trajectory
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Evaluate

trajectories

Emergency 

trajectory OK?

Performance trajectory Emergency trajectory

Performance 

trajectory OK?

Yes

No

Yes Load

emergency trajectory

No

Store

emergency trajectory

Figure 5.13: Decision procedure for the selection of a safe trajectory, based on [246].

(a) First time step hosting a valid emergency trajectory.

(b) Second time step hosting an invalid new emergency trajectory.

Figure 5.14: Schematic diagram illustrating the congruence of emergency and performance trajectories

for a certain time period. The next point up to which the trajectories are congruent is

indicated by a white circle with a black border. In this graph, it is assumed that only the

orange emergency trajectory of the ego-vehicle (blue) is tested against the abstracted

green reachable set of a TP (gray). In the first time step, the emergency trajectory is still

valid with respect to this assumption. In the second time step, the vehicles are further

ahead and the ego-vehicle has generated a new set of trajectories. The new emergency

trajectory would result in the ego-vehicle vehicle intersecting the set and is classified as

unsafe accordingly. For this reason, it is necessary to switch to the previous emergency

trajectory (dashed). Since the vehicle has only moved on the congruent trajectory part in

the meantime, a changeover at this point is not problematic.
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In this chapter, the fourth research question is addressed:

Q 4:What does the validation of a prototypical OV method involve in order to meet the purpose

of a proof of concept for the overall method?

In this chapter, the approach explained in Chapter 4 and tailored for a trajectory planner in

Chapter 5—available open-source [278]—is integrated into the overall SW (Section 6.1), tested

(Section 6.2), and evaluated. The evaluation is done with two different approaches. In the

scenario-based evaluation (Section 6.3), among other things, deliberate critical or collision

scenarios are tested. In the random-based evaluation (Section 6.4), no-fire tests are performed

on real vehicle data.

6.1 Software Stack Integration

The implemented Supervisor is evaluated within the scope of the Roborace race series [279, 280].

For this purpose, an overall SW [109, 281] was developed at the Institute of Automotive Technol-

ogy to operate the race vehicle. An overview of the software modules is depicted in Figure 6.1.

The Supervisor is integrated according to the architecture definition given in Section 5.2.

Sensors

V2X

Planning

Actuators

Perception

Localization

Behavioral 

planner

Global trajectory 

planner (offline)

Local trajectory 

planner

Mapping

(offline)

Supervisor

Control

Figure 6.1: Schematic illustration of the SW framework used during the Roborace Season Alpha, sup-

plemented by the Supervisor.

This paragraph explains the basic principle of the SW stack and the integration of the Supervisor

in accordance with the system architectural design (Section 5.2). The explanation is based on

the central planning module. The local trajectory planner [71, 108] of the vehicle is initialized

with an offline generated map [30] and global trajectory [101, 282] (optimal racing line). During
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runtime, the local trajectory planner generates a set of feasible trajectories (e.g., overtake left,

follow, overtake right) based on the global trajectory, current pose, and object list (V2X in this

case). The downstream behavioral planner selects based on a global view (e.g. V2X information

or global track conditions and regulations) an appropriate performance trajectory paired with a

matching emergency trajectory. The trajectories and all perception data used for planning are

sent via ZeroMQ [283] interface from the planner to the Supervisor. A trajectory evaluated as

safe by the Supervisor is then transmitted via User Datagram Protocol (UDP) communication to

the controller [101, 284], which incorporates localization estimates [32, 38] to control the vehicle

accordingly.

It should be noted that during the multi-vehicle real tests in the Roborace Season Alpha (2019),

the Supervisor was not yet included in the SW stack and the trajectories were sent from the

planner directly to the controller. However, all data from the planner (outputs and inputs) were

logged during the real runs and are thus used as inputs without any negative effects. In this

context, only passive Supervisor tests (i.e. no intervention in case of an unsafe rating takes

place) are evaluated. This is reasonable in this case, because primarily safe states are expected

during the real-world tests. Due to the COVID-19 pandemic and strategic decisions on the

part of Roborace, no races with multiple vehicles simultaneously on the track took place in the

subsequent events until the writing of this thesis.

6.2 Integration Tests

The SW stack integration is followed by tests that confirm a successful integration. First, the

interfaces are tested (Subsection 6.2.1) and then the fulfillment of the requirements is assessed

(Subsection 6.2.2).

6.2.1 Test of Internal and External Interfaces

Once the integration is completed, tests are performed to prove that the process was consistent

and correct. For this purpose, ISO 26262-4:2018, 7 [23] proposes a number of individual tests.

In the context of this prototypical implementation, 21 interface tests were performed. A detailed

list of the performed tests can be found in the Appendix in Table A.2. The tests belong to the

categories normal operation, missing data, incorrect data, and timing variations. For example,

while one test checks the normal operation of the vehicle, another checks whether this is not the

case when data of individual modules is missing. In this way, the proper interface structure of

the system is verified.

For each of these tests, a specific input configuration was chosen and the expected output

was defined. After execution of the test, the observed output of the system was compared with

the expectation. The test is classified as passed or failed according to match or mismatch of

expectation and observation. In 2 of the 21 tests performed, the output expected for an ideal

system was not observed and was accordingly classified as failed. These test cases provided

an incorrect map and an incorrect object list, respectively. However, since according to stated

assumptions (Section 5.2), a validated perception is assumed, the tests are listed for the sake of

completeness but are evaluated as passed under given assumptions. These assumptions are

also feasible in practice with human review of the offline generated maps, as well as reliable

V2X communication for the object list.
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The tests carried out here do not satisfy the comprehensive and systematic requirement of com-

pliance with the standard for a series product. However, from the point of view of the author and

related work, there are no indications of problems that would arise with a comprehensive imple-

mentation. Further guidelines and recommendations can be found in ISO 26262-4:2018, 7 [23].

6.2.2 Test of the Requirements

The integration tests also include reviewing the requirements established in Section 4.1. In the

first stage of the development process presented here, the requirements for a safe operation

(S-1-A, Section 5.1) and for an OV module itself (S-1-B, Subsection 4.1.2) were discussed. This

section examines the conformance with these requirements of the developed and integrated

Supervisor.

The requirements for a safe trajectory (S-1-A) are tackled with functional tests, for which

ISO 26262-4:2018, 7 and ISO 26262-6:2018, 10 and 11 [23] recommends requirement-based

tests and fault injection. According to Table 6.1, for each requirement, one test was performed

with a compliant test and one with fault injection. For example, for testing requirement S-1-A-2,

no physical interaction, a safe trajectory candidate and a candidate eventually colliding were

evaluated. The system successfully detected, in line with the requirements, the hazard and

switched to the emergency trajectory. During these tests, a single snapshot of the environment

and a single trajectory candidate was injected and evaluated. While these requirement tests only

evaluate individual snapshots, the evaluation (in the following Sections) aims to provide a holistic

assessment. In total, 14 tests (2 per requirement) were evaluated. Expectation and observation

differed for only two candidates. However, this was a situation excluded by the assumptions.

Thus, the requirement tests regarding S-1-A are evaluated as passed.

In contrast to the functional tests for the requirements from S-1-A, the requirements S-1-B,

which concern the Supervisor itself, are examined with non-functional checks (Table 6.2). In this

process, it is evaluated whether the system has specified/expected properties. For example, the

property S-1-B-5, real-time capability, is evaluated by examining the actual computing time over

a longer period of time. In this case, Figure 6.2 shows a plot of the distribution of computation

time required for one iteration (safety evaluation of the performance and emergency trajectory),

logged over several laps in a multi-vehicle scenario on a race track in Modena, Italy (Figure A.3).

The computing time for the prototype Python 3.7 code deployed on an Intel Xeon E3-1245 3.3

GHz does not exceed the posed real-time limit of 100 ms. This limit was set for the prototype
in order to guarantee processing of a pair of trajectories, before a new set is generated by the

planner (10 Hz update-rate). Consequently, this test is marked as passed. For this test, it should
be noted that the final implementation of the Supervisor should be done in a compiled language,

for example C++, where significantly faster performance is expected. All requirements of group

S-1-B are evaluated as passed.

As stated in the previous section, the tests performed for this prototype do not meet the extent

requested by ISO 26262 [23]. Since no problems are expected in the implementation of these

tests in accordance with the derivation in the related work section, this is not in the focus of this

thesis. Further details and requirements can be taken from ISO 26262-4:2018, 7 and ISO 26262-

6:2018, clause 10 and 11 [23]. Investigations towards tests in agile SW development is part of

current research [285].
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Table 6.1: Evaluation of requirements for a safe trajectory (S-1-A) with associated scores (passed test

(PT) or passed test given assumptions (PTGA)) based on expected and observed output.

Re-

quire-

ment

Descrip-

tion

Input details Expected output Observed output PT PTGA

S-1-A-1 Accu-

rate

object

list

Proper object list Vehicle following

trajectory

Vehicle following

trajectory

True True

Fault-injection – object list

hosting wrong pose

Vehicle decelerat-

ing on latest emer-

gency trajectory

Vehicle following

trajectorya
False True

S-1-A-2 No

physical

interac-

tions

Trajectory candidate not inter-

secting object vehicle path

Vehicle following

trajectory

Vehicle following

trajectory

True True

Fault-injection – trajectory

candidate colliding with ob-

ject vehicle in future

Vehicle decelerat-

ing on latest emer-

gency trajectory

Vehicle decelerat-

ing on latest emer-

gency trajectory

True True

S-1-A-3 Correct

origin

Proper localization estimate Vehicle following

trajectory

Vehicle following

trajectory

True True

Fault-injection - localization

estimate hosting wrong pose

Vehicle decelerat-

ing on latest emer-

gency trajectory

Vehicle following

trajectorya
False True

S-1-A-4 Feasible

friction

request

Trajectory candidate hosting

feasible friction request

Vehicle following

trajectory

Vehicle following

trajectory

True True

Fault-injection – trajectory

candidate exceeding friction

limit

Vehicle decelerat-

ing on latest emer-

gency trajectory

Vehicle decelerat-

ing on latest emer-

gency trajectory

True True

S-1-A-5 Obeyed

rules

Trajectory candidate respect-

ing applicable rules

Vehicle following

trajectory

Vehicle following

trajectory

True True

Fault-injection – trajectory

candidate violating rule (here:

maximum velocity)

Vehicle decelerat-

ing on latest emer-

gency trajectory

Vehicle decelerat-

ing on latest emer-

gency trajectory

True True

S-1-A-6 Re-

spected

vehicle

charac-

teristics

Trajectory candidate respect-

ing vehicle characteristics

Vehicle following

trajectory

Vehicle following

trajectory

True True

Fault-injection – trajectory

candidate violating vehicle

characteristics (here: curva-

ture exceeds turn radius)

Vehicle decelerat-

ing on latest emer-

gency trajectory

Vehicle decelerat-

ing on latest emer-

gency trajectory

True True

S-1-A-7 Proper

trajec-

tory

data

Trajectory candidate hosting

proper data

Vehicle following

trajectory

Vehicle following

trajectory

True True

Fault-injection – trajectory

candidate hosting violating

data (here: s-coordinate not

matching x-y-coordinates)

Vehicle decelerat-

ing on latest emer-

gency trajectory

Vehicle decelerat-

ing on latest emer-

gency trajectory

True True

aFault not tracked due to assumption of reliable perception data.

6.3 Scenario-Based Evaluation

To evaluate the validity of the implemented framework, it is necessary to conduct extensive

testing. As discussed in Section 4.4, the focus—in line with the “appropriate set” of measures

called for in ISO 26262-4:2018, 8.4.3.4 [23]—is on scenario-based and random-based tests. In

this section, the scenario-based evaluations are presented. These tests involve testing a wide

range of “known” scenarios according to SOTIF [128]. Among the scenarios are explicit situations,
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Table 6.2: Evaluation of the requirements imposed on a Supervisor (S-1-B) with associated scores

(passed test (PT)).

Re-

quire-

ment

Expectation Observation PT

S-1-B-1 Simple and predictable Straightforward formal methods used (Section 5.4 and 5.5) True

S-1-B-2 Detection of all faults Holistic coverage pursued (Section 5.1) to be proved by

evaluation (Section 6.3 and 6.4)

True

S-1-B-3 Guarantee of a safe state All-time feasible emergency trajectory (Section 5.6) True

S-1-B-4 Prevention Detection of collisions or issues as soon as they appear in the

trajectory (reachable sets by nature, in addition guaranteed

occupied sets in large horizon performance trajectories)

True

S-1-B-5 Real-time capability Prototype real-time limit of 100 ms not exceeded (Figure 6.2),
compiled C++ implementation assumed significantly faster

True

S-1-B-6 Separation from overall system Individual module (Section 6.1), can operate on separate

HW

True

S-1-B-7 Modularity and adaptability Modular architecture (SupMods), which can be adapted to

current conditions as required

True
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Figure 6.2: Distribution of logged calculation time per iteration (evaluation of both, performance and

emergency trajectory) for several multi-vehicle laps on a track in Modena, Italy. Depending

on the length of the trajectories provided and vehicles in the vicinity of the vehicle, the

calculation time varies in each iteration. The two observed clusters result from purely static

tests when no other vehicle is in the vicinity (left cluster) and a full test coverage in the vicinity

of other vehicles (right cluster).

which are difficult to reproduce in reality or require expensive consequences (e.g., collisions or

critical events). Furthermore, the goal of the scenario generation is to include the injection of

faults that an online learning planner could generate. The overall aim of these tests, in line with

the philosophy of SOTIF [128], is to know in advance that the vehicle will behave safely in certain

situations, so as not to experience the effects for the first time in real operation. Since handcrafted

scenario-based tests strongly depend on the view of the creator [127], the author developed

a graphical user interface [245, 286] that makes it easy to construct scenarios. This allowed

several students to contribute to a scenario database. The graphical user interface—the Scenario

Architect—for generation of evaluation scenarios is briefly introduced in Subsection 6.3.1. Then,

the evaluation methods used and associated results are discussed in Subsection 6.3.2.

6.3.1 Scenario Architect

The contribution and need for the Scenario Architect created was elaborated in detail in a

dedicated paper [245]. The paper explains the underlying mechanisms in detail. The Scenario

Architect is available on GitHub [286]. In this section, the core aspects of the Scenario Architect

are briefly revisited and new features (that were not covered in the paper yet) are described in

more detail.
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Basic Functionality

The graphical user interface of the ScenarioArchitect consists of two windows (Figure 6.3 and 6.4).

In the main window (Figure 6.3), it is possible to define the track boundaries Bl and Br as well as

the trajectories ξ([t0, th]) of multiple vehicles with a pointing device only. The coordinates of the
boundaries are connected in pairs and form a track section (gray). The trajectory of the object

vehicle (blue) is currently in edit mode. Here the points that have been defined are visible (black

crosses). Between the points defined with the pointing device, the Scenario Architect calculates a

curvature continuous trajectory using cubic splines. In addition to the paths displayed throughout

the entire scenario, a single point in time is highlighted using two vehicle footprints (rectangles)

and the trajectory of the ego-vehicle (red). This time instant can be selected in the time window

(Figure 6.4) with the pointing device and displayed dynamically/live.
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Figure 6.3: Main window of the Scenario Architect. A specific time of the scenario is highlighted by

associated vehicle footprint boxes and the red trajectory of the ego-vehicle. The right side

contains radio buttons, buttons, and checkboxes to make changes to individual entities in

the scenario. Currently the vehicle “veh_2” is selected and in edit mode accordingly.

Figure 6.4 depicts the corresponding temporal information window for the scenario shown in

Figure 6.3. In this window the temporal information of the scenario is displayed and edited.

The velocity and acceleration of each vehicle in the scene is plotted over time. In addition, the

velocity is indicated over the location, since in this plot the speed can be modified by the user

using a graphical interface, here shown for the object vehicle (blue), which is in edit mode. The

black points in the velocity-location-plot can be moved by the pointing device individually or

by dragging in a batch. Initially, the velocity profile is initialized live with the maximum possible

velocity, taking into account the acceleration limits, while the corresponding path is drawn in the

main window. The red cursor represents the point in time that is currently displayed in the main

window (Figure 6.3). The cursor can be adjusted in real-time by moving the pointing device above

one of the time plots. The lowest plot deals with the ground truth generation for the safety of
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Figure 6.4: Temporal information window of the Scenario Architect that displays the progression of

acceleration and velocity over the entire scenario horizon. With the red marker a time-stamp

can be selected, which is then displayed in the main window.

each situation in the scenario. This part was not included in the paper [245] and will be explained

in more detail in the following.

Ground Truth Generation

A conventional evaluation of the scenarios would take place with an active Supervisor. Here, the

system must never enter a self-inflicted unsafe situation - even in scenarios with fault injection.

This is similar to conventional field tests. However, the problem is that even a restrictive (e.g. a

system that prefers to stop even in safe situations) or accidentally correct (e.g. a system that

stops early due to other influences without detecting the actual error) system may pass this test.

To get more details about the performance of the Supervisor, more detailed tests are performed.

For this purpose, it is determined in which scenes the system has to achieve a particular rating.

For this purpose, areas that have to be definitely evaluated as unsafe and areas that have to be

definitely evaluated as safe have to be defined. In order for the defined areas (ground truth) to

retain their validity, these tests have to be carried out with a passive Supervisor. In other words,
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the Supervisor assesses the situation, but does not switch to another trajectory when facing

an unsafe rating, as this would interfere with the control loop and change the future situations.

Accordingly, it is checked whether the generated evaluation is consistent with the ground truth.

The assignment of scenes in a scenario to a corresponding ground truth rating can be done by a

human, or (ideally) systematically by machines. Such an automated process is accommodated

in the Scenario Architect and shown in the bottom plot of Figure 6.4. It can be seen that the

time-line is colored in an black tone when an unsafe area is present and in a blue tone when the

corresponding scene is considered safe. The evaluation is done separately for a static and a

dynamic environment (here called “static safety” and “dyn. safety”) and fused afterwards. Since

there are different challenges, these will be described separately in the following paragraphs.

For the ground truth in the static environment ŝstat (ξ(t)) for a state ξ(t), straightforward methods
are applied. For this purpose, each state ξ(t) of the ego-vehicle within the scenario is checked
whether it complies with all safety-relevant requirements. In addition, an interval can be defined

in which the evaluation is allowed to take any ratings. This is required because a hard switch

from unsafe to safe can lead to discretization problems in the border area and is non-trivial to

specify.

A concrete example for this problem is the definition of the limits regarding a collision with the

track boundaries. If the situation were to be judged unsafe as soon as the vehicle touches the

barrier and safe in all other cases, the Supervisor would have to assess the situation as safe

even with a small distance to the barrier (e.g. 1 mm). Since an evaluation as unsafe in such

a situation is not necessarily wrong, and no clear boundary can be defined beyond which a

safe evaluation is expected, it helps to define a region without any specifications within the area

that is safe on paper. Consequently, in this example, an unsafe evaluation would be expected

upon contact with the track boundary. Up to a defined distance (e.g. 30 cm) any evaluation is

allowed. From the defined distance on, the assessment is expected to result as safe. From a

safety point of view, it is essential that the unspecified interval lies within the range specified

as “safe” on paper and that the Supervisor requires an “unsafe” rating in the case of an actual

unsafe condition.

Within the checks of an static environment the following properties are evaluated:

• Collisions with the track boundaries: Examine the considered pose for overlapping

with one of the track boundaries.

• Acceleration limits exceeded: Check if acomb exceeds the specified limits in the

corresponding state.

• Motor limits exceeded: Check if the desired acceleration can be achieved by the

motor in the current state.

• Turning radius maintained: Check whether the desired turning radius is drivable in

the current state.

As mentioned before, for each of these checks two thresholds are introduced. For example, for

the collision with the track limits ŝstat (ξ(t)) = 0 (unsafe) is set for overlap of the track boundaries

with the actual vehicle footprint at state ξ(t) and ŝstat (ξ(t)) = ; (any rating allowed) is set for
overlap with a slightly larger vehicle geometry at state ξ(t). The safe rating ŝstat (ξ(t)) = 1 is

expected whenever there is no overlap with any of the shapes. A similar procedure is followed for

the other properties. At this point it should be noted that the tests performed for generation of the

ground truth should not be identical / based on the same method as those for the safety score
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of the Supervisor, otherwise systematic errors can occur in both systems, which can then only

be uncovered in the real tests. In concrete terms, this means that for the previously mentioned

example with the track limits, the tests in the Supervisor were addressed by overlapping with a

tube around the entire trajectory, while in the Scenario Architect each individual pose is evaluated.

When defining ground truth in a dynamic environment, it is no longer trivial to determine when a

situation is safe or unsafe. Other road users can choose arbitrary actions and thus lead to critical

situations in different ways. In Figure 6.5a a situation is shown, where with fixed trajectory of the

ego-vehicle (orange) depending on the choice of maneuver of the preceding vehicle (gray) a

collision can occur (black trajectory) or not (blue trajectory).

(a) Example situation where, depending on the maneuver
of the vehicle in front, the situation can result in a

collision (black trajectory) or not (blue trajectory).

Implementation

Desire

Safety

(b) Qualitative listing of the different levels of safety regarding an-

other dynamic vehicle with desired as well as implemented ground

truth areas (hatched blue: Supervisor must evaluate situation as

safe; hatched black: Supervisor must evaluate situation as unsafe;

hatched faint black: identical to hatched black, but only imposed

when certain situational conditions are met, for example intersecting

paths, not during overtaking).

Figure 6.5: Schematic representation of the challenges and characteristic thresholds in the generation

of ground truth for dynamic scenarios.

In Figure 6.5b concrete safety levels are plotted on a beam in a qualitative space. Where the

collision has occurred on the far left, the situation just explained is located at “collision possible”

(blue line). Two other unambiguous boundaries are defined here: “collision unavoidable”, when

a collision is present regardless of the action of the other road user and “collision impossible”,

when no collision can occur regardless of the action of the other road user.

The desired ground truth would be the ranges shown in the top of Figure 6.5b. Thus, the

Supervisor would always have to evaluate as safe, if a collision is impossible in accordance

with applicable regulations and evaluate as unsafe in all other cases. However, since the

applicable regulations play a decisive role here and have to be implemented indent as in the

Supervisor, this would lead to the same assessment methods and would not provide any added

value in the evaluation [148]. For this reason, independent of the rules, the barriers “collision

unavoidable” (ŝdyn (ξ(t)) = 0) and “collision impossible” (ŝdyn (ξ(t)) = 1) were chosen as ground
truth (Figure 6.5b bottom ranges). In the range in between, only possible collisions in currently

overlapping path tubes (the future of the other vehicles is known in the Scenario Architect)

are expected to be assessed as unsafe (this also includes the situation in Figure 6.5a). All

other cases in this range are undefined and accept any rating of the Supervisor, but are judged

separately by a human with respect to applicable rules. This includes, for example, successful

overtaking maneuvers. It should be noted that the ground truth range for “safe” is set somewhat

further to the right than “collision impossible”, since the online safety assessment often relies on
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over-approximated worst-case maneuvers (e.g. reachable sets) for the object vehicles, which

therefore detect unsafe behavior due to this approximation slightly more conservative than in

reality.

In this work the determination of these intervals is done with the Difference of Space Distance

and Stopping Distance (DSS) [287, 288]. The DSS is a Surrogate Safety Metric (SSM) and

defined as the distance between two vehicles after applying the maximum braking deceleration

amax (assuming identical for both vehicles), with considering reaction time treact and initial bumper-

to-bumper distance dx:

DSS = dbrake,le + dx − dbrake,ego − dreact,ego =
v2

le

2amax
+ dx −

v2
ego

2amax
− treactvego, (6.1)

where vle and vego denote the initial velocity of the lead vehicle and ego-vehicle, respectively.

In addition to the bumper-to-bumper distance dx, each of the other summands also describes

a distance, namely the braking distance of the vehicle in front dbrake,le, the braking distance of

the ego-vehicle dbrake,ego, and the distance traveled during the reaction time dreact,ego (assuming

constant velocity vego).

The Scenario Architect determines a concrete emergency trajectory for the ego-vehicle in each

time step, which is passed to the Supervisor as a bundle with the performance trajectory when

a scenario is replayed. For this reason, the DSS is modified to use the length of the concrete

emergency trajectory of the ego-vehicle to standstill at each time step instead of the calculated

braking distance dbrake,ego. If the DSS is less than or equal to zero and the vehicles are on a

collision course, a collision can occur under worst case assumptions for the lead vehicle. If the

DSS is greater than zero, the collision can definitely be avoided with the current emergency

trajectory. Since a bumper-to-bumper distance close to zero meters can still be considered critical,

a slightly larger value of DSS is recommended as ground truth, above which the assessment is

expected to result in a safe rating. Following the principle introduced earlier, two thresholds are

defined, separating the unsafe, undefined and safe ground truth safety areas. It should be noted

here that collisions shortly before impact, for which the leading vehicle may be responsible, also

have to be detected by this means (the DSS does not take into account the applicable rules).

However, this is also desirable in the close range and checked via guaranteed occupied sets. In

case the DSS is negative, but the vehicles are not on a collision course (simple forward checking

of the defined paths), the previously unspecified evaluation is applied, since knowledge about

applicable rules is necessary to define the evaluation explicitly. Further details and parameters

regarding the ground truth generation are given in the Appendix in Table A.3.

Scenarios exported by the Scenario Architect can be replayed afterwards with ground truth, data

of the ego-vehicle, and all environment data.

6.3.2 Evaluation Results

In this section, the evaluation results of the scenario-based tests are presented. In this context,

121 scenarios with up to three vehicles were examined. The scenarios were created with the

Scenario Architect [245, 286] from scratch, based on race tracks [289], log data, or critical real

situations. To increase the diversity of the data base, the scenarios were created by multiple

individuals. The scenarios are of different duration and describe either a safe situation or a

situation injected by one or multiple of different faults (e.g. collision with other vehicles). A

visualization of each of the scenarios can be found in Appendix A.5.
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The scenario-based tests are performed with both passive and active Supervisor, as described

previously (Subsubsection 6.3.1). The principles and intentions of the two strategies are as

follows:

Passive Supervisor tests: The Supervisor evaluates each situation in the scenario, but does

not switch to the emergency trajectory if the evaluation results unsafe. This allows to

evaluate against the ground truth determined for each situation. With this method it is

possible to evaluate the performance and algorithmic details of the Supervisor, since in

given situations an appropriate safe or unsafe rating has to be made.

Active Supervisor tests: The Supervisor evaluates each situation in the scenario and switches

to an emergency trajectory as soon as and as long as there is an unsafe rating. Because

of the active intervention and the resulting modification of the scenario, the ground truth

loses its validity. In these tests it is checked whether the Supervisor manages to keep

the system in a state without an incident caused by the ego-vehicle. The focus is not on

performance or algorithmic details, but on overall safety.

In the following, first, the passive Supervisor tests in Subsubsection 6.3.2 and then the active

Supervisor tests in Subsubsection 6.3.2 are discussed. Both evaluations use the scenario

collection described above.

Passive Supervisor Tests

In the passive Supervisor test, ground truth ratings exist for each scenario, indicating regions

where the Supervisor is expected to provide a safe rating and regions where the Supervisor is

expected to provide an unsafe rating. The ground truth is drawn as a lighter background and the

actual ratings of the passive Supervisor as vertical lines.

A schematic illustration of this evaluation scheme based on the boundary collision example given

in Subsubsection 6.3.1 is shown in Figure 6.6. For the sake of better comprehensibility of this

illustrative example, only the respective state of the vehicle is rated instead of the trajectory

associated with each time-step. In addition, the example does not show the interplay of all

SupMods, but only the check for collision with the track boundary. The blue vehicle travels

along the indicated path (orange), whereby the vehicle intersects the track boundary during a

certain time interval (orange tube around the path overlaps the track boundary). Along this path,

there exist expected safety evaluation intervals (ground truth). If the vehicle intersects the track

boundary, an unsafe rating is expected to be generated by the Supervisor (gray shaded area in

the upper plot half). If the vehicle is sufficiently far away from the boundary (outside the green

highlighted area on the track), a safe rating is expected to be generated by the Supervisor (light

blue shaded area in the upper plot half). If the vehicle is close to the boundary (intersects the

green highlighted area), the situation is safe on paper, but driving close to the boundary of the

track (e.g. 1 mm) may be unsafe. For this reason, the Supervisor is allowed to generate unsafe

ratings in this case as well. Accordingly, there are areas without safe or unsafe ground truth,

which allow any rating of the Supervisor. The actual ratings of the Supervisor are plotted over

the ground truth for each time step by black and blue bars, so that a colored bar is created in

the overall image (upper plot half). As shown for the evaluation of static collisions with the track

boundary in this example, the ground truth intervals are generated in a similar manner for all

other aspects and then merged in a single ground truth rating.
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Safe rating for a given time-stamp 

Unsafe rating for a given time-stamp 

Expected unsafeExpected safe

Any rating allowed

Figure 6.6: Illustrative sketch of the evaluation method based on a point-by-point analysis with regard to

track boundary intersections.

An overview of the corresponding passive ratings (i.e., rating but not intervening) and ground

truth regions of the implemented 121 scenarios is shown in Figure 6.7.

The generated ratings of the passive Supervisor all fall within the expected ratings for all scenarios.

Hence, no false negatives nor false positives occurred in the passive scenario tests. An overview

is given in Table 6.3. The number of evaluations without unambiguous ground truth is given in

the “any” column of the table. The number of these candidates show a tendency towards more

“safe” evaluations, which corresponds to a high availability of the system. However, it has still to

be checked in these cases whether critical situations were missed and incorrectly evaluated as

safe. This is done by inspecting samples of the ratings that are without ground truth by hand,

since a human can take into account the applicable rules. Furthermore, additional test runs

with an active Supervisor (i.e. intervening once an unsafe rating occurs), in which no hazards

are allowed to occur, demonstrate timely intervention. In the following, an exemplary situation

without ground truth for one of the scenarios investigated is presented and analyzed. This is

followed by an evaluation of the tests with an active Supervisor in Subsubsection 6.3.2.

Table 6.3: Number of individual ratings received across the 121 evaluated scenarios per binary classifi-

cation type.

Expected rating

Safe Unsafe Any

Observed 

rating

Safe 12085 0 10382

Unsafe 0 5449 1096

Scenario - passive

Figure 6.8 depicts a situation from scenario S43. No ground truth was stored for this specific

situation. The reason for this is that the DSS value falls below the defined threshold (Subsubsec-

tion 6.3.1), but the vehicles are not on a collision course (no crossing of the trajectories). In order

to be able to generate a ground truth here, the formalized rule knowledge would already have
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Figure 6.7: Passive Supervisor ratings for the 121 scenarios (S1-S121) examined, each paired with their

expected safety rating. Regions where no expected rating is stated can take any Supervisor

rating. The plot is cropped to a maximum duration of 20.0 s for better readability.
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to be included in the creation and thus contain a duplicate of the SW to be tested, which does

not provide any additional validation value [148]. In the situation shown, the driving tube of the

emergency trajectory of the ego-vehicle (orange) intersects the reachable set of a TP (green)

slightly (red highlights). Thus, after a series of preceding safe evaluations, this situation is among

one of the first evaluated as unsafe. The reachable set is not further reduced in this situation,

since none of the formalized rules apply. After a manual inspection, the Supervisor’s assessment

of the situation as unsafe is considered correct, since the ego-vehicle is approaching the inside

of the curve too fast to be able to react to possible maneuvers to the inside of the curve by the

vehicle in front. In the further course of the scenario, a collision occurs (time step t veh1
2 and t veh2

2
in Figure 6.8). Similarly, a manual check was performed on samples of other situations without

ground truth throughout all scenarios. No irregularities were found.
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Figure 6.8: Reachable set of a TP (green) and emergency trajectory of the ego-vehicle (orange) at 3.2 s
into scenario S43, based on [246]. Future vehicle poses are drawn at 1.0 s increments, while
every second instance i is denoted by tveh1

i and tveh2
i for the ego-vehicle and TP, respectively.

Active Supervisor Tests

In active Supervisor tests, it is checked whether the combined system, trajectory planner including

the Supervisor, is capable of preventing critical situations. For this purpose, all 121 scenarios

examined above are used once more. This time, as soon as the Supervisor detects an unsafe

situation, the system switches to the emergency trajectory and follows this trajectory until a safe

pair of trajectories is found again. In accordance with the assumptions stated (Section 5.2) and

in order to exclude further influences in the evaluation of the module under consideration, an

ideal controller is used. The controller follows the trajectory in an ideal manner, which satisfies

the objective of validating the planner-Supervisor combination, i.e. to show that this combination

always provides sufficiently safe trajectories under given input data. In a real setting, the identified

control uncertainties have to be taken into account in the planner and thus also in the Supervisor

(as mentioned in Section 5.2, for example, with trajectory tubes by the planner and compliance

guarantees by the controller).

A scenario is considered passed if no unsafe situation occurs, i.e. the Supervisor prevents any

incident. For repeatability and comparability, the other TPs in the scenario are non-reactive and

travel their trajectories in a fixed manner, therefore situations in which the TPs is responsible for a
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collision with the ego-vehicle (e.g. running over the stationary ego-vehicle) are excluded from the

evaluation. An overview of all scenarios carried out and their evaluation is shown in Figure 6.9.

It is important to distinguish here in comparison to Figure 6.7 that in this figure the safety of

the situation is depicted instead of the Supervisor ratings. Consequently, the expectation for

the scenario whether an incident occurs is drawn as a semitransparent background and the

fact whether an incident has occurred for a certain time stamp as vertical lines. Over the entire

scenario period, the individual vertical lines in a row form a bar with color-coded evaluations for

the corresponding time periods.

The evaluation generated with the active Supervisor is in line with expectations. All observed

incidents were not caused by the ego-vehicle following given assumptions and rules. A summary

is given in Table 6.4 and causes for occurred incidents are addressed and explained in the

following. Since isolated incidents were caused by a TP (e.g. driving through a stationary ego-

vehicle) or an unsafe initial state, no relevant false positives nor false negatives were observed.

All types of incidents that occurred in Figure 6.9 are listed and briefly explained in the following:

• The TP violates an applicable rule (S13: TP leaves dedicated overtaking zone

according to the Roborace regulation, S20: TP pushing ego-vehicle off track while

driving alongside).

• The TP hits the ego-vehicle from behind (S15, S16, S40 [second incident interval]).

• The initial state of the ego-vehicle is unsafe due to the vehicle footprint intersecting

the track boundary. Due to a non-zero initial velocity, the ego-vehicle leaves the

boundary on the emergency trajectory and continues safe thereafter (S39, S40

[first incident interval], S53, S109 [first incident interval]).

• Collision at low velocity as the ego-vehicle encounters a simulated crash of two TPs

ahead, which do not comply with the assumptions due to backing up/rebounding

of the vehicles (S48).

• The provided emergency trajectory holds one time instant slightly exceeding the

acceleration limits (S71).

• The initial state of the ego-vehicle is unsafe due to a slight boundary intersection

that cannot be avoided due to a high initial velocity (S76, S113, S115, S120).

• The initial state of the ego-vehicle is unsafe due to the vehicle resting outside track.

The vehicle remains in this state throughout the scenario due to a low initial velocity

and the fact that no safe new trajectory is provided (S91).

• The initial state of the ego-vehicle is unsafe due a trajectory segment violating

the turn radius that cannot be avoided due to a high initial velocity (S109 [second

incident interval]).

Table 6.4: Number of incidents and safe states observed during active Supervisor simulation across

the 121 evaluated scenarios per binary classification type. The false negatives are shown

in parentheses, as they were classified as reasonable unsafe states (true negatives) in a

subsequent analysis.

Expected state

Safe Unsafe

Observed 

state

Safe 27740 0

Unsafe (370) 0

Scenario - active
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Figure 6.9: Observed safety status of individual time-steps during active Supervisor runs for the 121

scenarios (S1-S121) examined, each paired with their expected safety state (expected

throughout safe). The plot is cropped to a maximum duration of 20.0 s for better readability.
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In the same way as before, one of the scenarios with an active Supervisor is discussed in more

detail as an illustrative sample. For direct comparability, the previously discussed scenario S43

is also selected here. The situation at the same point in time as before in the scenario with

active Supervisor is shown in Figure 6.10. It can be seen that the TP is still at the same position

and has an identical reachable set, but the ego-vehicle is now a bit further back, so that the

emergency trajectory does not intersect with its driving tube. Thus, the instant shown is to be

considered safe. This is due to the fact that in a previous time step the Supervisor evaluated

the emergency trajectory as unsafe due to the intersection with the reachable set of the TP.

Consequently, the Supervisor forced a switch to the latest safe emergency trajectory and the

ego-vehicle was slowed down until a new safe trajectory was generated. As a result, it can also

be seen in the further course of the scenario (plotted vehicle poses) that there is now no collision

and the ego-vehicle passes through the corner behind the TP. Accordingly, this scenario with

active Supervisor intervention is to be evaluated as passed.
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Figure 6.10: Reachable set of a TP (green) and emergency trajectory of the ego-vehicle (orange) at

3.2 s into scenario T43, based on [246]. Future vehicle poses are drawn at 1.0 s increments,
while every second instance i is denoted by tveh1

i and tveh2
i for the ego-vehicle and TP,

respectively.

6.4 Random-Based Evaluation

Random-based evaluation involves evaluating real test runs in a normal operating environment,

i.e. in this case during a race. The objective is to detect false negatives in particular, i.e. to check

whether the Supervisor initiates unauthorized interventions in supposedly safe and common

situations. For these tests, data from automated race vehicles generated during the Roborace

Season Alpha [107] are analyzed. In the following, the automated race vehicle (Subsection 6.4.1),

the relevant test tracks (Subsection 6.4.2), and finally the evaluation results (Subsection 6.4.3)

will be outlined in more detail.
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6.4.1 Testbed DevBot by Roborace

Recorded automated race vehicle missions of the trajectory planner presented in Subsection 2.3.1

serve as the basis for the random-based evaluation. These were recorded during automated

test drives with the Roborace DevBot 1.0 (Figure 6.11a) and DevBot 2.0 (Figure 6.11b). Both

vehicles host an electric drive train with 270 kW drive power and are equipped with the same

comprehensive sensor technology. This includes six cameras, five LIDAR systems, two radars,

two differential global positioning systems, two inertial measure units, and two optical speed

sensors.

(a) DevBot 1.0 during tests on an abandoned airfield in Upper
Heyford, United Kingdom.

(b) DevBot 2.0 during tests on a race track in Monteblanco,

Spain.

Figure 6.11: Automated test vehicles used for evaluation: Roborace DevBot 1.0 and DevBot 2.0.

All the SW driving the vehicle was developed by a team of researchers from two institutes at the

Technical University of Munich. Themost relevant aspects, trajectory planner and SWarchitecture,

have already been briefly presented in previous Subsection 2.3.1 and 6.1, respectively. For

interested readers, further details (less relevant for the understanding of the following sections)

can be found in two overview papers [109, 281].

6.4.2 Test Grounds

The data used for evaluation was obtained on test tracks in the United Kingdom, Spain, Italy,

and France. The corresponding track maps are given in Figure 6.12, detailed versions including

distance information can be found in Appendix A.4. These track representations, based on two

boundaries, serve as a basis for the planner. Accordingly, they are also used in the Supervisor

module for OV. The map was created via high-precision DGPS recordings or via simultaneous

localization and mapping using LIDAR sensors [245].

The tracks were raced by one vehicle alone (map checkups, performance maximization, time

trials) as well as with multiple vehicles (races). As soon as several vehicles were on the track,

the Roborace Season Alpha rules were applied (Subsection 5.5.1).
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(d) Le Croix, France.

Figure 6.12: Overview of the tracks on which the automated race vehicle was operated for this evaluation.

Different scales are applied.

6.4.3 Evaluation Results

Due to the COVID-19 pandemic and strategic decisions to refrain from multi-vehicle operations

in the context of Roborace, no further actual runs with an active Supervisor took place during this

research work. For this reason, an evaluation of real data recorded on the previously described

tracks prior to the implementation of the Supervisor is carried out in this section. The actual

trajectories and the corresponding environmental data faced on in the real world were logged

in their entirety for each time step and are replayed in real time for evaluation. Following the

architecture depicted in Section 6.1, this data is fed into the Supervisor. The Supervisor then

performs a passive evaluation, i.e., without intervention upon detection of an unsafe situation.

The hypothesis for the actual test drives is that the vehicles are always in safe situations and

thus primarily safe ratings are to be expected. In this context, a retrospective, passive evaluation

is not to be considered as diminishing. Any unsafe ratings that occur are initially classified as

false negatives, but are subsequently examined with regard to their justification.

The evaluation takes into account 162.36 km of automated driving data with up to three automated

vehicles simultaneously on the track and speeds up to 210 kmh−1. The corresponding scores

of the Supervisor in the individual runs are displayed in Figure 6.13. The exact numbers of the

individual assessments are listed in Table 6.5. It can be seen that, besides to the expectation

of primarily “safe” ratings, there were a few isolated “unsafe” readings. These alleged false

negatives have been analyzed manually and evaluated with regard to their justifiability (for this

reason shown in brackets). Individual illustrative incidents are examined in the following.

Table 6.5: Number of individual ratings received across the 17 evaluated real-world test runs per binary

classification type. The false negatives are shown in parentheses, as they were classified as

valid ratings (true negatives) in a subsequent analysis.

Expected rating

Safe Unsafe

Observed 

rating

Safe 52843 0

Unsafe (472) 0

Real-world runs

Incident in Monteblanco, Spain

In Monteblanco, Spain, on the last day of testing in a race with two vehicles (T8), a fault occurred

in which the ego-vehicle went off track while following another vehicle shortly before the apex of

the turn (Figure 6.14). In the data (Figure 6.14c), it can be observed that the ego-vehicle brakes
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Figure 6.13: Passive Supervisor ratings for 17 examined real-world test runs (T1-T17) each paired with

their expected safety rating (expected throughout safe).

for the turn, comes off the brake shortly before the apex, passes through the turn at a constant

velocity that is too high, and only when the control error (t = 5.19 s in Figure 6.14c) is too large
an emergency stop is performed with full brake pressure.

After analyzing the data, it became apparent that the velocity profile was too fast for the upcoming

turn and therefore required high lateral forces (Figure 6.15). The cause for this phenomenon

was tracking of the vehicle in front. For the applied velocity planner, two optimization problems

interacted. One that determines the appropriate feasible cornering velocity profile as well as a

tracking controller that regulates the (safety) distance to the vehicle in front. In some situations,

when a vehicle was directly ahead in front of a turn, the tracking controller incorrectly gained

dominance. This caused the ego-vehicle to maintain the distance instead of properly decelerating

for the apex. This occurred mainly when the vehicle in front allowed higher lateral accelerations

than the ego-vehicle or the ego-vehicle was in the process of catching up. As a consequence,

the velocity of the ego-vehicle at the entry of a turn was in some instances too high to be

able to brake sufficiently for the apex of the turn. In these cases, the ego-vehicle decelerated

with the maximum remaining longitudinal acceleration potential in front of the turn apex, but

as soon as the lateral acceleration reached the total configured acceleration limit the tire-road

combination can bear (Figure 6.15b), the ego-vehicle could not apply any further longitudinal

deceleration (longitudinal velocity plateau and longitudinal acceleration being zero in the top plot

of Figure 6.15a). This systematic error was only noticed when the vehicle went off the track like

mentioned in this incident. However, when analyzed with the Supervisor, it is evident that this

phenomenon occurred much more frequently when driving through turns behind a lead vehicle

(all generated “unsafe” ratings for t ≥ 20.0 s in T1, T2, T3, T6, T9, and T12). In these cases the
vehicle did stay on the track, because either the error was still so far in the future of the trajectory

that the vehicle re-planned and executed a new valid trajectory in time, or the controller, and

the tire-road combination were able to compensate for this error. With the Supervisor in use,

the error would have been detected at the first occurrence and could have been addressed

adequately. The corresponding “unsafe” evaluations by the Supervisor are therefore justified

and is classified as valid.
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(a) Superimposed frames at 400 ms intervals taken from a

video [290]. The lead vehicle exits the turn safely and the

following vehicle leaves the track at the apex of the turn.

(b) Incident race car in the gravel close to the apex of the turn.
Track marshals and engineers inspect and prepare for the

recovery of the vehicle.
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(c) 10 s excerpt of the ego-vehicle from the incident in Monteblanco, Spain. The track data (black) as well as the actual position

course (orange) recorded via state estimate and the respective intended/planned poses (light blue) are shown above a Google

maps satellite image in the upper plot. Vehicle poses are drawn at 1.0 s increments, while every second instance i is denoted
by ta

i and tp
i for the actual and planned poses, respectively. In the lower plot, the longitudinal speed vx, lateral (ay) as well as

longitudinal (ax) acceleration and front (pf) as well as rear (pr) brake pressures are given for the same period.

Figure 6.14: Vehicle going off track due to infeasible velocity plan in Monteblanco, Spain (test run T8).
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(a) Considered trajectory of the ego-vehicle, with a TP (blue box)

at the turn apex ahead.
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Figure 6.15: Infeasible velocity plan in Monteblanco, Spain (test run T8), shown for time-step t = 3.0 s
of Figure 6.14.

Incident in Modena, Italy

The “unsafe” evaluations caused by the Supervisor in test run T5 towards the end (around

250 s into the test run) represent a unique situation. At the beginning of a closing cool-down
lap following several high-speed laps, the vehicle left the track and collided with a tire pile at a

speed of around 100 kmh−1 (Figure 6.16). The impact (t = 6.3 s) corresponded to a load of 8.2g
(Figure 6.16c). It should be noted, that this figure holds less data with a less frequent sampling

compared to the previous evaluation since only data transmitted via telemetry is available, due

to corrupted controller logs as a result of the crash. At first glance, the phenomenon—insufficient

deceleration before a turn apex—is the same in this case as in the previously described incident.

However, the root cause for the incident is different and will be explained below.

Due to the scheduled cool-down lap aimed at cooling down the braking and actuation system,

reduced acceleration limits were set active at the start/finish line just before turn 1 of the race

track in Modena, Italy. As a result of this switch and the associated reduced acceleration reserves,

the vehicle was no longer able to brake sufficiently before the apex of the upcoming turn. The

planner detected this problem and intended to bring the vehicle to a standstill as a consequence.

Trajectories that were planned significantly before the incident—in Figure 6.17 exemplary shown

for t = 2.0 s of the interval introduced in Figure 6.16c—resulted, as intended, in a standstill.

However, the velocity planner also adopted the same reduced acceleration limits, so that even this

deceleration trajectory was not able to decelerate the vehicle sufficiently before the apex of the

turn. As soon as the lateral forces caused by the turn have exhausted the tire’s entire (reduced)

acceleration potential, the planner was no longer allowed to apply any further longitudinal

acceleration (velocity plateau in Figure 6.17a). Due to the high lateral forces (Figure 6.17b)

resulting from the high velocity, the vehicle left the track and hit the barrier. For interested readers,

further details of the incident can be found in a dedicated publication [268]. The Supervisor

detects the situation early and would have switched to the last valid emergency trajectory with
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(a) Vehicle that has left the track and has come to a stop in the
tire pile of the track barrier.

(b) Accident vehicle being recovered by track marshals and en-
gineers using a telescopic forklift.
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(c) 10 s excerpt of the ego-vehicle from the incident in Modena, Italy. The track data (black) as well as the actual position course

(orange) recorded via state estimate and the respective intended/planned poses (light blue) are shown above a Google maps

satellite image in the upper plot. Vehicle poses are drawn at 1.0 s increments, while every second instance i is denoted by ta
i

and tp
i for the actual and planned poses, respectively. In the lower plot, the longitudinal speed vx, and lateral (ay) as well as

longitudinal (ax) acceleration are given for the same period.

Figure 6.16: Vehicle going off track due to infeasible cool-down plan in Modena, Italy (test run T5).
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(a) Considered trajectory of the ego-vehicle.
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Figure 6.17: Infeasible cool-down plan in Modena, Italy (test run T5), shown for time-step t = 2.0 s of
Figure 6.16.

unreduced acceleration limits if it had been deployed during this run. Due to the relevance of this

situation, the isolated event of this incident was replicated in scenario S121 (Subsection 6.3.2)

and thus also successfully passed the active Supervisor test. In the corresponding scenario, the

Supervisor switches to the emergency profile, brakes the vehicle down towards the apex until a

new valid trajectory with the reduced acceleration limits is found. Consequently, the “unsafe”

ratings by the Supervisor are justified and valid in this case.

Concluding Judgment on the Random-Based Evaluation

The majority of the “unsafe” ratings correspond to the types of incidents explained earlier. In

addition, there were isolated events when starting from standstill (all generated “unsafe” ratings

for t < 20.0 s in T2, T4, T5, T10, T12, and T15), which were caused by exceeding the motor
potential. These were not noticed in the field, because the friction force limit is much higher than

the limitation of the motor. Thus, the vehicle accelerated slightly slower than initially intended by

the trajectory planner, but no critical situations occurred.

In summary, all ratings of the Supervisor were justified. In addition to the expected safe ratings,

the Supervisor also provided occasional unsafe ratings, as suspected. Each of the ratings initially

classified as false negatives was examined with regard to its justification and qualified as true

negatives. Consequently, the random-based evaluations with real-data tests are to be judged as

successful and passed.

It is noted once more that the scope of the selected measures does justice to a proof of concept

of the prototype in question for this project, but that significantly more effort is required for an

official approval. Related research deals with the question of the required extent of testing that is

sufficient for sound approval [167].
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In summary, in this chapter, an OV module for the use-case of a trajectory planner of an

automated race car was integrated, tested and successfully evaluated. In the next chapter, the

results obtained will be reviewed and put in relation to the guiding theses and research questions

posed at the beginning of this work. In addition, acquired findings and future work will be derived.
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This section positions the results obtained in Chapter 4, 5, and 6 with respect to their ability

to cope with the challenges of approval (Subsection 2.4.1) in Section 7.1 and with respect to

the guiding theses and research questions (Chapter 3) in Section 7.2. In addition, an insight on

identified findings and an outlook on future extension and application opportunities is given in

Section 7.3.

7.1 Review of Posed Safety Standard Limitations

At the beginning of this work, Subsection 2.4.1 highlighted the limits of current automotive

standards when faced with complex or learning driving functions. Two core challenges were

identified based on the standards itself and related work. In this section, a review is made of

whether these two challenges have been adequately addressed by the chosen approach.

7.1.1 Online Adaptation

The first core challenge identified is:

Online adaptation: Systems that continue learning after the validation phase can develop an

unsafe behavior (new types of hazards and no specification possible due to training data).

The following explains how this challenge is addressed with the implemented approach. The

challenges arising from the characteristics of an AI-based algorithm are intercepted by the

encapsulation with the Supervisor. The Supervisor guarantees that, regardless of the underlying

system, the generated trajectories comply with all formal criteria for safe behavior (through holistic

elaboration). Accordingly, new types of hazards cannot occur under assumptions made. Since

the planner used in this use-case does not rely on online learning AI, this aspect is confirmed by

the scenario-based validation, where unnatural trajectories and faults are injected and tested.

The lack of specifiability of the underlying system based on training data is also eliminated by

the formally well-defined Supervisor. Due to the formal nature and the deterministic behavior of

the Supervisor, it can be precisely determined which behavioral characteristics the combined

system, black-box planner and Supervisor, can adopt. In conclusion, the challenge discussed

here can be addressed by the proposed Supervisor framework.

7.1.2 Complex and Non-transparent

The second core challenge identified is:

Complex or non-transparent: The module cannot be formally approved by an expert (non-

transparent functions and standards tailored for manual vehicles).

89



7 Discussion

The following explains how this challenge is addressed with the implemented approach. The

main challenge, that the function to be safeguarded is not transparent and too complex for an

expert, is significantly mitigated by the explained ASIL decomposition into an ASIL QM (D) for

the underlying function and an ASIL D (D) for the Supervisor. For the QM qualification, only basic

measures have to be performed and the more complex ASIL D measures are performed on the

Supervisor, which is based on transparent and straightforward principles. Accordingly, all of the

measures explained in Chapter 5 are based on deterministic and straightforward methods.

Nevertheless, the standards are formally only conditionally or not yet valid for ADSs of SAE level

4+. While the main challenge of the application to such systems is addressed by the use of the

Supervisor (as stated above), a formal qualification with all details is neither given in ISO 26262

nor in ISO PAS 21448. In conclusion, the prerequisites for approval in line with the standards

are given with the proposed approach, but formal further development of the standards is still

pending.

7.2 Review of Posed Guiding Theses and Research
Questions

The guiding theses and research questions derived in Section 3.1 are conclusively answered

below with regard to the procedure developed and the results shown. In this process, the different

guiding theses and related research questions will be reviewed and answered individually. Finally,

the research gap derived in Subsection 2.5.3 is revisited in terms of its fulfillment.

7.2.1 Evaluation of Guiding Thesis 1

In the following, the first guiding thesis,

T 1: Complex and frequently changing SW for driving functions of ADSs can be safeguarded,

while taking into account applicable standards.

is addressed on the basis of the associated research question:

Q 1: Which safeguardingmethod is most promising to address the challenges of approval

for complex and learning functions, while taking into account applicable standards?

The answer to the first research question (Q 1) was initially worked out in Section 3.1 with

a structured analysis in the light of related work. An OV approach was found to be the most

promising. In order to support the first guiding thesis (T 1), however, it is now necessary to

include the findings from the concept and the prototypical implementation.

By conducting scenario-based tests with various error injections, the output of an arbitrary (black-

box) SW was emulated. Accordingly, functions that have a complex and frequently changing

character as specified in T 1 can thus also be represented within these tests. The results

(Chapter 6) confirm that the presented prototype, the Supervisor, is capable of safeguarding

trajectories with miscellaneous fault injections (as per the scenario-based testing). Following the

preceding findings (Section 7.1), applicable standards are taken into account within this concept.

Consequently, guiding thesis T 1 holds and is considered valid.
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7.2.2 Evaluation of Guiding Thesis 2

In the following, the second guiding thesis,

T 2: A procedure can be found for the development of an OV method for safeguarding ADS

functions, taking into account applicable standards.

is addressed on the basis of the associated research question:

Q 2: What development steps does an OV method respecting applicable standards have

to follow, in order to meet the requirements of a comprehensive safety assessment?

The second research question (Q 2) is answered by the four-stage method for the development

of an OV module presented in Chapter 4. The methodology was established following the

principles of applicable standards, in particular ISO 26262 due to the most detailed requirements

and specifications at the time of writing. The method presented follows the V-model on which

ISO 26262 is based. For a comprehensive safety assessment, the first step of the procedure,

the holistic requirements analysis, is essential. To support this goal, a structured method for the

development of safety-relevant criteria is presented (Section 5.1).

The prototype implementation of the Supervisor (Chapter 5) demonstrates that it is possible to

find a procedure for the development of a method that fulfills the safeguarding of ADS functions

in line with the standards. The focus in this guiding thesis (T 2) is primarily on the ability of finding

a valid development process, whereas the third guiding thesis (T 3) examines the effectiveness

of the implemented function. Consequently, guiding thesis T 2 holds and is considered valid.

7.2.3 Evaluation of Guiding Thesis 3

In the following, the third guiding thesis,

T 3: A prototypical implementation of an OV for the trajectory planner of a real-world automated

race vehicle demonstrates the viability and serves as proof of concept.

is addressed on the basis of the associated research questions:

Q 3: What are the specifics of a prototypical implementation of the derived generic OV

method targeting the holistic safety assessment of a trajectory planner?

Q 4: What does the validation of a prototypical OV method involve in order to meet the

purpose of a proof of concept for the overall method?

The answer to the third research question (Q 3) is provided by the detailed implementation of an

OV module for the trajectory planner of an automated race vehicle in Chapter 5. In the course of

the implementation, the requirements for a safe trajectory were elaborated in a dedicated manner

using a holistic method. These include, for example, the avoidance of physical contact with static

and dynamic entities in the environment as well as the consideration of the friction potential

between tires and track surface. Subsequently, after defining the OV architecture, evaluation

metrics were developed for all these criteria. For example, temporal logic was utilized to establish

reduced reachable sets for the detection of any potential collision with TPs. Starting from a safe

initial state (standstill) and based on the individual results obtained with the evaluation metrics,

a safe trajectory is guaranteed at any time. The procedure for selecting such a trajectory is

explained in Section 5.6.

The fourth research question (Q 4) is answered primarily by means of a comprehensive evaluation

of the implemented Supervisor in Chapter 6. According to the recommendations in ISO 26262,
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a scenario-based as well as random-based evaluation was carried out. In the course of the

prototypical implementation, 121 scenarios were realized and evaluated. The evaluation was

carried out in passive, i.e. non-intervening mode against deterministically determined ground

truth, as well as with active intervening Supervisor, where no hazards may occur. All scenario-

based results were in line with expectations. The random-based evaluation used 162.36 km
real-world data of automated driving. Contrary to the initial expectation of exclusively safe

evaluations, isolated evaluations resulted in an unsafe rating. However, it could be shown that

the unsafe evaluations made by the Supervisor are justified and are traced back to faults in

the planning task. This extent reflects an adequate effort for a prototypical implementation,

but requires significant increase for official approval. Amersbach [291] investigates a functional

decomposition approach aimed at reducing the effort required for safety validation. Corresponding

concepts could investigate validation exclusively for the planner and the Supervisor in order to

reduce the validation effort.

By combining the findings from the two research questions above, it is concluded that a specific

implementation for the OV of trajectories was implemented, which did not show any shortcomings

in the course of the validation. Accordingly, the implementation of the Supervisor is considered a

successful proof of concept. Consequently, guiding thesis T 3 holds and is considered valid.

7.2.4 Evaluation of the Research Gap

In this subsection, the Table 2.1 developed in Subsection 2.5.3 is revisited for its fulfillment given

the research gap identified. In the analysis, it was found that none of related work adequately

addresses all four of the assessment criteria identified (described in Table A.1). The goal of this

work was set to adequately investigate ( / ) the four assessment criteria.

The scores obtained for this work are shown in Table 7.1. In the following, the individual assess-

ment scores are briefly explained:

Approval/standards: According to the explanations in Section 7.1, core challenges were iden-

tified and examined with regard to approval and applicable standards.

Holistic approach: Within the framework of this work, a systematic approach was developed

to achieve holistic coverage of all criteria necessary for a safe operation (Section 5.1).

Degree of maturity: In this work, a fully implemented and real-time capable prototype realization

was investigated.

Extent of testing: The implemented prototype was evaluated using data from an automated

real vehicle.

7.3 Findings and Future Work

In this section, findings and future work are highlighted. In terms of findings, the focus is on the

impact of the quality of the emergency trajectories (Subsection 7.3.1) and the benefits resulting

from using an OV module during the development phase (Subsection 7.3.2). In the domain of

future work, the extension to road traffic (Subsection 7.3.3), the extension to modules other than

the planning module (Subsection 7.3.4), and safeguarding of the overall SW (Subsection 7.3.5)

are discussed.
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Table 7.1: Evaluation of the four specified criteria (first column) with the OV method demonstrated

in this work. The resulting rating is indicated via Harvey Balls ( – not addressed to –

comprehensively addressed) along with the brightness of the color in the cell (from light to

dark). Details on the rating metric can be found in Table A.1.

3

4

4

3/4

30→1→2→3→4

Approval /

standards

Holistic

approach

Degree of

maturity

Extent of

testing

Proposed

method /

prototype

7.3.1 Influence of Emergency Trajectory Planning Performance

During the evaluation of the tests, it was noticed that the choice of the emergency trajectory of

the ego-vehicle has an essential influence on the availability and, in a race, on the competitive

behavior of the vehicle. This fact is explained and discussed on the basis of an exemplary

situation (Figure 7.1) that occurred in Upper Heyford, England.

Figure 7.1: Sketch based on a situation taken from a log of a test run in Upper Heyford, England. The

current planned emergency trajectory of the following ego-vehicle (orange) is sketched in

solid red. A much more efficient one (with earlier standstill) is shown in dashed red.

In the SW stack used here, the emergency trajectory was planned along the path of the perfor-

mance trajectory. For this purpose, instead of a velocity profile as fast as possible, a deceleration

as strong as possible until standstill is planned along the identical support points. The red solid

line in Figure 7.1 represents the sketch of such a trajectory for the ego-vehicle. However, the

problem with this curved trajectory is that a large portion of the friction potential is used by the

lateral force, leaving little acceleration potential in the longitudinal direction for decelerating the

vehicle. In addition, a racing vehicle always drives as fast as possible and close to the friction

limit, so that in a combination of curves close to the apex, lateral acceleration usually accounts

for the entire acceleration share. These conditions result in a long braking distance.
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Since the physically shortest possible braking distance is taken into account for the vehicle in

front by using the reachable sets, a short braking distance is achieved. A possible variant is

sketched with the black arrow. With this combination, the Supervisor detects a possible collision

in curves at an early stage (at a greater distance) and decelerates the ego-vehicle accordingly.

In this way, the ego-vehicle falls behind in curves by guaranteeing a safe backup plan via the

(long) emergency trajectory. In the example shown here, the emergency trajectory (red) already

overlaps the reachable set (green) significantly. Here, the Supervisor would have intervened

much earlier and let the ego-vehicle fall behind in order to always ensure a safe emergency plan.

If the emergency trajectory was selected as intelligently as possible, i.e. if it tried to come to a

standstill as early as possible, the ego-vehicle could follow the vehicle ahead more closely with

a safe backup plan. This would result in a more competitive race vehicle that drops back less in

curves. A possible trajectory with high longitudinal deceleration due to low lateral acceleration is

shown in dashed red. In this case, the emergency trajectory does not intersect the reachable set

of the vehicle ahead and the ego vehicle could follow the other vehicle as shown, unlike in the

situation described before.

In a similar manner, for overtaking maneuvers in accordance with the regulations implemented

here, the emergency trajectory has also to be as effective as possible. In accordance with the

Formula 1 driving alongside rule, a TP is not allowed to force the ego-vehicle off the track as

soon as the vehicles are side by side. However, in order to approach this area, the ego-vehicle

must always be able to come to a stop behind the vehicle in all extreme cases (e.g. sudden

brake maneuver of the TP). For this purpose, the difference in speed between the two vehicles

must not be too large (e.g. a slow vehicle must not be overtaken at high speed), and maximum

deceleration and swerving to the side away from the vehicle are beneficial.

Consequently, regardless of the quality of the emergency trajectory, a safe behavior is guaranteed,

but a more competitive behavior and a higher availability can be achieved by an intelligent choice

of the emergency trajectory. The problem of finding an adequate emergency trajectory is a

separate field of research and investigates dedicated approaches [265, 292, 293].

7.3.2 Added Value During the Development Phase

In addition to the purpose of safeguarding complex and learning functions, OV has also proven

helpful in the development phase. The verification tool identifies and localizes possible planning

errors on the fly.

The identification of errors is particularly helpful when long tests are executed in which only

individual planning steps contain unsafe situations. If errors occur only for a short time, a human

easily overlooks these errors. In this case the Supervisor was able to help report and illustrate

the situations. Likewise, during Hardware-in-the-Loop (HiL) tests with the own SW deployed on

multiple vehicles, an incident can easily be overlooked on one of the vehicles, since the attention

is usually focused on one or at most two vehicles. Any potential issues with the remaining vehicles

can be highlighted by the Supervisor and prepared for the human to analyze in more detail.

In cases where errors are not visually apparent to humans (e.g. acceleration violations as faced in

Subsection 6.4.3), the chance of detecting such problems is only possible with the most thorough

and comprehensive human inspection. Here, as well, the Supervisor helps to point out possible

problems at an early stage, even if in the specific situation they have not resulted in a hazardous

situation. In the case of purely machine-based tests, which, for example, automatically check
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the performance (e.g., lap or computing times) of the code at every stage of development via

continuous integration, the Supervisor can be used to test safety aspects in addition.

During the SW development phase for the Indy Autonomous Challenge [294, 295]—won by the

team of the Technical University of Munich [296–300], the Supervisor was used in automated

tests as well as during test runs in Software-in-the-Loop (SiL), HiL, and real world. This revealed

various planning incidents that were not noticed outright by humans. As an example, Figure 7.2a

shows a situation in which a minor side collision occurred during a HiL test involving four vehicles.

The Supervisor triggered via the guaranteed occupied sets and marked the affected instants

accordingly. In another exemplary case, an off-track trajectory was planned for a few instances

during a HiL run at the Indianapolis Motor Speedway (Figure 7.2b). Since this plan occurred

only for a short time and was back on the track in time before the vehicle passed through the

section, the error was only noticed by the Supervisor.0.0 2.5 5.0 7.5 10.0
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Figure 7.2: Incidents exposed by the Supervisor during simulative testing for the Indy Autonomous

Challenge on the digital twin of the Indianapolis Motor Speedway.

In summary, the Supervisor helps in the development phase to identify flaws in the planner

development at an early stage. In this way, these errors can be addressed immediately and do

not reach the real vehicle undetected. In this way, the valuable test time on the track can be

used more efficiently and the likelihood for unsafe or even destructive situations to occur can be

reduced.

7.3.3 Extension to Road Traffic

This work deals with the OV of trajectories, which is implemented and evaluated on the use-case

of a race vehicle. Future work deals with the adaptation to regular road traffic.

In general, all of the physical boundary conditions discussed in this work required for a safe

trajectory are equally valid for a vehicle in road traffic. An adaptation is primarily only necessary

for the formalized regulations that are used for the reduced reachable sets. This requires the

implementation of applicable road traffic regulations instead of applicable race regulations.

In this context, a challenge is the formalization of all applicable regulations. During the formal-

ization of the illustrative regulations for the race scenario, it has already become apparent that

especially vague regulations, which do not contain any fixed or detailed specifications, are not

trivial to formalize. Specifications like “from the approach to the corner” [271]-§2b allow different

interpretations in the formalization. Here it is necessary to incorporate past race control decisions.

Nevertheless, there will not always be congruence between race control decisions and formalized
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rules. In the same manner, there are also vague rules in the road traffic regulations. In this case,

past court decisions can be used to achieve more specific rules that can be formalized. Such

a procedure has already been used by Maierhofer et al. [225] concerning German traffic rules

on the Autobahn. After implementation of the rules for road traffic, the Supervisor can be used

without further major adaptations according to current findings.

7.3.4 Extension to Other Software Modules in the Driving Stack

The generic method for the development of an OV module (Chapter 4) has been implemented in

this work for the planning module of an ADS. Future work is to investigate to what extent this

method can be applied to other modules of the automated driving pipeline.

Following the automated driving pipeline towards the actuators, this is possible without further

restrictions according to current knowledge, since deterministic and formal safety criteria can be

found for the OV of the control module, for instance. In this way, AI-based control approaches

can also be safeguarded. Only in terms of guaranteeing a safe state at all times, different options

(e.g. validation of a guaranteed controllable driving tube) have to be evaluated.

Following the automated driving pipeline towards the sensors, the application of the OV method

is much more complex. Since currently only AI-based methods exist to translate camera data

into machine interpretable parameters, verification with deterministic and formal metrics is not

necessarily possible. In this case, it must be investigated to what extent safety guarantees can

be provided via redundancies and combination of different sensor modalities.

7.3.5 Safeguarding of the Overall Software

In the course of this work, it was investigated how a single module of the autonomous driving

stack can be safeguarded. However, it is not necessarily clear to what extent this affects the

safety of the overall SW.

In this context, the question arises of how a safeguarded module behaves with faulty/unsafe input

data. For instance, in the use-case shown for safeguarding a trajectory planner, faulty perception

data (e.g., a missing object in the object list) would be provided. Obviously, the safeguarded

module (in this case, trajectory planning module with Supervisor) may generate erroneous data in

such a scenario as well. However, as stated in Section 5.2, only safeguarded individual modules

in the entire pipeline are assumed. Accordingly, the online verification serves exclusively to check

whether the generated result of the module is valid under the given input data. It verifies whether

the system correctly processes the given input data according to a simple/stringent specification

and whether it generates a valid solution given this input data constellation. In this way, it is now

possible to establish clear and guaranteed functional specifications for complex and learning

functions.

However, assuming that all modules are successfully safeguarded individually, it cannot be

guaranteed that the entire system is necessarily safe. The interaction of the individual (safe)

modules can still lead to unsafe situations. The entire pipeline must therefore be validated with

extensive tests (Subsection 2.4.2). The scope required to make a final statement here is not yet

feasible at the present time and is the subject of ongoing debate in related work [19, 167, 169].

As mentioned before, Amersbach [291] investigates methods to reduce the validation effort in

this area. Nevertheless, a profound investigation of the interrelations and influence with other

modules is yet to be done and is part of future work.
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This thesis presents a methodology for safeguarding complex and learning driving functions by

guaranteeing a safe state at any time based on online verification. With this method, it is now

possible to safeguard such algorithms in accordance with existing standards. The methodology

was developed generically based on related work and implemented for the trajectory planner

of an automated race vehicle. The evaluation of the implemented prototype demonstrated its

effectiveness.

With increasing deployment rates of advanced driver assistance systems, the number of accidents

has decreased, and so have the fatalities. Many people associate increasing automation with

Vision Zero, the goal of zero accident fatalities with full automation. However, on the way to full

automation, current safety standards are reaching their limits as a result of increasingly complex

and online-learning algorithms. An initial literature review identified online monitoring methods

as most promising for investigation.

In the related work section, relevant standards were outlined and their shortcomings with re-

spect to modern algorithms were highlighted. Subsequently, relevant work in the field of online

monitoring was presented and evaluated with regard to its addressing of safety approval, holistic

coverage, degree of maturity, and extent of evaluation. Online verification was found to be the

most promising. In a subsequent discussion of related work, research questions were derived in

accordance with guiding theses, which led to the presentation of the idea of this thesis and its

structure.

Before the implementation of a detailed use-case, a generic method for the development of

an online verification module was developed and presented. The method takes into account

applicable standards and therefore also proceeds in accordance with the V-model of ISO 26262.

Four central development stages are worked through. In the first stage, the requirements for

a safe operation as well as for the online verification module itself have to be identified. In the

second stage, the architecture and assessment metrics are defined in line with the identified

requirements in order to be able to classify the input data as safe or unsafe. In the third stage,

these findings are integrated into the overall software and tested against the requirements. In

the fourth stage, the implemented Supervisor is evaluated.

Following the elaborated generic development method, an online verification module—the

Supervisor—was implemented for the trajectory planner of an automated race vehicle. For this

purpose, the elaborated development steps were individually worked through one by one. The

first step was to derive a holistic list of criteria that a safe trajectory must meet, using a developed

structured approach. Among the derived criteria is, for example, the requirement of avoiding

contact with static and dynamic objects in the environment or the proper consideration of the

friction between track surface and tires at any time. The Supervisor was integrated following

the principle of ASIL decomposition in such a way that it verifies the trajectories generated by

the planner (performance and emergency trajectory) against its input data (e.g., object list and

environment map). Based on this architecture and for each criterion of the list of requirements
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for a safe trajectory, an assessment metric was developed. These metrics are of deterministic

and therefore safeguardable nature. A noteworthy example are the rule-based reachable sets

developed in this course for the check of guaranteed collision absence in compliance with

applicable rules. Based on the assessment of the trajectories with all assessment metrics, a

trajectory is always selected in such a way that an emergency plan transferring the vehicle to a

safe state exists.

Towards the evaluation of the developed prototype, the Supervisor was first integrated into the

software stack developed by the team of the Technical University of Munich for the Roborace

racing series. The trajectory planner developed in the course of this work was briefly introduced

in the related work section and represents the central module to be safeguarded. Following

the integration, dedicated tests were carried out according to the requirements defined at the

beginning. Finally, a two-fold evaluation was carried out. On the one hand, scenario-based

tests with fault injection were performed. This involved examining 121 different scenarios with a

passive, i.e. non-intervening, Supervisor against a deterministically generated ground truth. No

abnormalities were found. However, since the ground truth cannot specify an expected evaluation

for every situation, all scenarios were additionally run through with an active Supervisor, in which

no hazardous situation caused by the ego-vehicle occurred. On the other hand, data from various

real-world automated race drives were evaluated. Here, a safe rating was expected throughout

the runs. Unsafe evaluations were checked in detail for their justification. In the process, all

ratings were found to be valid. Accordingly, the Supervisor prototype is considered a successful

implementation.

The presented method was validated by a prototype and fulfilled the purpose of online verification

of trajectories. In retrospective examination of the research questions and guiding theses, it

was concluded on the basis of the prototype that the online verification approach is suitable for

safeguarding complex and learning algorithms in accordance with applicable standards. Never-

theless, an expansion of safety standards beyond SAE level 0-3 systems towards formal eligibility

for automated driving systems (ADS) is still ongoing/pending. The importance of choosing emer-

gency trajectories as wisely as possible has been emphasized for availability and competitive

behavior. In addition, online verification is suitable as a tool for efficient improvements during

the development phase. Looking into the future, the approach offers promising transferability

capabilities to road traffic, with the main challenge being the formalization of applicable traffic

rules. The transferability of the approach to other software modules besides the planning module

revealed a basic applicability as well as open challenges.
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A Appendix

A.1 Literature Evaluation Metrics

Table A.1: Evaluation criteria and their scale for the analysis of the relevant literature.

Approval/stan-

dards

Approval not

mentioned

Approval / for-

mal correctness

mentioned, but

not further tack-

led

Approval ad-

dressed - little

insights/refer-

ences

Approval ad-

dressed - key

points elaborat-

ed/implemented

Approval ad-

dressed - fully

elaborated/im-

plemented

Holistic ap-

proach

Only one aspect

addressed

Multiple aspects

addressed

Extensive cover-

age, holistic cov-

erage not adver-

tised

Holistic cover-

age advertised,

but no system-

atic approach

Systematic

approach for

holistic coverage

Degree of ma-

turity

High-level con-

cept only

Partially de-

tailed/imple-

mented concept

(selected sub-

modules)

Detailed theoret-

ical concept (top

to bottom)

Fully imple-

mented ap-

proach, not

real-time capa-

ble

Fully imple-

mented ap-

proach, real-

time capable

Extent of test-

ing

Theoretical elab-

oration only

Prototype tests /

partial tests

Evaluation in

simple simula-

tion

Evaluation in de-

tailed simulation

/ scale vehicle

Evaluation on

real vehicle
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A.2 Interface Testing

Table A.2: Evaluated interface tests with associated scores (passed test (PT) or passed test given

assumptions (TPGA)) based on expected and observed output.
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A Appendix

A.3 Ground Truth Generation Parameters

Table A.3: Crucial parameters (with explanation) for the generation of the ground truth in multi-vehicle

scenarios. For most safety parameters, an upper and lower bound is specified to define the

three ranges: safe, unspecified rating, unsafe.

Parameter Description Value

SSM temporal incre-

ment

Temporal discretization for the ground truth evaluation along the trajec-

tory.

0.1 s

DSS treact Maximum reaction time assumed for the ego-vehicle for the DSS cal-

culation, here representing the worst-case calculation time of the SW

stack.

0.1 s

DSS amax Maximum acceleration assumed for the lead vehicle for the DSS calcu-

lation, here maximum acceleration possible for a given track is used.

track specific

maximum

DSS unsafe Unsafe threshold for the DSS-based ground truth generation. Any value

below this threshold is expected to be rated as unsafe by the Supervisor.

0.0 m

DSS safe Safe threshold for the DSS-based ground truth generation. Any value

above this threshold is expected to be rated as safe by the Supervisor.

5.0 m

Vehicle inflation factor Inflation of vehicle shape for track collision checks. If an intersection

with the track boundaries occurs with the native vehicle footprint the

Supervisor is expected to rate the trajectory as unsafe, if an intersection

with the track boundaries does not occur with the inflated footprint the

Supervisor is expected to rate the trajectory as safe, in between the

Supervisor may post any rating.

1.5

Combined accelera-

tion factor

Factor for the combined acceleration acting on the tires. If the track

specific limits are taken into account, the ground truth is set as safe,

otherwise, if the track specific limits scaled by the specified factor is

violated, the Supervisor is expected to rate the trajectory as unsafe.

1.2

Machine acceleration

limit factor

Factor for the machine acceleration limit. If the specified machine ac-

celeration limits are respected, the Supervisor is expected to rate the

trajectory as safe, otherwise, if the machine acceleration limit scaled by

the specified factor is violated, the Supervisor is expected to rate the

trajectory as unsafe.

1.2

Turn radius unsafe Minimum turn radius. If the trajectory hosts a curvature resulting in a

turn radius below this threshold, the Supervisor is expected to rate the

trajectory as unsafe.

11.0 m

Turn radius safe Unproblematic turn radius. If the trajectory does not host a curvature

resulting in a turn radius below this threshold, the Supervisor is expected

to rate the trajectory as safe.

13.0 m
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A.4 Test Tracks
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Figure A.1: Test track in Upper Heyford, United Kingdom. The origin was arbitrarily chosen in accordance

with the reference pose of the DGPS system.
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Figure A.2: Test track in Monteblanco, Spain. The origin was arbitrarily chosen in accordance with the

reference pose of the DGPS system.
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Figure A.3: Test track in Modena, Italy. The origin was arbitrarily chosen in accordance with the reference

pose of the DGPS system.
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Figure A.4: Test track in Le Croix, France. The origin was arbitrarily chosen in accordance with the

reference pose of the DGPS system. The narrows of the track were artificially generated by

cones.
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A.5 Scenarios
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Figure A.5: Bird’s eye view of scenario S1. The vehicle movements are shown via trace (line) and vehicle

shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.6: Bird’s eye view of scenario S2. The vehicle movements are shown via trace (line) and vehicle

shape samples at 1 s interval. Every second interval is marked with a text label.

xlviii



A Appendix

0 50 100 150 200

East in m

0

20

40

60

80

100

120

140
N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.7: Bird’s eye view of scenario S3. The vehicle movements are shown via trace (line) and vehicle

shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.8: Bird’s eye view of scenario S4. The vehicle movements are shown via trace (line) and vehicle

shape samples at 1 s interval. Every second interval is marked with a text label.

xlix



A Appendix

−200 0 200 400 600 800 1000 1200 1400

East in m

0

200

400

600

800

1000

1200

1400

N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.9: Bird’s eye view of scenario S5. The vehicle movements are shown via trace (line) and vehicle

shape samples at 1 s interval. Every eighth interval is marked with a text label.
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Figure A.10: Bird’s eye view of scenario S6. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every eighth interval is marked with a text label.
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Figure A.11: Bird’s eye view of scenario S7. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every eighth interval is marked with a text label.
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Figure A.12: Bird’s eye view of scenario S8. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every eighth interval is marked with a text label.
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Figure A.13: Bird’s eye view of scenario S9. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.14: Bird’s eye view of scenario S10. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every sixth interval is marked with a text label.
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Figure A.15: Bird’s eye view of scenario S11. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every sixth interval is marked with a text label.
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Figure A.16: Bird’s eye view of scenario S12. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every sixth interval is marked with a text label.
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Figure A.17: Bird’s eye view of scenario S13. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every sixth interval is marked with a text label.
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Figure A.18: Bird’s eye view of scenario S14. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every sixth interval is marked with a text label.
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Figure A.19: Bird’s eye view of scenario S15. The vehicle movements are shown via trace (line) and

vehicle shape samples at 10 s interval. Every fifth interval is marked with a text label.
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Figure A.20: Bird’s eye view of scenario S16. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.

liv



A Appendix

0 20 40 60 80 100 120

East in m

0

20

40

60

80

100
N
o
rt
h
in

m
Track boundary

Ego vehicle

TP 1

Figure A.21: Bird’s eye view of scenario S17. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.22: Bird’s eye view of scenario S18. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.23: Bird’s eye view of scenario S19. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.24: Bird’s eye view of scenario S20. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.25: Bird’s eye view of scenario S21. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.26: Bird’s eye view of scenario S22. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.27: Bird’s eye view of scenario S23. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.28: Bird’s eye view of scenario S24. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.29: Bird’s eye view of scenario S25. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.30: Bird’s eye view of scenario S26. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.

lix



A Appendix

−50 0 50 100 150 200 250

East in m

0

50

100

150

200

250
N
o
rt
h
in

m

Track boundary

Ego vehicle

TP 1

Figure A.31: Bird’s eye view of scenario S27. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.32: Bird’s eye view of scenario S28. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.33: Bird’s eye view of scenario S29. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.34: Bird’s eye view of scenario S30. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.35: Bird’s eye view of scenario S31. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.36: Bird’s eye view of scenario S32. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.37: Bird’s eye view of scenario S33. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.38: Bird’s eye view of scenario S34. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.39: Bird’s eye view of scenario S35. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fifth interval is marked with a text label.
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Figure A.40: Bird’s eye view of scenario S36. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.41: Bird’s eye view of scenario S37. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.42: Bird’s eye view of scenario S38. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.43: Bird’s eye view of scenario S39. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.44: Bird’s eye view of scenario S40. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.45: Bird’s eye view of scenario S41. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.46: Bird’s eye view of scenario S42. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.47: Bird’s eye view of scenario S43. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.48: Bird’s eye view of scenario S44. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.49: Bird’s eye view of scenario S45. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.50: Bird’s eye view of scenario S46. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every ninth interval is marked with a text label.
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Figure A.51: Bird’s eye view of scenario S47. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.52: Bird’s eye view of scenario S48. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.53: Bird’s eye view of scenario S49. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.54: Bird’s eye view of scenario S50. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.55: Bird’s eye view of scenario S51. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.56: Bird’s eye view of scenario S52. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.57: Bird’s eye view of scenario S53. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.58: Bird’s eye view of scenario S54. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fifth interval is marked with a text label.
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Figure A.59: Bird’s eye view of scenario S55. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fifth interval is marked with a text label.
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Figure A.60: Bird’s eye view of scenario S56. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.61: Bird’s eye view of scenario S57. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.62: Bird’s eye view of scenario S58. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.63: Bird’s eye view of scenario S59. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.64: Bird’s eye view of scenario S60. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.

lxxvi



A Appendix

−100 0 100 200 300 400

East in m

0

100

200

300

400

500

N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.65: Bird’s eye view of scenario S61. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.66: Bird’s eye view of scenario S62. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.67: Bird’s eye view of scenario S63. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.68: Bird’s eye view of scenario S64. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.69: Bird’s eye view of scenario S65. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.70: Bird’s eye view of scenario S66. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.71: Bird’s eye view of scenario S67. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.72: Bird’s eye view of scenario S68. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.73: Bird’s eye view of scenario S69. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.

−50 0 50 100 150 200 250

East in m

0

50

100

150

200

250

N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.74: Bird’s eye view of scenario S70. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.75: Bird’s eye view of scenario S71. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.76: Bird’s eye view of scenario S72. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.77: Bird’s eye view of scenario S73. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.78: Bird’s eye view of scenario S74. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.79: Bird’s eye view of scenario S75. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.80: Bird’s eye view of scenario S76. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.81: Bird’s eye view of scenario S77. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.82: Bird’s eye view of scenario S78. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.

lxxxv



A Appendix

0 50 100 150 200

East in m

0

50

100

150

200
N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.83: Bird’s eye view of scenario S79. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.

0 200 400 600 800

East in m

0

200

400

600

800

N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.84: Bird’s eye view of scenario S80. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fifth interval is marked with a text label.
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Figure A.85: Bird’s eye view of scenario S81. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fifth interval is marked with a text label.
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Figure A.86: Bird’s eye view of scenario S82. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.87: Bird’s eye view of scenario S83. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.88: Bird’s eye view of scenario S84. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.89: Bird’s eye view of scenario S85. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.90: Bird’s eye view of scenario S86. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.91: Bird’s eye view of scenario S87. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.92: Bird’s eye view of scenario S88. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.93: Bird’s eye view of scenario S89. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.94: Bird’s eye view of scenario S90. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.95: Bird’s eye view of scenario S91. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.96: Bird’s eye view of scenario S92. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.

xcii



A Appendix

−50 0 50 100 150 200

East in m

0

50

100

150

200

250

N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.97: Bird’s eye view of scenario S93. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.98: Bird’s eye view of scenario S94. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.

xciii



A Appendix

0 100 200 300 400

East in m

0

100

200

300

400

N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.99: Bird’s eye view of scenario S95. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.100: Bird’s eye view of scenario S96. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.101: Bird’s eye view of scenario S97. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every ninth interval is marked with a text label.
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Figure A.102: Bird’s eye view of scenario S98. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every ninth interval is marked with a text label.
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Figure A.103: Bird’s eye view of scenario S99. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.104: Bird’s eye view of scenario S100. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.105: Bird’s eye view of scenario S101. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.106: Bird’s eye view of scenario S102. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.107: Bird’s eye view of scenario S103. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fourth interval is marked with a text label.
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Figure A.108: Bird’s eye view of scenario S104. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.109: Bird’s eye view of scenario S105. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.110: Bird’s eye view of scenario S106. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.111: Bird’s eye view of scenario S107. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.112: Bird’s eye view of scenario S108. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.113: Bird’s eye view of scenario S109. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.114: Bird’s eye view of scenario S110. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.115: Bird’s eye view of scenario S111. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.116: Bird’s eye view of scenario S112. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.

cii



A Appendix

0 20 40 60 80 100

East in m

0

20

40

60

80

N
o
rt
h
in

m

Track boundary

Ego vehicle

Figure A.117: Bird’s eye view of scenario S113. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.118: Bird’s eye view of scenario S114. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.119: Bird’s eye view of scenario S115. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.120: Bird’s eye view of scenario S116. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.

0 50 100 150 200 250 300 350

East in m

25

50

75

N
o
rt
h
in

m Track boundary

Ego vehicle

Figure A.121: Bird’s eye view of scenario S117. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every third interval is marked with a text label.
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Figure A.122: Bird’s eye view of scenario S118. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every second interval is marked with a text label.
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Figure A.123: Bird’s eye view of scenario S119. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fifth interval is marked with a text label.
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Figure A.124: Bird’s eye view of scenario S120. The vehicle movements are shown via trace (line) and

vehicle shape samples at 1 s interval. Every fifth interval is marked with a text label.
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Figure A.125: Bird’s eye view of scenario S121. The vehicle movements are shown via trace (line) and

vehicle shape samples at 10 s interval. Every fifth interval is marked with a text label.

cvi


	Contents
	List of Abbreviations
	Formula Symbols
	1 Introduction and Scope
	2 Related Work
	2.1 Terms and Definitions
	2.2 Automated Driving Software Architecture
	2.3 Motion Planning
	2.3.1 Classic Approaches
	2.3.2 Machine-Learning-Based Approaches

	2.4 Automotive Safety
	2.4.1 Regulations and Approval Procedures
	2.4.2 Safety Assessment Techniques

	2.5 Online Monitoring
	2.5.1 Online Risk Assessment
	2.5.2 Online Verification
	2.5.3 Overall Valuation and Classification


	3 Problem Description and Methodology
	3.1 Problem Description
	3.2 Methodology and Outline of the Thesis

	4 Generic Method for the Development of a Safeguarding Framework
	4.1 Requirements
	4.1.1 Criteria for Safe Operation
	4.1.2 Requirements to Be Met by the Supervisor

	4.2 Implementation
	4.2.1 Supervisor Architecture
	4.2.2 Assessment Metrics for Identified Criteria
	4.2.3 Classification and Selection

	4.3 Integration and Test
	4.3.1 Software Stack Integration
	4.3.2 Test of Internal and External Interfaces
	4.3.3 Tests of the Requirements

	4.4 Validation
	4.4.1 Scenario-Based Evaluation
	4.4.2 Random-Based Evaluation


	5 Online Verification of a Motion Planning Module
	5.1 Criteria for Safe Trajectories
	5.2 Online Verification Architecture
	5.3 Assessment Metrics for Identified Criteria – Preliminaries
	5.3.1 General Notation
	5.3.2 Reachable Sets
	5.3.3 Past Time Linear Temporal Logic
	5.3.4 Preparation and Analysis of the Criteria for Safe Operation

	5.4 Assessment Metrics for Identified Criteria – Static Environment
	5.4.1 Collision with Static Obstacles
	5.4.2 Safe End State
	5.4.3 Friction and Tire Forces
	5.4.4 Rules and Regulations
	5.4.5 Kinematic and Dynamic Properties
	5.4.6 Data Correctness

	5.5 Assessment Metrics for Identified Criteria – Dynamic Environment
	5.5.1 Rule-Based Reachable Set
	5.5.2 Guaranteed Occupied Set

	5.6 Classification and Selection

	6 Results
	6.1 Software Stack Integration
	6.2 Integration Tests
	6.2.1 Test of Internal and External Interfaces
	6.2.2 Test of the Requirements

	6.3 Scenario-Based Evaluation
	6.3.1 Scenario Architect
	6.3.2 Evaluation Results

	6.4 Random-Based Evaluation
	6.4.1 Testbed DevBot by Roborace
	6.4.2 Test Grounds
	6.4.3 Evaluation Results


	7 Discussion
	7.1 Review of Posed Safety Standard Limitations
	7.1.1 Online Adaptation
	7.1.2 Complex and Non-transparent

	7.2 Review of Posed Guiding Theses and Research Questions
	7.2.1 Evaluation of Guiding Thesis 1
	7.2.2 Evaluation of Guiding Thesis 2
	7.2.3 Evaluation of Guiding Thesis 3
	7.2.4 Evaluation of the Research Gap

	7.3 Findings and Future Work
	7.3.1 Influence of Emergency Trajectory Planning Performance
	7.3.2 Added Value During the Development Phase
	7.3.3 Extension to Road Traffic
	7.3.4 Extension to Other Software Modules in the Driving Stack
	7.3.5 Safeguarding of the Overall Software


	8 Summary and Conclusion
	List of Figures
	List of Tables
	Bibliography
	Prior Publications
	Supervised Student Theses
	Appendix
	A Appendix
	A.1 Literature Evaluation Metrics
	A.2 Interface Testing
	A.3 Ground Truth Generation Parameters
	A.4 Test Tracks
	A.5 Scenarios


