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Abstract
To curb ongoing global warming, the energy sector must change to increasingly rely on sustainable
generation. Due to their volatile nature, and the premise of balancing electricity demand and supply,
energy storage plays an important role. In addition to the energy sector, the momentum of electrifi-
cation is also picking up in the mobility sector, which requires battery storage. While battery storage
systems’ costs have steadily declined in recent years, too high investment costs still form a consid-
erable barrier to widespread deployment. To boost investment attractiveness, focus can be shifted
to maximizing revenues earned in addition to reducing costs. In this thesis, two energy management
system concepts are presented and evaluated to maximize the revenue earning potential of stationary
and mobile battery storage systems. Multi-use aims to simultaneously stack multiple applications on
one energy storage system. Multi-storage optimizes a network of multiple storages within an energy
system. Both approaches modify the energy management system to boost investment attractiveness
by exploiting synergies, optimizing power flows and energy throughput. Consequently, utilization rates
are enhanced, multiple revenue streams generated, and degradation losses minimized.

Kurzfassung
Um die fortschreitende Klimaerwärmung einzudämmen, muss sich der Energiesektor verändern und ver-
stärkt auf nachhaltige Erzeugung setzen. Durch ihren volatilen Charakter, und die Prämisse, Elektriz-
itätsnachfrage und -angebot zu balancieren, sind Energiespeicher notwendig. Neben dem Energiesektor
nimmt auch im Mobilitätssektor das Moment der Elektrifizierung an Fahrt auf, die ebenfalls Batter-
iespeicher notwendig macht. Zwar konnte in den letzten Jahren eine kontinuierliche Reduzierung der
Kosten für Batteriespeichersysteme beobachtet werden, jedoch gelten die Investitionskosten noch im-
mer als die größte Hürde für den breiten Einsatz dieser Systeme. Um die Investitionsattraktivität
zu erhöhen, kann neben der Kostenreduzierung auch die Maximierung der erzielten Erträge in den
Fokus rücken. Um das Potential der Einnahmenmaximierung von stationären und mobilen Batter-
iespeichern zu verbessern, werden in dieser Arbeit zwei Konzepte für das Energiemanagementsystem
vorgestellt und bewertet. Das Konzept Multi-Use hat das Ziel mehrere Anwendungen simultan mit
einem Energiespeicher zu betreiben. Durch die Nutzung von Synergien kann der Nutzungsgrad des En-
ergiespeichers gesteigert und mehrere Einnahmequellen gleichzeitig bedient werden. Multi-Storage, das
zweite Thema der Arbeit, optimiert ein Netzwerk von mehreren Speichern innerhalb eines Energiesys-
tems. Beide Ansätze modifizieren das Energiemanagementsystem, um die Investitionsattraktivität,
durch die Kopplung von Synergien, die Optimierung der Leistungsflüsse und des Energiedurchsatzes,
zu erhöhen. Infolgedessen wird der Nutzungsgrad verbessert, mehrere Einnahmeströme generiert und
Alterungsverluste minimiert.
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1 Introduction

1.1 Motivation and scope of this work

With the undeniable threat of global warming, there is increasing pressure on politics, business, and
society to use existing resources efficiently and sustainably [1]. The electricity sector in particular
is undergoing a paradigm shift. The increasing number of decentralized energy sources and sector
coupling are just two of the driving forces behind this change [1, 2]. To enable the integration of
renewable energy [3–5], and the efficient coupling with other sectors, such as the mobility sector, the
demand for energy storage systems is growing [6, 7]. Through the continuous increase of renewable
energy supply and expected global rise in electricity demand of 20% over the coming decade, the
technical stress on power grids is also growing [8].

To follow these trends and ensure the security and quality of electricity provision, flexibility is the
cornerstone of future energy systems. Flexibility entails reacting as swiftly and reliably as possible
to the changing conditions of the energy system, a task that energy storage systems are predestined
to fulfill [9]. Nevertheless, even in the rapidly growing market for energy storage systems, there are
setbacks at the global level. In 2019, for example, global annual energy deployments declined for the
first time in the decade [10]. In addition, the onset of the Covid-19 pandemic has put additional
stress on the supply chain and logistics of battery cell manufacturers, which has further hampered
this complex market’s growth [11]. Despite these setbacks and risks, the annual installed capacity of
utility-scale battery storage systems is expected to increase from about 25GW in 2020 to over 100GW
in 2030 [8].

In the energy storage market, a distinction is made between stationary and mobile energy storage
systems. By 2030, the combined market for energy storage is expected to grow by 2.5 to 4TWh per
year [12, 13]. Due to political incentives and continuous cost reductions [12–14], mobile energy storage
in electric vehicles (EVs) is one of the dominant drivers for storage deployment. With 160GWh
of automotive batteries produced in 2020, lithium-ion is the leading technology for mobile energy
storage systems [12]. For stationary energy storage there are several established technology types.
Thermal (e.g. chilled water thermal storage, molten salt thermal storage), mechanical (e.g. pumped
hydro storage, flywheel), electric (e.g. capacitor, inductor), chemical (e.g. hydrogen storage), and
electro-chemical (e.g. battery) storage technologies are differentiated [15–17]. Although mechanical
storage systems, particularly pumped hydro storage, accounted for 96% of total installed storage
capacity and thus the largest technology type for stationary systems in 2017 [15], battery energy
storage systems are the fastest growing category [12, 13]. Lithium-ion technology already accounted
for 59% of global electro-chemical storage power capacity in 2017, with lead-acid and sodium-based
battery systems constituting the other larger categories [15]. Due to the increasing demand, the annual
global deployment of stationary storage (excluding pumped hydro storage) is expected to grow at a
compound annual growth rate of up to 27% until 2030 [13].
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1 Introduction

The broadening repertoire of applications for battery energy storage systems has further driven their
deployment [15, 18]. The increased demand for efficient and durable energy storage systems has favored
lithium-ion technology, particularly in recent years [10]. Rising expertise, learning curve effects [19, 20],
and economies of scale have led to a continuous reduction in battery system costs [21–23]. In addition
to the technical achievements, demand-pull policies and the resulting deployment increase has further
grown battery systems’ investment attractiveness [20, 24]. Although a decline in the cost of battery
storage systems has been observed and is expected to continue due to the above-mentioned trends [19],
the investment requirement is still classified, in the literature, as the most significant barrier to energy
storage deployment [24–26]. Due to the economic relationship between profit, revenue, and costs, both
reducing costs and increasing revenues has a positive influence on the investment attractiveness of
energy storage [15, 27, 28]. To yield the highest possible revenue for an energy storage system, the
most lucrative applications should be served first [18, 29]. To also ensure the reliable operation of
applications, the storage system should be tailored to serve the selected application [30]. The decisive
factor for generating revenue for an energy storage system is the operation strategy [31–33]. This defines
how a storage facility behaves based on the conditions in the energy system. The energy system is
defined as a delimited technical unit in which the power flows are optimized to achieve a desired goal.
Such an energy system can be, for example, a household with photovoltaic (PV) generator, electricity
demand, stationary energy storage, and EV.

For the successful implementation of an operation strategy, there are several components required. In
a lithium-ion battery, several battery cells are interconnected to form modules and increase its capacity
(parallel connection) and voltage level (series connection). These modules are then combined to form
a battery storage system. To connect an energy storage system to an alternating current (AC) grid,
the direct current (DC) power of the battery cells is converted using inverters that are installed in the
power electronics [34]. Depending on the AC voltage level and topology of the storage system, it may
be necessary to also add converters or transformers to the power electronics. It may be necessary to
install electricity meters in the energy system to comply with regulatory requirements. To ensure that
the energy storage system operates in the physically optimal ranges, monitoring systems are essential.
For instance, the battery management system (BMS) continuously monitors the battery cell states,
such as voltage and current [35, 36]. Since fault currents and over-voltages can lead to excessive storage
degradation and, in the worst case, to safety-critical conditions, the BMS is generally integrated on the
storage device [37]. Another component of the monitoring system is the thermal management system
(TMS) [38, 39]. This continuously monitors the temperature in the storage system, checks compliance
with defined temperature windows, and can activate cooling processes if they are available [40].

The central component for the efficient operation of an energy storage system is its energy management
system (EMS). This monitoring system collects the states of the energy system and processes them into
the operation strategy. The task of the operation strategy is to calculate the best possible deployment
strategy for the energy storage system, based on the system states and forecast values. Recently,
it has been shown that especially the prediction and optimization of the EMS plays an increasingly
important role [41–43]. As described in greater detail in this thesis, the complexity of the EMS increases
depending on the use case.

In the work presented here, the methods of multi-use and multi-storage for stationary and mobile
energy storage systems are evaluated.
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1.2 Thesis outline

The multi-use method describes the stacking of applications on an energy storage system. By serving
multiple applications simultaneously, synergies can be exploited, and the investment attractiveness of
the storage system is maximized. Since both energy and power are required when serving applications,
the EMS must successfully distribute the corresponding storage capacities among the applications.
The remainder of the thesis delves deeper into what is needed for a successful implementation of multi-
use, highlighting its types, advantages, and challenges. With the use of a newly designed optimization
algorithm, the concept of multi-use for large-scale stationary storage systems and EVs is analyzed.

The multi-storage method focuses on the interconnection between energy storage systems. Generally,
individual energy storage systems are each equipped with their own EMS. Conflicts can arise when
multiple energy storage systems, with respective EMSs, are integrated into one energy system. Thus,
the multi-storage concept tackles this issue by applying a common EMS to multiple energy storage
systems, allowing the simultaneous operation under one objective function. This method enables the
use of synergies between participating storage systems and the energy system as a whole, to effectively
allocate power and maximize flexibility potential.

Since the optimization of the EMS is the focus of this work, several optimization algorithms are
presented and compared with state-of-the-art approaches. In addition to the use of linear programming
and mixed-integer linear programming algorithms, the work also deals with prediction methods. A
model-predictive control approach is developed, which allows the use of forecast data and calculates
optimized control signals to the energy storage based on these forecasts. By coupling optimization
algorithms and semi-empirical degradation models, an optimized operation strategy of the EMS can
be calculated, which allows the increase of revenue streams and simultaneous limitation of degradation
losses.

1.2 Thesis outline

In this publication-based dissertation, four previously published papers are addressed and built upon.
The presented work is divided into seven chapters – the structure and interrelationships of which are
shown in Figure 1.1.

To provide the context for the work as a whole, Chapter 2 highlights the methods used in the presented
publications and discusses them based on existing literature. In addition to the reference to state-of-
the-art research on the energy management for battery storage systems, the chapter introduces key
performance indicators and metrics used in the following chapters.

In Chapter 3, the first paper with the title A techno-economic analysis of vehicle-to-building: Battery
degradation and efficiency analysis in the context of coordinated electric vehicle charging is presented
[44]. The paper introduces the multi-storage method entailing both stationary and mobile energy
storage systems for a single prosumer household.

Building on the results at a household level, Chapter 4 extends the multi-storage method to the
community level. In the publication, Evaluating the interdependency between peer-to-peer networks and
energy storages: A techno-economic proof for prosumers, the flexibility provision in a local electricity
market is analyzed empirically, using both home energy storage and EVs [45].
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1 Introduction

Chapter 5 consists of the third presented article, with the title Unlocking the potential of battery
storage with the dynamic stacking of multiple applications [46]. Based on a large-scale stationary
storage system, the designed multi-use methodology is evaluated using four well-established energy
storage applications.

Extending the multi-use method for stationary storage systems, Chapter 6 introduces a multi-use
operation strategy for EV fleets. The publication, titled Electric vehicle multi-use: Optimizing multiple
value streams using mobile storage systems in a vehicle-to-grid context [47], entails both a multi-use
and a multi-storage character, as its method optimizes the power flows to the applications as well as
the power flows for multiple storage systems.

Finally, Chapter 7 presents a cross-thematic discussion section with reflections on the previous chapters.
This chapter also summarizes the key findings of the study and highlights further areas of research.
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The following chapter provides a summary of existing literature in the field of energy management and
energy storage systems. It also serves as a basis for the other chapters and defines the most important
performance indicators of this work. Although the respective papers of the subsequent chapters present
the designed methods in detail, this chapter introduces the context of these methods and discusses
them with existing literature.

In Section 2.1, key metrics are defined and explained. Building on the metrics, Section 2.2 presents
relevant applications and revenue sources for battery energy storage systems. Section 2.3 explains
the context of multi-use for stationary and mobile energy storage systems. The topic of multi-storage
operation is presented in Section 2.4. Finally, Section 2.5 highlights the optimization of EMSs and
discusses their implementation.

2.1 Definitions

To implement methods shown in this work, several technical and economic definitions are introduced,
some of which are already established in existing literature. Undoubtedly, an abundance of terms and
metrics find use in the field of lithium-ion batteries; nevertheless, the most significant definitions are
highlighted in this section.

End-of-life and state of health Due to the limited lifetime of energy storage systems, it makes sense
from both a technical and economic perspective to define the usable lifetime or the occurrence of the
end-of-life (EOL) [48]. Here, the EOL corresponds to the state at which the battery characteristics
meet defined thresholds [49]. Usually, the remaining battery capacity or the internal resistance is used
to calculate the limits for lithium-ion batteries’ EOL [50, 51]. As it will be described in more detail
in Section 2.5.5, degradation processes in the cell lead to a decrease in the usable cell capacity [52,
53]. The internal processes lead to an increase in internal resistance, which causes rising losses in
the cell. Since the usable capacity is of particular significance, literature and this work refer to the
EOL definition by means of the capacity. Although the term, battery capacity, is primarily used to
refer to the charge capacity of a battery cell, in this work it refers to the storage system’s energy
capacity. Thus, the EOL state of a battery cell occurs when its remaining capacity Eremaining declines
and reaches the defined threshold EEOL (cf. Equation 2.1).

EOL := Eremaining
t = EEOL (2.1)
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Closely related to the EOL of a lithium-ion battery is its state of health (SOH) [54]. This term
quantifies how far the aging process has progressed based on the battery capacity. The SOH is most
commonly defined as the ratio of remaining and nominal battery capacity, as seen in Equation 2.2.
The alternative definition, shown in Equations 2.2 and 2.3, denotes that the SOH equals 0% when the
EOL threshold is reached [55]. These different definitions can lead to highly disparate SOH values.
For instance, assuming a remaining capacity of 90% and an EOL threshold of 80% of the nominal
capacity, respectively, then the resulting SOH values for Equations 2.2 and 2.3 are 90% and 50%. The
former definition, also the more widespread one, is utilized in this work.

SOHt = Eremaining
t

Enominal
(2.2)

SOH∗
t = Eremaining

t − EEOL

Enominal − EEOL
(2.3)

State of charge As with the definition of the SOH, the state of charge (SOC) is also based on energy-
related values (cf. Equation 2.4). Therefore, the SOC describes the proportion of the actual energy
content in the battery in relation to the remaining energy content, which is the nominal energy content
of the battery reduced by degradation processes. With the consideration of the capacity fade, one can
infer the open-circuit voltage of the battery based on the SOC [56].

SOCt = Eactual
t

Eremaining
t

(2.4)

Energy throughput A decisive component in finding an optimal operating strategy for an energy
storage system is the energy throughput. In literature, the definition of the equivalent full cycle (EFC)
acts as its quantitative value. The EFC determines the number of charge and discharge cycles through
the energy storage [57]. A full cycle consists of the sum of one charge and one discharge cycle. Due to
the definition that the energy throughput is related to the nominal storage capacity, this quantity is
independent of degradation processes. In addition to the determination of the EFC, other designations
can be found in literature, such as the full equivalent cycle or full cycle equivalent [57–59].

EFCt =
|Eactual

t − Eactual
t−1 |

2 · Enominal

= |SOCt − SOCt−1|
2 · SOHt

(2.5)

With this formulation, efficiency losses during charging and discharging are neglected, as for the energy
throughput through the cell only the net-charge and net-discharge energy is considered. Since a
used cell requires a greater change in SOC for the same energy extraction than a new cell (different
Eremaining), this leads to an overestimation, which needs to be corrected by including the SOH in the
EFC calculation (cf. Equation 2.5).
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Revenue, Costs, and Profit Profit describes the difference between revenue earned and costs incurred
(cf. Equation 2.6). In the context of energy storage systems, revenues are generated by serving
applications [15]. These applications produce value add either by generating revenues in markets or
by reducing opportunity costs. To fully evaluate an energy storage system and to dimension it in an
economically reasonable way, all costs must be included in the calculation. Therefore, costs can be
differentiated into capital expenditures (CAPEX) and operating expenses (OPEX). CAPEX describe
the investment costs for the acquisition or investment of the asset and OPEX, include the ongoing
costs for the operation, maintenance, and servicing of the asset.

Pt = Rt − Ct (2.6)

In addition to valuation by profit, the metric of cash flow is also useful for the valuation of investments
[60]. In accounting, revenue can be earned, and costs incurred without actual payments being made.
Thus, profit is generally detached from the actual cash in- and outflows by a time delay. In this thesis,
the term profit and cash flows are used synonymously, as the time periods for both metrics are defined
identically, unless otherwise stated.

Net present value To compare multiple investment options and obtain a consistent metric for
decision-making, net present value (NPV) is commonly used. NPV, by definition, considers all cash
flows until the investment’s termination, including the cost of capital required, and is a widely used
metric in investment management. Typically, for the NPV method, cash flows are broken down and
evaluated on an annual basis. Both expected cash inflows and the initial investment costs (cash out-
flow) are included in the calculation. In Equation 2.7 the investment costs (Cinvest) can be understood
as the assets’ CAPEX. For energy storage systems, CAPEX describe the acquisition costs for the
energy storage system, i.e. the costs for the storage unit in the form of cells and modules, and also
the costs for necessary peripheral equipment such as power electronics and thermal management. To
account for the future cost of capital, the cash flows must be depreciated. This depreciation takes place
by adjusting cash flows with the discount rate i, which represents the return that could be earned from
alternative investments. Thus, the time value of money is considered. In Equation 2.7 the profit,
Pn, describes the net cash flow at time period n. With the definition that cash flows are depreciated
annually, this process is repeated and accumulated until the expected end of investment. In this work,
the end of the investment period is assumed to equal the technical EOL of the energy storage system.
In practice, after the technical EOL, the storage system can be either recycled or utilized in a second
life use case [61]. In the former, this would result in additional costs and in the latter, revenues to be
added to Equation 2.7, which are neglected in this work.

NPVEOL = −Cinvest +
EOL∑
n=1

Pn

(1 + i)n
(2.7)

As a result, the NPV provides an absolute value of the investment for the present time in a chosen
currency and can be used to recommend or discourage an investment. For instance, if the NPV of a
project is negative, it is advisable to choose an alternative investment. When comparing investments’
NPVs, the investment with the highest NPV will likely be the most profitable.
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A similar method to the NPV is offered by the internal rate of return (IRR). Following the definition of
NPV, the IRR describes the discount rate at which the NPV becomes equal to zero (cf. Equation 2.8).
Although this is a simple approach to determine the upper bound of the discount rate to allow for a
positive investment, the NPV offers the possibility to consider varying discount rates for the different
time periods n.

0 = NPVEOL = −Cinvest +
EOL∑
n=1

Pn

(1 + IRR)n
(2.8)

Profitability index By definition, the NPV approach allows investments to be compared that have a
similar investment volume. If investment options with different investment costs and strongly differing
cash flows should be compared, it is recommended to use relative metrics, such as the profitability
index (PI). As shown in the definition in Equation 2.9, the NPV is divided by the investment costs to
calculate the PI. Like the NPV, the resulting value has no lower or upper bound, however, the value
should not drop below −1, since this would mean that the net cash flows of the investment are negative.
For the further interpretation of the PI, a PI of zero means that the investment is NPV neutral. As
for the NPV, the option with the highest PI should be preferred when comparing investments.

PIt = NPVt

Cinvest
(2.9)

2.2 Energy storage applications

Energy storage applications constitute the serving of markets and the yielding of revenue streams with
an energy storage [62]. As a rule, these applications are designed to motivate the storage operator
to participate in the market [31]. For both stationary and mobile energy storage, there is a variety
of available revenue streams, which are explained in more detail below. In the following chapters,
the techno-economic analyses focus on the applications self-consumption increase, peak shaving, fre-
quency regulation, spot market trading, and mobility provision. However, since there are many other
sources of value add for energy storage, particularly battery energy storage systems, additional relevant
applications are presented in this section.

As in most sectors, the value chain in the electricity sector can be divided into several parts. First, elec-
tricity is generated by electricity producers. Secondly, transmission system operators (TSOs), followed
by distribution system operators (DSOs) ensure the electricity supply is transported to consumers.
These consumers include both private individuals and commercial customers, who differ in terms of
their purchased electricity volumes. Energy storage can be installed and operated across the whole
electricity value chain, but from a regulatory perspective it is important to ensure that unbundling
laws are satisfied [29]. In the applications discussed, the focus is on revenue streams that can be served
by an electricity consumer. To comply with the mentioned unbundling laws, a distinction is made
between behind-the-meter (BTM) and in front-of-the-meter (FTM) applications.
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Behind-the-meter applications Behind-the-meter applications influence the electricity flows at the
grid connection point that are behind the electricity meter; and thus, have a consumer-oriented char-
acter [63, 64]. Depending on the point in the electricity value chain and the voltage level, taxes
and charges are added [65, 66]. For German electricity consumers these price components include:
procurement and distribution, grid charge and metering, value-added tax, concession fee, EEG (Ger-
man renewable energies act, German: Erneuerbare-Energien-Gesetz) surcharge, KWKG surcharge, §19
StromNEV levy, offshore grid levy, levy for interruptible loads, and electricity tax [67, 68].

Depending on the volume of electricity purchased and the type of consumer (household or commercial
customer), the amount of the cost components can change [67, 68]. Since all levies and taxes must be
paid for BTM electricity, the focus here is on ensuring the most favorable possible purchase and sale
conditions [69].

Front-of-the-meter applications Compared to BTM, FTM applications affect the electricity flows
in front of the electricity meter (e.g. at the grid connection point) [63, 70]. There is no consumption
characteristic in FTM applications, only a withdrawal and temporary storage of energy [46, 47]. In
the case of FTM energy, the points of grid efficiency and system efficiency are in the foreground [63].
Grid efficiency is the reduction of stress on the grid, such as the balancing of power peaks in the
distribution grid. An established application in the area of system efficiency is frequency regulation,
which is intended to balance the energy fed into and drawn from the grid to stabilize the grid frequency.
Due to the grid- and system-serving character of FTM applications, the electricity costs for exchanged
energy are subject to favorable conditions [46].

Self-consumption increase This BTM application focuses on the use of self-generated energy. With
the falling prices for renewable energy sources, such as PV generators [71], interest in the self-
consumption increase (SCI) application is also on the rise [72]. Both private households and com-
mercial electricity consumers try to use the electricity from their generation units to cover their own
consumption [73, 74]. This is incentivized by the difference between the electricity purchase and sales
price [24]. In the case of Germany, there are still higher remuneration prices due to the EEG subsidy
[75], but these are declining. In the case of non-subsidized, or post-EEG, generators, the economic
incentive is strengthened as the price difference is even greater [76].

The example of PV generators shows that the direct use of self-generated electricity is only possible
at times when the generating unit provides electricity [77, 78]. To further increase the use of self-
generated energy, excess generation can be stored to be withdrawn during times of higher consumption
[79, 80]. This enables self-generated energy to be used behind-the-meter at times when there is no
electricity from the generation unit [81, 82]. To quantify this approach, the metrics self-consumption
rate (SCR) and self-sufficiency rate (SSR) are used to indicate the proportion of self-generated or self-
used electricity (cf. Equations 2.10 and 2.11) [44, 83]. Here, Eself−produced represents the energy from
the generating unit to the consumption and/or storage units, whereas Eself−consumed denotes the flow
from generating unit and/or previously stored energy from the generating unit to the consumption.
Eproduction and Econsumption denote the power flows from the generators and to the loads respectively.

SCRt = Eself−produced
t

Eproduction
t

= 1− Esell
t

Eproduction
t

(2.10)
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SSRt = Eself−consumed
t

Econsumption
t

= 1− Epurchase
t

Econsumption
t

(2.11)

The SCI application allows the reduction of electricity costs, since more self-produced electricity is
used and thus less electricity needs to be purchased [24]. An energy storage system investment can
be economically lucrative if the avoided costs due to SCI exceed the investment costs [78]. Due to the
energy storage’s high energy throughput and partially high C-rate, special care must be taken here on
degradation and efficiency losses [58].

Peak shaving Peak shaving, defined as a BTM application in this work, describes the act of reducing
load peaks to minimize demand charges. As described in the SCI application, electricity tariffs may
differ between households and commercial electricity consumers [67, 68]. In Germany the separation
is made at a limit of 100MWh annual electricity demand [84]. If a consumer is above this value, a
power-related price in addition to the energy-related electricity price is charged. The amount of this
power-related price depends on the consumer’s reference hours of use [84]. The number of hours of use
is calculated by dividing the energy drawn from the grid by the maximum peak power in the specified
period [66]. Approximately, the lower the number of hours of use are, the higher the power-related
share of the electricity tariff will be. The power-related costs are the product of the power-related price
and the maximum power peak of the demanded electricity from the grid. For the electricity costs, the
energy drawn is multiplied by the energy-related tariff and added to the power-related costs.

The aim of the peak shaving (PS) application is to shave high power peaks [85, 86]. From a regulatory
perspective, it is sufficient to consider 15-minute average values, as these are the ones measured [84]. For
an electricity consumer, there are three ways to avoid excessively high power peaks [87]. First, demand-
side management can be used to curtail or shut down the machines and processes that are causing the
high demand [88]. Since this requires intervention in potentially critical production processes, there is
also the option of connecting available generation units such as PV generators, the so called supply-side
management [89]. If such units are not available or do not supply electricity, there is the third option
of installing energy storage.

For this application, the energy storage unit serves as a source of energy to reduce the demand from
the grid and cover the power peak. Since the energy storage unit must store energy for this task, its
SOC decreases and therefore the storage unit has to be recharged at times when there are no power
peaks [58]. For this purpose, the operation strategy must ensure that no power peaks are created when
charging the storage. The PS threshold defines the power value that is still okay to draw power from
the grid. If the demand is above the threshold, the storage is activated, and excess energy is discharged
[46].

In Germany, there are both annual and monthly tariffs that define the power-related price [84]. Within
the defined annual or monthly billing period, the maximum value of the power demand is the main
factor. Since demand usually has a fluctuating profile, individual, very high power peaks are particu-
larly lucrative to shave [90]. As shaving at smaller thresholds can lead to disproportional high energy
throughput and thus increased storage aging [91, 92], knowledge of the consumption or load profile
is crucial [93]. Simple rule-based PS operating strategies are applied in a way that the SOC of the
storage is constantly kept as high as possible [58, 85]. If it occurs that the reference power is above the
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threshold, the storage is discharged and the SOC decreases. As a result, the high SOC ensures that the
potential for the PS application is high but brings the disadvantage that the battery cell degradation
is accelerated (cf. Section 2.5.5) [58]. This again motivates for an efficient prediction of the load profile
and the optimal choice of the PS threshold [46, 94]. With the mentioned operation strategy and the
volatile behavior of load profiles, it becomes clear that the time utilization of the storage is relatively
low [34], which in turn makes the stacking of applications especially interesting (cf. Section 2.3) [95,
96].

As with SCI, the profit generated by the PS application is actually a reduction in costs. By shaving
high power peaks, the leverage of the power-related price decreases and thus the electricity costs are
reduced. This is incentivized by the fact that the DSO has less power peaks occurring, which results in
lower losses and reduced grid burden [77, 97]. Depending on the grid level at which the grid connection
point is installed, the power-related price can also vary. Although it is conceivable that energy storage
systems could also be installed on the FTM side by the DSO, it is still legally difficult to determine
whether this is in line with unbundling laws [29, 90]. For the rest of this work, the PS application is
always associated with BTM.

Frequency regulation Frequency regulation is a FTM application with the task to balance the grid
frequency around its norm value. Electricity grids do not recognize national borders but follow physical
laws and allow electricity to be traded between countries. Germany lies within the continental Europe
synchronous area, which is managed by the European association for the cooperation of transmission
system operators for electricity (ENTSO-E) [98]. This AC grid area is characterized by a nominal
frequency of 50Hz. The constantly fluctuating feed-in and feed-out processes in the large grid area
cause fluctuations in the grid frequency [99]. A drop in frequency indicates that an accordingly high
load or electricity demand, is being drawn from the grid. The nominal grid frequency can only be
reached when feed-in and consumption are balanced again. Frequency regulation serves this purpose
of grid balancing [100]. In the ENTSO-E area, there are three products that are used for system
security and to ensure that the grid frequency does not deviate too far from the nominal frequency:
frequency containment reserve (FCR) [101–103], automatic frequency restoration reserve (aFRR), and
manual frequency restoration reserve (mFRR) [104–107].

All three products have the same motivation and mechanics: If the frequency is below the nominal
frequency, electricity is fed into the system; if the frequency is higher, loads are activated that draw
excess electricity from the grid [108]. The difference between the three products is the time of activation.
In the case of a frequency deviation, the FCR is the first product that must be activated at full power
within 30 seconds [109, 110]. In the case of longer lasting frequency deviations, FCR provides its power
for up to 15minutes. In the meantime, the aFRR is activated no later than 5minutes post-error and
provides power for up to 15minutes. If the frequency is still not corrected after 15minutes, the mFRR
is activated, which in turn provides its power for up to 60minutes [98, 108]. If, despite the provision of
FCR, aFRR, and mFRR, the frequency deviation still cannot be resolved, interruptible loads are the
last alternative before the grid collapses [111]. Since battery storage is predestined for the economically
lucrative FCR application due to its quick response times [9, 63, 112], the remainder of this work will
focus on FCR.

As an established market and FTM application overseen by the TSOs, there are certain requirements
and regulations that participants must comply with. To manage the number of participants in the
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market and avoid very small bids, the FCR product is offered in MW increments [58, 108]. Unlike
the aFRR and mFRR, the FCR is a symmetrical product. This means that the power offered and
awarded must be provided in both positive and negative directions, identified as FCR (POS/NEG).
The positive power corresponds to energy supplied to the grid (discharge of energy storage). The FCR
application’s market – in its present form – was initially launched in 2007. It started with monthly
delivery periods, but this period has shortened steadily to weekly, daily, and to the currently applicable
4 h [46, 108]. For the participants in the market, this means that they can apply for six time slots
every day. Besides the offer period, also the bidding process has changed in recent years [111]. Here,
the pay-as-bid procedure was in place until the first half of 2019 and was replaced by marginal pricing.
Since July 2019, the bids are collected until the tender closing date. The bids are then sorted by
ascending bid price. The highest price, which is still within the total required FCR power for the
corresponding 4 h time period, defines the price for all participants.

To successfully operate a prequalified technical unit, such as a battery energy storage, in the FCR
application, it must act in a frequency-controlled manner. This means that the energy storage unit
must absorb or release energy in the event of a locally measured frequency deviation [108]. Since the
electrical grid shows a continuous frequency change, the range ±10mHz is referred to as the dead
band. Within this range around the nominal grid frequency, an energy storage device does not have
to, but can supply or absorb energy. If there is a larger frequency deviation, the energy storage needs
to intervene. Depending on the frequency, the control power is provided linearly to the frequency
deviation. In the extreme case of a deviation of 200mHz or more, the total offered power should be
provided. The relationship between 50Hz nominal frequency and 200mHz maximum deviation results
in a static of 0.4% in the FCR product [108].

To provide additional security, each prequalified technical unit needs to always maintain an energy
buffer of 15minutes. In addition, it must also ensure that the technical capacity of the unit is 25%
higher than the FCR capacity offered [46, 47]. This should give the participant the opportunity to
carry out scheduled transactions on spot markets to adjust its operating point [113]. In addition to
the scheduled transactions, there are other degrees of freedom that make it possible to optimize the
operation of energy storage units in the FCR application [114].

Spot market trading Spot market trading is a FTM application that utilizes price spreads on the
wholesale electricity market to realize arbitrage opportunities. Spot markets are defined as economic
locations where trading objects, such as commodities are traded with the help of standardized contracts
[115]. Since there is also a continuous interplay of supply and demand for electricity, a distinction is
made between three electricity spot markets in Germany: intraday-continuous (IDC), intraday auction
(IDA), and day-ahead auction (DAA) [46, 116]. The three spot markets differ in terms of trading times
and delivery periods. On the DAA market, bids are accepted until 12 noon of the previous day, and a
delivery period of one hour applies [117, 118]. The IDA’s 15-minute trading blocks can be submitted
until 3 p.m. the day before delivery [119–121]. In contrast, the IDC market also trades 15-minute
trading blocks, but trading opens at 3 p.m. the day before delivery [119, 122]. The focus of further
work is on the IDC market, as it usually has the highest fluctuations and price spreads [123], and
battery storage systems are characterized by their fast response times [9].

When participating in spot markets with battery storage, the aim is to buy energy at low prices and
sell it later when market prices are higher. The process of utilizing the price difference in this way is
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also known as arbitrage trading [124]. To optimize the operation of energy storage systems at the IDC,
the efficiency of the energy storage system during the charging and discharging process, in addition to
the market prices, is of decisive importance [122, 125]. The more volatile the price signal, the more
opportunities there are for the EMS to trigger trades [47]. More trades, in turn, mean that energy
throughput increases, illustrating the strong influence of energy efficiency and battery degradation.

As with other established FTM markets and applications for energy storage, there are also regularities
that must be met in spot market trading. The requirements, defined by the European energy exchange,
include that the power of the 15-minute trading signals must be at least 100 kW [46, 116]. As shown
in existing publications, spot markets can also be served simultaneously [126, 127]. This can again
increase the economic result, though here the added value is generated not only by the energy storage
but also by using synergies of the different markets. Since this thesis deals with the behavior and
the added value of the energy storage system, markets are considered exclusively. Since the operation
strategy of the EMS is in the foreground, it is also assumed that every trading transaction involves a
physical delivery [46, 47]. This has the effect that electricity can be bought or sold exclusively at each
trading period. To generate representative results, the simulations and optimizations shown are based
on historical price signals from the IDC market in Germany [116, 128]. These price signals generally
consist of different components such as the weighted average price signal, which is weighted on the
trading volume. In addition, the high and low signals, which reflect the highest and lowest market
prices, respectively, are also used. The extent to which these price signals have been incorporated is
indicated in the relevant publications in Chapters 5 and 6.

Mobility provision and V2X Mobility provision is also classified as a BTM application due to its
consuming characteristic [47]. The focus here is on the provision of energy from the battery of an
EV to the electric motor to move the vehicle. Compared to other applications shown, it is difficult to
establish a target function with the economic added value for this application, since each user estimates
and quantifies the added value of driving differently. Rather, this application is like a constraint that
must always be adhered to [129, 130]. This constraint must guarantee that enough energy is stored
in the vehicle’s battery at any given time so that future journeys can be carried out without any
limitations until the next recharge. In addition, previous literature has highlighted that due to the
range anxiety effect, a certain energy buffer should always be held in reserve [131].

Since passenger vehicles spend about 96% of their time parked [132], it is a good opportunity to use
the energy storage of EVs for additional applications. To provide more services with the storage, the
EMS needs to be able to modify the charging strategy of the EV. Smart charging strategies make it
possible to optimize the charging power to achieve the desired result [133]. Compared to stationary
energy storage, EVs, besides the fact that they are not always connected to the grid, usually have
the characteristic that they can be charged only unidirectionally. With the steadily increasing energy
content of mobile energy storage systems in passenger vehicles, there is growing interest in research
and industry to be able to discharge the large energy storage systems into the electricity grid in a
targeted manner. The technology that enables this behavior of EVs and respective chargers is known
as bidirectional charging or vehicle-to-X (V2X) technology [129, 134, 135]. The term V2X covers
a range of technologies that have in common that energy flows from the vehicle’s battery to other
technical entities. Representatives of the V2X group include: vehicle-to-vehicle (V2V) [136], vehicle-
to-building (V2B) [44, 137], vehicle-to-home (V2H) [138], and vehicle-to-grid (V2G) [139–143].

13



2 Energy management for battery energy storage

Reactive power provision Within AC systems, the relationship of the phase shift angle between
current and voltage, as well as the formula S2 = P 2+Q2, explains the apparent power S, where P is the
active and Q is the reactive power. If the phase shift between current and voltage is not equal to zero,
then reactive power is occurring. The presence of reactive power also affects the electricity grid and
can lead to voltage deviations [144]. Depending on the state of the grid, either capacitive or inductive
reactive power can be used to counteract voltage deviations and allow the effective transmission of
active power [145]. In the past, conventional power plants were also responsible for providing reactive
power. As the energy transition progresses, these conventional power plants are increasingly being
replaced by renewable energies. By equipping energy storage systems with suitable power electronics,
it is possible to provide reactive power to the grid. The central unit for the provision of reactive power
is the inverter, which provides inductive and capacitive reactive power depending on its power factor
[146]. From an economic point of view, the provision or compensation of reactive power is not yet
standardized in Germany. Although there are guidelines that foster its operation, it is up to each
DSO how the economic incentive is established [147, 148]. From an energy economics perspective, it
is also not yet clearly defined whether the application can be assigned to BTM or FTM, as it has clear
grid-serving properties. However, since there are also approaches that directly incentivize consumers
to compensate their own reactive power, it also shows characteristics of a BTM application [147, 149].

Black start A black start or black start capability describes the characteristics of a technical unit
to restart the power flow of electricity in an energy system without the support of an external power
supply. As the name suggests, this is necessary after an outage or a blackout situation. Historically,
industrial turbines have been used to enable black start. Although there are ongoing efforts to make
grids more stable and to avoid large-scale blackouts, it is becoming apparent that energy storage
systems can also be used for this application [150]. Since blackouts are always evaded and occur very
rarely, there are no established markets yet where entities offer their black start capability [151]. Also,
blackouts are difficult to predict [152], so such storage systems are classically operated with other
applications as well [153, 154]. In the event of a blackout, these storage systems would provide their
power and energy to enable other technical units to come online and restore the grid to a robust state
[150]. Depending on the size and location of the grid, the power and energy required for this must be
scaled respectively [155].

Island operation Similar to the black start application, energy storage systems in island operation
are also working without the support of an external grid. In contrast to black start, in this application
the energy storage system is used not only for the initial grid buildup, but for the entire grid operation
[156, 157]. For this purpose, the storage unit is used to smooth peak loads and to balance genera-
tion and consumption. This application is used on smaller islands that do not have access to other
electricity grids. Characteristically, these energy storage systems are used in island operation with
renewable energy sources such as PV generators or wind turbines [158, 159] and replace, for example,
the historically necessary startup of diesel generators if the energy supply of the renewable energy
sources is not sufficient [160].
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Uninterruptible power supply The background and motivation for the uninterruptible power supply
application are power failures in the supply network. Compared to a blackout, where a grid failure
occurs over a large area for hours or longer, the uninterruptible power supply aims to compensate for
smaller grid failures over a short period of time with the help of energy storage [161]. Like the peak
shaving application, the SOC is kept at a high level for the most effective operation of the application
[162]. If the supplying grid were to fail, the systems to be supplied can continue to be fed with
electricity from the energy storage system. Economically, this application can be especially lucrative
for industrial consumers, as the sudden power outage for production lines can lead to serious damage
to equipment [163]. Like the black start application, this application is difficult to predict, making its
techno-economic value dependent on the respective installation site and energy system.

Renewable energy integration The expansion of renewable energies can be observed throughout the
entire electricity value chain. From the low-voltage side at households, where PV generators of a few
kWp are installed on the roof [44, 78], to PV ground-mounted power plants and wind parks in the GW
range. Such large-scale power plants are integrated into the electricity grid due to their capacity at
medium and high voltage levels, and their electricity is usually traded directly on spot markets or using
power purchase agreements [164, 165]. Since prices on these markets are subject to fluctuations due
to volatile supply and demand, and the operators of large PV farms and wind parks want to achieve
the highest possible remuneration prices, energy storage facilities are increasingly being installed at
renewable energy sites [166]. These energy storage systems intend to temporarily store surplus energy
(like the self-consumption increase application) and to store electricity when market prices are low and
to discharge the electricity when market conditions are more attractive [167].

Peer-to-peer trading As the name suggests, peer-to-peer trading describes electricity trading between
different peers [168, 169], which in turn describe electricity consumers. If all or some of these consumers
also have generation facilities, they are also referred to as prosumers (producing consumers) [170, 171].
Since these prosumers, depending on their generation units, can also have excess electricity, many
prosumers also invest in energy storage systems (see SCI application in Section 2.2) [82]. The flexibility
of these energy storage systems, in the form of stationary and mobile storage, allows excess energy to
be temporarily stored in the storage to use it for other applications or in times of higher consumption
[44, 45]. In the peer-to-peer trading application, not only can excess electricity be traded between
consumers and prosumers, but also the flexibility provided by the energy storage systems. In this
context, the boundaries between the consumer/prosumer are softened and extended to the community
[45, 169, 172]. This leads to models where EMSs no longer decide on the consumer level, but on the
community level about the generation units, energy storage, and consumers, which is further explained
in Section 2.4, of multi-storage systems.

15



2 Energy management for battery energy storage

2.3 Multi-use operation

As introduced in Section 2.2, battery energy storage systems are a multi-purpose technology [24,
173], which can serve both BTM and FTM applications [69, 70]. Since these energy storages can be
operated very differently, depending on their selected application, dimensioning, and input variables,
such as parameters and profiles, the utilization of the energy storage also varies [82, 85, 102]. Two
similar metrics of utilization ratios have been presented in literature [34, 174]. The shown metrics
in Equations 2.12 and 2.13 relate to the energy throughput and the utilization of the energy storage
system over time. Here, the Ethroughput,actual and Ethroughput,max relate to the actual and maximum
energy throughput at the storage, while toperation,total and toperation,active denote the total operation
time and the operation time during active charge and discharge of the system. Since the utilization
ratios of energy storage systems with only one application (so-called single-use operation) can be less
than 10% [34], and therefore a lot of potential remains unused, the idea of maximizing the utilization
and thus the added value of the storage system is obvious [18, 175].

τ energy = Ethroughput,actual

Ethroughput,max
(2.12)

τ temporal = toperation,active

toperation,total
(2.13)

A promising approach, which is becoming increasingly established not only in research but also in
industry, is the stacking of applications, the so-called multi-use operation of energy storage systems
[29, 123]. This operation is defined by two or more applications served simultaneously or consecutively
on a single energy storage system [176, 177]. By reducing the idle times of the system, synergies
between applications are exploited to ultimately increase the techno-economic potential. In addition
to the selected applications to be stacked, the technical parameters and capacities of the energy storage
and the EMS play a central role for the operation [123]. In the further course of this section, the concept
of multi-use is explained, first using large-scale stationary storage systems, and second, EVs.

2.3.1 Allocation of storage capacities

Allocation of energy To serve multiple applications on one storage unit, the EMS needs to allocate the
technical capacities of the system to the applications. An essential parameter of the storage capacity
is defined by the energy content [29, 123]. For lithium-ion batteries, this energy is defined by the
charge of the battery cells and the voltage potential of the system. The nominal energy content of the
system is thus divided among the applications to be allocated, whereby the sum of the allocated energy
content per application may not exceed the total nominal energy content [63, 176]. From a regulatory
perspective, it is also necessary to prevent energy shifts between FTM and BTM applications. Energy
shifts between applications of the same group (FTM or BTM) are permitted and do comply with
unbundling laws [29].
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Allocation of power In addition to energy, the second technical parameter of energy storage systems
is the power that can be provided by the system. This parameter is defined and limited by the
maximum C-rate of the battery cells. The second limiting factor is the rated power of the storage
system’s power electronics. Finally, the maximum charge and discharge power depends on the C-rate,
the power electronics, as well as the actual energy content of the battery, and can be allocated to the
applications served [63, 176]. For the topic of FTM and BTM, the same regulatory requirements apply
to power as to energy, since the power electronics enable the coordinated power provision to either
BTM or FTM applications. While previous literature has emphasized the importance of allocating
energy, the allocation of power, though equally important, has been omitted [123].

Allocation of time Due to the temporal relationship between the technical capacities, energy and
power, it is also decisive for multi-use operation how long applications can or should be served. As
explained in more detail later for the multi-use types, time plays a decisive role for the EMS. Since
many applications, such as frequency regulation or spot market trading, have regulatory minimum
delivery periods [111, 116], these conditions must be incorporated into the operating strategy. By
taking this variable into account, the utilization of the storage system can be optimized, where a high
proportion of allocated time for a specific application can also increase its energy throughput.

Allocation of priority Depending on the selected algorithm of the operating strategy, it may be
necessary to assign a priority ranking to the applications in the multi-use strategy. The prioritization
of applications additionally helps to allocate limited capacities of the storage system. If imbalances
between allocation and demand of applications occur, they can be solved through prioritization [63].
This means that a higher-priority application is allocated energy and/or power, and afterwards the
remaining capacity is allocated to other lower-priority applications [176].
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Figure 2.1: Exemplary illustration of the three multi-use types: sequential (a), parallel (b), and dy-
namic (c) multi-use. The colors describe the served applications and their allocated storage
capacities. The figure is adapted from [46].

2.3.2 Sequential multi-use

When it comes to performing multi-use on energy storage devices, a distinction is made between three
multi-use types. With the first type, sequential or serial multi-use, the entire capacity of the storage
is allocated exclusively to one application at a time (cf. Figure 2.1a). This has the advantage that
for each point in time, the EMS focuses on one application only [29, 63]. The degree of freedom in
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2 Energy management for battery energy storage

this multi-use type is time. Depending on the possible switches between applications, the storage
operation can be further optimized. If the period for switching times between applications is reduced,
the frequency for new decisions and therefore the complexity for the EMS is increased. Due to the
higher frequency of switching possibilities, the energy management can intervene more often and decide
which application brings the highest added value and should be served exclusively in this moment.

2.3.3 Parallel multi-use

Unlike sequential multi-use, the allocation of energy and power in parallel multi-use remains constant
over time. This form of multi-use can serve several applications simultaneously. For this to happen,
the EMS must be aware of or able to calculate the allocated shares of energy and power. As shown in
Figure 2.1b, these allocation values remain constant over time [63]. This operation is particularly well
suited for the operation of applications that require the energy storage to be as constant as possible,
such as frequency containment reserve and spot market trading.

Energy demand

PV generator

Electricity meter

Grid connection

Inverter unit

Battery pack

Figure 2.2: Multi-use topology for a large-scale battery storage system with multiple inverters, electric-
ity meters and periphery unit (energy management system (EMS), battery management
system (BMS), and thermal management system (TMS)). With the chosen topology, the
storage system can serve behind-the-meter (BTM, orange lines) and in front-of-the-meter
(FTM, blue lines) applications. The figure is adapted from [46].
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2.3.4 Dynamic multi-use

Dynamic multi-use is a hybrid strategy of sequential and parallel multi-use. By acquiring the advan-
tages of the two predecessors, an EMS with dynamic multi-use can distribute the technical capacities
of the energy storage system over multiple applications simultaneously. In addition, it can change
the allocation of capacities over time to always foster applications with the highest added value (cf.
Figure 2.1c). Depending on the number of possible applications and the frequency of the switching
time, it is the most complex type of multi-use, but also with the highest potential, as discussed further
in Chapter 5.

2.3.5 Multi-use topology for large-scale storage systems

To implement the multi-use types presented in a real system, the regulatory conditions for the cor-
responding applications must be met in addition to the technical requirements of the energy storage
system. In the StorageLink research project (funded by the Bavarian Ministry of Economic Affairs,
Regional Development and Energy, grant number IUK-1711-0035), a topology was designed that allows
both BTM and FTM applications to be served simultaneously [178]. In Figure 2.2 this topology is
shown with an energy storage and the possible power flows (BTM in orange and FTM in blue). In the
topology the battery cells are integrated in modules. These modules are in turn connected via a DC
busbar, which allows the connected inverters to access the capacity of the modules continuously. The
design of the power electronics with multiple inverters and the possibility of switching between BTM
and FTM, allows the operation of BTM and FTM applications. To comply with legal requirements,
the power flows between the technical components are documented with calibrated electricity meters
[63]. For this purpose, one electricity meter each is installed on the BTM and FTM busbars, which
document how much and when energy is charged to or discharged from the battery storage. Since
the necessary peripherals (energy management, battery management, thermal management) for the
storage have a consuming character, they are also assigned to the BTM side and provided with a
separate electricity meter. Depending on the generation plants within the corresponding energy sys-
tem, this must also be equipped with an electricity meter [178]. With the calibrated meters shown in
Figure 2.2, the EMS can control the energy storage with BTM and FTM applications in compliance
with the legal requirements [29]. Based on the research project StorageLink and the topology [178],
the existing simulation tool SimSES was extended and the optimization framework mu_opt created,
which is further explained in Chapter 5 [63, 176, 179–182].

2.3.6 Electric vehicle multi-use

As EVs are parked most of the time, using the vehicle’s traction battery for other applications is an
obvious next step [183, 184]. Ideally, multi-use operation would also be applicable with mobile storage
systems, as for large-scale storage systems, to increase the added value of the battery. Compared
to stationary storage, EVs differ in several aspects [185]. First, by their very nature, EVs are not
connected to the electricity grid when they are on the road or unplugged. This makes it even more
important to know the connection times to the electricity grid for mobile energy storage systems [186].
Second, mobile storage systems do not have a fixed point of common coupling. Typically, vehicles are
used for transportation between home, office, shopping, etc. [187]. With the integration of electric
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charging stations, EVs can and will be connected to the grid at different locations. Third, EVs or
their chargers do not have built-in power electronics with multiple switchable units that allow the
physical measurement of BTM and FTM power flows. To enable a physically and regulatory viable
solution for multi-use operation with EVs, an alternative to calibrated electricity meters in stationary
energy storage must be found. One possibility to document the incoming and outgoing power flows
of the BTM and FTM partitions would be a calibrated EMS. This EMS must be able to document
the corresponding power flows and energy contents of the partitions transparently, consistently, and
securely at any time and store them within the vehicle. In this way, it will be possible to implement
established multi-use strategies with EVs, or fleets of them, and to exploit the advantages of these
approaches. With an optimization framework, a detailed analysis on multi-use with EVs is conducted,
which is presented in Chapter 6 [47, 188].

The multi-use research aims are summarized into the following three research questions:

• What are the techno-economic results of a multi-use operation strategy on a stationary storage
that allocates both energy and power capacities?

• What energy system topology is required for such an implementation and how does the virtual
partitioning into BTM and FTM influence the success of a multi-use strategy?

• What is a possible methodology design that enables the implementation of a multi-use operation
strategy on a fleet of EVs that serve the primary application of mobility provision?

The existing literature gaps motivating the question formulation and the resulting findings can be found
in greater detail in Chapters 5 and 6.

2.4 Multi-storage operation

Decentralized generation of electricity is an increasingly important aspect of the modern energy mix
[24]. Virtual power plants in particular play a decisive role [189]. These virtual power plants de-
scribe the combination of several generation plants, electricity consumers, and flexibilities [190]. The
generation units are typically decentralized PV generators or wind turbines. Electricity consumers
are households as well as commercial and industrial consumers. By being able to both charge and
discharge energy, energy storage systems provide a source of flexibility to ensure the balance between
generation and consumption in the virtual power plant [191]. The provided flexibility enables the
system of generators and consumers to stabilize the electricity grid as well as to offer other services
within and outside the energy system [168, 169]. To achieve the objectives and maximize the added
value of the technical assets, it is now necessary to control the flexibilities as well as possible. This
task is particularly challenging when several decentralized storages are to be controlled and operated
together [169, 192] – the so-called multi-storage operation.
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2.4.1 Multi-storage on entity level

As described in Section 2.2, an energy storage can serve a variety of applications for an electricity
consumer. Both residential and commercial entities are investing in stationary and mobile battery
storage systems. Once the investment for such energy storage systems has been made and more than
one of these energy storage systems has been installed, the question arises as to how they should be
operated in a way that maximizes their value [44, 193]. A well-researched combination of such energy
storage systems is, for example, a home storage system and an EV in the same household. Unless these
systems have already been acquired as an integrated system, each energy storage system has its own
mode of operation. For example, the home storage system will try to store as much excess energy as
possible to increase self-consumption [78, 82], and the vehicle will request energy from the charger if
the SOC of the storage system falls below a certain threshold [187]. To use the synergies of the energy
storage systems as efficiently as possible, the EMSs must be bundled and communication enabled. To
stay with the example of the household, the EMS should be able to read all power flows in the energy
system and react accordingly [194]. Instead of the home storage only maximizing self-consumption
in the building, added value can be created if the vehicle battery is also charged with self-generated
electricity. It should be noted that within energy systems with multiple energy storage systems, the
possibility for optimization does exist, if the EMSs can access and intervene with each other. Using
the example of a German household, this issue has been further investigated in Chapter 3.

2.4.2 Multi-storage on community level

As described in the previous paragraph, it adds value to operate energy storage systems within an entity
not autonomously, but as a combined unit, to utilize their advantages and synergies. If one now links
several entities, which in turn are equipped with flexibilities, the situation becomes no less complex,
since each entity now represents a separate stakeholder in the formed community. The formation
of such a community is observed, for example, in peer-to-peer markets, which have been described in
Section 2.2. For the efficient provision of the flexibility potential of energy storage systems, the exchange
of information between the storage systems is once again at the forefront [169, 192]. Compared
to the individual entity or stakeholder, data protection regulations can complicate the exchange of
information in the community. To assess the potential of multi-storage operations, an empirical study
is conducted to investigatemulti-storage operation in a peer-to-peer market (cf. Chapter 4). In addition
to evaluating bidirectional EV charging and battery degradation, the study focuses on the EMSs and
their decision-making approach. For this purpose, centralized and decentralized decision-making is
analyzed for the operating strategies of the batteries (cf. Figure 2.3).

Decentralized decision-making describes the characteristic that the entities in the system each have
their own EMS, which determines the optimal operation based on the locally available data. Within
a community, this means that each entity only has access to its own data and has no knowledge of
the technical and economic status of the other entities. From a data protection point of view, this
procedure raises few concerns, and the degree of computational complexity for the EMS is also limited,
since relatively little data needs to be considered for the calculation of the optimal operation strategy
[45, 169].
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2 Energy management for battery energy storage

Compared to the decentralized approach, where the added value for the individual is maximized, the
centralized approach can maximize the added value for the individual and the community [77]. To do
this, a central EMS must be able to retrieve all necessary data within the community and control all
flexibilities in the energy system. For this to work, sharing data across the boundaries of the entities
and stakeholders must be possible. While it is not necessary for entities to have visibility into the data
of other entities, the central EMS must have full visibility and execution power. The higher degree of
flexibility also increases the computational complexity for the EMS, which is why it is important to
consider the trade-off between the degree of flexibility and the degree of complexity [45].
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Figure 2.3: Decentralized (left) and central (right) decision-making approach in a peer-to-peer net-
work. Each peer is characterized by its energy inflexibilities (producing and consuming
components) and flexibilities (stationary and mobile energy storage). For the decentral-
ized approach a decentral energy management system (EMS) at each peer calculates the
offers and transfers them to the matching platform of the peer-to-peer network. With the
larger information base and flexibility pool, the central EMS simultaneously calculates the
optimal operation strategies for all flexibilities and peers. The figure is adapted from [45].

2.4.3 Aggregator operation

Due to application-specific requirements, it is necessary for some markets to fulfill certain technical
conditions with the energy storage device [108]. Examples of these requirements are minimum power
or minimum provision periods that must be met to participate in respective markets [108, 116]. Since
energy storage systems that cannot meet these requirements are excluded from these markets, a solution
to this problem is to operate multiple energy storage systems together in multi-storage operation
and to market them as a cumulative storage system. Entities that enable this bundling of several
energy storage systems are defined as aggregators [195, 196]. Aggregators are used both in the area of
stationary energy storage and with EVs. Since the ownership of the energy storage systems also plays
a decisive role in this context, two aggregator models will be presented, using the example of EVs.
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Assuming there is a commercial electricity consumer owning a fleet of EVs, who wants to participate
in the FCR market. Since a minimum capacity of 1MW applies [108], none of the EVs can participate
in the market as a single player. Nevertheless, to meet the minimum requirements, the EV fleet can be
aggregated as a cumulative flexibility [195, 197], and thus meet the market requirements. A detailed
study of this aggregator model applied to a commercial electricity consumer is presented in Chapter 6.

The second aggregator model differs in the aspect that the vehicles are now owned by multiple owners
rather than a single entity. Due to the technical requirements, still none of the owners would be able to
participate in the desired market. Here, too, an aggregator could remedy the situation by consolidating
the capacities of the battery storage units. In contrast to the first aggregator model, the operator and
thus marketer of the consolidated energy storage system is not the owner of the technical units. As
already established for stationary energy storage, an agreement would have to be reached between the
aggregator and the vehicle owners on how the risks and revenues of the applications served are to be
shared.

The multi-storage research aims are summarized into the following three research questions:

• What are the techno-economic effects of both stationary and mobile (EV) energy storage within
one residential system?

• When combining energy management systems and peer-to-peer trading in a local electricity mar-
ket, how do the techno-economic results compare between a decentral versus central decision-
making approach?

• What impact does the size of the EV fleet have on the techno-economic performance per vehicle?

The existing literature gaps motivating the question formulation and the resulting findings can be found
in greater detail in Chapters 3, 4 and 6.
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2.5 Optimized energy storage management

In general, the EMS of an energy storage system has the task of executing the defined application
or operating strategy as optimally as possible, increasing the added value of the storage system by
using prediction data, while complying with technical and regulatory requirements. An EMS needs
to be real-time capable, however real-time optimization is computationally demanding. Figure 2.4
illustrates a robust concept for an EMS that combines prediction, optimization, and real-time capable
implementation of an optimized energy management for an energy storage system [46].

OptimizationPrediction

Exogenous input

Predicted data

System parameters
Market data
Regulations

Real data

Operation strategy

System feedback

Energy storage

Figure 2.4: Proposed method for the practical implementation of battery energy storage systems’ op-
timized operation strategies. Necessary data, such as power demand and supply are pre-
dicted. The output data from the prediction, as well as system parameters, technical states,
and regulatory constraints are received by the optimization model. Optimizations are exe-
cuted with each addition of new information and the calculated operation strategy is sent
to the energy storage. To ensure a close coupling of the energy storage and the optimizer,
there is a feedback loop with the current system states of the energy storage. The figure is
adapted from [46].

2.5.1 Prediction of data

Since an optimal operating strategy should not only reflect and consider the current conditions and
status of the energy system, but also future developments in and surrounding the system, a temporal
prediction is necessary. This prediction of data should reflect the future development of input profiles,
parameters, and system states as accurately as possible [41, 42, 198]. Depending on the applications,
the profiles to be predicted include data for spot market prices, expected frequency curves, and predic-
tions of power flows in the energy system [199, 200]. Depending on the systematic or non-systematic
correlations and availability of data, some profiles can be predicted more easily than others.

A central component for the prediction of data is that a relationship between the input variable and
the output variable to be predicted is assumed or learned. To make this possible, there are different
possibilities and algorithms that can be used. One method for predicting time series is linear regression
[201]. This is a comparatively simple method that assumes direct linear relationships between the
exogenous variables and the output predicted variable [202]. With the help of several influencing
variables and real data, the linear regression can be trained and by weighting input variables, the
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time series prediction is calculated. Another well-known representative for prediction algorithms is
the support vector machine [203]. Designed for classification and regression of data, the support
vector machine allows to establish relationships between data sets and can train them [204]. Originally
developed to classify linear relationships, the decision function can also be adapted to classify non-
linear relationships [205]. The adaptation of the decision function is done by choosing a suitable kernel
function and adapting the features.

Artificial neural networks are another well-known representative of prediction algorithms, which is
becoming increasingly popular. Based on research in the field of neuroscience, attempts are being
made to approximate artificial neural networks to the human brain with the aid of hidden layers and
neurons [206, 207]. Also in this approach, there is an input and output layer, which in turn can be
occupied by neurons. By using historical input and output data, a defined neural network is trained.
The training serves to induce the neurons to establish correlations between input and output data and
to reproduce their relationship as well as possible [207]. Each neuron of a layer can be connected to
any other neuron of the neighboring layers. The internal weights of the individual connections between
the neurons and layers can be used to strengthen the performance of the neural network. Depending
on the chosen architecture or structure of the neural network, a better result for the prediction can
be achieved. Literature has shown that increasing the number of hidden layers or neurons does not
automatically improve the prediction result [199]. Rather, an artificial neural network should be
parameterized depending on the input data and the desired prediction period [208, 209]. Over-fitting
of neural networks describes that data during training can map the correlations of the training input
and output data but has large prediction errors when predicting with new data [199].

The quality of prediction data or its prediction error can be determined with different metrics. Since
there is no consensus in the literature as to which metric is the best, but rather this depends on the
observed scenario, frequently used representatives are: mean absolute error, mean absolute percent
error, mean squared error, root mean squared error, mean bias error, and Theil’s coefficient of inequality
[210, 211]. Since the optimization of the EMS has a strong dependence on the quality of the prediction,
one tries to minimize the prediction errors. There are different possibilities, like the limitation of the
prediction horizon [212]. It is in the nature of prediction values that its complexity increases and
accuracy decreases with a rising forecast horizon. Another approach of improving the handling of
the prediction uncertainties in the EMS is to strengthen the data exchange between the prediction
algorithm and the optimization, which is shown in Section 2.5.4.

2.5.2 Optimization of operation strategy

Optimization algorithms have in common that they want to fulfill a desired objective function. The
objective function can be fulfilled by changing the system states, the so-called decision variables,
which offer degrees of freedom to the system [213]. Depending on the structure and complexity of
the problem to be solved, there are different algorithms and methods. In literature, three groups of
algorithms are distinguished: exact solution approaches, heuristics, and meta-heuristics [214, 215].
Within each group, there are different solution techniques. For example, algorithms such as the linear
problem, non-linear problem, or quadratic problem belong to the exact solution techniques [216]. As
the name suggests, non-linear or quadratic approaches can map non-linear or quadratic constraints in
the objective function or the constraints to be met. Due to their more complex algorithmic structure,
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these exact solution approaches are usually slower than linear problems [194], which will be described
later. Within the group of heuristics one can find representatives, such as the fuzzy method, greedy
heuristic, and gradient method [217, 218]. Because of the structure of heuristics, they can reach the
objective function relatively fast, but have the disadvantage that they can terminate in local optima
[194], which is why there is often no guarantee for finding the global optimum. This problem can
be improved by meta-heuristics. Evolutionary approaches, swarm intelligence, and neural networks
belong to this group [219]. Based on processes from natural science, these algorithms allow a step-wise
worsening of the objective to prevent the algorithm from getting stuck in local optima [194]. Although
meta-heuristics are comparatively fast, they have a lower robustness and reliability in locating the
global optimum compared to mathematical optimization approaches such as linear optimization [220,
221].

Linear programming As described above, linear programming approaches try to represent processes
with linear relationships. Due to their simplified structure, compared to non-linear approaches, the
algorithm is usually able to find the solution for a problem relatively fast and is also able to reach the
global optimum after an appropriate computation time [194, 213]. For this reason, this approach, and
modifications of it, will be discussed further in this thesis.

To make linear problems solvable with modern processors, the problem must be represented math-
ematically [222]. For this purpose, the model consists of three essential building blocks: objective
function, constraints, and decision variables [213]. In literature, a linear model is generally represented
as a minimization problem. The objective of the minimization function could be to minimize the cost
of a process. To represent this mathematically in the objective function, the decision variables must
be brought into a mathematical context. The objective function shown in Equation 2.14 thus contains
the weighting of the decision variables c and the vector of the decision variables x.

min c · x (2.14)

Since optimization problems are supposed to find the best solution for a defined area, the solution
space must also be limited. This delimitation is done with the help of constraints and boundaries.
As shown in Equation 2.15, the vector of the decision variable can be broken down. Each line in the
formula stands for its own constraint. Each of the constraints in turn consists of weights a for the
corresponding decision variable x. Generally, the linear problems are constrained by specified bounds,
which are implemented in the model as the vector of constants b. This results in the structure of the
model with n decision variables and k constraints.

a11 · x1 + a12 · x2 · · ·+ a1n · xn ≤ b1

a21 · x1 + a22 · x2 · · ·+ a2n · xn ≤ b2

...

ak1 · x1 + ak2 · x2 · · ·+ akn · xn ≤ bk

(2.15)

26



2.5 Optimized energy storage management

In the further course, the solution approach attempts to fulfill the objective function, and in the shown
example, to minimize it. The achievement of the objective function must happen in compliance with
the constraints. To simplify the constraints, the model can be put into the canonical form shown in
Equation 2.16. The mathematical relations between the constraints and the objective function are
described here. Therefore, the mathematical relationships of the constraints and decision variables
are represented as matrix A and the constants are summarized as b [213]. In addition to the usual
constraints, many algorithms also require bounds on the decision variables. The implementation of
lower and upper bounds should serve to limit the solution space to the mathematically relevant area
and aid to increase the speed of the optimization. In the field of energy storage, such limitations can
include the limitation of minimum and maximum charging and discharging power [30]. Given the fact
that many relationships in optimization problems require the non-negativity of decision variables x
[223], this is represented in Equation 2.17.

Ax ≤ b (2.16)

x ≥ 0 (2.17)

Mixed-integer linear programming Although linear problems can be used to represent linear rela-
tionships, these approaches have difficulties if there are case distinctions or discontinuous functions in
the model [194, 224]. In the field of energy storage, for example, it may be necessary to distinguish
whether a storage system is being discharged or charged. Depending on the direction of the current
flow, different processes appear. Linear programming is not able to make a case distinction here, which
is why the extension of mixed-integer linear programming can be required. As the name suggests, the
approach includes all the capabilities of linear programming, with the addition that decision variables
can represent both continuous and integer values [224]. Another example is shown in the publications
of Chapters 5 and 6, where the buying and selling of electricity on spot markets is represented as an
exclusive action. This exclusivity is achieved by means of integer decision variables. Since the desired
exclusivity of the power flows (buying or selling) cannot be achieved with continuous variables, but
there must be a binding relationship between continuous and integer variables, the big M method
is used [225, 226]. By implementing further constraints, this method makes it possible to convert
continuous variables into integer variables and thus to enable case distinctions in linear problems [225].

2.5.3 Real-time operation

Unlike optimization, real-time operation can deploy a desired operating strategy in real time [179].
To enable this real-time capability, the computational processor must execute the algorithm in the
appropriate time and send output signals to the storage system. To make this possible, simple rule-
based methods are used, which can make decisions with the help of if-else blocks [94, 227]. Since the
complexity is limited by the computing time, real-time operation is inferior to optimization from a
techno-economic point of view. However, the advantage of real-time operation lies in the fact that it
can work with the actual data, whereas optimization algorithms generally work with predicted values,
which in turn are subject to prediction errors. To increase the techno-economic performance of the
storage system, a combination of prediction, optimization, and real-time operation is used [45–47], as
it is shown in Figure 2.4.
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2 Energy management for battery energy storage

2.5.4 Model predictive control

In this work, only deterministic optimization is used, meaning that perfect foresight is assumed for
all input data, albeit with a reduced time horizon. Nevertheless, the model predictive control (MPC)
methodology was tested using predicted values within the StorageLink research project.

The method describes a form of algorithm that can handle prediction data and process it in an
optimization algorithm [228]. With the help of optimization states, the algorithm is able to perform
optimization and internally store the results. Since prediction data can change over time, the MPC
algorithm must also be able to re-evaluate and, if necessary, adapt the results generated in the past
and the optimization states previously created [229]. Here, the rolling horizon optimization comes into
play. This algorithm describes the process by which a time series optimization defines the decision
variables over a defined period of time, the optimization period. In the field of energy storage systems,
the optimization period should be selected in such a way that a corresponding application can be
reasonably operated and optimized [46]. The time period depends on the selected application. For
the application self-consumption increase with a PV generator, e.g. 24 h is a reasonable period, as it
always covers a full day-night cycle. The upper limit for the optimization period is defined by the
computational complexity, since for a longer time period an increasing number of decisions must be
optimized [213]. The second time aspect, relevant for rolling horizon optimization, is the rolling horizon.
This parameter defines how often the optimization algorithm is called. A shorter time period leads to
a higher frequency of new optimizations and thus to a higher computational demand. Although the
quality of the optimization results can be increased by a higher frequency of iterations, it should always
be considered whether the quality increase can also be achieved with the corresponding computational
resources. The rolling horizon is closely coupled to the prediction quality. The better the quality of
the predicted data, the smaller the prediction error [210]. Since the prediction error for optimization
algorithms is mostly unknown, it is difficult to quantify the influence of the prediction uncertainty in
the optimization. However, the rolling horizon optimization can perform new optimization runs for
each rolling horizon and provide the optimization algorithm with new prediction values accordingly.

To put the MPC framework into the context of energy storage, prediction algorithms are used to
predict the necessary parameters and profiles for the optimization period. This prediction data is
passed on to the optimization. The optimizer evaluates the prediction data together with other input
variables and calculates the optimal operating strategy, subject to regulatory and technical constraints.
This operating strategy is sent in the form of control signals to the real-time operation of the energy
storage system, where it is processed by the technical unit. To prevent prediction errors, it is highly
relevant to send system states, such as the state of charge or the state of health, from the real-world
energy storage system to the optimization algorithm. This feedback loop improves the quality of the
prediction significantly as it avoids the occurrence of technically unfavorable operating strategies or
system states. Due to computational complexity, server solutions are often used in real-world projects
[230, 231]. For this purpose, prediction and optimization are performed online and the corresponding
control signals are sent to the storage system and its local real-time operation unit [232].
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2.5 Optimized energy storage management

2.5.5 Degradation aware energy management

Like any technical unit, energy storage systems are also subject to a limited lifetime. Since the lifetime
of the energy storage unit plays a decisive role in the investment decision as well as for the use of the
system, the lifetime or degradation must be considered in energy management [48, 233]. In the further
course of this section, the most important aging mechanisms of lithium-ion batteries are discussed and
degradation aware optimization approaches are introduced.

For lithium-ion cells the aging behavior can be divided into two groups of processes: calendar and cycle
degradation [234, 235]. While cycle degradation processes only occur during active energy throughput
by the cell, calendar degradation occurs both during active and idle times [236, 237]. Since semi-
empirical degradation models are used in the context of the aging calculation in the further work, the
most important processes are also explained based on applied degradation models for lithium-nickel-
cobalt-manganese-oxide (NMC) and lithium-iron-phosphate (LFP) based cathode battery cells [238–
240]. It is important to note that the degradation processes in the battery are highly complex and can
be influenced by a multitude of factors. Thus, depending on the considered battery cell chemistry, the
degradation processes and ideal modeling approach can strongly vary.

Energy throughput Derived from the charge throughput, the energy throughput describes energy
that is charged and discharged from the battery cell. For battery degradation, literature has shown
that there are internal processes ranging from linear [241] to square root [242] relationships between
energy throughput and aging. It was shown that the capacity fade is determined by a square root
relation to the energy throughput and that the internal resistance increase follows a linear pattern
[238].

State of charge The degradation models used in this work [238–240], show a relationship between the
voltage level – and therefore the SOC – and the battery cell degradation. From a calendar degradation
perspective, literature has proposed a linear correlation between degradation and voltage level [234].
For the cycle aging, it should be mentioned that the energy throughput around a medium SOC leads
to relatively low capacity fade and resistance increase [238, 240], which emphasizes that voltage levels
in the lower or upper voltage range should be actively avoided by the EMS.

Cycle depth This metric defines the SOC change of a cycle or a part of it. There are different
ways to define a cycle or half cycle – an established approach is the rain-flow algorithm [243, 244].
Published measurements in literature have shown that the depth of discharge has an exponential effect
on the capacity fade [240, 245]. Whereas small C-rates, and thus small SOC changes, lead to reduced
degradation losses, a large depth of discharge shows exponentially higher capacity losses [240]. Due to
this non-linear relationship, simplified models applying the Wöhler curve for the dependence of cyclic
aging have been proposed in literature [55, 246].

Time As described, lithium-ion cells have a limited lifespan, which is also linked to time. Literature
highlights that the formation of the solid electrolyte interface is the dominant effect of calendar degra-
dation [247]. This layer is created over time by decomposition products of the electrolyte and consumed
lithium. Due to the decreasing nature of these internal processes over time, the time dependence of
the aging can be described as a square root function [248, 249].
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Temperature Based on the two semi-empirical degradation models, the influence of temperature on
storage degradation is implemented differently. In the work of Schmalstieg et al. the temperature only
influences the calendar degradation [238]. In comparison, Naumann et al. attribute temperature to
calendar and cycle degradation [239, 240]. Both models list the Arrhenius equation as the primary
reason for the aging influence of temperature [250]. This equation states that chemical processes, for
which an activation energy must be applied, occur more rapidly at higher temperatures [251]. In the
context of lithium-ion batteries, this means that degradation proceeds faster at higher temperatures.

Although no new degradation models are developed in this work, the importance of battery cell degra-
dation on the operating strategy of energy storage systems is demonstrated. The active consideration
and therefore avoidance of battery degradation can be applied on the optimization level of an EMS. To
enable this, the optimizer is fed with the necessary prediction values. In Chapters 4 to 6 such degrada-
tion aware optimization approaches are shown [44–47]. Since the internal degradation processes also
show non-linearities, which lead to longer computation times, simplified degradation aware approaches
are implemented. These take into account the dependence on energy throughput [45–47]. Together
with the presented MPC framework, it is shown in the following chapters how optimization algorithms
and semi-empirical degradation models from literature can be used in parallel. For this purpose, a
quasi-stationary degradation state is assumed within the optimizer for time periods of one day or less
and an optimized operating strategy is calculated. Based on this operating strategy, the respective
degradation model is executed at regular intervals and the calculated SOH is sent back to the optimizer
for the next iteration. During the doctoral studies, integrated degradation models were also modeled
and analyzed in optimization algorithms. For this purpose, non-linear relationships of SOC, C-rate,
etc. were linearized and integrated into optimization models, but due to the computational complexity,
the MPC framework proved to be the more promising solution.

The optimization related research aims are summarized into the following two research questions:

• How to enable a practical implementation of a sophisticated EMS that uses limited perfect foresight
and is able to handle prediction values?

• What is the techno-economic benefit of incorporating degradation awareness in the storage’s en-
ergy management?

The existing literature gaps motivating the question formulation and the resulting findings can be found
in greater detail in Chapters 3 to 6.
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In this chapter, the research article titled A techno-economic analysis of vehicle-to-building: Battery
degradation and efficiency analysis in the context of coordinated electric vehicle charging is presented.
This paper examines the influence of different charging strategies for EVs. From a techno-economic
point of view, the vehicle-to-building (V2B) technology is analyzed. The setting is a private household
that, in addition to the electricity consumption for the building, also has a PV generator and a home
energy storage system. Throughout the study, values for an average German household are used for
dimensioning. Focusing on a residential context, this paper evaluates the extent to which the EMS
within the household can be optimized to yield the highest added value. To do that, the study examines
three EV charging strategies:

• Simple charging: The EV battery’s SOC is maximized, and therefore the EV is charged as soon
as the vehicle is connected to the building via its wallbox.

• Optimized charging: As the simple charging, the wallbox only supports unidirectional charging,
however, the EMS optimizes the power flow to the EV. Therefore, the EMS defines when and
how much power is provided to the EV.

• V2B connection: In addition to the unidirectional charging, the power flows during the V2B
operation are also optimized and bidirectional charging is allowed.

To simulate the effects on the mobile and stationary battery storage systems the linear optimization
framework lp_opt1 is developed. This algorithm allows the calculation of optimized power flows within
the household, while minimizing the electricity costs. For the EV battery a lithium-nickel-cobalt-
manganese-oxide (NMC) based cathode cell chemistry and for the home energy storage a lithium-iron-
phosphate (LFP) based cathode chemistry is defined. To validate the findings from the optimization
algorithm, the simulation tool SimSES2 is used [179]. Within the simulation tool, the existing battery
cell, efficiency, and degradation models are utilized. To investigate the significance for different user
behavior of EVs, a distinction is made between commuter and supplementary users [252], as well as
a comparison to a passenger vehicle with an internal combustion engine. The objective function of
the model aims to minimize the cost of electricity and maximize the profit for the household. Since
households in Germany only have an energy-related tariff structure [84], the remuneration from sold
electricity is maximized and the costs for purchased electricity are minimized. Due to the significantly
higher purchase price for electricity [68], the EMS will primarily try to use energy from its own PV
generator directly. If, despite direct self-consumption, there is still a surplus of PV power, this surplus
energy will be stored in the stationary and mobile battery energy storage systems. This stored energy
can be used later to drive the EV or to cover the consumption in the building.

The analysis of the simulations shows that in households without home energy storage, a strong re-
duction in OPEX, and thus in electricity costs, is observed when an optimized charging scheme is

1 Code is publicly available at the Gitlab repository: https://gitlab.lrz.de/open-ees-ses/lp_opt
2 Code is publicly available at the Gitlab repository: https://gitlab.lrz.de/open-ees-ses/simses

31

https://gitlab.lrz.de/open-ees-ses/lp_opt
https://gitlab.lrz.de/open-ees-ses/simses
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used. The implementation of bidirectional charging yields further cost savings, but these are less pro-
nounced. In the simulations with stationary storage, the cost reduction as well as the self-consumption
and self-sufficiency rate could be further increased. Comparing the results with those of a household
without a stationary storage, the improvements with home storage are relatively smaller, leading to
the conclusion that an EV and home storage in a household is not necessarily lucrative, as the cost
savings must compensate the required investment costs.

Overall, this study presents an EMS that is capable of coordinating the operation of a stationary home
energy storage and the charging of an EV in a residential setting. The coupling of the linear optimizer
and the simulation tool allows both solving the defined optimization function and the simulation
of the non-linear processes in the energy storage systems. By emphasizing on the techno-economic
outcome and the storage degradation, the trade-off between economic minimization of electricity costs
and storage degradation is demonstrated. Finally, the paper shows that increasing flexibility – in
the form of energy storage – increases self-consumption and self-sufficiency rates but saturates with
further increases in flexibility. This effect is particularly strong in the scenario with bidirectional
EV charging and home storage. Not only are the marginal increases in self-consumption and self-
sufficiency rates reduced, but the storage units are cannibalizing each other, making the home energy
storage economically obsolete.

Author contribution Stefan Englberger developed the idea of the study, developed the linear pro-
gramming framework, carried out the simulations, and analyzed the data. Holger Hesse helped to
develop the model and to analyze the data. Daniel Kucevic helped to integrate the SimSES simula-
tion tool. The manuscript was written by Stefan Englberger and was edited by Holger Hesse, Daniel
Kucevic, and Andreas Jossen. All authors discussed the data and commented on the results.
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Abstract: In the context of the increased acceptance and usage of electric vehicles (EVs),
vehicle-to-building (V2B) has proven to be a new and promising use case. Although this topic
is already being discussed in literature, there is still a lack of experience on how such a system,
of allowing bidirectional power flows between an EV and building, will work in a residential
environment. The challenge is to optimize the interplay of electrical load, photovoltaic (PV)
generation, EV, and optionally a home energy storage system (HES). In total, fourteen different
scenarios are explored for a German household. A two-step approach is used, which combines a
computationally efficient linear optimizer with a detailed modelling of the non-linear effects on the
battery. The change in battery degradation, storage system efficiency, and operating expenses (OPEX)
as a result of different, unidirectional and bidirectional, EV charging schemes is examined for both an
EV battery and a HES. The simulations show that optimizing unidirectional charging can improve the
OPEX by 15%. The addition of V2B leads to a further 11% cost reduction, however, this corresponds
with a 12% decrease in EV battery lifetime. Techno-economic analysis reveals that the V2B charging
solution with no HES leads to strong self-consumption improvements (EUR 1381 savings over ten
years), whereas, this charging scheme would not be justified for a residential prosumer with a HES
(only EUR 160 savings).

Keywords: battery degradation; battery energy storage system; charging scheme; efficiency; electric
vehicle; linear programming; lithium ion battery; operating expenses; residential battery storage;
vehicle-to-building

1. Introduction

Increasing environmental awareness, technical improvements, and favorable regulatory
conditions have all allowed the market for electric vehicles (EVs) in Germany and worldwide to
experience an upturn [1,2]. Simultaneously, an increasing number of electricity consumers are investing
in renewable energy sources. Photovoltaic (PV) power generators especially benefit from a growing
popularity in residential homes, allowing these customers to reduce electricity costs and rendering
them as prosumers [3]. A home energy storage system (HES) can be added to further increase
self-consumption and self-sufficiency rates [4].

In literature, HESs and EVs are well-researched topics [4–6], however, combined approaches of
both storage systems are still a very young research field [7]. While recent literature presents a novel
energy management system (EMS) for residential buildings with HES and EV, the contribution comes
short on analyzing the technical characteristics of the battery energy storage systems (BESSs) at varying
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charging schemes [7]. In this work, we analyze how the aforementioned trends may interact, conduct
a full techno-economic system analysis and reveal how prosumers with an EV may be able to optimize
their electricity expenses. In particular, the degradation and efficiency of the HES and the EV’s BESS
are discussed. In addition, operating expenses (OPEX) are analyzed in the context of electricity costs
for both the building and the vehicle. To increase the comparability of the results, a vehicle with an
internal combustion engine (ICE) serves as a reference case.

As illustrated in Figure 1, three different charging strategies for the EV are analyzed and compared:
Simple charging (SC) and optimized charging (OC) schemes, which both allow unidirectional power
flows from the building to the vehicle, and the vehicle-to-building (V2B) strategy, which is an extension
of the OC scheme allowing bidirectional power flows [6,8]. It is known that vehicle usage patterns
may vary strongly [9]. For this reason, to make more valid statements about the degradation behavior,
efficiency, and OPEX, the vehicle utilization patterns of a commuter and a supplementary vehicle are
investigated. These vehicles are characterized by varying plug-in times at the power outlet of the
prosumer’s residence. As an additional degree of freedom, interaction between the EV battery and an
optional stationary HES is examined. Particularly, the influence on the degradation and the efficiency
of such a scenario considering two BESSs (EV and HES) is discussed. For the sake of simplicity,
throughout this work, a typical German household with corresponding load and PV generator profiles
is utilized and price signals of the German energy market are incorporated. However, the methodology
can be applied to other profile data and the conclusive results drawn in this contribution are valid for
other regions worldwide. An overview of the discussed simulation structure is visualized in Figure 1.

Electricity Grid

PV Generator

Prosumer household with and without
Home Energy Storage System (HES)

Electric Vehicles

Charging Schemes

Simple Charging (SC)

Optimized Charging (OC)

Vehicle-to-Building (V2B)

Commuter EV
Supplementary EV

Figure 1. Schematic structure of the simulation environment of a prosumer household with three
varying simulation dimensions: Consideration of home energy storage system (HES), two electric
vehicle (EV) utilization patterns (commuter and supplementary car), and three different charging
schemes (SC, OC, V2B).

The investigated scenarios in this work are simulated using a two-step approach. First,
the residential power flow (RPF) model with an underlying linear programming (LP) algorithm
optimizes the power flows within the residential multi-node system. Next, the optimized power flows
are transferred to the open source simulation tool SimSES in order to model the resulting battery
degradation and system efficiency [10].

This paper is structured as follows: Section 2 explains the optimization and simulation models as
well as the system’s topology, Section 3 presents the simulation results, and Section 4 concludes with a
summary and discussion.

2. Methods

In order to optimize the electricity exchange between components and analyze the storage
systems in a detailed fashion, two solution methods are combined, as is illustrated in Figure 2.

3 Bidirectional charging in a multi-storage context
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First, the power flows between the individual technical units are optimized using the RPF model.
The underlying algorithm is based on LP, derived from the MATLAB optimization toolbox and the
Gurobi optimizer [11]. Then, the simulation tool SimSES is used, which is capable of simulating
the technical parameters of an energy storage system [10]. The results of the linear optimization are
transferred to SimSES and represent the inputted alternating current (AC) power values of the energy
storage system’s inverter. By using SimSES’ integrated operation strategy PowerFollow, the predefined
time-discrete power values are implemented, and a detailed simulation is carried out. Both tools,
the RPF model and the SimSES simulations are conducted in MathWorks MATLAB R2018b, operating
at a sampling rate of 15 min [5].

SimSES (HES)
isolated subsystem modelling

SimSES (EV-BESS)
isolated subsystem modelling

LP-based RPF Model
power flow optimization to maximize residential profit

Operating Expense
EV-BESS Efficiency
EV-BESS Degradation

HES Efficiency
HES Degradation

EV Power FlowHES Power Flow

Figure 2. Schematic diagram of the two-step model structure, consisting of a linear programming
(LP) based residential power flow (RPF) model, which optimizes the power flows so that the
operating expenses (OPEX) are minimized, and the simulation tool SimSES, which validates the
technical characteristics, round-trip efficiency, and battery degradation of the battery energy storage
systems (BESSs).

The profit of a residential electricity prosumer in Germany is computed by simulating several
different system configurations: Optional HES, optional EV, three different EV charging schemes,
and two vehicle usage patterns.

Depending on the scenario, the RPF model of the investigated household consists of up to six
main components, which are illustrated in Figure 3. The household is equipped with a PV generator
with 8 kWp peak power, which is a common size for an average German household [12]. The PV
generator system is composed of the PV panels, maximum power point tracker (MPPT), and inverter
that converts the generator’s direct current (DC) power into AC power. The one-year data measured
from a PV system installed in Munich, Germany is used as the PV generating profile. To implement
the degradation of the PV system, a degradation factor of 0.5% of the PV’s peak power per year is
assumed [4,13].

Building

PV Power
Generator

Home Energy Storage
System (HES)

Electricity Demand

Electric Vehicle (EV)

SimSES

Power 
Outlet

Point of Common 
Coupling (PCC)

Electricity
Grid

LFP Ba�ery

NMC Ba�ery

Figure 3. Residential power flow (RPF) model, consisting of the AC-coupled home energy storage
system (HES), a photovoltaic (PV) power generator, electricity demand, the power outlet with the
connected electric vehicle (EV), and the superordinate electricity grid. The simulation tool SimSES is
used to validate the technical characteristics of the considered battery energy storage system (BESS).
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In order to consider the electricity demand of a typical household, a representative one-year load
profile (profile 31) out of a freely available set of smart-meter derived household load profiles is used in
this study [14]. The annual electricity demand (only of the building, excluding that of the EV) of the
considered household is set to 6000 kWh, a value taken from literature and well-suited to an average
German household [12].

Further parameters and technical specifications of the household and its stationary HES can
be taken from Table 1. The eligibility requirements, according to the German Federal Ministry
of Economics and Technology, stipulate a feed-in limitation of 50% for PV generators that are
operated in combination with a stationary or decentralized BESS [15]. Furthermore, a fixed feed-in
remuneration price of 0.123 EUR/kWh is utilized, which is fixed and guaranteed for a period of twenty
years [13]. Due to the projected electricity price of 0.437 EUR/kWh in 2030 and the electricity price
of 0.294 EUR/kWh in 2018, a compound annual growth rate (CAGR) of 3.35% is assumed for the
electricity purchase price in the simulation [16].

Table 1. Main parameters for the prosumer building and the home energy storage system (HES).

Parameter Value

Annual electricity demand 6000 kWh [12]
PV peak power 8 kWp [12]

Feed-in limitation 50% [15]
Feed-in remuneration 0.123 EUR/kWh [13]
Initial electricity price 0.294 EUR/kWh [16]
Electricity price CAGR 3.35% [16]

Battery chemistry lithium iron phosphate (LFP)
Nominal energy content 9 kWh [12,17]

SOC limitation 5%, 95% [12,17]

Lithium ion batteries (LIBs) are assumed for both the EV and HES. The cell chemistry chosen
for the stationary HES within the building is based on a lithium iron phosphate (LFP) cathode and
graphite anode. This chemistry allows a high cyclic stability [18], which makes it a suitable candidate
for stationary applications [17].

The average German household with a HES has a usable energy content of 8.1 kWh [12]. From this
the nominal energy content of 9 kWh is derived with the state of charge (SOC) limitations of 5% and
95% [17]. Furthermore, a self-discharge rate of 0.6% of the nominal energy content per month is
assumed for the LFP cell [17]. Efficiency losses during charge and discharge processes of the battery
are calculated via SimSES’ equivalent circuit model, which depends on charging and discharging
current, battery temperature, and SOC [10].

The semi-empirical degradation model of the LFP cell is also incorporated in SimSES. Degradation
analysis is based on a superposition of calendar and cycling-related capacity fade [19]. During idle
periods only calendar degradation, whereas during load periods also cyclic degradation is
occurring [20]. This cyclic degradation is a function of multiple factors, including the depth of
cycle (DOC), current, SOC range, and temperature [10]. A constant ambient temperature of 25 ◦C is
assumed throughout the simulation period as the HES is installed within the building.

Since the AC coupling topology is the dominant topology for HESs in Germany [12], this setup is
also used in this work. One of the major advantages of this topology over a DC coupling to the PV
generator is an easy integration into a building with an existing PV generator, thus ensuring a high
level of flexibility [21].

For the power-electronics efficiency, a simplified constant value of 95% is assumed in the RPF
model. In order to make more accurate statements about the efficiency of the BESSs, the SimSES
simulation tool takes into account a concave efficiency curve, which is derived from previous
literature [4,22]. This curve considers the dependence on the inverter’s output power and the fact that
values below 10% of the rated inverter power result in a significantly lower efficiency.

3 Bidirectional charging in a multi-storage context
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Analogous to the procedure for the stationary HES, the power flows to and from the EV are
optimized using the RPF model and then validated in SimSES. For all simulations of the EV and the
ICE vehicle, a B-segment small car is considered [23–25]. An overview of the technical characteristics
for the considered vehicles can be found in Table 2.

A nickel manganese cobalt (NMC) based cathode cell chemistry is chosen for the EV’s BESS.
Compared to other LIB cell chemistries, the NMC cell offers a higher energy density. The nominal and
usable energy contents of the chosen EV battery, 21.6 kWh and 18.8 kWh, are closely linked to numbers
often stated for EVs widely used in Germany. Derived from the nominal and usable energy contents,
SOC boundaries of 8% and 95% are defined [17]. Similar to the LFP cell of the HES, the self-discharge
rate of the NMC cell is set to 0.6% of the nominal energy content per month. Both the RPF model and
detailed simulations using SimSES assume a round-trip efficiency of 95% for the EV battery [26].

In comparison to the highly sophisticated battery model of the LFP cell, the EV’s battery is
modelled using a more generic approach within SimSES [10]. Similar to previous work, a Wöhler
curve (i.e., stress-number (S-N) curve) based fatigue model is used as the underlying method to
estimate cycling-induced stress in the battery [4]. This method leads to an exponential weighting of
DOC, i.e., an increased DOC leads to an overproportional increase in battery stress level, which again
results in a reduced amount of equivalent full cycles (EFC) compared to low DOC values; thus,
resulting in a shortened battery lifetime [27].

Table 2. Parameters for the electric vehicle (EV) and the internal combustion engine (ICE) vehicle.

Parameter Value

Vehicle class B-segment small car [23–25]
Battery chemistry nickel manganese cobalt (NMC)

Nominal energy content 21.6 kWh [28]
Useable energy content 18.8 kWh [28]

Battery round-trip efficiency 95% [17]
Annually driven distance 13,922 km [29]
Electricity consumption 12.9 kWh/100 km [28]

Fuel consumption 5.3 L/100 km [30]
Initial fuel price 1.45 EUR/L [16]

Fuel price CAGR 2.25% [16]

The annual mileage of a passenger car is based on the German average, which is 13,922 km [29].
Therefore, a comparable EV, which consumes 12.9 kWh/100 km, requires approximately 1800 kWh
annually [28]. In this paper, a gasoline-powered vehicle with an average fuel consumption of
5.3 L/100 km is used [30]. Analogous to the electricity costs, a temporally dynamic behavior is also
assumed for the fuel price: An initial price of 1.45 EUR/L fuel is assumed for the start of the simulation.
Due to the projected gasoline price of 1.89 EUR/L in 2030 and the gasoline price of 1.45 EUR/L in 2018,
a CAGR of 2.25% is assumed for fuel prices in the simulation [16].

As part of this work, two EV profiles are created synthetically. The profiles for the two considered
EVs (commuter and supplementary vehicle) are based on the US06 driving cycle and 83 charging
profiles provided by the Forschungsstelle für Energiewirtschaft e. V., which are used in the federal
study Mobility in Germany [9,31,32]. Both vehicle utilization patterns consist of a driving profile and a
binary time series, which indicates whether the vehicle is connected to the power outlet of the building.
It is assumed that the EV is only charged at the residential building and this additional electricity
demand is directly allocated to the total electricity consumption of the household.

In Figure 4 an exemplary week (Monday to Sunday) in early summer is illustrated. The dashed
areas in the two lower subplots show the plug-in times of the two utilization patterns, where the
respective EV is connected to the building. As is immediately apparent, both profiles differ strongly
in terms of their total plug-in time and respective daytime behavior: The commuter profile is only
rarely connected to the building’s power outlet during times of high solar irradiation on weekdays,
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which makes it more difficult for this vehicle user to directly utilize surplus PV power. Instead,
the cumulative plug-in time of the supplementary car is much higher, so the potential of optimizing
the power flows between building and vehicle is assumed to be higher.

In order to bring the difference of the vehicle utilization types into a quantifiable context,
the quotient between plug-in time and the residual power is formed. Residual power is defined
as the difference between PV power and demanded power. For the two types of examined profiles,
the resulting correlation coefficients are 7% for the commuter vehicle and 28% for the supplementary
car. With the increased plug-in time, the BESS availability of the EV is increased, which increases
the degree of freedom for power flow optimization. This increased utilization coefficient leads to a
reduction in electricity purchases, which in turn lowers the OPEX of the prosumer. Based on this
theory, this metric is introduced and discussed further in the following sections.
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Figure 4. Residual power of exemplary week (Monday to Sunday) where photovoltaic (PV) excess
power is characterized by positive values and the associated plug-in times (colored area) of the electric
vehicles (commuter EV = red, supplementary EV = blue).

In addition to the two aforementioned vehicle utilization patterns, three different EV charging
schemes are introduced. All three strategies are discussed in the context of storage system efficiency,
degradation, and economic impact:

• Simple charging (SC): A simple rule-based charging of the EV is applied, where power is delivered
unidirectionally from the power outlet of the building to the vehicle. As long as the vehicle
is connected to the building and the EV’s battery SOC has not reached the maximum SOC
limit, the EV gets charged at the maximum allowed charge rate. The RPF model, as well as the
simulation tool SimSES, are considering constraints for the respective SOC and C-Rate boundaries.

• Optimized charging (OC): Similar to SC the power outlet is used for unidirectional vehicle
charging only. An advanced strategy is used that optimizes and controls the amount of energy
and the timing of the EV’s charging. The controller is fed by input values such as power flows
within the building and the plug-in times of the EV.

• Vehicle-to-building (V2B): As an extension of the OC strategy, V2B enables a bidirectional power
flow between the EV and building.

The RPF model’s objective is to maximize the profit from the electricity sold and purchased
throughout the simulation period. This comes down to a minimization of the OPEX of the prosumer.
All scenarios use the following base objective function:

Max ∑
i

(
Er

i · pr
i − Ep

i · p
p
i

)
(1)

whereby Er
i denotes the amount of electricity that is sold to the superordinate electricity grid at time

step i. The purchased electricity per time step is defined by the variable Ep
i . The price signals pr

i and
pp

i describe the remuneration and purchasing price at time i. Considering changing electricity prices
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over time, price signals are time-dependent. Besides the objective function, inequality constraints
for the BESSs’ SOC and C-Rate, as well as equality constraints for the power flows at each node are
considered and derived from a previous contribution [33].

Literature shows that the total cost of ownership (TCO) for an EV in Germany depends on many
factors [25]. Due to the perennial lifetime of modern BESSs and the complex estimation of future
BESS investment costs, capital expenditures (CAPEX) are neglected. In order to make the results as
comprehensible as possible, only electricity costs and fuel costs are taken into account.

3. Results

The simulation results are presented and discussed in the following section. In total, fourteen
different scenarios are conducted. As shown in Table 3, three different charging schemes, two vehicle
usage patterns, and either one or two BESSs within the system are considered. The results are discussed
in the context of battery degradation, storage system efficiency, and overall economic assessment,
from the perspective of operating expenses for the prosumer.

Table 3. Overview of the fourteen simulated scenarios with three different charging schemes, two
vehicle usage patterns, and either one or two BESSs within the prosumer household.

Vehicle Usage Pattern ICE ICE w/HES SC OC V2B SC w/HES OC w/HES V2B w/HES

Commuter yes (ICE) yes (ICE) yes yes yes yes yes yes
Supplementary yes yes yes yes yes yes

3.1. Economic Assessment of OPEX

As a first metric, the scenarios are evaluated and discussed from an economic perspective. Here,
the OPEX for a short-term period of one year and a longer-term ten-year period are considered.

During the first year, even the EV scenario with the highest OPEX, the SC scheme, showed a
cost reduction of 31% without HES compared to the ICE vehicle without HES. With the addition of
a home energy storage system to the scenarios, the OPEX reduction when using the SC scheme is
39% (EUR 571) in comparison to the ICE vehicle with the same HES.

As illustrated in Figure 5, strong differences between EV charging strategies can be detected. Both
without and with HES, the implementation of an optimized charging (OC) scheme leads to a reduction
in OPEX. Further cost improvements can be gained by allowing bidirectional power flows (V2B)
between the building and the EV. This impact of optimized charging schemes (unidirectional and
bidirectional) is particularly strong if there is no additional HES, leading to cost reductions of 14% and
23% in comparison to the SC strategy. The same ratios, with the addition of a HES, are reduced to 12%
and 13% respectively.
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Figure 5. Operating expenses (OPEX) for one year. The dark-grey column represents the average value.

On average, OPEX decrease by 25% if, in addition to an EV, a stationary HES is available, resulting
in EUR 115 cost reduction for the observed setting and year. Furthermore, the results for the commuter
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and supplementary car in the V2B scenario without HES showed a strong difference. Due to the
relatively higher plug-in time of the supplementary car (especially during periods of high PV power),
more self-generated energy can be stored in the vehicle, which results in higher self-consumption and
self-sufficiency rates that are illustrated in Figure 6. Additionally, the scenarios of the supplementary
car, with or without an additional HES, result in almost the same costs. Again, the supplementary car’s
high amount of plug-in time increases the utilization of the vehicle battery, thus making the stationary
HES almost obsolete.
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Figure 6. (a) Self-consumption and (b) self-sufficiency rate for the investigated scenarios. For both
metrics, the top edge of each boxplot represents the supplementary car. The lower values of the boxplots
are defined by the commuter car, which has a shorter plug-in time compared to the supplementary car.

As shown in Figure 7, the relative differences between the six EV scenarios remain almost the same
as in the one-year view. The slight differences are due to the CAGR effect of rising electricity prices.
However, the OPEX relationships between the ICE vehicle and EV changed because the expected fuel
price increase is lower than that of electricity. A more detailed picture of the OPEX and their seasonal
development over ten years can be seen in Figure A1 in the Appendix A.
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Figure 7. Operating expenses (OPEX) for ten years. Compound annual growth rate (CAGR) of energy
costs are considered, so that costs for ten years are more than ten times the one-year costs. The dark-grey
column represents the average value.

3.2. Battery Lifetime and Degradation

A common procedure when determining the end of life (EOL) of BESSs is reaching a certain
capacity value. Specifically, values between 70% and 80% of the nominal battery capacity are often
used to describe the EOL of the BESS [34,35]. In this work, the threshold of 80% is defined as EOL
criteria, for both the HES and the EV battery. Figure 8 shows the battery degradation for both BESSs
and the simulated scenarios. A more detailed evaluation of the degradation of the two battery types is
discussed in the following paragraphs.

3 Bidirectional charging in a multi-storage context
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Figure 8. Remaining capacity of electric vehicle’s battery (nickel manganese cobalt (NMC) cell
chemistry, solid line) and home energy storage system (HES) (lithium iron phosphate (LFP) cell
chemistry, dashed line) over ten years, with the highlighted end of life (EOL) threshold at 80% nominal
battery capacity.

3.2.1. Home Energy Storage System

As visualized in Figure 9a the results of the observed scenarios show a lifetime between 10.7 years
and 13.6 years for the battery of the HES. It is noticeable that the highest lifetime is achieved in the
scenario of the ICE vehicle combined with a HES. For the EV scenarios, the lifetime is reduced by
about 20%, whereby the simple charging scheme shows the shortest lifespan of 10.7 years. A further
trend that can be seen in all three EV scenarios is that the battery lifetime in the scenarios with the
supplementary car is always higher than the ones of the commuter vehicle. In both the OC and V2B
strategy, this results in a relative lifetime improvement of about 6% for the supplementary car.
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Figure 9. (a) Modelled lifetime of the lithium iron phosphate (LFP) home energy storage system (HES)
with a nominal capacity of 9 kWh and (b) calendar and cyclic degradation during ten years of operation,
with the end of life (EOL) condition of 80% remaining capacity. The dark-grey column represents the
average value.

In Figure 9b, the relative calendar and cyclic degradation over the course of ten years of operation
is illustrated. The results show that the 20% capacity fade is almost reached after ten years for the
HES. In Figure 9a, it can be observed that a total lifetime of up to 13.6 years is reached. This can be
explained by the initial intensity of degradation processes at the early stage of the battery’s operation,
which then decrease over time.

The fact that cells suffer particularly from SOC values in the lower and upper SOC range is
reflected in the LFP model used for the simulations of this study [20]. Due to increased stress
characteristics at these more extreme SOC regions, calendar degradation is accelerated. This, in turn

43



Energies 2019, 12, 955 10 of 17

leads to a reduced lifetime. At roughly 90%, calendar degradation processes are the main driver for the
reduced battery lifetime. On the other hand, the cyclic degradation stress is fostered by high amounts
of EFC. It should also be emphasized that the measured values shown are not the only drivers for
battery degradation.

The battery’s EFC are especially significant for cyclic degradation. The four HESs of the observed
scenarios show annual EFC values of between 167 to 246, as shown in Figure 10a. Especially in
the SC scheme, the EFC are significantly higher than those of the other scenarios. The lowest and
almost equal amount of EFC is achieved in the settings of unidirectional (OC) and bidirectional (V2B)
optimized charging.
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Figure 10. (a) Average amount of annual equivalent full cycles (EFC) of the home energy storage
system and (b) probability distribution of the average state of charge (SOC) per scenario. The dark-grey
column represents the average value.

Another degradation factor that is of importance for the lifetime of a LIB is the average SOC.
This measure is illustrated in Figure 10b and gives insight into the probability distribution of the
SOC for the four considered HESs. Here, a distinctive difference between the ICE vehicle and EV
scenarios can be seen. While the SOC values of the HES have a rather homogeneous distribution in
the ICE scenario, values in EV settings are much more heterogeneous. In all considered scenarios in
which an EV and a HES are combined, it is shown that the SOC of the HES has a high probability
density at high values. In the case of the simple charging (SC) scheme, the trend towards high SOC
values is particularly strong. As with the number of EFC, here too, both scenarios OC and V2B show
approximately the same, and better, results.

3.2.2. EV Battery

Like the evaluation of the HES’s data, the battery of the EV is also examined with regard to
degradation for the different scenarios. SimSES is used to model an isolated storage system behavior
of the EV battery. Since the battery model used for the NMC cells is a generic model in comparison to
the semi-empirical degradation model used for the LFP cells, results are shown in less detail for the
EV battery.

A common standard for the expected lifetime and warranty period for EV batteries is seven to ten
years [36]. Within this period, the remaining battery capacity should not fall below the defined EOL
criteria of the battery. For the considered scenarios, it is shown that the EV battery has a lifetime of
between 7.2 years and 11.8 years, as can be seen in Figure 11.

It is noticeable that its lifetime can be increased by an average of 19% if the EV battery works in
conjunction with the stationary HES. The existence of a second storage system leads to a segmentation
of the power flows, which results in a reduced stress level of the EV battery.

3 Bidirectional charging in a multi-storage context
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Figure 11. Lifetime calculation of the electric vehicle’s nickel manganese cobalt (NMC) battery, based
on a generic battery model, with the defined end of life (EOL) condition of 80% of the nominal capacity.
The dark-grey column represents the average value.

The scenarios with SC and OC schemes show the same amount of EFC, due to the fact that in
these unidirectional scenarios, only the power needed at a later time for driving is delivered from the
building to the vehicle. Despite the same amount of EFC of the EV battery in the SC and OC scenarios,
the lifetime of the optimized charging (OC) scheme is reduced by 7%. For better interpretation along
with the degradation model used herein (based on Wöhler curves), the average absolute values of
the DOC are shown in Table 4. Here, it can be seen that the average DOC in scenarios with a HES
decreases by about 30% compared to the same settings without a HES.

Table 4. Annual amount of equivalent full cycles (EFC) and the absolute depth of cycle (DOC)
(normalized to the amount of EFC) of the battery taken as an average from the commuter and
supplementary electric vehicle (EV).

ICE ICE w/HES SC OC V2B SC w/HES OC w/HES V2B w/HES

EFC n/a n/a 85.5 85.5 119.3 85.5 85.5 89.5
|DOC| n/a n/a 1.00 0.98 0.98 0.58 0.76 0.76

The degradation in the case of V2B is significantly higher. Results show that the annual number
of EFC at 119.3 increase by 40% when there is no additional BESS in the system besides the EV battery.
This increase in EFC and the relatively high average DOC values result in a lifetime reduction of about
12% compared to the OC scheme.

For scenarios considering two BESSs, the V2B scenario again shows the highest battery
degradation. Because of the permanently available HES, surplus PV power can also be stored in
the stationary HES and therefore the number of EFC in the V2B scenario is only slightly higher than
that of the unidirectional scenarios (SC and OC). However, the battery lifetime in the V2B case is
shortened by about 3% compared to the same setting with OC scheme.

The commuter car battery in the V2B scenarios has a lower energy throughput and thus a lower
number of EFC. The relatively higher plug-in time of the supplementary car allows more surplus
energy to be charged into and discharged from the EV battery, resulting in a higher number of EFC
and a reduced lifetime.

3.3. Storage System Efficiency

In addition to battery degradation, BESSs’ round-trip efficiency values are also considered.
For both BESS types, the stationary HES and the storage system of the EV, a round-trip efficiency of
about 88% is achieved for all operational modes.

More detailed analysis reveals that the dominant source of storage losses comes from
power-electronics. This is in line with efficiency analysis conducted on stationary storage systems [37].
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Overall, between 8% and 10% efficiency losses are caused by the inverter. This emphasizes the
relevance for optimizing the specifications of the technical components of a storage system.

Furthermore, storage losses are considered during the charging and discharging processes of the
battery. Storage losses within the battery cells range from 2% to 4% in the considered simulations,
which is in line with results from literature [17]. Self-discharge losses, which account for below 0.1% of
the total energy throughput, play a subordinate role. This low percentage of storage losses is similar
for both storage technologies in all scenarios.

4. Discussion and Conclusions

The following section summarizes the results derived from the simulations and discusses them
in the context of previous literature. At the end of the section, related and future research fields
are highlighted.

4.1. EV Versus ICE Vehicle

In the previously discussed results section it is shown that an EV can have a significant economic
advantage compared to ICE powered vehicles when it comes to reducing electricity costs of a prosumer
household. Considering a time span of ten years, it is shown that OPEX can be reduced by an average
of 37% (without an additional stationary HES) and 42% (with HES). Even the least economically
lucrative scenario with simple charging (SC) shows an average savings potential of 28% (without HES)
and 37% (with HES) compared to the same scenarios with an ICE powered vehicle.

Looking at the average results of the individual EV scenarios, it can be said that the considered
additional energy costs for the investigated ICE vehicle are about EUR 7400 higher than for its
electric-powered counterpart, which may justify an investment in a higher priced EV. Of course,
further cost components and economic and policy aspects must be taken into account in order to carry
out a complete economic analysis [25,38]. Furthermore, at the moment, there is no consensus on when
an EV is equivalent to an ICE vehicle in terms of investment costs.

In the context of battery lifetime, the simulations reveal a trend of stronger degradation when
an EV is included in the consideration. The HES’s battery reaches the defined EOL criterion earlier
by 20%, on average, when an EV is connected to the household. Minimizing OPEX means that
more self-generated energy is stored in the HES. In the EV scenarios, the effect leads to an increased
occurrence of high SOC levels, which accelerates internal degradation processes of the LFP cells [10].
In order to compensate this effect, the developed charging strategies must be further optimized.

Furthermore, the share of automotive batteries that are used for further applications after their
primary use as an EV battery is growing. Particularly, the installation and operation of such second-use
batteries in stationary applications is increasing [39]. This use of second-use batteries allows an
additional economic impact of the BESS, which makes it more lucrative for their stakeholders [40].

4.2. Impact of Vehicle Utilization Pattern

From the simulations it can be concluded that the supplementary vehicle type has a beneficial
effect on electricity cost reductions. This is shown by the lower OPEX in all scenarios when compared
to the commuter EV, which has less plug-in time at the building. This relation confirms the initial
theory that a higher correlation coefficient between residual power and plug-in time leads to an
economic improvement. It is expected that, from the perspective of an office building with PV
generation, the connected EVs from commuting employees would have the same beneficial outcome.
The underlying effect can also be explained by the household’s increased self-consumption and
self-sufficiency rate with the supplementary vehicle profile [7]. On average, OPEX in the commuter
car scenarios are about 16% higher than those with the supplementary vehicle. This cost increase is
particularly high when considering a bidirectional charging scheme (V2B).

In terms of battery degradation, on the other hand, it is shown that battery lifetime of the HES
is slightly increased in the commuter car scenarios. However, the average battery lifetime for the
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EV battery shows a favorable behavior in the supplementary scenarios, in particular during V2B
charging schemes. DOC values and the underlying Wöhler curve for the EV battery degradation
model represent the main drivers for this effect [27].

4.3. Impact of Considering an Additional HES

Previous literature has shown that it is still difficult to operate a HES in Germany in an
economically lucrative way [4]. Although the results presented in this paper only relate to OPEX, it is
noteworthy that a HES can reduce these costs by an average of 23% during the first year. When taking
into account the rising electricity retail tariff estimated for the next ten years [16], the cost savings may
rise by another few percentage points.

Due to the segmentation of power flows when considering a HES, both the energy throughput
and relative DOC values of the EV battery can be reduced. The reduced stress level leads to an increase
of the EV’s battery lifetime by an average of 20%.

Whether and to what extent the advantages of the lifetime extension of the EV battery and OPEX
reduction justify additional expenses of a HES depend, in turn, on the CAPEX. Taking into account the
discussed prosumer and an operation period of ten years, HES investment costs below EUR 2305 (V2B
scenario) and EUR 4437 (SC scenario) would be justified. The higher value in the SC scenario results
from the fact that, here, an additional HES has a higher potential for OPEX improvement, which is
further discussed in the subsequent paragraphs. Assuming steadily declining CAPEX for stationary
battery packs [41], a HES can become increasingly interesting for residential buildings. If, in addition
to the minimization of OPEX and self-consumption improvements, other applications are served,
the economics of the HES can be increased even further [42].

4.4. Impact of Charging Scheme

Both in the scenarios with and without HES, the simple charging (SC) scheme resulted in the
highest OPEX. The condition that the EV is charged as soon as it is connected to the building also
results in overall low self-consumption and self-sufficiency rates of 33% and 26%, which are illustrated
in Figure 6.

In the optimized charging (OC) scheme with a HES, the electricity costs can be reduced by 12%
(about EUR 1300 for a ten-year operation period). This effect is even more pronounced when there is
no additional HES and the EV battery is the only BESS in the setting. OPEX can be reduced by 15%
(about EUR 2200) compared to the SC scheme when the EV battery is the only storage unit to decouple
energy supply and demand.

By allowing a bidirectional power flow between the building and the EV (V2B) instead of the
unidirectional power flow (OC), further cost savings can be achieved. Relative to the OC scheme,
this results in a further OPEX reduction of 2% (with HES) and 11% (without HES). Analogous to the
above comparison between the SC and OC schemes, there is an increased cost saving potential if the
EV battery is the only storage unit in the system. When considering the absolute values of the savings
potential, an OPEX reduction of EUR 160 (with HES) and EUR 1381 (without HES) results for an
operation period of ten years. This comes at the cost for additional upfront investment costs: The low
savings potential of the scenario with HES suggests that the additional investment costs for a power
outlet with bidirectional power flow are difficult to compensate. On the other hand, in scenarios with
a single EV battery, the V2B scheme could be economically lucrative in comparison to the OC scheme,
if the additional investment costs are below the cost savings of EUR 1381.

In contrast to improved electricity expenditures, the lifetime of the EV battery decreases in the OC
and V2B schemes. Due to increased energy throughput, particularly in the V2B scheme, the lifetime
is reduced by up to 12% compared to the optimized unidirectional charging (OC). SC scenarios lead
to the highest lifetime with a relative improvement of 7% compared to the OC scheme. One of the
main drivers for the increased degradation are the relatively higher DOC values in the OC and V2B
scheme. In addition, two more obstacles come into play: The prediction of power values is needed for
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effective OC and V2B schemes. Furthermore, automotive original equipment manufacturers (OEMs)
provide warranties on the use of the EV battery for vehicle purposes. While this is maintained in
the SC and OC schemes, the EV battery in the V2B scheme does not only function as an EV battery,
but also as a buffer storage unit for the whole prosumer household. Thus this could pose a challenge
to incentivizing V2B schemes.

The EV market shows a trend towards increasing battery capacity. EVs being manufactured
currently are often more than twice as large in terms of nominal energy content than the 21.6 kWh EV
battery that is considered in this work. It can be expected that the higher cost savings and the lower
necessity of an additional HES due to the V2B scheme will be enhanced with these increased capacities.

4.5. Limitations and Future Research

The discussed simulations are conducted assuming perfect foresight of energy supply and
demand, both for the household and the vehicle. In order to emphasize on limited foresight,
other algorithms can be used. For instance, in [43] a fuzzy logic controller (FLC) is presented for a
V2B environment.

Since the discussed RPF model is using constant efficiency values, it would be an improvement to
implement non-linear relationships, as already implemented in SimSES [10]. This step would improve
the RPF’s validity, but would also lead to an increasing complexity of the optimization algorithm,
resulting in an elevated computation time.

Although the generic battery model of the NMC cell provides values for the battery
degradation [4,27], the quality of the battery model can be improved further. In comparison to
the current model, more sophisticated degradation models could be implemented, as done for the
semi-empirical degradation model of the LFP cell [20].

In order to generate a more profound insight into the economic results of the discussed settings,
further research should take additional cost components into account. Although it is not clear how
the CAPEX for batteries will develop in the future, there are estimations in recent literature that could
be used [41]. Another cost component that is of relevance in that perspective are battery degradation
costs [44]. The consideration of these factors would provide a more complete picture of the total cost
of ownership (TCO), which in turn would allow for more precise conclusions.
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EOL End of life
EV Electric vehicle
HES Home energy storage system
ICE Internal combustion engine
LFP Lithium iron phosphate
LIB Lithium ion battery
LP Linear programming
NMC Nickel manganese cobalt
OC Optimized charging
OPEX Operating expenses
PV Photovoltaic
RPF Residential power flow
SC Simple charging
SOC State of charge
V2B Vehicle-to-building
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4 Flexibility provision of a multi-storage cluster

Building on Section 2.4.2 and Chapter 3, the following chapter introduces the publication titled Evalu-
ating the interdependency between peer-to-peer networks and energy storages: A techno-economic proof
for prosumers. In the publication, the multi-storage context is considered on the one hand within
households, but also within a community of multiple residential entities. The focus is on energy man-
agement and the use of flexibilities in the energy system. Home storage systems and EVs are considered
as sources of flexibility in the study. As presented in Chapter 3, the charging strategies of EVs are also
discussed in this study. The empirical study, considering 38,892 different scenarios and combinations
of households, utilizes an integrated approach, where the EMS operation and the peer-to-peer trading
(cf. Section 2.2) is conducted simultaneously. Doing so, both the flexibility provision from the energy
storage systems and the trading within the community can be optimized together and the utilization
of synergies is increased.

To perform the study, a linear programming model, flex_opt3, is designed and integrated into the
MPC framework together with appropriate degradation models (NMC cells for the EV battery and
LFP cells for the home energy storage). Although degradation awareness constraints are considered in
the optimization to account for excessive energy throughput through the storage devices, the detailed
modeling of battery cell degradation are calculated based on literature [238–240]. For the evaluation
of the studies, the modeled households are also equipped with PV generators in the different scenarios.
To investigate their impact on the community, the penetration rate of the technical units (PV, EV,
and home energy storage) is varied. Since the focus of the study is on the performance of the EMS
and peer-to-peer trading, the decision-making process, specifically the decision to provide flexibility, is
of crucial relevance.

The paper compares the decentralized and central decision-making approaches. The reference case
without a local electricity market is used as a benchmark. As shown in Section 2.4.2, the substantial
distinction between decentralized and central decision-making is that the decentralized approach only
has the information and decision-making power over a single household. Because in the decentral
approach the information of the other households is not known, a household can only optimize its own
flexibility deployment as it is not informed of nor can react to the decisions of other peers. For the
local electricity market, only the net surplus or demand is traded between peers in the decentralized
approach. In the central approach, on the other hand, a central unit (the central or community EMS)
knows all relevant data of the energy system and can optimize the power flows and the provision of
flexibility throughout the community. Especially for smaller communities of less than twenty house-
holds, the results show that both the centralized and the decentralized approach can lead to significant
reductions in electricity costs per household. This is because locally traded electricity is exchanged
between the peers and thus, less electricity must be purchased externally from electricity providers.
By co-optimizing flexibility provision and electricity trading in the community, the central approach
can increase the economic added value for the community and its households more effectively than

3 Code is publicly available at the Gitlab repository: https://gitlab.lrz.de/open-ees-ses/flex_opt
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the decentralized approach. However, the higher use of flexibility also comes at a cost; represented
by the changes to the operating strategy of the EV battery, leading to a reduction in its lifetime. In
comparison, the decentralized approach shows no change in lifetime of the energy storage systems, as
the optimization on the household level does not lead to a change in flexibility provision.

The coordinated integration of the EMS and peer-to-peer trading provides an important technical
proof for practical implementations. The results also make a significant contribution towards increasing
customer participation, a crucial element of success for any peer-to-peer network. The two options
presented in the paper allow for the catering to different user values, which should increase acceptance
and proliferation of local electricity markets with various flexibilities. For instance, the centralized
approach is advantageous when participants value independence from electricity retailers, whereby a
decentralized approach may be preferable to a community where households want to keep control over
their flexibilities.

Author contribution Stefan Englberger developed the idea of the study, developed the linear pro-
gramming and model predictive control framework, carried out the simulations, and analyzed the data.
Tariq Almomani helped to parameterize the model. Holger Hesse helped to develop the model and
guided its development. Archie Chapman, Wayes Tushar, and Tariq Almomani helped to analyze the
data. The manuscript was written by Stefan Englberger, Archie Chapman, Wayes Tushar, and Stephen
Snow and was edited by Holger Hesse, Andreas Jossen, and Rolf Witzmann. All authors discussed the
data and commented on the results.
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a b s t r a c t 

The rapid decentralization of energy generation and storage facilitates an opportunity to redesign existing energy 

systems. Here, peer-to-peer energy trading in local markets offers advantages for demand response and flexibility 

of energy delivery, yet it still faces problems of customer acceptance, namely, concerns over sharing control of 

batteries and the degradation impacts of increased cycles. To help overcome these hurdles, this research develops 

a techno-economic model that optimizes the interplay between peer-to-peer trading and energy management 

systems in a community. The model distinguishes between two decision making approaches in a local electricity 

market: decentral, where the household retains full control over its storages, and central, where the flexibilities 

are fully leveraged to maximize the community benefit. Both approaches demonstrate the significant monetary 

benefit of peer-to-peer trading, with the central approach reaching the greatest profitability potential. Negative 

effects on the battery lifetime only occur in the central case with bidirectional vehicles, and the degradation is 

comparatively slight. 

1. Introduction 

Power networks, and distribution networks in particular, are facing 

operational and planning challenges from rising levels of customer in- 

vestment in distributed generation, storage and flexible loads, collec- 

tively called distributed energy resources (DER). For instance, the in- 

stalled rooftop capacity of photovoltaic (PV) systems globally has grown 

from 8 GW in 2007 to over 400 GW in 2019 [1] , and annual added bat- 

tery capacity from private electric vehicle (EV) sales is projected to in- 

crease from 170 GWh in 2019 to between 1.2 and 2.6 TWh per year by 

2030 [2] . Consequently, members of the community who used to be pas- 

sive consumers of the electricity network are becoming prosumers – con- 

sumers who also produce electricity [3] – and are expected to play key 

roles in deciding how the future power systems will evolve and operate. 

The change in prosumers’ roles within the distribution network present 

significant challenges to power network operators, who face daytime 

minimum demand challenges due to prosumers’ solar export to the net- 

work [4] and the peak demand problems owing to EV ownership [5] . 

One potential way to address these challenges is to enable prosumers to 

interact among themselves and trade electricity with one another [6] –

also known as peer-to-peer (P2P) trading. 

∗ Corresponding author. 

E-mail address: stefan.englberger@tum.de (S. Englberger). 

P2P trading is a prosumer-centric energy sharing scheme in which 

prosumers in a power network can share a part of their resources, such 

as electricity [7] , storage space [8] , and negawatts [9] , and information 

with one another to attain certain objectives. It is important to note 

that although existing power network regulatory regimes do not allow 

P2P trading to occur in the today’s electricity markets, extensive pilot 

trials around the world [10] and government initiatives to reform the 

electricity sector [11] are moving towards a future where P2P trading 

will be integrated into the broader electricity market. 

Furthermore, P2P trading has several positive characteristics, includ- 

ing relatively low computational and implementation overheads [12] , 

the ability to engage extensive user participation [13] , reductions in 

energy cost [14] , and balancing local generation and demand [15] by 

enabling secured trading [16] . P2P trading empowers both the pro- 

sumers [17] and community managers [18] that are trading within a 

community, which makes it a suitable candidate to operate within fu- 

ture customer-focused regulatory regimes [19] . As such, research over 

the last five years has established P2P as an indispensable element of the 

future electricity market, considering its potential to benefit participat- 

ing prosumers and provide useful services to other stakeholders [10] . 

However, to the best of our knowledge, there are still no large-scale 
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Nomenclature 

CEMS community energy management system 

DER distributed energy resource 

EFC equivalent full cycle 

EMS energy management system 

EV electric vehicle 

HEMS home energy management system 

HES home energy storage 

P2P peer-to-peer 

PV photovoltaic 

Parameters & variables 

ℂ 

elect ricit y economic cost for electricity 

ℂ 

deg economic cost for battery degradation 

ℂ 

inv economic cost for battery investment 

ℂ 

tra , loc economic cost for locally traded electricity 

ℂ 

tr a , r et economic cost for electricity taded with the retailer 

EFC 

exp expected EFC until the battery’s end-of-life 

𝐸 

act actual energy content of battery 

𝐸 

demand , local locally traded energy demand 

𝐸 

demand , retail energy demand traded with the retailer 

𝐸 

demand energy demand 

𝐸 

EV , act actual energy content of EV battery 

𝐸 

EV , buf buffer energy at the EV 

𝐸 

EV , CH , ext external charging energy at the EV 

𝐸 

EV , CH charging energy at the EV 

𝐸 

EV , DCH discharging energy at the EV 

𝐸 

EV , dri energy demand for driving at the EV 

𝐸 

EV , SD self-discharge energy at the EV 

𝐸 

HES , act actual energy content of HES battery 

𝐸 

HES , CH charging energy at the HES 

𝐸 

HES , DCH discharging energy at the HES 

𝐸 

HES , SD self-discharge energy at the HES 

𝐸 

Load energy consumption 

𝐸 

nom nominal energy content of battery 

𝐸 

PV energy provided by the PV generator 

𝐸 

supply, local locally traded energy supply 

𝐸 

supply, retail energy supply traded with the retailer 

𝐸 

supply energy supply 

𝐸 

trade , local locally traded electricity 

𝐸 

tr ade , r etail electricity traded with the retailer 

𝐸 

tr ade , t otal total traded electricity 

𝜖 share of locally traded electricity 

𝜂EV , CH charging efficiency of the EV 

𝜂EV , DCH discharging efficiency of the EV 

𝜂HES , CH charging efficiency of the HES 

𝜂HES , DCH discharging efficiency of the HES 

𝑁 set of households 

𝑛 household 

𝜙 peer’s economic incentive to trade locally 

𝑃 EV , CH , ext external charging power at the EV 

𝑃 EV , CH charging power at the EV 

𝑃 EV , DCH discharging power at the EV 

𝑃 EV , max maximum (dis)charging power of the EV 

𝑃 HES , CH charging power at the HES 

𝑃 HES , DCH discharging power at the HES 

𝑃 HES , max maximum (dis)charging power of the HES 

p pur chase , r etail retailer’s purchase price for electricity 

p sell , retail retailer’s sell price for electricity 

SOC 

EV , max maximum SOC of EV battery 

SOC 

EV , min minimum SOC of EV battery 

SOC 

HES , max maximum SOC of HES battery 

SOC 

HES , min minimum SOC of HES battery 

SOC 

pr efer ence SOC threshold for reserve energy 

𝑇 set of time steps 

𝑡 time step 

𝑥 plugged binary variable, defining if vehicle is connected 

development of P2P trading that is ready to be deployed in today’s elec- 

tricity market. The reason could be partially attributed to the fact that 

prosumers are more interested to use their DER such as batteries to go 

off-grid and become energy-neutral, rather than interacting with other 

stakeholders within the network, as found in [20] . 

A study of 268 prosumers who were asked about battery purchases 

reported that 70% of the survey respondents purchased their batter- 

ies to reduce personal electricity costs with intensions to less interact 

with other stakeholders of the network [20] . Two important factors that 

have motivated their decision in separating themselves from any form 

of interaction are (i) the fear of losing the ability to control their assets 

[21] and (ii) the concern about the reduction of the lifetime of their re- 

sources due to their extensive usage for the local market support [22] . 

These place technology developers, network operators, and policymak- 

ers in a conundrum, as the success of P2P trading and other smart energy 

infrastructure, relies on the proactive participation of prosumers [23] , 

and therefore, prosumers’ reluctance to share their assets can negatively 

impact the lived experience of P2P energy trading [22] . 

To this end, this paper provides empirical evidence to close two gaps 

in existing literature. Firstly, we incorporate the prosumer’s home en- 

ergy management decision-making process into the subsequent decision 

to trade on the local P2P market. We present an integrated P2P energy 

trading algorithm that empowers prosumers to use an energy manage- 

ment system to control their energy resources and optimally meet their 

home energy demand and then, whenever appropriate, share the sur- 

plus in the local P2P market. By doing so, prosumers’ uncertainty of 

losing control of their energy assets is eliminated. Secondly, using ex- 

tensive data from a Germany-based pilot trial, we demonstrate that the 

extra charging and discharging cycles of prosumers’ batteries due to P2P 

trading has minimal effect on battery lifetime. 

In summary, the main contributions of the work are: 

• The impacts of peer-to-peer energy trading on energy storage sys- 

tems are analyzed via a novel matching mechanism for coordinating 

home energy management and peer-to-peer trading. 
• We compare the financial performance and degradation effects of 

our decentralized P2P matching mechanism to a centralized ap- 

proach that optimizes the overall techno-economic outcome, con- 

sidering both stationary and mobile energy storages. 
• The first evidence of the minimal impact on battery lifetime as well 

as the shared techno-economic benefits to the prosumer due to P2P 

trading. 
• This paper examines the interaction between home energy manage- 

ment and P2P trading, providing a crucial technical demonstration 

to help overcome the techno-economic and social challenges. 

The remainder of the paper is structured as follows. Section 2 intro- 

duces the methodology of analysis, P2P framework, and its mathemat- 

ical formulation. The results of our analysis are presented in Section 3 , 

discussed in Section 4 , and concluded in Section 5 . 

2. Methods 

2.1. Decentralized versus central decision making approach 

We differentiate between two approaches for the energy manage- 

ment of households in a P2P network, as illustrated in Fig. 1 . In both 
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Fig. 1. Schematic illustration of decentralized and central decision making in a peer-to-peer (P2P) network. Each peer is characterized by its energy inflexibilities 

and flexibilities. The inflexibilities represent the supply and demand stemming from producing and consuming components. Stationary and mobile energy storages 

allow the flexible charging and discharging of electricity, enabling the temporal shift of supply and demand. There are two decision making approaches to calculate 

the offers, transactions, and operation strategies of the peers: decentralized (left) and central (right). For the decentralized approach a HEMS at each peer calculates 

the offers and transfers them to the matching platform of the P2P network. With the larger information base and flexibility pool, the CEMS simultaneously calculates 

the optimal operation strategies for all flexibilities and peers to yield the optimal techno-economic outcome. 

approaches, each household contains inflexibilities, such as its electric- 

ity base demand and the supply of PV generators, as well as flexibili- 

ties, which allow for a temporal shift of supply and demand. The EMS 

utilizes the expected energy values from demand and supply to calcu- 

late an optimal operation strategy for the flexibilities and the techno- 

economic optimum for electricity demand and supply offers. Here, as 

shown in Eq. (1) , the sum of the peers’ demand and supply matched 

locally ( 𝐸 

demand , local and 𝐸 

supply, local respectively) must be equal: 

∑
𝑛 ∈𝑁 

𝐸 

demand , local 
𝑛,𝑡 = 

∑
𝑛 ∈𝑁 

𝐸 

supply, local 
𝑛,𝑡 (1) 

For any supply and demand unfulfilled in the local market, the elec- 

tricity is cleared with the retailer. 

The decentralized and central decision making approaches differ in 

four main ways: type of EMS, information availability, computation 

complexity, and market mechanism. In the decentralized approach, each 

peer has its own home energy management system (HEMS), whereas 

a central authority or community energy management system (CEMS) 

determines the optimal operation strategies for all households in the 

central approach. 

To enable the central decision making, the CEMS has access to the 

demand and supply data, as well as system states of the flexibilities, from 

all peers. It also has the capability to control and operate the flexibili- 

ties in the network to maximize the P2P community’s techno-economic 

potential. The peers have no access to data from the other households in 

the network. The market mechanism determines how offers are matched 

in the local market. Whilst offers are non-binding, once matched, these 

transactions between peers are binding and must be delivered. 

In the decentralized approach, on the other hand, offers are deter- 

mined by the HEMS and then transferred to the clearing and matching. 

If both demand and supply offers exist during a given trading inter- 

val, they are cleared on a community level to reach the highest share 

of locally traded electricity. This highest share is defined as the min- 

imum value of the total offered demand and supply on a community 

level, as it is shown in Eq. (2) . After the clearing, the offers are matched 

with respective counterparts following a ’fairness policy’ (illustrated in 

Fig. 2 ). The fairness policy ensures that each received offer is consid- 

ered in the matching and that the volume matched is calculated based 

Fig. 2. Exemplary illustration of the fairness policy in a peer-to-peer (P2P) mar- 

ket with offers from three peers. Peers A and B have positive net energy supply 

offers. Although peer A could meet the full demand from peer C, this would not 

be fair towards peer B. With the fairness policy all offers in the P2P community 

are considered for the creation of binding transactions. 

on the weighted offer volume (cf. Eqs. 3 and (4) for demand and supply 

respectively). After clearing and matching, the offers are converted into 

transactions and transferred to the respective peers. Every peer needs to 

know which offers became transactions on the P2P market, as well as the 

volume, timing, and counterpart of electricity transaction. In the central 

approach, the energy management and matching occur simultaneously. 

Therefore, the offers are directly converted to binding transactions and 

the operation strategies for all peers are calculated simultaneously. 

∑
𝑛 ∈𝑁 

𝐸 

trade , local 
𝑛,𝑡 = min 

{ ∑
𝑛 ∈𝑁 

𝐸 

demand 
𝑛,𝑡 , 

∑
𝑛 ∈𝑁 

𝐸 

supply 
𝑛,𝑡 

} 

(2) 

𝐸 

demand , local 
𝑛,𝑡 = 

𝐸 

demand 
𝑛,𝑡 ∑

𝑛 ∈𝑁 

𝐸 

demand 
𝑛,𝑡 

⋅
∑
𝑛 ∈𝑁 

𝐸 

trade , local 
𝑛,𝑡 (3) 

𝐸 

supply, local 
𝑛,𝑡 = 

𝐸 

supply 
𝑛,𝑡 ∑

𝑛 ∈𝑁 

𝐸 

supply 
𝑛,𝑡 

⋅
∑
𝑛 ∈𝑁 

𝐸 

trade , local 
𝑛,𝑡 (4) 
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2.2. Assessing the financial benefit 

In our methodology, the benefit of P2P trading is characterized by 𝜖, 
the proportion of electricity supplied or demanded in the network that is 

traded locally ( Eq. (5) ). The total traded electricity, either by household 

or on a community level, 𝐸 

tr ade , t otal , is defined in Eq. (6) as the sum of 

electricity traded with other peers ( 𝐸 

trade , local ) and with the electricity 

retailer ( 𝐸 

tr ade , r etail ). 

𝜖 = 

𝐸 

trade , local 

𝐸 

tr ade , t otal (5) 

𝐸 

tr ade , t otal = 𝐸 

trade , local + 𝐸 

tr ade , r etail (6) 

In Eq. (7) , 𝜙 represents the individual peer’s incentive to trade lo- 

cally in Euro. A prerequisite for the design of a local market with more 

favorable trading conditions than offered by the retailer is a price gap 

between the retail purchase and sale prices p pur chase , r etail and p sell , retail . 
This price difference emerges in markets with demand-pull policies sub- 

sidizing decentralized production of electricity, where feed-in-tariffs are 

declining and where the retail price remains high, because risks of price 

fluctuations are covered by the retailer. The welfare gained due to local 

trading on a community level is equal to the gap between the two price 

signals. In our approach, this economic gain is divided equally between 

the peers – both the local supplier and consumer – so that the incen- 

tive to either supply or purchase local electricity is equal for both. As a 

result, the unit 𝜙, allows us to draw general conclusions regarding the 

financial benefit per peer in a local market, isolating the effect of the 

specific underlying tariff structure, which differs with federal and state 

regulations. 

𝜙 = 

p pur chase , r etail − p sell , retail 

2 
(7) 

From a mathematical point-of-view, the incentive to trade electricity 

locally arises as soon as a price corridor exists. In our approach, the mid- 

point of the price corridor (average between p pur chase , r etail and p sell , retail ), is 
set as the static local market price. With this straightforward and simple 

approach, computation complexity is reduced significantly. Also, the in- 

dividual incentive to trade locally, 𝜙, is the same for all peers. The offers 

and transactions consist of electricity values and the prices for traded 

electricity are equal and homogeneous for all peers. This eliminates the 

likelihood of market manipulation and arbitrage opportunities. 

ℂ 

elect ricit y 
𝑛,𝑡 = 𝐸 

demand 
𝑛,𝑡 ⋅ p pur chase , r etail − 𝐸 

supply 
𝑛,𝑡 ⋅ p sell , retail 

− 𝐸 

trade , local 
𝑛,𝑡 ⋅ 𝜙 (8) 

In the P2P network, the individual households’ electricity costs, 

ℂ 

elect ricit y , are given by Eq. (8) , where 𝐸 

demand , 𝐸 

supply , and 𝐸 

trade , local 

denote the total electricity demanded, supplied, and traded locally by 

the household. The first term calculates the electricity costs, as if the 

full demand is covered by the retailer. If the household is a prosumer, 

these costs are compensated by revenues from electricity sold to the re- 

tailer (second term) and if the household participates in a local market 

( 𝐸 

trade , local > 0 ), to more favorable conditions, the costs are reduced by 

the incentive to trade locally, 𝜙. 

2.3. Mathematical formulation 

The developed EMS is based on a linear optimization problem that 

minimizes the electricity costs of the households and the P2P commu- 

nity. Written in the MATLAB environment, it utilizes the Gurobi solver, 

which offers advantages in computation performance [24] . 

min 𝑧 dec 𝑧 dec = 

∑
𝑛 ∈𝑁 

∑
𝑡 ∈𝑇 

(
ℂ 

tr a , r et 
𝑛,𝑡 + ℂ 

deg 
𝑛,𝑡 + 𝐸 

EV , buf 
𝑛,𝑡 + 𝐸 

EV , CH , ext 
𝑛,𝑡 

)
(9) 

min 𝑧 cen 𝑧 cen = 

∑
𝑛 ∈𝑁 

∑
𝑡 ∈𝑇 

(
ℂ 

tr a , r et 
𝑛,𝑡 + ℂ 

tra , loc 
𝑛,𝑡 + ℂ 

deg 
𝑛,𝑡 + 𝐸 

EV , buf 
𝑛,𝑡 + 𝐸 

EV , CH , ext 
𝑛,𝑡 

)

(10) 

Eqs. 9 and (10) show the objective functions of the decentralized 

and central decision making approaches respectively. Mathematically, 

these differ only in one respect. While the decentralized EMS minimizes 

the electricity costs from trading electricity with the retailer ( ℂ 

tr a , r et ) 

only, the central CEMS also minimizes the electricity costs electricity 

shared within the local network, ℂ 

tra , loc . This additional minimization 

lever is attainable, because the CEMS has access to all offers placed in 

the market, whereas in decentralized control each EMS only knows what 

is occurring within one household. 

Besides the maximization of the profit from sharing and trad- 

ing electricity the electricity retailer and with peers in the network, 

Eqs. 9 and (10) also minimize the cost for cell degradation of the bat- 

teries, ℂ 

deg . Thus, degradation awareness is introduced to the model. 

Defined in Eq. (11) , the cost of cell degradation is calculated using the 

flexibilities storage energy throughput, or equivalent full cycles (EFC) 

and the estimated opportunity costs per battery cycle ℂ inv 
EFC exp [25] . The 

EFCs are derived from the change in the state of charge over time (cf. 

Eq. (12) ). With this active degradation awareness in place, the algo- 

rithm only utilizes a battery if the financial benefit exceeds the costs of 

degradation. 

ℂ 

deg 
𝑛,𝑡 = EFC 𝑛,𝑡 ⋅

ℂ 

inv 

EFC 

exp (11) 

EFC 𝑛,𝑡 = 

|𝐸 

act 
𝑛,𝑡 − 𝐸 

act 
𝑛,𝑡 −1 |

2 ⋅ 𝐸 

nom (12) 

𝐸 

EV , buf , which is also applied in Eq. (13) , incentivizes the optimiza- 

tion algorithm to retain a minimum state of charge (SOC) in the EV bat- 

teries reserved for driving when the vehicle is connected ( 𝑥 plugged = 1 ). 
Due to the constraint formulation, the reserve SOC ( SOC 

pr efer ence ) is not 

applied when the vehicle is not connected, allowing the full energy con- 

tent to be used for mobility purposes. This minimum state of charge is 

important to the vehicle owner’s peace of mind, as they might need to 

take a spontaneous, unplanned trip. Guaranteeing this flexibility in this 

model increases user acceptance [26] . 𝐸 

EV , CH , ext enables that external 

charging – outside of the home – is possible but discouraged by signif- 

icantly less favorable conditions. Thus, the algorithm, avoids external 

charging when possible. 

𝐸 

EV , nom ⋅ SOC 

pr efer ence ⋅ 𝑥 plugged 𝑛,𝑡 ≤ 𝐸 

EV , act 
𝑛,𝑡 + 𝐸 

EV , buf 
𝑛,𝑡 (13) 

In addition to the objective functions, to allow real world discussions 

and analysis, several constraints are implemented. The most important 

of which are described here. Firstly, there is an energy conservation con- 

straint for every HES and EV battery (cf. Eqs. 14 and (15) respectively). 

𝐸 

act hereby represents the actual energy content of the battery and 𝐸 

CH 

as well as 𝐸 

DCH are the corresponding energy values that are charged 

and discharged to and from the battery. Due to efficiency losses during 

charging and discharging the corresponding efficiency values 𝜂CH and 

𝜂DCH are implemented. Ongoing energy losses due to self-discharge are 

represented by 𝐸 

SD . Besides the energy conservation constraint for the 

HES, the EV’s constraint also considers 𝐸 

EV , CH , ext , which represents the 

energy that is charged into the EV battery externally (not at the house- 

hold and not in the community). The last variable, 𝐸 

EV , dri represents the 

energy that is consumed during driving. 

𝐸 

HES , act 
𝑛,𝑡 = 𝐸 

HES , act 
𝑛,𝑡 −1 + 𝐸 

HES , CH 
𝑛,𝑡 ⋅ 𝜂HES , CH 

− 𝐸 

HES , DCH 
𝑛,𝑡 ⋅

1 
𝜂HES , DCH 

− 𝐸 

HES , SD 
𝑛,𝑡 (14) 

𝐸 

EV , act 
𝑛,𝑡 = 𝐸 

EV , act 
𝑛,𝑡 −1 + ( 𝐸 

EV , CH 
𝑛,𝑡 + 𝐸 

EV , CH , ext 
𝑛,𝑡 ) ⋅ 𝜂EV , CH 

− 𝐸 

EV , DCH 
𝑛,𝑡 ⋅

1 
𝜂EV , DCH 

− 𝐸 

EV , dri 
𝑛,𝑡 − 𝐸 

EV , SD 
𝑛,𝑡 (15) 

Further constraints are included in the optimization algorithm. For 

instance, Eq. (16) , which is the node constraint and ensures the en- 

ergy conservation within each household. Therefore, all incoming en- 

ergy flows must be equal to the outgoing energy flows. Other constraints 
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Table 1 

Model parameters for the optimization algorithm, home energy storage system, electric vehicle (EV), and EV battery. 

Parameter Value UOM Parameter Value UOM 

General State of charge limitations [5,95] % [33] 

Sample time 0.25 h [33] Battery efficiency 99 % [39] 

Optimization period 24 h [25] Inverter efficiency 95 % [33,39] 

Rolling horizon 12 h Self discharge 0.6 %/month [33,39] 

Entities 1–50 Battery invest 800 EUR/kWh [27] 

Annual electricity consumption 3500 ∗ kWh [34] Cell temperature 25 ◦C [25] 

PV peak generation 10 ∗∗ kWp 

Feed-in limit 70 % [35] Electric vehicle & EV battery 

Grid charges 0.0739 EUR/kWh [36] Cell chemistry NMC [40] 

Distribution charges 0.0706 EUR/kWh [36] Average consumption 189 Wh/km [40] 

Electricity surcharges 0.1573 EUR/kWh [36] Annual driving distance 13 600 ∗∗∗ km [41] 

Subsidized remuneration 0.0845 EUR/kWh [37] Nominal energy content 65 kWh [40] 

Non-subsidized remuneration 0.0280 EUR/kWh [38] State of charge limitations [4,96] % [40] 

Home energy storage system Preferred minimum SOC 35 % [26] 

Cell chemistry LFP [33] Rated active power 11 kW [40] 

Nominal energy content 7 kWh [33] (Dis-)charging efficiency 89.4 % [42] 

Rated active power 3.5 kW [33] Self discharge 0.6 %/month [33,39] 

Battery invest 200 EUR/kWh [27] 

∗ The values are normally distributed with a standard deviation of 500. ∗∗ The values are normally distributed with a 

standard deviation of 1. ∗∗∗ The values are normally distributed with a standard deviation of 1500. 

ensure compliance with the technical limitations of the energy storages. 

For the HES and EV respectively, Eqs. 17 and (18) apply to the state 

of charge and Eqs. 19 and (20) ensure that the maximum charging and 

discharging power is not exceeded. For the EV, 𝑃 EV , DCH is set to zero 

if the bidirectional charging is not permitted in the examined case and 

Eq. (20) ensures that the charging and discharging power remains zero 

if the vehicle is not connected ( 𝑥 plugged = 0 ). 

𝐸 

demand , local 
𝑛,𝑡 + 𝐸 

demand , retail 
𝑛,𝑡 + 𝐸 

PV 
𝑛,𝑡 + 𝐸 

HES , DCH 
𝑛,𝑡 + 𝐸 

EV , DCH 
𝑛,𝑡 

= 𝐸 

supply, local 
𝑛,𝑡 + 𝐸 

supply, retail 
𝑛,𝑡 + 𝐸 

Load 
𝑛,𝑡 + 𝐸 

HES , CH 
𝑛,𝑡 + 𝐸 

EV , CH 
𝑛,𝑡 (16) 

𝐸 

HES , nom ⋅ SOC 

HES , min ≤ 𝐸 

HES , act 
𝑛,𝑡 ≤ 𝐸 

HES , nom ⋅ SOC 

HES , max (17) 

𝐸 

EV , nom ⋅ SOC 

EV , min ≤ 𝐸 

EV , act 
𝑛,𝑡 ≤ 𝐸 

EV , nom ⋅ SOC 

EV , max (18) 

𝑃 HES , CH 𝑛,𝑡 , 𝑃 HES , DCH 𝑛,𝑡 ≤ 𝑃 HES , max (19) 

𝑃 EV , CH 𝑛,𝑡 , 𝑃 EV , CH , ext 𝑛,𝑡 , 𝑃 EV , DCH 𝑛,𝑡 ≤ 𝑃 EV , max ⋅ 𝑥 plugged 𝑛,𝑡 (20) 

2.4. Model predictive control 

At specified time intervals the optimization algorithm is executed. 

This model predictive control approach allows the re-evaluation of pre- 

vious optimizations based on updated input data [25] . In our frame- 

work, the optimization horizon for the EMS is 24 hours to follow a full 

day-and-night cycle. With each new evaluation of the optimization, the 

algorithm is fed with updated data that lies further in the future to deter- 

mine the optimal operating strategy for all flexibilities and to calculate 

the best offers for every household. These offers and transactions for 

future time steps are permitted and, once made, must be considered in 

future evaluations of the EMS. 

In this simulation, perfect foresight information is used for electric- 

ity demand, PV generation, and EV usage patterns. However, in a real 

world application, these input profiles would be prediction values un- 

derlying uncertainty. To deal with the inherent uncertainty, the rolling 

horizon can be adjusted according to the quality of the prediction data. 

Thus, the strength of the model predictive control comes into play, and 

already optimized operation strategies are reevaluated with each update 

of prediction values. 

2.5. Battery degradation models 

We differentiate between two cell chemistries in this contribution. 

For the HES, a battery cell technology with a lithium-iron-phosphate 

(LiFePO4) cathode is applied, which is a suitable and widely used cell 

chemistry for stationary storages due to its high cycle stability [27] . Due 

to the requirement to use battery cells with a high energy density in mo- 

bile applications [28] , for the EV, established cells with lithium-nickel- 

cobalt-manganese-oxide (LiNiCoMnO2) cathode material are used [29] . 

To consider both, calendar [30] and cycle [31] degradation processes 

within the two different cell technologies with graphite anodes, specific 

degradation models are applied. The calculation for the capacity fade 

in both models is examined via the battery cells’ physical conditions: 

lifetime, temperature, voltage, and current [29] . Because of nonlinear 

degradation mechanisms and battery safety conditions at lower state of 

health levels, the end-of-life for the stationary and mobile batteries was 

defined as 80% [32] . 

2.6. Design of simulations and input data 

The results of this study are based on 1903 different parameter sets 

(cf. Table 1 ). For each of the scenarios, six use cases are simulated with 

varying market schemes – reference (no local market), decentral, and 

central – and EV connection schemes – unidirectional and bidirectional. 

The network size ranges from one to 50 households [1:1:10,15:5:50] and 

the penetration rate of the technical equipment – PV generators, HES, 

and EV – varies between zero to one hundred percent [0%:20%:100%]. 

With these scenario variations, 38,892 households, 25,928 PV genera- 

tors, 12,964 home energy storages, and 19,446 EVs are simulated for 

each case. The data and code for this study is available upon release of 

the paper. 

For the optimization framework four profile sets are used. The en- 

ergy demand of the household is derived from one-year real measure- 

ment data of German households [43] . In addition, the generation pro- 

files from the photovoltaic (PV) generator is derived from one-year real 

measurement data of a PV system installed in Munich, Germany [33] . 

The necessary profiles for the electric vehicle (EV) are derived from the 

Python tool emobpy [44] . From emobpy the two profile sets for the elec- 

tricity consumption during driving and the availability time series at the 

household were used to conduct the study. Computational time strongly 

varied with the complexity of the optimized case, lying between three 

and 20 minutes per annual optimization case (on an Intel i7-7600U pro- 

cessor and 16 GB RAM). 
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Fig. 3. Comparison of the net energy supply of a peer-to-peer network with 

three peers using a decentralized (left) and central (right) decision making ap- 

proach. The top two figures show the results for an exemplary winter day and 

the bottom two figures for a typical summer day. The peers’ offers (pastel col- 

ors) for both approaches differ, as the flexibilities are utilized differently on a 

peer level. It can be seen that the transactions (bright colors) for three peers are 

more dominant in the central approach. In both approaches, peer 1 (blue) pre- 

dominantly acts as an electricity supplier whereas peers 2 (red) and 3 (orange) 

act as net-consumers. Offers that are not matched in the local electricity market 

are traded with the electricity retailer. Due to the higher coexistence of supply 

and demand in summer, the locally traded energy is also significantly higher in 

this season. 

Fig. 4. The net supply power (top) of an exemplary scenario throughout a cal- 

endar year represents the net supply offers of an average peer within a local 

energy market. A clear increase during summer months shows the underlying 

effect of seasonality. The difference of the net supply power between the three 

cases comes from the different utilization of the flexibilities (energy storages) 

on a peer level. The share of locally traded electricity (bottom) distinguishes 

between the influence of seasonality and the effects of the network’s chosen de- 

cision making approach and electric vehicle (EV) operation scheme. Particularly 

during times of electricity surpluses, the central approach shows great economic 

advantages. 

3. Results 

We develop an optimization framework to evaluate the techno- 

economic effects on peer profitability and storage degradation within 

a P2P network. Our model comprises two main components: (i) the pro- 

sumer peers and their assets, and (ii) the coordination mechanism. 

Prosumers have inflexible load and PV generation profiles, as well 

as sources of flexibility, in the form of stationary and mobile storages. 

Following [33] and [45] , two EV connection schemes are considered: 

(i) unidirectional, in which the vehicle is charged only, and (ii) bidi- 

rectional, the vehicle can discharge to the building or grid (i.e. vehicle- 

to-X). Prosumers’ equipment penetration rates for PV, HES, and EV in 

the network vary across the scenarios. Although the parameters and in- 

put profiles are oriented around German households, the model can be 

applied to any region that has feed-in-tariffs schemes. 

The technical objective of this work is to derive and validate a P2P 

trading platform where local electricity can be traded, so that the hetero- 

geneity between peers increases the profitability for both the individual 

peer and the community as a whole, and reduces their collective reliance 

on energy imported from the bulk grid. The coordination mechanism we 

develop is a P2P training model, based on a matching procedure. Specif- 

ically, in this local energy market, all players can submit surplus energy 

supply or demand in the form of offers. Once cleared and matched with 

complementary offers, these become binding transactions. We consider 

two decision making approaches, decentralized and central. In the de- 

centralized case, every household has a home energy management sys- 

tem (HEMS) that determines the offers made to the local energy market. 

In the central case, one community energy management system (CEMS) 

determines the offers for all households. 

As a baseline, we also consider a reference case, in which a house- 

hold’s power flows are optimized by the HEMS, but there is no local 

electricity market available for trading with peers. 

3.1. Demonstration of peer-to-peer market mechanism 

Our demonstration examines 1903 simulated scenarios that explore 

the influence of decentralized and central decision making for the en- 

ergy management, at different levels of prosumer PV, HES, and EV pen- 

etration. To begin, we illustrate the rationale behind the coordination 

framework and the P2P mechanism, by considering results for an exam- 

ple network with three peers. These are given in Fig. 3 , which shows 

the net energy supply in the form of the peers’ offers and transactions. 

This figure demonstrates that the offers in the decentralized and central 

approaches differ only slightly on the same winter or summer day, but 

significantly more transactions are made in the central case. This is ex- 

plained by the superior information and greater optimization scope of 

the CEMS, which can utilize the flexibilities across prosumers to opti- 

mize the benefit for the entire community. In contrast, the HEMS’ avail- 

able information and optimization scope is limited to one household 

and its flexibilities only. The benefit of the decentralized approach is 

that the participating households are not required to give the control 

of their flexibilities over to a central authority, nor share their sup- 

ply and demand information. In addition, significantly more net sup- 

ply is offered to the local market on a summer day than in the win- 

ter, due to the seasonal nature of PV generation, which results in a 

greater share of locally traded electricity in the summer (cf. Fig. 4 and 

Fig. 5 ). 

We quantify the effects of the market mechanisms on a typical sum- 

mer day in Table 2 , which shows the key metrics for each peer in the 

reference, decentralized, and central cases. Across the three cases, the 

inflexible loads and PV generation are identical. The results show that 

the share of locally traded electricity is more than twice as high in the 

central case than the decentralized case, while the absolute cost reduc- 

tion for both the decentralized and central cases is significant. 
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Fig. 5. Average profit increase of a peer within an exemplary scenario. The 

profit increase determines the economic added value compared to the same set- 

ting if no local energy market exists. Particularly during times of electricity sur- 

pluses of the peers’ profit increase due to the local energy network shows high 

growth rates. 𝜙 represents the monetary incentive per peer to trade electricity 

locally. 

Fig. 6. The annual share of locally traded electricity in a peer-to-peer network 

by number of participating peers shows a saturating effect as the heterogene- 

ity of peers declines with increasing network size. Scenarios differ in the deci- 

sion making approach (central vs. decentral) and electric vehicle (EV) charging 

scheme (uni- vs. bidirectional). 

3.2. Financial benefit of peer-to-peer trading 

Building on the energy flow results, our financial results show that 

the benefits to individuals participating in a local P2P market are sub- 

stantial, especially when decisions regarding the trading amount and 

trading partners are managed by a CEMS. Fig. 6 shows that the share 

of locally traded electricity increases strongly up to a network sizes of 

ten peers. There is a saturating effect up to 20 households, after which 

the share of locally traded electricity remains stable. This means that 

the marginal benefit per new peer is neither increasing nor decreasing; 

that is, constant returns to scale. This is a significant finding, because 

it shows that a community of twenty or more peers has no disadvan- 

tage in allowing additional participants to join the local energy market. 

Furthermore, the peers’ incentive to form local markets is shown to be 

strong, even for small network sizes. The heterogeneity of households 

is the key especially in small communities, as offers are more likely to 

be matched when the inflexibilities of the households are dissimilar. 

With an increasing network size, it becomes more difficult to maintain 

heterogeneity, as the likelihood for similarities between the peers also 

rises. 

Fig. 7. Annual profit increase due to local peer-to-peer trading. The profit in- 

crease determines the economic added value compared to the reference case, 

where no local energy market exists. 𝜙 represents the monetary incentive per 

peer to trade electricity locally. The scenarios ( 𝑛 = 1,903) were examined using 

different decision making approaches (central vs. decentral) and electric vehicle 

(EV) charging schemes (uni- vs. bidirectional). 

As the share of locally traded electricity increases, the profitability 

on a community and peer level rises proportionally due to the prefer- 

able trading conditions on the local market. This monetary benefit per 

peer is measured in units of 𝜙, the added value per kWh traded lo- 

cally, as shown in Fig. 7 . The local electricity price equals the mid- 

point of the gap between the electricity retailer’s purchase and selling 

prices and forms the incentive for all peers to first trade locally. The 

central decision making by a CEMS yields the highest monetary bene- 

fit, because the authority to define the actions of all peers simultane- 

ously enables the full exploitation of given heterogeneity and flexibil- 

ity. Further improvements can be reached with bidirectional charging 

schemes for the EV, as the pool of flexibilities available to the commu- 

nity is expanded when the vehicles are permitted to discharge to the 

network. If the reference case (without P2P network) is already rela- 

tively profitable, i.e. in scenarios with high flexibility penetration, the 

potential for further profitability improvements through P2P trading 

declines. 

3.3. Degradation costs of peer-to-peer trading 

This article aims to provide empirical evidence on the financial and 

technical merits of local P2P market participation. Besides the need for a 

financial advantage, the concern of potential participants over reduced 

battery lifetimes due to P2P trading – especially where a central author- 

ity controls the peers’ flexibilities – also needs to be assuaged. 

Fig. 8 shows the distribution of the battery lifetimes for the EVs 

and HESs to compare the degradation effects of the decision making 

approaches. For cases with unidirectional EVs, the battery lifetime of 

both the stationary and mobile storages is extended in the central ap- 

proach. This is highly significant, and explained by the lower average 

state of charge values in the central case, which positively affect the 

cell chemistries’ calendar degradation. With bidirectional EVs, the bat- 

tery lifetime of the HES is prolonged further in the central case, whereas 

that of the EV is reduced. Still the central bidirectional case consistently 

outperforms in terms of monetary benefit. The higher degradation re- 

sults from the increased utilization of the EV batteries and corresponding 

rise in energy throughput and cycle degradation. Also, the transforma- 

tion of EVs from flexible loads in the unidirectional case to bidirectional 

flexibilities, shifts energy throughput from the HES to the mobile stor- 

ages. Significantly, due to the degradation awareness integrated in the 

model, the EMS considers the opportunity costs of energy throughput; 
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Fig. 8. Absolute change in battery lifetime of home energy storage (HES) and 

electric vehicle (EV) battery until reaching the end-of-life at 80% remaining 

capacity, compared to the reference scenario. For all scenarios, the reference 

case without local electricity market and the decentralized approach show very 

similar lifetime. In comparison to the other approaches, the central approach 

yields higher battery lifetimes for the HES, both in uni- and bidirectional EVs 

cases. The dark red areas depict the overlap of the two cases. For the EV battery 

lifetime the central approach shows a slight increase for unidirectional oper- 

ated vehicles and a reduction in battery lifetime for the bidirectional use case. 

( 𝑛 EV = 19,446, 𝑛 HES = 12,964). 

Table 2 

Techno-economic results of an exemplary peer-to-peer (P2P) network with three 

peers and different market schemes for one summer day. The variation between 

the net demand of inflexibilities and offers comes from the charging and dis- 

charging of available flexibilities. Transactions represent the local offers that 

are matched within the community. The net electricity costs consider both the 

costs and revenue earned from trading electricity in the local P2P market and 

with the electricity retailer. The net electricity costs represent the costs minus 

the revenues from trading electricity. Negative values refer to the revenues that 

exceed the costs. 

Net supply (kWh) 
Locally 

traded 

Net 

electricity 

costs (EUR) 

Absolute cost 

reduction 

(EUR) Inflexibility Offer Transaction 

P1 31 .7 27 .2 -0 .58 

P2 -7 .0 -7 .0 0 .53 

P3 -3 .9 -4 .0 0 .30 

Reference 𝚺 20 .8 𝚺 16 .2 𝚺 0 .26 

P1 31 .7 27 .2 4 .4 16% -0 .70 0 .12 

P2 -7 .0 -7 .0 -3 .6 52% 0 .43 0 .10 

P3 -3 .9 -4 .0 -0 .8 20% 0 .28 0 .02 

Decentral 𝚺 20 .8 𝚺 16 .2 𝚺 0 .0 Ø 29% 𝚺 0 .02 0 .24 

P1 31 .7 24 .6 12 .8 52% -0 .85 0 .28 

P2 -7 .0 -8 .0 -8 .0 100% 0 .38 0 .15 

P3 -3 .9 -4 .8 -4 .8 100% 0 .22 0 .08 

Central 𝚺 20 .8 𝚺 11 .9 𝚺 0 .0 Ø 84% 𝚺 -0 .25 0 .51 

thereby ensuring that the costs of the increased battery utilization are 

outweighed by its benefits. 

There are no significant negative effects due to P2P trading when 

the decentralized approach is applied. This is explained in Fig. 9 , which 

shows the same utilization of flexibilities in the reference and decentral- 

ized approaches. The only difference between the reference and decen- 

tralized case is that the latter trades electricity in the local P2P market 

before sending unmatched offers to the retailer, and the former only 

trades with the retailer. As a result, the stationary and mobile storages 

have the same degradation behavior with and without P2P trading when 

using a decentralized approach. 

Fig. 9. Comparison of the three operation approaches – reference (no local mar- 

ket), decentral, and central – for the energy management system based on an 

exemplary day. The inflexibility energy supply (top) for all cases is the same. 

The flexibility demand (middle), to charge and discharge the storages, for the 

central approach differs from the other two approaches. Due to the equal uti- 

lization of the flexibilities, the reference and decentralized approach have the 

same net energy supply (bottom). 

4. Discussion 

Achieving the potential of this work involves addressing the social 

challenges of gaining user trust and acceptance [20] . Based on negative 

user experiences when P2P trading algorithms are opaque to users [22] , 

we recommend that the local market designers make the mechanisms 

as simple, straight-forward, and transparent as possible. When market 

designs use dynamic price signals, arbitrage opportunities arise that are 

tempting to the sophisticated trader. However, to a risk averse prosumer 

household, the resulting complexity creates uncertainty whether they 

will be the winner or the loser of a trade. Our approach uses a fixed 

profit margin, equally distributed between trading parties. This way, it 

is easy for the participants to understand the benefit of trading, which 

will subsequently increase the likelihood of the households being con- 

vinced to participate. For policy makers who are interested in boosting 

the integration of renewables and the autarky of local grids, the authors 

recommend drafting policies that reduce or eliminate network charges 

and taxes on electricity traded between peers in a local market. This will 

further accelerate the proliferation of local P2P networks. 

Despite the significant strengths, the results of this paper are limited 

by some assumptions. Firstly, the input profiles and parameters reflect 

German regulations. Secondly, network surcharges were neglected in 

favor of simplicity. Though these would reduce the magnitude of the 

trading incentive when deducted from the retail price corridor, the re- 

sulting behavior and share of locally traded electricity would not be 

influenced, as long as an incentive to trade locally remains. However, 

the published method can be applied to any region with a tariff struc- 

ture and appropriately adjusted to reflect any existing surcharges. The 

scope of this article does not include effects on the electricity network, 

where storage and P2P trading [46] and network operator-coordinated 

battery dispatch [47] have been shown to contribute positively. Instead, 

we focus on P2P market approaches, with the community and its house- 

holds as the primary stakeholders. Further research can build upon our 
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findings and explore the resulting effects on distribution grids and the 

distribution system operator’s interests in local electricity markets. 

As the central approach optimizes the benefit of the whole commu- 

nity, situations can arise where an individual household could be dis- 

advantaged for the sake of the community. However, in over 99.99% 

of cases, this disadvantage is only momentary and outweighed by the 

advantages offered during a one year time period. The algorithm is not 

designed to prohibit that an individual can be placed at a disadvan- 

tage, as this would limit the degrees of freedom of the optimization. 

The threat, though negligible, of being put at a longer-term disadvan- 

tage might serve to prevent participation. Thus, it is extremely impor- 

tant that the business model or agreement implemented by the peers 

clearly defines how the generated community profit is distributed so 

that any provision of flexibility is remunerated appropriately. The large 

variety of possible business model designs and their realizations in prac- 

tice present a fascinating area for further research. 

5. Conclusions 

Proof that the network benefits of peer-to-peer can be achieved with 

negligible degradation of customer assets is vital to the social acceptance 

that underpins such schemes. Our results provide empirical evidence for 

the techno-economic benefits that are possible with peer-to-peer trad- 

ing when combined with home or community energy management sys- 

tems. The strength of this model arises from the incorporation of 1903 

scenarios, 38,892 households and consideration of specific battery cell 

chemistries. We show that the strongest financial potential is reached 

when a central authority controls the flexibilities in the network and 

electric vehicles are bidirectional. There are no reduced battery lifetimes 

in the central approach when electric vehicles are unidirectional, how- 

ever, with bidirectional electric vehicles, peers need to take into account 

that the greater utilization of the electric vehicle battery comes at the 

cost of increased cycle degradation. For decentralized peer-to-peer mar- 

kets, results show that local electricity trading does not affect battery 

lifetimes. We do not conclude which approach – central or decentral 

– is superior, instead evaluate their respective advantages and disad- 

vantages. Depending on local conditions and participant preferences, 

market makers can apply these results and design a peer-to-peer trading 

market that best reflects participants’ values. For instance, if indepen- 

dence from the electricity retailer and financial profit is prioritized in 

the local society, the central approach will offer a strong incentive to 

participate. Alternately, if participants are unwilling to share data with 

or cede control over their flexibilities to a central authority, the decen- 

tralized approach may foster greater acceptance and participation. 

We suggest three priorities for future work necessary to realize the 

peer-to-peer benefits modelled by our findings: (i) This current mod- 

elling is based on the German energy market. Future work should seek 

to generalize the benefits of both approaches to other comparable mar- 

kets, e.g. US, UK. (ii) Incentivizing customer participation is central to 

the success of any peer-to-peer network. Our study suggests two op- 

tions suitable to cater for different user values in a specific deployment 

context, e.g. the desirability of a centralized approach if users value in- 

dependence from electricity retailers, versus a decentralized approach 

which may be more favorable to a community who values control over 

their flexibilities. Prior to implementation, economic modelling should 

be complemented by social research targeting user values and local 

drivers of smart energy technology adoption. (iii) While beyond the 

scope of this present paper, further work is also vital into the effect 

of both approaches on grid operation and distribution systems. Bidi- 

rectional charging can be problematic for local grid management when 

deployed at scale and this effect should be modelled prior to implemen- 

tation. 
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5 Multi-use on large-scale battery storages

This chapter presents the paper titled Unlocking the potential of battery storage with the dynamic
stacking of multiple applications. In the publication, a stationary energy storage system is modeled
that serves several applications simultaneously. To effectively serve the applications, the EMS must be
able to allocate the appropriate storage system capacities to the applications. Although such multi-use
approaches have been presented in the literature, only the energy capacity has been allocated and other
capacities, such as power, have been neglected [29, 123]. To close this research gap in the literature,
the mixed-integer linear programming framework mu_opt4 is developed, which can define an optimal
allocation of storage capacities and thus execute an improved operation strategy.

For the study of multi-use operating strategies, four widely used energy storage applications are ana-
lyzed: Self-consumption increase, peak shaving, frequency regulation, and spot market trading. Since
the study was conducted as part of a research project, a German battery storage system with 1.34MWh
energy content and 1.25MW rated power is used for the simulations [178]. Calculations of battery
cell degradation are based on existing models from literature [238]. As described in Section 2.2, ap-
plications are divided into BTM and FTM applications depending on their origin in the electricity
value chain. With the separation of BTM and FTM applications, the presented approach allows the
separation of energy and power into distinct partitions and any energy shift between these partitions
is prevented to comply with unbundling laws. The objective function of the optimization framework
maximizes the sum of the applications’ profits over time. This allows the algorithm to decide oppor-
tunistically between the applications. Depending on the input data, the optimizer decides to which
extent an application should be served or how much energy and power should be reserved/allocated
to its partition. If, for example, a large load peak is detected by the algorithm, more energy and
power is reserved for the PS application and the underlying BTM partition. At any time, it must be
ensured that enough energy is reserved for the corresponding partition and application, and that en-
ergy conservation constraints are satisfied. Since the applications are also provided in defined markets
with participation conditions, regulatory constraints, such as minimum provision time, must be met
in addition to technical conditions.

Since the simultaneous provision of multiple applications also increases the probability of more energy
throughput at the storage system, the issue of battery cell degradation is of particular importance
in the context of multi-use. To avoid a high degree of degradation, opportunity costs for the energy
throughput of the storage system are applied in the objective function. These opportunity costs are
calculated from the expected EFC of the storage system and its investment costs. The study shows
that the degradation-aware operation has a strong influence on the storage lifetime and thus on the
profitability of the asset. A significant improvement in profitability is shown especially for multi-use
strategies with the SMT application. By enabling opportunity costs for the energy throughput, the
storage system’s lifetime is increased from 2.5 to almost ten years, which significantly increases the
expected profitability over its lifetime.

4 Code is publicly available at the Gitlab repository: https://gitlab.lrz.de/open-ees-ses/mu_opt
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5 Multi-use on large-scale battery storages

As expected, when comparing the multi-use types, the dynamic multi-use proves to be the most
lucrative approach from a techno-economic point of view [63]. Comparing sequential and parallel
multi-use, the study shows that the exclusive operation of individual applications performs better than
parallel multi-use. The reason for this effect is that the sequential multi-use still has the freedom to
evaluate with each new optimization which application should be served next. In the parallel approach,
on the other hand, a single global decision is made on how much energy and power to allocate to each
application and partition. Due to the generally fluctuating input profiles (power, price, frequency,
etc.), this results in better results for the most flexible solution, dynamic multi-use (cf. Sections 2.3.2
to 2.3.4). The boost in investment attractiveness due to multi-use demonstrated in this paper, makes a
significant contribution to research, encouraging the accelerated deployment of battery energy storage.

Author contribution Stefan Englberger developed the idea of the study, developed the mixed-integer
linear programming and model predictive control framework, carried out all simulations, and analyzed
the data. Holger Hesse helped to parameterize the model and analyze the data. The manuscript
was written by Stefan Englberger and was edited by Holger Hesse and Andreas Jossen. All authors
discussed the data and commented on the results.
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Unlocking the Potential of Battery Storage
with the Dynamic Stacking of Multiple Applications

Stefan Englberger,1,2,* Andreas Jossen,1 and Holger Hesse1

SUMMARY

The ability of a battery energy storage system (BESS) to serve mul-
tiple applicationsmakes it a promising technology to enable the sus-
tainable energy transition. However, high investment costs are a
considerable barrier to BESS deployment, and few profitable appli-
cation scenarios exist at present. Here, we show that by tapping into
multiple revenue streams using the dynamic stacking of applica-
tions, profitable operation is viable under current regulatory condi-
tions. We develop a multi-use optimization framework which
distinguishes between behind-the-meter and in-front-of-the-meter
applications and considers how power capacity is allotted in addi-
tion to energy capacity allocation. The algorithm uses a rolling hori-
zon optimization with an integrated degradation model and is fed
with real-world data from a stationary lithium-ion battery in Ger-
many. When combining peak shaving with frequency containment
reserve, a net present value per Euro invested of 1.00 is achieved,
and 1.24 with the addition of arbitrage trading on the intraday
continuous market.

INTRODUCTION

With the undeniable need for a worldwide sustainable energy transition,1,2 battery

energy storage systems (BESSs) are a highly promising technology to successfully

integrate large shares of renewable generation into existing energy systems.3–6

Despite rapidly falling battery system costs,7,8 the high investment requirement is

primarily cited as the most significant barrier to energy storage deployment.9–11

To help realize the high cost-reduction potential,12 demand-pull policies can in-

crease deployment and drive battery technologies down their respective learning

curves.8,10,13 As an alternative to the cost-side perspective, the investment attrac-

tiveness of energy storage can likewise be boosted by increasing revenue

generation.

As a multi-purpose technology,10 energy storage can serve a wide variety of appli-

cations.14–16 For instance, a BESS can be an energy buffer for intermittent generation

or increase grid power quality by providing frequency regulation services. There-

fore, it can generate economic value for its stakeholders at different points in the

electricity value chain.10,17 However, under a single-use operation—in other words,

serving one application only—BESSs struggle to attain profitability18 and are often

idle or underused.17,19 Calendar degradation processes are still ongoing during bat-

tery idle times, where no application is actively served.20,21 These can be reduced by

serving multiple applications, as their complementing demands on the system result

in better battery utilization. Thus, by stacking compatible applications on one BESS,

a multi-use operation strategy can maximize storage value.3,22,23
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Central to the implementation of such a strategy is the question of how the limited

energy and power capacities of the BESSs are allocated to the different applications.

There are three types of multi-use, sequential, parallel, and dynamic, which differ in

the way the applications are stacked.24 The dynamic approach is themost flexible, as

multiple applications can be served simultaneously with variable capacity alloca-

tions. In addition to the complex technical demands to the BESS’s energy manage-

ment system (EMS), regulatory requirements can pose another barrier to multi-use.

For instance, unbundling laws require the separation of value generation in different

stages of the electricity supply chain.18 Behind-the-meter (BTM) applications serve

end-consumer purposes, whereas applications improving grid stability are served

in-front-of-the-meter (FTM).17,24 To simultaneously address applications from

different origins in the value chain, it is necessary that the physical storage system

is separated into distinct virtual partitions.25 Thus, for its practical implementation,

a multi-use strategy requires an EMS and power electronics with the ability to

clearly distinguish between BTM and FTM partitions, preventing any inter-energy

exchange.

Several studies have investigated the various facets of multi-use, highlighting its

high profitability potential.18,19,26–30 Two gaps have been identified in the literature,

one regulatory and the other technical, which need to be addressed to enable prac-

tical implementation. First, the distinct treatment of BTM and FTM, which will allow

simultaneous service of both types of applications in compliance with regulatory re-

quirements. Second, from a technical perspective, although both energy and power

capacities are delivered by the BESS, these need to be allocated separately in a real-

world system. We are not aware of a study that considers the role of power elec-

tronics in a multi-use operation; all of the identified quantitative studies address

only the capacity allocation of energy, ignoring the equally important consideration

of power. We developed a dynamic multi-use optimization framework to close the

identified gaps and enable a practical implementation and profitable BESS opera-

tion under current regulatory conditions.

In this article, we analyze the techno-economic performance of single-use and multi-

use operation strategies on a stationary lithium-ion BESS serving a characteristic

commercial consumer in Germany. Our results show that the stationary BESS is high-

ly profitable under a dynamic multi-use operation strategy. Based on our findings,

stationary BESS stakeholders have a strong incentive to adopt this approach, and

increased investor interest is expected. We focus on the implications to current

and potential BESS stakeholders, but also discuss relevance to policy makers and

identify areas for future research.

RESULTS

Increasing Performance through Application Stacking

We developed our multi-use optimization framework to evaluate the techno-eco-

nomic performance of single-use and multi-use operation strategies on the same

utility-scale, stationary BESS (see Experimental Procedures and Table S1 for details).

To this end, the four applications—self-consumption increase (SCI; BTM), peak

shaving (PS; BTM), frequency containment reserve (FCR; FTM), and spot market

trading (SMT; FTM)—are compared and combined. We chose these applications

because they enjoy the most widespread usage in stationary storage installations.14

The BESS’s equivalent full cycles (EFCs), state of health (SOH), and operating profit,

by application and in total, at the end of the first year of operation, as well as the end-

of-life (EOL) in years is determined for the seven scenarios (see Table 1). This is
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followed by the illustration of the investment attractiveness by scenario (see Fig-

ure 1). Our results show that total profitability increases with the stacking of more ap-

plications, as do EFCs as the battery utilization also increases, but with only limited

additional SOH loss.

Of the single-use scenarios, SMT generates the highest annual profit, but with signif-

icantly more EFCs and the shortest lifetime. The total profit in the PS scenario is

composed of the revenue from the demand charge reduction (PS) and the cost of

the energy purchased (SCI) to shave the demand peak. Analogously, in the single-

use FCR scenario, total profit is made up of both the revenue generated on the fre-

quency regulation market (FCR) and the net costs of scheduled transactions on the

spot market (SMT). The single-use scenario with only SCI is not viable for the com-

mercial player modeled in this work, as the residual load (load generation) is rarely

negative and opportunities to generate revenue through energy savings do not

arise. Comparing the PS and FCR single-use scenarios, identical SOHs and very

similar battery lifetimes are observed despite the significant discrepancy in EFCs.

This can be explained by the considerably greater depth-of-discharge required by

PS, which makes a strong contribution to cyclic degradation.21,31,32 Also, the BESS

fluctuates around the medium state of charge (SOC) range during FCR provision;

the SOC dependency of lithium-ion batteries is considered in the battery degrada-

tion model.20,21

The most profitable multi-use scenario is that with all three applications, PS + FCR +

SMT. The authors agree that it is not viable to estimate multi-use earning potential

simply by adding the respective earnings of the single-use scenarios,30 due to trade-

offs from power and energy capacity sharing between applications. Nevertheless,

the extent of the synergistic effects is remarkably high in the multi-use scenarios

modeled (for illustration, see Figure S1). For example, in the PS + FCR + SMT

multi-use scenario, 99.2%, 83.6%, and 86.2% of the single-use earning potential is

maintained, respectively. This positive effect is also demonstrated when two appli-

cations are combined, which indicates that under single-use operation the battery

power and energy capacities are severely underused. Hence, the full earning poten-

tial of a BESS is realized only in a multi-use operation.

Table 1. Overview of the Techno-economic Performance of a Large-Scale BESS under Single-use

and Multi-use Operations

Annual Operating Profit/EUR kWh�1 EFC SOH/% EOL/a

Scenario PS SCI FCR SMT Total

PS 43.3 �0.8 0 0 42.6 46.1 96.5 14.9

FCR 0 0 47.5 �1 46.5 128.6 96.5 14.7

SMT 0 0 0 58.8 58.8 214.7 95.1 9.5

PS + FCR 43.2 �0.7 45.4 �1.1 86.8 159.7 96 13.1

PS + SMT 42.9 �0.7 0 57.3 99.5 261 94.5 8.3

FCR + SMT 0 0 41.3 51.2 92.5 266.2 94.9 9.3

PS + FCR + SMT 42.9 �0.7 38.9 50.6 131.7 300.7 94.5 8.6

Behind-the-meter (BTM) applications peak shaving (PS) and self-consumption increase (SCI) relate to the

power and energy costs, respectively, of the commercial consumer. Frequency containment reserve (FCR)

and spot market trading (SMT) generate profit in-front-of-the-meter (FTM) on the frequency regulation

and intraday continuous markets, respectively. The energy to power (E:P) ratio of the BESS is 1.34

MWh to 1.25 MW. The operating profit per installed energy capacity, number of equivalent full cycles

(EFCs), and state of health (SOH) resulting from the first year of operation, as well as the end-of-life

(EOL) is presented. BESS, battery energy storage system. /a, per annum.
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Each scenario is executed in the optimization model until the EOL is reached and the

annual profits are discounted, to calculate the profitability index (PI) over battery life-

time, which equals the net present value (NPV) divided by the initial investment (for

further details, see Experimental Procedures and Figure S2). The EOL criterion is set

to 80% of remaining initial energy capacity, as the literature reveals that nonlinear

degradation mechanisms and battery safety aspects are more prominent at lower

SOH levels.32,33 Investment costs of 380 EUR/kWh34–36 for the given energy:power

(E:P) ratio and a discount rate of 6%, as appropriate for utility-scale applications,10 is

assumed.

Figure 1 illustrates the PI development of the scenarios, with clear clusters emerging

for single-use, multi-use with two, and multi-use with three applications. The most

attractive single-use application is FCR, due to its high profitability and long lifetime.

Nonetheless, the single-use applications are in a similar PI range of 0.04–0.18, with

positive values reached only in the 9th (SMT), 12th (FCR), and 14th years (PS)

following the initial investment. Considering the uncertainty of revenue earning po-

tential in the future of each application, establishing multi-use capability should be a

high priority for any stationary BESS stakeholders operating in single use.

The positive contribution of application stacking is clearly illustrated by the signifi-

cantly higher PI range of 0.63–1.24, with positive values attained significantly sooner

(during 4th and 5th/6th year of operation with three and two applications, respec-

tively). In any scenario with SMT, an accelerated battery degradation is observed,

due to the application’s increased energy throughput. By considering the cycles’ op-

portunity costs in the model, only the most profitable trades are scheduled and cy-

clic degradation is reduced (see Experimental Procedures). The two most attractive

application combinations, PS + FCR + SMT and PS + FCR, both require the clear

distinction between BTM and FTM to satisfy the regulatory requirements.17,24,25

When comparing these scenarios, the assumed discount rate plays a significant

role, due to the longer lifetime of the latter scenario. For instance, without discount-

ing annual profits, the scenarios’ PI would equal 1.94 and 1.93, respectively. The

convex shape of the PIs over time is explained by the decreasing usable energy ca-

pacity and the greater discounting effect further into the future. The results make a

strong case for the dynamic stacking of multiple stationary applications on a single

utility-scale BESS, because synergies between applications lead to better utilization
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Figure 1. Investment Attractiveness of Single-use and Multi-use Scenarios

The profitability index equals the net present value normalized to the initial capital expenditures of

509 kEUR. Various combinations of the three applications, peak-shaving (PS), frequency

containment reserve (FCR), and spot-market trading (SMT), are evaluated, considering the different

battery energy storage system lifetimes applicable to the chosen operation strategy.
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without a noteworthy lifetime contraction. By spreading dependence from a single

revenue stream to multiple sources, multi-use also diversifies risks due to uncertain

future price developments of the respective applications. This is an important factor

for current and potential BESS stakeholders to consider.

Economic Impact of Different Multi-use Approaches

The matter of how limited battery energy and power capacities are allocated is an

important consideration when implementing a multi-use strategy (see Experimental

Procedures and Figure S3 for further details on the three multi-use approaches). The

inverter switching time is defined as the frequency with which the power reallocation

can take place. Although this article focuses on the merits of a multi-use approach

using dynamic capacity allocations, the economic impact of the alternative, sequen-

tial and parallel, approaches is also presented (see Figure 2A). Dynamic multi-use

demonstrates superior profitability. The parallel strategy is the least preferable

economically, despite the fixed allocations between BTM and FTM being optimized

beforehand in our implementation. The higher profitability of the sequential strat-

egy reveals that the subsequent switching between applications is more effective

than the parallel sharing of capacities. Dynamic multi-use has the advantage of

simultaneously serving both BTM and FTM applications, in contrast to the sequential

strategy. This ability makes the profitability of the dynamic strategy more stable

against longer inverter switching times (see Figure 2B). Thus, if it is not possible to

implement a dynamic multi-use approach, then we recommend the sequential strat-

egy over the parallel allocation of BESS capacities.

Dynamic Multi-use Optimization Framework

The developed multi-use optimization framework can be integrated into a state-of-

the-art EMS, enabling a dynamic multi-use operation strategy on a real-world

system, while upholding detailed technical and regulatory requirements. For an

illustration of how this real-world implementation is executed, including feedback

loops between the EMS and the physical BESS, see Figure S4.
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Figure 2. Profitability Comparison of Parallel, Sequential, and Dynamic Multi-use Approaches

(A) Comparison of parallel, sequential, and dynamic multi-use for the applications peak shaving

(PS), frequency containment reserve (FCR), and spot market trading (SMT) as well as an inverter

switching time of 12 h. Parallel multi-use is characterized by a constant allocation of storage

capacity, whereas the sequential operations serve the behind-the-meter (BTM) or front-of-the-

meter (FTM) partition exclusively. The dynamic multi-use approach yields the highest profit, as it

combines the advantages of its two predecessors.

(B) Annual profitability for the dynamic and sequential multi-use approaches over inverter switching

time. Inverter switching time determines the frequency with which battery energy storage system

capacities can be reallocated. The relative profitability is illustrated for the PS + FCR + SMT

scenario, with inverter switching times from 5 min to 7 days.
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This framework makes several unique contributions, including the unprecedented

consideration of power capacity as well as energy allocation and the technical imple-

mentation of distinct BTM and FTM partitions, which allows both application types

to be served simultaneously. Central to this detailed technical consideration is the

BESS topology (see Figure S5), which enables implementation in compliance with

technical and regulatory conditions (e.g., through its distinction between BTM and

FTM). Although the optimization is deterministic, a rolling horizon is implemented

with successive input information updates, which increases the robustness of the re-

sults against forecast uncertainties (see Figure S6 for illustration). Furthermore, the

model is degradation aware, meaning that the opportunity costs due to battery

degradation losses are considered in decision making about the optimization tool

(see Experimental Procedures and Figure S7).

Figure3demonstrates thebehaviorof the threeapplications (Figures3A–3C) and thepo-

wer and energy allocation (Figures 3D–3F) under the implemented dynamic multi-use

operationstrategy. In thisarticle, themodelparametersarebasedona real-worldstation-

ary BESS located in Germany. Due to data availability, the model assumptions are de-

signed around German regulatory and technical constraints. The depicted scenario

shows characteristic results (see Table S1 for input profile and parameter assumptions),

which we validated by conducting over 400 scenarios with varying sensitivities (see Fig-

ures S8–S12). Results of the sensitivity analyses show that profit variation subject to

different input profiles is significantly more robust in a multi-use scenario (see Figures

S9 and S11). Figure 3A demonstrates how the PS threshold, above which residual load

is compensated for by the BESS, is adjusted upward, depending on the height and

area of the foreseen peaks and the available capacities of BESS. This occurs repeatedly

during the simulation period as new information becomes available, until the optimal

PS threshold is determined (see Experimental Procedures). No FCR is provided by the
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Figure 3. Optimization Framework Outputs of a Dynamic Multi-use Operation Strategy with Peak Shaving (PS), Frequency Containment Reserve

(FCR), and Spot Market Trading (SMT)

A 2-day excerpt is shown for (A) the residual load on the behind-the-meter (BTM) partition and the respective PS threshold; (B) grid frequency input

profile and the FCR power provided by the battery energy storage system (BESS); (C) price corridor on the intraday continuous market and the power

traded by the BESS; (D) BTM and front-of-the-meter (FTM) power allocation; (E) BTM and FTM energy content allocation; and (F) state of charge (SOC) of

the BESS and the respective energy allocation.
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BESS (Figure 3B) while the peak is being shaved, because most of the energy content is

reserved for the BTM partition (Figure 3E). Figure 3D and 3E demonstrate how the allo-

cation of power and energy capacities differ notably in a dynamicmulti-use implementa-

tion. Using a parallel multi-use approach, these reserved power and energy capacities

would be constant over time. Whereas Figure 3E shows the partitioning of energy by

BTM and FTM relative to the total reserved energy content, Figure 3F depicts the

reserved energy content relative to total energy content, or the SOC of BESS.

The implemented model ensures that power and energy capacity allocation is

optimal, depending on the input profiles, to maximize applications’ operating

profits in a degradation-aware manner while upholding necessary constraints (see

Experimental Procedures).

DISCUSSION

Our results show that a dynamic multi-use operation strategy yields substantially higher

profitability thanany single-useoperation.TheapplicationcombinationsofPS+FCRand

PS+FCR+SMTgenerateespecially attractive results for investors,with swift paybackpe-

riodsandhighpositiveNPVs.Basedonthesefindings, stationaryBESSstakeholdershave

a strong incentive to adopt a dynamic multi-use approach. Based on our findings, the

mainbarrier toBESSdeployment—its lackof attractiveness to investors due tohigh initial

investment costs—can be removed bymaximizing its earning potential through applica-

tion stacking. Policy makers interested in accelerating energy storage deployment to

facilitate a sustainable energy system transformation should note that multi-use opera-

tion has the potential to substitute the need for costly deployment subsidies.18 The

dynamic multi-use framework presented here is being implemented on a real-world sta-

tionary BESS. The authors are highly confident that once evidence from successful multi-

useoperations isavailable,private sector investment in this areawill beexpedited further.

We recommend that policy makers draft policy to facilitate the proliferation of multi-use

operation strategies. In addition, an effort should bemade to remove remaining regula-

tory barriers to the deployment of energy storage at large, such as a lack of a clearly

definedrole forenergystorage in theelectricitygridandmarketdesigns thatarenot tech-

nology neutral.9,18,37,38

The presented model makes a unique contribution to the literature, especially in

its focus on the detailed technical capabilities required for a real-world dynamic

multi-use operation, such as the BTM and FTM distinction and separate power

and energy capacity allocation. Nevertheless, several assumptions are made,

which need to be discussed to accurately interpret the presented results and to

identify areas for further research. First, it is assumed that all bids on the frequency

regulation and intraday continuous market are completed. Second, input data

from 2019 are used for the full lifetime of the modeled BESS, which disregards

the significant uncertainty regarding future load profile and market developments.

For the SMT application’s profit, the average value of the best- and worst-case sce-

narios is calculated as a realistic midpoint, using the high-low and weighted

average price profiles, respectively. In addition, since the greater deployment

and participation of stationary and mobile BESSs in the FCR and spot markets

can lead to market saturation,26 ensuing revenue generation is likely to decrease

due to falling prices and smaller price spreads, respectively. Strongly falling FCR

market prices in recent years,24,39 which severely reduced the revenue potential

of this use case, demonstrates the danger of depending on a single revenue

stream. By acquiring multi-use capability, dependence on a single revenue stream

is avoided and the risk of future earning uncertainty is diversified over multiple
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revenue sources. Thus, regardless of future market developments, a stationary

BESS technically capable of addressing multiple applications, in various points in

the electricity value chain, is better placed to make use of newly arising opportu-

nities than one locked into a single-use case.

In our implementation, the E:P ratio and sizing of the BESS are based ondata froma real-

world lithium-ionbattery inGermany. From this startingpoint, the optimal power anden-

ergyallocationunder various single- andmulti-use scenarios isdeterminedandanalyzed.

In future research, the sizing and E:P dimensioning for the stationary storage could be

optimized depending on given application combinations. In addition, the developed

framework can be extended to include new applications to explore further combina-

tions,40 aswell as the implementation of amoredetailed efficiencymodel on the inverter

level. Also, adjusting the model’s input parameters and profiles to reflect the different

conditions in other countries would illustrate towhich extent results differ across nations.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and materials should be directed to

and will be fulfilled by the Lead Contact, Stefan Englberger (stefan.englberger@

tum.de).

Materials Availability

This study did not generate new unique materials.

Data and Code Availability

The datasets generated in this study are available from the Lead Contact on request.

Performance Indicators

In this work, four primary performance indicators are used to analyze the techno-eco-

nomic effectiveness of multi-use operation strategies: operating profit, EFCs, SOH,

and PI. Total operating profit is the sum of each application’s profit (Equation 1). The

profit from the PS application,PPS (Equation 2), originates from the reduced costs for

power-related surcharges. Thus, it equals the difference between power costs with

ðCPS;w=BESSÞ and without ðCPS;w=oBESSÞ a BESS used for PS. Likewise, the profit from

SCI, PSCI
t , represents the cost savings for energy-related charges to the end con-

sumer with a BESS increasing self-consumption (Equation 3). Operating profit

from FCR, PFCR, represents the revenue earned on the frequency regulation market.

SMT profit, PSMT, is generated using price spreads at the intraday continuous mar-

ket, whereby energy is sold at high prices and purchased when the price is low.

PTotal = PPS +PSCI +PFCR +PSMT (Equation 1)

PPS = CPS;w=oBESS � CPS;w=BESS (Equation 2)

PSCI
t = CSCI;w=oBESS

t � CSCI;w=BESS
t (Equation 3)

The SOH of the BESS is the quotient of the remaining energy capacity, Eremaining
t , and

the nominal energy content (Equation 4). For each 5-min time step, t, the remaining

energy capacity results from the integrated degradation model, originally published

by Schmalstieg et al.21 It differentiates between cyclic and calendar degradation

while considering parameters such as depth-of-discharge, cumulative charge

throughput, temperature, and voltage level. The EFC of the BESS is calculated by

halving the absolute change in SOC from t � 1 to t (Equation 5). In turn, the SOC
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is defined in Equation 6 as the actual energy content of the BESS, Eactual
t , divided by

its remaining energy capacity.

SOHt =
Eremaining
t

Enominal
(Equation 4)

EFCt =

��Eactual
t � Eactual

t�1

��
23Enominal

(Equation 5)

SOCt =
Eactual
t

Eremaining
t

(Equation 6)

Investment attractiveness is evaluated using the PI (Equation 7), which equals the

NPV of the operation strategy, normalized over the capital expenditures of the

BESS, Cinvest. According to Equation 8, the NPV is defined as the discounted oper-

ating profits,PTotal
n , until the EOL of the BESS is reached, minus the initial investment.

PI =
NPV

Cinvest (Equation 7)

NPV = � Cinvest +
XEOL

n= 1

PTotal
n

ð1+ iÞn (Equation 8)

Multi-use Approaches and Their Implementations

The three types of multi-use presented in this article differ in their approach to how

the energy and power capacities of the BESS are allocated to the multiple applica-

tions (see Figure S3 for illustration). Parallel multi-use applies a fixed allocation,

whereas the sequential approach serves one application exclusively, switching be-

tween applications over time. Dynamic multi-use combines the benefits of both.

In this work’s implementation, the allocation occurs not on an application basis but

on the distinction between BTM and FTM partitions. This means that the limitations

of the parallel and sequential approaches do not apply to multiple applications

within the same partition. Thus, in the sequential strategy with PS + FCR + SMT,

the two FTM applications are combined dynamically. In the model, the default

inverter switching time is 1 h. To guarantee comparability between the strategies,

the optimal allocation values, on average, of the dynamic multi-use strategy are

used as the input for the fixed fractional partitioning of the parallel strategy.

Dynamic Multi-use Optimization Formulation

To model the real-world problem, a mixed-integer linear programming framework is

established in MATLAB. To reduce the computation time for each optimization, we

use the Gurobi solver.41 The optimization objective, given in Equation 9, maximizes

the operating profit from FCR provision and SMT, PFCR
t and PSMT

t , and minimizes the

energy and power costs for the end consumer, CBTM;E
t and C

BTM;P
t . The opportunity

costs of battery cycles, Ccycle, are also minimized and calculated using Equation 10,

whereby the capital expenditures of the BESS are divided by a conservative estimate

of total EFCs over the lifetime of a BESS, EFCexpected. The resulting estimated capital

expenditures per cycle are multiplied by the cycles per time step. This ensures that

only activities that generate higher profitability than the cycle opportunity costs are

executed. By limiting less profitable cycles, degradation is reduced and degradation

awareness is thereby introduced to the model.

max z ; z =
XN
t = 1

�
PFCR

t + PSMT
t � CBTM;E

t

�� CBTM;P � Ccycle (Equation 9)

ll
OPEN ACCESS

Cell Reports Physical Science 1, 100238, November 18, 2020 9

Article

5 Multi-use on large-scale battery storages

80



Ccycle =
XN
t = 1

�
EFCt 3

Cinvest

EFCexpected

�
(Equation 10)

In the following, the model constraints of the optimization problem are introduced,

first for the implementation of the power and energy partitioning of the storage and

then the respective storage applications examined in this work: PS, SCI, FCR,

and SMT.

Energy and Power Allocation

The battery topology, which includes the cells, inverters, busbar, electricity meters,

EMS, thermal management system, and battery management system, is central to

enabling the power and energy allocation implemented in this article (see Figure S5

for the detailed topology). To enable the distinction between BTM and FTM, the

physical storage system is divided into two BTM and FTM partitions.25 It is essential

that the energy flow between the BTM and FTM partitions is prohibited, for regula-

tory reasons (i.e., unbundling laws that denote the separation of different parts of the

electricity value chain).18

In the following, the constraints governing the energy and power characteristics of

the storage are outlined. To calculate the actual energy content of the two storage

partitions and to operate the BESS within a technically feasible area, Equations 11

and 12 are introduced. These consider the actual energy content of the respective

storage partition at the previous point in time, Eact
t�1, the energy charged, ECH

t , and

energy discharged, EDCH
t during the time step t. The in-going and out-going energy

flows are calculated considering the efficiency values of the system components dur-

ing charging, hCH, and discharging, hDCH. The usable energy content, Euse
t , of the

storage partitions can be understood as reserved energy per partition, and

the self-discharge, ESD
t , is weighted proportionally for each partition, based on the

reserved energy content.

Eact;BTM
t = Eact;BTM

t�1 +ECH;BTM
t 3 hCH � EDCH;BTM

t 3
1

hDCH
� ESD

t 3
Euse;BTM
t

Euse
t

(Equation 11)

Eact;FTM
t = Eact;FTM

t�1 +ECH;FTM
t 3 hCH � EDCH;FTM

t 3
1

hDCH
� ESD

t 3
Euse;FTM
t

Euse
t

(Equation 12)

Due to battery cell degradation, the usable energy content on the system level de-

clines over time. Equation 13 ensures that the BTM and FTM partitioning is upheld

for the usable energy content. The actual energy content is required to calculate

ongoing processes on the physical BESS level, such as the calendar and cycle degra-

dation losses. Since the actual energy content per partition may move within the

reserved or usable energy range, this is considered in the mathematical formulation

using the inequalities in Equations 14 and 15, where Eact;BTM
t and Eact;FTM

t are defined

as the respective actual energy contents of the storage partitions.

Euse
t = Euse;BTM

t +Euse;FTM
t (Equation 13)

Eact;BTM
t %Euse;BTM

t (Equation 14)

Eact;FTM
t %Euse;FTM

t (Equation 15)

In addition to the energy-related component of the storage system, the power elec-

tronics is the decisive factor for the system’s power and consist of several inverters.

Equation 16 ensures that all of the inverters of the BESS xt are allocated to either the

BTM or FTM partition, where xBTMt and xFTMt represent the integer number of
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allocated inverters for the two partitions. Hence, unlike the allocation of energy

capacity, which is continuous, the power capacity allocation is discrete (see Figures

3D and 3E).

xt = xBTMt + xFTMt (Equation 16)

Peak Shaving

The inclusion of power-related costs in electricity billing creates an incentive to

reduce peak power demand.10 Although the electricity tariff structures differ by

country, power-related costs are generally implemented at least for a portion of

electricity consumers, with the highest peak power within a billing period, typically

of 1 year, being multiplied by the power surcharge. In Germany, electricity con-

sumers with an annual consumption >100 MWh are required to pay a power sur-

charge in addition to the grid tariff for consumed energy.42 The power price and

grid tariff (energy charge) depends on the consumer’s residual load profile.42 For

a detailed listing of assumed parameters, see Table S1. The network charges, which

consider the costs for upstream grid levels, grid infrastructure, provision of system

services, and the coverage of transmission losses, are reflected in the energy and

power surcharges.

The PS application is particularly interesting with regard to stationary energy stor-

age,43 because with this flexibility, high power peaks can be covered by the BESS,

which is recharged at times of low load. Value is created by decreasing themaximum

power peak in the billing period, bPBTM
, which when multiplied by the power sur-

charge, pBTM;P, results in lower power-related expenses, CBTM;P (Equation 17):

CBTM;P = pBTM;P 3 bPBTM
(Equation 17)

The prediction quality of the power peaks is significant. Here, not only the height of

the peak but also its energy content is relevant, since the integral of the power needs

to be covered by the BESS. Thus, considering the residual load, it is essential to

define an effective PS threshold above which the power is provided by the storage

system. In the multi-use operation of a BESS, an appropriate PS threshold is even

more vital. If the peak shaving limit is too low, a high amount of energy and power

is reserved for the PS application, which can limit or prevent the service of other

applications.

The residual load profile used is selected from a sample set of commercial and indus-

trial profiles, resulting in some sample bias (see the input profile information in the

Supplemental Experimental Procedures and Figures S10 and S11 for the effect on

the profitability of different residual load profiles).

Self-Consumption Increase

In general, decentralized renewable generation is incentivized using feed-in tariffs

or other demand-pull policies,10 whereby the producer receives a remuneration

price for energy injected into the grid. Typically, the purchase price, or grid tariff,

is higher than the remuneration offered, leading to an incentive to maximize self-

consumption.28,29 If the generated power exceeds the load, then a BESS can be

used to reduce the supply demand gap. In Germany, where the incentive to

self-consume is very pronounced for households, the SCI application is cost-effec-

tive.44 The baseline sample set shows only rare occasions of negative residual

load, meaning that the generated power is generally lower than the demand.

Thus, there is little to no excess power for the energy storage to buffer, resulting

in limited added value from this application. Under different scenario conditions
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(i.e., with greater dimensioning of the renewable generator), this application would

be more appropriate.

For a prosumer of renewable generation, net electricity costs (energy charge),

C
BTM;E
t , in a self-consumption scenario are calculated by subtracting the electricity

revenues from the electricity purchase expenses (Equation 18), whereby EBTM;sell
t ,

EBTM;purch
t , pBTM;E;purch, and pBTM;E;sell, are the energy sold, purchased, grid tariff,

and feed-in tariff remuneration, respectively. See Table S1 for assumed values.

CBTM;E
t = EBTM;purch

t 3pBTM;E;purch � EBTM;sell
t 3pBTM;E;sell (Equation 18)

Frequency Containment Reserve

Within the ENTSO-E transmission grid, three products for electricity balancing exist:

FCR, frequency restoration reserve, and replacement reserve.45 These three prod-

ucts of the load-frequency-control structure in turn contain several processes. The

primary control reserve, which is assigned to the FCR product, is the most econom-

ically interesting process for BESSs in central Europe, and therefore also in Germany.

Within the FCR provision, the Austrian, Belgian, Dutch, French, German, and Swiss

transmission system operators purchase the FCR service in a common market. The

provided FCR must be offered in 1-MW increments. From July 2020, the duration

of product delivery was reduced from daily to 4-h blocks.45 The greater flexibility

of the 4-h provision blocks is implemented in this model.

For the stable provision of FCR, a BESS must be designed to provide the allocated

FCR power at any time for an extra 15 min.46 Also, the BESS should guarantee 25%

additional reserve power to cover scheduled transactions on a spot market, keeping

the SOC in the permitted range during a full unilateral FCR call.46 Hence, for the pro-

vision of 1 MW FCR power, the rated power of the storage system must be at least

1.25 MW, whereby the 0.25 MW reserve is also available for the SMT application.

The usage of this reserve power by BTM applications is not permitted since the

constraint for FCR reserve power would be violated.

During an active FCR period, the EMS of the BESS must react without delay to any

frequency fluctuation. This means that the FCR active power is a function of the

grid frequency with certain degrees of freedom. One of these degrees of freedom

is the overfulfillment of FCR power, by up to 20%. Within the frequency dead

band of G10 mHz from the nominal grid frequency of 50 Hz, the technical rules

for providing FCR are less strict.46

Value is generated from FCR provision through the price awarded per MW, pFCR
t ,

multiplied by the total FCR power, PFCR;alloc
t (Equation 19). However, a portion of

this generated value can be shared with an aggregator.

PFCR
t = PFCR;alloc

t 3pFCR
t (Equation 19)

In our model, an aggregator provides flexibility in the FCR application, allowing the

battery operator to participate in the market with smaller power portions than the 1

MW requirement. For this service, the aggregator is allocated a portion of the remu-

nerated power, which is linearly dependent on the bid size. The smaller the bid size,

the greater the risk and portion of remunerated power received by the aggregator.

Equation 20 shows the linear relationship between the power remunerated for the

FCR provision, PFCR;rem
t , and the bid power, where k is the slope and d the y-intercept

(see Equations S1 and S2 for the mathematical definition of k and d). With an

increasing k, the incentive for the battery operator to participate in the FCR market
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with high power bids also increases, so as to minimize the relative surcharge paid to

the aggregator. (See Table S1 for the assumed values applied to the FCR applica-

tion.) It turns out that with the resulting incentive to bid with 1 MW when possible,

the aggregator is not strictly necessary, and the FCR profitability potential would

be higher without an aggregator. Still, we chose this implementation as it is more

realistic for small players who are otherwise unable to participate in the FCR market

and are thus willing to pay for the provided flexibility.

PFCR;rem
t =

�
PFCR;alloc
t 3 k+d; PFCR;min%PFCR;alloc

t %PFCR;max

0; otherwise
(Equation 20)

Spot Market Trading

Another FTM application for BESSs is energy trading on spot markets. In Germany,

the three markets day-ahead auction, intraday auction, and intraday continuous

market are of interest for the participation of BESSs.47 Since BESSs have particularly

short response times and are generally designed for a short temporary storage of

energy, it is economically advantageous to have high price differences within short

time spans.26 With high price spreads, the economic result of arbitrage trading

improves.

Three price signals from the intraday continuous market are used: weighted average

price, low price, and high price. The first demonstrates only meager price variations,

whereas the latter two represent the maximum variation possible. Thus, profits are

calculated for both the weighted average and high–low price signals, representing

the worst- and best-case results, and then their average is presented as a realistic

midpoint (see Figure S12). Depending on several factors, including the sophisticat-

ion of the intraday continuous price forecast and response time of communication

equipment, the real-world implementation of the SMT application will generate

higher or lower profits than the assumed midpoint.

To ensure that power is not purchased and sold during the same time step, Equa-

tion 21 is introduced, where a
FTM;purch
t and aFTM;sell

t are binary variables.

aFTM;purch
t + aFTM;sell

t %1 (Equation 21)

According to existing market regulations, the purchased and sold power, P
FTM;purch
t and

PFTM;sell
t ,mustmeet theminimumorder requirement,PSMT;MIN, of 100 kW47 (Equations22

and 23). The minimum offer duration period of 15 min is also maintained in our model.

aFTM;purch
t 3 PSMT;MIN%PFTM;purch

t (Equation 22)

aFTM;sell
t 3 PSMT;MIN%PFTM;sell

t (Equation 23)

Thus, value generation through the SMT application, PSMT
t , occurs with the realiza-

tion of arbitrage opportunities (Equation 24), where high selling prices, pSMT;sell
t ,

and low purchase prices, p
SMT;purch
t , are used to generate profit.

PSMT
t = Dt

�
PFTM;sell
t 3 pSMT;sell

t �PFTM;purch
t 3 pSMT;purch

t

	
(Equation 24)

In our model, for each transaction on the spot market, the physical delivery is also

executed.

SUPPLEMENTAL INFORMATION
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2020.100238.

ll
OPEN ACCESS

Cell Reports Physical Science 1, 100238, November 18, 2020 13

Article

5 Multi-use on large-scale battery storages

84



ACKNOWLEDGMENTS

We gratefully acknowledge the financial support provided by the Bavarian Ministry

of Economic Affairs, Energy, and Technology via the research projects StorageLink

(grant no. IUK-1711-0035) and BASE.V (grant no. DIK-1908-0008), supported by

Bayern Innovativ. The authors express their gratitude to U. Bürger for his time and

valuable discussions, particularly in regard to the applicability of this study to real-

world BESSs.

AUTHOR CONTRIBUTIONS

S.E., A.J., and H.H. designed the study. S.E. developed the model and optimization

algorithm. S.E. and H.H. carried out the data search. S.E. and H.H. carried out the

analyses. S.E., A.J., and H.H. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 25, 2020

Revised: September 22, 2020

Accepted: September 28, 2020

Published: November 4, 2020

REFERENCES

1. Jacobson, M.Z., Delucchi, M.A., Bauer, Z.A.,
Goodman, S.C., Chapman, W.E., Cameron,
M.A., Bozonnat, C., Chobadi, L., Clonts, H.A.,
Enevoldsen, P., et al. (2017). 100% Clean and
Renewable Wind, Water, and Sunlight All-
Sector Energy Roadmaps for 139 Countries of
the World. Joule 1, 108–121.

2. Obama, B. (2017). The irreversible momentum
of clean energy. Science 355, 126–129.

3. Culver, W.J. (2010). High-Value Energy Storage
for the Grid: A Multi-Dimensional Look. Electr.
J. 23, 59–71.

4. Denholm, P., and Hand, M. (2011). Grid
flexibility and storage required to achieve very
high penetration of variable renewable
electricity. Energy Policy 39, 1817–1830.

5. Lott, M.C., Kim, S.I., Tam, C., Houssin, D., and
Gagne, J.F. (2014). Technology Roadmap -
Energy Storage (International Energy Agency).

6. Gallo, A.B., Simões-Moreira, J.R., Costa, H.,
Santos, M.M., and Moutinho dos Santos, E.
(2016). Energy storage in the energy transition
context: a technology review. Renew. Sustain.
Energy Rev. 65, 800–822.

7. Kittner, N., Lill, F., and Kammen, D.M. (2017).
Energy storage deployment and innovation for
the clean energy transition. Nat. Energy 2,
17125.

8. Schmidt, O., Hawkes, A., Gambhir, A., and
Staffell, I. (2017). The future cost of electrical
energy storage based on experience rates.
Nat. Energy 2, 1–8.

9. Bhatnagar, D., Currier, A., Hernandez, J., Ma,
O., and Kirby, B. (2013). Market and Policy
Barriers to Energy Storage Deployment (US
Department of Energy).

10. Battke, B., and Schmidt, T. (2015). Cost-efficient
demand-pull policies for multi-purpose
technologies – the case of stationary electricity
storage. Appl. Energy 155, 334–348.

11. Braff, W.A., Mueller, J.M., and Trancik, J.E.
(2016). Value of storage technologies for wind
and solar energy. Nat. Clim. Chang. 6, 964–969.

12. Nykvist, B., and Nilsson, M. (2015). Rapidly
falling costs of battery packs for electric
vehicles. Nat. Clim. Chang. 5, 329–332.

13. Zame, K.K., Brehm, C.A., Nitica, A.T., Richard,
C.L., and Schweitzer, G.D., III (2018). Smart grid
and energy storage: policy recommendations.
Renew. Sustain. Energy Rev. 82, 1646–1654.

14. Malhotra, A., Battke, B., Beuse, M., Stephan, A.,
and Schmidt, T. (2016). Use cases for stationary
battery technologies: a review of the literature
and existing projects. Renew. Sustain. Energy
Rev. 56, 705–721.

15. Aneke, M., and Wang, M. (2016). Energy
storage technologies and real life applications
– a state of the art review. Appl. Energy 179,
350–377.

16. Davies, D.M., Verde, M.G., Mnyshenko, O.,
Chen, Y.R., Rajeev, R., Meng, Y.S., and Elliott,
G. (2019). Combined economic and
technological evaluation of battery energy
storage for grid applications. Nat. Energy 4,
42–50.

17. Fitzgerald, G., Mandel, J., Morris, J., and
Touati, H. (2015). The Economics of Battery
Energy Storage: How Multi-use, Customer-
Sited Batteries Deliver the Most Services and
Value to Customers and the Grid (Rocky
Mountain Institute).

18. Stephan, A., Battke, B., Beuse, M.,
Clausdeinken, J.H., and Schmidt, T. (2016).
Limiting the public cost of stationary battery

deployment by combining applications. Nat.
Energy 1, 16079.

19. Lombardi, P., and Schwabe, F. (2017). Sharing
economy as a new business model for energy
storage systems. Appl. Energy 188, 485–496.

20. Keil, P., Schuster, S.F., Wilhelm, J., Travi, J.,
Hauser, A., Karl, R., and Jossen, A. (2016).
Calendar Aging of Lithium-Ion Batteries: I.
Impact of the Graphite Anode on Capacity
Fade. J. Electrochem. Soc. 163, 1872–1880.
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Supplemental Experimental Procedures

Input Profiles

For the residual load 37 real-world profiles from industrial and commercial customers in Germany
are utilized.1 To analyze the effect of the grid frequency on frequency containment reserve (FCR)
application in single and multi-use, frequency data from 2014 to 2019 is used.2 The compensation
of the FCR is considered with the data price signal from 2019 in Germany.3 As the product duration
for FCR has changed in July 2019 to daily auctions,4 the daily price scheme is also applied for the
first half of 2019. In order to comply with regulations beginning with July 2020, the daily signal
with a 4 hour resolution is applied in this work.4 The three spot market trading (SMT) price signals
(weighted average, high, and low) are from the German intraday continuous market from 2019.5

Table S1: Model parameters for optimization, energy storage, and applications.

Parameter Value Unit Parameter Value Unit

Optimization parameters Peak shaving (PS)6

Sample time 5 minutes Power surcharge 100 EUR/kW
Optimization horizon 24 h Billing period 1 a

Rolling period 8 h Self-consumption increase (SCI)7

Storage system Grid tariff 0.1405 EUR/kWh
System energy content 1,340 kWh Remuneration price 0.1061 EUR/kWh

System power 1,250 kW Frequency containment reserve (FCR)4

Inverter amount 24 - Provision period 4 h
Initial SOH 100 % Minimum power 100 kW
SOC limits [0, 100] % Maximum power 1,000 kW
Battery efficiency 97 %8 Minimum remuneration 60 %
Inverter efficiency 96 %9 Maximum remuneration 85 %
Maximum charge rate 1 C10 Nominal grid frequency 50 Hz
Maximum discharge rate 1 C10 Frequency droop 0.4 %
Cell chemistry NiMnCo (NMC)11 Frequency dead band 10 mHz
Self-discharge 1.5 %/month8 Overfulfillment 120 %

Ambient temperature 20 ◦C11 Stock market trading (SMT)5

Nominal cell capacity 2.05 Ah11 Trading period 15 minutes
EFC capability 3,000 EFC11 Minimum power 100 kW
Annual consumption 20 GWh Trading fee 0.1425 EUR/MWh
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Figure S1: Illustration of remaining profitability per application, relative to single-use operation, after
combining multiple applications on the same battery energy storage system. High synergistic effects are
illustrated, between 83.6 % and 99.9 % of original earning potential maintained with multi-use operation. The
shown applications are peak shaving (PS), frequency containment reserve (FCR), and spot market trading
(SMT).
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Figure S2: State of health (SOH) development over time. Seven single and multi-use scenarios are
shown for the duration until the end-of-life of the BESS is reached. The shown applications are peak shaving
(PS), frequency containment reserve (FCR), and spot market trading (SMT).
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Figure S3: Overview of the three methodologies of stacking applications in multi-use: sequential,
parallel, and dynamic (adapted from 12). The y-axis depicts the degree of allocation, which can be either
a portion of the battery’s power or energy capacity. The latter is limited by the system’s capacity (Ah),
whereas the former is limited by both the minimum value of the battery cell’s C-Rate and the system’s power
electronics. Sequential multi-use (A) exhibits the exclusive service of one application at a time whereas
all applications are served simultaneously in parallel multi-use (B). Dynamic multi-use (C) is a hybrid of
sequential and parallel multi-use. Unlike parallel multi-use, where the degree of allocation per application
remains fixed over time, dynamic multi-use adjusts the portioning of the storage’s power and energy capacities
dynamically over time.
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Figure S4: Method to implement the dynamic multi-use optimization on a real-world battery energy
storage system (BESS). Prediction data, system parameters, market and regulatory constraints flow into the
optimization model, with the prediction data updated at regular intervals. Optimizations are executed with
each addition of new information and the strategy implemented on the BESS by the energy management
system. System feedback from the BESS to the optimization model serves to improve the interface and
adjust parameters to converge them to the real-life values.
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Figure S5: Topology of system power flows differentiating between behind-the-meter (BTM) and
in-front-of-the-meter (FTM) applications. The system includes the load, generator, electricity meters,
and the battery energy storage system (BESS) (in grey). Included in the BESS are its battery packs, power
electronics, and peripheral components, e.g. the energy management system (EMS), thermal management
system (TMS), and battery management system (BMS). The orange and blue lines depict how the inverters
enable the allocation of storage to either BTM or FTM applications. This process is directed by the BESS’s
EMS. With an increasing number of inverters, the system flexibility can be increased, which in turn also
improves the efficiency of the BESS. 13 Another essential attribute of the system’s topology is the direct
current busbar connecting the inverters and the battery packs. Each battery pack comprises of several
battery cells. Without the busbar, each battery pack would be connected to only one inverter. Thus, the
busbar enables flexibility between power and energy constraints in the system.
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optimized within every optimization horizon tOH, can represent any optimization variable (e.g. state of
charge). After each rolling period tRP a new optimization is conducted, leading to multiple re-evaluations
of system states from previous optimizations.
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Figure S7: Comparison of state of health development of a battery energy storage system until end
of life with and without degradation awareness (DA). The analyzed applications are peak shaving (PS),
frequency containment reserve (FCR), and spot market trading (SMT). Two scenarios are shown, the single-
use case with only SMT and the multi-use case with all applications, PS+FCR+SMT, because the SMT
application is the one most influenced by the consideration of cycle opportunity costs. Battery degradation
awareness in the model ensures that only the most profitable trades are implemented, to avoid undue cycles.
The lifetime extending effect of battery degradation awareness is reflected in the significantly higher net
present value per EUR invested.
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Figure S8: Relative profitability sensitivity analysis depicting the effect of various input frequency
profiles. The multi-use scenario, with the peak shaving (PS), frequency containment reserve (FCR), and spot
market trading (SMT) application, is compared with the single-use FCR scenario, as this is the application
most sensitive to input frequency. Profitability is shown relative to the multi-use scenario with 2019 data.
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Figure S9: Normalized profit variation comparison of single-use versus multi-use. The multi-use sce-
nario, with the peak shaving (PS), frequency containment reserve (FCR), and spot market trading (SMT)
application, is compared with the single-use FCR scenario, as this is the application most sensitive to input
frequency. Profit is normalized to the respective 2019 results. The single-use scenario shows higher sensitivity
to different frequency profiles than the multi-use scenario, but overall variation is minimal.
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Figure S10: Relative profitability sensitivity analysis depicting the effect of various input residual
load profiles from commercial players in Germany. The multi-use scenario, with the peak shaving (PS),
frequency containment reserve (FCR), and spot market trading (SMT) application, is compared with the
single-use PS scenario, as this is the application most sensitive to residual load. Profitability is shown relative
to the multi-use profitability using the twenty-first residual load profile as a base case, chosen due to its
representative results. Gap between single- and multi-use profitability is shown to be quite steady.
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Figure S11: Comparison of normalized profit variation due to residual load profile. The multi-use
scenario, with the peak shaving (PS), frequency containment reserve (FCR), and spot market trading (SMT)
application, is compared with the single-use PS scenario, as this is the application most sensitive to residual
load. Profit is normalized to the respective results using the twenty-first residual load profile (base case,
chosen due to its representative results). The single-use scenario shows significantly greater sensitivity to
different residual load profiles than the multi-use scenario.
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Figure S12: Lower and upper bound of multi-use profitability depending on price signal resolution.
The profitability of the multi-use scenario is depicted in dependence of the residual load profiles. The
upper bound represents maximum profitability using the high-low price signals from the intraday continuous
market. Analogously the lower bound represents the worst case, where the weighted average price is utilized.
Profitability is normalized around the mean between the lower and upper bound for each residual load profile.
The mean profit of the twenty-first residual load profile (base case, chosen due to its representative results),
can vary by ±35 %, depending on implementation success.

Aggregator Model

The aggregator model for the shared revenue from the frequency containment reserve (FCR) appli-
cation consists of the two equations,

k =
rFCR,max × PFCR,rem,max − rFCR,min × PFCR,rem,min

PFCR,rem,max − PFCR,rem,min
(S1)

d = PFCR,rem,min
(
rFCR,min − k

)
(S2)

where the ratio of remuneration received by the battery energy storage system’s operator ranges
from rFCR,min = 60% to rFCR,max = 85% and the range of FCR power provided is between
PFCR,rem,min = 100 kW and PFCR,rem,max = 1000 kW.

Despite the degrees of freedom provided by the aggregator, the single-use FCR scenario shows
that 1 MW is bid 95 % of the time. Still, only 85 % of generated revenue is received by the storage
system operator, showing that the flexibility of the aggregator is not strictly necessary and limiting
the profitability of this use case. In the multi-use scenario, the available flexibility is utilized to a
greater extent; still 1 MW is bid 70 % of the time. Despite the higher profit potential operating
without an aggregator, this implementation is chosen, because it is more realistic for small storages
to outsource the risk to an aggregator.
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6 Electric vehicle multi-use

Building on the studies from Section 2.3.6 and Chapters 3 to 5, this chapter presents the paper Electric
vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid
context. As already established for large-scale, stationary storage systems, the multi-use operation
with EVs is analyzed in this chapter. A German commercial electricity consumer with an EV fleet is
defined as the basis for the study. To observe the influence of the fleet size on the operation strategy,
the number of EVs is varied between one and 150 vehicles [47].

As in the publication shown in Chapter 5, the following four applications SCI, PS, FCR, and SMT are
considered [46]. Due to the requirements for participation in these applications and their markets, it
is sometimes necessary to offer certain minimum quantities of power or energy. Although the energy
capacities of EVs are steadily increasing, they are usually smaller than those of large-scale stationary
units. To meet the requirements of minimum quantities, it is possible to use aggregator models or to
accumulate multiple EVs into larger fleets that satisfy the power and energy criteria (cf. Section 2.4.3).
Since EVs are primarily purchased for their provision of mobility, this application is considered and
prioritized in the model. Compared to the four applications mentioned above, the designed mixed-
integer linear programming framework ev_mu_opt5 does not decide how much the mobility provision
application should be served. Based on defined driving, parking, and plug-in profiles created with the
emobpy tool [187], the framework is given hard constraints on when and how the vehicle is used for
mobility provision.

Since each of the EVs in the fleet can only serve other applications if it is connected to the energy
system, the plug-in times of the vehicles are crucial. During the plug-in periods of an EV, the mobile
energy storage behaves similarly to a stationary storage. During these time periods, the EMS of the
EV fleet will also behave opportunistically and try to maximize the added value from the individual
applications. This in turn means that increased energy throughput accelerates battery cell degradation,
which is why opportunity costs for energy throughput are also implemented in this framework. To
accurately calculate cell degradation, the optimizer is embedded in the MPC framework together with
a semi-empirical degradation model [238]. In contrast to stationary systems, there are no calibrated
electricity metering systems available for EVs. However, since the distinction between BTM and FTM
applications must also be applied here, the optimization algorithm in the EMS must guarantee that no
energy is exchanged between the partitions. This delimitation can lead to complex problems, especially
with mobility provision. For example, if the actual energy content of the BTM partition is empty, but
there is still energy available in the FTM partition to power the electric motors, the vehicle can be
driven from a technical point of view, but from a regulatory point of view, this energy is not allowed
to be used for mobility purposes (cf. Section 2.2). To solve this problem, a unidirectional energy flow
from FTM to BTM partition is implemented, which allows the stored FTM energy to be used also for
mobility provision. This showcases the technical potential over the regulatory hurdles. Since BTM
and FTM electricity have different price structures and FTM generally benefits from reduced levies

5 Code is publicly available at the Gitlab repository: https://gitlab.lrz.de/open-ees-ses/ev_mu_opt
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6 Electric vehicle multi-use

and surcharges [178], it must be guaranteed that the price for FTM electricity used for driving is equal
to BTM electricity. For this purpose, the optimization model always tracks how much energy flows
from the FTM application to the BTM application, and the necessary levies and surcharges are added
in accordance with this energy flow.

As with stationary storage, the study shows that profitability increases over the lifetime of the vehicles
as more applications are served. By setting a commercial electricity consumer, the vehicle usage
patterns are very similar, which is also reflected in the fleet size results. In the context of heterogeneity,
the plug-in period is particularly important, as it is exclusively during this time period that additional
applications, apart from mobility provision, can be served.

The combination of technical, economic, and regulatory constraints is a major strength of this research.
By establishing a methodology for EV multi-use, which shows the cash-flow generating potential of a
fleet of EVs, this paper makes an important contribution to research, enabling the transition to electric
mobility.

Author contribution Stefan Englberger developed the idea of the study, developed the EV multi-use
framework, carried out the simulations, and analyzed the data. Kareem Abo Gamra helped to develop
the model and analyze the data. Michael Schreiber helped to parameterize the model and develop the
regulatory framework. The manuscript was written by Stefan Englberger, Kareem Abo Gamra, and
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A B S T R A C T

Driven by the need for a sustainable energy transition and a paradigm shift in the energy and mobility
sectors, the popularity of electric vehicles is on the rise. Learning curve effects and falling investment costs
further accelerate the deployment of electric vehicles with lithium-ion batteries; and as a multi-purpose
technology, they are predestined for serving multiple applications. In this work we present an electric vehicle
multi-use approach for a German commercial electricity consumer with an electric vehicle fleet. We analyze
which behind-the-meter and in front-of-the-meter applications are particularly suitable for electric vehicles
from a techno-economic point of view. In addition to providing the mobility service, we investigate the
applications self-consumption increase, peak shaving, frequency regulation, and spot market trading. For the
implementation of the approach, we introduce a model predictive control framework in which a mixed-integer
linear programming algorithm is combined with a semi-empirical degradation model. The approach is analyzed
with the investigation of fleet sizes from 1 to 150 vehicles, different application combinations, possible energy
shift between the energy partitions, bidirectional charging schemes, and degradation awareness formulations.
The results show that the deployment flexibility and application synergies increase with the number of stacked
services, leading to additional annual cash flows of up to 2224 EUR per electric vehicle as well as battery
lifetime improvements.
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Nomenclature

Abbreviations

BTM behind-the-meter
EFC equivalent full cycle
EOL end-of-life
EV electric vehicle
FCR frequency containment reserve
FTM front-of-the-meter
MILP mixed-integer linear programming
MPC model predictive control
NMC lithium–nickel–cobalt–manganese-oxide (LiNiCoMnO2)
PS peak shaving
PV photovoltaic
SCI self-consumption increase
SMT spot market trading
SOC state of charge
SOH state of health
V2G vehicle-to-grid

Parameters & variables

Cdegradation economic cost for battery degradation
CPS economic cost for PS application
CPS,optimal economic cost for PS application during optimized

charging mode
CPS,simple economic cost for PS application during simple

charging mode
CSCI economic cost for SCI application
CSCI,optimal economic cost for SCI application during optimized

charging mode
CSCI,simple economic cost for SCI application during simple

charging mode
𝐸BTM,actual actual energy content at BTM partition
𝐸BTM,purchase purchased BTM energy
𝐸BTM,sell sold BTM energy
𝐸BTM,usable usable energy content at BTM partition
𝐸buffer buffer energy content
𝐸drive energy consumption for mobility purposes
𝐸drive,BTM BTM energy consumption for mobility purposes
𝐸FTM,actual actual energy content at FTM partition
𝐸FTM,usable usable energy content at FTM partition
𝐸FTM2BTM energy shift from FTM to BTM partition
𝐸nominal nominal energy content
𝐸SMT,purchase purchased electricity for SMT application
𝐸SMT,sell sold electricity for SMT application
𝐸usable total usable energy content
𝜂CH charging efficiency

𝜂DCH discharging efficiency
f grid frequency
fn nominal grid frequency
fDB frequency dead band
𝑃BTM,CH charging power at BTM partition
𝑃BTM,DCH discharging power at BTM partition
𝑃BTM PS threshold
𝑃CH charging power
𝑃CH,MAX maximum charging power
𝑃DCH discharging power
𝑃DCH,MAX maximum discharging power
𝑃 FCR provided power for FCR application
𝑃 FCR,MAX maximum provided power for FCR application
𝑃 FCR,MIN minimum provided power for FCR application
𝑃 FCR,offer offered power for FCR application
𝑃 FCR,reserve reserve power for FCR application
𝑃 FTM,CH charging power at FTM partition
𝑃 FTM,DCH discharging power at FTM partition
pBTM,E,purchase energy-related price for purchased BTM electric-

ity
pBTM,E,sell energy-related price for sold BTM electricity
pBTM,P power-related price for purchased BTM electric-

ity
pcharges price charges to shift energy from FTM to BTM

partition
pFCR remuneration price for FCR provision
pSMT,purchase price for purchased electricity for SMT applica-

tion
pSMT,sell price for sold electricity for SMT application
PFCR economic profit of FCR application
PPS economic profit of PS application
PSCI economic profit of SCI application
PSMT economic profit of SMT application
𝜎 frequency droop for FCR application
SOCpreference preferred minimum SOC
𝑡 time step
𝑡FCR,reserve reserve time for FCR application
𝑥FCR integer variable that defines if FCR is active
𝑥plugged integer variable that defines if EV is parked and

connected
𝑥SMT,purchase integer variable that defines if electricity is

purchased during SMT
𝑥SMT,sell integer variable that defines if electricity is sold

during SMT

1. Introduction

Rising global awareness of the urgent need for a sustainable energy
transition places increasing pressure on the energy sector to prioritize
resource efficiency and ambitious sustainability targets [1]. This is
accompanied by an increase in renewable energy [2] and a greater
need for energy storage to balance the largely volatile renewable
power generation [3]. Due to learning curve effects [4], battery cell
prices have fallen significantly in recent years [5], with lithium-ion
batteries enjoying especially strong growth [6]. One of their unique
benefits is that battery storage systems can be used in a variety of

applications, such as grid services with stationary battery storage or
mobility provision in electric vehicles (EVs). In the stationary sector, it
is now apparent that combining several applications on a single storage,
or so-called multi-use [7], is economically viable [8], yet still hindered
by regulation [9]. Continuous research and development in the field
of battery EVs is expected to further increase the capacities of lithium-
ion batteries used. Correspondingly, the annual demand for automotive
battery capacity is projected to increase from 300 GWh in 2020 to
between 1.6 and 3.2 TWh per year by 2030 [10]. These installed battery
capacities offer enormous potential to substitute stationary storage
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systems since EVs are primarily purchased for mobility purposes but
spend up to 96% of their lifetime parked and unused [11]. Through
aggregator concepts [12], EVs can support the electricity grid during
idle times by balancing power or storing renewable energy [13]. This
is realized by using either smart unidirectional charging or vehicle-
to-grid (V2G) technology. In the latter case, the vehicle’s energy can
be discharged into the grid and thus offers an enhanced flexibility
potential compared to unidirectional charging [14]. Pools of EVs can
participate in a variety of markets, such as ancillary service markets,
during idle times [15].

With its fast response times [16], the lithium-ion storage technology
is capable of providing a wide range of applications [17], making
it a multi-purpose technology [18]. Due to global demand pull poli-
cies [19], increased deployment [20], and economies of scale [21],
the investment attractiveness is continuously increasing [4]. Although
battery energy storage systems have many advantages in comparison
to other storage technologies, the technology can struggle with prof-
itability issues when applied to single-use cases [22]. When serving one
application only, storage systems often show low utilization [23] and a
high share in idle times [24]. As lithium-ion batteries suffer from inter-
nal degradation processes [25], which also occur during idle times [26],
the fact of a limited lifetime must be considered when defining the
optimal deployment strategy [7]. Literature has shown that for station-
ary storage systems, serving multiple applications simultaneously can
maximize the utilization [27] and therefore minimize the share of idle
times [28]. Three multi-use types are identified – sequential, parallel,
and dynamic multi-use – that differ in the temporal and physical
allocation of the technical capacities of the storage system [27]. With
its capability of providing consumer centered applications, but also grid
and ancillary services [8], batteries yield economic value at different
origins of the electricity value chain [9]. To comply with existing un-
bundling laws, a separation of value generation in the electricity value
chain becomes necessary when serving multiple applications [7]. Thus,
we distinguish between behind-the-meter (BTM) and in front-of-the-
meter (FTM) applications [27]. Technically, this separation between
BTM and FTM applications is achieved by dividing the physical storage
into two virtual partitions and thus allocating the technical capacities
– power and energy – of the system. With this stacking of applications
on an energy storage system the economic value is maximized [29].

V2G describes a smart grid concept [15], where EVs are connected
to the grid with the goal to provide value that goes beyond mobility
provision [30]. This enables a more efficient management of electricity
resources and better renewable energy integration [15], as well as the
potential to mitigate future grid infrastructure investment costs [31].
EVs are an attractive option for these services as they are characterized
by quick response times [11] and a high degree of geographic and
temporal flexibility [32]. One approach for an intelligent integration
of EVs is smart charging, which describes an unidirectional charging
scheme that reduces charging costs and peak load by strategically
timing the charging power [33]. This approach is comparatively easy
to implement as it only requires a suitable charging controller instead
of specialized hardware [34]. However, bidirectional charging also
enables energy to be fed back into the grid, thus allowing the full
spectrum and revenue of services available to conventional stationary
storage systems [35]. This requires more complex, specialized bidirec-
tional chargers [36] and can lead to increased battery aging [37], which
poses a challenge for gaining user acceptance. Therefore, currently
only few car manufacturers provide vehicles capable of bidirectional
charging [30]. Furthermore, where traditional energy grids rely on
centralized and deterministic grid architectures, V2G preferably utilizes
a decentralized approach, in which an aggregator acts as a third party
between multiple EVs and the grid operator [38]. This allows the
aggregator to be treated similarly to a conventional ancillary service
provider and allows an easier integration with reduced communication
infrastructure requirements [39]. Aggregators are often necessary to
meet the minimum power requirements and regulatory prerequisites

that must be fulfilled to participate in existing markets [40]. Due
to these reasons, V2G is especially interesting to commercial fleet
operators [30], such as company fleets [41]. The economic viability
of V2G has been examined in multiple studies with highly varying
profitability results [42]. This is due to V2G viability being dependent
on various factors regarding technology, market structure, policy, and
business models [43]. Future changes that should be implemented to
support the V2G concept include the avoidance of double taxation for
energy charged and discharged, increasing the emphasis on smart grid
solutions and implementing policies that favor small providers, such
as lowering required bidding increments [43]. Furthermore, uniform
technology standards for charging and communication infrastructure
should be implemented [44].

Analogous to stationary storages, where multi-use is key to achiev-
ing profitability [19,45], the stacking of multiple applications is also an
opportunity for EV owners and other involved parties to achieve greater
profitability potential [13]. Whilst research has demonstrated that V2G
can generate revenues for EV owners using single applications such
as frequency regulation [46] or peak shaving [12], to the best of our
knowledge, a viable EV multi-use approach has not yet been presented.
The decisive factor here, is the analysis of which applications are
appropriate for EV multi-use and how the approach can be successfully
implemented using EVs [47].

This paper presents a methodology for EV multi-use, which considers
technical, economic, and regulatory perspectives and constraints. To
fulfill regulatory requirements of unbundling laws [9], the storage
resources are separated into BTM and FTM applications. We focus on
evaluating the following effects:

• Stacking of up to four additional applications on the EV battery,
on top of the vehicle’s mobility provision: self-consumption in-
crease (SCI), peak shaving (PS), frequency containment reserve
(FCR), and spot market trading (SMT)

• Unidirectional charging versus bidirectional V2G operation
• Energy shift from in front-of-the-meter (FTM) to behind-the-meter

(BTM) partition permitted or not permitted
• Battery degradation due to higher storage utilization

Our results demonstrate that EV multi-use – or the utilization of EV
batteries for multiple applications in addition to mobility provision – is
a viable technology that can boost profitability for EV owners and other
stakeholders through a variety of application combinations. Utilizing
a mixed-integer linear programming (MILP) model, the presented EV
multi-use approach makes a valuable contribution to bridge existing
literature gaps, by:

• Evaluating the combination of multiple value streams on a com-
mercial EV fleet

• Distinguishing between behind-the-meter (BTM) and in front-of-
the-meter (FTM) applications for EV fleets

• Allocating both the EV battery’s power and energy capacities to
each of its applications

The paper is structured as follows. In Section 2, we describe the
value streams for EVs and review related literature. Section 3 explains
the methodology of the analysis, the optimization algorithm, and the
model predictive control (MPC) framework. The results of our analysis
are presented in Section 4 and the conclusions are drawn in Section 5.

2. Value streams for electric vehicles

This section describes the five value streams that we investigate
in this work. Besides the state of the art literature for the respective
applications and use-cases, the mathematical formulation is described
in the following subsections.
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2.1. Mobility provision

Although vehicles spend approximately 96% of their lifetimes
parked, providing mobility is their primary purpose [48]. The main
categories of EV use types are domestic and commercial vehicles [30].
While the former do not usually follow any fixed schedules, commercial
vehicles not only follow predictable patterns, but are also usually
parked in the same area and characterized by fewer actors and more
experience [30], making them particularly attractive for V2G con-
cepts [41]. Further distinctions must be made in regard to vehicle usage
patterns. Two main types of domestic driver categories are commuters
and supplementary users; supplementary users are characterized by
long plug-in times at home and occasional trips, while commuters
show very predictable trips to their workplace on weekdays [35]. Using
EVs in vehicle-to-building settings reveals economically interesting
synergies between charging times, photovoltaic (PV) generation and
building energy consumption [49].

V2G participation depends heavily on successfully mitigating so-
cial hurdles, such as range anxiety, which is why it is important to
implement rules concerning a preference state of charge (SOC) [50].
This is implemented in our optimization framework in the form of soft
constraints that apply opportunity costs to energy levels that are below
the preference SOC threshold (cf. Eq. (1)). Here, the actual energy
content of the BTM partition and the buffer energy must be equal to
or greater than the energy content at the preference SOC level. This is
set to 20% [51], corresponding to approximately 64 km range when re-
garding a battery with a capacity of 80 kWh and a conservative average
energy consumption of 0.25 kWh/km [52]. With the consideration of
the binary variable 𝑥plugged, the opportunity costs for the buffer energy
only apply when the vehicle is connected to a charging port, which
leaves the driving state of the vehicle unaffected by the constraint. For
the mobility provision the BTM energy is regarded, as the FTM energy
is spared certain surcharges and may not be used for driving.

𝐸nominal ⋅ SOCpreference ⋅ 𝑥plugged𝑡 ≤ 𝐸BTM,actual
𝑡 + 𝐸buffer

𝑡 (1)

2.2. Self-consumption increase

An increasing number of countries have implemented feed-in-tariffs
and demand pull policies to incentivize an increase in renewable energy
technologies [19]. The gap that arises between the relatively low
price granted by subsidies (pBTM,E,sell) and the retail purchase price
(pBTM,E,purchase), provides prosumers with an incentive to increase self-
consumption [53]. As solar panel prices decrease and private and
commercial buildings are thus increasingly equipped with micro gen-
eration [45], storage systems become a promising tool to perform
SCI and thus reduce electricity costs [35] and carbon emissions [54].
This is especially economically interesting in countries with high retail
electricity prices [45]. A further benefit of SCI is a reduction in stress
on the electricity distribution grid [54], especially through peak PV
generation, which mitigates future infrastructure investment costs and
ensures a more efficient grid operation [55].

When applied to V2G concepts, the viability of SCI becomes espe-
cially dependent on mobility behavior [54], as the vehicle plug-in times
should match times of PV generation [56]. This can be difficult with
typical commuter driving profiles [35]. In home applications with non-
commuters, V2G based SCI can render conventional stationary storage
systems obsolete [35].

CSCI
𝑡 = 𝐸BTM,purchase

𝑡 ⋅ pBTM,E,purchase − 𝐸BTM,sell
𝑡 ⋅ pBTM,E,sell (2)

PSCI
𝑡 = CSCI,simple

𝑡 − CSCI,optimal
𝑡 (3)

In our paper, workplace SCI with an aggregated fleet of EVs is con-
sidered. To quantify the profit from this application, the total optimized
electricity cost is calculated as the difference between the purchase
costs and revenues from selling energy, as in Eq. (2). As SCI is a

consumer-oriented application, all considerations here refer to the BTM
partition. To calculate the profit, the electricity costs when performing
optimized SCI are compared to the costs of a reference case, in which
the EVs are simply charged to maximum SOC whenever possible (cf.
Eq. (3)).

2.3. Peak shaving

Contrary to residential electricity consumers, commercial players
often consume significant levels of electricity from the grid [57]. For
this reason, such consumers are not only charged for the consumed
energy, but also for their peak power demand [57], which consti-
tutes significant costs [58]. In the case of Germany, power demand
is averaged over 15 minute intervals and the peak power over the
entire billing period is utilized to determine the power charges, which
consumers with an annual consumption above 100 MWh are required to
pay [7]. Besides high consumer costs, large power spikes also constitute
more stress on the grid [49], which will require an increase in power
generation or an upgrade of the grid infrastructure [59]. To avoid
these problems, PS is utilized, which describes strategies to reduce the
peak power demand. In the past, this has been practiced among other
by deploying diesel generators [57]. For the future however, demand
side management strategies and energy storage systems [60], especially
batteries, have been proposed [58]. With the addition of EVs and
potential uncontrolled charging simultaneity, the problem of peak loads
is further exacerbated [49]. Therefore, to mitigate these problems,
optimized V2G strategies can perform PS [49]. While this application
is argued to be of high value for V2G, it can be very energy intensive,
which can risk excessively discharging the EV battery [11]. Since PS
is an application that is only required during demand peaks [60],
it naturally lends itself to multi-use approaches [7]. With enough
participating vehicles, V2G can completely replace other methods of
performing PS [61].

To effectively perform PS, precise predictions of power peaks are
vital, since the battery must provide the energy and power required
to fully cap the peak [57]. Therefore, it is also essential to define an
appropriate power threshold, above which PS is applied (cf. Fig. 1).
An exceedingly low threshold results in a large energy demand for
the PS application and excessively drains the battery, whereas a too
high threshold leaves PS potential untapped. For this reason, the PS
threshold, 𝑃BTM, is included as a decision variable in our optimization
framework.

CPS = 𝑃BTM ⋅ pBTM,P (4)

𝑃BTM,purchase
𝑡 − 𝑃BTM,sell

𝑡 ≤ 𝑃BTM (5)

PPS = CPS,simple − CPS,optimal (6)

The basis for the PS optimization is the calculation of peak power
costs as the product of the highest power peak and the power price in
Eq. (4). This power peak is embedded in a constraint, where it serves
as the upper bound of the difference between purchased and sold BTM
power, as shown in Eq. (5). As for the other BTM application, SCI, the
profit from PS is derived from the cost difference between the optimized
and the reference case (cf. Eq. (6)).

2.4. Frequency containment reserve

Another promising V2G application is the provision of regulation
power to stabilize the grid frequency [62], as this requires high rates
of power within short time periods, which EVs are capable of provid-
ing when connected to the grid [40]. Ancillary service markets are
relatively mature and already established in several countries [22].
With these services the grid frequency in the European network of
transmission system operators for electricity (ENTSO-E) is kept within a
±10 mHz deadband zone around the nominal frequency of 50 Hz [63].
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Fig. 1. Schematic illustration of the four grid applications: self-consumption increase
(SCI) profits from zero crossings of the residual load. During peak shaving (PS) high
load peaks are capped by the energy storage system. Frequency containment reserve
(FCR) describes the provision of power to stabilize the grid frequency. To maximize
the profitability, electricity is purchased and sold using volatile price signals during
spot market trading (SMT).

To do so, the electricity balancing products are divided into frequency
containment reserve (FCR), frequency restoration reserve and replace-
ment reserve [64]. Of these products, primary control reserve under
the FCR category is the most economically interesting in central Eu-
rope [27]. As the penetration of renewable energy sources increases and
traditional synchronous generators become fewer in number, the need
for FCR through storage systems is expected to grow significantly [65].
However, a challenge may arise in the future due to market satura-
tion [12], which leads to sinking FCR remuneration [27] and a decline
in revenue earning potential [22]. FCR must be provided over 4 h
time blocks and the participating storage system must be designed to
provide the allocated power for at least 15 min (𝑡FCR,reserve) [63]. Eq. (7)
constrains the energy committed to the FCR application to never exceed
the allocated actual energy for the FTM partition, while also limiting
the latter, so that the same amount of committed energy can also still be
charged into the usable FTM partition. Thus, both positive and negative
FCR energy can be provided, as FCR is a symmetric product.

𝑃 FCR,offer
𝑡 ⋅ 𝑡FCR,reserve ≤ 𝐸FTM,actual

𝑡

≤ 𝐸FTM,usable
𝑡 − 𝑃 FCR,offer

𝑡 ⋅ 𝑡FCR,reserve
(7)

𝑃 FCR,MIN
𝑡 (f𝑡, fn, fDB, 𝜎, 𝑃

FCR,offer
𝑡 ) ≤ 𝑃 FCR

𝑡

≤ 𝑃 FCR,MAX
𝑡 (f𝑡, fn, fDB, 𝜎, 𝑃

FCR,offer
𝑡 )

(8)

Due to regulatory constraints when regarding assets with limited
energy capacities such as batteries, an additional 25% of the power,
based on the offered FCR power, is guaranteed for scheduled transac-
tions to keep the SOC within the permitted range [63]. In a practical
implementation, such assets would also need to take lag effects into ac-
count, which can arise through scheduled transaction market or energy
management system delays [63]. The provided power can furthermore
be overfulfilled by 20%. Together with the grid frequency and the
degrees of freedom of the application, the lower and upper bounds for
the FCR power provision are derived, as shown in Eq. (8). The power
is calculated as a function of the frequency f𝑡 at time 𝑡, the nominal
grid frequency fn of 50 Hz, the deadband frequency fDB of ±10 mHz,
the frequency droop 𝜎 of 0.4% and the offered FCR power 𝑃 FCR,offer .

Finally, the profit from FCR is calculated as the product of allocated
FCR power and the respective FCR market remuneration in Eq. (9).

PFCR
𝑡 = 𝑃 FCR,offer

𝑡 ⋅ pFCR𝑡 (9)

FCR has been predicted to become one of the most interesting
V2G applications [13]. Previous projects examining V2G based FCR,
such as the Parker project, show that this application can be eco-
nomically viable for EVs, with said project demonstrating average
annual revenues of 1860 EUR per vehicle per year [47]. This however
depends on local market conditions, business models and necessary
infrastructure investments, which could hinder V2G FCR viability [66].
An increasing penetration of EVs without the possibility of providing
frequency regulation services could however be detrimental to power
system stability [38].

2.5. Spot market trading

Arbitrage trading utilizes electricity price differentials to achieve
profit or mitigate charging costs [22], as shown in Fig. 1. In the past,
SMT has not been attractive, especially in single-use scenarios, due to
low market price spreads not justifying the increased degradation [22].
Recent developments, including decreasing FCR remunerations and
growing spot market price spreads [27], render SMT a promising candi-
date for storage application, in part due to an increasing participation
of renewable energy [67]. It could be especially interesting in multi-
use concepts, for example together with FCR, where SMT is used to
balance the SOC and compensate for efficiency losses [68]. While
uncontrolled EV charging leads to increased electricity prices, V2G is
predicted to have a smoothing effect on spot market prices [69]. This
is especially attractive for the further implementation of renewable
energy sources, as V2G can help alleviate price drops from surplus
feed-in times [69]. The relevant markets in Germany are the day-ahead
auction, the intraday auction, and the intraday continuous market [7].
Due to its volatile price signals, the intraday continuous market is well-
suited to the high responsiveness of lithium-ion batteries [27], which
is why we chose it for further analysis.

Eq. (10) establishes that within one time step, 𝑡, electricity can
either be purchased, sold, or not traded. Here, 𝑥SMT,purchase

𝑡 and 𝑥SMT,sell
𝑡

are binary variables representing whether electricity is sold or pur-
chased.

𝑥SMT,purchase
𝑡 + 𝑥SMT,sell

𝑡 ≤ 1 (10)

The profit of the SMT application is defined in Eq. (11) as the
difference between the revenue from sold and the cost of purchased
electricity.

PSMT
𝑡 = 𝐸SMT,sell

𝑡 ⋅ pSMT,sell
𝑡 − 𝐸SMT,purchase

𝑡 ⋅ pSMT,purchase
𝑡 (11)

2.6. Further value streams

Beside the applications analyzed in this paper, several alternative
value streams for EVs have been identified in literature and projects.
For instance, with suitable charging hardware, V2G can be used to
provide reactive power to help stabilize the grid voltage [15]. V2G
is also an option to reduce grid congestion and thus mitigate ex-
pensive redispatch measures [31]. Furthermore, EVs can act as an
emergency power supply when deployed in vehicle-to-building con-
cepts [70]. When multiple EVs are connected, they can be used for
peer-to-peer energy trading [71] or to supplement decentralized elec-
tricity grids by providing black start capability and other grid ancillary
services [72]. Additionally, EVs can be utilized as mobile power supply
units to provide electricity for different purposes, such as machinery
and tools [47].
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3. Methods

We develop a MILP framework to evaluate the techno-economic
effect of EV multi-use. Combined with a MPC algorithm, the MILP
optimization is conducted at regular intervals. This approach allows for
the optimal scheduling and allocation of power and energy of the EV
fleet, as well as a detailed calculation of the battery properties, such as
the battery state of health (SOH) [7].

For the study, a German commercial building with a company
EV fleet of privately used vehicles and respective charging stations
at work is assumed. In this use case, the vehicles’ idle time whilst
parked at the office location is utilized to generate value by serving
additional applications. The BTM electricity is traded with an energy
retailer, using 0.2 EUR/kWh and 0.03 EUR/kWh for the purchase and
remuneration price [73,74]. In addition to BTM, the company’s EVs
can also use FTM electricity to serve the FCR and SMT applications. A
generation profile from a PV generator with 120 kW peak power [35]
and a commercial load profile with an annual consumption of 500 MWh
is applied [75]. The energy consumption for mobility purposes and
the corresponding EV plug-in times at the commercial building are
derived using the tool emobpy [76]. emobpy is an open-access tool for
creating battery electric vehicle time series based on empirical data.
150 annual profiles, with the driving pattern and plug-in patterns at
work, were chosen to form the basis of this analysis. For each EV, the
annual driving distance is normally distributed around 15 000 km [77]
with a usable battery capacity of 80 kWh and a conservative average
consumption of 250 Wh/km [52]. For the FCR and SMT applications,
price profiles from 2020 [74] and frequency profiles from 2019 are
applied [78]. The intraday continuous market data is characterized by
multiple price signals, such as low, index, and high price. Literature
has shown that the economic potential of the SMT application is very
limited when using the index price [7]. On the other hand, the use
of high and low price signals is difficult, as a very accurate price
prediction is necessary. For these reasons, the average price signal
of the low and index price is used for the lower bound of the price
corridor. Analogously, the average of index and high price is applied
for the upper bound.

3.1. Mixed-integer linear model

The objective function, Eq. (12), maximizes the techno-economic
potential of the energy system. All the presented variables in Eq. (12)
represent decision variables of the optimization problem, excluding the
charging efficiency 𝜂CH and pcharges. For the optimization horizon the
optimal operation strategy is calculated, which optimizes the charging
power and the allocation of the EV fleet’s capacities simultaneously.
Therefore, the total profit (= revenue − cost), sum of all applications,
is maximized. Under current regulatory constraints, energy exchange
between FTM and BTM partitions is prohibited [79], however, this
paper also analyzes the effects that would occur if this transfer is
allowed for driving purposes. Thus, the energy that is shifted from FTM
to BTM partition, 𝐸FTM2BTM, is considered in the objective function.
Since the levies and surcharges for FTM electricity are lower compared
to those of BTM, this economic difference must be considered when
the shift from FTM to BTM energy is permitted. As the energy losses
for charging FTM energy into the EV battery are also purchased with
reduced levies and surcharges, this cost correction is likewise applied to
the charging losses. To prevent arbitrage in the model, these additional
costs for energy shifting are subtracted from the SCI application profit
(cf. Eq. (13)). This is an extension of the simple SCI profit function
without permitted energy shift (cf. Eq. (3)). To avoid uneconomical
energy throughput and thus accelerated degradation, the opportunity
costs for degradation are also implemented in the main function.

max 𝑧 , 𝑧 =
∑

(PSCI
𝑡 + PPS + PFCR

𝑡 + PSMT
𝑡 − Cdegradation

𝑡 ) (12)

PSCI
𝑡 = CSCI,simple

𝑡 − CSCI,optimal
𝑡 − 𝐸FTM2BTM

𝑡 ⋅
1

𝜂CH
⋅ pcharges (13)

For the purposes of the model developed in this paper, a few defini-
tions and distinctions must be made. The EVs’ batteries are partitioned
into clearly distinguishable virtual FTM and BTM partitions [7], to com-
ply with existing unbundling laws and separately allocate system power
and energy [8]. BTM applications are generally consumer-oriented and
serve to maximize the economic result of the storage system stake-
holder. These applications are charged fully with all applicable grid
charges, surcharges, and taxes and in this paper include SCI and PS.
FTM applications on the other hand serve to stabilize the electricity
system and usually only have limited charges applied to them, as the
energy is not directly used for consumption purposes. In this paper,
these applications are FCR and SMT.

On the EV level the nominal energy describes the rated energy
content of the battery, while the usable energy content is limited by
battery degradation and SOC boundaries. The actual energy content
describes the stored energy at the current SOC. The separation into
FTM and BTM partition is shown in Eq. (14), while Eqs. (15) and
(16) determine that the actual energy content cannot exceed the usable
energy content of the respective partition.

𝐸usable
𝑡 = 𝐸BTM,usable

𝑡 + 𝐸FTM,usable
𝑡 (14)

𝐸BTM,actual
𝑡 ≤ 𝐸BTM,usable

𝑡 (15)

𝐸FTM,actual
𝑡 ≤ 𝐸FTM,usable

𝑡 (16)

For each time step 𝑡, the entire usable energy is allocated to either of
the two partitions (𝐸BTM,usable and 𝐸FTM,usable), so that the partitioning
of the storage system is a result of the optimization process and depends
on the constraints regarding each application. As part of the usable
energy partition the actual energy content (𝐸BTM,actual and 𝐸FTM,actual)
describes the energy that is stored in the respective usable partition. In
this study, we defined the start value of the actual energy content with
70% SOC.

Eqs. (17) and (18) track the actual energy content of the two
partitions and guarantee energy conservation within the battery. For
both partitions, the energy content at time 𝑡 is based on the previous
energy content at time 𝑡 − 1 and the charged and discharged energy.
To consider the energy losses during charging and discharging, 𝜂CH

and 𝜂DCH are defined with 89.4% efficiency [80]. At the BTM partition
the variable 𝐸drive,BTM

𝑡 defines the energy that is discharged from the
battery partition and utilized for mobility purposes.

𝐸BTM,actual
𝑡 = 𝐸BTM,actual

𝑡−1 + 𝐸BTM,CH
𝑡 ⋅ 𝜂CH

−𝐸BTM,DCH
𝑡 ⋅

1
𝜂DCH

− 𝐸drive,BTM
𝑡

(17)

𝐸FTM,actual
𝑡 = 𝐸FTM,actual

𝑡−1 + 𝐸FTM,CH
𝑡 ⋅ 𝜂CH

−𝐸FTM,DCH
𝑡 ⋅

1
𝜂DCH

− 𝐸FTM2BTM
𝑡

(18)

When the use of FTM energy for mobility services is permitted
by the model, it is still guaranteed that no energy is directly shifted
from the FTM to BTM partition, as this would violate unbundling laws.
Instead, the stored FTM energy can be taken from the FTM partition
and directly utilized to propel the vehicle (BTM application), as shown
in Eq. (19).

𝐸drive
𝑡 = 𝐸drive,BTM

𝑡 + 𝐸FTM2BTM
𝑡 (19)

Besides the partitioning of energy, a distinction between FTM and
BTM power is also applied, which is reflected in Eqs. (20) and (21).
For the upper bound of the charging and discharging power, 𝑃CH and
𝑃DCH, 22 kW is assumed. The charging behavior is hereby implemented
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Fig. 2. Illustration of the physical power flows between the grid, photovoltaic (PV)
generator, load, chargers, and electric vehicles (EVs). The arrows in orange and blue
highlight the node constraints at the behind-the-meter (BTM) and in front-of-the-meter
(FTM) partitions.

as a square profile, in which the optimized charging power under said
constraints is applied constantly for the respective time step.

𝑃CH
𝑡 = 𝑃BTM,CH

𝑡 + 𝑃 FTM,CH
𝑡 (20)

𝑃DCH
𝑡 = 𝑃BTM,DCH

𝑡 + 𝑃 FTM,DCH
𝑡 (21)

It must be emphasized that applications and services, other than
mobility, are served only if the EV is connected to the power grid. To
implement this in the model, the charging and discharging power, 𝑃CH

𝑡
and 𝑃DCH

𝑡 , are set to 0 if the vehicle is not connected (𝑥plugged𝑡 = 0).
To guarantee that BTM and FTM power flows and services do not

mix, separate node constraints are added (cf. Fig. 2). On the BTM
partition, the power flows from the PV generator, energy consumption
of the commercial building, the charging and discharging power to
and from the EV chargers, as well as the power flows to and from the
grid, 𝑃BTM,sell and 𝑃BTM,purchase, are balanced in Eq. (22). These and all
following power values correspond to the related energy values, such
as 𝐸BTM,sell and 𝐸BTM,purchase, which are defined in the nomenclature
table.

𝑃 PV
𝑡 + 𝑃BTM,DCH

𝑡 + 𝑃BTM,purchase
𝑡 = 𝑃 Load

𝑡 + 𝑃BTM,CH
𝑡 + 𝑃BTM,sell

𝑡 (22)

The FTM node constraint considers the converging power flows of
the FCR and SMT applications and the exchange with the superordinate
grid (cf. Eq. (23)).

𝑃 FTM,DCH
𝑡 + 𝑃 SMT,purchase

𝑡 = 𝑃 FTM,CH
𝑡 + 𝑃 SMT,sell

𝑡 + 𝑃 FCR
𝑡 (23)

In addition to the FTM node constraint, Eq. (24) limits the power
utilized for the FCR allocation to comply to the FCR market regulations.
Here 𝑝FCR,reserve is the aforementioned 25% reserve power for scheduled
transactions on the spot market. The upper bound is hereby the mini-
mum of the charging and discharging power, as the FCR application is
a symmetrical product [63].

𝑃 FCR,offer
𝑡 ⋅ (1 + 𝑝FCR,reserve) ≤ min{𝑃CH,MAX, 𝑃DCH,MAX} (24)

3.2. Model predictive control

An important aspect for the operation strategy of storage systems
is the prediction quality of the respective input data, such as power
demand, PV generation and driving behavior. In this model, perfect
forecast is assumed within the defined optimization horizon 𝑡OH, of
24 h. With every rolling horizon, 𝑡RH, of 8 h, the input data is updated,
and a new optimization is conducted (cf. Fig. 3). Given this MPC
framework, the algorithm allows the handling of prediction values. Due
to the overlap of optimization and rolling horizon, the framework is
less prone to prediction errors, as the operation strategy is regularly
re-optimized.

To enable a comprehensive techno-economic analysis, the MPC
framework combines the MILP optimization algorithm with a semi-
empirical aging model. Therefore, the MILP considers opportunity costs

Fig. 3. The mixed-integer linear programming (MILP) algorithm and the semi-empirical
degradation model are embedded in the model predictive control (MPC) framework.
Within the MPC framework, the battery deployment and state of health (SOH) of the
electric vehicles (EVs) are calculated and exchanged. The MPC is triggered with each
new rolling horizon, 𝑡RH, and a new optimization with the defined optimization horizon,
𝑡OH, is conducted to calculate the optimal battery states.

from degradation in the objective function (cf. Eq. (12)). Thus, the
model is made degradation aware, which leads to a reduction in battery
aging through potentially excessive serving of grid applications [7]. For
the calculation of the cycle opportunity costs an expected equivalent
full cycle capacity of 1000 cycles until the battery’s end-of-life [81] and
battery investment costs of 200 EUR/kWh are assumed [5].

The modeled EV batteries are assumed to consist of cells with
a lithium–nickel–cobalt–manganese-oxide cathode and a graphite an-
ode, also abbreviated as NMC cell chemistry [25]. These batteries are
frequently used in automotive applications, due to their high energy
densities [82]. For this cell chemistry a semi-empirical aging model
according to [25] is implemented. For the degradation modeling, the
charge throughput and time-related parameters are especially impor-
tant assumptions for the cycle and calendar degradation respectively.
Here, the charge throughput and time relationship, introduced in [25]
are defined as 𝑄0.55 and 𝑡0.75. For the ambient temperature, a German
temperature profile is considered [83]. The battery end-of-life is de-
fined at 80% remaining capacity, as nonlinear degradation mechanisms
may lead to accelerated aging beyond this point and battery safety
concerns become more prominent at low SOH levels [81].

3.3. Scenarios and performance indicators

To examine the economic potential of application stacking in V2G,
scenarios are constructed to observe the effects of different operation
strategies. This primarily concerns different combinations of served
applications, starting with only BTM applications, and then gradually
adding FCR and SMT. Furthermore, as it has been argued that unidi-
rectional smart charging could cover a large percentage of potential
V2G value [13], simulations with and without bidirectional charging
are performed and results assessed. Additionally, we analyze the merit
of enabling or disabling FTM to BTM energy exchange as a further
parameter. Finally, the effect of degradation awareness on revenue and
lifetime is analyzed. The resulting scenarios are listed in Table 1, with
the simple charging reference case S0 forming the benchmark. The
scenarios are characterized as follows:
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Fig. 4. Optimization framework outputs of an EV multi-use operation strategy with SCI, PS, FCR, and SMT. A two day excerpt is shown for: A the residual load on the BTM
partition and the respective PS threshold; B grid frequency input profile and the FCR power provided by the EV fleet; C price corridor on the intraday continuous market and
the power traded; D BTM and FTM charging power; E BTM and FTM energy content allocation; and F average state of charge (SOC) of the EV fleet and the respective energy
allocation.

• Reference scenario S0 uses a simple unidirectional plug and
charge approach that charges the battery with maximum power
whenever possible, maximizing the SOC level of the EV battery
when connected to the grid. We chose this reference scenario due
to its simplicity, however, alternative reference scenarios with
more favorable effects on battery lifetime exist.

• Scenarios S1 – S8 follow an optimized charging strategy that is
provided by the MPC framework. Here the objective function (cf.
Eq. (12)) is applied to calculate the optimal operation strategy for
the EV fleet, as shown in Fig. 4.

• To analyze the added value from bidirectional charging scenarios
S2 – S8 are applied with the V2G technology, allowing power
flows from the vehicle to the grid.

• The energy shift from the FTM to the BTM partition is allowed
and analyzed in scenarios S4, S6, and S8.

• To study the effects with different EV fleet sizes the number
of participating EVs varies from 1–150, resulting in energy and
power capacities of up to 12 MWh and 3.3 MW.

For the techno-economic analysis, four key performance indica-
tors are discussed: the annual and discounted cash flow per EV, the
equivalent full cycles (EFC), and the average end-of-life (EOL) of the
EV battery. Here, the annual cash flow is defined as the cash flow
change between a scenario and the reference S0. For the discounted
cash flow calculation until the EV battery’s EOL [7], a 6% interest
rate is specified [84]. The framework calculates the corresponding cash
flows for the individual applications with the profit functions presented
in Section 2. To design a comprehensive techno-economic analysis for
EVs, the battery life must be considered in addition to cash flow. For
this reason, the battery’s energy throughput in EFC and the battery
lifetime are also analyzed.

The presented methodology was developed in a MATLAB environ-
ment and is available upon request from the lead author.

4. Results

To compare the scenarios, simulations until the EVs’ EOL are per-
formed in the described commercial setting. The cash flows and life-
times are averaged over the entire fleet and regarded on a per vehicle
basis in the following sections. Although there are dependencies be-
tween the evaluations in the scenario matrix, the individual effects and
their interrelationships are explained in the following subsections.

Fig. 5. Annual cash flow increase per electric vehicle (EV) compared to reference
scenario S0. Here, the fleet size is 10 EVs.

4.1. Economic attractiveness of the value streams

As Fig. 5 shows, there is a clear hierarchy regarding the gener-
ated revenue per served application. The application with the highest
revenue is PS, followed in this order by SCI and SMT, with FCR
making up the least interesting application, economically. In cases with
deactivated energy shift from FTM to BTM however, SMT and FCR
achieve more revenue than SCI.

This pronounced attractiveness of PS is explained by a few factors.
Firstly, the regarded case of a commercial player is especially conducive
to the PS application, with a combination of an intrinsically high
building energy demand and a high potential of power peaks due to the
need to charge a fleet of electric vehicles at the same location. Secondly,
the PS profit describes the cost savings through the optimized operation
over the reference scenario S0, in which the EVs’ SOC is maximized,
leading to high power peaks.

With demand pull policies in place, increasing consumption from
self-generated electricity becomes economically attractive, which leads
to the high revenue generated through SCI in this model. SCI profit is
also calculated in reference to the same base case as PS, which further

6 Electric vehicle multi-use
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Table 1
Overview of the analyzed EV multi-use scenarios with the applications SCI, PS, FCR, and SMT. During V2G operation, bidirectional charging is
enabled. Column FTM2BTM determines if an energy shift from the FTM to BTM partition is allowed. The cash flow defines the annual cash
flow increase per vehicle in comparison to the reference scenario S0. The equivalent full cycles (EFC) define the annual energy throughput.
The numbers shown refer to a fleet of 10 EVs.
Scenario Applications Optimized charging V2G FTM2BTM Cash flow (EUR/a) EFC/a EOL (a)

S0 – no no no 0 47.4 7.9
S1 SCI, PS yes no no 956 47.4 11.8
S2 SCI, PS yes yes no 987 47.5 11.6
S3 SCI, PS, FCR yes yes no 1143 54.7 9.8
S4 SCI, PS, FCR yes yes yes 1638 47.8 11.6
S5 SCI, PS, SMT yes yes no 1472 72.3 8.7
S6 SCI, PS, SMT yes yes yes 2047 61.1 10.3
S7 SCI, PS, FCR, SMT yes yes no 1650 71.6 8.7
S8 SCI, PS, FCR, SMT yes yes yes 2224 60.7 10.3

explains the cash flow increase. This is however only the case when
energy shifting from the FTM to BTM partition is permitted, with SCI
only contributing marginally to the annual revenues in the remaining
scenarios. This is due to the added flexibility through energy trading,
which is more closely examined in Section 4.3.

FCR in most cases contribute less to the overall revenue of V2G,
as relatively low FCR remuneration prices currently limit profitability.
SMT generally being more profitable than FCR is explained by the more
volatile price structure as well as the lower requirements compared to
providing both positive and negative power over a fixed time window
in FCR.

4.2. Added value from EV multi-use and V2G

A general trend that is shown in Table 1 and Fig. 6, is an increase
in positive cash flow as more applications are served by the same fleet,
with the highest revenues being achieved by bidirectional V2G with all
four applications and activated energy shift (scenario S8). This however
coincides with limited battery lifetimes, due to the increased energy
throughput, and thus higher EFCs. This confirms previous findings with
stationary battery storage systems [7].

Contrary to stationary storage systems, unidirectional EVs can only
charge when connected to the charger. When comparing the scenarios
S1 (unidirectional charging) and S2 (bidirectional) we show that the
annual cash flow increases by 3% when analyzing a fleet with 10 EVs
(cf. Table 1). Comparing both scenarios with the reference scenario,
it becomes clear that optimized unidirectional charging yields a sim-
ilar benefit as the bidirectional case, which matches the observation
made in [13] that unidirectional smart charging already covers a
large portion of V2G potential when grid applications are excluded.
When considering FTM applications, such as FCR, V2G capability is a
prerequisite for market participation.

There are three clusters to the trend of higher revenues with in-
creasing numbers of applications in EV multi-use. Firstly, the scenarios
S1 and S2 show the lowest cumulative cash flow in comparison to the
other optimized scenarios S3 – S8. Secondly, it is observed that the
cases S3, S5 and S7 show an especially defined decrease in battery
lifetime. Thirdly, scenarios S4, S6 and S8 form the cluster with the
highest economic increase (cf. Fig. 6). These effects are explained with
changes introduced by activating or deactivating energy shift from the
FTM to BTM partition, which is more closely examined in the following
subsection.

4.3. Shifting energy from FTM to BTM partition

To examine the effect of permitting an energy shift from the FTM
to BTM partition for the purpose of driving, the relevant scenario pairs
for comparison are S3/S4, S5/S6 and S7/S8. In all cases, allowing
this energy shift leads to a significant improvement in both generated
revenue and battery lifetime. As illustrated in Fig. 5, these revenue
increases are largely due to a rise in SCI revenue, which is primarily
driven by the combination with the SMT application. This reveals a

Fig. 6. Discounted cash flow increase per electric vehicle (EV) compared to reference
scenario S0. Here, the fleet size is 10 EVs and a degradation aware operation strategy
is applied.

central advantage of application stacking with permitted energy shift,
namely that FTM applications are used to supply energy necessary
for mobility provision (cf. Eq. (19)) and guarantee more flexibility
for the batteries SOC, without violating preference SOC constraints.
In times when FTM electricity costs plus the added charges to shift
FTM electricity to BTM partition are cheaper than BTM electricity,
charging costs are reduced, which benefits the SCI application. The
advantage of multi-use thus arises mainly through added flexibility
and the interaction between applications. Based on these results, policy
makers that aim to accelerate the electric mobility transition should
consider permitting FTM to BTM energy exchange to serve vehicles’
mobility needs, for vehicles providing grid services.

Particularly noteworthy here is the SMT application, as this service
provides a substantial flexibility increase for the other BTM and FTM
applications. Through direct trades during the SMT application, or
scheduled transactions during FCR, the application purchases FTM
electricity, which is later shifted into the BTM application for mobility
purposes. This again reduces the amount of electricity that must be
purchased on the BTM side, which increases the profitability of the
SCI application significantly. This opportunistic behavior leads to cases
where S4 yields similar cash flows to scenario S7, although the latter
serves all applications.

It is observed that cases with permitted FTM to BTM shifting,
namely S4, S6 and S8, experience especially pronounced degradation
benefits. This emphasizes the advantages from increased flexibility due
to shifting opportunities, which prevents the preemptive behavior of
high power charging of the batteries to meet preference SOC require-
ments in the future. Conclusively, the increased operational flexibility
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Table 2
Overview of the analyzed EV multi-use scenarios without an active degradation
awareness. The cash flow defines the annual cash flow increase in comparison to
the reference scenario S0. The equivalent full cycles (EFC) define the annual energy
throughput. The numbers shown refer to a fleet of 10 EVs.

Scenario Cash flow (EUR/a) EFC/a EOL (a)

S0 0 47.4 7.9
S1 956 47.4 11.8
S2 987 47.5 11.6
S3 1108 149.7 9.2
S4 1634 130.1 10.4
S5 2687 331.6 4.3
S6 3203 313.3 4.3
S7 2819 330.5 4.3
S8 3348 312.6 4.4

Fig. 7. Discounted cash flow increase per electric vehicle (EV) compared to reference
scenario S0. Here, the fleet size is 10 EVs and the model does not consider the
opportunity costs per cycle when determining the optimal operation strategy.

is not only attractive from a revenue perspective, but also mitigates
battery degradation, due to the usage of a broader SOC band and
comparatively lower voltage levels [25].

4.4. Neglecting the costs of battery aging

To illustrate the effect of including costs from aging in the opti-
mization, the presented simulations are repeated without degradation
awareness. The results of those simulations are shown in Table 2 and
Fig. 7.

As visible in the results, the scenarios S1 and S2 do not change
significantly. This is explained by the fact that the necessary energy
throughput of each EV is primarily driven by the mobility service. As
more applications are added, however, the revenues of these scenarios
increase more steeply, but the overall battery lifetime is significantly
reduced. This is especially evident with S8, which now reaches 80%
of the initial battery capacity after 4.4 years instead of 10.3 years (cf.
Tables 1 and 2) but manages to achieve a discounted cash flow of
almost 13 000 EUR during the 4.4 year battery lifetime.

The simple charging reference case S0 reaches its end-of-life after
7.9 years. When introducing optimized charging schemes, overall rev-
enue and in some scenarios even the lifetime is increased. However,
neglecting opportunity costs per cycle leads to an even further de-
crease in lifetime for bidirectional V2G, due to the increased energy
throughput. If the optimization is made degradation aware, lifetime is
significantly extended for most scenarios or at least maintained. This
strengthens previous findings, which emphasized the importance of
intelligent charging schemes to extend battery lifetimes [85].

Fig. 8. Annual cash flow contribution per application and electric vehicle (EV) for
scenario S8. Here, the numbers represent the cash flow increase compared to the
reference scenario S0.

4.5. Sensitivity analysis on the EV fleet size

A further interesting aspect of EV multi-use is its behavior with
changing fleet sizes. To examine this, the scenarios are analyzed with
increasing numbers of vehicles up to 150 EVs, the results of which are
shown in Fig. 8. The annual cash flow initially increases when more
vehicles are added, before decreasing again and gradually flattening
with rising EV numbers. This behavior is observed with all examined
scenarios.

To interpret the reasons for this behavior, Fig. 8 also includes
the changes in annual cash flow per served application. While FCR
revenues only rise slightly initially and remain mostly constant, SMT
shows a declining and later saturating trend, while PS has an initial
peak, before showing the same pattern. SCI revenues initially show a
large cash flow increase with rising fleet size, before also going into
saturation. These observations are primarily driven by the fleets’ power
and energy demand, as well as the homogeneity of the vehicle usage
pattern with growing fleet sizes. When analyzing a fleet with a single
vehicle, the optimization has little room for flexibility and is highly
dependent on the respective driving profile, which limits the possible
cash flow increase. This effect is especially visible with PS, where the
timing for charging and existing power peaks are more important.
For this reason, adding more vehicles initially leads to an increase in
total revenue per EV. As the numbers increase the residual load of the
commercial player becomes increasingly defined by the charging power
of the vehicle fleet, with fewer opportunities to shift additional power
peaks. This leads to the receding annual cash flow from PS in Fig. 8,
which settles around an annual cash flow of 740 EUR. As SCI revenues
are also defined by the increase compared to the reference charging
profile, they initially benefit from the increased flexibility with a grow-
ing fleet size. As the fleet size rises, the building’s PV generation can be
utilized, which contributes to growing SCI revenues, before saturating
as the self-generated electricity is consumed for charging the EVs. As
more energy can be used to charge the vehicles, less energy from the
FTM partition is shifted to the BTM partition, which allows more energy
to be purchased and later sold on the spot market, further explaining
the slightly higher SMT revenues initially. As the cost for energy shifted
from FTM to BTM is subtracted from the SCI application revenue, this
also further explains SCI initially benefiting strongly from rising fleet
sizes. The FCR cash flows marginally grow at the beginning, which is
due to an increase in fleet diversity, which makes power commitments
over the necessary FCR provision times more achievable.

6 Electric vehicle multi-use
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5. Conclusions

As electric vehicle market penetration steadily rises it becomes
increasingly important to conceptualize intelligent charging schemes to
mitigate excessive grid infrastructure stress. Using smart bidirectional
charging schemes not only minimizes these negative effects from elec-
tric vehicle charging but also provides a diverse set of benefits and
economic opportunities. In this context, we analyze grid services for
electric vehicles with an emphasis on application stacking to form an
electric vehicle multi-use concept. For this purpose, a model predictive
control framework with an embedded mixed integer linear program-
ming algorithm is developed to evaluate different combinations of
vehicle-to-grid based self-consumption increase, peak shaving, spot
market trading and frequency containment reserve in the context of
a commercial player with an office building and an electric vehicle
fleet. This optimization framework is coupled with a semi-empirical
battery aging model, to calculate effects on the electric vehicle battery
lifetimes. In contrast to previous contributions, this paper focuses on
serving multiple applications simultaneously, as well as the separation
of storage capacity and power in behind-the-meter and in front-of-
the-meter partitions. Furthermore, differences between unidirectional
and bidirectional charging as well as effects from front-of-the-meter
to behind-the-meter energy shifting, fleet size and aspects regarding
degradation modeling are examined.

Based on nine scenarios the results of these simulations show both
technical and economic benefits when serving multiple applications
simultaneously with electric vehicle fleets. Depending on the served
applications, the activation of bidirectional charging and activation
of an energy shift between front-of-the-meter and behind-the-meter
partitions, an annual cash flow increase between 956 EUR to 2224 EUR
per vehicle compared to the simple charging reference case is achieved.
The most attractive result is achieved by serving all four applications
with the permitted energy shift, which leads to a cumulative discounted
cash flow per vehicle of about 17 000 EUR over a lifetime of over
10 years. A clear trend is demonstrated, in which revenue increases
as more applications are served and more flexibility through bidi-
rectional charging and front-of-the-meter to behind-the-meter energy
shifting is enabled. It is shown that the applications peak shaving
and self-consumption increase generate the most revenue, while other
applications contribute to achieving more operational flexibility and
thus improving overall performance. It is observed that unidirectional
smart charging almost reaches the same annual cash flow as bidirec-
tional charging when performing peak shaving and self-consumption
increase. Allowing energy to be shifted from the front-of-the-meter to
the behind-the-meter partition yields a significant increase in cash flow
and battery lifetime, due to the increased flexibility. The optimization
is applied with opportunity costs for battery degradation, which are
implemented in the objective function. It is thus demonstrated that
optimized charging including degradation costs leads to an extension
of battery lifetime, while operation strategies without degradation
awareness can lead to lifetime reduction of up to 6 years. Finally, it is
demonstrated that growing fleet sizes initially coincide with increasing
cash flows per vehicle, as more flexibility is enabled. With a fleet size
above five vehicles a further increase leads to receding cash flows per
vehicle, as more capacity must be allocated to mitigate power costs
from the increasing charging peaks. This effect weakens for larger
vehicle fleets and the annual cash flow per vehicle saturates at about
100 participating electric vehicles.

For our approach, uncertainties and limitations are considered.
Firstly, prediction quality is assumed to be perfect within the rolling
horizon and constant annual market prices are assumed over the re-
garded lifetime. Depending on respective developments in regulation
and price structure, especially the latter could change the results both
positively and negatively. This paper also operates from the perspective
of a fleet operator maximizing revenues and does not consider effects

on the grid, such es mitigated power peaks, which could lead to a reduc-
tion in societal costs for infrastructure. Furthermore, certain regulatory
boundaries are neglected, such as minimum bidding increments, which
will require sufficient energy and power capacities. We assume that
simultaneous service of front-of-the-meter and behind-the-meter ap-
plications is possible, with front-of-the-meter electricity being exempt
from taxes and surcharges. In the chosen commercial electric vehicle
fleet use case, all vehicles return to one location after route completion;
the added complexity of multiple charging locations is an area that
can be explored in further research. While this paper makes statements
regarding discounted cash flow, a rating of investment attractiveness
is not performed. To do this, a calculation of the net present value is
necessary, which requires an accurate determination of the financial
value of mobility provision, as well as the investment costs.

Further topics for future research could also include additional
applications, such as grid congestion management or providing re-
active power, as these have been predicted to also be interesting
for vehicle-to-grid concepts. Such approaches should emphasize the
spatial–temporal flexibility of electric vehicles, as this has implications
for infrastructure impact of grid-integrated electric vehicles. Future re-
search can explore additional sensitivity analyses, such as degradation
behavior with different fleet sizes and battery end-of-life definitions.
Likewise, the presented model can be adjusted to apply to regulatory
conditions in additional countries, as the comparison of the effects
of different regulatory positions is of interest to policy makers and
industry players. Finally, while simulation results make a promising
case for electric vehicle multi-use, these results remain to be confirmed
by field tests.
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7.1 Conclusions

Accelerating the deployment of battery energy storage is at the center of the sustainable transformation
of future energy systems. To overcome the challenge of limited investment attractiveness, two energy
management approaches – multi-use and multi-storage – are developed in this thesis and evaluated
using linear optimization. Along with boosting the profitability of the analyzed storages, the methods
aim to closely integrate the technical considerations, such as battery degradation, to enable a well-
rounded, techno-economic study.

As the transition in the energy sector is progressing in all areas, including residential – a household with
PV generator, home energy storage, and EV is presented in Chapter 3. Through the investigation of the
household’s optimized power flows the significant economic advantage of up to 15% OPEX reduction
of optimized unidirectional EV charging is demonstrated. The extension to bidirectional charging
brings about a further 11% cost reduction. In contrast to this economic improvement, the higher
energy throughput in the scenario with bidirectional charging leads to a greater stress on the energy
storage. This, in turn, reduces battery lifetime by 12%. Proportionally to the available flexibility in
the household, the self-generated power of the PV generator is used more effectively, which increases
the self-consumption and self-sufficiency rates. Techno-economic analysis reveals that in a scenario
with bidirectional EV charging, self-consumption improvements with and without a stationary storage
range between 160EUR and 1,381EUR savings over ten years. Depending on the degree of flexibility
provided by the EV, i.e. for vehicles with high plug-in times, the home energy storage can become
obsolete, as the added value of the stationary storage does not justify its investment cost.

Building on the findings at the household level, Chapter 4 combines peer-to-peer trading and home
energy management to allow simultaneous optimization on both a household and community level. The
presented mechanism is applied to a network of multiple households with flexibilities in the form of both
stationary and mobile storage systems. To evaluate the impact of the flexibilities on the household and
community, a distinction is made between decentralized and central energy management. The study
shows that for the decentralized decision-making approach, the degradation effects of the storage
systems are not negatively affected by the existence of a local electricity market, as the same operation
strategies for the flexibilities are determined, regardless whether one exists or not. The central approach
yields superior economic results especially for small communities, as more information is available to
the central EMS, the multi-storage network is optimized at the community level, and the broader
heterogeneity of the households allows for more synergies to be exploited. The share of locally traded
electricity, a metric of the peer-to-peer market effectiveness, saturates at a network size around 20
households and reaches over 10%, 20%, and 35% in the decentral, central with unidirectional, and
central with bidirectional charging scenarios, respectively. The central approach is preferable if users
value independence from electricity retailers, and the decentralized approach may be favorable to a
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community that values control over its flexibilities.

In Chapter 5, the method of multi-use with a large-scale stationary storage system is evaluated. The
evaluation implements a model predictive control framework, which combines a mixed-integer linear
programming algorithm with a semi-empirical degradation model. The study shows that applica-
tion stacking boosts investment attractiveness. Through the investigation of several behind-the-meter
(BTM) and in front-of-the-meter (FTM) applications, it is shown that the profitability increases pro-
portionally with the number of stacked applications. Whereas the profitability indices of the investi-
gated single-use scenarios range between 4% and 18%, the multi-use scenarios reach values between
63% and 124%. Using the topology shown in the study, the multi-use approach complies with both
technical and regulatory conditions by keeping BTM and FTM partitions separated. When comparing
different multi-use types, the dynamic multi-use approach proves to be superior, as it allows for the
most flexible allocation of power and energy over time. The optimized battery utilization yields signif-
icant economic benefits but also leads to accelerated degradation of the battery cells. Particularly for
energy throughput-intensive applications, such as spot market trading, the study shows that degra-
dation aware energy management brings a great benefit to the energy storage and its stakeholders by
increasing battery lifetimes from around two to almost ten years.

As the energy capacity of modern EVs continues to grow, so does the techno-economic potential of an
extension of the multi-use approach to these mobile storages. Chapter 6 shows how the stacking of
applications on an EV fleet increases profitability for the fleet operator and EV owner. Analogously to
stationary storage, the evaluation shows that deployment flexibility and application synergies increase
as more applications are served. Due to the consuming nature of mobility provision, the results show
that BTM applications are particularly interesting. As in Chapters 3 and 4, it is confirmed here that
significant added value of up to 956EUR/a and 2,224EUR/a can be generated by optimizing unidirec-
tional and bidirectional charging, respectively. However, the additional operation of applications when
an EV is plugged-in can also lead to added stress in the battery cells, which in turn results in higher
degradation losses and reduced lifetime. The inclusion of degradation awareness in the optimizations
helps to actively avoid unfavorable operation strategies. This leads to slightly reduced annual cash
flows but significantly prolongs battery lifetime and thereby investment attractiveness. Due to the
technical setup of EVs and their grid connection, it is more complex to separate BTM and FTM ap-
plications and their energy. By focusing on the role of the energy management system (EMS), the
presented methodology dispenses the need for calibrated electricity meters.

7.2 Potential future research

To support the deployment of battery storage and further drive the multi-use and multi-storage ap-
proaches presented in this thesis, there are several topics that should be focused on in subsequent
studies.

As this work utilizes deterministic optimization, the algorithm is gifted with perfect foresight, albeit
only for a limited time period. Thus, the model predictive control framework is well-suited to handle
prediction data, even error prone prediction data. This lays the foundation upon which future research
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can increase the scope on data prediction and its effect on the energy management for battery stor-
age. In addition, the optimization approach can be adjusted to other approaches, such as non-linear
algorithms or meta-heuristics. This would enable the modeling of non-linear processes in the battery
storage and overall energy system. Currently, the algorithm for degradation awareness only considers
the energy throughput. This can be extended to include state of charge and C-rate dependencies,
which would lead to increased complexity and computational demand. However, with growing com-
putational power, future battery energy storage control systems could be capable of handling such
complex algorithms.

With the swiftly changing nature of battery technology research, continuous improvements are a given.
This means that the energy management of battery storage needs to be continuously updated to
reflect state-of-the-art technologies. Therefore, it is recommended that the presented methodologies
are extended to new technologies and validated using the relevant, applicable models for the battery
and its internal processes, such as capacity fade.

Beside the modeling of battery storage, real-world implementation is needed to validate the findings
and establish proof-of-concepts in a variety of local environments. For instance, the testing of complex
EMSs’ applicability, including implemented data prediction and optimization procedures can be highly
beneficial to boost the proliferation of sophisticated EMS applications. In addition, a real-world
implementation of EV multi-use, where the EMS distinguishes between BTM and FTM value streams
and replaces the need for calibrated electricity meters, is required for the proof-of-concept. This thesis
focuses on regulatory conditions in Germany, however, for a global validity the presented methodologies
should be adjusted and applied to multiple, diverse locations.

For the EVs considered in this thesis, the OPEX but not CAPEX are taken into account. In addition,
only revenues of the added applications are included. The added value from mobility provision was
defined as out of scope, as it is highly subjective to the individual user and thus difficult to quantify.
For additional research to develop a quantification methodology to include this value stream, as well
as the CAPEX in the investment attractiveness calculation, would give a more complete picture.

Additionally, the scope of this work is focused on closed energy systems on a consumer or community
level and the interaction with or effects on the grid are not examined. For further research the effect
of battery energy storage on the grid operation and distribution system, especially of EVs, will give
insight into the effect of storage on the greater electricity network, and the role that the EMS can play.

Overall, this thesis is a milestone in the research for multi-use and multi-storage, as it provides a
research foundation that enables practical implementation, which can be expanded upon and needs to
be validated via real-world use cases.
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