
Fakultät für Informatik
Technische Universität München

Systematic parameter analysis to reduce uncertainty in
crowd simulations

Marion Gödel

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Martin Schulz

Prüfende der Dissertation:
1. Prof. Dr. Hans-Joachim Bungartz
2. Prof. Dr. Gerta Köster,

Hochschule München

Die Dissertation wurde am 10.11.2021 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 25.01.2022 angenommen.

Abstract

Crowd simulations have become an indispensable tool for reviewing evacuation concepts,
determining the capacity of venues, and improving the efficiency of built infrastructure
such as airports and train stations. However, uncertainties arise during modeling and
simulation. For a reliable prediction, these must be considered. In crowd dynamics,
this primarily concerns parameter uncertainties. Lack of knowledge about the choice of
parameters causes epistemic uncertainty. To date, little to no effort has been spent on
considering uncertainties in crowd simulations.

In this thesis, I propose a three-step approach to reduce and quantify epistemic un-
certainty in crowd simulations: First, I identify the influential and non-influential pa-
rameters. Second, I calibrate the influential parameters against experimental data. The
result of the first two steps is a specific model. Finally, I perform uncertainty analysis on
the specific model. I select, adapt, and implement suitable methods for each step. The
methods are provided in an open-source uncertainty quantification framework tailored
to crowd simulations. I apply this approach to a safety-relevant scenario present in all
egress situations: a bottleneck. Global sensitivity analysis reveals four influential pa-
rameters and two non-influential parameters. While the non-influential parameters can
be fixed, the influential parameters need to be calibrated against experimental data. For
calibration, I employ Bayesian inference methods that provide full posterior distributions
for the parameters. I demonstrate that, in some safety-relevant cases, former methods
fail. Subsequent uncertainty analysis reveals that identification and calibration of the
influential parameters significantly reduce the output uncertainty compared to the prior
parameter distributions. Moreover, I demonstrate how classical parameter estimation
can be complemented with new methods for real-time simulations: I perform a feasibility
analysis for estimating origin-destination matrices from density images using statistical
learning models.

This thesis provides open-source implementations of the uncertainty quantification
methods to foster their use in crowd dynamics. By demonstrating how epistemic uncer-
tainty can be handled and how output uncertainty can be reduced, this thesis contributes
to increasing the credibility and reliability of crowd simulations.

iii

Zusammenfassung

Fußgängersimulationen sind mittlerweile ein unverzichtbares Werkzeug für die Überprü-
fung von Evakuierungskonzepten, die Bestimmung der Kapazität von Veranstaltung-
sorten und die Verbesserung der Effizienz von Infrastrukturgebäuden wie Flughäfen
oder Bahnhöfen. Eine zuverlässige Vorhersage erfordert jedoch die Berücksichtigung
von Unsicherheiten, die bei der Modellierung und Simulation eingeführt werden. Bei der
Fußgängerdynamik betrifft dies vor allem Parameterunsicherheiten. Die Wahl geeigneter
Parameterwerte ist oft ungewiss und daher mit epistemischer Unsicherheit behaftet. Bis-
lang wurden kaum Anstrengungen unternommen, um Unsicherheiten bei der Simulation
von Menschenmengen zu berücksichtigen.

In dieser Arbeit wird ein dreistufiger Ansatz zur Verringerung und Quantifizierung der
epistemischen Unsicherheit in Fußgängersimulationen vorgeschlagen: Zuerst werden die
einflussreichen Parameter identifiziert. Danach werden diese anhand experimenteller
Daten kalibriert. Das Ergebnis der ersten beiden Schritte ist ein spezifisches Mod-
ell. Schließlich wird eine Unsicherheitsanalyse für das spezifische Modell durchgeführt.
Für jeden Schritt werden geeignete Methoden ausgewählt, angepasst und implementiert.
Diese Methoden werden in einem quelloffenen Software-Framework zur Quantifizierung
von Unsicherheiten in Fußgängersimulationen zur Verfügung gestellt. Der vorgeschla-
gene dreistufige Ansatz wird auf ein sicherheitsrelevantes Szenario angewendet, das in
allen Ausgangssituationen vorkommt, einen Engpass. Globale Sensitivitätsanalyse iden-
tifiziert vier einflussreiche Parameter und zwei einflusslose Parameter. Während die
einflusslosen Parameter festgelegt werden können, müssen die einflussreichen Parameter
anhand experimenteller Daten kalibriert werden. Für die Kalibrierung werden Bayes’sche
Inferenzmethoden eingesetzt, die vollständige Posterior-Verteilungen für die Parameter
liefern. Es wird gezeigt, dass herkömmliche Methoden zur Kalibrierung in einigen sicher-
heitsrelevanten Fällen versagen. Die anschließende Unsicherheitsanalyse zeigt, dass die
Identifizierung und Kalibrierung der einflussreichen Parameter die Unsicherheit in der
Vorhersage im Vergleich zu den ursprünglich angenommenen Parameterverteilungen er-
heblich verringert. Darüber hinaus wird gezeigt, wie die klassische Kalibrierung durch
neue Methoden für Echtzeitsimulationen ergänzt werden kann. Hierfür wird eine Mach-
barkeitsanalyse für die Schätzung von Quelle-Ziel-Matrizen aus Dichtebildern unter Ver-
wendung maschineller Lernmodelle durchgeführt.

Diese Arbeit stellt quelloffene Implementierungen geeigneter Methoden zur Quan-
tifizierung von Unsicherheiten zu Verfügung, um deren Anwendung auf Fußgängersi-
mulationen zu unterstützen. Indem sie aufzeigt, wie mit epistemischer Unsicherheit
umgegangen werden kann und wie die Unsicherheit in der Vorhersage reduziert wer-
den kann, trägt diese Arbeit dazu bei, die Glaubwürdigkeit und Zuverlässigkeit von
Fußgängersimulationen zu erhöhen.

iv

Acknowledgments

I believe that scientific exchange is a vital part of research. Therefore, I would like to
thank everyone with whom I have discussed my work. Each of these conversations has
contributed to this thesis and shaped me as a researcher. In particular, I would like to
thank:

Prof. Dr. Hans-Joachim Bungartz, who gave me excellent guidance with his experience
and foresight. Despite his numerous commitments, he always took the time to discuss
my work and to provide constructive feedback.

Prof. Dr. Gerta Köster, who got me interested in studying crowd dynamics during my
undergraduate studies. She has been an excellent mentor who always makes time for
her students and goes out of her way for them. I learned so much from her during my
Ph.D. that I will take with me and pass on.

The pedestrian dynamics research group: Benedikt Zönnchen, Benedikt Kleinmeier,
Daniel Lehmberg, Stefan Schuhbäck, Christina Mayr, and Simon Rahn. No matter
where we were, in the office, abroad, in the home office, we were always in contact. We
supported each other, learned from each other, discussed problems and new ideas, and
always got along well. It was great to share this experience with you!

Prof. Dr. Rainer Fischer for the great collaboration, numerous discussions on uncer-
tainty quantification and research in general.

Dr. Mario Teixeira Parente, who inspired me to look into the active subspace method,
for discussions on Bayesian inference and uncertainty quantification in general.

Dr. Nikolai Bode, who invited me to Bristol to collaborate on calisbration with
Bayesian inference methods. I learned a lot from our collaboration and am glad to have
had the opportunity to work with him. While in Bristol, I was also kindly welcomed by
the Ph.D. candidates of the Department of Engineering Mathematics.

My former colleagues from the Department of Navigation at German Aerospace Cen-
ter. I learned so much during my time there and was sent well prepared into the
Ph.D. challenge.

My friends who were always there for discussion, who support, inspire me, encourage
me, who regularly distracted me from work, and on whom I can always rely.

My family: My parents, who have always supported me and made my studies possible.
My siblings for always being there for me. Finally, I would like to thank my husband
Michael, who keeps encouraging me to take on new challenges and always supports me.
I am grateful to have you in my life!

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and overview of this work . 2
1.3 Structure of this work . 6

2 Background 8
2.1 Modeling and simulation . 8
2.2 Pedestrian dynamics . 9

2.2.1 Modeling crowd behavior . 11
2.2.2 Microscopic crowd simulation . 11
2.2.3 Wayfinding using navigational fields 12
2.2.4 Locomotion models . 13

2.3 Uncertainty quantification . 15
2.3.1 Definition of uncertainty . 16
2.3.2 Types of uncertainty . 16
2.3.3 Overview of uncertainty quantification methods 17

2.4 Summary . 18

3 Modeling choices: locomotion model, scenario, and stochasticity 19
3.1 Locomotion models . 20

3.1.1 Optimal steps model . 20
3.1.2 Social force model emulator for a bottleneck scenario 24

3.2 Studied scenarios . 25
3.2.1 Bottleneck scenario: crucial for improving safety 26
3.2.2 Train station overpass: multi-directional flow 28

3.3 Vadere crowd simulation framework . 30
3.3.1 Core of the simulation: simulation loop 30
3.3.2 Building a scenario . 31

3.4 Stochasticity and noise . 32
3.4.1 Stochastic terms in crowd simulations 32
3.4.2 Effects of stochastic terms . 33
3.4.3 Handling stochasticity and noise 35

3.5 Summary . 36

4 Uncertainty quantification framework 37
4.1 Requirement analysis . 37
4.2 State of the art on uncertainty quantification software 39

vi

Contents

4.3 Architecture of the framework . 43
4.3.1 Parameter identification . 45
4.3.2 Parameter estimation . 46
4.3.3 Uncertainty analysis . 47

4.4 Algorithms . 48
4.4.1 Parameter identification: Sobol’ indices and activity scores 49
4.4.2 Parameter estimation: Metropolis algorithm and rejection sampling 50
4.4.3 Uncertainty analysis: Monte Carlo sampling and generalized poly-

nomial chaos expansion . 51
4.5 Interface with Vadere crowd simulation 53
4.6 Code verification . 54
4.7 Summary . 55

5 Parameter identification: identifying influential parameters 56
5.1 Introduction . 56
5.2 State of the art on parameter identification in crowd simulation 57
5.3 Overview of methods for parameter identification 58

5.3.1 Sobol’ indices . 60
5.3.2 Activity scores, first eigenvector, and derivative-based global sen-

sitivity metrics . 62
5.3.3 Links between indices . 64

5.4 Studying parameter sensitivities in a bottleneck scenario 65
5.4.1 Relationship between parameters and quantity of interest 65
5.4.2 Sobol’ first-order and total indices 67
5.4.3 Derivative-based global sensitivity metrics, first eigenvector met-

ric, and activity scores . 68
5.4.3.1 Active variable . 71
5.4.3.2 Confidence intervals for the eigenvalues and the subspace

distance . 73
5.4.4 Sensitivity ranking . 73
5.4.5 Time-dependent analysis of sensitivities 74
5.4.6 Efficient sensitivity analysis for computationally expensive scenarios 76

5.5 Summary . 77

6 Parameter Estimation: finding values for influential parameters 79
6.1 Introduction . 79
6.2 State of the art on parameter estimation in crowd simulation 80
6.3 Methods for parameter estimation . 82

6.3.1 Posterior mode as point estimate 85
6.3.2 Bayesian inference with likelihood: Markov chain Monte Carlo

method . 85
6.3.3 Bayesian inference without likelihood: approximate Bayesian com-

putation . 86

vii

Contents

6.4 Studying calibration of crowd simulation 88
6.4.1 Likelihood-based inference with Markov chain Monte Carlo 89

6.4.1.1 Proof-of-concept: artificial data, surrogate for data misfit 89
6.4.1.2 Bayesian inference in the bottleneck scenario: experi-

mental data, surrogate for data misfit 91
6.4.1.3 Proof-of-concept: artificial data, averaging of model runs 93
6.4.1.4 Bayesian inference in the bottleneck scenario: experi-

mental data, averaging of model runs 94
6.4.1.5 Evaluation . 95

6.4.2 Likelihood-free inference with approximate Bayesian computation . 97
6.4.2.1 Proof-of-concept: artificial data 97
6.4.2.2 Bayesian inference in the bottleneck scenario: experi-

mental data . 100
6.4.2.3 Discussion of tolerance 101
6.4.2.4 Evaluation . 102

6.4.3 Comparison of Bayesian inference to a point estimate 102
6.4.3.1 Unimodal posterior . 102
6.4.3.2 Bimodal posterior . 106
6.4.3.3 Multivariate posterior . 109
6.4.3.4 Evaluation . 113

6.4.4 Higher-dimensional Bayesian inference 114
6.5 Summary . 115

7 Estimation of initial and boundary conditions 117
7.1 Introduction . 117
7.2 State of the art on online parameter learning in crowd simulation 118
7.3 Statistical learning models for online parameter learning 120

7.3.1 Multivariate linear regression . 121
7.3.2 Random forest . 121

7.4 Studying statistical learning for origins and destinations of pedestrians . . 122
7.4.1 Analysis of trajectory data . 123

7.4.1.1 Speeds . 123
7.4.1.2 Pedestrian count . 123

7.4.2 Preprocessing of raw data . 123
7.4.2.1 From trajectories to density heatmaps 125
7.4.2.2 Decomposition of input samples 125
7.4.2.3 Ground truth: defining origins and destinations 126
7.4.2.4 Setup of the learning models 128

7.4.3 Performance of the models . 129
7.4.3.1 Performance metric: R2 score 129
7.4.3.2 Cross-validation . 129
7.4.3.3 Linear regression . 130
7.4.3.4 Analysis of predicted components 131
7.4.3.5 Nonlinear model: random forest 132

viii

Contents

7.4.3.6 Component and performance analysis 133
7.5 Summary . 133

8 Uncertainty analysis: measuring the reduction of uncertainty in the simula-
tion output 136
8.1 Introduction . 136
8.2 State of the art on uncertainty analysis in crowd simulation 137
8.3 Methods for uncertainty analysis . 138

8.3.1 Monte Carlo . 141
8.3.2 Generalized polynomial chaos expansion with point collocation . . 141

8.4 Studying impact of uncertain parameters on the prediction uncertainty . . 142
8.4.1 Propagation with Monte Carlo sampling 142
8.4.2 Propagation with generalized polynomial chaos expansion 143
8.4.3 Measuring the reduction of uncertainty in the simulation output

due to calibration . 144
8.4.3.1 Propagation of initial parameter intervals 144
8.4.3.2 Propagation with factor fixing 144
8.4.3.3 Propagation of posterior distribution obtained with Bayesian

inference . 145
8.5 Summary . 147

9 Summary, conclusions, and future directions 149
9.1 Summary . 149
9.2 Conclusions . 151
9.3 Future directions . 153

Bibliography 155

Appendix 176

A Infrastructure 177

B State of the art of parameter identification in crowd simulations 178

C Estimation of initial and boundary conditions 183
C.1 Random forest parameters . 183

C.1.1 Number of trees . 183
C.1.2 Number of features for split . 183
C.1.3 Maximum depth of the trees . 184

C.2 Overlapping data set . 185

ix

List of Figures

1.1 Outline of this work. 3

2.1 The modeling cycle. 9
2.2 The modeling cycle including verification and validation. 9
2.3 Manuscript statistics for “pedestrian dynamics”. 10
2.4 Scenario in which obstacles have to be regarded in the distance function. . 13
2.5 Manuscript statistics for “uncertainty quantification”. 15

3.1 Navigational map for the bottleneck scenario 21
3.2 The obstacle utility determines the behavior of an agent close to an obstacle. 22
3.3 The agent utility represents interaction between pedestrians. 23
3.4 The total utility balances the navigational field, obstacle repulsion, and

agent utility. 24
3.5 Social force model emulator for flow through a bottleneck. 25
3.6 Social force model emulator for egress times. 25
3.7 Snapshot of a simulation of the five bottlenecks. 26
3.8 Effect of the uncertain parameters in the bottleneck scenario. 28
3.9 Plan of the train station overpass. 29
3.10 Recorded pedestrian positions in the train station overpass over one day. . 29
3.11 Stochasticity vs. noise. 34
3.12 Noise in simulations of the bottleneck scenario with the optimal steps model. 34

4.1 Agile software cycle. 38
4.2 UML diagram for the uncertainty quantification framework. 44
4.3 Schematic description of the uncertainty quantification framework. 45
4.4 Parameter identification routines in the uncertainty quantification frame-

work. 46
4.5 Parameter estimation routines in the uncertainty quantification framework. 47
4.6 Uncertainty analysis routines in the uncertainty quantification framework. 48
4.7 Schematic description of the uncertainty quantification framework. 53

5.1 Overview of parameter identification methods. 60
5.2 Scatter plot of input-output relation for each uncertain input parameter

in the bottleneck scenario. 66
5.3 Sobol’ first-order indices for the bottleneck scenario calculated with Monte

Carlo approach. 68
5.4 Sobol’ total effect indices for bottleneck scenario calculated with Monte

Carlo approach. 68

x

List of Figures

5.5 Total and first-order Sobol’ indices for the bottleneck scenario. 69
5.6 Eigenvalues and first eigenvector components of the matrix C for the

botteneck scenario. 69
5.7 Normalized first eigenvector metric for the bottleneck scenario. 70
5.8 Activity scores for the bottleneck scenario. 71
5.9 Derivative-based global sensitivity metrics for the bottleneck scenario. . . 72
5.10 Sufficient summary plots of the flow through the bottleneck. 72
5.11 Confidence intervals for eigenvalues and subspace distance estimated by

bootstrapping. 73
5.12 Sensitivity ranking for the bottleneck scenario. 74
5.13 Topography for a fictional protest march in Kaiserslautern. 75
5.14 Sobol’ indices for the protest march scenario. 76

6.1 Scheme for Bayesian inference. 83
6.2 Overview of methods for parameter estimation. 84
6.3 Surrogate model for data misfit function for the bottleneck scenario. . . . 89
6.4 Posterior of the free-flow speed mean in the scenario with five bottlenecks

of increasing widths obtained with Metropolis algorithm. 90
6.5 Evolution of the Markov chain. 91
6.6 Performance criteria of Markov chain Monte Carlo sampling. 92
6.7 Surrogate model for the data misfit function for the five bottleneck scenario. 93
6.8 Posterior samples for free-flow speed mean obtained with Metropolis al-

gorithm for the five bottleneck scenario. 93
6.9 Performance criteria of Markov chain Monte Carlo sampling. 94
6.10 Posterior samples obtained with the Metropolis algorithm for calibration

against artificial data while averaging repeated model evaluations at each
candidate. 95

6.11 Performance criteria for Markov chain Monte Carlo sampling for calibra-
tion against artificial data while averaging repeated model evaluations at
each candidate. 95

6.12 Posterior samples for free-flow speed obtained with Metropolis algorithm. 96
6.13 Performance criteria of Markov chain Monte Carlo sampling 96
6.14 Distance measure for approximate Bayesian computation for calibrating

the free-flow speed in the bottleneck scenario against artificial data. . . . 98
6.15 Distance measures for approximate Bayesian computation when calibrat-

ing five individual bottlenecks. 98
6.16 Histogram of posterior samples for the free-flow speed mean obtained with

different tolerances ε for approximate Bayesian computation. 99
6.17 Distance measure obtained by approximate Bayesian computation when

calibrating the free-flow speed mean in the five bottleneck scenario against
flow measurements. 100

6.18 Histogram of posterior samples for the free-flow speed mean obtained with
approximate Bayesian computation for calibration against experimental
data. 101

xi

List of Figures

6.19 Relationship between free-flow speed mean and flow for the five bottle-
necks of different widths. 103

6.20 Results of calibration of the free-flow speed with approximate Bayesian
computation in the bottleneck scenario. 104

6.21 Flow values obtained from propagation of posterior mode and full posterior.104
6.22 Regression for propagated posterior obtained with approximate Bayesian

computation. 105
6.23 Size of confidence interval of slope for full posterior, posterior mode, and

data. 106
6.24 Social force model emulator for flow through the bottleneck constructed

with data from [Helbing et al., 2000]. 107
6.25 Results of calibrating the free-flow speed in the social force model emulator.107
6.26 Social force model emulator for or egress times over desired speed, con-

structed from data by Helbing et al. [Helbing et al., 2000]. 108
6.27 Leaving time obtained when propagating both posterior mode and the

full posterior for the free-flow speed in the bottleneck scenario. 109
6.28 Distance measure for calibration influential parameters in the bottleneck

scenario. 110
6.29 Univariate posterior distributions from calibration of influential parame-

ters in the bottleneck scenario. 111
6.30 Triangle plot for posterior density for the influential parameters in the

bottleneck scenario. 112
6.31 Bivariate posterior distributions for the influential parameters in the bot-

tleneck scenario. 113
6.32 Concept of Bayesian inference with active subspaces. 115

7.1 Schematic working of random forest regression. 122
7.2 Observed speeds of all pedestrians within the overpass. The speed is mea-

sured over the complete time a pedestrian remains inside the measurement
area, including stationary periods. 124

7.3 Number of pedestrians in the overpass in the of the data set. 124
7.4 Series of five density heatmaps obtained from trajectory snippets. 125
7.5 Explained variance of the principal component analysis for the input sam-

ples. 126
7.6 Pedestrian trajectories of a single day show which areas are strongly fre-

quented. 127
7.7 Possible origins and destinations in the train station overpass. 127
7.8 Exemplary origin-destination matrices for a time intervals of ten seconds. 128
7.9 Processing scheme for the estimation of origin-destination matrices from

a series of density heatmaps. 128
7.10 Performance for multivariate linear regression with reduced output di-

mension. 130
7.11 Predicted and ground truth components of principal component analysis

over the course of one day. 131

xii

List of Figures

7.12 Performance of multivariate linear regression with different input samples. 131
7.13 Scatter plot of the first and second component of the principal component

analysis of the origin-destination matrix. 132
7.14 Performance of random forest model measured by the R2 score. 133
7.15 Component analysis for multivariate linear regression and random forest. 134

8.1 Overview of methods for uncertainty analysis. 138
8.2 Forward propagation of prior parameter interval for free-flow speed mean

in the bottleneck scenario using Monte Carlo sampling. 143
8.3 Forward propagation of the free-flow speed mean to simulate the flow

through the bottleneck using generalized polynomial chaos expansion. . . 144
8.4 Histogram of flow values for each bottleneck width (from 0.8 m to 1.2 m)

for propagating the uniform distributions for the uncertain parameters. . 145
8.5 Histogram of flow values for each bottleneck width for propagating the

flat priors on the influential parameters. 146
8.6 Flow values obtained from propagation of the joint posterior for the in-

fluential parameters in the bottleneck scenario. 147

C.1 Performance of random forest against the number of trees. 183
C.2 Performance of random forest against the number of features considered

when looking for the best split. 184
C.3 Performance of random forest against the maximum depth. 184
C.4 Performance of random forest model using overlapping time intervals for

the input samples. 185

xiii

List of Tables

2.1 Locomotion models grouped by underlying problem: solving ordinary dif-
ferential equations, optimizing an utility, or calculating heuristics. 14

3.1 Uncertain parameters and their distribution used for the sensitivity analysis. 27

4.1 Functional and non-functional requirements for the uncertainty quantifi-
cation framework. 38

4.2 State-of-the-art open-source frameworks for uncertainty quantification. . . 39

5.1 Number of model evaluations for calculating Sobol’ indices based on the
sampling factor M . 67

5.2 Number of model evaluations for calculating activity scores based on the
oversampling factor α. 70

5.3 Uncertain input parameters and their distribution used for the sensitivity
analysis of the protest march. 75

6.1 Confidence intervals for slope of linear regression for observations as well
as propagated posterior mode and full posterior obtained by approximate
Bayesian computation. 106

8.1 Orthogonal polynomials for common probability distributions for the un-
certain input parameters. 140

8.2 Variation in flow after propagating initial flat parameter distributions. . . 145
8.3 Variation in flow after propagating parameters not affected by factor fixing.145
8.4 Variation in flow when propagating the joint posterior for free-flow speed

mean, free-flow speed standard deviation, personal space strength, and
obstacle repulsion. 147

B.1 State-of-the-art forward propagations that analyze the variation in the
output for different parameters for crowd dynamics models. 178

B.2 State-of-the-art sensitivity analysis for crowd dynamics models. 181
B.3 State-of-the-art sensitivity analysis for traffic models. 182

xiv

1 Introduction

Crowd crushes at events such as Love Parade (2010), Madhya Pradesh temple stampede
during the Hindu festival of Navratri (2013), Hajj (2015), Oxford circus (2017), Lag
BaOmer pilgrimage in Meron, Israel (2021), stress the importance of pedestrian safety.
People in large crowds can be harmed if pedestrian flows do not interact well, space is
overcrowded, or infrastructure is flawed. Besides safety aspects, the efficiency of built
infrastructure affects our daily lives.

Pedestrian dynamics aims to understand the behavior of individuals and crowds. It
is an interdisciplinary field of research that occupies engineers, mathematicians, com-
puter scientists, psychologists, sociologists, and others. Independent of background, the
community shares an overall objective: making crowds safer.

The two main approaches in pedestrian dynamics are (1) observation of crowds in
real life and in controlled experiments and (2) modeling and predicting behavior. The
two approaches are intertwined: Modeling builds on observations, and simulations can
indicate where experiments are needed.

Several measures such as continuous crowd monitoring by trained personnel, thought-
ful communications to direct people, education on crowd safety for participants and
personnel are taken to prevent incidents and increase pedestrian safety. Crowd simu-
lations are an additional important component: They enable us to analyze pedestrian
flows for the maximum capacity, identify critical locations in which high densities occur,
and evaluate evacuation concepts.

1.1 Motivation

Crowd simulations are based on mathematical models that describe crowd behavior.
Several models have been developed over the last decades [Yang et al., 2020] and new
models are still being developed. Almost all are aimed at a wide range of applications
and situations ranging from capacity estimation at airports to evacuation concepts for
schools. They draw on a list of parameters that need to be adapted to the purpose of the
study. This is not uncommon. “Mathematical models generally involve parameters that
must be ‘tuned’ so that the model best represents the particular system or phenomenon
about which predictions are to be made.”[Oden et al., 2010]. Strictly speaking, for each
study a specific model needs to be defined by selecting specific parameter values and
a simulation scenario has to be set up. However, the model parameters are usually
unknown and some even cannot be measured directly. Imperfect knowledge about the
parameters introduces uncertainty in the prediction.

Especially in the context of safety, we need to know how good these predictions are.
This need has been formulated from inside the community: “Even though calibration

1

1 Introduction

and validation are considered to be essential to determine the reliability and validity of
simulation models, researchers currently apply inconsistent procedures or only partially
test the simulation tools due to the lack of international standards for verification and
validation of pedestrian flow and crowd dynamic simulation tools for general use”[Duives
et al., 2016].

One factor that introduces uncertainty into the simulation is the choice of parameters.
Parameter values in crowd dynamics are often set by relying on expert knowledge or
surveys. As in many other disciplines, “Unfortunately, these model parameters are
commonly not known with great precision; they may vary from [...] case to case, or
they may not be known at all. In short, they generally involve large uncertainties
that can be resolved only with sufficient experimental evidence.”[Oden et al., 2010].
Yet experimental evidence is limited in crowd dynamics. Designing experiments with
humans is challenging, and carrying them out is expensive, time-consuming, and may
even be unethical. Consequently, parameter uncertainty affects the simulations.

The field of uncertainty quantification (UQ) offers a set of standardized methods that
aim to improve the accuracy of model predictions. Smith describes UQ as “the science
of identifying, quantifying, and reducing uncertainties associated with models, numeri-
cal algorithms, experiments, and predicted outcomes or quantities or interest.”[Smith,
2014, p. 1]. There are mainly three objectives of UQ: (1) parameter identification or
selection to isolate the influential parameters using sensitivity analyses, (2) parameter
estimation which is concerned with the choice of the parameter values based on data
while quantifying associated uncertainties, (3) uncertainty analysis which propagates in-
put uncertainties through models to analyze the uncertainty in the prediction. Central
to all UQ methods is the definition of a quantity of interest. The purpose of the simu-
lation dictates the relevant outputs. For example, the flow measures the capacity of an
environment [Seyfried et al., 2009], pedestrian density helps to identify critical locations,
and evacuation time is prevalent in safety concepts.

We need to consider uncertainties in the simulation, if possible, reduce them, and
quantify their impact on the quantities of interest. In other words, “Today [...] the
phenomena and processes we ask computer models to predict are of enormous importance
to critical decisions that affect our welfare and security [...]. With such high stakes, we
must insist that the predictions include concrete, quantifiable measures of uncertainty.”
[Oden et al., 2010].

1.2 Scope and overview of this work

When crowd simulations are used to evaluate the safety concepts for buildings or events,
central measures such as evacuation time, density, and flow are crucial. Therefore, un-
certainties in their prediction should be reduced and quantified. When one relies on
a single simulation, a too optimistic prediction at the tails of the distribution of the
quantity of interest may be obtained which may compromise pedestrian safety. Instead,
the full distribution of the quantity of interest needs to be evaluated e. g. using forward
propagation methods. The uncertainty in the simulation results, epitomized by the vari-

2

1 Introduction

ation in the quantities of interest, is directly related to the reliability of the simulation.
A high degree of uncertainty in the results complicates the evaluation of security con-
cepts and also the potential redesign of escape routes. Therefore, the uncertainty in
the output should be reduced as much as possible. However, even after careful calibra-
tion, uncertainty will be present in the prediction due to uncertainty in the data used
for calibration as well as parameters that are not perfectly informed by the calibration.
This uncertainty needs to be quantified and taken into account. Overall, it is essential
to consider and handle uncertainties when performing crowd simulations. The scope of
this thesis is to identify a specific model with reduced uncertainty.

In this dissertation, I present a systematic three-step approach for the identification
of a specific model and the reduction and quantification of uncertainty in the prediction.
All steps are demonstrated on a scenario that reflects key crowd behavior: a bottleneck
scenario. The bottleneck is a crucial part of all egress situations because the constriction
can lead to high densities. In the following, I describe the steps to identify a specific
model with quantified uncertainties in more detail. I state the associated research ques-
tions that I answer in the related chapters. Figure 1.1 presents a graphical overview of
my work and the outcomes.

Uncertainty analysis
Monte Carlo
Point collocation

UNCERTAINTY
ANALYSIS

PARAMETER
ESTIMATION

Q2 Q3

Bayesian inference

Markov chain Monte Carlo
Approximate Bayesian
computation

Implementation &
application to
bottleneck scenario

Implementation &
application to
bottleneck scenario

Determination of
parameter values

Quantification of
remaining uncertainty

PARAMETER
IDENTIFICATION

Global sensitivity
analysis
Sobol’ indices
Activity scores
Derivative-based global
sensitivity metrics

Q1

Implementation &
application to
bottleneck scenario

Identification of
influential parameters

Influential
parameters

Posterior
distribution

O
U

T
C

O
M

E
S

SPECIFIC

MODEL

STUDIES FRAMEWORK

Refined optimal
steps model for a
bottleneck
scenario

Exemplary studies
of application of the
methods to a
bottleneck scenario

Tested
implementations of
the methods adapted
for crowd simulation

Statistical learning

Multivariate linear regression
Random forest

Figure 1.1: Outline of this work.

3

1 Introduction

Uncertainty quantification software First, I deal with the necessary infrastructure for
the parameter studies. The studies require a software framework with methods that are
specifically selected and adapted for crowd simulations. I derive the requirements and
evaluate existing software with respect to them. Since no existing software meets all
mandatory requirements, I design and implement my own framework. The overarching
requirement addressed in this chapter is:

R1 Choose or design a software for uncertainty quantification for crowd simulations

Subsequent requirements:

R1.1 Derive requirements for a software for uncertainty quantification for crowd
simulations

R1.2 Analyze available software regarding the requirements

R1.3 Design and implement a software that fulfills the requirements

Parameter identification: identifying influential parameters Once the infrastructure
is set up, I need to identify the most influential parameters of the chosen model family
for the bottleneck scenario. The overarching research question is:

Q1 How can we identify influential parameters in the optimal steps model for the
bottleneck scenario?

Subsequent research questions:

Q1.1 Which parameter identification methods are suited for crowd dynamics mod-
els?

Q1.2 Which parameters are influential and which are non-influential in the bottle-
neck scenario?

Q1.3 How can we determine if the results are reliable?

For this purpose, I apply global sensitivity analysis methods that assign a sensitivity
index to each parameter. As a result, I can distinguish between influential parame-
ters and non-influential parameters that can be fixed to an arbitrary value within their
range. The most influential parameters have the largest impact on the uncertainty in
the simulation output.

Parameter Estimation: finding values for influential parameters The next step is to
estimate the values for influential parameters based on an experimental dataset. The
overarching research question is:

Q2 How can we calibrate the influential parameters in the bottleneck scenario?

Subsequent research questions:

Q2.1 Which parameter estimation methods are suited for calibrating crowd dy-
namics models?

4

1 Introduction

Q2.2 What are the advantages of Bayesian inference methods for calibration com-
pared to established methods, such as point estimates?

Q2.3 What is the posterior distribution for the influential parameters in the bot-
tleneck after calibrating to experimental data?

I employ Bayesian inference to calibrate the influential parameters and estimate the
associated uncertainties. By careful calibration, I can reduce the uncertainty in the
prediction. For the bottleneck scenario, I use a publicly available dataset to calibrate
the free-flow speed. Bayesian inference provides a joint posterior distribution of the
uncertain parameters that quantifies the uncertainty associated with the estimation.

Estimation of initial and boundary conditions: finding values for initial and bound-
ary conditions in real-time predictions Parameter estimation is also an essential step
towards real-time predictions. In particular, it is required for the live configuration of
the simulation scenario. The aim is to recreate the current situation in reality as closely
as possible in the simulator. For this purpose, the origins and destinations of the agents
need to be defined. Moreover, a number of agents has to be assigned to each origin
and their destination has to be defined. Especially the popularity of origin-destination
combinations is often unknown. In a live prediction context, a dynamic input is needed.
One approach is to integrate sensor data into the simulation. The overarching research
question is:

Q2* Can we predict origin-destination matrices for the initialization of origins and
destinations in the simulation from live sensor data in form of density heatmaps?

I perform a feasibility study to determine whether the origin-destination relations can be
predicted with statistical learning models from abstract sensor input: a series of density
heatmaps. This type of sensor data is widely available nowadays.

Uncertainty analysis: measuring the reduction of uncertainty in the simulation output
The final step is to quantify the uncertainty in the simulation output. The overarching
research question is:

Q3 How can we quantify the uncertainty in the prediction for the bottleneck scenario?

Subsequent research questions:

Q3.1 Which uncertainty analysis methods are suited for crowd simulations?

Q3.2 How large is the uncertainty in the prediction for the bottleneck scenario
before and after calibrating influential parameters?

I employ Monte Carlo propagation to quantify the uncertainty in the prediction. There-
fore, I take the joint posterior distribution from the parameter estimation and propagate
it through the model. As a result, I obtain a distribution for our quantity of interest,
the flow through the bottleneck. The shape of the distribution indicates the prediction

5

1 Introduction

uncertainty. For the bottleneck study, I compare the uncertainty of the simulation out-
put for three configurations: first, using the prior parameter distributions, second after
fixing the non-influential parameters in the factor fixing setting, and finally, employing
the joint posterior distribution obtained with calibration. We observe that the output
uncertainty is significantly reduced in the resulting specific model. Both quantification
and reduction of the uncertainty enhance the credibility of the simulation outcomes. This
allows us to use simulations as a basis when formulating guidelines for the construction
of buildings and infrastructures, when preparing and reviewing evacuation guidelines,
and for designing safe events.

In short, the important steps for a systematic parameter analysis to quantify and
reduce uncertainty in the prediction are:

• Choice of model family for the purpose of the study and the scenario

• Identification of the quantities of interest for the study

• Construction of a specific model from a model family

– Identification of influential parameters (Q1)

– Calibration of influential parameters (Q2)

• Quantification of the uncertainty in the prediction to assess its accuracy
(Q3)

This thesis focuses on the highlighted steps and addresses the related research questions
Q1, Q2, and Q3.

1.3 Structure of this work

I assume that readers either have a background in crowd dynamics or uncertainty quan-
tification but not in both. Therefore, Chapter 2 provides an introduction to pedestrian
dynamics (Section 2.2) and to uncertainty quantification (Section 2.3). Roughly speak-
ing, pedestrian dynamics can be considered as an application and UQ as a methodology
for this work.

In Chapter 3, the locomotion models used in this thesis and the two scenarios which
I study are described: A bottleneck scenario which is part of all ingress and egress
situations, and a scenario with a multi-directional flow in a train station. I introduce the
crowd simulation framework Vadere that offers implementations of several locomotion
models. The simulations in this thesis are performed with Vadere. Finally, I describe
two effects observed in the simulations, stochasticity and noise, and outline how I handle
them.

In Chapter 4, I present the uncertainty quantification framework for Vadere that I
developed in this thesis. This chapter addresses the requirement R1: Choose or design
a software for uncertainty quantification for crowd simulations.

Chapters 5, 6, 7, and 8 each address one of the research questions presented in the last
section: Chapter 5 is concerned with Q1: “How can we identify influential parameters in

6

1 Introduction

the optimal steps model for the bottleneck scenario?”. Chapter 6 addresses Q2: “How
can we calibrate the influential parameters in the bottleneck scenario?”. Chapter 7 deals
with Q2*: “Can we predict origin-destination matrices for the initialization of origins
and destinations in the simulation from live sensor data in form of density heatmaps?”.
Chapter 8 is dedicated to Q3: “How can we quantify the uncertainty in the prediction
for the bottleneck scenario?”.

Each of these chapters is divided into four sections: (1) introduction to the challenge
addressed in this chapter (2) state of the art on the topic in crowd simulation to famil-
iarize the readers with the common approaches so that they can put my methodological
choices into context, (3) a method section where potential methods for the problem are
described, (4) my work performed on this topic, and (5) a summary of the results.

Finally, Chapter 9 summarizes the work performed in this thesis, evaluates the ac-
complishments, and gives an outlook on future work.

A brief overview of the software tools used for this thesis can be found in Appendix
A.

7

2 Background

In this chapter, we take a look at the basics of modeling and simulation, in particular
for pedestrian dynamics. I introduce uncertainty quantification methods and point out
how they can be used in modeling and simulation of crowd dynamics.

2.1 Modeling and simulation

We first need to understand the terms “model” and “simulation”. I follow the definition
provided by [Neelamkavil, 1987] who defines a model as “a representation of a physical
system or process intended to enhance our ability to understand, predict, or control its
behavior.” which is also used in [Oberkampf and Roy, 2010]. It is important to note
here that the model is a simplification of the physical process. We need simplifications to
make the simulation possible and feasible. However, simplifications introduce a discrep-
ancy between the model and the modeled system. Choosing the best simplifications for
the intended purpose of the model is a critical and complex task. Once the model is es-
tablished, a simulation is “the exercise or use of a model to produce a result” [Oberkampf
and Roy, 2010].

The stages of modeling and simulation are often described as a cycle [Schlesinger,
1979, Bungartz et al., 2014], as in Figure 2.1. First, from real-world observations, a
simplified, abstract, conceptual model is derived. At the end of this step, we have
a formal description of the model, e. g. equations describing a process. Even though
models are simplified representations of reality, nowadays, most models themselves are
rather complex. As a result, a mathematical formulation is not sufficient, but we need
an implementation in order to run simulation experiments with it. Consequently, the
next step is the implementation of algorithms often including discretization, to obtain
a computer-based model. This model can then be used to simulate the modeled system
or process in order to predict its behavior or to control it. While the modeling cycle so
far suggests that modeling is a sequential procedure, it often is an iterative process in
which the model is refined continuously.

Two crucial tasks in the modeling process are verification and validation. They aim
to determine the validity, accuracy, and credibility of a prediction. Both are permanent
tasks that are never finalized. Validation addresses the question “do we solve the right
equations?” and verification is concerned with “do we solve the equations right?”. In
other words, verification assures that the code is a correct implementation of the con-
ceptual model. Unit tests that assure that a method correctly performs are a typical
tool for code verification. Whenever a mathematical problem needs to be solved in the
computer-based model, such as an optimization, verification should also include a com-
parison to a solver with a high accuracy [Oberkampf and Roy, 2010]. Validation assures

8

2 Background

Conceptual
model translate Computer

model

observe

Physical
process /
system

Simulation

simulate

Figure 2.1: The modeling cycle describes the modeling process from observations of a physical
system to a simulation of the process.

that the simulations align with the physical process within the application range of the
model. Usually, observations of the process such as data from experiments are used for
validation. Figure 2.2 integrates model verification and validation in the modeling cycle.

Conceptual
model

translate
Computer

model

validate

observe

Physical
process /
system

Simulation

verify

simulate

Figure 2.2: The modeling cycle including verification and validation.

2.2 Pedestrian dynamics

Pedestrian dynamics, or crowd dynamics, is concerned with the movements and behavior
of individuals and crowds. One of the first publications was Le Bon’s study [Le Bon,
1895] from 1895 in which he considered crowds as violent masses, which is an improper
description of crowds in general. In 1975 Hirai and Trui published a simulation model
based on ordinary differential equations (ODE) for a crowd [Hirai and Tarui, 1975].
It is one of the first publications in our field and is still relevant today. Figure 2.3
shows an increasing research interest in pedestrian dynamics since the 2000s as well as
the interdisciplinary nature of the community. Although many modeling decisions are

9

2 Background

based on psychological studies of crowd and individual behavior, still the majority of
publications stem from natural sciences and engineering. However, lately, there has been
an increased effort to consider psychological findings explicitly in pedestrian dynamics
[Drury, 2020, Sieben et al., 2017, von Sivers et al., 2016b, Kleinmeier et al., 2020]. In
order to overcome communication barriers among the disciplines, a glossary for crowd
dynamics has been initiated [Adrian et al., 2019].

(a) Increasing interest in pedestrian dynamics
over the last two decades.

(b) Publications in pedestrian dynamics stem
from various fields. Disciplines with less
than 2% of the documents are summarized
in one category (others).

Figure 2.3: Summary of manuscripts in the interdisciplinary field of pedestrian dynamics (data
source: Scopus, accessed on 2.7.2021).

The research in pedestrian dynamics can be roughly divided into studies of the behav-
ior, including observing pedestrians in the real world and conducting controlled experi-
ments, and modeling and simulation of pedestrian behavior. Here, I focus on the latter.
Nevertheless, both parts are equally important and they even need each other: The first
step of modeling is to obtain observations of the physical system. In our case, those are
observations of pedestrian behavior. They can be obtained from the real world where
there are numerous effects on the pedestrians that cannot be controlled or from (labo-
ratory) experiments in which the behavior in a specific setting is studied. Consequently,
observational studies and experiments lay the foundation for modeling pedestrian behav-
ior. Once a computer-based model of crowd behavior has been developed, simulations
can reveal potentially critical circumstances for pedestrian safety, as well as maximize
flows. Before these insights can be implemented in infrastructure, controlled experi-
ments should be carried out for the configuration. That means simulations can point
out which experiments should be performed and can therefore reduce the number of
necessary experiments (without simulation) significantly.

Large groups of pedestrians in confined spaces potentially lead to harmful situations,
ranging from discomfort up to death. If we understand the dynamics of a crowd, we can

10

2 Background

extrapolate to a certain extent how pedestrians will behave in an environment. This can
be supported by simulations.

2.2.1 Modeling crowd behavior

By modeling crowd behavior, we can create simulation tools that allow us to analyze
pedestrian behavior in different environments. As for pedestrian dynamics in general, the
main goal of simulation studies is to ensure pedestrian safety. Two important measures
for pedestrian safety are density and flow. Density is the number of pedestrians in a
given area. The flow is the number of pedestrians crossing a measurement line over a
given time period. Generally speaking, the combination of a high density with a low
flow is potentially harmful. However, it depends strongly on the situation. Therefore,
these two measures are considered essential in the pedestrian dynamics community. For
example, at concerts, the density right in front of a stage is typically quite high. Since
audience members often move to this part on purpose and the density decreases with
the distance to the stage, the increased density in front of the stage is not problematic.
Nevertheless, if the density is high in places where people want to move, and yet there is
little flow, the situation is different. This could for example happen when the audience
wants to leave the space of the concert, but the exits are too small, blocked, or unhandily
placed. These simple examples show that the decision of whether a situation could be
harmful is highly complex and requires a lot of experience. Consequently, while crowd
simulations are currently able to support personnel that is responsible for crowd safety
they are not (yet) capable of deciding automatically if a situation is harmful.

In order to analyze pedestrian safety in a given space, we can simulate the usual
or maximum occupancy to identify locations in which high densities occur or flow is
reduced. In addition, for events as well as for buildings, evacuation plans have to be
created that define how the egress will be organized in case of an emergency. There are
statutory guidelines for evacuations of buildings from fire safety to assure occupant safety.
Similarly, regulations for events in open spaces exist. Secondary goals of the simulations
can be estimation and maximization of capacity, for example in built infrastructure
such as train stations or airports. In addition, measures have been defined to evaluate
e.g. comfort and efficiency of built infrastructure [Helbing and Johansson, 2011].

2.2.2 Microscopic crowd simulation

One approach for modeling crowd behavior is representing each pedestrian by a virtual
pedestrian, a so-called agent. This microscopic representation supports predictions in
detailed topographies. Examples are buildings with many obstacles, such as theaters
with rows of seats or open space offices, and infrastructures featuring several entrances
and exits of regular width, which is about one meter. In addition, microscopic models
are necessary if individual measures or microscopic measures are of interest, such as
individual egress or waiting times. Most microscopic crowd movement models can be
understood as agent-based or individual-based models [Bonabeau, 2002]. In agent-based
modeling (ABM), each agent has individual characteristics and rules or heuristics to

11

2 Background

make its own decisions. Typical individual attributes are the size of a pedestrian, often
modeled by a radius when pedestrians are represented by circular agents, the height, and
the free-flow speed, which is the “intrinsic” speed of a pedestrian walking unhindered
towards his or her destination.

Microscopic simulation can also be used for larger topographies, but due to the high
level of detail, they are computationally expensive. For studies with larger topographies
in which macroscopic measures such as densities or flows are to be studied, macroscopic
models can be a better choice. Macroscopic models typically consider pedestrians as a
continuum [Hughes, 2000, Hoogendoorn et al., 2014, Treuille et al., 2006]. An overview
of macroscopic models can be found in [Kormanová, 2013]. In between macroscopic and
microscopic models, mesoscopic models are located. They are typically multiscale mod-
els, which means models with transition between the microscopic and the macroscopic
scale [Borrmann et al., 2012, Biedermann et al., 2016, Bellomo and Bellouquid, 2015,
Teknomo and Gerilla, 2008]. In this work, we focus on microscopic models since we
study small topographies, mainly a bottleneck scenario.

Microscopic crowd simulation software is often divided into three levels [Hoogendoorn
and Bovy, 2004]: A strategic level that models the choice of destinations of a pedestrian
by activity, a tactical level describing the scheduling of activities and respective destina-
tions and route-choice towards the destinations, and an operational level that describes
the locomotion. However, the levels cannot be strictly separated. In this work, I simu-
late a confined bottleneck scenario with defined origin and destination of the pedestrians.
Consequently, activity choice and scheduling play a minor role. Central are route-choice
and locomotion.

2.2.3 Wayfinding using navigational fields

Wayfinding, or route-choice, is concerned with the path that a pedestrian takes to reach
his or her destination. Navigational fields, also often called floor fields, constitute one
approach for modeling wayfinding. Each point in the field indicates the distance to the
destination. These fields can be understood as a cognitive map [O’Keefe and Nadel,
1978] that the agent has of its surrounding. A navigational field is based on a mesh
that is spanned over the topography. At each node in the mesh, the distance to the
destination is calculated. In theory, any distance measure can be used for the floor field.
Many topographies, however, include obstacles that need to be circumvented in order
for the agent to find its destination.

Figure 2.4 shows an exemplary topography that highlights the importance of a distance
measure that considers obstacles. In this scenario, between the origin where the agents
are spawned (green rectangle) and their destination (orange rectangle), a U-shaped ob-
stacle is present. If we use a distance measure that does not consider obstacles, agents
will get stuck in the obstacle. To resolve this issue, a geodesic distance measure should
be used. In general, a navigation field assigns a utility to each position within the
simulation area.

The geodesic distance is computed by solving the eikonal equation which models the
propagation of a wave. We start the fictional wavefront at the destination and it moves

12

2 Background

(a) Euclidean distance measure (b) Geodesic distance measure

Figure 2.4: Scenario in which obstacles have to be regarded in the distance function.

around obstacles through the topography. Here comes the mesh into play, the eikonal
equation is solved at each node of the mesh in order to obtain the travel time of the
wave from the destination to the node. Since the wave is started at the boundary of
the destination region, the navigational field depends on the destination. Consequently,
we need one navigational field for each destination. If pedestrian density should be
considered for wayfinding, e. g. when there is congestion in front of an exit, dynamic
navigation fields can be employed [Köster and Zönnchen, 2014].

2.2.4 Locomotion models

Several locomotion models for pedestrians have been developed in the last decades.
One of the first model types are the force-based models by Hirai and Tarui [Hirai and
Tarui, 1975] and Helbing and Molnár [Helbing and Molnár, 1995]. Nowadays there
are numerous extensions to the social force model [Chen et al., 2018]. All of them
are based on the idea of force fields in the hodological space by Lewin [Lewin, 1951].
The hodological space represents a psychological space, paths are defined considering
psychological factors instead of purely mathematically by the shortest distance. The
force fields by Lewin, however, were not intended to be used in a Euclidean space. The
idea behind social force models is that agents are subjected to attractive and repulsive
forces. Attractive forces stem from destinations while repulsive forces originate from
other agents or obstacles. In the social force models, the social force fields are treated as
if they were physical forces: The sum of all forces yields the right-hand side of an ordinary
differential equation. The equations can be solved using well-known solvers such as
Runge-Kutta methods. However, one needs to be careful to avoid numerical instabilities
when implementing the social force model [Köster et al., 2013]. The summation of forces
can hinder pedestrians from reaching their destinations, and oscillations might occur due
to numerical instabilities around the destination region. Nevertheless, social force models
can produce smooth trajectories if the step size is chosen sufficiently small.

In between the two publications of social force models, in 1985, Gipps and Markjö
introduced a locomotion model based on a cellular automaton [Gipps and Marksjö,
1985]. Cellular automata (CA) divide the space in an even grid where each cell in the
grid has a state. Central to the CA are transition rules that define the transition between

13

2 Background

states. In the CA proposed by Gipps and Markjö, cells are either free or occupied by an
agent or an obstacle. Each agent moves along the cells towards its destination. Often,
probabilistic transition rules are defined. Typically, rectangular grids are used for CA
which cause artifacts on the agent’s trajectories for lateral movements. In addition, the
resolution of the grid somewhat limits how topography elements can be placed. For
example, door widths can only be a multiple of the resolution. Cellular automata are,
however, easy to understand and implement since they do not require any numerical
treatment. In addition, they are computationally inexpensive and can therefore also be
used for larger crowds.

In addition to social force models and cellular automata, there are several newer loco-
motion models. They can be grouped in multiple ways, e. g. based on model structure
and theory [Teknomo, 2002] or by their handling of time and space. I group the models
by the mathematical core problem that they need to solve. That leaves us with models
based on ODEs and models that optimize a utility function. The remaining models use
heuristic rules that can be easily computed. An overview of locomotion models can be
found in Table 2.1.

Table 2.1: Locomotion models grouped by underlying problem: solving ordinary differential
equations (ODE), optimizing an utility, or calculating heuristics.

Name of the model Reference ODE Utility Heuristic

Social force model
(SFM)

[Hirai and Tarui, 1975,
Helbing and Molnár,
1995]

4

Gradient navigation
model

[Dietrich and Köster,
2014]

4

(Generalized) centrifu-
gal force model

[Chraibi et al., 2010] 4

Cellular automaton
(CA)

[Gipps and Marksjö,
1985]

4

Optimal steps model
(OSM)

[Seitz and Köster, 2012,
von Sivers and Köster,
2015, Kleinmeier et al.,
2019]

4

Stochastic headway dis-
tance velocity model

[Eilhardt and Schad-
schneider, 2014]

4

Velocity obstacles [van den Berg et al.,
2008]

4

Discrete choice model [Antonini et al., 2006] 4

Behavioral heuristics
model

[Seitz et al., 2016] 4

Reynolds steering [Reynolds, 1999] 4

Cognitive, decision-
based model

[von Krüchten and
Schadschneider, 2020]

4

14

2 Background

While most locomotion models are aimed for egress situations, they cover a range of
situations as the test cases from the RiMEA guidelines [RiMEA, 2016] for microscopic
evacuation analysis show: The test cases cover different local topographies such as move-
ment around corners, passing of bottlenecks, congestion in front of stairs. Also, various
situations defined by population via age distribution, reaction times, and densities have
been considered.

In this dissertation, I mainly work with the optimal steps model (OSM) described in
[Kleinmeier et al., 2019]. The core of the model is the optimization of a utility that
considers the geodesic distance to the agent’s destination as well as other agents and
obstacles in the proximity. It is described in more detail in Section 3.1.1. The OSM
works with continuous space and quasi-continuous time. Therefore, it does not suffer
the same restrictions from spatial discretization as the cellular automaton. Additionally,
I use an emulator for the Social Force Model as a use case for calibration using Bayesian
inference and a point estimate in Section 6.4.3.

2.3 Uncertainty quantification

Similar to pedestrian dynamics, uncertainty quantification methods have been devel-
oped and used only in the last two decades (Figure 2.5a). The number of published
manuscripts on uncertainty quantification, or short UQ, is about 10 times of those in
pedestrian dynamics. Similar to pedestrian dynamics, we observe a wide interest in the
UQ methods, compare Figure 2.5b. However, the researchers are all rooted in science,
technology, engineering and mathematics, short STEM, fields. Since uncertainty quan-
tification provides a set of methods, many publications are not focused on UQ itself, but
rather on the selection and adaptation of its methods to their application.

(a) Increasing interest in uncertainty quantifi-
cation over the last two decades.

(b) Publications on uncertainty quantification
stem from various fields.

Figure 2.5: Manuscript statistics for “uncertainty quantification” (data source: Scopus, ac-
cessed 2.7.2021).

15

2 Background

In this work, I select, adapt, and implement methods from uncertainty quantification
in order to assess and improve the accuracy, credibility, and reliability of the predictions.
This can be understood as a part of model validation [McClarren, 2018].

2.3.1 Definition of uncertainty

Before discussing uncertainty quantification and its purposes, I first need to introduce the
term uncertainty. In the literature, I could not find a consistent definition of uncertainty.
Often, it is used interchangeably with error. I believe that error and uncertainty are
fundamentally different and define them accordingly. I use the definition of error from
Tumeo [Tumeo, 1994] who defines it as “the difference between a computed or measured
value and a ’correct‘ value”. Tumeo also defines uncertainty as “the concept or condition
of being in doubt about a value”. We notice that in the definition of uncertainty there is
no ’true’ reference mentioned. This is the key difference between error and uncertainty.
As a consequence, errors are “recognizable deficiencies” [Oberkampf and Roy, 2010] while
uncertainties are “potential deficiencies” [Oberkampf and Roy, 2010] meaning that we do
not know if they are present. Nevertheless, this definition of uncertainty is still somewhat
vague and its use is therefore limited.

2.3.2 Types of uncertainty

I believe that uncertainty can be best understood by looking at where it originates.
There are several sources for uncertainties in modeling and simulation. Each model is a
simplification of a real world problem or system. Along with the benefits of simplifica-
tion such as computability and code acceleration come drawbacks: The model is only an
approximation to the real system. Thus there is a discrepancy between the model and
the system under investigation. This discrepancy is typically studied at specific points
where observations are available during validation. If we consider the observations as
true reference for simplification, at these points a model error can be calculated. In be-
tween (interpolation) as well as outside (extrapolation) of these points, the discrepancy
is typically unknown and consequently a source of uncertainty. I refer to this type of un-
certainty as model (form) uncertainty. It is also called model discrepancy or inadequacy
[Ghanem et al., 2017].

In a real system, observations are always erroneous measurements of the system. We
do not have direct access to ’true’ reference values from the system itself. Therefore,
another type of uncertainty is measurement uncertainty or observational uncertainty.
This uncertainty is introduced by the setup and devices in the measurement process.
When studying humans, as in pedestrian dynamics, experimental uncertainty also entails
behavioral uncertainty [Ronchi et al., 2014] that describes that stochasticity in human
behavior leading to different results for the same experiment [Averill, 2011].

All models comes with a set of inputs that need to be chosen carefully for a reliable pre-
diction. Inputs consist of parameters as well as initial and boundary conditions. Imper-
fect knowledge of the inputs leads to input uncertainty often also described as parameter
uncertainty. This type of uncertainty is central for the studies in this manuscript.

16

2 Background

Our computerized models are all numerical, not algebraic, models and therefore sub-
ject to discretization error and numerical errors. These are errors since we know before-
hand that they are present. For example, the navigational field of the agents is only
evaluated with a certain discretization, the resolution of the mesh. The optimization
of the utility in the optimal steps model is performed with numerical algorithms that
include numerical errors. So do the ODE solvers for force-based models. In addition,
there can be uncertainties present associated with the discretization, but in this work I
do not consider any uncertainties originating from this process.

In the literature, uncertainty is often divided into two main types which are defined
more consistently: Aleatory uncertainty “refers to uncertainty about an inherently vari-
able phenomenon”[Sullivan, 2015, p. 4]. It is also referred to as stochastic or irreducible
uncertainty while epistemic uncertainty “refers to uncertainty arising from lack of knowl-
edge”[Sullivan, 2015, p. 4]. The sources of uncertainties defined above are all epistemic
uncertainties. The distinction between the two types of uncertainty is not always clear
because lack of knowledge depends on the point of view [Smith, 2014, p. 8]. Rolling a
dice or flipping a coin is usually considered a random process, and therefore subject to
aleatory uncertainty. However, if we were to model the process of the coin toss itself,
it is no longer random. Instead, the initial conditions of the throw might be unknown
and therefore affected by epistemic uncertainty. It is important to note that aleatory
uncertainty cannot be further reduced since it is part of the system that is studied.
Epistemic uncertainty, however, can be reduced by increasing our knowledge base. In
practice, gaining more knowledge is often a complex and costly task. Therefore, it is
necessary to identify sources of uncertainty that have a large impact on the simulation
to invest our resources efficiently.

2.3.3 Overview of uncertainty quantification methods

Uncertainty quantification methods are often divided into three groups: uncertainty
analysis or forward propagation, sensitivity analysis, and methods for inverse problems.
Central to any study is the quantity of interest, a predefined simulation outcome. For
crowd dynamics, this can be the flow or the density in a certain region, or the number
of agents still in the building for an egress simulation as in [von Sivers et al., 2016b].
Sensitivity analysis methods aim to attribute the uncertainty in the simulation output
to the input parameters. The result is usually a sensitivity index, a metric, for each
studied parameter which quantifies the impact of this parameter on the uncertainty
in the simulation output. Local sensitivity analysis studies the behavior of the model
around a fixed reference point, while global sensitivity analysis allows to study the impact
of the parameter over a certain range or under a given distribution. A typical inverse
problem is to find a parameter vector for which the model outcomes resemble given
observed data. This task is often called parameter estimation. The result can be a single
parameter vector, as for classical vector, or a so-called informed posterior distribution of
the uncertain parameters that reflects the uncertainty in the data relative to the model.
Uncertainty analysis propagates uncertain parameters and their associated distributions

17

2 Background

through the system to quantify their impact on the simulation outcomes. Typical outputs
are statistical moments or even the full distribution of the quantity of interest.

For each of the three main methodical groups, I provide an overview of methods in the
respective chapter: Sensitivity analysis methods can be found in Section 5.3, methods
for parameter estimation in Section 6.3, and methods for uncertainty analysis in Section
8.3.

2.4 Summary

In this chapter, I gave a brief introduction to the concepts of modeling and simulation by
presenting the modeling cycle. The cycle includes four steps: From observations of the
physical system, in our case the behavior of a crowd, a conceptual model is formulated
which is then implemented to obtain a computer model. The computer model can then
be used to predict crowd behavior. Two essential steps of modeling are verification and
validation that assure the validity of the model.

Building on the modeling cycle, I discussed modeling of crowd behavior. I focused
on microscopic crowd simulation that relies on agent-based models in which each agent
has individual properties. Out of the three layers of models for pedestrian behavior -
strategic, tactical, and operational - I explained how navigational fields can be used for
wayfinding which is part of the tactical layer and I described common locomotion models
for the operational layer.

I then introduced uncertainty quantification, a research field that is concerned with
quantifying uncertainties in all steps of a simulation in order to assess and improve the
reliability of predictions. I follow the broad definition of Tumeo of uncertainty as “the
concept or condition of being in doubt about a value” [Tumeo, 1994] and described
different types of uncertainty, in particular parameter uncertainty, to explain how un-
certainties arise. Finally, I gave a brief overview of typical approaches in uncertainty
quantification.

18

3 Modeling choices: locomotion model,
scenario, and stochasticity

In this chapter, we learn about two locomotion models that are used for simulations
in this thesis, the optimal steps model and an emulator for a social force model. Any
locomotion model is strictly speaking a family of models since it has a set of parameters
that can be adjusted in order to reconstruct different scenarios. For a concrete purpose,
a specific model needs to be derived from the family. This is achieved by adapting the
parameters to the situation under investigation. In this thesis as a whole, I demonstrate
how methods from uncertainty quantification can be employed to obtain a specific model.
The selected methods can be applied to any locomotion model. I illustrate this on the
optimal steps model for the bottleneck scenario. The social force model emulator is
designed specifically for a bottleneck scenario as well and it is employed for one use
case for parameter estimation in Section 6.3. I choose this model because it exhibits a
faster-is-slower dynamic, which causes ambiguity in the input-output relationship.

We take a look at the two scenarios on which I focus in this thesis. First, a bottleneck
scenario, which is central for pedestrian safety in all egress scenarios since the constric-
tion leads to increased density. I identify influential and non-influential parameters in
the bottleneck and calibrate the influential parameters using experimental data in order
to obtain a specific model with reduced uncertainty. Second, a multi-directional flow
through an overpass at a train station for which I continuously predict the occupancy of
origins-destination combinations based on trajectory data. The prediction is an example
of how we can initialize a real-time simulation for which we cannot use static informa-
tion. The overpass is well-suited for this application since there are several origins and
destinations. The passenger flow changes throughout the day due to the train schedule
and commuting. Consequently, so do the origins and destinations of passenger paths.

The simulations of the bottleneck scenario are performed with the optimal steps model
implemented in the Vadere crowd simulation framework. Hence, I provide a general
overview of the framework. Additionally, I briefly introduce the simulation loop which is
the core of the framework and needs to be understood in order to extend the framework.
Moreover, I describe which steps are necessary to build a scenario for simulations.

Most uncertainty quantification methods are designed for deterministic systems. Thus,
I also discuss how I deal with stochasticity and noise in the simulation output. We take a
closer look at two effects observed when simulating the bottleneck scenario. I distinguish
stochasticity from noise. While the former refers to variation at a fixed parameter vector,
the latter denotes a high sensitivity of the model response to small changes in the input
around a fixed value. I explain why and where stochastic terms are introduced in the
simulator and discuss their effects.

19

3 Modeling choices: locomotion model, scenario, and stochasticity

3.1 Locomotion models

In Section 2.2.4, we learned about locomotion models for the operational layer from the
pedestrian dynamics community. In particular, we got to know the functionality of two
types of models: social force models and cellular automata. In this chapter, we take a
closer look at the optimal steps model and the emulator for the social force model, which
are both used in this work.

3.1.1 Optimal steps model

The optimal steps models (OSM) [Seitz and Köster, 2012, von Sivers and Köster, 2015,
Kleinmeier et al., 2019] is an agent-based model for locomotion of pedestrians. Each
virtual pedestrian, or agent, has a number of individual attributes such as its individual
free-flow walking speed, step length, and step frequency. The main idea of this model
is that each agent decides on the position for its next step by maximizing a utility that
balances several goals: Reaching the destination while keeping a distance from obstacles
as well as from other agents. Maximization of utility implies perfect rationality of the
economic man [Ingram, 1888]. There are several enhancements of the OSM for complex
scenarios to describe queueing behavior [Köster and Zönnchen, 2014], movement on stairs
[Köster et al., 2019], groups [Seitz, 2016, p. 155ff][Seitz et al., 2014], helping behavior
[von Sivers et al., 2016b], and cooperative behavior [Kleinmeier et al., 2020]. Here, I
describe the OSM without extensions.

The temporal discretization in the optimal steps model is linked to the discrete steps
of the pedestrian. In reality, the movement during walking is continuous, whereas in the
model the movement takes place at discrete points in time. The stepping events for the
agents are determined by the update scheme. The optimal steps model was originally
proposed with a sequential update scheme [Seitz and Köster, 2012]. That means, at a
discrete time step all agents are moved in a sequential fashion according to a predefined
order. However, in a later study, the authors recommend an event-driven update scheme
[Seitz et al., 2014]. In this scheme, a queue handles all events, and anytime an event is
due, actions are triggered. As mentioned already, each agent is assigned an individual
stepping frequency. From the moment when the agent is “born”, or spawned, in the
simulation, its regular stepping events are registered in the event queue. The OSM
can also be combined with other update schemes if necessary, but it should be kept
in mind that the update schemes have an impact on the simulation results [Seitz and
Köster, 2014]. The event-driven update scheme allows for natural motion, as agents
have individual step sequences, just like pedestrians in reality. The agents adhere to an
intrinsic individual stepping frequency. Consequently, they move at different time steps
as opposed to a serial or parallel update scheme in which all agents move at the same
time. However, the naturality of this approach comes at a cost: Event-driven update
schemes are not ideal for parallelization and are therefore more costly. A parallelized
version of the optimal steps models event-driven update scheme that aims to mitigate
this issue has just recently been published [Zönnchen and Köster, 2020]. It is mainly

20

3 Modeling choices: locomotion model, scenario, and stochasticity

effective in large-scale scenarios. Since my scenario is rather small, I employ the regular
event-driven update scheme of the OSM.

We take a look at the utility optimization in more detail: At every stepping event, the
current agent checks its direct surroundings for the best possible next position. For this
step, the utility is evaluated within a disc around the current position of the agent. The
disc’s radius is the individual step length of the agent. Within the disc, three utilities
are evaluated: the destination utility or navigational field, Un, the obstacle utility Uo,
and the agent utility Up.

The destination utility can be understood as a cognitive map that the agent has of
its surrounding. It encodes the distance of each point in the topography towards the
(next) destination of the agent. The navigational field is calculated by solving the eikonal
equation on a regular grid using the fast marching method [Sethian, 1996]:

||∇u(x)||f(x) = 1 for x ∈ Ω ⊂ R2

u(x) = 0 if x ∈ Γ.
(3.1)

Figure 3.1 shows the destination utility for a bottleneck scenario in which agents need
to move through a constriction to their destination. Recently, a more efficient algo-
rithm that solves the eikonal equation on an unstructured triangular mesh that adapts
to the topography has been developed [Zönnchen and Köster, 2018]. Solving the eikonal
equation models the propagation of a wavefront that starts at the destination and dissem-
inates all over the topography around obstacles. For f(x) = 1, it is a geodesic distance
measure. In order to include pedestrian densities in the navigational field, dynamic floor
fields can be employed [Köster et al., 2014]. They encode the density information into
the travel speed function f(x) of the eikonal equation.

Figure 3.1: Navigational map for agents to find their destination (orange) in the bottleneck
scenario.

By taking obstacles into account, the navigational field ensures that agents do not step
on obstacles in the simulation. This is, however, not sufficient for a natural movement
around obstacles. In reality, pedestrians keep a certain distance to walls that depends
on the height and characteristics of the wall [Moussäıd et al., 2009]. This behavior is
modeled by an obstacle utility that introduces dips in the utility around obstacles. It is
visualized in Figure 3.2). The obstacle utility is described by

21

3 Modeling choices: locomotion model, scenario, and stochasticity

Uo,j(x) =

ψ2
o(x) + ψ1

o(x) if do(x) < ri

ψ1
o(x) if ri ≤ do,j(x) < wo

0 else.

(3.2)

with

ψ1
o(x) = ho · exp

(
2(

do(x)
wo

)2
−1

)
, (3.3)

ψ2
o(x) = 105 · exp

(
1(

do(x)
r

)2
−1

)
. (3.4)

(a) Full x-axis (b) Zoom on x-axis

Figure 3.2: The obstacle utility Uo,j(x) determines the behavior of an agent close to an obstacle.

The agent utility assures that the agents do not collide and keep a certain distance
from each other. This models the behavior of pedestrians towards out-group members.
Again, dips are introduced in the utility at and around the positions of other agents by

Up,l,i(x) = −

pperl,i (x) + pintl,i (x) + ptorl,i (x) if di(x) < (ri + rl)

pperl,i (x) + pintl,i (x) if (ri + rl) ≤ di(x) < δintl + rl + ri

pperl,i (x) if δintl + rl + ri ≤ di(x) < δperl + rl + ri

0 else

(3.5)
with

22

3 Modeling choices: locomotion model, scenario, and stochasticity

ptorl,i (x) = hp · exp

 4(
di(x)

δ
per
l

+ri+rl

)2·cp
−1

 (3.6)

pintl,i (x) =
hp
ap
· exp

 4(
di(x)

δint
l

+ri+rl

)2·bp
−1

 (3.7)

pperl,i (x) = 103 + exp

(
1(

di(x)

ri+rl

)4
−1

)
. (3.8)

(a) Full x-axis (b) Zoom on x-axis

Figure 3.3: Agent utility Up,l,i represents interaction between pedestrians. Pedestrians natu-
rally keep a certain distance among them. In the agent utility, this is modeled by
introducing Hall’s interpersonal distances [Hall, 1966].

The agent utility is visualized in Figure 3.3. Its three parts refer to Hall’s interpersonal
distances [Hall, 1966]. He divided them into intimate distance (close phase ptorl,i (x) and

far phase pintl,i (x)), personal distance pperl,i (x) for interactions with close friends or family,
social distance for acquaintances, and public distance.

The utility of a position x is then the sum of the navigational field Un(x), the utility
for interactions among agents Up,l,i, and the largest absolute obstacle utility Uo,j(x):

Ul(x) = Un(x) +
n∑

i=1,i 6=l
Up,l,i(x) + minj∈{1,...,m}Uo,j(x). (3.9)

In Figure 3.4, the utility Ul(x) is shown exemplarily for one agent in a bottleneck scenario.
Agent i finds its next position xi(tk+1) by maximizing the utility within the agent’s step
circle around its current position Pi(xi(tk)) [Kleinmeier et al., 2019]:

xi(tk+1) = arg maxy∈Pi(xi(tk))Ul(y). (3.10)

23

3 Modeling choices: locomotion model, scenario, and stochasticity

Figure 3.4: The utility Ul(x) for the selected (white) agent balances the navigational field from
origin on the right to destination (orange), obstacle repulsion (light gray) and utility
dips (dark red) close to other agents (blue).

3.1.2 Social force model emulator for a bottleneck scenario

The majority of the simulations in this thesis are performed with the optimal steps model.
However, I use an emulator of the social force model (SFM) for an egress scenario in which
I calibrate the free-flow speed to point out an issue with calibration. In this scenario,
200 agents are leaving a room with one door. Thus, the scenario also shows a bottleneck
dynamic. As explained in Section 2.2.4, the social force model is based on an ordinary
differential equation that considers attracting forces towards the agent’s destination and
repulsive forces from other agents and obstacles. Solving the ODE provides the position
for the agents at consecutive time steps.

The social force model presented by Helbing et al. [Helbing et al., 2000] exhibits a
faster-is-slower dynamic in a bottleneck scenario, a much-discussed hypothesis in pedes-
trian dynamics stating that lower speeds can lead to a faster egress than higher speeds.
Since I only use the model to demonstrate an issue with classical calibration, I refrain
from implementing it. Unfortunately, I was not provided access to the original model.
Instead, I build an emulator based on data presented in [Helbing et al., 2000]. I use cu-
bic interpolation on the data for the relationship between the desired speed and specific
flow. The desired speed is equivalent to the free-flow speed in the optimal steps model.
The specific flow Js denotes the flow per unit width. The interpolation is then used as a
basis for the emulator: I derive the flow for the five different bottleneck widths from the
specific flow. In order to resemble the randomness due to the initialization in the social
force model, I add a Gaussian noise, N (0, 0.01), to the model. The resulting relationship
between free-flow speed and flow can be seen in Figure 3.5.

Analogously, I create an emulator for the relationship between desired speed and egress
time, named leaving times in [Helbing et al., 2000]. Using the data presented in [Helbing
et al., 2000], I perform cubic interpolation and add a Gaussian noise, N (0, σ2 = 25).
The resulting emulator is presented in Figure 3.6.

24

3 Modeling choices: locomotion model, scenario, and stochasticity

(a) Interpolation of specific flow data from
[Helbing et al., 2000]

(b) Emulator for widths from 0.8 m to 1.2 m
(including noise)

Figure 3.5: Social force model emulator for five different bottleneck widths, constructed with
flow data from [Helbing et al., 2000] including an additive zero-mean Gaussian noise
with variance σ2 = 10−4.

(a) Interpolation of egress times from [Helbing
et al., 2000]

(b) Emulator including Gaussian noise

Figure 3.6: Social force model emulator for leaving times or egress times for a room with 200
people, constructed with egress times from [Helbing et al., 2000] including an ad-
ditive zero-mean Gaussian noise with variance σ2 = 25.

3.2 Studied scenarios

In this work, I examine two scenarios: a bottleneck scenario for which I investigate
the parameters as well as an overpass in a train station for which I derive dynamic
initialization.

25

3 Modeling choices: locomotion model, scenario, and stochasticity

3.2.1 Bottleneck scenario: crucial for improving safety

Bottleneck scenarios are widely investigated in experiments [Kretz et al., 2006, Liddle
et al., 2009, Seyfried et al., 2009, Rupprecht et al., 2011, Liao et al., 2014] and simulations
[Nishinari et al., 2004, Martinez-Gil et al., 2015, Gao et al., 2014] within the collective
dynamics community. They are a part of all egress situations. Since constrictions lead
to increased densities and delays in evacuations, bottlenecks are crucial for pedestrian
safety. Additionally, flow can be used for capacity estimation, which has been taken up
by guidelines for safety.

I reconstruct the bottleneck experiments performed by Seyfried et al. in the Vadere
simulator [Seyfried et al., 2009]. The flow of pedestrians through bottlenecks was in-
vestigated in 18 experiments while the width of the bottleneck was varied between 0.8
and 1.2 meters (in 0.1 meter increments). Each experiment was carried out with 20, 40,
and 60 participants. As the quantity of interest, I measure the flow at the end of the
bottleneck,

J =
N

∆t
=

N

tN − t1
, (3.11)

where N is the number of agents in the scenario and ∆t is the difference between the
time when the first agent crosses the measurement line t1 and the time that the last
agent crosses it tN . The experiment was designed to measure the flow. Thus I choose
the flow as the quantity of interest.

Figure 3.7 shows a snapshot of the simulation at 12 seconds. In this setup, 60 agents
(blue) are moving from their origin (green) through the bottleneck created with obstacles
(gray) to their destination (orange).

Figure 3.7: Snapshot of a simulation of the five bottlenecks after 12 s.

26

3 Modeling choices: locomotion model, scenario, and stochasticity

Uncertain input parameters in the bottleneck scenario Typically, bottleneck experi-
ments in experimental pedestrian dynamics study the effect of door widths on the density
in front of the opening. Thus, I study five bottlenecks with different widths ranging from
0.8 m to 1.2 m.

In order to obtain a specific model, I examine seven parameters of the optimal steps
model. The first two parameters are the mean and the standard deviation of the free-
flow speed. They define the Gaussian distribution from which the individual speeds
are drawn. In addition, I also vary the number of agents in the simulation between 40
and 80 since the experiments were carried out with 40, 60, and 80 participants. When
varying the number of agents, it is important to make sure that the dynamics remain
the same. If the number of agents gets too low, there is no more crowding in front of the
bottleneck, instead, agents would be able to move freely through the constriction. For
the selected parameter range, the dynamics are maintained. Furthermore, I vary two
parameters that define the obstacle repulsion and the personal space strength. They are
the heights of the respective utilities, ho, and hp. The utilities are described in more
detail in Section 3.1.1. Moreover, I modify the minimum step length for the agents. If
a minimum step length larger than zero is chosen, the next position is discarded if its
distance to the current position is smaller than the minimum step length. That implies
the pedestrians are a bit more patient. Finally, I add a control parameter that has
by design no effect on the simulation in this scenario. It serves for verification and as
a reference to determine which parameters are influential. Uncertainty quantification
methods typically require a distribution of the examined parameters reflecting all initial
knowledge on the parameters. These prior parameter distributions for the parameters
are summarized in Table 3.1.

Table 3.1: Uncertain parameters and their distribution used for the sensitivity analysis.

Index Parameter Unit Range

1 Control parameter U(1.0, 5.0)
2 Free-flow speed mean m/s U(0.5, 2.2)
3 Free-flow speed std m/s U(0.1, 1.0)
4 Number of agents U(40, 80)
5 Obstacle repulsion ho U(2.0, 10.0)
6 Personal space strength hp U(5.0, 50.0)
7 Minimum step length m U(0, 0.15)

Figure 3.8 shows snapshots of the simulation of the bottleneck scenario. On the
left, the lower limits of all parameters are chosen; on the right, the upper limits of all
parameters are chosen. We observe a large difference between the two extremes of the
parameter set.

27

3 Modeling choices: locomotion model, scenario, and stochasticity

(a) Lower limits are chosen for all parame-
ters

(b) Upper limits are chosen for all param-
eters

Figure 3.8: Effect of the uncertain parameters on the distribution of agents in front of and
within the bottleneck (still taken after 12 s simulation time).

3.2.2 Train station overpass: multi-directional flow

In order to complement the parameter estimation, I estimate origin-destination matrices
that are necessary for the dynamic initialization of a live simulation. For the origin-
destination analysis, I study the passenger flow in an overpass of the Basel train station
in Switzerland. Besides events and schools, public transport buildings (traffic hubs)
such as train stations or airports are among the most studied locations in pedestrian
dynamics.

Our scenario is an overpass over all platforms that leads pedestrians from the station
hall to the platforms and connects both entrances of the stations, compare Figure 3.9.
Stereo sensors that record pedestrian trajectories throughout the overpass monitor a sec-
tion of this overpass. Within this area, there are stairs, escalators, and elevators leading
from the overpass to the platforms and the station hall, as well as, ticket machines,
benches, and shops. Swiss Federal Railways (SBB) provided trajectory data obtained
by the stereo sensors. The topography is shown in Figure 3.10 together with 1% of the
positions recorded throughout one day. It is similar to a long corridor, but it features
several exits on both sides allowing for a multi-directional flow.

28

3 Modeling choices: locomotion model, scenario, and stochasticity

Figure 3.9: Plan of the train station overpass1.

Figure 3.10: Recorded pedestrian positions (1%) in the train station overpass over one day.
Data was provided by Swiss Federal Railways (SBB). All data in meters. On
the right, escalators lead to the station hall whereas, on the left, the overpass
continues. In the upper part, escalators and elevators lead to two platforms (at
x ≈ −40 m and x ≈ −20 m). Similarly, in the lower part, there are connections to
three platforms at about −40,−20, and 0 m.

1https://plans.trafimage.ch/basel-sbb?lang=de&layer=basel_innenplan, accessed at 20.08.2021,
c©SBB/CFF/FSS, Geodaten: c©OpenStreetMap contributors, c©swisstopo (5704003351).

29

https://plans.trafimage.ch/basel-sbb?lang=de&layer=basel_innenplan

3 Modeling choices: locomotion model, scenario, and stochasticity

3.3 Vadere crowd simulation framework

The simulations of the bottleneck scenario are carried out using the open-source crowd
simulation framework, Vadere [Kleinmeier et al., 2019] built by the pedestrian dynam-
ics research group at Munich University of Applied Sciences. The framework includes
implementations of several models: optimal steps model, social force model, cellular au-
tomaton, gradient navigation model [Dietrich and Köster, 2014], behavioral heuristics
model [Seitz et al., 2016]. Vadere includes a graphical user interface (GUI) which can
be used to set up a simulation, but also to evaluate simulations by displaying agents’
trajectories, movement directions, densities, and many more. The implementations are
verified by unit tests in a continuous integration setup. This setup also contains test
scenarios defined in the RiMEA guidelines [RiMEA, 2016] i.e. standardized test cases
for crowd simulations for the validation of the models.

Vadere has a modular structure so that it can be easily extended to integrate new
functionality. The software follows a model view controller pattern [Gamma et al.,
1994]. Following this structure, the code is separated in three packages: VadereState

(model), VadereGui (view), and VadereSimulator (controller). For more information
on the architecture, I refer to [Kleinmeier et al., 2019].

3.3.1 Core of the simulation: simulation loop

Independent of the model, the core of the implementation is the so-called simulation
loop. The models use different update schemata for the agents, from parallel updates
in which all agents are updated at the same time, via sequential updates, to the event-
driven update scheme for the OSM. However, for all update schemes, we use an event
queue in which all events, in particular, stepping events, of the agents are registered.
In some models, that might be achieved by equidistant events such as parallel and
sequential update schemes. The simulation loop iterates over all registered events. In
every iteration, the update method of the locomotion model is called in order to calculate
the next position(s). Consequently, all locomotion models need to implement an update
method. For the simulation loop, it does not matter which locomotion model is used.

In every iteration of the simulation loop, the scenario elements, a psychology layer
[Kleinmeier et al., 2020], and the locomotion are updated. Updating the topography in-
cludes, for example, spawning new agents as well as removing agents from the simulation
that have reached their destinations. There are different stimuli that may, over time,
become present in the simulation. The psychology layer evaluates whether the agent
perceives the stimulus and if so, whether it adapts its behavior. As stated in the last
paragraph, the update of the locomotion model triggers the calculation of the agent’s
next position.

After these three steps have been executed, a new state with new positions and stimuli
is created and sealed. Based on the state, so-called output processors are evaluated. The
processors calculate potential quantities of interest based on the current state. A stan-
dard output processor saves the current position of each agent to file. This is necessary
for post-visualization. In addition, processors are available to evaluate speeds, density,

30

3 Modeling choices: locomotion model, scenario, and stochasticity

flow, egress time, and many more. Moreover, new processors can be implemented to
evaluate custom measures.

3.3.2 Building a scenario

I now briefly describe, from a user perspective, what needs to be done in order to carry
out a simulation. Central is the creation of a new scenario. The scenario holds all
information necessary for the simulation, from the topography to the parameters of the
models.

Part of the scenario is the topography, for example, a bottleneck. The topography
includes sources where the agents are spawned and destinations to which they are headed.
This information is usually clear in confined scenarios, but it can get complex in larger
scenarios. Typical approaches here are to integrate data from surveys, observational
data, as well as, experience of experts such as rail operators for train stations or event
managers for regular festivities. In Chapter 7, I present a novel approach to learning
entries of origin-destination matrices based on real-time monitoring data. Topographies
can also integrate obstacles that represent any area on which the agent cannot step such
as walls, non-solid ground like water, or streets with traffic. When real topographies are
to be recreated in Vadere, it is important to think about how certain properties can be
represented in the simulation. That might include obstacles in places where there are
no walls because it is clear that pedestrians cannot pass e. g. because it is not allowed
due to social norms or local conditions. For larger topographies such as streetscapes, an
OpenStreetMap converter2 can be utilized.

In addition, to the topography, the scenario also contains the models and submodels
that are used for the simulation and the parameter set. In Vadere, the following models
are implemented: optimal steps model, the gradient navigation model, a social force
model, the optimal velocity model, Reynold’s steering model, the behavioral heuristics
model, and a biomechanics model. In addition, a cellular automaton can be obtained by
configuring the optimal steps model accordingly [Kleinmeier et al., 2019]. For each of
these models, a default configuration is available. The optimal steps model implemen-
tation includes the optimal stairs model [Köster et al., 2019] that models locomotion
on stairs. The user needs to choose the appropriate model for the scenario at hand.
In addition, submodels such as the centroid group model for small pedestrians groups
can be added to the simulation. Recently, a psychology layer has been added to Vadere
[Kleinmeier et al., 2020] that is independent of the locomotion model. It can be used
to simulate cooperative behavior, such as a crowd that allows a single agent to pass
through.

Finally, the scenario also holds the parameter choice for the chosen model and poten-
tially submodels. Since the parameters vary among the models, I focus on the model-
independent parameters here. In order to model a certain population, typically the free-
flow speed of the agents is adapted. The free-flow speeds in the simulation are drawn

2The necessary steps to integrate data from OpenStreetMap into Vadere are described in
https://gitlab.lrz.de/vadere/vadere/tree/master/Tools/Converters/osm2vadere(extended)

/osm_converter.py.

31

https://gitlab.lrz.de/vadere/vadere/tree/master/Tools/Converters/osm2vadere (extended)/osm_converter.py
https://gitlab.lrz.de/vadere/vadere/tree/master/Tools/Converters/osm2vadere (extended)/osm_converter.py

3 Modeling choices: locomotion model, scenario, and stochasticity

from a truncated normal distribution. Consequently, there are four parameters: speed-
DistributionMean, speedDistributionStandardDeviation, minimumSpeed, and max-

imumSpeed. A high free-flow speed mean indicates a young, fit, target-oriented popu-
lation while a low free-flow speed mean rather models an older population or kids.
Similarly, a small standard deviation suggests a homogeneous population and a larger
standard deviation a more heterogeneous population. In Section 3.2.1, I described all
parameters of the optimal steps model that are studied in this work.

Once the scenario is defined, simulations can be carried out either using the GUI, or
the command-line interface. The suq-controller3 allows to run simulations with several
sets of parameters. It is an interface for the communication between Vadere and the
uncertainty quantification framework (see Section 4.5).

3.4 Stochasticity and noise

“As ecologists and biologists, we try to find the laws that govern the functioning and the
interactions among nature’s living organisms. Nature, however, seldom presents itself to
us as a deterministic system.” [Hartig et al., 2011]

Most models for crowd simulation include stochastic terms that reflect lack of knowl-
edge. Ronchi refers to this as behavioral uncertainty [Ronchi et al., 2014]. Typically,
stochasticity is introduced in the simulation when starting positions of the agents or
individual characteristics such as free-flow speed, radius, or height, are assigned. Deci-
sions made during the simulation, such as resolving conflicts in a parallel update scheme,
constitute another source of randomness. Since attributes, such as speeds and starting
positions, are indeed unknown and do vary, fixing them would unduly simplify the model.
Stochastic terms lead to non-deterministic model output. Most methods for uncertainty
quantification, however, are designed for deterministic models. In this section, we take a
closer look at how and why stochastic terms are introduced in the optimal steps model,
how they affect the simulation, and how we can handle them in order to run uncertainty
analyses.

3.4.1 Stochastic terms in crowd simulations

It is common that locomotion models introduce stochastic terms [Duives, 2016, p. 146].
However, how and where stochasticity is introduced varies from model to model and
even from implementation to implementation. This section refers to the optimal steps
model implementation in Vadere.

I distinguish between direct and indirect introduction of stochastic terms. Direct
introduction of stochastic terms includes the random assignment of an initial position
for each agent within the source area. In Vadere, this can be deactivated by spawnA-

tRandomPosition and then the agents are spawned next to each other, starting in the
lower-left corner of the source area. Without random spawning, the agents are not dis-
tributed equally over the source area and therefore local densities within the source may

3https://gitlab.lrz.de/vadere/suq-controller

32

https://gitlab.lrz.de/vadere/suq-controller

3 Modeling choices: locomotion model, scenario, and stochasticity

vary. As a consequence, at the beginning of the simulation, the agents may diverge in all
directions. In addition, each agent in the simulation is assigned an individual free-flow
speed. In Vadere, as in many other simulation frameworks, the speeds are drawn from
a normal distribution. If the standard deviation of the distribution, speedDistribu-
tionStandardDeviation is larger than zero, the assigned free-flow speeds are stochastic.
Moreover, the step length of each agent in the simulation is derived from its free-flow
speed according to the experiments conducted and evaluated in [Seitz and Köster, 2012].
The relationship between free-flow speed and step length includes a Gaussian term too.
By modifying stepLengthSD in Vadere, the size of this effect can be varied. With
stepLengthSD equals zero, the relationship between free-flow speed and step length is
deterministic. The free-flow speed is a central parameter in the simulation since it affects
the simulation in several ways: As stated before, the step length is also derived from
the free-flow speed. That means, the size of the disc on which the best next position
is found. Free-flow speed and step length likewise determine the step frequency and
therefore the event queue, for event-based models such as the optimal steps model.

All terms explained above refer to the initialization of the simulation. In addition,
there are terms introduced in the simulation loop. In the default parameter setting for
the optimal steps model, varyStepDirection is activated. The effect of this parameter
depends on the optimizer chosen for the utility optimization. For the Nelder-Mead
algorithm, varyStepDirection means that the initial positions of the optimizer in each
iteration of the simulation loop are chosen differently. In each iteration, a random offset
is drawn from U [0, 1].

I refer to all of the above as direct stochastic terms. Besides, there are indirect
stochastic components. As described above, both free-flow speed and starting position
are randomly assigned during the initialization phase. The mapping between both factors
contains an indirect stochastic term that depends strongly on the implementation. If we
want to exclude any stochasticity, it is not enough to make sure that the same speeds
and positions are drawn, they also need to be assigned to the same agents. In Vadere,
we have no direct access to this mapping. This is one example of how stochastic terms
can be related and I refer to it as an indirect stochastic term.

3.4.2 Effects of stochastic terms

We observe two effects due to randomness in the simulation, and I refer to them as
stochasticity and noise: I state that stochasticity is present when the model output
varies even though the model is evaluated at a fixed set of parameter values (compare
Figure 3.11a). Additionally, I argue that noise is present if we observe large variations in
the model output for similar parameter values even though all stochastic terms are fixed
(compare Figure 3.11b) e. g., by fixing a seed for the pseudo-random number generator.
While the first one, stochasticity, is an effect that I would intuitively expect, the latter
may not be anticipated. However, we observe this effect in Vadere e. g. when simulating
the flow through the bottleneck scenario and varying the free-flow speed while holding
the seed of the simulation constant, as in Figure 3.12.

33

3 Modeling choices: locomotion model, scenario, and stochasticity

(a) Stochasticity (b) Noise

Figure 3.11: Stochasticity vs. noise: While stochasticity is an effect at a fixed parameter value
or vector, noise is epitomized by non-monotonous variations when the parameter
is varied around the fixed value.

(a) Random seed (b) Fixed seed

Figure 3.12: Noise in simulations of the bottleneck scenario with the optimal steps model:
Even though, the seed of the pseudo-random number generator is fixed, the model
output is sensitive to small changes in the variable, here the free-flow speed.

In order to understand where this noise stems from, we need to take a closer look
at the random number generation. In Vadere, we draw all random numbers from one
central seed. This allows us to fix this seed in order to reproduce the results. There is,
however, still room for improvement. Ideally, from this central seed, we would generate
a set of subkeys for different stochastic terms to decouple the stochastic terms. The
current setting might introduce a higher sensitivity to small changes in the sequence of
the simulation: The results change whether we first draw the free-flow speeds or first
draw the starting positions. While this sounds like a mild side effect, it can have far-
reaching consequences in the simulation. Let’s say that we minimally vary the free-flow
speed mean from its reference value. In this case, we draw slightly different free-flow
speeds, even with the same seed. Based on that, also the step length and the stepping

34

3 Modeling choices: locomotion model, scenario, and stochasticity

events change. Consequently, other agents might be at different positions at the stepping
events. This might also interfere with the spawning of agents.

Sometimes not all agents can be spawned directly at initialization because the source
area is too small. In this case, during the simulation, random numbers are drawn for
the positioning of the remaining agents. Small changes in the free-flow speed may lead
to different positions, which may affect also the spawn time and starting position of
further agents. In order to avoid issues due to spawning, it is important to note that for
random spawning a significantly larger source is necessary than for equidistant placing
since random spawning prevents optimal packing.

A similar situation can also arise if, for example, the number of agents is slightly varied
from N to N + 1. For each term such as free-flow speeds, an additional random number
is then drawn from the probability distribution. Therefore, starting positions and free-
flow speeds might differ even though the same seed is used for N agents. This effect
is further enhanced when random numbers are drawn during the simulation. Thereby,
a small variation in the free-flow speed can have a larger effect on the simulation than
expected.

While introducing subkeys could mitigate this issue to some degree, it does not resolve
the issue completely. The described effect, that a small change in the speed might have
a larger impact on the simulation by leading to a small change in the next position
and stepping times which again lead to different positions of other agents, would not
be mitigated. Also, the groups for the subkeys need to be carefully selected and might
depend on the chosen model or even the update scheme. For example, with a parallel
update scheme, conflicts typically arise and they are often solved using a random system
so that different agents “win” over time. If this is the case, a separate subkey is necessary.

3.4.3 Handling stochasticity and noise

There are several ways how to deal with stochasticity and noise in the simulations. Ide-
ally, I would only use methods that can deal with stochastic models. However, since
uncertainty quantification methods are typically designed for deterministic systems, I
am limited by the available methods. In Section 6.3.3, I use approximate Bayesian
computation for Bayesian inference. This method is specifically designed for stochastic
simulators. Another approach is to remove the stochasticity and noise from the simula-
tion, or at least to reduce it. In order to remove both effects, I build a (deterministic)
surrogate model in Section 6.4.1.1. However, choosing a suitable surrogate model is a
complex and computationally demanding task, especially in higher dimensions. There-
fore, I only use this approach in a one-dimensional setting. Instead, I can also average
several simulations with the same set of parameter values to reduce the stochasticity at
this fixed set. This also reduces the noise. In my investigations, averaging 10 repetitions
at each parameter set turned out to be a good balance between accuracy and compu-
tational effort. The noise is reduced as a by-product of the averaging. Averaging is my
default approach if not indicated otherwise.

35

3 Modeling choices: locomotion model, scenario, and stochasticity

3.5 Summary

In this chapter, I introduced the basic building blocks for my goal to find a specific model
and quantify its uncertainties. I described the two scenarios that I examine in this work,
the bottleneck scenario and the multi-directional flow in the train station. While the
bottleneck scenario is modeled from a controlled experiment, Swiss Federal Railways
(SBB) provided real-world trajectories for the overpass scenario. I use this data for the
dynamic estimation of parameters necessary for real-time prediction.

After describing the scenarios, I elaborated on two locomotion models, the optimal
steps model and an emulator for the social force model. Both are used in the thesis to
simulate the flow through a bottleneck scenario.

The simulations in this manuscript are carried out with the crowd simulation frame-
work Vadere. I outlined the main component of the simulator, the simulation loop that
is driven by an event queue. In every stepping event, the locomotion model calculates
the next position of an agent. Moreover, I explained which steps are necessary to build
a simulation scenario from a use case such as the bottleneck experiment.

Finally, I described two effects observed in the model outcomes, stochasticity and
noise. I explained why and where stochastic terms are introduced in the simulation and
outlined their consequences. In this work, I handle stochasticity and noise in three ways:
Where possible, I choose methods that are designed for stochastic simulators. When this
is not possible, I either create a surrogate model that eliminates stochasticity and noise
or I average a fixed number of simulations to reduce stochasticity, which also diminishes
the noise.

36

4 Uncertainty quantification framework

In this chapter, I describe the framework for the systematic analysis of parameters in
crowd simulations which I designed and implemented as part of this thesis. I perform
all analyses throughout this manuscript with it. I defined the requirements for the
framework (Section 4.1) and the state-of-the-art software for uncertainty quantification
(Section 4.2). Based on both, I argue why I developed a new framework and describe
its architecture in Section 4.3. In Section 4.4, I present core algorithms. I outline the
interface with Vadere in Section 4.5. In Section 4.6, we take a look at how the routines
are tested. Finally, I summarize the key points of the design and implementation of the
framework.

The reader should be familiar with uncertainty quantification terminology. I refer to
Section 2.3 for a brush-up and introduction to uncertainty quantification. Descriptions
of the methods implemented in this chapter as well as information on the choice of
methods can be found in Section 5.3 for sensitivity analysis, Section 6.3 for parameter
estimation, and Section 8.3 for uncertainty analysis.

Requirements addressed in this chapter

R1 Choose or design a software for uncertainty quantification for crowd simulations

R1.1 Derive requirements for a software for uncertainty quantification for crowd
simulations

R1.2 Analyze available software regarding the requirements

R1.3 Design and implement a software that fulfills the requirements

4.1 Requirement analysis

Figure 4.1 shows the stages of agile software development: Based on requirements, a
design for the software is set up. Next, the software is developed and tested. Devel-
opment can also be performed in a test-driven manner which means that first the tests
are written and then the functional code is implemented and needs to pass the tests.
If the tests are successful, the software is deployed which means the software is pro-
vided to the users, for example, through a new release. Subsequently, the software is
reviewed. In classical software engineering, these stages are planned and executed once
for the whole project. In agile development, the stages are performed for each sprint. A
sprint is a fixed time during which a set of requirements is implemented. After a sprint,
requirements are again assessed and evaluated.

37

4 Uncertainty quantification framework

Requirements

D
esign

De
ve

lo
pm

en
t

Testing

D
ep

loym
ent

R
ev
ie

w

Figure 4.1: Agile software cycle.

The collection of requirements is a typical task at the beginning of every software
project. When describing the requirements for the uncertainty quantification software,
I distinguish functional from non-functional requirements. The former can be thought
of as features of the software, the latter as properties. The requirements are prioritized
by importance and analyzed according to their feasibility. Due to limited resources,
usually, not all requirements can be fulfilled. Table 4.1 lists the functional and non-
functional requirements for the uncertainty quantification framework. Non-functional
requirements are typically less measurable than functional requirements. Therefore, it
should be examined whether they can be converted into functional requirements through
specification. As an example, NFR4 can be turned into a functional requirement by
specifying a code coverage.

Table 4.1: Functional and non-functional requirements for the uncertainty quantification frame-
work developed in this thesis.

Functional requirements (FR)

FR1 Support existing interfaces to Vadere:
Provide an interface to the suq-controller which can be used for communication
with Vadere.

FR2 Support crowd dynamics models in Vadere:
The methods provided in the framework should be suitable for crowd simula-
tion and work with all models provided in Vadere.

FR3 Provide routines for parameter identification:
Implement methods for global sensitivity analysis to identify influential pa-
rameters in crow simulations.

38

4 Uncertainty quantification framework

FR4 Provide routines for parameter estimation:
Implement methods for Bayesian inference to estimate parameter distributions
from experimental data.

FR5 Provide routines for uncertainty analysis:
Implement methods to quantify the uncertainty in the simulation output by
propagating uncertain input parameters.

FR6 Ensure reproducibility of the results:
Assure that the results are reproducible especially for sampling methods that
employ pseudo-random number generators such as Monte Carlo sampling.

FR7 Make results persistent:
Store results in a text file with a simple format so that they can be post-
processed with third-party software.

FR8 Provide a graphical user interface:
Optional requirement. Especially for external Vadere users, a GUI simpli-
fies handling of the software. Alternatively, predefined run scripts should be
provided.

Non-functional requirements (NFR)

NFR1 Modular design:
Separate the algorithms from the infrastructure to ensure that the framework
is easily expandable with additional methods.

NFR2 Adhere to coding style:
Follow established coding styles to increase readability.

NFR3 Open-source:
Provide the framework open-source and therefore only integrate open-source
solutions

NFR4 Well-tested:
Carefully verify and validate the provided algorithms.

4.2 State of the art on uncertainty quantification software

There are several open-source frameworks for uncertainty quantification, compare Table
4.2. Based on the requirements, I analyze which frameworks are suitable for our purposes.
Differences from the requirements are stated as “disqualifiers”. However, I am not aware
of any framework that fulfills all of the mandatory requirements discussed in the last
section.

Table 4.2: Open-source frameworks for uncertainty quantification as of September 3rd, 2021,
alphabetically sorted.

Name Chaospy
Institution University of Oslo
Language Python

39

4 Uncertainty quantification framework

License MIT
Routines for Uncertainty analysis with advanced Monte Carlo methods or polynomial chaos

expansions and sensitivity analysis with Sobol’ indices
Reference [Feinberg and Langtangen, 2015]
Website https://chaospy.readthedocs.io/en/master/

Repository https://github.com/jonathf/chaospy

Latest commit August 2021
Disqualifier No routines for parameter estimation

Name Dakota
Institution Sandia National Laboratories
Language C++

License LPGLv3 (version > 5.0),
Routines for Parameter estimation with nonlinear least squares or Bayesian inference, sen-

sitivity analysis, uncertainty analysis
Reference [Adams et al., 2014]
Latest release August 2021 (v6.14)
Website https://dakota.sandia.gov/

Disqualifier Not implemented in Python, no Python interface available

Name MUQ (MIT uncertainty quantification)
Institution Uncertainty quantification group at Massachusetts Institute of Technology
Language C++/ Python library
License BSD-3-Clause
Routines for Bayesian inference with Markov chain Monte Carlo approach, polynomial

chaos expansion, uncertainty analysis, sensitivity analysis
Website https://mituq.bitbucket.io/source/_site/index.html

Repository https://bitbucket.org/mituq/muq2/src/master/

Latest commit July 2021
Disqualifier Global sensitivity analysis only via generalized polynomial chaos expansion.

Name OpenCOSSAN
Institution University of Liverpool
Language Matlab toolbox
License Toolbox: LGPLv3, Matlab: proprietary
Routines for Sensitivity analysis, Monte Carlo sampling, reliability analysis, surrogate mod-

els including polynomial chaos expansion
Reference [Patelli, 2016]
Website http://cossan.co.uk/wiki/index.php/Main_Page

Repository https://github.com/cossan-working-group/OpenCossan

Latest commit October 2020
Disqualifier Not implemented in Python, no Python interface available, requires Matlab

license

Name OpenTURNS (open source initiative for the treatment of uncertainties,
risks’n statistics)

Institution Airbus Group, EDF Research and Development, IMACS, ONERA, Phimeca
Engineering

Language C++ / Python library
License LGPLv3
Routines for Sensitivity analysis, Bayesian inference
Reference [Baudin et al., 2017]
Website http://openturns.github.io/openturns/master/index.html

Repository https://github.com/openturns/openturns

40

https://chaospy.readthedocs.io/en/master/
https://github.com/jonathf/chaospy
https://dakota.sandia.gov/
https://mituq.bitbucket.io/source/_site/index.html
https://bitbucket.org/mituq/muq2/src/master/
http://cossan.co.uk/wiki/index.php/Main_Page
https://github.com/cossan-working-group/OpenCossan
http://openturns.github.io/openturns/master/index.html
https://github.com/openturns/openturns

4 Uncertainty quantification framework

Latest commit July 2021
Disqualifier No routines for uncertainty analysis provided

Name Π4U
Institution ETH Zürich, Chair of Computational Science
Language C
License GPL2.0
Routines for Bayesian inference, uncertainty propagation
Reference [Hadjidoukas et al., 2015]
Website http://www.cse-lab.ethz.ch/research/projects/pi4u/

Repository https://github.com/cselab/pi4u

Latest commit April 2018
Disqualifier Not developed in Python, no Python interface, no active development, no

routines for sensitivity analysis provided

Name PROMETHEE
Institution Institut de Radioprotection et de Sûreté Nucléaire
Language R
License Apache License 2
Routines for Sensitivity analysis, uncertainty propagation
Website http://promethee.irsn.fr/

Latest release March 2017
Disqualifier Not implemented in Python, no Python interface available, no active develop-

ment, no routines for parameter estimation

Name PSUADE (problem solving environment for uncertainty analysis and design
exploration)

Institution Lawrence Livermore National Laboratory
Language C++

License LGPLv2.1
Routines for Sampling, sensitivity analysis, parameter estimation with Markov chain Monte

Carlo approach
Reference [Tong, 2017]
Website https://computing.llnl.gov/projects/psuade/

Repository https://github.com/LLNL/psuade

Latest commit February 2018
Disqualifier Not implemented in Python, no Python interface available, no active develop-

ment

Name Queso (quantification of uncertainty for estimation, simulation and
optimization)

Institution Center for Predictive Engineering and Computational Sciences at the Univer-
sity of Texas at Austin

Language C++

License LGPLv2.1
Routines for Statistical inverse problems, uncertainty analysis
Reference [Prudencio and Schulz, 2012]
Website http://libqueso.github.io/queso/html/index.html

Repository https://github.com/libqueso/queso

Latest commit August 2019
Disqualifier Not implemented in Python, no Python interface available, no active develop-

ment, no routines for sensitivity analysis

41

http://www.cse-lab.ethz.ch/research/projects/pi4u/
https://github.com/cselab/pi4u
http://promethee.irsn.fr/
https://computing.llnl.gov/projects/psuade/
https://github.com/LLNL/psuade
http://libqueso.github.io/queso/html/index.html
https://github.com/libqueso/queso

4 Uncertainty quantification framework

Name Tasmanian (toolkit for adaptive stochastic modeling and non-intrusive
approximation)

Institution Oak Ridge National Laboratory
Language Python / C++ library
License BSD-3-Clause
Routines for Parameter estimation with Bayesian inference with an adaptive Metropolis

algorithm
Reference [Stoyanov et al., 2013]
Website https://tasmanian.ornl.gov/

Repository https://github.com/ORNL/Tasmanian

Latest commit September 2021
Disqualifier Framework is focused on sparse grids, for parameter estimation only one

method is provided, no routines for sensitivity analysis and propagation

Name UQEF (uncertainty quantification execution framework)
Institution Technical University of Munich
Language Python
Routines for Uncertainty analysis with Monte Carlo methods or polynomial chaos
Reference [Künzner, 2021, p. 75ff]
Disqualifier Not yet publicly available, provides only routines for uncertainty analysis

Name UQLAB (uncertainty quantification in Matlab)
Institution ETH Zürich, Chair of Risk, Safety and Uncertainty Quantification
Language Matlab 1

License UQLabCore: proprietary, UQLabModules: BSD-3-Clause, Matlab: propri-
etary

Routines for Sensitivity analysis, Bayesian inference, surrogate models including polynomial
chaos expansion

Reference [Marelli and Sudret, 2014]
Website www.uqlab.com

Latest release February 2021
Disqualifier Not developed in Python, no Python interface, requires Matlab license

Name UQ-PyL (uncertainty quantification Python laboratory)
Institution GCESS, China
Language Python
License GPL
Routines for Sensitivity analysis, reliability analysis, surrogate modeling, uncertainty prop-

agation
Reference [Wang et al., 2016]
Website http://www.uq-pyl.com/, http://www.uq-pyl.com/file/Wang_EMS_2015.

pdf

Latest release October 2015
Disqualifier No active development

Name Uranie
Institution French Atomic Energy Commission (CEA)
Language C++, based on the ROOT framework, interfaces to Python and C++

License LGPLv3
Routines for Sensitivity analysis, inverse uncertainty quantification, polynomial chaos ex-

pansion, uncertainty analysis, surrogate models

1A beta version of a Python-based version, UQ[py]Lab, which is currently developed is available at
https://uqpylab.uq-cloud.io/.

42

https://tasmanian.ornl.gov/
https://github.com/ORNL/Tasmanian
www.uqlab.com
http://www.uq-pyl.com/
http://www.uq-pyl.com/file/Wang_EMS_2015.pdf
http://www.uq-pyl.com/file/Wang_EMS_2015.pdf
https://uqpylab.uq-cloud.io/

4 Uncertainty quantification framework

Reference [Blanchard et al., 2019]
Website https://sourceforge.net/projects/uranie/

Latest release December 2020, v4.5.0
Disqualifier Several external dependencies, e. g., ROOT framework

Name UQTk (UQ Toolkit)
Institution Sandia National Labs
Language C++/Python (PyUQTk) library
License BSD-3-Clause
Routines for Uncertainty analysis, sensitivity analysis, surrogate construction, Bayesian in-

ference
Reference [Debusschere et al., 2017]
Website https://www.sandia.gov/uqtoolkit/

Repository https://github.com/sandialabs/UQTk

Latest commit July 2021
Disqualifier Not well-tested under Windows.

Name SALib (Sensitivity Analysis Library)
Institution University of California and University of Oxford
Language Python
License MIT
Routines for Sensitivity analysis
Reference [Herman and Usher, 2017]
Website https://salib.readthedocs.io/en/latest/

Repository https://github.com/SALib/SALib

Latest commit September 2021
Disqualifier Provides only routines for sensitivity analysis

4.3 Architecture of the framework

Even though there are several frameworks, none of them fulfills all of the mandatory
requirements (FR1-7). Therefore, I decided to develop a new framework. This comes
with several advantages: First, in my framework, I have high flexibility. I can tailor the
software to Vadere, e. g. by using Python for which there are already Vadere add-ons
(FR1, FR2). Additionally, the framework can be lightweight. There is no unnecessary
overhead due to supporting multiple applications. While in principle any crowd dynam-
ics model can be analyzed with the methods provided in the framework, the choice of
methods is tailored to Vadere (FR2). Moreover, I maintain independence. In Vadere,
we aim to integrate as few external packages as possible. In the design of the framework,
I adhere to this principle. As a consequence, the framework is not dependent on exter-
nal interfaces that might change with new releases. However, I have integrated some
packages that fit the requirements. That includes the suq-controller2 as an interface to
Vadere, SALib [Herman and Usher, 2017] for global sensitivity analysis with Sobol’ in-
dices using the Sobol’ sequence, and chaospy for polynomial chaos expansions [Feinberg
and Langtangen, 2015]. Finally, my framework serves as a learning tool. Implementing
as well as testing the core algorithms improves the understanding of the methods. In

2https://gitlab.lrz.de/vadere/suq-controller

43

https://sourceforge.net/projects/uranie/
https://www.sandia.gov/uqtoolkit/
https://github.com/sandialabs/UQTk
https://salib.readthedocs.io/en/latest/
https://github.com/SALib/SALib
https://gitlab.lrz.de/vadere/suq-controller

4 Uncertainty quantification framework

order to fulfill NFR3, the framework is open-source and published under the GNU Lesser
Public License v3.0, like Vadere, on Gitlab3.

I developed the framework in an object-oriented fashion which is natively supported
by Python. Object-oriented software benefits from reusability through inheritance and
flexibility by polymorphism. I designed the framework in a modular way so that meth-
ods can be exchanged, combined, and extended easily (NFR1) as the architecture shows,
compare Figure 4.2. The software is structured as follows: The core algorithms can be
found in the implementations of the Calculator. Each Calculator holds a Parameter

object with the configuration of the study and a Result object that is empty at start
and filled by Calculator’s routines. A Parameter object contains a Model, in this work,
mainly the VadereModel, and a parameter distribution, Prior. These two ingredients
are necessary for all uncertainty quantification approaches. The term “prior” comes from
Bayesian statistics. Strictly speaking, in this software, this term is only accurate for the
Bayesian inference routines. For the other routines, it refers to the distribution of the
uncertain parameters. The Prior object is generated from a user-supplied dictionary
with the attributes of the distribution by a PriorFactory, following the factory pattern.
In order to speed up the computations, the model can be replaced by a surrogate model
that is cheaper to evaluate. Based on the requested surrogate type, SurrogateFactory
generates a Surrogate, also following the factory pattern. Once the calculation is per-
formed and the Result object is filled, the results can be written to file by a FileWriter

and visualized by a Plotter. The implementation of the FileWriter fulfills the per-
sistency requirement (FR7). FileWriter uses a DataSaver that holds a file path and
provides some helper function to save variables as well as summaries of the results to
file.

<<ABC>>
Parameter

- model: model
- prior: Prior
- data_saver: DataSaver

<<ABC>>
FileWriter

- param: Parameter
- result: Result
- data_saver: DataSaver

+ write_result

<<ABC>>
Result

- computation_time: float

<<ABC>>
Calculator

- param: Parameter
- result: Result
- random_state: RandomState

+ get_result: Result

<<ABC>>
Plotter

- param: Parameter
- result: Result

<<ABC>>
Model

- key: list
- qoi: str
- qoi_dim: int

+ <<abstract>> eval_model
+ <<abstract>> eval_model_averaged
+ approximate_gradient

<<ABC>>
Surrogate

- original_model: Model

+ get_original_model: Model

<<ABC>>
SurrogateFactory

- random_state: RandomState

+ create_surrogate: Surrogate
+ get_random_state: RandomState

DataSaver

- create_output_dir
+ write_var_to_file
+ save_figure
+ dump_model_to_file
+ write_nparray_to_file

<<ABC>>
Prior

- dim: int

+ <<abstract>> eval_prior
+ <<abstract>> sample

PriorFactory

+ create_prior_by_type(dict): Prior

Figure 4.2: UML diagram for the uncertainty quantification framework.

The uncertainty quantification framework consists of three parts: (1) parameter iden-
tification, (2) parameter estimation, and (3) uncertainty analysis. The main components

3https://gitlab.lrz.de/vadere/uncertainty-quantification

44

https://gitlab.lrz.de/vadere/uncertainty-quantification

4 Uncertainty quantification framework

for each part are presented in a UML diagram of the Calculator implementations. Fig-
ure 4.3 provides a schematic overview of the methods implemented in the framework.
For parameter identification, Sobol’ indices, activity scores, and derivative-based global
sensitivity metrics (DGSM) are implemented. Activity scores and DGSM are derived
from gradients or gradient approximations while Sobol’ indices only require model eval-
uations. A detailed description of the indices can be found in Section 5.3. In order to
estimate parameters, the framework provides a likelihood-based sampling approach, a
Markov chain Monte Carlo algorithm, and a likelihood-free sampling approach, an algo-
rithm for approximate Bayesian computation, described in Section 6.3. For uncertainty
analysis, both a sampling-based method, Monte Carlo sampling, and propagation based
on generalized polynomial chaos expansion can be employed. An extensive description
is given in Section 8.3.

Parameter identification

Parameter estimation

Uncertainty analysis

Sampling-based methods

Important parameters

Point collocation

Important directions

Pseudo-spectral method

Likelihood-based sampling

Monte Carlo

Generalized polynomial
chaos expansion

Derivative-based global
sensitivity metrics

Markov chain Monte Carlo

Approximate Bayesian
computation

Activity scores

Uncertainty Quantification

Sobol‘ indices

Likelihood-free sampling

Figure 4.3: Schematic description of the uncertainty quantification framework, presented in
[Gödel et al., 2019a].

4.3.1 Parameter identification

Figure 4.4 provides an overview of the implemented routines for parameter identifica-
tion. FR3 requires the implementation of global sensitivity analysis methods. I provide
two approaches as implementations of the Calculator base class: The SobolIndexCal-

culator for total and first-order Sobol’ indices and the ActiveSubspaceCalculator

for derivative-based global sensitivity metrics and activity scores. For each type, I give
two specific calculation methods: Sobol’ indices can either be calculated through the
software package SALib [Herman and Usher, 2017] (SobolIndexCalculatorSALib) that
uses a Sobol’ sequence for the samples or with the implementation in SobolCalcula-

torMC based on Monte Carlo samples.
The central part of determining activity scores, first eigenvector metric, or derivative-

based global sensitivity metrics, is the uncentered covariance matrix of the model gradi-
ents C. This matrix can either be calculated from gradients or gradient approximations
using finite differences (ActiveSubspaceCalculatorGradient) or based on a local linear
model (ActiveSubspaceCalculatorLLM).

45

4 Uncertainty quantification framework

SobolIndexCalculatorSALib

- result: SobolIndexResultSALib
- param: SobolIndexParameterSALib
- random_state: RandomState

+ calc_sobol_indices

ActiveSubspaceCalculatorGradient

- result: ActiveSubspaceResultGradient
- param: ActiveSubspaceParameterGradient
- random_state: RandomState

+ identify_active_subspace
+ bootstrapping
+ calc_activity_scores_from_C
+ calc_distance_subspace
+ calc_eigenvalues
+ check_C_hat
+ construct_C_from_gradients
+ construct_C_matrix
+ evaluate_gradients_and_construct_C
+ find_largest_gap_log

ActiveSubspaceCalculatorLLM

- result: ActiveSubspaceResult
- param: ActiveSubspaceParameterLLM
- random_state: RandomState

+ identify_active_subspace
+ construct_C_matrix
+ least_squares

SobolIndexCalculatorMC

- result: SobolIndexResultSALib
- param: SobolIndexParameterSALib
- random_state: RandomState

+ calc_sobol_indices
+ sobol_indices

<<ABC>>
Calculator

- result: Result
- param: Parameter
- random_state: RandomState

<<ABC>>
SobolIndexCalculator

- result: SobolIndexResult
- param: SobolIndexParameter
- random_state: RandomState

+ <<abstract>> calc_sobol_indices

<<ABC>>
Parameter

- model: Model
- rho: Prior
- data_saver DataSaver

<<ABC>>
Result

- computation_time: float

<<ABC>>
ActiveSubspaceCalculator

- result: ActiveSubspaceResult
- param: ActiveSubspaceParameter
- random_state: RandomState

+ <<abstract>> identify_active_subspace
+ <<abstract>> construct_C_matrix
+ calc_distance_active_subspace
+ find_largest_gap
+ eigendecomposition
+ distance_subspace_corollary310
+ distance_subspace_eq_349
+ divide_active_inactive_subspace
+ relative_error

Figure 4.4: Routines for parameter identification implemented in the uncertainty quantification
framework.

4.3.2 Parameter estimation

Following the outlined overall structure of the framework, I introduce the Inversion-

Calculator as the central element for parameter estimation. Depending on the pa-
rameterization, the InversionCalculator can show different behavior. To map the
parameterization, I choose the strategy pattern [Gamma et al., 1994]. It has the ad-
vantage that the implementation of the InversionCalculator is independent of the
strategies. Only the strategies depend on concrete implementations. A code snippet
that shows how the strategy is invoked is presented in Listing 4.1. Figure 4.5 shows the
UML diagram featuring the InversionCalculator and the SamplingStrategy. Using
the strategy pattern ensures the modularity of the framework (NFR1). I provide two
sampling strategies: rejection sampling, a method from likelihood-free Bayesian infer-
ence, and random walk Metropolis algorithm, which is a Markov chain Monte Carlo
approach for likelihood-based Bayesian inference. Both methods are suitable for the
crowd dynamics models implemented in Vadere (FR2, FR4).

1 i n v c a l c = I n v e r s i o n C a l c u l a t o r (param , r e s u l t)
2 r e j e c t i o n s t r a t e g y = Reject ionSampl ing (param)

46

4 Uncertainty quantification framework

3 i n v c a l c . s e t s a m p l i n g s t r a t e g y (r e j e c t i o n s t r a t e g y)
4
5 # i m p l i c i t l y invokes conc re t e s t r a t e g y implementation
6 i n v c a l c . i n v e r s i o n ()
7
8 i n v r e s u l t s = i n v c a l c . g e t r e s u l t ()

Listing 4.1: Invoking a sampling strategy in the InversionCalculator.

<<ABC>>
InversionCalculator

- data_saver: DataSaver
- sampling_strategy: SamplingStrategy
- surrogate_model: Surrogate

+ set_sampling_strategy
+ inversion

<<ABC>>
Calculator

- param: Parameter
- result: Result
- random_state: RandomState

<<ABC>>
SamplingStrategy

- param: Parameter
- bool_surrogate: bool
- surrogate_data_misfit: Surrogate
- nr_runs_averaged: int

+ <<abstract>> evaluate_data_misfit_candidate
+ <<abstract>> evaluate_data_misfit_surrogate
+ <<abstract>> generate_new_candidate
+ <<abstract>> run_sampling: InversionResult
+ evaluate_likelihood_from_misfit
+ evaluate_data_misfit
+ kladek
+ evaluate_data_misfit_distribution
+ evaluate_data_misfit_fundamental_diagram

RejectionSampling

+ evaluate_data_misfit_candidate
+ evaluate_data_misfit_surrogate
+ generate_new_candidate
+ generate_multiple_new_candidates
+ rejection
+ rejection_step
+ run_sampling: InversionResult

MetropolisSampling

+ adapt_jump_width
+ evaluate_data_misfit_candidate
+ evaluate_data_misfit_surrogate
+ evaluate_likelihood
+ evaluate_likelihood_from_data_misfit
+ evaluate_posterior
+ generate_proposal_function
+ generate_new_candidate
+ metropolis_step
+ run_sampling: InversionResult
+ effective_sample_size
+ calc_acf_samples
- autocorrelation_samples

Figure 4.5: Routines for parameter estimation implemented in the uncertainty quantification
framework.

4.3.3 Uncertainty analysis

For uncertainty analysis, the framework provides routines for Monte Carlo sampling
and generalized polynomial chaos, fulfilling FR5. In Figure 4.6, a UML diagram of the
uncertainty analysis part of the framework is illustrated. I introduce the Propagation-

Calculator which can directly be used for the Monte Carlo approach. Random samples
are generated and propagated through the model. Optionally, the response can also be
averaged at each parameter vector over several repetitions. When using chaospy [Fein-
berg and Langtangen, 2015], low-discrepancy schemes as Halton or Sobol’ sequences,

47

4 Uncertainty quantification framework

and Latin Hypercube sampling become readily available4 for sampling. For generalized
polynomial chaos expansion, the PropagationCalculator is extended by the Prop-

agationCalculatorGPCE which creates the nodes, and the in case of pseudo-spectral
projection also weights, according to either the interpolation/regression or quadrature
scheme. Then this calculator performs the regular propagation for the nodes and after-
ward calculates the expansion by interpolation/regression, or quadrature. Besides gener-
alized polynomial chaos expansion (gPCe), there are two more specific implementations
of the PropagationCalculator: PropagationCalculatorPosterior which redefines
the generate samples method in order to use samples of a known posterior distribu-
tion, e.g. obtained by Bayesian inference and PropagationCalculatorPointEstimate

for propagation of a point estimate used for parameter estimation. Both implementa-
tions are used for the comparison between Bayesian inference and point estimation in
Section 6.4.3.

PropagationCalculatorGPCE

- result: PropagationResultGPCE
- param: PropagationParameterPS
- random_state: RandomState
- gpce_strategy: ExpansionStrategy

+ generate_samples
+ propagate

PropagationCalculator

- result: PropagationResult
- param: PropagationParameter
- random_state: RandomState

+ generate_samples
+ propagate

<<ABC>>
Calculator

- result: Result
- param: Parameter
- random_state: RandomState

<<ABC>>
Parameter

- model: Model
- prior: Prior
- data_saver: DataSaver

<<ABC>>
Result

- computation_time: float

<<ABC>>
ExpansionStrategy

- param: PropagationParameterGPCE

+ <<abstract>> generate_samples
+ <<abstract>> calc_gpce

PointCollocationExpansion

+ generate_samples
+ calc_gpce

PseudoSpectralExpansion

- quadrature_degree: int
- quadrature_degree: str

+ generate_samples
+ calc_gpce

PropagationCalculatorPointEstimate

- result: PropagationResult
- param: PropagationParameterPosterior
- random_state: RandomState

+ generate_samples

PropagationCalculatorPosterior

- result: PropagationResult
- param: PropagationParameterPosterior
- random_state: RandomState

+ generate_samples

Figure 4.6: Routines for uncertainty analysis implemented in the uncertainty quantification
framework.

4.4 Algorithms

In this section, the core algorithms for the three parts of the framework, parameter
identification, parameter estimation, and uncertainty analysis, are presented. The im-
plementation of the mathematical methods is shown in pseudocode listings.

4chaospy.Distribution.sample() creates pseudo-random generated samples, more details can be
found at https://chaospy.readthedocs.io/en/master/api/chaospy.Distribution.sample.html.

48

https://chaospy.readthedocs.io/en/master/api/chaospy.Distribution.sample.html

4 Uncertainty quantification framework

4.4.1 Parameter identification: Sobol’ indices and activity scores

Listing 4.2 shows the implementation of the calculation of Sobol’ indices described in
Section 5.3.1. I implemented Jansen’s method [Jansen, 1999, Saltelli et al., 2010] for
the approximation of the Sobol’ indices. It generates two matrices, A and B filled with
samples. Then, it iteratively generates the matrix ABi, which is matrix A except for row
i which stems from matrix B.

1 de f s o b o l i n d i c e s (model , N, rho) :
2
3 # generate random samples
4 samples = rho . sample (2∗N)
5
6 # s p l i t samples in two par t s : A and B
7 A = samples [: , 0 :N]
8 eval A = model . eva l mode l (A)
9 var iance A = var iance (eval A)

10 B = samples [: , N:2∗N]
11
12 # f o r f i r s t −order i n d i c e s , we need e v a l u a t i o n s o f B
13 eval B = model . eva l mode l (B)
14 variance AB = var iance (concatenate (eval A , eval B)))
15
16 f o r i in range (0 , m) :
17 ABi = A
18 ABi [i , :] = B[i , :]
19 eval ABi , , = model . eva l mode l (ABi)
20
21 e v a l f i r s t j a n s e n = eval B − eval ABi
22 f i r s t o r d e r j a n s e n [i] = 1 − (dot product (e v a l f i r s t j a n s e n ,

e v a l f i r s t j a n s e n) / (2∗N) / variance AB)
23
24 e v a l t o t a l j a n s e n = eval A − eval ABi
25 t o t a l o r d e r j a n s e n [i] = dot product (e v a l t o t a l j a n s e n ,

e v a l t o t a l j a n s e n) / (2∗N∗variance AB)
26
27 return f i r s t o r d e r j a n s e n , t o t a l o r d e r j a n s e n

Listing 4.2: Calculation of Sobol’ indices according to Jansen’s formula [Jansen, 1999,
Saltelli et al., 2010].

In Listing 4.3, the implementation of the calculation of the activity scores and the
identification of the active subspace as explained in Section 5.3.2 are shown. First, the
parameter density for the p input parameters is transformed to the hypercube [0, 1]p.
Then, we draw samples from the density. We evaluate the gradients or approximate
them at each sample to construct the uncentered covariance matrix C hat of the model
gradients. From C hat, we calculate the activity scores, which are one of my sensitivity
metrics.

49

4 Uncertainty quantification framework

1 de f i d e n t i f y a c t i v e s u b s p a c e (lower trans formed , upper transformed , dim
, alpha , k) :

2
3 # trans form parameter dens i ty to [0 , 1] hypercube
4 rho = UniformGenMult (lower trans formed , upper transformed , dim)
5
6 # c a l c u l a t e number o f samples
7 n samples = c e i l (alpha ∗ k ∗ l og (dim)) # number o f samples
8
9 # generate samples accord ing to the dens i ty o f the uncer ta in

parameters
10 samples = rho . sample (n samples)
11 samples trans formed = t r a n s f o r m c o o r d i n a t e s f r o m u n i t (samples)
12
13 # cons t ruc t C matrix approximation with grad i ent approximations
14 C hat = e v a l u a t e g r a d i e n t s a n d c o n s t r u c t C (samples transformed ,

n samples)
15
16 # c a l c u l a t e a c t i v i t y s c o r e s (i n c l u d e s s epa ra t i on o f a c t i v e and

i n a c t i v e subspace)
17 a c t i v i t y s c o r e s = c a l c a c t i v i t y s c o r e s f r o m C (C hat , rho)
18
19 return a c t i v i t y s c o r e s

Listing 4.3: Identifying an active subspace to calculate activity scores according to
Algorithm 1.1 from Constantine [Constantine, 2015, p. 4].

4.4.2 Parameter estimation: Metropolis algorithm and rejection sampling

For parameter estimation, the framework provides two strategies: The Markov chain
Monte Carlo based Metropolis algorithm is implemented in MetropolisSampling (List-
ing 4.5) and the likelihood-free rejection sampler in RejectionSampling (Listing 4.4).
Each SamplingStrategy needs to define a method to generate new candidates, gener-
ate new candidate as well as a method that runs the sampling scheme, run sampling.
The framework also provides the option to create a surrogate model for the distance
measure function and run the sampling on the surrogate.

In this work, I employ the Metropolis algorithm and the ABC rejection algorithm. The
framework can easily be extended with other sampling strategies, such as likelihood-free
Markov chain Monte Carlo with a global comparison to a threshold for ABC [Marjoram
et al., 2003].

1 de f r e j e c t i o n (n cand iate s , t o l e r a n c e) :
2
3 # generate n cand idate s new candidate
4 cand idates = gene ra t e mu l t i p l e new cand ida t e s (n cand idate s)
5
6 # eva luate d i s t ance measure at cand idate s
7 d i s tance measure = eva lua t e d i s t ance measu r e (cand idate s)
8

50

4 Uncertainty quantification framework

9 # f i n d cand idates which f u l f i l l the c r i t e r i o n
10 samples = cand idates [d i s tance measure <= t o l e r a n c e]
11
12 # c a l c u l a t e acceptance ra t e
13 ac c ep tance ra t e = len (cand ida te s accepted) / n cand idate s
14
15 return samples , a c c ep tance ra t e

Listing 4.4: Rejection sampler for approximate Bayesian computation.

1 de f m e t r o p o l i s s t e p (la s t sample , p o s t e r i o r l a s t s a m p l e , jump width) :
2
3 # generate new candidate
4 candidate = generate new cand idate (l a s t sample , jump width)
5
6 # eva luate model to c a l c u l a t e l i k e l i h o o d
7 d a t a m i s f i t = e v a l u a t e d a t a m i s f i t c a n d i d a t e (candidate)
8
9 # eva luate p o s t e r i o r

10 l i k e l i h o o d c a n d i d a t e = e v a l u a t e l i k e l i h o o d f r o m d a t a m i s f i t (
d a t a m i s f i t)

11 p o s t e r i o r c a n d i d a t e = e v a l u a t e p o s t e r i o r (p r i o r cand ida t e ,
l i k e l i h o o d c a n d i d a t e)

12
13 i f p o s t e r i o r c a n d i d a t e >= p o s t e r i o r l a s t s a m p l e : # accept
14 sample = candidate
15 p o s t e r i o r s a m p l e = p o s t e r i o r c a n d i d a t e
16 e l s e
17 u = uniform (1)
18 a c c e p t a n c e c r i t e r i o n = p o s t e r i o r c a n d i d a t e /

p o s t e r i o r l a s t s a m p l e
19 i f u <= a c c e p t a n c e c r i t e r i o n
20 sample = candidate
21 p o s t e r i o r s a m p l e = p o s t e r i o r c a n d i d a t e
22 e l s e
23 sample = l a s t s a m p l e
24 p o s t e r i o r s a m p l e = p o s t e r i o r l a s t s a m p l e
25
26 return sample , p o s t e r i o r s a m p l e

Listing 4.5: One iteration of the random walk Metroplis algorithm.

4.4.3 Uncertainty analysis: Monte Carlo sampling and generalized
polynomial chaos expansion

For uncertainty analysis, the framework provides routines for Monte Carlo sampling
and propagation based on generalized polynomial chaos expansion. Listing 4.6 shows
the essential steps of propagation using generalized polynomial chaos. For calculating
the coefficients, different strategies can be used: point collocation or the pseudospectral
approach. The expansion is calculated by an ExpansionStrategy which can either be

51

4 Uncertainty quantification framework

PointCollocationExpansion which works with regression or PseudoSpectralExpan-

sion based on quadrature. The latter requires a quadrature rule in addition to the
expansion order, typically Gaussian quadrature, and a quadrature degree which is
the order of the quadrature. I implement a strategy pattern so that the choice of strategy
is independent of PropagationCalculatorGPCE.

1 de f propagate (rho , expans ion order) :
2
3 # generate samples from p r i o r
4 d i s t r i b u t i o n = t r a n s l a t e p r i o r t o c h a o s p y d i s t r i b u t i o n (rho)
5
6 # invokes conc r e t e s t r a t e g y implementation
7 nodes , weights = g p c e s t r a t e g y . generate sample s (d i s t r i b u t i o n)
8
9 # propagat ion o f p r i o r samples

10 qo i averaged , n samples propagat ion , p r i o r s amp l e s = super () .
propagate (nodes)

11
12 # generate expansion
13 expansion = chaospy . genera te expans ion (expans ion order ,

d i s t r i b u t i o n)
14 qo i gpce = g p c e s t r a t e g y . c a l c g p c e (expansion , qo i averaged , nodes ,
15 weights) # invokes conc re t e s t r a t e g y implementation
16
17 # modes o f re sponse d i s t r i b u t i o n
18 expected = chaospy .E(qo i gpce , d i s t r i b u t i o n)
19 std = chaospy . Std (qo i gpce , d i s t r i b u t i o n)
20
21 return expected , std

Listing 4.6: Uncertainty analysis with generalized polynomial chaos in
PropagationCalculatorGPCE.

Listings 4.7 and 4.8 show how the samples are generated and the expansion is cal-
culated for point collocation and the pseudo-spectral approach, respectively. While for
point collation a regression is used, the pseudo-spectral approach employs a quadrature
rule.

1 de f genera te sample s (n samples) :
2
3 # c r e a t e samples from p r i o r d i s t r i b u t i o n
4 nodes = p r i o r . sample (n samples)
5 weights = None
6 return nodes , weights
7
8 de f c a l c g p c e (expansion , qo i averaged , nodes , weights) :
9

10 # f i t r e g r e s s i o n
11 qo i gpce = chaospy . f i t r e g r e s s i o n (expansion , nodes , qo i ave raged)

52

4 Uncertainty quantification framework

12 return qo i gpce

Listing 4.7: Generation of samples and calculation of generalized polynomial chaos
expansion with point collocation in PointCollocationExpansion.

1 de f genera te sample s (d i s t r i b u t i o n , quadrature order , quadra tu r e ru l e) :
2 # generate quadrature po in t s
3 nodes , weights = chaospy . genera te quadrature (quadrature order ,

d i s t r i b u t i o n ,
4 quadra tu r e ru l e)
5 re turn nodes , weights
6
7 de f c a l c g p c e (expansion , qo i averaged , nodes , weights) :
8 # generate the gene ra l polynomial chaos expansion polynomial
9 qo i gpce = chaospy . f i t q u a d r a t u r e (expansion , nodes , weights ,

qo i ave raged)
10 return qo i gpce

Listing 4.8: Generation of samples and calculation of generalized polynomial chaos
expansion with the pseudospectral approach in PseudoSpectralExpansion.

4.5 Interface with Vadere crowd simulation

Optimal steps model

Behavioral heuristics model

Social force model

Storage

Uncertainty quantification
framework

suq-controller

Vadere

Queries

Communication

Communication

Sensitivity analysis

Bayesian inference

Uncertainty analysis

Figure 4.7: Schematic description of the uncertainty quantification framework, presented in
[Gödel et al., 2019a].

53

4 Uncertainty quantification framework

The uncertainty quantification framework provides routines adapted for Vadere. Fig-
ure 4.7 gives a coarse overview of the framework and its relation to Vadere. Communica-
tion between uncertainty quantification and Vadere is facilitated by the suq-controller5.
This fulfills FR1 which requires to support existing interfaces to Vadere. The suq-
controller enables evaluating multiple runs of Vadere at different parameter sets.

The output processors in Vadere store the measures of the defined quantities of in-
terest. If new quantities of interest are to be evaluated, new processors need to be
implemented. For this thesis, I introduced a few new processors: The ParadeLengthPro-
cessor, which evaluates the length of a demonstration march used in a time-dependent
sensitivity analysis [Rahn et al., 2021], and the FlowProcessor, which calculates the
flow according to [Seyfried et al., 2009] which I use throughout this thesis.

4.6 Code verification

For code verification, I set up a continuous integration pipeline in Gitlab. The tests are
split into two groups, unit tests with test models and functional tests with Vadere. The
code coverage is 60%. The latest test and coverage reports can be found on Gitlab6.

I implemented tests to ensure that the reproducibility of the results (FR6) is main-
tained by the algorithms. They are provided in the package test.seed. In general, it
is tested whether the results are identical if the analysis is run twice with the same seed
and if the results differ if the analysis is run with different seeds.

For parameter identification, I provide routines for Sobol’ indices and activity scores.
I verified the routines by checking the Sobol’ indices for the Ishigami test function
[Ishigami and Homma, 1990] and comparing the activity scores for piston and circuit
test function to [Constantine and Diaz, 2017]. In addition, I made sure that both indices
converge with factor N−1/2 where N is the number of samples. Moreover, I assert that
the Sobol’ indices are bounded by the activity scores as established by [Constantine and
Diaz, 2017, Sobol’ and Kucherenko, 2009]. All of these tests are implemented in test
classes and are checked for every commit by the continuous integration pipeline.

In order to test the parameter estimation routines, the Metropolis algorithm, and
rejection sampling, I employ a linear test model and check whether the true parameter
value can be recovered by inference with artificial data. The same is tested for one- and
two-dimensional problems with Vadere. These tests are similar to the proof-of-concept
carried out in [Gödel et al., 2019a].

In addition, I implemented unit tests to check the approximation of the gradients and
the calculation of the uncentered covariance matrix C of the model gradients for activity
scores based on test models.

5https://gitlab.lrz.de/vadere/suq-controller
6https://gitlab.lrz.de/vadere/uncertainty-quantification/pipelines

54

https://gitlab.lrz.de/vadere/suq-controller
https://gitlab.lrz.de/vadere/uncertainty-quantification/pipelines

4 Uncertainty quantification framework

4.7 Summary

This chapter focused on the requirement R1: Choose or design a software for uncertainty
quantification for crowd simulations. My findings yield the following results regarding
the three sub-requirements:

R1.1: Derive requirements for a software for uncertainty quantification for crowd sim-
ulations
I defined functional and non-functional requirements on an uncertainty quantification
software: It needs to support existing interfaces to the Vadere crowd simulation frame-
work (FR1) and support all crowd dynamics models implemented in Vadere (FR2).
Also, for my studies, routines for parameter identification (FR3), parameter estimation
(FR4), and uncertainty analysis (FR5) are necessary. The results need to be reproducible
(FR6) and stored for post-processing (FR7). A graphical user interface would be ideal
for external users (FR8), however, this is an optional requirement. As non-functional
requirements, a modular design is envisioned (NFR1), the software should adhere to
established coding style (NFR2), it should be published open-source (NFR3) and be
well-tested (NFR4).

R1.2: Analyze available software regarding the requirements
There are several software frameworks for uncertainty quantification available. However,
none of them fulfills all mandatory requirements (FR1-7). Then, I discussed the state of
the art on software for uncertainty quantification and their shortcomings regarding the
requirements. As a result, I decided to design and implement my own framework that I
will use throughout the thesis. The analysis of the state of the art software identified two
useful and well-tested Python software packages, chaospy and SALib, that I integrate
into my framework. Their shortcoming is that they only provide routines for sensitivity
analysis and uncertainty analysis, and sensitivity analysis, respectively.

R1.3: Design and implement a software that fulfills the requirements
The framework that I designed and implemented fulfills all mandatory requirements: Its
architecture assures modularity (NFR1). The strategy pattern is employed to separate
algorithms from infrastructure so that it is easily expandable. It provides routines for
parameter identification, parameter estimation, and uncertainty analysis (FR3, FR4,
FR5). The methods are adapted to crowd simulations and can be applied to all models
implemented in Vadere (FR2). The results of the analysis can be stored to file (FR7). I
implemented several tests to assure that the results are reproducible (FR6). In general,
the algorithms are tested using unit tests as well as functional tests with Vadere (NFR4).
I established a continuous integration pipeline that conducts all tests at every commit.
The framework supports an existing interface to Vadere, the suq-controller (FR1). It
is implemented in Python and therefore compatible with the suq-controller as well as
other Python-based Vadere add-ons. The code adheres to the Python style guide PEP87

(NFR2). The uncertainty quantification framework is provided open-source, available
on Gitlab8 (NFR3).

7https://www.python.org/dev/peps/pep-0008/
8https://gitlab.lrz.de/vadere/uncertainty-quantification

55

https://www.python.org/dev/peps/pep-0008/
https://gitlab.lrz.de/vadere/uncertainty-quantification

5 Parameter identification: identifying
influential parameters

A parameter is influential if changing it has a considerable impact on the model response.
In this chapter, I describe how such parameters have been identified for crowd simulations
so far (Section 5.2) to enable the reader to put my methodical choices into context. In
Section 5.3, I propose and describe systematic methods for local and global sensitivity
analysis that are tailored to crowd simulations. In particular, I elaborate on a variance-
based index, Sobol’ indices, and derivative-based indices which are based on an active
subspace (Section 5.3). Then, I use all of them to identify influential parameters in the
bottleneck scenario (Section 5.4). Finally, I summarize the findings.

5.1 Introduction

There is no standardized approach for sensitivity analysis in crowd simulation. Often,
sensitivity information is derived from a forward propagation for several parameters. The
parameters, for which the variance in the quantity of interest is large after propagation,
are then deemed influential. In addition, in some publications, individual methods for
sensitivity analysis have been developed. While they are customized to the problem at
hand, the results are not comparable to other studies.

Uncertainty quantification includes methods for sensitivity analysis to identify the in-
fluential parameters in a simulation. Sensitivity analysis rates the parameters according
to the amount of uncertainty they contribute to the output. In order to reduce the
uncertainty in the output, sensitivity analysis helps with prioritization: Non-influential
parameters can be fixed to an arbitrary value within their range. This setting is called
factor fixing. Influential parameters should be studied in more detail (factor prioritiza-
tion). Reducing uncertainty is often expensive; therefore, the effort should be allocated
where the largest reduction is possible.

In this chapter, I present methods for sensitivity analysis and select two of them that
are suited specifically for crowd simulation. I adapt them for our models and implement
them in my uncertainty quantification framework. Then, I apply both methods to the
bottleneck scenario and compare the results.

The results of the sensitivity analysis are a starting point for reducing the uncertainty
in the simulation output. One option is parameter calibration. Calibration is expensive,
so often only the (most) influential parameters can be calibrated. Looking at the problem
from the other side, calibration is only meaningful for influential parameters. Calibration
of the influential parameters is performed in the next chapter. Another option is to gather
more data through observations or experiments. This is also costly and must therefore

56

5 Parameter identification: identifying influential parameters

be aimed at the most promising spots. The sensitivity analysis reveals these promising
spots, that is, the most influential parameters.

Research questions addressed in this chapter

Q1 How can we identify influential parameters in the optimal steps model for the
bottleneck scenario?

Q1.1 Which parameter identification methods are suited for crowd dynamics mod-
els?

Q1.2 Which parameters are influential and which are non-influential in the bottle-
neck scenario?

Q1.3 How can we determine if the results are reliable?

In [Gödel et al., 2020a], I presented a sensitivity analysis with Sobol’ indices and
activity scores that focuses on the density in front of the bottleneck instead of the flow
through the bottleneck. In [Rahn et al., 2021], we obtained Sobol’ indices through a
polynomial chaos based surrogate for a case study of a protest march. I refer to the
papers in the text.

5.2 State of the art on parameter identification in crowd
simulation

In pedestrian dynamics, several publications which claim to study “sensitivity” of pa-
rameters present forward propagations rather than sensitivity analysis according to the
understanding of uncertainty quantification. I describe and perform forward propaga-
tion in Chapter 8. Between forward propagation and sensitivity analysis, primarily the
target spaces differ: For propagation, the result lies in the space of simulation results,
whereas for sensitivity analysis, it lies in the parameter space. The result of the sensi-
tivity analysis is a sensitivity value for each parameter, which measures the contribution
of that parameter to the uncertainty in the simulation result. Then, the parameters can
be ranked according to their influence. That means sensitivity analysis requires a sen-
sitivity metric. The common approaches in pedestrian dynamics often lack this metric.
Instead, the variation in the simulation output is compared visually. In addition, most
of these approaches vary the parameters without a defined sampling scheme and in a
one-factor-at-a-time (OAT) fashion. That means, only one parameter is varied while all
others are fixed. OAT approaches fail by design to identify parameter interactions of
any order. In this work, I use the term sensitivity analysis whenever a metric is defined
that quantifies the individual parameter contribution towards the output uncertainty.

Table B.1 summarizes publications from the pedestrian dynamics community in which
a forward propagation was performed. The sensitivity of the parameters is derived from
the results of the propagation without defining a specific metric. As in our analysis,
[Sparnaaij et al., 2019, Colombi et al., 2017, Collins et al., 2014, Shi et al., 2021, 2018,
Duives et al., 2016] analyze a bottleneck scenario. A few of these publications also aim

57

5 Parameter identification: identifying influential parameters

to study the free-flow speed or parameter related to the free-flow speed [Sparnaaij et al.,
2019, Kouskoulis et al., 2018, Shi et al., 2021, Davidich and Köster, 2013, Teknomo and
Gerilla, 2005] as well as obstacle repulsion [Kouskoulis et al., 2018, Colombi et al., 2017],
and personal space strength [Sparnaaij et al., 2019, Kouskoulis et al., 2018, Colombi
et al., 2017]. Several of the authors point out that they are working with stochastic
simulators. Their approach is to average several repetitions at each parameter set. Only
Sparnaaij et al. [Sparnaaij et al., 2019] discuss how to find the necessary number of
repetitions. I decide not to follow their approach since its additional model evaluations
are costly.

Next, we focus on contributions that define a sensitivity metric. Table B.2 summarizes
the sensitivity analysis conducted in pedestrian dynamics so far. I am only aware of three
publications. Compared to Table B.1, the metric is an additional criterion. In all three
manuscripts, the sensitivity of the model response regarding speed parameters is studied
[Zhong and Cai, 2015, Chen et al., 2019, Kurtc et al., 2021]. Additionally, obstacle
repulsion [Zhong and Cai, 2015, Chen et al., 2019] and personal space strength [Zhong
and Cai, 2015] are of interest. Zhong et al. and Kurtc et al. also handle their stochastic
simulators by averaging over a fixed number of repetitions. Zhong et al. compute the
sensitivity metrics in a bottleneck scenario [Zhong and Cai, 2015]. Only Kurtc et al. use
an approach that considers parameter interactions instead of performing only an OAT
analysis. Here, I study the impact of a larger number of parameters on flow through a
bottleneck scenario instead of density in a corridor. Consequently, I examine a different
dynamic.

Finally, we take a short look at an adjacent community that performs traffic simula-
tions. Models and methods are often similar to crowd dynamics. In traffic simulation,
however, sensitivity analysis is already a common tool. Table B.3 summarizes the works
of Sfeir et al. and Punzo et al.. Both use Sobol’ indices to analyze the importance of
individual parameters. Punzo et al. study sensitivities in a social force model, similar
to the social force models popular in crowd dynamics. A more comprehensive list of
sensitivity analyzes carried out for traffic simulations can be found in [Sfeir et al., 2018].

Parameters associated with origin-destination popularity, or destination choice are
intuitively and demonstrably influential for different quantities of interest [Haghani et al.,
2018, Davidich and Köster, 2013]. Since this information is typically dynamic, the
estimation differs from the methods presented in this chapter. We discuss an approach
to learn dynamic origin-destination matrices based on density heatmaps in Chapter 7.

5.3 Overview of methods for parameter identification

Sensitivity analysis methods from the field of uncertainty quantification aim to identify
influential and non-influential parameters. Figure 5.1 provides an overview of the sen-
sitivity methods described in the following. Local sensitivity analysis evaluates the im-
pact of parameters on a simulation outcome, the predefined quantity of interest, around
a fixed reference value. Common approaches are screening methods, which sample the
uncertain parameter and observe the change in the response. Often, one-factor-at-a-time

58

5 Parameter identification: identifying influential parameters

methods are used which vary only one parameter while the others are fixed. They can
only identify contributions by individual parameters; interactions are neglected. An-
other approach is sequential bifurcation [Bettonvil and Kleijnen, 1997]. A natural basis
for local sensitivity analysis is differentiation. Besides the common partial derivatives,
Borgonovo and Apostolakis propose the differential importance measure [Borgonovo and
Apostolakis, 2001].

Often we are not only interested in the sensitivity of a model to a parameter around a
reference value but over the parameter’s range. In this case, global sensitivity analysis is
suitable. Regression-based methods create a linear surrogate based on which the sensi-
tivity is assessed. Whenever the assumption of a linear relationship between parameter
and quantity of interest is too strict, rank-based methods [Saltelli and Sobol’, 1995] such
as the Spearman correlation coefficient [Spearman, 1904] can be employed. Screening
methods can be globalized to evaluate parameter ranges instead of the behavior around
a fixed parameter. Here, Morris screening [Morris, 1991] is a well-known representative.
For Morris screening, local derivatives are first approximated and then averaged to pro-
vide a globalized measure. Other screening methods are screening by groups [Kleijnen,
1987], sequential bifurcation method [Bettonvil and Kleijnen, 1997] a globalized version
of sequential bifurcation, and factorial fractional design [Montgomery, 2013, p. 320ff].
Besides regression-based approaches and globalized screening methods, variance-based
methods can be utilized for global sensitivity analysis. For this approach, the variance in
the quantity of interest is the basis for the sensitivity metric. An established metric are
Sobol’ indices [Sobol’, 1993], which use an ANOVA-HDMR1 representation of the vari-
ance of the model response. Sobol’ indices can either be obtained from the model itself or
from a polynomial chaos based surrogate [Sudret, 2008]. Other variance-based measures
are Pearson’s correlation ratio [Pearson and Galton, 1895] as well as Wagner’s variance-
based sensitivity measures [Wagner, 1995]. Instead of focusing on a single moment of
the distribution of the quantity of interest, such as the variance, moment-independent or
density-based methods consider the full distribution of the model response [Borgonovo,
2007]. Finally, also for global sensitivity analysis, some approaches are based on deriva-
tives. This includes metrics based on active subspaces [Constantine and Diaz, 2017] such
as activity scores and the first eigenvector metric. The active subspace here is a lower-
dimensional representation of the input parameter space based on important directions
in the parameter space. In addition, Sobol’ and Kucherenko propose the derivative-based
global sensitivity metrics (DGSM) [Sobol’ and Kucherenko, 2009].

Decision trees presented by de Rocquigny and Tarantola [de Rocquigny et al., 2008]
can support selecting an appropriate method. More detailed overviews of the methods
can be found in [Borgonovo and Plischke, 2016, Iooss and Lemâıtre, 2015].

From the collection of methods, I choose Sobol’ indices since they only require function
evaluations and can therefore be calculated for any model. This is certainly one of the
reasons why they are widely established and used in many applications [Saltelli et al.,
2008, p. 237ff]. In addition, I decided to use the active subspace method with the
goal to identify a lower-dimensional subspace in our input parameter space. The active

1Analysis of variance (ANOVA), high-dimensional model representation (HDMR)

59

5 Parameter identification: identifying influential parameters

subspace method detects important parameter directions, instead of focusing solely on
the importance of single parameters.

 Parameter
 identification

 Local sensitivity analysis

 Sensitivity matrix
 (Smith, 2010)

 Screening methods
 One-at-a-time (OAT) methods

 Sequential bifurcation

 Differentiation-based methods

 Partial derivatives

 Differential importance measure
 (Borgonovo & Apostolakis, 2001)

 Global sensitivity analysis

 Regression-based

 Linear regression

 Standardized regression coefficient

 Pearson's product moment correlation
 coefficient

 Rank-based methods
 (Saltelli & Sobol, 1995)

 Spearman correlation coefficient
 (Spearman, 1904)

 Globalized screening methods

 Morris screening
 (Morris, 1991)

 Screening by groups
 (Kleinjen-1987)

 Sequential bifurcation method
 (Bettonvil & Kleijnen, 1996)

 Factorial fractional design
 (Montgomery, 2013)

 Variance-based

 Sobol' indices
 (Sobol, 1993)

 Using a polynomial chaos based surrogate
 (Sudret, 2009)

 Correlation ratio
 (Pearson, 1905)

 Variance-based sensitivity measures
 (Wagner, 1995)

 Moment-independent
 Moment independent uncertainty indicator
 (Borgonovo, 2007)

 Derivative-based

 Active subspaces
 (Constantine & Diaz, 2017)

 Activity scores

 First eigenvector metric

 Derivative-based global sensitivity
 metrics
 (DGSM)(Sobol & Kucherenko, 2009)

Figure 5.1: Overview of methods for parameter identification. Methods that were selected for
crowd simulations are highlighted.

5.3.1 Sobol’ indices

In the following, we assume that our model f is a square-integrable function defined
over a k-dimensional unit hypercube Ω. Any model that meets this condition can be
represented by an analysis of variance, or ANOVA, decomposition. ANOVA decompo-
sition splits our model f into a set of orthogonal functions depending on the factors
xi, i = 1, . . . , n and their interactions [Sobol’, 2001]:

60

5 Parameter identification: identifying influential parameters

f(x) =f0 +
n∑
s=1

n∑
i1<...<in

fi1···is(xi1 , . . . , xis) (5.1)

=f0 +
∑
i

fi(xi) +
∑
i<j

fij(xi, xj) + · · ·+ f12···n(x1, x2, . . . , xn) (5.2)

where 1 ≤ i1 < · · · < is ≤ n. The representation is an exact representation of f when we
use all 2n terms. Contributions of single parameters are represented by the first-order
univariate functions fi while the interaction terms fi1···is , s > 1 quantify the interactions
of several input parameters xi on the model response y [Smith, 2014, p. 323f].

Based on the decomposition of the model response (eq. 5.2), we can also split its
variance V [y] into the variance of the orthogonal functions fi1···is . With the partial
variances Di1···is of fi1···is defined as Di1···is =

∫
f2
i1···isdxi1 . . . dxis , we can write the total

variance D as

D = V [y] =

∫
Ω
f2(x)dx− f2

0 =
n∑
s=1

n∑
i1<...<ik

Di1···is (5.3)

with f0 = E[Y] [Sobol’ and Kucherenko, 2005]. By square integrating each term of the
decomposition 5.2, we obtain the so-called ANOVA-HDMR decomposition for V (Y):

V (Y) =
∑
i

Vfi +
∑
i

∑
j>i

Vfij + . . .+ Vf12...k . (5.4)

We need the total variance D and the partial variances Di1···is to define the first-order
indices Sj and the higher-order indices, Si1···is of order i, as the ratio between partial
variance and total variance. The total effect index STj is defined as the sum of the
indices of all orders that include parameter j:

Sj = Si1 =
Di

D
(5.5)

Si1···is =
Di1···is
D

(5.6)

STi = Si +
∑
j>i

Sij +
∑
j>i

∑
k>j

Sijk + . . .+ S123...n (5.7)

Sobol’ indices in practice In practice, we often cannot analytically evaluate these
indices because they require solving high-dimensional integrals. Instead, they are ap-
proximated by a finite sum. We use Jansen’s method to approximate the indices [Jansen,
1999]. For a given sampling factor M , the number of Monte Carlo samples generated is
N = bM/(m+ 1)c. We generate two matrices, A and B, with N samples each according
to the input parameter density. The variation of all input factors except one is modeled

by constructing matrices A
(i)
B that are identical to matrix A except for column i which

originates from matrix B. Then, variances of model evaluations at row j of A and B to

A
(i)
B , respectively, are approximated. The first-order indices Si are approximated by

61

5 Parameter identification: identifying influential parameters

Ŝi = 1− 1

2Nvy

N∑
j=1

(
f(B)j − f(A

(i)
B j)

)2
, (5.8)

where the variance of the model response V [y] is approximated by the sample variance
vy of the evaluations f(A) and the subscript j stands for row j of the matrix. The total
order indices STi are approximated by

ŜTi =
1

2Nvy

N∑
j=1

(
f(A)j − f(A

(i)
B j)

)2
. (5.9)

From 5.7 we can see that the total effects are larger than or equal to the first-order
indices Si. Potential differences between total effects and first-order indices in each
parameter indicate higher order contributions i. e. interaction effects among the param-
eters. The difference between first-order and total effect index STi − Si is a measure for
the interaction of factor xi with other factors. Consequently, if the total order effect
STi is identical to the first-order index Si for parameter i, then this parameter is not
involved in any interactions toward our quantity of interest V . If we divide both sides
of 5.4 by V (Y), we obtain∑

i

Si +
∑
i

∑
j>1

Sij + . . .+ S12...k = 1. (5.10)

The consequence of this relation is that the sum of the first-order indices has to be equal
to one if there are no interactions present. In this case, the model under study is purely
additive.

5.3.2 Activity scores, first eigenvector, and derivative-based global
sensitivity metrics

Constantine and Diaz define two metrics based on the active subspace theory: activity
scores and the first eigenvector metric [Constantine and Diaz, 2017]. Active subspace
methodology aims to identify important directions in the input parameter space to con-
struct a lower-dimensional parameter space. Evaluating both metrics requires gradients
of the model f , or at least approximations of the gradients. Constantine [Constantine,
2015] proposes a sampling-based approach to identify active subspaces. Based on his
work, we describe the methodology to find an active subspace of dimension k < m within
a m-dimensional parameter space.

At first, the number of samples needs to be defined. A rule of thumb to achieve a
sufficient accuracy is M = α ·k · ln(m) with oversampling factor α ∈ [2, 10] [Constantine,
2015, p. 35]. The samples are drawn from the input parameter distribution ρ. At the
sample points xi, i = 1, . . . ,M , the gradient ∇f(xi) is evaluated and used to construct
the matrix

C =

∫
∇f(xi)∇f(xi)

Tρ dx. (5.11)

62

5 Parameter identification: identifying influential parameters

Here, the diagonal entries Cii, i = 1, . . .m of C are the derivative-based global sensitivity
metricsA defined by Sobol’ and Kucherenko [Sobol’, 1993]:

νi =

∫
Hn

(
∂f

∂xi

)2

dx. (5.12)

Constantine [Constantine, 2015, p. 22] describes C as the “(uncentered) covariance
matrix of the gradient”. In order to identify the important directions in the parameter
space, we calculate the eigenvalues and eigenvectors of C by a singular value decompo-
sition:

C = WΛW T . (5.13)

Now, each column of W = [w1 . . . wn] is a eigenvector of C and the diagonal elements
λi, i = 1, . . . ,m of Λ = diag(λ1, . . . , λm) are the eigenvalues of C. The eigenvalues are
sorted descending by their size. W accordingly holds the eigenvector corresponding to
the ith eigenvector in column i.

The first eigenvector w1 can already be used as a sensitivity metric: entry w1,j , j =
1, . . . ,m is a metric for parameter index j. Since the eigenvectors are orthonormal due to
the symmetry of C, there is only ambiguity in the direction (positive or negative). If we
know the direction of the correlation (positive or negative) between one parameter and
the quantity of interest, we can rotate the eigenvector accordingly. Then, the index w1,j

shows not only the size but also the direction of the contribution of parameter i on the
quantity of interest. In order to obtain comparable results between the first eigenvector
metric and the activity scores, the first eigenvector metric needs to be normalized by its
length.

Based on the eigenvalues, we can now construct subspaces of arbitrary dimensions. An
ideal subspace is as low dimensional as possible while capturing most of the information.
The eigenvalues portray the amount of information of the corresponding direction in
the parameter space. Now, similar to the principal component analysis, the user needs
to choose how many eigenvalues to keep to form the subspace. Unless computational
constraints prevent it, the best choice is to look for a spectral gap in the eigenvalues
and use the eigenvectors corresponding to eigenvalues above the gap to form a subspace
[Constantine, 2015, p. 37]. Often, log-scale plots are used to identify the spectral gap.

We assume that the spectral gap appears between λk and λk+1. Then, the eigenvectors
w1, . . . , wk form the active subspace W1 = [w1 · · ·wk]. Consequently, the remaining
eigenvectors of W form the inactive subspace W2 = [wk+1 · · ·wm]. Constantine and
Diaz [Constantine and Diaz, 2017] define the activity scores αi as

αi = αi(k) =
k∑
j=1

λjw
2
i,j , i = 1, . . . , n. (5.14)

The calculation depends on the size k of the chosen subspace: only the first k eigenvalues
and eigenvectors are used.

63

5 Parameter identification: identifying influential parameters

Activity scores, first eigenvector metric, and DGSM in practice In the case of crowd
simulations, gradients of the quantity of interest are typically not available. For models
based on differential equations such as the social force model or the gradient navigation
model, gradients are theoretically available. However, this is only the case if the simula-
tion output is a direct output of the models. The output of microscopic models such as
social force based models is a set of trajectories. When other quantities of interest are
considered, in addition to derivations for the model equations, we also need derivations
of the post-processing algorithms. As a consequence, the more universal approach to
the gradients for the quantity of interest are approximations.

Furthermore, it depends on the model whether meaningful gradients can be obtained.
Especially for rule-based models such as cellular automata or the behavioral heuristics
model, the output is discontinuous and the gradients are not defined. The fewer disconti-
nuities a model has, the more likely it is that the gradient approximations are expedient.
Especially for computer models in which there are no explicit formulas for the simulation
outcomes available, it is not clear whether we can evaluate gradients.

We choose to use central differences to approximate the gradients. If the gradients are
approximated, we obtain the approximation Ĉ instead of C:

Ĉ =
∫
∇f̂(xi)∇f̂(xi)

Tρdx ≈ C (5.15)

Ĉ = Ŵ Λ̂Ŵ ≈ C. (5.16)

Consequently, the eigenvectors ŵ and eigenvalues λ̂ of Ĉ are only an approximation to
w and λ, respectively. Thus the spectral gap k̂ in the eigenvalues λ̂ is not necessarily
identical to the spectral gap in λ. In the case of central differences, the accuracy of the
approximation depends on the step size h. The step size must be smaller than the first
eigenvalue after the gap λ̂k+1 to avoid the appearance of a so-called phantom eigenvalue
[Constantine, 2015] that dissimulate the actual spectral gap. Finally, also the activity
scores α̂i and first eigenvector metric ŵ are only an approximation to αi and w1,i:

α̂i = α̂i(k) =

k̂∑
j=1

λ̂jŵ
2
i,j , i = 1, . . . , n. (5.17)

Due to the need for gradients, the activity scores are not as universally applicable as
Sobol’ indices. This is one reason why I evaluate Sobol’ indices and activity scores: If
they align, we gain trust in the activity scores and therefore we can use the additional
information on the parameter directions that are provided.

5.3.3 Links between indices

In practical applications, the indices rank the parameters often give comparable param-
eter rankings [Constantine and Diaz, 2017]. However, we can construct models for which
the indices rank the parameters differently [Sobol’ and Kucherenko, 2009]. Even though
the indices measure the sensitivity in different ways, there are links between them. Ac-
tivity scores can be understood as truncated derivative-based indices nui. If there is

64

5 Parameter identification: identifying influential parameters

no eigenvalue gap, so k = m, and therefore all eigenvalues are used, activity scores and
derivative-based indices are identical:

αi(k = m) =
m∑
i=1

λiw
2
i,j = Cii. (5.18)

Derivative-based metrics are then the diagonal entries of C in eq. 5.13.
A link between activity scores and Sobol’ indices is presented in Theorem 4.2 in

[Constantine and Diaz, 2017] and Theorem 2 from [Sobol’ and Kucherenko, 2009]. The
total Sobol’ effects are bounded by the activity scores:

STi ≤
pi

V [Y]
(αi(n) + λn+1) (5.19)

with Poincaré constant
√
pi = d

π of diameter d for the region Ω from [Bebendorf, 2003]
according to uniform distribution of factor xi. In our case d = 2 for xi ∈ [−1, 1] due to
the scaling of domain and partial derivatives.

5.4 Studying parameter sensitivities in a bottleneck scenario

In this chapter, I apply Sobol’ indices, activity scores, and derivative-based global sen-
sitivity metrics on the bottleneck scenario to identify influential and non-influential pa-
rameters. An extensive description of the studied bottleneck can be found in Section
3.2.1. Finally, I discuss sensitivity analysis for time-dependent quantities of interest and
efficient methods for computationally expensive scenarios.

5.4.1 Relationship between parameters and quantity of interest

At first, I analyze the relationship between each uncertain parameter and our quantity of
interest, the flow through the bottleneck. The parameters are explained in more detail in
Section 3.2.1. For the scatter plots in Figure 5.2, I use data generated when calculating
the activity scores and derivative-based scores. Therefore, all parameters were varied
simultaneously which leads to a strong noise.

From the scatter plots, we can see that the free-flow speed mean has the largest impact
on the flow. We observe a strong trend in the linear fit and a large R2 which implicates
that the data is represented well by the fit. The free-flow speed mean is expected to
be influential due to the relationship J = ρvw from [Rupprecht et al., 2007] where
J is the flow, ρ is the density, v is the speed, and w is the bottleneck width. From
this formula, as well as from the scatter plots we see a strong positive correlation that
means the flow increases with the free-flow speed mean. Besides the free-flow speed
mean, other parameters seem to have an impact on the flow as well. These are free-flow
speed standard deviation, obstacle repulsion, and personal space strength. Different
from the mean speed, all of these parameters have a negative correlation with the flow.
Consequently, if we increase the parameters, the flow is reduced. We take a closer look at
how these parameters and the flow are related: The free-flow speed standard deviation

65

5 Parameter identification: identifying influential parameters

(a) Control parameter (b) Free-flow speed mean (c) Free-flow speed stan-
dard deviation

(d) Number of agents (e) Obstacle repulsion (f) Personal space strength

(g) Minimum step length

Figure 5.2: Scatter plot of input-output relation for each uncertain input parameter in the
bottleneck scenario using the model evaluations from the derivative-based method.
Each run is shown, that is, 10 data points for each configuration. In total, 81
gradient samples are evaluated which leads to a total of 9720 runs.

determines the variation among the individual velocities. A larger variation among
the free-flow speeds increases the time span between when the first agent crosses the
measurement line and when the last agent crosses the measurement line, which is larger
∆t and therefore, with J = ∆N/∆t, a lower flow. Higher demand for personal space
reduces the density and therefore, at a constant speed, the flow according to J = ρvw.
Finally, obstacle repulsion has an impact on the width of the bottleneck that is actually
used; it is similar to varying the width of the bottleneck. Looking again at J = ρvw,
a reduced flow with increased obstacle repulsion or decreased effective w is plausible.
Three parameters have no influence on our quantity of interest, the flow: the number of
agents, the minimum step length, and the control parameter. The formula for the flow
is independent of the actual number of agents; it only evaluates the ratio of differences

66

5 Parameter identification: identifying influential parameters

in agents ∆N and duration ∆t. If doubling the number of agents leads to doubling
the duration for crossing the bottleneck, we measure the same flow. Consequently, the
number of agents should have no impact. The minimum step length leads to small
steps being discarded. In this case, the agent remains in its position. Therefore, the
minimum step length only leads to minor changes in the trajectory. From the results,
I conclude that these do not have an impact on the overall dynamics. For the control
parameter, I choose a parameter that has no impact on the simulation of the bottleneck
scenario to test the sensitivity indices: a parameter of the queueing model which is not
activated for the bottleneck. While we could use the scatter plots to classify parameters
into influential and non-influential, it is risky since they are a simplified measure of
first-order effects. We need to look at the total effects, in addition, to reliably rank the
parameters before we can fix non-influential parameters.

5.4.2 Sobol’ first-order and total indices

I evaluate the first-order and total Sobol’ indices for different sampling factors M in
Figures 5.3 and 5.4, respectively. Table 5.1 translates the sampling factor M to the
number of model evaluations.

Table 5.1: Number of model evaluations for calculating Sobol’ indices based on the sampling
factor M .

Sampling factor M 50 100 500 1000 5000

Number of model evaluations 562 1125 5625 11250 56250

The first-order index measures solely the impact of the parameter itself, while the total
order index measures the impact including all interaction effects in which this parameter
is present. In both plots, the free-flow speed mean is the most influential parameter,
agreeing with our analysis of the scatter plots. Besides this parameter, the free-flow
speed standard deviation, the obstacle repulsion, and the personal space strength are
influential when measuring the flow through the bottleneck. The other three parameters,
the control parameter, the number of agents, and the minimum step length, are close
to zero and therefore deemed as non-influential. In the case of the control parameter, it
confirms that the method appropriately evaluates parameters that have no influence. We
also observe that with increasing sampling factor M , the variation decreases as expected.
For a low sampling factor, negative values for indices can arise due to numerical errors.

When we compare first-order and total Sobol’ indices in Figure 5.5, we notice that
they are similar. Also, the total Sobol’ indices are all larger or equal than the first-order
indices, which always has to be the case. Only for the free-flow speed mean and standard
deviation, the first-order indices are lower than the total indices. That means interaction
is present between those two parameters. Saltelli states that “two factors [...] interact
when their effect on Y cannot be expressed as a sum of their single effects on Y ” [Saltelli
et al., 2008]. If we add up the first-order indices we obtain

∑
Si = 0.8148 < 1. Since a

purely additive model would yield a sum of 1, we can conclude that the model is mainly
additive except for the second-order effect.

67

5 Parameter identification: identifying influential parameters

Figure 5.3: Sobol’ first-order indices for the bottleneck scenario calculated with Monte Carlo
approach using Jansen’s method [Jansen, 1999, Saltelli et al., 2010]. For each
sampling factor M , three runs were performed. Parameters under study: control
parameter (1), free-flow speed mean (2) and standard deviation (3), number of
agents (4), obstacle repulsion (5), personal space (6), minimum step length (7).

Figure 5.4: Sobol’ total effect indices for bottleneck scenario calculated with Monte Carlo ap-
proach using Jansen’s method [Jansen, 1999]. For each sampling factor M , three
runs were performed. Parameters under study: control parameter (1), free-flow
speed mean (2) and standard deviation (3), number of agents (4), obstacle repul-
sion (5), personal space (6), minimum step length (7).

5.4.3 Derivative-based global sensitivity metrics, first eigenvector metric,
and activity scores

I calculate the first eigenvector metric and activity scores by identifying an active sub-
space in the input parameter space. Based on gradient approximations using central
differences, I evaluate the uncentered covariance matrix C. Figure 5.6 depicts the eigen-
values and the first eigenvector of C. In the eigenvalues in Figure 5.6a, there is a
spectral gap between the first and second eigenvalue. Consequently, there exists a one-
dimensional subspace. That means a single linear combination of the input parameters

68

5 Parameter identification: identifying influential parameters

Figure 5.5: Total and first-order Sobol’ indices for the bottleneck scenario, calculated using
Jansen’s method with sampling factor M = 5000. Parameters under study: control
parameter (1), free-flow speed mean (2) and standard deviation (3), number of
agents (4), obstacle repulsion (5), personal space (6), minimum step length (7).

forms the basis for the active subspace. The first eigenvector in Figure 5.6b presents
this important direction in the input parameter space. The direction of eigenvectors
is ambiguous. However, since we know from the scatter plot that the free-flow speed
mean, parameter 2, has a positive correlation with the flow, we rotate the eigenvector
accordingly.

(a) Eigenvalues of matrix C (b) First eigenvector of matrix C

Figure 5.6: Eigenvalues and first eigenvector components of the matrix C. The spectral gap
between the first and second eigenvalue reveals a one-dimensional subspace. Param-
eters under study: control parameter (1), free-flow speed mean (2) and standard
deviation (3), number of agents (4), obstacle repulsion (5), personal space (6),
minimum step length (7).

The first sensitivity metric that we analyze is the first eigenvector metric. Figure 5.7
depicts the normalized first eigenvector. In agreement with the Sobol’ indices, we find

69

5 Parameter identification: identifying influential parameters

that the free-flow speed mean is the most influential parameter, followed by the free-
flow speed standard deviation, the obstacle repulsion, and the personal space strength.
The number of necessary gradient samples for calculating the active subspace is typically
determined byM = αklog(m) [Constantine, 2015, p. 35], where k is the size of the desired
subspace, m is the dimension of the input parameter size, and α is the oversampling
factor. The latter needs to be chosen by the user. Oversampling factors in [5, 10] are
common [Constantine, 2015]. Compared to the Sobol’ indices, we observe that the
variation in the first eigenvector metric is significantly lower for a small number of
samples. Table 5.2 lists the number of model evaluations required for each oversampling
factor. For small oversampling factors α, the identified subspace differs from a one-
dimensional subspace (dotted lines).

Table 5.2: Number of model evaluations for calculating activity scores based on the oversam-
pling factor α.

Oversampling factor α 1 2 5 10 15 20 25

Number of model evaluations 840 1680 4200 8260 12320 16380 20440

Figure 5.7: Parameter sensitivities measured by normalized first eigenvector metric for the bot-
tleneck scenario. The mean eigenvector entries obtained from three runs (solid lines)
are shown together with the limits of the scores (shaded areas). Parameters under
study: control parameter (1), free-flow speed mean (2) and standard deviation (3),
number of agents (4), obstacle repulsion (5), personal space (6), minimum step
length (7).

Next, we take a look at the activity scores in Figure 5.8. While they agree with the first
eigenvector metric qualitatively, there are some differences in the size of the sensitivity
indices, especially for the number of agents, parameter 4. Finally, we evaluate the
derivative-based global sensitivity metrics. The indices presented in Figure 5.9, again
qualitatively align with the Sobol’ indices and the activity scores. The DGSM vary less
than the other indices. They assign a larger value to the parameters with the lowest
impact and a smaller value to the parameter with the largest impact. However, if we
compare the lowest sensitivity values to those of the control parameter, we still deem the

70

5 Parameter identification: identifying influential parameters

Figure 5.8: Parameter sensitivities measured by activity scores from active subspace method
for the bottleneck scenario. For each value of the oversampling factor α, three
runs are performed. The mean activity scores obtained for the runs (solid lines)
are shown together with the limits of the scores (shaded areas). Parameters under
study: control parameter (1), free-flow speed mean (2) and standard deviation (3),
number of agents (4), obstacle repulsion (5), personal space (6), minimum step
length (7).

number of agents, 4, and minimum step size, 7, as non-influential. Also, the free-flow
speed mean is still the most influential parameter. Since each metric measures differently,
we cannot expect the indices to be identical. While the derivative-based global sensitivity
indices measure the average response to small perturbations in the input parameters,
the activity scores for each parameter are calculated inversely from the joint important
parameter direction that spans the active subspace, and the total sensitivity indices
measure the variance that can be attributed to each parameter [Constantine and Diaz,
2017].

5.4.3.1 Active variable

Now, we take a closer look at the active subspace. For our seven-dimensional input
parameter space, we were able to identify a one-dimensional active subspace. The im-
portant parameter direction formed by the first eigenvector can be used to transform
any parameter vector x to the active subspace. The transformed parameter vector wT1 x
is the so-called active variable. In Figure 5.10 shows one- and two-dimensional suffi-
cient summary plots for the active variable. A scatter plot that contains all available
regression information is referred to as a sufficient summary plot. Figure 5.10a shows
the flow through the bottleneck against the active variable wT1 x whereas Figure 5.10b
depicts the flow against both the active variable wT1 x and the inactive variable wT2 x,.
The large magnitude of the coefficient of determination R2 = 0.773 suggests that a
large portion of the output variance can be described using the active variable wT1 x.
In the two-dimensional sufficient summary plot, however, we can barely see any change
in the direction of wT2 x, the second most important direction in the parameter space.

71

5 Parameter identification: identifying influential parameters

Figure 5.9: Parameter sensitivities measured by derivative-based global sensitivity metrics νi
for the bottleneck scenario. For each value of the oversampling factor α, three
runs are performed. The mean derivative-based global sensitivity metrics obtained
for the runs (solid lines) are shown together with the limits of the scores (shaded
areas). Parameters under study: Control parameter (1), free-flow speed mean (2)
and standard deviation (3), number of agents (4), obstacle repulsion (5), personal
space (6), minimum step length (7).

Both plots support choosing a one-dimensional subspace. The active subspace can be
exploited for dimension reduction that allows for parameters studies that may not be
feasible otherwise.

(a) One-dimensional summary plot (b) Two-dimensional summary plot

Figure 5.10: Sufficient summary plots of the flow through the bottleneck against the active
variable wT1 x and the first inactive variable wT2 x using the gradient samples for 81
sample points (α = 25). The active variable wT1 x is the most important direction
in the input parameter space. It is the base of the identified active subspace. The
first inactive variable wT2 x is the second most important parameter direction.

72

5 Parameter identification: identifying influential parameters

5.4.3.2 Confidence intervals for the eigenvalues and the subspace distance

We perform a bootstrapping according to [Constantine, 2015, p. 43] to approximate the
confidence intervals of the eigenvalues and the subspace distance because the eigenvalues
are only approximated. Figure 5.11a shows the bootstrapping interval

[min
i

(λ∗i),max
i

(λ∗i)] (5.20)

for a run with α = 25 as we obtained the best results with this oversampling factor. The
bootstrapping confirms the spectral gap between first and second eigenvalue observed in
Figure 5.6a. In [Constantine, 2015, p. 32], the distance between two subspaces is defined
as

dist(ran(W1), ran(Ŵ1)) =‖W T
1 Ŵ2 ‖, (5.21)

that is the distance between true active subspace W1 and its approximation Ŵ1. In the
case of bootstrapping, we calculate the distance between the obtained active subspace
Ŵ1 of a single run to each inactive subspace Ŵ iB

1 for each bootstrap replicate iB =
1, . . . ,Mboot.

This distance is shown with its bootstrap interval in Figure 5.11b. We observe the
smallest subspace error for a one-dimensional subspace. This result also strongly sup-
ports the choice of the one-dimensional subspace.

(a) Eigenvalues of matrix C (b) Subspace distance according to (5.21) from
[Constantine, 2015, p. 32]

Figure 5.11: Estimation of confidence intervals for eigenvalues and subspace distance by boot-
strapping (Mboot = 1000). Bootstrapping for the eigenvalues confirms spectral
gap between first and second eigenvalue. Smallest subspace distance is found for
one-dimensional subspace.

5.4.4 Sensitivity ranking

When we compare the normalized sensitivity metrics, the parameters are ranked consis-
tently for all metrics (compare Figure 5.12). The agreement between activity scores and

73

5 Parameter identification: identifying influential parameters

Sobol’ indices supports the applicability of activity scores using gradient approximation
to our model. Consistently, the free-flow speed mean is assessed as the most influential
parameter. That means this parameter is responsible for most of the uncertainty in the
model response. Consequently, the uncertainty associated with the parameter should be
reduced by subsequent studies. This focus on the largest contributor is often referred to
as the factor prioritization setting [Saltelli et al., 2008]. Also, all metrics attribute little
to no contribution to the quantity of interest to the following parameters: number of
agents and minimum step length. The indices for both are in the same range as the con-
trol parameter for which we know that it has no impact on the result. These parameters
can be fixed to any value within their range for the subsequent studies. This reduction
of the input parameter space is known as factor fixing setting [Saltelli et al., 2008].

Figure 5.12: Normalized activity scores, first eigenvector entries, derivative-based global sensi-
tivity metrics (DGSM), and Sobol’ indices for the bottleneck scenario. Parameters
under study: control parameter (1), free-flow speed mean (2) and standard devia-
tion (3), number of agents (4), obstacle repulsion (5), personal space (6), minimum
step length (7).

5.4.5 Time-dependent analysis of sensitivities

In the bottleneck scenario, we focus our analysis on a scalar definition of the flow as
the quantity of interest. The flow through the bottleneck can also be evaluated at
several times in the simulation, using e. g. the flow over time J(t) = ρ(t)v(t)w in
[Rupprecht et al., 2011]. Here, density ρ(t) and velocity v(t) are evaluated continuously
throughout the simulation, and from those measurements, we obtain a time series of
flow measurements. This time series can be understood as an observable of a dynamical
system. Dynamical systems are omnipresent since they can describe many physical
processes. Accordingly, many methods have been developed or adapted specifically for
these systems. Crowd simulations can also be viewed as a dynamic system. The state
is described by the agent’s current position and speed. The sensitivity analysis methods
presented in Section 5.3 are designed for scalar-valued quantities of interest. If we are

74

5 Parameter identification: identifying influential parameters

interested in the dynamics of a system, a continuously measured quantity of interest
might be of interest.

Figure 5.13: Fictional protest march scenario along the Richard-Wagner-Straße in Kaiser-
slautern. The topography is a simplified version of the actual environment. The
agents start from the source (green), pass four intermediate destinations (orange
lines) before they reach their final destination (orange polygon).

In [Rahn et al., 2021], we studied the length of a protest march in the city center of
Kaiserslautern. The length of the march is measured using the geodesic distance which
is also employed for the floor field. It is of great practical interest for the authorities
because the route planning depends on it. Figure 5.13 depicts the topography. We used
the most direct approach and calculated the sensitivity indices at every time step. While
this requires extra effort as the calculation of the indices at each time step, it does not
require additional model evaluations. Then, we analyzed the time series of the sensitivity
indices. We studied the impact of the number of agents and the free-flow speed standard
deviation on the length of the protest march. Table 5.3 holds details on the parameters.
The number of agents was chosen as an uncertain parameter because the number of
participants at protest marches is often not known beforehand. It depends on several
factors such as weather and competing events. Both parameters are expected to have a
considerable impact on the length of the protest march.

Table 5.3: Uncertain input parameters and their distribution used for the sensitivity analysis
of the protest march.

Parameter Unit Range

Number of agents U(400, 1200)
Standard deviation of free-flow speed m/s U(0.05, 0.10)

In the protest march scenario, we observed a shift from the number of agents to the
free-flow speed standard deviation as the governing parameter with respect to the protest
march length, as shown in Figure 5.14.

The results scientifically confirmed the usefulness of measures to reduce the variation
in the walking speeds of the participants such as floats and banners that aim at syn-
chronizing participants’ speeds. Our results highlight that it is essential to run through

75

5 Parameter identification: identifying influential parameters

50 100 150 200 250 300 350 400 450

Time [s]

0.00

0.25

0.50

0.75

1.00

T
o
ta

l
se

n
si

ti
v
it

y
 in

d
ex

 S
T Free-flow speed standard deviation

Number of agents

Figure 5.14: Parameter sensitivities measured by total Sobol’ indices for the free-flow speed
standard deviation and the number of agents with respect to the length of the
protest march.

several what-if scenarios with varying numbers of participants so that routes of appro-
priate lengths can be assigned and contingency plans can be developed. Our findings
demonstrate how uncertainty quantification can become a cornerstone of computer-based
decision support systems for the planning of large events.

5.4.6 Efficient sensitivity analysis for computationally expensive scenarios

The investigated bottleneck scenario is comparably small and contains only a few dozens
of agents. Simulating a whole event may include a large topography such as parts of a
city for an urban event and a large number of agents, e. g. Oktoberfest in Munich with
up to 350000 visitors at a time. In situations like these, it becomes computationally too
expensive to evaluate the model at a larger number of sample points.

There are enhanced methods that can be applied in order to reduce computation time.
For example, the calculation of Sobol’ indices can be sped up using a low-discrepancy
quasi-Monte Carlo sampling with the Sobol’ sequence to reduce the number of model
evaluations [Kucherenko et al., 2015]. This configuration is implemented in the SALib
package [Herman and Usher, 2017] which is also employed in the uncertainty quantifi-
cation framework.

Instead of changing the sampling method, we can also build a substitute for the model,
which is then cheaper to evaluate than the original model. For Sobol’ indices, generalized
polynomial chaos expansion (gPCe) can be a basis for constructing a surrogate model.
We describe the gPCe approach in more detail in chapter 8. These surrogates are
constructed such that Sobol’ indices can be cheaply derived [Sudret, 2008]. In [Rahn
et al., 2021], we used two types of polynomial chaos expansions, point collocation, and the
pseudo-spectral approach, as a basis for the sensitivity analysis. In order to benefit from
this approach, less effort must be spent on the model evaluations for the construction of
the surrogate than for the sensitivity analysis without a surrogate. This is typically the
case, when the topography is large or when we have a large number of agents.

76

5 Parameter identification: identifying influential parameters

5.5 Summary

The work that I presented in this chapter aims to answer the research question Q1:
“How can we identify influential parameters in the optimal steps model for the bottleneck
scenario?” which is split into three sub-questions:

Q1.1: Which methods from sensitivity analysis are suited for crowd dynamics simula-
tions?
I presented methods from uncertainty quantification to identify influential parameters
and ranked them by their impact on the simulation outcome. I selected two metrics,
Sobol’ indices and activity scores, for the bottleneck scenario. Sobol’ indices are a uni-
versal method for sensitivity analysis that can be used for all crowd simulation models.
Activity scores identify lower-dimensional subspaces in the input parameter space, which
can be employed for subsequent analysis. However, they require gradients or at least
gradient approximations, which may not be well-defined in rule-based models such as
cellular automata. In general, I recommend starting with Sobol’ indices for studies of
parameter sensitivity in crowd simulation. This method is widely known and accepted.
In addition, there are multiple, and even open-source, implementations for the calcula-
tion of the indices available. Since the method purely relies on model evaluations, it can
be applied to any crowd dynamics model.

Q1.2: Which parameters are influential and which are non-influential in the bottleneck
scenario?
I calculated both activity scores and Sobol’ indices for the bottleneck scenario. As a
byproduct of the active subspace calculation, I also obtained the first eigenvector metric
and the derivative-based global sensitivity metric. All metrics rank the parameters in the
bottleneck scenario consistently: The most influential parameter is the free-flow speed
mean, followed by the free-flow speed standard deviation, the obstacle repulsion, and
the personal space strength. The analysis also showed that interactions are only present
between free-flow speed mean and standard deviation. Two parameters, the minimum
step length, and the number of agents were deemed non-influential. For subsequent
studies, these parameters can be fixed to an arbitrary value within the range.

Moreover, when calculating the activity scores, the routines identified a one-dimensional
active subspace in the seven-dimensional input parameter space. That means there is
one linear combination of the input parameter that has a strong impact on the quantity
of interest, the flow. This information about the system’s structure obtained by the
active subspace method can be exploited to construct a cheap, lower-dimensional global
surrogate that makes parameter studies for expensive models feasible. In the next chap-
ter, I calibrate the influential parameters to reduce the uncertainty in the simulation
output.

In addition, we used Sobol’ indices in [Rahn et al., 2021] to study the impact of the
free-flow speed standard deviation and the number of agents on the length of a protest
march in the city of Kaiserslautern over the course of the simulation. We observed a
switch in the governing parameter from the number of agents to the free-flow speed
standard deviation. In this case study, the time-dependent analysis of the sensitivity
revealed the dynamics of the system.

77

5 Parameter identification: identifying influential parameters

Q1.3: How can we determine if the results are reliable?
Since the parameters were ranked identically by all four metrics, the results confirm each
other. Additionally, they are in agreement with our knowledge of crowd dynamics: The
flow is a product of speed and density. A high impact of the free-flow speed on the flow
through the bottleneck is natural because the free-flow speed impacts the actual speed.
An increased obstacle repulsion decreases the actual width of the bottleneck. Conse-
quently, it reduces the flow. The total number of virtual pedestrians in the simulation,
however, does not impact the flow. All of these points confirm the reliability of the
ranking of the parameters.

78

6 Parameter Estimation: finding values for
influential parameters

In the last chapter, I distinguished the influential from the non-influential parameters in
the bottleneck scenario using sensitivity analysis. Now, I search for optimal values for
these influential parameters that adjust the simulation to a given dataset. In Section
6.2, I remind the readers of the state of the art on calibration in crowd simulation so
that they can evaluate my choice of methods for parameter estimation. I introduce such
methods for parameter estimation from uncertainty quantification in Section 6.3. I select
two methods for Bayesian inference and demonstrate their suitability on the bottleneck
scenario in Section 6.4.

6.1 Introduction

I have identified the free-flow speed mean and standard deviation, the obstacle repulsion,
and the personal space strength as influential parameters in the bottleneck scenario. In
order to reduce the uncertainty in the simulation output, I will now calibrate these
parameters. Calibration in crowd simulation is often performed manually or visually,
which means, the parameter is adapted by hand until the simulation output matches a
given data, e. g., an experimental dataset, qualitatively or quantitatively. For automated
calibration, point estimates such as maximum likelihood estimates for parameter cali-
bration have become more and more popular in the last years. While they constitute a
systematic approach, point estimates typically only provide the best fit for the parameter
value. They do not reflect the uncertainty in the parameter value after the calibration.
Bayesian inference methods, however, integrate information about the uncertainty in the
data, and in the misfit between data and model, in the outcome. Instead of providing
just a value for the parameter, Bayesian inference methods provide a so-called posterior
distribution of the unknown parameter. The posterior is a probability density function,
which reflects the uncertainty after calibration. I present Bayesian inference methods
from uncertainty quantification and choose two sampling methods that fit the needs
of crowd simulation, Markov chain Monte Carlo (MCMC) and approximate Bayesian
computation (ABC). Both are established methods that provide a full posterior distri-
bution. I calibrate the influential parameters in the bottleneck scenario. I demonstrate
the workings of MCMC and ABC in this scenario, I explain the differences of the meth-
ods, and I discuss in which situation which method is preferable. Then, I compare ABC
as representative for Bayesian inference methods with a common point estimate. Here,
the posterior mode is used as a point estimate. Based on three case studies, I discuss

79

6 Parameter Estimation: finding values for influential parameters

in which cases Bayesian inference methods are beneficial and when a point estimate is
sufficient.

Research questions addressed in this chapter

Q2 How can we calibrate the influential parameters in the bottleneck scenario?

Q2.1 Which parameter estimation methods are suited for calibrating crowd dy-
namics models?

Q2.2 What are the advantages of Bayesian inference methods for calibration com-
pared to established methods, such as point estimates?

Q2.3 What is the posterior distribution for the influential parameters in the bot-
tleneck scenario after calibrating to experimental data?

Most of the findings in this chapter were published as journal article [Gödel et al.,
2022] and in conference proceedings [Gödel et al., 2019a,b]. I refer to the respective
papers in the text.

6.2 State of the art on parameter estimation in crowd
simulation

In crowd dynamics, parameter estimation is not a common term, instead typically “cal-
ibration” is used. Calibration traditionally refers to finding a single value [Constantine,
2015, p. 65] for physical parameters [Oberkampf and Roy, 2010, p. 44] using experimen-
tal data [American Society of Mechanical Engineers, 2006]. However, I use calibration
in a wider sense, including all parameter types, not restricted to finding a single value or
using only experimental data. This setting is often referred to as parameter estimation.
In short, I use calibration and parameter estimation interchangeably.

I define calibration as the process of adjusting model parameters such that a predefined
simulation outcome resembles given data. However, the scientific community has not
agreed upon a standardized approach for calibration in crowd simulation [Lovreglio et al.,
2015]. I describe common approaches to calibration in three categories: based on the
dataset, the parameters, and the methodology.

First, let us take a look at the data for calibration. I distinguish between microscopic
data like individual trajectories and macroscopic data, which are aggregated measures
like density or flow [Schadschneider, 2001]. For microscopic calibration, the first chal-
lenge is to obtain individual trajectories. They can be extracted from video footage by
manual annotation [Antonini et al., 2006, Berrou et al., 2007, Ko et al., 2013, Robin
et al., 2009, Tang and Jia, 2011], semi-automated using software [Dias and Lovreglio,
2018, Hoogendoorn and Daamen, 2007, Zeng et al., 2017], or from other sensors [Seer
et al., 2014a,b]. The second challenge is the comparison of the observed trajectories with
the simulated ones. Typical approaches include simulating one individual while moving
all others according to observed trajectories [Zeng et al., 2017] as well as placing all
agents at positions observed at a fixed time step and then simulating them in only one

80

6 Parameter Estimation: finding values for influential parameters

simulation step [Wolinski et al., 2014]. Related to this, a suitable distance measure must
also be defined [Guy et al., 2012, Wolinski et al., 2014]. It should be noted that errors in
the trajectories can have a large impact on the result of calibration [Rudloff et al., 2014].
Even though individual agents are used in agent-based models, my goal is not to repre-
sent one specific individual, but rather to find representative types in order to portray
a population. Therefore, I concentrate on macroscopic calibration as in [Berrou et al.,
2007, Chu, 2009, Steiner et al., 2007, Wolinski et al., 2014]. The macroscopic quantity
of interest in the bottleneck scenario is the flow. The data set for the calibration stem
from observations in the real world. From video data, in addition to trajectories, macro-
scopic measures such as density or flow can be extracted. Alternatively, data collected
in experiments can be used. I calibrate against flow measurements from a controlled
experiment.

Second, let us look at the calibrated parameters. Most models contain both physical
and non-physical parameters. Physical parameters can directly be measured, such as the
torso size of a pedestrian, while non-physical parameters cannot be measured. Typical
examples are parameters associated with the interaction among pedestrians as well as
with obstacles such as the personal space strength, which expresses a person’s need
to keep a certain distance to others, and the obstacle repulsion in the optimal steps
model. Some physical parameters can even be directly be measured from trajectories
without requiring model evaluations. This so-called direct calibration has been used
for speeds in social force models [Hussein and Sayed, 2018, Tang and Jia, 2011, Zeng
et al., 2014]. Non-physical parameters, however, require indirect calibration. That means
model evaluations are compared to data. This is necessary because the parameters exist
only in the model, but not in reality. Calibration of parameters associated with the
interaction forces in social force models has been studied extensively [Daamen et al.,
2013, Dias et al., 2018, Hoogendoorn and Daamen, 2006, 2007, Johansson et al., 2007,
Seer et al., 2014a, Steiner et al., 2007, Taherifar et al., 2019, Tang and Jia, 2011, Voloshin
et al., 2015, Zeng et al., 2017]. These are similar to obstacle repulsion and the personal
space concept in the optimal steps model. I argue that the free-flow speed or desired
speed, which I calibrate in this study, lies in between the two classes. On the one
hand, the speed of an individual, in general, can be measured and, in some experiments,
participants are asked to move through a topography in order to estimate their free-flow
speed. On the other hand, subjects are observed during experiments and may therefore
adapt their behavior. In addition, fitness, time of day, and mood may also have an
impact. Consequently, an intrinsic free-flow speed cannot be measured without bias. I
demonstrate the methods for the calibration of the most influential parameter, the free-
flow speed mean. Then, I calibrate all four influential parameters, the free-flow speed
mean and standard deviation, obstacle repulsion, and personal space strength.

Third, we look at approaches for calibration. Qualitative calibration involves visually
comparing simulation results to video footage, either to compare motion and behavior
or to compare quantities of interest such as density-flow relationships. However, visual
comparisons are often subjective and difficult to standardize. To obtain comparable re-
sults, it would be necessary to formalize the comparison. Qualitative calibration implies
that the parameters are varied by hand which often means one parameter is adapted at

81

6 Parameter Estimation: finding values for influential parameters

a time. I believe that this approach is common in practical application, but literature
is scarce. Theoretically, qualitative calibration could be formalized and computerized.
The work presented by Steiner et al. who present a criterion for the smoothness of
the trajectories is a step in this direction [Steiner et al., 2007]. Besides qualitative cal-
ibration, there is quantitative calibration in which the quantity of interest is compared
numerically. This, too, can be done manually. If a one-factor-at-a-time approach is used
for calibrating multiple parameters, the global optimum of the distance measure, might
not be found. For automated quantitative calibration, regression with least squares [Guo
et al., 2012, Johansson et al., 2007, Tang and Jia, 2011, Seer et al., 2014b] and maxi-
mum likelihood estimation [Antonini et al., 2006, Campanella et al., 2011, Daamen and
Hoogendoorn, 2012, Hoogendoorn and Daamen, 2006, 2007, Ko et al., 2013, Lovreglio
et al., 2015, Robin et al., 2009, Zeng et al., 2014] are popular. For the comparison
between simulated and observed data, a distance measure needs to be defined. Both
regression and maximum likelihood estimation aim to minimize the distance. I will use
Bayesian inference methods for quantitative calibration which provides a full posterior
distribution for the uncertain parameters.

Finally, one must address the challenges caused by the fact the crowd simulators, as
a rule, are stochastic simulators. There are very few publications on this issue. They
either remove the noise [Daamen et al., 2013] or average a fixed number of repetitions in
order to remove or at least reduce the stochasticity in the output [Chu, 2009, Taherifar
et al., 2019].

6.3 Methods for parameter estimation

In this section, I describe methods for parameter estimation from an uncertainty quan-
tification perspective. The mathematical problem formulation is the inverse problem in
which one aims to find p, the parameter vector which gives a model response f(X, p)
close to the observed data d such that

y = f(X, p) (6.1)

where X are independent variables and y denotes the quantity of interest. That means
f is not only the simulation that gives us positions of the agents, but it includes the
output processors that calculate the quantity of interest, such as speed, density, or flow.
In practice, when we have observations that the measurement introduces measurement
noise ε:

v = f(X, p) + ε

The statistical inverse problem is to estimate p and quantify its uncertainties given the
noisy measurements. Since the dependence on X is of secondary importance, I omit X
in the following within the notation f(p).

Parameter estimation aims to solve the statistical inverse problem. The methods
for this can be divided into frequentist estimators and Bayesian estimators. In the
frequentist approach, parameter estimation means that there is a fixed true parameter

82

6 Parameter Estimation: finding values for influential parameters

value, which we need to find. In this work, I employ Bayesian techniques for the inverse
problem. In the Bayesian view, the uncertain parameter is considered a random variable.
Therefore, the solution of the inverse problem is a posterior density for the uncertain
parameter. Figure 6.1 illustrates how Bayesian inference works. Central to Bayesian
inference is Bayes’ theorem

ρpos(x | d) =
ρprior(x) · ρlike(d | x)

ρ(d)
≡ ρprior(x) · ρlike(d | x) (6.2)

which relates the posterior density ρpos(x | d) to the prior distribution ρprior and the
likelihood ρlike(d | x) using the evidence ρ(d). The likelihood function represents the
probability of the data given the parameter set x.

Parameters
x ∼ ρprior

Model
f

Quantity
of interest
q = f(x)

Updated
parameters
x′ ∼ ρpos

Observations
d = q + ε

Figure 6.1: Scheme for Bayesian inference: Based on a prior distribution of the uncertain pa-
rameters, the model is evaluated and the model output is compared to the obser-
vations. The same quantity of interest needs to be measured in both simulation
and observation. The result is an informed posterior distribution of the uncertain
parameters that can be used for subsequent studies.

According to Hadamard [Hadamard, 1902], a problem is well-posed if three criteria
are met: 1) existence, i. e., a solution exists, 2) uniqueness, i. e., the solution is unique, 3)
stability, i. e., the solution continuously depends on the data. Inverse problems are often
ill-posed because measurement noise is present. In this case, the solution is not unique.
In practical applications, the continuity of the solution on the parameters is also often
violated. Regularization can help to transform an ill-posed problem into a well-posed
problem. While the frequentist approach works on the ill-posed inverse problem, the
Bayesian inverse problem is well-posed [Stuart, 2010].

Figure 6.2 summarizes frequentist and Bayesian approaches for parameter estimation.
As already mentioned, regression and maximum likelihood estimation techniques for op-
timizing the distance function are commonly used in pedestrian dynamics. Both methods

83

6 Parameter Estimation: finding values for influential parameters

 Parameter
 estimation

 Deterministic quadrature
 (approximation)

 Sparse grids

 Quasi-Monte-Carlo

 Frequentist techniques

 Nonlinear Nonlinear least squares
 Stochastic optimization

 Gradient-based methods

 Linear

 Regression Ordinary Least Squares

 Maximum Likelihood Estimation

 Regularization

 Tikhonov regularization

 Iterative regularization

 Total variation regularization

 Bayesian inference

 Point estimates

 Maximum a-posteriori
estimator (MAP)

 Conditional mean

 Sampling-based methods

 Likelihood-free

 Approximate Bayesian
 computation
 (ABC), (Tavaré, 1997)

 Rejection algorithm

 Markov chain Monte Carlo
 without likelihood

 Sequential Monte Carlo without
 likelihood

 Synthetic likelihood
 (Wood, 2010)

 Empirical likelihood
 (Mengersen et al., 2013)

 Likelihood-based

 Importance sampling

 Sequential Monte Carlo

 Markov chain Monte Carlo
 (MCMC)

 Random walk Metropolis
 algorithm
 (Metropolis, 1953)

 Metropolis-Hastings algorithm

 Gibbs sampling
 (Geman & Geman, 1984)

 Filtering Ensemble Kalman filter

 Variational approach

Figure 6.2: Overview of methods for parameter estimation. Methods that were selected for
crowd simulations are highlighted.

assume a linear model. For nonlinear models, such as crowd dynamics models, equiva-
lently, nonlinear least squares can be employed. On the other hand, there are Bayesian
inference methods. They include point estimation techniques such as the maximum a-
posteriori estimator, which solves an optimization problem, and the conditional mean,
which solves an integration problem. Most common are sampling-based approaches for
Bayesian inference. Here I distinguish between likelihood-free and likelihood-based ap-
proaches. I choose an established likelihood-based approach, namely the random walk
Metropolis algorithm [Metropolis et al., 1953], a Markov chain Monte Carlo approach.
For many problems, the likelihood function is either not known or computationally ex-
pensive. For this reason, likelihood-free approaches such as the synthetic likelihood
[Wood, 2010] and empirical likelihood [Mengersen et al., 2013] have been developed. In
this work, I additionally employ approximate Bayesian computation [Tavaré et al., 1997,
Beaumont et al., 2002] as a likelihood-free technique because it can deal with stochastic
simulators [Toni et al., 2009]. Please note that likelihood-free methods also use a likeli-

84

6 Parameter Estimation: finding values for influential parameters

hood but the likelihood is computed implicitly within the method and not passed to it
explicitly. Both methods are explained in more detail in the following sections.

6.3.1 Posterior mode as point estimate

For the comparison of Bayesian inference, represented by approximate Bayesian compu-
tation, with point estimation in Section 6.4.3, I define the posterior mode as the point
estimate. I derive the point estimate from the model evaluations obtained during ABC
rejection: I choose the parameter value closest to the data in terms of the distance mea-
sure fd, the posterior mode xpe = arg minxcfd(xc). This is equivalent to the maximum
a-posteriori estimate.

6.3.2 Bayesian inference with likelihood: Markov chain Monte Carlo
method

In all Bayesian approaches, a prior distribution that reflects the initial knowledge on
the uncertain parameters is updated using observational data and as a result, we obtain
an informed posterior distribution for the uncertain parameters. The idea behind the
Markov chain Monte Carlo approach is to construct an ergodic Markov chain whose
stationary distribution is the posterior distribution. The MCMC approach is an iterative
algorithm: The chain starts at an initial point and moves through the parameter space
according to the proposal distribution which is the basis for generating new proposals.
Both the initial point and the proposal distribution need to be defined by the user.
Each position in the chain is a candidate. Candidates which meet a criterion based on a
distance measure become samples of the posterior distribution. In this fashion, running
the chain generates samples from the posterior distribution.

There are several MCMC algorithms. The random walk Metropolis algorithm [Metropo-
lis et al., 1953] is suited for symmetric proposal distributions. If the proposal distribu-
tion is asymmetric, an extension, the Metropolis-Hasting algorithm [Hastings, 1970] is
required. The Markov chain, unfortunately, suffers from poor mixing behavior in high
dimensions. In these cases, Gibb’s sampling [Geman and Geman, 1984, Gelfand, 2000]
can be used instead.

Metropolis Algorithm
I employ the random walk Metropolis algorithm. It requires a model f(x) that can
be evaluated at parameter set x, a symmetric proposal function g(x), and a number of
iterations N . Typically, for the proposal distribution a Gaussian distribution centered
at the current position xt of the Markov chain, N (xt,∆τ), is used. The covariance of
the proposal distribution is jump width ∆τ . The iterative algorithm consists of three
steps. Algorithm 1 requires the evaluation of the likelihood in the initialization and in
step 2 of every iteration to approximate the posterior distribution.

These steps are performed iteratively until the specified number of iterations N is
reached. The Markov chain needs a certain time until it converges. Therefore, the
samples obtained before the chain has settled are often removed to avoid distortions of

85

6 Parameter Estimation: finding values for influential parameters

Algorithm 1 Random walk Metropolis algorithm

Initialization: Evaluate p(x0) = ρprior(x0) · ρlike(d | x0), given data d and initial
parameter set x0.

1. Create new candidate x′ = xt + ∆τ · z where z is a sample from the proposal
distribution g(x).

2. Evaluate p(x′) = ρprior(x) · ρlike(d | x) at candidate position x′ which is equivalent
to the posterior.

3. If p(x′) ≥ p(xt), accept the candidate x′ as new sample xt+1 = x′

Otherwise, calculate acceptance ratio r = p(x′)
p(xt)

.

a) Draw u ∼ U(0, 1).

b) If u < r, accept the candidate x′ as new sample xt+1 = x′.

c) Otherwise, reject the candidate. In this case, the sample is the last candidate,
xt+1 = xt.

the posterior distribution. The number of samples discarded is referred to as burn-in
Nb.

Common measures of the performance of the chain are the acceptance rate, which is
the ratio between the number of accepted candidates and the number of iterations N . In
addition, the effective sample size (ESS) estimates the number of independent posterior
samples obtained by the chain.

Since the jump width is an essential parameter to the MCMC algorithm and its optimal
size depends on various factors such as the initial point, I decided to add an adaptive
jump width regulation. This is a common approach [Haario et al., 1999]. However, it
needs to be kept in mind that the resulting posterior distribution might differ from the
true posterior. The adaptive jump width is regulated according to the acceptance rate.
For a one-dimensional problem, the optimal acceptance rate is at 44% [Gelman et al.,
1996]. I evaluate the acceptance rate in batches and compare it to a given interval of
the desired acceptance rate. If the acceptance rate is outside of the interval, the jump
width is adjusted accordingly.

6.3.3 Bayesian inference without likelihood: approximate Bayesian
computation

For models in which the likelihood function is intractable or difficult to calculate, likelihood-
free methods can be employed. They refrain from likelihood evaluations. Instead, the
likelihood is only calculated implicitly.

Approximate Bayesian computation is commonly used in biological sciences such as
population genetics, ecology, and epidemiology. ABC can deal with stochastic models
which is the case for most biological models. This also makes them a good fit for

86

6 Parameter Estimation: finding values for influential parameters

models in crowd dynamics. Therefore, I choose approximate Bayesian computation as a
likelihood-free method.

ABC can be carried out with different algorithms. A straightforward choice is the
rejection algorithm. In addition, ABC can also be combined with likelihood-free versions
of sequential Monte Carlo or Markov chain Monte Carlo sampling strategies [Marjoram
et al., 2003]. For all algorithms, a central step is the comparison of an acceptance
criterion to a user-defined tolerance. This global comparison is the main difference of
likelihood-free MCMC compared to classical MCMC which relies on a local comparison.
In the sequential Monte Carlo approach, a series of decreasing tolerances is used instead
of a single tolerance. The ABC rejection sampler follows three main steps outlined in
Algorithm 2.

Algorithm 2 Rejection sampler for approximate Bayesian computation

1. A large number of candidates xc is generated from the prior.

2. At each candidate, the model f(x) is evaluated.

3. The distance measure ρ(·, ·) is compared to predefined tolerance ε. If ρ(f(xc), d) <
ε, the candidate is accepted and therefore becomes a sample of the posterior ap-
proximate, otherwise xc is rejected.

The distance measure is defined by the user. It serves as a metric for the distance
between the model evaluation at the candidate f(xc) and the data d used for Bayesian
inference. The choice of tolerance ε can be understood as a trade-off between computabil-
ity and accuracy. For ε = 0, the method is exact, i. e. the accepted candidates are from
the true posterior. When using a large tolerance, Bayesian inference finds the prior since
all candidates are accepted. One can argue that for ε = 0 the rejection sampler does
not constitute an ABC algorithm since the rejection is exact. For most practical appli-
cations, however, ε = 0 is not feasible anyway. Strictly speaking, for ε > 0, the result of
the rejection algorithm is an approximation to the posterior π(δ | ρ(d,X) ≤ ε) instead
of the true posterior π(δ | d). In the limit, ε → 0 and N → ∞ , the approximation
approaches the true posterior, π(δ | ρ(d,X) ≤ ε)→ π(δ | d).

Since the rejection scheme does not gain information about the posterior from rejected
candidates as MCMC does, a large number of candidates is necessary to approximate the
posterior well. When the data is high-dimensional, often summary statistics S(x) are
applied to reduce the dimension. Simple examples are mean or standard deviation of the
data. Then, the distance is calculated between the summary statistics of data S(d) and
the model evaluation S(X) at parameter X is used for the decision about acceptance or
rejection, compare Algorithm 3.

The summary statistics need to be sufficient, i. e. S(X) holds all the information about
X, in order to find the true posterior. In practice, however, finding sufficient summary
statistics is not a trivial task and requires a likelihood. Using a non-sufficient summary
statistic in ABC rejection adds a second layer of approximation. Several manuscript are

87

6 Parameter Estimation: finding values for influential parameters

Algorithm 3 Rejection sampling with summary statistics

3. If ρ(S(d), S(X)) ≤ ε: accept, otherwise: reject.

concerned with finding a summary statistic for ABC [Jung and Marjoram, 2011, Blum,
2010, Barnes et al., 2012, Fearnhead and Prangle, 2012, Burr and Skurikhin, 2013].

6.4 Studying calibration of crowd simulation

In the following, I apply both a likelihood-based and a likelihood-free Bayesian inference
method to solve the Bayesian inverse problem. Both methods provide a full posterior
distribution for the uncertain parameters. Point estimates, which are commonly used
for calibration in crowd dynamics, only provide a single estimate. Posterior distributions
can be employed for subsequent studies to consider residual uncertainty in the param-
eters after calibration. Likelihood-free and likelihood-based approaches are suitable in
different settings which I will discuss. For the decision, the stochasticity of the model and
the likelihood function itself should be considered. These arguments can be understood
as motivation for the different analyses performed in this chapter.

Stochastic models Likelihood-based inference in the form of Markov chain Monte
Carlo approaches requires a deterministic model. If a likelihood-based approach is to be
applied to a stochastic model, the model can be replaced by a deterministic surrogate.
Whenever the generation of a surrogate model is too complex, averaging multiple evalu-
ations at the same parameter value can be an approximation to a deterministic average
model lying underneath. Nevertheless, in this case, the magnitude of the stochastic ef-
fects is not considered for the inference. The likelihood-free algorithms that I employ in
this chapter can deal with stochastic models. Models for crowd dynamics are stochastic
due to their initialization. If the stochastic effects need to be taken into account for
calibration, approximate Bayesian computation is preferable.

Likelihood function Likelihood-based inference requires, as indicated by its name, a
likelihood. The likelihood is the probability of the observed data given a parameter
set. It is often represented by a zero-mean Gaussian distribution whose covariance is
the measurement noise from the observations. In most practical applications, the true
likelihood is unknown and the Gaussian likelihood is an assumption. However, this is a
strong assumption that is not always justified or suitable. If the likelihood is unknown
and it is not possible to make assumptions about it without restricting the analysis, it is
intractable, or it is computationally too demanding to evaluate, likelihood-free inference
can be used.

88

6 Parameter Estimation: finding values for influential parameters

6.4.1 Likelihood-based inference with Markov chain Monte Carlo

I study four configurations to demonstrate Bayesian inference with a Markov chain
Monte Carlo approach: First, a proof-of-concept with artificial data using a deterministic
surrogate for the data misfit. Second, I perform calibration with experimental data and
a deterministic surrogate for the data misfit function. Third, I give a proof-of-concept
with artificial data with averaging of several repetitions is carried out. Finally, I use
experimental data for Bayesian inference with experimental data while averaging several
repetitions.

6.4.1.1 Proof-of-concept: artificial data, surrogate for data misfit

At first, I carry out a proof-of-concept using artificial data, that is, the data used for
inference is obtained from simulation. Consequently, we know the true parameter value
and can compare the posterior obtained with Bayesian inference to it. I calibrate the
free-flow speed mean in the widest bottleneck presented in Section 3.2.1. The data point
for Bayesian inference is the model output at the true parameter θ∗ = 1.34 m/s.

In order to remove the stochasticity in the simulator, I build a surrogate model for the
data misfit function gd(x) ≈ fd(x). I fit a polynomial surrogate of order 4 by regression.
The resulting surrogate for the data misfit function is shown in Figure 6.3 together with
a histogram of the residuals to the actual model.

(a) Polynomial surrogate (b) Residuals

Figure 6.3: Surrogate model for data misfit function fd(x) using the model response at the
free-flow speed mean θ∗ as artificial data point, d = f(θ∗). The surrogate is build
for a bottleneck scenario in which the flow through the bottleneck is observed.

Figure 6.4a shows the data misfit function for all candidates generated by the Markov
chain. The posterior samples are color-coded. As expected, the minimum of the data
misfit is found for the true parameter value. Figure 6.4b shows the prior distribution of
the uncertain parameter together with its posterior. We observe that the posterior shape
differs significantly from the prior indicating that the posterior was informed by the data
and that the inferred parameter is identifiable. The analytical posterior is obtained by

89

6 Parameter Estimation: finding values for influential parameters

calculating the product of likelihood and prior at equidistant samples. The alignment
between the histogram of the samples and this analytical posterior verifies the sampling.
The resulting posterior has a mean of 1.3383 m/s, mode of 1.3258 m/s, and a standard
deviation of 0.0622 m/s. Both mean and mode are about the same as the true parameter
value, which demonstrates that Bayesian inference is able to recover the true parameter
value. The width of the posterior is mainly driven by the measurement noise in the
relationship between data and model evaluation.

(a) Data misfit function (b) Histogram of posterior samples

Figure 6.4: Posterior of the free-flow speed mean in the scenario with five bottlenecks of in-
creasing widths obtained with Metropolis algorithm.

In the next step, we take a look at the evolution of the Markov chain. Figure 6.5
plots the evolution of candidates and samples over a logarithmic x-axis to focus on the
starting period of the chain and settled period. The Markov chain starts at the user-
defined starting point, in this case, a free-flow speed mean of 0.75 m/s. The starting
point is always a sample since there is no local comparison possible yet. We observe
that the chain needs a certain period to settle in the region of the true posterior. The
samples generated before the chain has settled are often referred to as burn-in. I choose
a burn-in of 100 iterations of the chain. After the burn-in period, the variation in the
candidates is still larger than the variation in the samples. While intuitively appealing,
it would not be ideal for candidates and samples to be identical after burn-in since this
implicates an acceptance rate of 100%. With a large acceptance rate, the samples are
highly correlated.

I use an adaptive jump width regulation that keeps the acceptance rate between 0.4
and 0.6. Figure 6.6a shows the evolution of the jump width and the acceptance rate over
the number of iterations. In [Gödel et al., 2019a], I empirically showed that this adaptive
regulation obtains the largest effective sample size compared to several runs with fixed
jump widths. Figure 6.6b shows the correlation measured by the autocorrelation function
(ACF) between the samples. Since the candidates are drawn iteratively from a Markov
chain, they are highly dependent. Consequently, also the samples are dependent. Ideally,
we would obtain independent posterior samples. The correlation among samples depends

90

6 Parameter Estimation: finding values for influential parameters

Figure 6.5: Evolution of the Markov chain: After a settling phase, the candidates and samples
concentrate around the true parameter value θ? of the artificial data point d =
f(θ?).

on the chosen jump width for the proposal function. I calculate the effective sample size
as an estimate for the number of independent posterior samples obtained by the chain
according to [Kruschke, 2015, p. 184]:

ESS = N/(1 + 2

∞∑
k=1

ACF(k) (6.3)

where N is the number of iterations of the chain, and ACF(k) is the autocorrelation
function of the chain at lag k. According to [Kruschke, 2015, p. 184], I neglect auto-
correlations below 0.05 for when calculating the effective sample size. The ESS of this
chain is 15187.06, which is about 15% of the number of candidates generated. This
can also be seen from the ACF in Figure 6.6b: Until a lag of 7, the autocorrelation is
higher than 0.05. If we choose every seventh sample, 1/7 ≈ 15% remain as uncorrelated
samples. The overall acceptance rate is 48.3%, close to the optimal acceptance rate for
a one-dimensional inference of 43% [Gelman et al., 1996].

6.4.1.2 Bayesian inference in the bottleneck scenario: experimental data, surrogate
for data misfit

After I demonstrated that Bayesian inference with an MCMC method, the Metropolis
algorithm, can recover the true parameter value in a proof-of-concept setup, I now
integrate experimental data in my setup. Instead of an artificial data point, I use the
flow values measured by Seyfried et al. in [Seyfried et al., 2009]. Otherwise, the scenario
is the same. Again, I construct a polynomial surrogate for the data misfit. We cannot
employ the surrogate from the previous inference since the data misfit function depends
on the data. Since I use real data now, we do not know the underlying true parameter
value and, consequently, we can only judge whether the posterior is plausible or not.

91

6 Parameter Estimation: finding values for influential parameters

(a) Jump width and acceptance rate (b) Autocorrelation of samples

Figure 6.6: Performance criteria of Markov chain Monte Carlo sampling: a) the adaptive jump
width regulation is effective in keeping the acceptance rate between 0.4 and 0.6
after about 200 iterations, b) autocorrelation of samples points with lag ≤ 7 are
considerably correlated.

The polynomial surrogate of order four is shown in Figure 6.7. It has two roots in the
parameter interval of [0, 3], at 1.0876 and 1.1590, and is therefore not a non-negative
polynomial. This is not ideal since the data misfit cannot reach negative values for
the normal likelihood. A few methods, e. g. radial basis function interpolation, provide
non-negative surrogates if the data for the fit is non-negative. Another option is to
interpolate the mean of the model responses with a spline. This option might, however,
add local extrema in which the chain could get stuck. I decided to keep the polynomial
surrogate because the negative values only occur for a small interval, [1.0876, 1.1590], the
differences to the data are small, and the likelihood is still well-defined. It is, however,
important to keep these issues in mind since they might have larger implications in other
models and are not as easy to detect when multiple parameters are inferred.

The resulting posterior is shown in Figure 6.8. As for the proof-of-concept, the his-
togram of posterior samples coincides with the theoretical posterior and thus confirms
the sampling. It has a mean of 1.122 m/s, mode of 1.132 m/s, and standard deviation
of 0.0644 m/s. Compared to the artificial dataset, the mode is a bit smaller, indicat-
ing a lower free-flow speed across all bottleneck widths. This posterior can be used for
subsequent studies. When propagating it through the model, we obtain the remaining
uncertainty in the output.

The evaluation of the performance criteria in Figure 6.9 yields similar results as the
inference with artificial data. The overall acceptance is 52.6%, well within the targeted
interval of [40%, 60%] and the effective sample size is 13911.90, about 15% of the posterior
samples generated by the chain.

92

6 Parameter Estimation: finding values for influential parameters

(a) Polynomial surrogate (b) Residuals

Figure 6.7: Surrogate model for the data misfit function fd(x) for the five bottleneck scenario.
Data misfit function measures the distance between model evaluations at different
values for the free-flow speed mean and an experimental data set from [Seyfried
et al., 2009].

(a) Data misfit function (b) Histogram of posterior samples

Figure 6.8: Posterior samples for free-flow speed mean obtained with Metropolis algorithm
for the five bottleneck scenario. For the calibration, the experimental flow values
measured by [Seyfried et al., 2009] were used.

6.4.1.3 Proof-of-concept: artificial data, averaging of model runs

Instead of using a surrogate, I now average several repetitions at each parameter value
to remove or at least reduce the stochasticity in the model. Averaging repetitions is
computationally demanding, but it can be performed for any model without the com-
plexity of having to choose a function type for the surrogate. In the one-dimensional
setup, this option is feasible, for a higher-dimensional inference, the iterative algorithm
might be too slow. Bayesian inference without a surrogate in this one-dimensional case

93

6 Parameter Estimation: finding values for influential parameters

(a) Jump width and acceptance rate (b) Autocorrelation of samples

Figure 6.9: Performance criteria of Markov chain Monte Carlo sampling: a) the adaptive jump
width regulation successfully maintains an acceptance rate between 0.4 and 0.6
once the chain has settled, b) autocorrelation among the samples shows a high
correlation within about 7 iterations.

is substantially slower than the construction of the surrogate and inference with the
surrogate in the last section. Therefore, I use only 104 iterations for the inference. From
Figure 6.10a we can see that averaging of 10 data points is not sufficient to remove the
stochasticity. Instead, stochasticity and noise are only reduced.

The mean of the posterior samples is 1.3638, the mode is 1.3399, and the standard
deviation is 0.0630 (Fig. 6.10). Even though there is still some stochasticity and noise
in the averaged model response, likelihood-based inference successfully recovers the true
parameter value of 1.34 m/s. Looking at the performance metrics of the chain, the ac-
ceptance rate is at 54.6%. The effective samples size is 1468.74 and therefore comparably
lower than for the previously studied cases with the surrogate. Figure 6.11 shows the
evolution of the jump width over the chain iterations as well as the autocorrelation
among samples. Both are similar to the results with the surrogate model.

6.4.1.4 Bayesian inference in the bottleneck scenario: experimental data,
averaging of model runs

Since the proof-of-concept inference using an artificial data point with averaging 10
repetitions was successful in recovering the true parameter value, I now utilize the same
setup for the experimental dataset. I increase the number of repetitions to 25 because we
still observe variation in the data misfit when averaging 10 repetitions. However, there
is no significant reduction of the variation in the data misfit function with an increased
number of repetitions as we can see from Figure 6.12.

The posterior has a mean of 1.1436 m/s, mode of 1.1616 m/s, and standard deviation
of 0.0714 m/s. In terms of the performance of the Markov chain, I obtain an overall
acceptance rate of 0.4471 and an effective sample size of 1399.60. Both are similar to the

94

6 Parameter Estimation: finding values for influential parameters

(a) Data misfit function (b) Histogram of posterior samples

Figure 6.10: Posterior samples obtained with the Metropolis algorithm for calibration against
artificial data while averaging repeated model evaluations at each candidate.

(a) Jump width and acceptance rate (b) Autocorrelation of samples

Figure 6.11: Performance criteria for Markov chain Monte Carlo sampling for calibration
against artificial data while averaging repeated model evaluations at each can-
didate.

case study with the surrogate. Figure 6.13 shows that the adaptive jump with regulation
maintains the acceptance rate between 0.4 and 0.6 for the most part once the chain has
settled after about 200 iterations. Autocorrelation is high among posterior samples with
a small lag, below 8, which means only about 15% of the samples can be considered
uncorrelated posterior samples.

6.4.1.5 Evaluation

In this section, I calibrated the free-flow speed mean in the bottleneck scenario from Sec-
tion 3.2.1 against flow data. For the calibration, the random walk Metropolis algorithm,

95

6 Parameter Estimation: finding values for influential parameters

(a) Data misfit function (b) Histogram of posterior samples

Figure 6.12: Posterior samples for free-flow speed obtained with Metropolis algorithm for cali-
brating against experimental data. In every iteration of the Metropolis algorithm,
25 repetitions are averaged for the model response.

(a) Jump width and acceptance rate (b) Autocorrelation of samples

Figure 6.13: Performance criteria of Markov chain Monte Carlo sampling for calibrating against
experimental data while averaging repeated model evaluations at each candidate:
a) adaptive jump width regulation needs about 200 iterations to keep the accep-
tance rate between 0.4 and 0.6, b) autocorrelation is considerable for posterior
samples with a lag of less than 8.

a likelihood-based Markov chain Monte Carlo approach, was employed. I looked at two
configurations: First, using a surrogate model for the data misfit function, and second,
averaging several repetitions at each parameter value. For each one, I first performed a
proof-of-concept with artificial data to check whether the inference finds the true param-
eter value. Then, I calibrated the free-flow speed mean parameter against experimental
flow data from [Seyfried et al., 2009]. Both the proof-of-concept with the surrogate
model and averaging repetitions obtained a posterior distribution centered around the

96

6 Parameter Estimation: finding values for influential parameters

true parameter value. The results of calibration against the experimental data set were
similar for the surrogate model and for averaging repeated model evaluations.

6.4.2 Likelihood-free inference with approximate Bayesian computation

When averaging repeated model evaluations at the same parameter value in the last sec-
tion, we observed a considerable noise in between different parameter values. Likelihood-
based inference is designed for deterministic models. Therefore, we need to remove or at
least reduce the variation. One drawback of this approach is that the stochasticity in the
model is not considered for inference. The resulting posterior may contain significantly
fewer parameter values that yield responses close to the observed data. In addition, the
likelihood may not always be known or computable. Therefore, I now use an inference
method that can deal with stochastic models, approximate Bayesian computation, and
does not require a likelihood. Again, the bottleneck scenario described in Section 3.2.1
is investigated. I calibrate the free-flow speed mean against an artificial flow value ob-
tained from simulation and against flow data measured in the experiments by [Seyfried
et al., 2009].

6.4.2.1 Proof-of-concept: artificial data

Similar to the data misfit function for the Metropolis algorithm, ABC evaluates a dis-
tance measure. This measure is defined by the user. I define a Euclidean distance
measure, fd(xc) =‖ d − f(xc) ‖22. Figure 6.14 shows the distance measure evaluated at
all candidates. We observe that the measure holds a substantial variation because I take
no measures to limit the randomness in the model responses. The minimum of the data
misfit occurs in the interval [1.3, 1.4] m/s in which the true parameter value of 1.34 m/s
lies.

Even though I use artificial data, the magnitude of the distance measure is rather
high. In this example, I try to calibrate five scenarios at once. We cannot expect to
obtain the same magnitude as for a single bottleneck. Instead, the difference between
observations and model response is larger. For illustration, I show the distance measure
for the calibration of a single bottleneck, the widest bottleneck of 1.2 m, in Figure 6.15.
The distance measure reaches values up to 10−10 while for the five bottlenecks the
minimal distance measure is at about 10−3. While individually, we observe small values
of about 10−7 to 10−8, for individual bottlenecks, we also see a large variation in the
distance measure especially in the regions of the best fit. That makes it unlikely that
we obtain a good fit between observations and model response for all bottlenecks with
only one realization, that is one seed for the random number generator. As a result, the
smallest values for the distance measure that compares all five bottlenecks at once, are
substantially larger.

In Figure 6.16, I evaluate the posterior for different tolerances ε. The tolerance needs
to be defined by the user. Beaumont et al. choose the tolerance so that 1% of the
candidates are accepted [Beaumont et al., 2002]. For the artificial data, I choose the
tolerance accordingly, which yields a tolerance of ε = 3 · 10−2 (acceptance rate 1.30%).

97

6 Parameter Estimation: finding values for influential parameters

(a) Full x-axis (b) Zoom on x-axis

Figure 6.14: Distance measure fd(xc) for approximate Bayesian computation evaluated at all
candidates generated from the prior distribution for the free-flow speed. fd(xc)
quantifies the disagreement between model evaluation at candidate xc for the
free-flow speed mean and an artificial flow measurement for x? = 1.34 m/s in the
bottleneck scenario.

Figure 6.15: Distance measures for approximate Bayesian computation when calibrating five in-
dividual bottlenecks (bottleneck width increases from 0.8 m (left) to 1.2 m (right))
present considerably lower values for the true parameter than the distance measure
for the scenario with five bottlenecks in Figure 6.14.

For all evaluated tolerances, the posterior is centered at the true parameter value of
1.34 m/s indicating that the Bayesian inference is successful. We also observe that the
width of the posterior depends on the choice of the tolerance. Remember that the
rejection sampler is asymptotically exact for ε → 0 and N → ∞. In practice, however,
the computational effort limits the number of candidates N and numerical constraints
limit the choice of the tolerance.

98

6 Parameter Estimation: finding values for influential parameters

(a) ε = 2 · 10−1 (b) ε = 10−1

(c) ε = 5 · 10−2 (d) ε = 3 · 10−2

(e) ε = 2 · 10−2 (f) ε = 10−2

Figure 6.16: Histogram of posterior samples for the free-flow speed mean obtained with different
tolerances ε for approximate Bayesian computation. Posterior mean is not affected
by the tolerance, but the posterior width depends strongly on the choice of ε.

99

6 Parameter Estimation: finding values for influential parameters

6.4.2.2 Bayesian inference in the bottleneck scenario: experimental data

After the proof-of-concept with artificial data successfully recovered the true parameter
value, I infer the free-flow speed based on the experimental data set. The distance to
the real data in Figure 6.17 has qualitatively the same shape as for artificial data. There
is one region for the free-flow speed mean parameter in which the simulation results
approach the data. Quantitatively, the distance measure reaches lower values for the
artificial data point. As one would expect, data generated from the same model fits
better than external data. As a consequence, the variation in the distance measure is
lower for the experimental data at the region of the best fit. The parameter values that
lead to the minimal distance measure are lower for the experimental data than for the
artificial data. That means pedestrians in the experiments had slower free-flow speeds
than 1.34 m/s.

(a) Comparison of distance measure with arti-
ficial and experiment data

(b) Zoom for data misfit with experimental
data

Figure 6.17: Distance measure obtained by approximate Bayesian computation when calibrat-
ing the free-flow speed mean in the five bottleneck scenario against flow measure-
ments.

I choose a tolerance of 7 · 10−2 that corresponds to an acceptance rate of about 1%.
This results in the posterior distribution for the free-flow speed presented in Figure
6.18c. Histograms for different tolerances in Figure 6.18 show that the mean is not
affected by the choice of the tolerance, but the width of the posterior strongly depends
on it. Consequently, the choice of tolerance is crucial. The mean of the posterior samples
is then at 1.143 m/s and the standard deviation at 0.03 m/s. These results with ABC are
similar to the MCMC results: For MCMC, I obtain a mean of 1.122 m/s and standard
deviation of 0.064 m/s using the surrogate and 1.143 m/s and 0.063 m/s for mean and
standard deviation when averaging repetitions. The standard deviation of the ABC
posterior is lower than that obtained with MCMC.

100

6 Parameter Estimation: finding values for influential parameters

(a) ε = 2 · 10−1 (b) ε = 10−1

(c) ε = 7 · 10−2 (d) ε = 5 · 10−2

Figure 6.18: Histogram of posterior samples for the free-flow speed mean obtained with different
tolerances ε for approximate Bayesian computation. The mean of the posterior
distributions is not affected by the choice of tolerance. However, the width of the
posterior is.

6.4.2.3 Discussion of tolerance

ABC theory says that rejection sampling is asymptotically exact, meaning that for an
infinitely small ε, ε→ 0, and large N , N →∞, the result is the true posterior distribu-
tion from Bayes’ theorem. Nevertheless, in the presence of measurement error or model
error, ε → 0 may not provide the true posterior but the parameter value that yields a
minimum of the distance measure. Wilkinson et al. show that ABC is exact in case of
model error and propose a method how to deal with measurement and model error e.
However, the algorithm requires the density of the error πe [Wilkinson, 2013]. Van der
Vaart et al. present a way to define the density πe if there are multiple measurements of
the same quantity of interest present for a stochastic model [van der Vaart et al., 2018].
Unfortunately, in the bottleneck setup in which I calibrate the parameters, multiple

101

6 Parameter Estimation: finding values for influential parameters

measurements are not available. In general, they are difficult to obtain in pedestrian
dynamics since repetition of experiments with the same participants may lead to dif-
ferent results. This is often referred to as learning effect [Kleinmeier and Köster, 2020,
Kretz et al., 2006, Kemloh Wagoum et al., 2017]. Alhamadi et al. point out difficulties
when choosing a tolerance in the presence of model or measurement error focusing on
deterministic problems [Alahmadi et al., 2020].

I am not aware of any literature on how to choose the tolerance ε when performing
ABC on a stochastic model in the presence of measurement or model error. In this case,
it is not sufficient to choose a single small ε or a set of small tolerances as in sequential
Monte Carlo approaches for ABC. In the following, I set ε so that I keep 1% of the
candidates as in [Beaumont et al., 2002].

6.4.2.4 Evaluation

In this section, I calibrated the free-flow speed mean using approximate Bayesian compu-
tation, a likelihood-free Bayesian inference that can deal with stochastic simulators. In a
proof-of-concept setting with an artificial data point, the method successfully recovered
the true parameter value. When calibrating the model against the experimental data
obtained by [Seyfried et al., 2009], the results of ABC are in line with the MCMC results
obtained in Section 6.4.1. The advantages of ABC over MCMC are that it does not re-
quire a likelihood or assumption on the likelihood and that it can be applied directly on
stochastic simulators. However, the choice of the tolerance, a central parameter of ABC,
is complex in practical applications, especially when measurement noise is present. The
decision for one method must be made depending on the specific situation: If a likelihood
can be assumed and either a surrogate model or sufficient resources to average multiple
repetitions is available, I recommend MCMC. Otherwise, ABC is the better choice.

6.4.3 Comparison of Bayesian inference to a point estimate

I compare Bayesian inference, represented by the rejection sampler of approximate
Bayesian computation, to a point estimate in three case studies. Point estimation is
to date a common technique for parameter calibration while Bayesian inference is not
established yet. The three case studies serve to demonstrate the benefits and limitations
of both approaches for calibration. This section follows [Gödel et al., 2022]. First, I
calibrate the free-flow speed in the optimal steps model. Second, I calibrate the desired
speed in a social force model which exhibits a faster-is-slower dynamic. Finally, I com-
pare the point estimate to the full posterior for a multidimensional calibration of all
influential parameters in the bottleneck scenario.

6.4.3.1 Unimodal posterior

In the first use case, I simulate the bottleneck scenario with the optimal steps model.
In Figure 6.19, we observe a monotonically strictly increasing trend between free-flow
speed mean and flow. As expected, the flow increases with the speed and also with the

102

6 Parameter Estimation: finding values for influential parameters

width of the bottleneck. Since I use only one repetition at each parameter value, there
are stochasticity and noise present; both increase with the speed.

Figure 6.19: Relationship between free-flow speed mean and flow for the five bottlenecks of
different widths. Bottleneck width increases from left to right (0.8 m to 1.2 m).

Since the trend of the input-output relationship is strictly monotonically increasing
for each bottleneck width, we expect that the distance measure for calibrating a single
bottleneck has a single minimum. It is difficult to draw conclusions when comparing
all five bottlenecks. In Figure 6.20a, the distance between the flow in all bottlenecks
and data is shown. We observe the same shape as expected for comparing individual
bottlenecks to data. I choose a tolerance of ε = 0.0685 in order to keep 1% of the
candidates as samples of the posterior according to Beaumont [Beaumont et al., 2002].
The number of samples is denoted Nε. The histogram of the posterior samples in Figure
6.20b shows a symmetric, unimodal posterior. Mean and mode of posterior are both
at about 1.14 m/s and the standard deviation is 0.027. In addition, I also evaluate the
posterior mode. It is slightly lower than the mean and mode of the posterior histogram.

In the next step, I separately propagate the posterior and its mode through the model
to study the variation in the model response. From the posterior distribution, all Nε

samples are propagated. For comparability, the point estimate is propagated also Nε

times through the system. Due to the stochasticity in the initialization, the propagations
lead to different results, even though the parameter value is fixed. The histogram of the
flow values obtained from propagation in Figure 6.21 shows a similar width and shape
for both the full posterior and the point estimate. This suggests that the variation due to
random initialization is equally large as the variation due to the posterior distribution.
The randomness in the model has a significant impact.

103

6 Parameter Estimation: finding values for influential parameters

(a) Distance measure (b) Histogram of posterior samples

Figure 6.20: Results of Bayesian inference for calibration of the free-flow speed in the bottleneck
scenario with approximate Bayesian computation (ABC), tolerance ε = 0.068
(acceptance rate = 1%).

We also observe that the distribution of flow values deviates from the observed data
set for both point estimate and full posterior. One reason could be the simultaneous ad-
justment to five different bottleneck experiments. As shown in Section 6.4.2.1, individual
comparison yields a better fit. In addition, model and experiment might differ due to
underlying effects in the experiments such as learning effects that are not modeled in the
simulation. Another factor could be the measurement error on the flow measurements,
which is not quantified in the experimental results [Seyfried et al., 2009].

Figure 6.21: Comparison of flow values obtained from propagation of posterior mode (PM) ob-
tained from Nε repetitions and full posterior obtained with approximate Bayesian
computation (ABC) with tolerance ε = 0.0685. Bottleneck width increases from
left (0.8 m) to right (1.2 m).

104

6 Parameter Estimation: finding values for influential parameters

My goal now is to quantitatively evaluate the variation in the flow for both point
estimate and full posterior. Therefore, I run M = 200 propagations and perform a
linear regression over five flow values for the different bottleneck widths. As a metric
for the variation of the flow, I choose the size of the confidence interval of the slope of
the linear fit. Figure 6.22 illustrates the regression for the propagation of the full ABC
posterior. The box plots indicate the variation at each bottleneck width. Across all
regressions, I find the average confidence interval and its size.

Figure 6.22: Regression for propagated posterior obtained with approximate Bayesian compu-
tation (ε = 0.0685). A box plot of the flow samples resulting from propagation is
shown together with the linear regression.

As discussed in Section 6.4.2.3, the optimal tolerance for stochastic models when
measurement error or model error is present, is not known. In theory, we obtain the true
posterior in the limit when approaching a tolerance of zero, ε→ 0, while the sample size
approaches infinity, N → ∞. In practice, however, due to limited numerical accuracy
and limited computational power, both approximations are limited. I evaluate the size
of the confidence interval over possible tolerances in Figure 6.23. The figure shows that
the results strongly depend on the tolerance. Nevertheless, when considering tolerances
ε ≥ 0.0685 there is a difference between posterior mode and full posterior that grows
with increasing tolerance.

For a fixed tolerance of 0.0685, Table 6.1 summarizes the confidence interval for the
observed data, as well as the flow values obtained from propagating the point estimate
and the ABC posterior. It is important to note that the confidence intervals for the
propagation are larger than that obtained from the data. This should always be the
case. Otherwise, the uncertainty after calibration and propagation would be smaller
or equal to the uncertainty in the data which would indicate stronger reliability in the
results of the prediction. Since the reliability of the prediction is limited by the reliability
of the data used for calibration, this obscures that the data contains uncertainty.

In summary, for the monotonically strictly increasing trend between uncertain pa-
rameter, free-flow speed, and the quantity of interest, the flow, I obtain a symmetric
unimodal posterior. In this case, there is no large difference between using a full poste-

105

6 Parameter Estimation: finding values for influential parameters

Figure 6.23: Size of confidence interval of slope (linear fit) for different tolerances ε for approx-
imate Bayesian computation (ABC) posterior compared to posterior mode (PM)
and experimental data.

Table 6.1: Confidence intervals for slope of linear regression for observations as well as propa-
gated posterior mode and full posterior obtained by approximate Bayesian (ABC)
computation.

Data Posterior mode ABC posterior

Confidence interval [2.251, 2.951] [1.651, 2.990] [1.595, 3.080]
Size of confidence interval 0.699 1.338 1.485

rior obtained with Bayesian inference methods to using a point estimate for propagation.
However, this is only the case for a simulator with a stochastic component. For prac-
tical applications this is good news: If the relationship between uncertain parameter
and quantity of interest is monotonically strictly increasing, a point estimate is suffi-
cient. The advantage is that the point estimate is cheaper to evaluate. In the next two
subsections, I point out two cases in which it is problematic to rely on point estimates
only.

6.4.3.2 Bimodal posterior

For the second case study, I examine a setup of five bottlenecks simulated with a social
force model emulator. As described in Section 3.1.2, I build a surrogate model for
the egress of 200 agents leaving the room simulated with Helbing’s social force model
[Helbing et al., 2000]. The emulator is shown together with the experimental dataset
used for calibration in Figure 6.24.

The relationship between speed and flow exhibits a faster-is-slower dynamic, which
means, it is not just monotonically increasing but displays an extremum. The largest
flow is obtained for the desired speed around 1.3 m/s, lower and higher speeds lead to
smaller flows. Consequently, the function is not bijective, meaning that every parameter
value leads to exactly one function value but only surjective, a function value can be

106

6 Parameter Estimation: finding values for influential parameters

reached by several parameter values. That means the parameter is not identifiable and
can therefore not be unique estimated.

Figure 6.24: Social force model emulator for five different bottleneck widths, constructed with
flow data from [Helbing et al., 2000] including an additive zero-mean Gaussian
noise with variance σ2 = 10−4 with experimental data used for inference.

The distance measure for the social force model emulator in Figure 6.25 displays
two minima, as expected due to the faster-is-slower dynamic. I choose a tolerance
of ε = 0.00128 to keep 1% of the candidates. Thereby, I obtain a bimodal posterior
distribution around the two minima at about 0.5 m/s and 1.2 m/s, compare Figure 6.25b.
By design, a point estimate can only catch one of the two minima. Either one can be
the posterior mode.

(a) Distance measure (sum of squares) (b) Posterior distribution

Figure 6.25: Results of calibrating the free-flow speed in the social force model emulator with
approximate Bayesian computation, tolerance ε = 0.00128.

Consequently, when propagating the speeds for which the minima occur, I obtain the
same flow. Even though posterior and point estimate differ greatly, the flow values after

107

6 Parameter Estimation: finding values for influential parameters

propagation are similar. However, if we focus the propagation on another quantity of
interest, such as the egress time, the results between full posterior and posterior differ
drastically. In the same way that I created the emulator for the speed-flow relationship,
I create a second emulator for the egress times based on the so-called leaving times
reported in [Helbing et al., 2000], see Figure 6.26. Again, I introduce an additive zero-
mean Gaussian noise with covariance 0.01. The emulator is built for an egress scenario
in which 200 pedestrians leave a room through a door.

Figure 6.26: Social force model emulator for leaving times or egress times over desired speed,
obtained by interpolating data from Helbing et al. [Helbing et al., 2000].

In Figure 6.27, we can see that propagating the posterior mode leads to egress times
about 330 s, while the bimodal posterior finds egress times between 110 s and 360 s.
Since the point estimate found the lower speed of the two speeds that lead to the flow
most similar to the observed flow, the point estimate is just conservative in this case. If
however, the point estimate finds the faster speed at about 1.2 m/s it would lead to an
egress time of about 110 s. That result would indicate significantly more efficient egress.
Based on the data, we cannot decide which egress time is “true”. Relying on the faster
egress by using the point estimate would compromise pedestrian safety.

Using Bayesian inference methods, one can capture any posterior distribution instead
of relying on symmetric unimodal posterior distributions as we implicitly do when em-
ploying point estimates. If those posterior shapes are ignored by using only a point
estimate for propagation, egress times obtained from calibrated simulation can be too
optimistic and therefore may put pedestrians at risk. My example of calibrating the
speed by comparing to flow measurements is similar to a calibration towards a speed-
flow relationship which is common in crowd dynamics [Steiner et al., 2007, Taherifar
et al., 2019, Wolinski et al., 2014, Chu, 2009, Davidich and Köster, 2012]. Especially,
when using only point estimates, calibration towards a fundamental diagram is not suf-
ficient for studying other quantities of interest after propagation

108

6 Parameter Estimation: finding values for influential parameters

Figure 6.27: Leaving time, or egress time, when propagating the point estimate and the full
posterior obtained for calibration of the free-flow speed in the social force model
emulator.

6.4.3.3 Multivariate posterior

After studying the one-dimensional cases that focus on the most influential parameter,
I now infer all influential parameters in the bottleneck scenario identified in Chapter
5: free-flow speed mean, free-flow speed standard deviation, personal space strength,
and obstacle repulsion. As priors for Bayesian inference, I use the flat priors from the
sensitivity analysis. I only reduce the interval for the free-flow speed standard deviation
from [0, 1] to [0, 0.5] since we know that the participants in the experiment were all
students. That means they have a similar age and fitness from which I conclude that
their free-flow speeds are rather uniform. For larger free-flow speed standard deviations,
the correlation with the free-flow speed mean becomes larger due to the truncated normal
distribution. Consequently, a smaller interval also reduces the correlation.

For this calibration, the distance measure, fd : R4 → R, maps the four-dimensional
parameter vector to a scalar. Consequently, I cannot plot it in all dimensions. Instead,
I plot the distance measure over each parameter separately. For Figure 6.28, the model
evaluations obtained during the calibration are utilized. Consequently, all parameters
are varied at once leading to a large variation over each parameter. We observe a strong
trend when plotting the distance measure with respect to the free-flow speed. For the
other parameters, the relationship is dominated by noise.

I set the tolerance to ε = 0.06378155 in order to keep 1% of the candidates as sam-
ples. The result of Bayesian inference is a four-dimensional joint posterior distribution.
I evaluate the univariate posterior distribution in Figure 6.29. That is the marginal
posterior distribution for a single parameter. In addition, the posterior mode for the
parameter is shown. The univariate posteriors for free-flow speed mean (Fig. 6.29a), ob-
stacle repulsion (Fig. 6.29c), and personal space strength (Fig. 6.29d) vary significantly
from their flat prior indicating that these parameters are well informed by the data. The
posterior of the free-flow speed standard deviation in Figure 6.29b, however, is similar

109

6 Parameter Estimation: finding values for influential parameters

(a) Free-flow speed mean (b) Free-flow speed standard deviation

(c) Obstacle repulsion (d) Personal space strength

Figure 6.28: Distance measure evaluated at candidates (ε = 0.06378155) generated by the
rejection sampler for approximate Bayesian computation when calibrating all in-
fluential parameters in the bottleneck scenario.

to the flat prior. That means this parameter is not informed to the same degree as the
other parameters.

Note that the univariate posterior distribution for the obstacle repulsion has its mode
at the edge of the interval. This indicates that the most suitable parameter value might
lay outside the prior. Ideally, I would increase the interval since the results suggest that
there might be an even better fit with a lower obstacle repulsion. However, I know that a
certain repulsion from the obstacle is necessary to represent the motion realistically. This
contradiction may indicate discrepancies between model and experiment. In practice,
we need not only a good agreement between model evaluation and data, but also a
meaningful parameter value. For this reason, I stick to the specified prior.

In addition to the univariate posteriors, we take a look at the bivariate posterior dis-
tributions in order to evaluate the correlations among the parameters. For the four
parameters, there are six couples. Both univariate and bivariate posteriors are summa-

110

6 Parameter Estimation: finding values for influential parameters

(a) Free-flow speed mean (b) Free-flow speed standard deviation

(c) Obstacle repulsion (d) Personal space strength

Figure 6.29: Univariate posterior distributions for influential parameters in the bottleneck sce-
nario. Calibration is carried out through approximate Bayesian computation with
a tolerance of 0.06378155 (acceptance rate 1%).

rized in the triangle plot in Figure 6.30. The triangle plot shows the univariate posterior
densities on the diagonal and the bivariate distributions on the lower diagonal. The
upper diagonal holds Pearson’s correlation coefficient for the bivariate combination. We
observe a correlation between the free-flow speed mean and each of the other parameters.
All combinations with a correlation coefficient above 0.4 are shown in Figure 6.31. The
correlation between the parameters emphasizes that the data is best represented when
the parameter value for the free-flow speed mean is not chosen independently from the
other parameters. In other words, the parameters’ values should be sampled from the
joint posterior, not from the univariate posterior distributions. Interpretation of this
correlation is complex since it is not with respect to the quantity of interest, the flow,
but to the distance measure. The distance measure combines the comparison between
observation and simulation for five bottlenecks at once. The distance measure function

111

6 Parameter Estimation: finding values for influential parameters

fd also depends on the data chosen for the calibration, which means, the correlation
does not necessarily hold on general, but only for this data set.

If we recall the sensitivity analysis in Chapter 5, we do not recall any strong correla-
tions among parameters. That might at first seem inconsistent. It is, however, important
to note that the correlations in the sensitivity analysis are with respect to the quantity
of interest, the flow, for a single bottleneck. A correlation between two parameters ob-
served in the calibration means that their inferred posterior distributions are correlated
toward the distance measure including observational data from [Seyfried et al., 2009].

Figure 6.30: Triangle plot for posterior density for the influential parameters in the bottle-
neck scenario: On the diagonal, the univariate posterior density is shown for each
parameter. The lower diagonal holds the bivariate posterior densities. The up-
per diagonal shows the Pearson correlation coefficient for the bivariate posterior
densities.

The four-dimensional calibration highlights that Bayesian inference provides addi-
tional information compared to point estimates. When carrying out propagations based
on the posterior, it is important to choose the values for free-flow speed and obstacle
repulsion not independently, but based on their joint posterior distribution. In addi-
tion, we also learned that free-flow speed mean, obstacle repulsion, and personal space
strength are well informed by the data, while the free-flow speed standard deviation is

112

6 Parameter Estimation: finding values for influential parameters

(a) Bivariate posterior for free-flow speed mean
and free-flow speed standard deviation
(Pearson correlation coefficient: 0.47932)

(b) Bivariate posterior for free-flow speed and
obstacle repulsion (Pearson correlation co-
efficient: 0.59104)

(c) Bivariate posterior for free-flow speed mean
and personal space strength (Pearson cor-
relation coefficient: 0.53742)

Figure 6.31: Bivariate posterior distributions obtained with approximate Bayesian computation
(ε = 0.06378155) for all parameter combinations with correlation larger than 0.4.

not. The posterior mode, on the other hand, cannot provide insights on the correlations
among the inferred parameters as well as the quality of the calibration.

This example is intended as a demonstration of principle. In this example, I use five
measures of the flow to calibrate four parameters. I recommend using more data in
practical applications for a reliable calibration.

6.4.3.4 Evaluation

In this section, I compared calibration with a point estimate to a Bayesian inference
method, that is approximate Bayesian computation, in three case studies. First, I cali-
brated the free-flow speed mean in the optimal steps model. When propagating both the

113

6 Parameter Estimation: finding values for influential parameters

point estimate and the full posterior obtained through calibration, the variation in the
quantity of interest depends mainly on the user-defined tolerance ε of ABC. Qualitatively,
there was no significant difference between point estimation and Bayesian inference and
therefore a point estimate appeared sufficient.

Second, I calibrated the desired speed in a social force emulator that exhibits a faster-
is-slower dynamic for an egress scenario. Here, Bayesian inference revealed a bimodal
posterior distribution that the point estimate could not recover. Consequently, a part of
the posterior distribution is lost when relying on point estimation. I evaluated the egress
times for the ABC posterior and the point estimate to emphasize the importance of con-
sidering the full posterior distribution for subsequent studies. For the point estimate, the
egress times only varied around a single value instead of displaying the correct bimodal
shape. This means that the egress times are miscalculated endangering the pedestrians’
safety. This exposes a need for caution when transferring calibrated parameters from
one safety scenario to the next.

Finally, I performed a multidimensional calibration of the four influential parameters
of the optimal steps model in the bottleneck scenario: the free-flow speed mean and
standard deviation the personal space strength and the obstacle repulsion. The uni- and
bivariate posterior distributions obtained with ABC showed the free-flow speed mean,
the personal space strength and the obstacle repulsion were well informed by the data.
However, the free-flow speed standard deviation was not informed to the same degree.
In addition, the multivariate posterior revealed a strong correlation between free-flow
speed mean and each other parameter.

6.4.4 Higher-dimensional Bayesian inference

Inferring a large number of parameters is computationally expensive, especially when
iterative methods such as the Metropolis algorithm are used. In addition, Markov chains
exhibit a bad mixing behavior in higher dimensions. One way to overcome both issues
is to reduce the size of the input parameter space. The idea of active subspaces [Con-
stantine et al., 2016], as presented in Section 5.3.2, is to identify important parameter
directions in the input parameter space and to build a lower-dimensional representation.
The directions are identified based on the gradients of the forward model. In the case
of computer models, the gradients can be approximated by e. g. finite differences. The
directions are then used to generate a surrogate for the forward model, the so-called
ridge approximation. Once the ridge approximation is generated, the Bayesian inference
method e.g. the Markov chain is run only in the active subspace instead of the complete
input parameter space [Constantine et al., 2016]. Figure 6.32 shows how a Markov chain
Monte Carlo method can be combined with the active subspace.

In the uncertainty quantification framework, routines are implemented to identify
an active subspace. They can be employed for this approach. The only missing link
is the construction of the ridge approximation. A simple yet effective choice for the
approximation is polynomial regression. Polynomial regression is readily available in
Python’s scikit-learn package [Pedregosa et al., 2011]. For the regression, one can reuse
the model evaluations generated to calculate the gradients. A more detailed description

114

6 Parameter Estimation: finding values for influential parameters

for the construction of a response surface as an approximation can be found e. g. in
[Teixeira Parente et al., 2019].

Figure 6.32: Concept of Bayesian inference with active subspaces.

6.5 Summary

This chapter focused on the calibration of the influential parameters in the bottleneck
scenario to answer the research question Q2: “How can we calibrate the influential
parameters in the bottleneck scenario?”

Q2.1: Which parameter estimation methods are suited for calibrating crowd dynamics
models?
So far, calibration in crowd dynamics has mainly been performed using point estimates
such as maximum likelihood estimates. Bayesian inference methods provide full posterior
distributions which consider residual uncertainty after calibration when employed for
subsequent studies. I identified two approaches for Bayesian inference that are suitable
for crowd simulation: the likelihood-based random walk Metropolis algorithm and the
likelihood-free rejection sampler for approximate Bayesian computation. I discussed how
to decide whether a likelihood-based or a likelihood-free approach is suitable. Likelihood-
based inference is preferable when a likelihood function is available or an assumption can
be taken about its distribution and the model is deterministic. For a stochastic model,
one can either generate a deterministic surrogate model or average responses of repeated
model evaluations. Otherwise, likelihood-free inference with ABC is advantageous.

115

6 Parameter Estimation: finding values for influential parameters

I applied both approaches: I first carried out a proof-of-concept by using artificial
data. Both methods obtain a posterior distribution that was centered around the true
parameter value. That means Bayesian inference was able to capture the true parameter
value through the data.

Q2.2: What are the advantages of Bayesian inference methods for calibration compared
to established methods, such as point estimates?
I compared ABC as a representative for Bayesian inference to a point estimate, the
posterior mean, in three case studies. In contrast to point estimation, Bayesian inference
methods provide a full posterior distribution. In the first case study, a symmetric,
unimodal posterior distribution was revealed. In this case, a point estimate may be
sufficient. In the second case study, I calibrated a social force based model emulator
that exhibits a faster-is-slower dynamic. ABC revealed a bimodal posterior. The point
estimate, by design, finds only one mode. When it is used for subsequent propagation
for another quantity of interest, such as the evacuation time, the results are either
too conservative or too optimistic endangering the safety of pedestrians. In the third
case study, a multi-dimensional calibration, the joint posterior distribution contained
additional information about the parameters and the calibration process which need
to be considered for subsequent studies. In general, Bayesian inference methods are
advantageous when the posterior is not symmetric or has multiple modes as well as
when multiple parameters are calibrated. In these cases, the full posterior is necessary
for subsequent studies.

Q2.3: What is the posterior distribution for the influential parameters in the bottleneck
scenario after calibrating to experimental data?
I demonstrated how the Metropolis algorithm, an MCMC method, and the rejection
sampler for ABC consistently estimate the most influential parameter, the free-flow speed
mean, using experimental data. When calibrating it in the scenario with five bottlenecks,
both methods obtained a comparable posterior distribution. The resulting posterior is
centered around 1.12 m/s (for the Metropolis algorithm) and 1.14 m/s (for the rejection
sampler) which is a plausible free-flow speed for the participants in the experiments which
were students and staff of the Central Institute for Applied Mathematics in Jülich. In
addition, in Section 6.4.3.3, I calibrated all four influential parameters in the bottleneck
scenario using ABC. The resulting multivariate joint posterior will be used to quantify
the uncertainty in the quantity of interest, the flow, after calibration in the next chapter.

116

7 Estimation of initial and boundary
conditions: finding values for initial and
boundary conditions in real-time
predictions

The previous chapters dealt with forming a specific model from a model family for
the bottleneck scenario. I demonstrated how methods from uncertainty quantification
address this central task for classical crowd dynamics prediction. This chapter focuses
on a crucial step towards real-time predictions at events, the online initialization of the
simulation. In Section 7.2, I familiarize the readers with the state of the art on online
parameter learning in pedestrian dynamics focusing on origins and destinations of agents
so that they can put my methodological choices into context. I propose two methods
for statistical learning that I employ for initialization in Section 7.3: multivariate linear
regression and random forest. Both models are simple, robust, and easy to understand.
Moreover, they are explainable. With these, I conduct a feasibility study on whether
origin-destination (OD) matrices can be estimated from density heatmaps (Section 7.4).
These heatmaps can be gained from several sensor types. In this case study, I generate
them from real-world trajectory data. Finally, I summarize the findings.

7.1 Introduction

In addition to classical predictions performed before an event or during the design phases
for buildings, an emerging challenge is a real-time prediction. The goal is to use predic-
tions live at events to support those responsible with additional information about the
anticipated behavior or even to provide decision support. Numerous challenges need to
be tackled before crowd simulation can foster these goals. A central task is the continu-
ous adjustment of parameters as well as initial and boundary conditions to the current
situation. Choosing suitable values for these inputs is essential for a reliable prediction.
The increasing monitoring of pedestrians and locations through various sensors, such
as cameras and GPS sensors, comes in handy. Sensor data is the central source for
the adaptation of parameters. Nevertheless, the available measurements are usually not
direct measurements of a simulation parameter. Translating sensor data to inputs for
the simulation is an important step in this process. In addition, there are simulation
inputs that cannot be measured directly by sensors. Central information for the setup
of a scenario are locations for destinations and origins of the agents and popularity of
origin-destination combinations. The latter is encoded in an origin-destination matrix.

117

7 Estimation of initial and boundary conditions

In this chapter, I use trajectory data from stereo sensors mounted in a train station to
predict dynamic origin-destination matrices using linear regression and random forest.
The data was provided by Swiss Federal Railways (SBB). I calculate density heatmaps
because they are easy to handle and can, in general, be derived more easily from video
footage than trajectory data. I train both a linear regression and a random forest
regressor on a training set. Then, I evaluate the performance of both algorithms on a
validation set. In addition, I study the impact of several parameters in the setup. I
discuss the benefits and limitations of both methods. The resulting origin-destination
matrices can be used as dynamic input for a live prediction.

At this point, I do not aspire to achieve the highest possible accuracy. Instead, I
conduct a feasibility study on whether we can learn origin-destination matrices from
density heatmaps.

Research question addressed in this chapter

Q2* Can we predict origin-destination matrices for the initialization of origins and
destinations in the simulation from live sensor data in form of density heatmaps?

Preliminary work was presented at the Pedestrian and Evacuation Dynamics Con-
ference 2018 in Lund and published in the proceedings of the conference [Gödel et al.,
2020b]. I refer to the paper in the text.

7.2 State of the art on online parameter learning in crowd
simulation

Real-time predictions at events constitute an emerging challenge in the pedestrian dy-
namics community. There are several issues to tackle. The largest ones are code ac-
celeration and initialization. Algorithms must be at least real-time capable. In order
to enhance pedestrian safety, computing the predictions must be sufficiently fast that
enough time remains to take action. Static initialization does not suffice anymore. In-
stead, the current status needs to be translated to simulation inputs and fed to the
simulation. The issues associated with real-time capability, as well as, approaches to
solving them, are described in [Zönnchen, 2021, p. 1ff]. Here, I focus on the initializa-
tion while bearing the computational burden in mind.

At first, we take a look at studies aiming to set up systems for real-time predictions.
Kemloh Wagoum et al. propose a real-time evacuation assistant for a stadium evacu-
ation of 50000 pedestrians [Kemloh Wagoum et al., 2013]. The simulation is fed with
an automated count of the pedestrians. The focus of the contribution, however, lies on
the parallelization and acceleration of the algorithm. Baqui and Löhner presented their
framework that evaluates crowd density from video footage at the Hajj at the Pedes-
trian Evacuation Dynamics conference in 2018 [Baqui and Löhner, 2020]. The density
is derived from head counting by a machine learning model. The estimation aims at the

118

7 Estimation of initial and boundary conditions

initialization of a microscopic crowd simulation. In the research project S2UCRE1, den-
sity information was extracted from video footage and used to initialize the simulation.
Image processing based on neural networks was employed to extract pedestrian counts
and speeds from video data. A grid-based pedestrian count was used to spawn agents
in the simulation. Within a control cycle, the spawn rate was continuously adapted in
order to find an agreement between the predicted and observed density using Bayesian
optimization [Kneidl, 2021].

Next, I review work on the estimation of OD matrices. Like this chapter, these publica-
tions focus on the estimation of the matrices without providing a framework for real-time
predictions. The estimation of OD matrix is an established research topic in traffic sim-
ulations [Cascetta, 1984, Bell, 1991]. A review can be found in [Pitombeira Neto et al.,
2017]. For car traffic, static OD matrices are often sufficient. For crowd simulation,
however, dynamic OD matrices are necessary because we observe more fluctuations and
pedestrians have more degrees of freedom in their movement. The first step for origin-
destination matrix estimation is defining the origins and destinations of the agents. In
the overpass scenario, I define them based on the trajectory data. This might, however,
not always be possible. Khan et al. use short tracks, tracklets, automatically extracted
from video footage to identify origins and destinations with an unsupervised hierarchical
clustering algorithm [Khan et al., 2016]. Their approach is applied to six scenarios: An
airport, the Hajj, a train station, an escalator, a university campus, and a gallery in
Milan’s city center.

For Pouke et al. dynamic origin-destination matrices are just an intermediate result to
validate a crowd model based on points of interest [Pouke et al., 2016]. They compute
OD matrices on a city level directly from wifi mobility traces obtained in downtown
Oulu, Finland. Li et al. estimate OD matrices from RGB-D images for emergencies
with low visibility using a joint convolutional neural network (CNN) [Li et al., 2019].
RGB-D images are a combination of an RGB image and its corresponding depth image.
A CNN is trained directly on images. Ground truth is established by manual annotation
of pedestrians. Their study is carried out with RGB-D cameras installed in the hallways
of a university building. Chan et al. employ a bi-level programming model, a commonly
used approach for OD matrix estimation in car traffic simulation [Chan et al., 2007].
The inputs to the method are pedestrian counts. The bi-level programming model is
demonstrated on an abstract, larger-scale network.

The pedestrian traffic in train stations or even a city-wide transit system is of increased
interest because these areas feature a larger set of potential origins and destinations.
Wong and Tong use observed passenger counts from Hong Kong to estimate dynamic
OD matrices for the whole transit system [Wong and Tong, 1998]. They employ an
entropy-based approach for estimation. Ahn et al. estimate a static OD matrix for the
Takatsuki train station in Japan aiming to forecast pedestrian flow patterns within the

1Research project S2UCRE, Safety and security in urban environments: crowd monitoring, predic-
tion, and decision support, 2017-2021, sponsored by the German Federal Ministry of Education and
Research www.s2ucre.de.

119

www.s2ucre.de

7 Estimation of initial and boundary conditions

station [Ahn et al., 2017]. They use a so-called gravity model by Kawakami2 for the
OD matrix estimation. Input for the estimation are traffic counts manually observed
at the station. Bauer estimates daily averaged OD matrices from pedestrian counts ob-
tained from sensors at the entrances and exits [Bauer, 2012]. The data set stems from
an Austrian shopping center. Data is separated into a training and a validation set;
the performance is evaluated using the R2 score. The OD matrices are estimated with
a generalized method of moments. Hänseler et al. estimate dynamic OD matrices in
the Lausanne train station based on tracking data, travel surveys, and train timetables
[Hänseler et al., 2017]. Yet, while their goal is similar, I aim to estimate OD matri-
ces solely based on relatively simple density information instead of combining different
types of data. This limitation of information makes it much easier to collect the data
reliably and continuously in a complex scenario such as a train station. Thus it improves
applicability.

My work on estimating OD matrices consists of three parts: First, I analyzed how
the distribution of a pedestrian stream to three destinations can be predicted [Gödel
et al., 2020b]. Substitute input data from which I gain the heatmaps are simulated with
Vadere. Based on this, I took experimental trajectory data from the Jülich research
center to predict the origin distribution of three pedestrian streams that merge into a
single destination [Gödel et al., 2020c]. In both setups, the distribution of the agents,
or pedestrians, to the destinations and origins is estimated with high accuracy. This
positively answers my preliminary research question, whether density heatmaps contain
enough information to predict destinations. However, the studies were based on either
artificial data or controlled experiments, both with unidirectional flows and a limited
variation in behaviors. Thus, while the results are encouraging, their informative value
is limited, and one hesitates to generalize to real-world data. These previous studies
motivate using the proposed approach on real-world trajectory data. I investigate the
pedestrian flow through an overpass with stairs leading to platforms and the station hall
in a train station. Since the flow is multi-directional, it no longer suffices to predict only
origin or destination distributions. Instead, the method predicts full origin-destination
matrices. This is a much more complex task because it entails many features.

7.3 Statistical learning models for online parameter learning

In statistical learning, the algorithm for prediction is typically called a model. I employ
two models, a multivariate linear regression, and a random forest. There is a multitude
of models for statistical learning, I pick models that are simple yet robust, easy to
understand, and explainable: multivariate linear regression and random forest. Common
other models are neural networks, such as CNNs, which are trained on images, as well as
recurrent neural networks, which incorporate previous information. The disadvantage
of neural networks for this case study is that their performance depends highly on the
setup and the parameters. The goal is a feasibility analysis to see if a learning model

2The reference is only available in Japanese: Statistical Aspects of Gravity Models and Entropy Models,
Shogo Kawakami, 1978 doi:10.2208/jscej1969.1978.272 135.

120

https://doi.org/10.2208/jscej1969.1978.272_135

7 Estimation of initial and boundary conditions

can estimate the OD matrices from density heatmaps rather than a performance analysis
aiming to find the model that provides the highest accuracy.

In supervised learning, each model is first trained on so-called training data. The
training data set consists of samples, which are the input to the model, and targets,
which are the correct response for the samples. My samples are density heatmaps, and
the targets are OD matrices. Each sample consists of features. In this case, each entry
of the OD matrix is a feature. Some features might be more important than others.
Choosing the influential features is a complex task called feature selection. The goal
of training is not only that the model can resemble the training data well but also
that it generalizes well, which means it adapts properly to unseen data. Therefore, the
model should not fit the training data too closely. Otherwise, overfitting occurs, which
implicates that the model performs only well on the training data set, but not on a
different data set. Once training is completed, the performance of the trained model
is evaluated on a test set. As for the training set, the test set consists of samples and
targets. Training and test sets must be disjoint.

7.3.1 Multivariate linear regression

As the first model, I introduce multivariate linear regression. The model is well under-
stood and fast. It is a linear model which means that it assumes a linear relationship
between input variables and output variables. Linear regression has no user-defined pa-
rameters. While it is a classical method from statistics, it also can be used for statistical
learning and follows the same structure. This problem needs multivariate linear regres-
sion since the output is not scalar, but a set of matrix entries. The general formulation
for multivariate linear regression is

Y = XB + E

where the targets Y are represented by the samples X multiplied with the regression
coefficients B plus the approximation error E. In this case, each row of the targets Y is
one OD matrix, each row in X is a sequence of density heatmaps.

7.3.2 Random forest

Random forest is a nonlinear supervised statistical learning model. It is fast, explainable,
robust, interpretable, and depends only on a few parameters. The three main parameters
to tune the performance of random forest are the number of estimators or trees that are
trained to the data, the maximum number of splits from the root node, or maximum
depth, and the number of features used in each split. Random forests were introduced
by Leo Breiman [Breiman et al., 1984]. A random forest is an ensemble of decision trees.
Decision trees tend to overfit data. This effect is reduced when relying on a set of trees
and consolidating the results. Each tree is trained with a random subset of the data,
a so-called bootstrap sample, and for each tree node, a random subset of the features
is used for training. Consequently, each tree is trained differently and independently of
the others. Hence, the correlation between individual trees is low. In order to make

121

7 Estimation of initial and boundary conditions

a prediction, a sample is handed to all trees and their average response is returned as
the prediction. This averaging of responses ensures the high robustness of the forest.
Figure 7.1 illustrates the workings of random forest. Each tree grows by splitting a
subset of the data. At each split, from a subset of all features, the feature is selected
that leads to the best split. The split criterion is the mean squared error (MSE). Hence,
the best split minimizes the MSE. The data set is split at that threshold that minimizes
the MSE. The algorithm continues iteratively until either a stopping criterion, such as
a maximum number of splits or a minimum number of samples is each terminal node, is
met or terminal nodes are reached.

...

...

Figure 7.1: Schematic working of random forest regression.

7.4 Studying statistical learning for origins and destinations of
pedestrians

In this section, I analyze a data set provided by Swiss Federal Railways (SBB). I evaluate
the distribution of the speeds as well as the number of pedestrians in the overpass
throughout the day. Then, I describe how the trajectories are preprocessed to obtain
the density heatmaps as well as the OD matrices. Afterward, I evaluate the performance
of both models.

122

7 Estimation of initial and boundary conditions

7.4.1 Analysis of trajectory data

The data set consists of pedestrian trajectories for the overpass in a train station which
allows access to shops as well as to the platforms, as described in Section 3.2.2. The
trajectories stem from stereo sensors by Xovis mounted at the ceiling. They record
three-dimensional trajectories (x, y, h) with a resolution of 0.1 seconds. I use only the
two-dimensional positions (x, y). The data contains imperfections such as time gaps up
to three seconds or broken trajectories that occur e. g. when a pedestrian enters a shop
and cannot be captured by the sensor.

7.4.1.1 Speeds

One can easily derive the speed of the pedestrians from the trajectories and I analyze it
in order to gain some insights into the population. Since no personal information such
as age, fitness, and type or purpose such as commuter, traveler, or shopper is available,
I hope to learn about the population from the speed distribution. Figure 7.2 shows the
distribution of the walking speeds. For each pedestrian, the speed is calculated in each
time step based on the positions. That means stationary periods are included. The
observed walking speeds are asymmetrically distributed, their mean is around 1.13 m/s
and the standard deviation around 0.37 m/s. The observed speeds match up with those
observed by Davidich et al. during rush hour in a German train station with mode
1.04 m/s and standard deviation 0.51 m/s [Davidich and Köster, 2013]. The results are
also in accordance with earlier measurements [Weidmann, 1993, Bosina and Weidmann,
2017, Bosina, 2018]. They indicate that we observe a typical situation at a train station.

7.4.1.2 Pedestrian count

When we take a look at the number of pedestrians over the course of the day for the three
days in the data set presented in Figure 7.3, we observe a strong variation. Qualitatively,
the patterns are similar for all three days. We observe two rush hours around 5-9 a.m.
and 4-7 p.m.. Before the morning rush hour and after the evening rush hour, traffic
dwindles almost to zero. In addition to this trend, we observe a fluctuation with a higher
frequency. These peaks and tails are most likely caused by pedestrians onboarding and
de-boarding trains. These large variations demonstrate that we need a method that
dynamically estimates the OD matrices for short time intervals.

7.4.2 Preprocessing of raw data

The density heatmaps and the “ground truth” origin-destination matrices, which serve
as samples and targets for the estimation, are generated from the raw trajectory data. I
work with density heatmaps because they are non-personal, their size is constant, they
can be gained from different types of sensors, even directly, or extracted from video
footage like in the research project S2UCRE. I calculate the density from trajectory
snippets within a time interval of a fixed length of ten seconds, ∆t = 10 s. This decision
is based on the following rough calculation: Within ten seconds, pedestrians move an

123

7 Estimation of initial and boundary conditions

0

20

40

60

80

0.0 0.5 2.0 2.51.0 1.5

Observed pedestrian speed [m/s]

Figure 7.2: Observed speeds of all pedestrians within the overpass. The speed is measured over
the complete time a pedestrian remains inside the measurement area, including
stationary periods.

(a) Day 20190902 (Mon) (b) Day 20190905 (Thu) (c) Day 20190906 (Fri)

Figure 7.3: Number of pedestrians in the overpass over the course of the three separate days
of the data set, Monday, Thursday, and Friday. The pedestrian count is evaluated
every ten seconds. In addition, a moving average filter with a span of 120 (= 20 min)
is shown.

average of 11 meters, which is a substantial distance in the overpass but shorter than the
origin-destination links. Time intervals in which less than ten pedestrians are present
in the overpass are not considered. The trip counts for the “true” origin-destination
relations are also derived directly from the trajectory data. I ignore measurement errors
in the trajectories. If the density maps are obtained from video footage additional errors
are introduced that I cannot account for in this work. In this case, the raw data stems
from stereo sensors installed on an indoor ceiling, hence their setup is optimized for

124

7 Estimation of initial and boundary conditions

pedestrian tracking. In most applications, this is not the case and measurement error
may have a stronger impact on the proposed process.

7.4.2.1 From trajectories to density heatmaps

For a time interval of ∆t = 10 s, I create a series of five density heatmaps at equidistant
time steps (t0 = 0 s, t1 = 2 s, . . . , t4 = 8 s). At each time step, the density at each
position in the overpass is computed with a Gaussian filter [Seitz and Köster, 2012].
That means, every pedestrian within the observation area and within the time interval
is represented by a Gaussian bell. The observation area is divided into a regular grid of
0.5 m width per cell. In a cell, the contributions of the Gaussian representations of all
nearby pedestrians are added. As a result, I obtain five density heatmaps which consist
of 108× 38 values each.

In Figure 7.4 an exemplary series of density heatmaps for a ten-second time interval
is shown. Figure 7.4a displays the trajectory snippets for which the heatmaps were
calculated. From the evolution of the density, we observe that there is a multi-directional
movement within the observation area. In addition, we notice that the density matrices
are sparse.

−40 −30 −20 −10 0 10
−10

−5

0

5

10

(a) Trajectory snippets

−50 −40 −30 −20 −10 0 10

−10

0

10

(b) t0 = 0 s

−50 −40 −30 −20 −10 0 10

−10

0

10

(c) t1 = 2 s

−50 −40 −30 −20 −10 0 10

−10

0

10

(d) t2 = 4 s

−50 −40 −30 −20 −10 0 10

−10

0

10

(e) t3 = 6 s

−50 −40 −30 −20 −10 0 10

−10

0

10

(f) t4 = 8 s

Figure 7.4: From trajectory snippets (a) to a series of five density heatmaps (b-f), both for a
time interval of ten seconds.

7.4.2.2 Decomposition of input samples

I form input samples of five density heatmaps to estimate the corresponding OD matrix.
In total, this amounts to 20520 entries, or features, per sample. When we use several
of these input samples, their size will slow down the computations or even make them
infeasible. On the other hand, we need a substantially larger number of input samples
than features to avoid overfitting. Fortunately, the matrices are sparse as can be seen in
Figure 7.4. Thus, I reduce the dimension of the input samples by a principal component
analysis (PCA). As an additional benefit, the PCA helps to reduce the noise in the data.
The PCA decomposes the input samples into

X = WZT ≈Wn̂Z
T
n̂ (7.1)

125

7 Estimation of initial and boundary conditions

where X ∈ Rm×n contains m centered density heatmap samples with n features, W
contains the principal components of X, or eigenvalues of XTX, and Z contains the
right singular vectors of X, or eigenvectors of XTX. The singular vectors in Z are sorted
in descending order by the magnitude of the singular values of X. By only keeping the
first n̂ components, the reduced matrix has dimensions m × n̂. The matrix Z is stored
by the routines. It is necessary for the reconstruction of X or its approximation X̂. X
can only be fully recovered if all components are kept, n̂ = n. For the case that only
components are kept, n̂ < n, the reconstruction approximates X.

Figure 7.5 shows the explained variance of the reconstructed data over the number of
components. It indicates how well the components explain the original data. I decide
to use 321 components to reach an explained variance of 75%. Note that with this,
one cannot expect the estimated OD matrices to perfectly fit the true OD matrices.
However, my goal is not to obtain the highest accuracy but a proof of concept that OD
matrices can indeed be learned.

Figure 7.5: Explained variance of the principal component analysis (PCA) for the input sam-
ples. Each sample contains five density maps computed at equidistant steps within
the time interval (∆t = 10 s).

7.4.2.3 Ground truth: defining origins and destinations

By plotting the trajectories of a complete day (see Figure 7.6), I identify nine relevant
areas in which most of the trips start or end. They correspond to escalators, stairs, and
elevators that lead to the platforms (ids 1,2,7,8) as well as to the station hall (ids 3,4,5)
and to the remaining part of the overpass that is not covered by the sensor (id 0) as
we can see from Figure 7.7. I define these areas as origins and destinations with the ids
0− 8.

126

7 Estimation of initial and boundary conditions

Figure 7.6: Pedestrian trajectories of a single day show which areas are strongly frequented.
Nine areas (ids 0-8) are identified as relevant origins and destinations.

Figure 7.7: Section of the overpass with escalators, stairs, and elevators to the platforms (ids
1,2,6,7,8) and the station hall (ids 3,4,5) and the remaining part of the overpass (id
0) as possible origins and destinations.

In order to determine the OD matrices for a time interval ∆t, each pedestrian within
the observation area is mapped to one origin and one destination. If the start or endpoint

127

7 Estimation of initial and boundary conditions

of the full trajectory is outside of the identified areas, I assign an artificial origin or
destination with index −1. In this way, I map about 65% of the pedestrians to both an
origin and a destination. Please note that this means that the ground truth is not ideal
and is likely to impact the results.

My definition of the OD matrix is based on trip counts. Each entry ai,j of the OD
matrix A = (ai,j)i,j∈[1,10] contains the number of pedestrians who traveled from origin
i to destination j. This leads to a 10 × 10 origin-destination matrix. Exemplary OD
matrices can be seen in Figure 7.8. We observe that the OD matrices vary, as expected.

-1 0 1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

0

-1

1 3 0 0 0 12 2 4 0 0

0 0 0 0 0 0 0 0 0 0

8 11 0 0 0 1 0 0 2 1

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

8 13 8 2 0 0 2 2 5 7

0 0 0 0 0 0 0 0 0 0

1 4 0 0 0 4 0 0 0 0

5 1 1 0 0 15 5 3 0 0

4 8 1 2 0 2 1 0 1 3

-1 0 1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

0

-1

4 13 0 0 0 19 15 3 1 0

0 0 0 0 0 0 0 0 0 0

3 11 2 0 0 1 0 0 2 2

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 11 0 2 0 2 2 1 2 6

0 0 0 0 0 0 0 0 0 0

4 7 0 0 0 15 6 4 0 0

3 1 2 0 0 7 2 4 0 1

14 3 0 1 0 11 1 2 1 3

-1 0 1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

0

-1

0 1 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 22

5 12 0 0 0 0 0 0 0 11

0 5 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

9 10 17 0 0 0 0 0 0 14

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

3 2 0 0 0 4 2 1 0 0

8 3 1 0 0 3 1 0 0 4

0

5

10

15

20

Figure 7.8: Exemplary origin-destination matrices for a time intervals of ten seconds. Pedes-
trians whose trajectories could not be matched with an origin or destination, are
assigned −1 as origin and/or destination index.

7.4.2.4 Setup of the learning models

Trajectory snippets

−40 −30 −20 −10 0 10
−10

−5

0

5

10

Input features:

Nt density maps over
a time interval ∆t

1st sample: density vector
...

...
N th sample: density vector

Samples

−50 −40 −30 −20 −10 0 10

−10

0

10

−50 −40 −30 −20 −10 0 10

−10

0

10

−50 −40 −30 −20 −10 0 10

−10

0

10

−50 −40 −30 −20 −10 0 10

−10

0

10

−50 −40 −30 −20 −10 0 10

−10

0

10

∆t

Targets

-1 0 1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

0

-1

1 3 0 0 0 12 2 4 0 0

0 0 0 0 0 0 0 0 0 0

8 11 0 0 0 1 0 0 2 1

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

8 13 8 2 0 0 2 2 5 7

0 0 0 0 0 0 0 0 0 0

1 4 0 0 0 4 0 0 0 0

5 1 1 0 0 15 5 3 0 0

4 8 1 2 0 2 1 0 1 3

-1 0 1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

0

-1

4 13 0 0 0 19 15 3 1 0

0 0 0 0 0 0 0 0 0 0

3 11 2 0 0 1 0 0 2 2

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 11 0 2 0 2 2 1 2 6

0 0 0 0 0 0 0 0 0 0

4 7 0 0 0 15 6 4 0 0

3 1 2 0 0 7 2 4 0 1

14 3 0 1 0 11 1 2 1 3

-1 0 1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

0

-1

0 1 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 22

5 12 0 0 0 0 0 0 0 11

0 5 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

9 10 17 0 0 0 0 0 0 14

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

3 2 0 0 0 4 2 1 0 0

8 3 1 0 0 3 1 0 0 4

0

5

10

15

20

1st target: OD vector
...

...
N th target: OD vector

OD matrices
10 × 10
for time

interval ∆t

Figure 7.9: Processing scheme for the estimation of origin-destination (OD) matrices from a
series of density heatmaps.

Figure 7.9 visualizes the processing of the trajectory data to samples and targets. For
the input, the time interval ∆t is sampled with Nt density maps. After decomposition,
each sample contains 321 entries. These are then flattened in row-major and concate-
nated to an input sample of size N × 321. Each input sample is paired with a target

128

7 Estimation of initial and boundary conditions

sample that contains the OD matrix for the same observation time interval ∆t, as a
row-major flatted vector with ten target entries. Since the observation period for each
input and output sample is ∆t = 10 s, the resulting data set for a single day contains
approximately 4000 samples. The time intervals ∆t for two consecutive samples are
disjoint.

7.4.3 Performance of the models

I measure the performance of both multivariate linear regression and random forest
through the R2 score. In addition, I assess how well the models generalize to unseen
data using cross-validation.

7.4.3.1 Performance metric: R2 score

I employ the coefficient of determination R2 as a metric for the performance of the
algorithm. The score is defined as

R2(y, ŷ) = 1−
∑i=1

n (yi − ŷi)2∑i=1
n (yi − ȳi)2

(7.2)

where yi is the ground truth result with mean ȳi and ŷi is the prediction. The coefficient
of determination indicates how well the predicted values fit the ground truth values.
There is no lower limit for the score; the upper limit is 1. For a multidimensional
output, the scores are averaged, weighted by the variance of the ground truth samples3.

When conducting this study, I noticed that the results strongly depend on the chosen
metric. The R2 score is a common metric of the scikit-learn library that puts the
results into the statistical context. However, a custom performance measure for origin-
destination matrices that includes the impact of the initialization on the simulation
results might be useful.

7.4.3.2 Cross-validation

One way to assess the generalization error and the robustness of a machine learning
model for a set of data is to perform k-fold cross-validation. It means to separate the
data into k disjoint parts, so-called folds, and then use k − 1 folds for training and one
fold for validation. Instead of evaluating the performance for one split of the data (into
training and test set), the performance is analyzed for each combination.

I perform 3-fold cross-validation with a data set consisting of three different weekdays.
For every fold, two days are used as the training set and one day is used as the test set.
The folds are not of exactly equal length since there is some variation on how many
intervals are disregarded, because there are too few pedestrians. With this setup, we
can analyze if the model’s performance depends on the day.

3Default calculation method for the score in Python’s scikit-learn package up to version 0.23.0.

129

7 Estimation of initial and boundary conditions

7.4.3.3 Linear regression

The output of the prediction, the OD matrix, has 100 entries. Most machine learning
models perform better with a scalar output or at least a low dimensional output. There-
fore, I decided to apply a PCA decomposition to the 100-dimensional target space to
reduce the output dimension. That means I predict the heatmaps on the reduced basis
of the PCA which can also affect the accuracy.

As a performance metric, I calculate two scores. First, the R2 score in the component
domain, and second, the R2 score in the OD matrix domain. For the latter, I reconstruct
the full OD matrix before computing the score.

We observe that the scores in the component domain are superior for a low dimensional
output (Figure 7.10). This is the result of the trade-off between a low dimensional output
that improves the regression’s performance and the decomposition error that is large for
a low number of components. In addition, in Figure 7.10 the scores are shown for
each fold (markers). We observe similar R2 scores for all folds demonstrating that the
model is robust against the variation between days. I argue that the scores, while not
ideal, indicate that the linear regression model captures a major part of the OD matrix
variation over the day. This is supported by the evolution of the components over time
in Figure 7.11.

Figure 7.10: Performance for multivariate linear regression with reduced output dimension after
principal component analysis (PCA). R2 scores are calculated in the component
domain as well as for the reconstructed origin-destination (OD) matrices.

Initially, I chose Nt = 5 heatmaps in each sample to capture the movement of the
crowd with the density heatmaps. However, it is not clear whether the linear regression
model profits from the series of density heatmaps. I clarify this by comparing the
performance with a single density heatmap, Nt = 1, to a series of Nt = 2 and Nt = 5
density heatmaps per samples, see Figure 7.12. Again, I use the PCA decomposition
for the input samples with 75% explained variance. That corresponds to 99 components
for a single heatmap in each sample and 182 components for a series of two density
heatmaps, respectively. I expect that using a series of density maps to predict the OD
matrices improves the performance. In fact, there is an increase in the R2-score when

130

7 Estimation of initial and boundary conditions

(a) First PCA component (b) Second PCA component

Figure 7.11: Predicted and ground truth components of principal component analysis (PCA)
of origin-destination matrices over the course of one day.

comparing a single heatmap, Nt = 1, to a series of two heatmaps, Nt = 2. Using Nt = 5
heatmaps brings only a negligible improvement over Nt = 2.

(a) Component scores (b) Origin-destination matrix scores

Figure 7.12: Average performance of multivariate linear regression with different input samples:
Each sample contains either a single density heatmap or a series of two or five
density heatmaps.

7.4.3.4 Analysis of predicted components

Let us take a look at why the performance of the regression remains so far from an
ideal R2 value of 1. In the previous sections, we saw that keeping two components of
the OD matrix decomposition results in the best performance for the component scores.
Plotting the two components of the prediction and ground truth visualizes how well the
predictions fit the targets in the component domain. See Figure 7.13. The predictions

131

7 Estimation of initial and boundary conditions

of the linear regression overlap with part of the ground truth data. Nevertheless, the
shapes of the data clouds differ substantially. I suspect that the overlap reflects the
linear part of the relationship between input samples and target samples. This indicates
that a nonlinear model is necessary to obtain a better fit.

Figure 7.13: Scatter plot of the first and second component of the principal component analysis
of the origin-destination matrix. The multivariate linear regression predictions of
the components are shown together with the ground truth components.

To briefly summarize: The results of the regression model show that OD matrices can
be learned from density heatmaps. However, we observed that a linear model does not
suffice to obtain high accuracy.

7.4.3.5 Nonlinear model: random forest

I decided to use random forest as a nonlinear model. Random forest is a well-understood
and relatively simple model with a low number of parameters. It is also a model that
can be analyzed. One can apply random forest straight away by replacing the linear
regression in the scikit-learn setup. In this way, we can find out whether a nonlinear
model is better suited to learning the OD matrices. I analyzed the impact of the main
parameters, the number of trees, the number of features at each split, and the maximum
depth, (see C.1) and use the best configuration4. Figure 7.14 shows the results. The
performance of random forest in this configuration is slightly worse compared to linear
regression when considering the test scores. In order to rule out overfitting due to a low
number of samples, I created a larger data set by using overlapping time intervals, see
C.2. However, the performance of random forest does not change with the larger data
set.

4Number of trees, n estimators: 100, maximum depth of a tree, max depth: 10, maximum number of
features considered for each split, max features: n features (321)

132

7 Estimation of initial and boundary conditions

Figure 7.14: Performance of random forest model measured by the R2 score. Instead of the
full origin-destination (OD) matrix, the components of its principal component
analysis (PCA) are predicted.

7.4.3.6 Component and performance analysis

Figure 7.15 compares the first two ground truth components and the first two predicted
components of the OD matrix for linear regression and random forest. The predictions
of the random forest model seem to fit the ground truth components much better despite
the mediocre scores.

Even if the ground truth and predicted components still do not overlap perfectly. This
means that some part of the data set is not captured by the random forest model. I
consider this encouraging news since linear regression still outperforms random forest
even though the shape is captured better with random forest, see Figure 7.14. The point
cloud that is formed by the first two components of the ground truth forms a triangular
point cloud. Linear regression, however, creates a circular point cloud. The regression
predicts values outside of the ground truth. The random forest predictions, on the other
hand, lie within the ground truth. Therefore, I believe that in order to improve the
accuracy, a nonlinear model is necessary. However, finding the optimal nonlinear model
is a time-consuming task that is out of scope for this work.

7.5 Summary

In this chapter, I described the dynamic initialization of real-time simulations of crowds
during events as a current challenge in crowd dynamics. The origins and destinations
of the agents are central information for the initialization. They are vital to running
a simulation and have a large impact on the results. Improper input values can even
compromise the prediction. Origin-destination matrices describe the popularity of com-
binations of origins and destinations. In a train station, origin-destination matrices
indicate for example how many pedestrians head from the main entrance towards a cer-
tain platform and how many pedestrians head towards the different shops. This chapter

133

7 Estimation of initial and boundary conditions

(a) Linear regression (b) Random forest

Figure 7.15: Component analysis for multivariate linear regression and random forest. The
scatter plot of the first and second component of the principal component analysis
(PCA) of the origin-destination matrix is shown for each method compared to the
ground truth components.

addressed the research question Q2*: “Can we predict origin-destination matrices for
the initialization of origins and destinations in the simulation from live sensor data in
form of density heatmaps?”.

I demonstrated how to estimate dynamic origin-destination matrices from density
heatmaps with statistical learning models. This is one concrete example to show how new
methods complement classical parameter estimation. Density heatmaps are relatively
easy to obtain in practice from sensor data, in this case, trajectory data. Swiss Federal
Railways provided trajectories for the overpass in the Basel train station. I used a series
of five heatmaps in a time interval of ten seconds as input for the models. The goal was to
predict the OD matrix for the same time interval. In order to reduce the dimensionality
of the input data, I performed a PCA on the input space, maintaining an explained
variance of 75% of the data.

I compared two statistical learning models for the estimation: a multivariate linear
regression model to see whether a simple linear model might suffice and random forest to
detect possible nonlinearity. We observed that the linear regression successfully predicts
the OD matrices. Further analysis pointed out that the linear relationship mapped in
the linear regression explains only a part of the data. I conclude that a nonlinear model
is necessary to capture the full relationship. Consequently, I applied a random forest
model to the problem which captured the shape of the output space better but overall
performed slightly worse in terms of R2 score.

Overall, my results show that learning models such as multivariate regression and ran-
dom forest both successfully predict origin-destination matrices from density heatmaps
which can nowadays be automatically extracted from sensor data. However, there is still
room for improvement in terms of accuracy. These results encourage further efforts to
find nonlinear models to predict the OD matrices.

134

7 Estimation of initial and boundary conditions

For real-time crowd predictions, real-time estimated OD matrices are necessary to
initialize the simulation. More broadly, this case study shows how dynamic initialization
based on live data can be addressed with new methods.

135

8 Uncertainty analysis: measuring the
reduction of uncertainty in the simulation
output

In order to reduce the uncertainty when simulating the bottleneck scenario, I followed
a two-step approach: First, I identified influential and non-influential input parameters.
Second, I calibrated the influential parameters using experimental data. Now, I assess
the uncertainty in the prediction. This task is called uncertainty propagation, forward
propagation, or uncertainty analysis. To put my choice of methods into context, I present
the state of the art on uncertainty analysis in crowd simulation in Section 8.2 and give an
overview of methods for forward propagation from uncertainty quantification in Section
8.3. I choose Monte Carlo sampling for forward propagation on the bottleneck scenario
and analyze the uncertainty in the simulation output in Section 8.4. Finally, I summarize
the findings.

8.1 Introduction

I evaluate the uncertainty before and after calibration to complete the full process of
parameter handling. For this purpose, I propagate both the flat priors and the posterior
distribution obtained from the calibration in Section 6.4.3.3 to evaluate the distribution
of the quantity of interest: the flow through the bottleneck. Again, I focus on the bottle-
neck scenario described in Section 3.2.1. From the established methods for uncertainty
analysis, I choose Monte Carlo sampling for this application since it is a flexible approach
that can be used for all input parameter distributions. In addition, I demonstrate how
propagation can be performed with a generalized polynomial chaos expansion which is of
particular interest for computationally demanding scenarios. I compare the uncertainty
in the response at three steps in the process to show how the calibration of the influential
parameters reduces the uncertainty in the simulation output. First, I propagate the flat
priors that I used for the sensitivity analysis. Second, I analyze the setting in which I
fix all non-influential parameters. Finally, I propagate the joint posterior distribution of
all influential parameters.

Research questions addressed in this chapter

Q3 How can we quantify the uncertainty in the prediction for the bottleneck scenario?

Q3.1 Which uncertainty analysis methods are suited for crowd simulations?

136

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

Q3.2 How large is the uncertainty in the prediction for the bottleneck scenario
before and after calibrating influential parameters?

8.2 State of the art on uncertainty analysis in crowd simulation

In the crowd dynamics community, studies in which uncertain parameters are propagated
are often referred to as “sensitivity analysis” even though no sensitivity metric is defined.
In Table B.1, these studies are summarized. Most of them use a one-factor-at-a-time
(OAT) approach where only one parameter is propagated at a time while the others are
fixed, instead of propagating all parameter distributions. The reason is that they aim
to perform a sensitivity analysis without employing specific methods for this task. They
judge the sensitivity of the parameters based on the propagation of each factor. Different
from my approach, their focus is not on the distribution of the quantity of interest. With
the OAT approach, the total uncertainty in the output cannot be evaluated. Therefore
I do not go into more detail here.

So far, there are only a few studies using systematic methods from uncertainty quantifi-
cation for propagation. Several studies from the research group at the Munich University
of Applied Sciences employ spectral methods based on the generalized polynomial chaos
expansion. All of them rely on the chaospy package [Feinberg and Langtangen, 2015] for
uncertainty analysis and Vadere for crowd simulation. Sivers et al. study the impact of
three parameters on the number of agents still in a danger zone with the pseudo-spectral
approach for polynomial chaos expansion. They simulate the helping behavior observed
during the subway attacks in London in 2005 [von Sivers et al., 2016b]. The uncertain
parameters are the number of people sharing a social identity, the percentage of injured
pedestrians, and the speed of a helper with an injured person. All three parameters are
part of the helping model implemented in the social identity model application which
is an extension of Vadere. Dietrich et al. study uncertainties for de-boarding a train
with the same approach [Dietrich et al., 2018]. They analyze the impact of the number
of pedestrians on the platform and on the train, and the free-flow speed mean on the
total number of pedestrians on the platform. Instead of generating an expansion for the
microscopic model, the gradient navigation model [Dietrich and Köster, 2014], Dietrich
et al. introduce a data-driven surrogate on closed observables as an intermediate step.
The computational effort then lies in the model evaluations for the generation of the sur-
rogate model instead of for the expansion. Both, Sivers et al. and Dietrich et al. , study
time-dependent quantities of interest by generating one expansion for each time step in
the simulation. In [Kurtc et al., 2021], a corridor scenario similar to the experiments of
[Zhang et al., 2011] is analyzed. Kurtc et al. use point collocation to quantify the impact
of the mean and standard deviation of the free-flow speed, and the number of pedestrians
on the density in the corridor. They propose two ways to deal with the stochasticity in
the simulator: averaging a fixed number of repetitions and building several expansions
from individual repetitions. Finally, in [Rahn et al., 2021], we study the uncertainty in
the length of a demonstration march when the number of participants and the standard
deviation of the free-flow speed of the participants are uncertain. In a smaller version

137

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

of the scenario, both the collocation and the pseudo-spectral approach are compared to
Monte Carlo sampling. The results of the pseudo-spectral approach are closer to the
Monte Carlo simulations and therefore we select this method for the original scenario
size where Monto Carlo simulations are not feasible. Similar to Dietrich et al. [2018] and
von Sivers et al. [2016a], a time-dependent analysis is performed. The stochasticity in
the simulator is reduced by averaging ten repetitions at each parameter set. The results
are published in [Rahn et al., 2021] and also briefly described in Section 5.4.5 as far as
they fit into the context of this thesis.

8.3 Methods for uncertainty analysis

There are several approaches to quantify the impact of uncertain parameters on the
model response: direct evaluation, perturbation methods, sampling methods, and spec-
tral methods. Figure 8.1 provides a brief overview.

 Uncertainty
 analysis

 Direct evaluation

 Sampling methods

 Monte Carlo sampling

 Quasi-Monte-Carlo sequences

 Latin hypercube sampling

 Pertubation methods

 Spectral representations

 Stochastic Galerkin approach

 Point collocation method

 Pseudo-spectral projection method

Figure 8.1: Overview of methods for uncertainty analysis. Methods that were selected for crowd
simulations are highlighted.

Direct evaluation is suited only for linearly parameterized problems. The mean and
covariance of the model response can be found by evaluating the mean and covariance of
the parameter distributions of the uncertain parameters. Consequently, no model evalua-
tions are necessary. However, most models are not linearly parameterized. Perturbation
methods use Taylor expansions to represent the model response. They aim at nonlin-
early parameterized problems. The accuracy depends on the order of the expansion.
Direct evaluation provides an estimate for the mean and variance or covariance. How-
ever, the distribution of the quantity of interest is not calculated. Perturbation methods
are also referred to as propagation of moments, second-moment approach, or propaga-
tion of errors since only moments of the distribution are determined. Another approach

138

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

for nonlinearly parameterized problems is sampling. It is suitable for all parameter dis-
tributions. That includes posterior distributions obtained from Bayesian techniques or
experiments as discussed in Chapter 6. The methods are intuitive and easy to imple-
ment. Sampling methods obtain an ensemble of responses and can therefore evaluate
the density of the response. They are the best choice for problems with correlated pa-
rameters or sufficiently large parameter dimensions [Smith, 2014]. The core of sampling
methods is the choice of samples, that is the parameter values at which the model is
evaluated. Two established approaches for sampling methods are Monte Carlo and Latin
hypercube sampling. Monte Carlo sampling is simple and universally applicable. Yet it
suffers from its slow convergence of O(1√

M
) with the number of samples M . However,

the convergence is independent of the number of parameters. Latin hypercube sampling
provides optimal coverage of the parameter space by separating the distribution into
bins and therefore yields faster convergence than Monte Carlo sampling. In addition,
there are multiple other sampling schemes as well as specific sampling sequences.

For computationally demanding models or scenarios, evaluating the model at several
parameter values may be too time-consuming. In this case, surrogate models can help.
Instead of the model, the surrogate is evaluated. Model evaluations are only necessary for
the generation of the surrogate. Spectral methods try to construct a surrogate model that
is designed to propagate input parameter distributions. The surrogate is a polynomial
expansion. Evaluations of the original model are only needed for the construction of
the surrogate. A well-known spectral method is polynomial chaos expansion. Here,
“chaos” does not relate its use for dynamical systems but rather means a stochastic
process [Sullivan, 2015]. While polynomial chaos implies Gaussian random variables,
generalized polynomial chaos is used for all parameter distributions.

There are three common approaches for calculating the coefficients of generalized poly-
nomial chaos expansions: stochastic Galerkin, point collocation, and discrete projection.

We distinguish between intrusive and non-intrusive methods: For intrusive methods,
the computerized model, the code, has to be adapted which is costly, complex, and
model-specific. Non-intrusive methods, on the other hand, do not require changes to
the model and are therefore more generally applicable. They might, however, require a
longer computation time.

Stochastic Galerkin is an intrusive approach based on projection. From the model, a
Galerkin system is derived. The resulting equations are often coupled. That means the
coefficients have to be calculated from a system of coupled ordinary differential equa-
tions. Stochastic Galerkin requires orthogonal polynomials which means that we are
limited regarding the distribution of the input parameters. For the common distribu-
tions, Table 8.1 lists the respective family of polynomials. The orthogonal polynomials
can be computed using the three-term recurrence. Stochastic Galerkin provides higher
accuracy than point collocation and discrete projection because there is no interpolation
and integration error. However, its complexity increases considerably for multiple un-
certain parameters. This method is commonly used for deterministic partial differential
equations [Sullivan, 2015].

139

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

Table 8.1: Orthogonal polynomials for common probability distributions for the uncertain input
parameters.

Distribution Family of polynomials

Gaussian Hermite
Gamma Laguerre

Beta Jacobi
Uniform Legendre

Point collocation, or stochastic collocation, is a non-intrusive interpolation or regres-
sion scheme. It can be used for general parameter distributions [Smith, 2014, p. 225].
The approach decouples stochastic and deterministic components of the model. Depend-
ing on the number of samples, it requires either an interpolation or regression scheme.
If the number of nodes is equal to the degree of the highest polynomial and therefore
to the number of coefficients, we need interpolation to determine the coefficients of the
expansion. Interpolation is not very robust, especially for a multi-dimensional input
parameter space. In addition, the accuracy in between the nodes is difficult to assess
and control [Xiu, 2017]. Moreover, interpolation suffers from Runge’s phenomenon if the
sample points are chosen equidistant [Smith, 2014, p. 251]. As a workaround, Chebyshev
polynomials can be utilized. Regression alleviates the problems regarding the robust-
ness of the interpolation especially when the samples of the solution, the model response,
include noise [Xiu, 2017]. The prerequisite for the regression scheme is that the num-
ber of samples is larger than the number of coefficients. In this case, the system is
overdetermined. The coefficients can be calculated using least squares. Typically, a
linear oversampling M ≈ αN with α ∈ [1.5, 3] is used for a polynomial of degree N
[Xiu, 2017]. The nodes can be chosen by any sampling method, for example, Monte
Carlo or quasi-Monte Carlo sampling. For point collocation in higher dimensions, sparse
grids can be employed [Xiu, 2007]. Finally, discrete projection, or the pseudo-spectral
approach, is a non-intrusive integration scheme. Discrete projection shares attributes
of both stochastic Galerkin and point collocation: As for the Galerkin ansatz, discrete
projection requires orthogonal polynomials. Like point collocation, discrete projection
decouples stochastic and deterministic parts of the model response. It can be understood
as a discrete version of generalized polynomial chaos expansions [Xiu, 2007].

All three approaches need to approximate integrals. For large parameter dimensions,
stochastic quadrature techniques are optimal for the approximation. For lower dimen-
sions, deterministic quadrature approaches can be employed [Smith, 2014, p. 239]. In-
stead of using polynomials for the expansion, expansion can also be performed using
splines or radial basis functions, wavelets, or even non-smooth basis functions [Sullivan,
2015].

From the presented methods, sampling is suitable for crowd simulations because it
provides a distribution of the quantity of interest. In addition, it works with posteriors
obtained with Bayesian inference methods. Monte Carlo is a common approach, its only
downside is the slow convergence of the method. For computationally demanding models

140

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

or scenarios, a non-intrusive polynomial chaos expansion is preferable. That concerns,
in particular, simulations that cover large areas or include many agents. Both point
collocation and discrete projection are non-intrusive. Only point collocation is, however,
applicable to general parameter distributions.

8.3.1 Monte Carlo

For propagation with Monte Carlo, I randomly sample from the parameter distributions
and evaluate the model at each sample. For each realization, I collect the model response.
Typically, the histogram of the responses is visualized to analyze the distribution of
the quantity of interest. In addition, mean, variance or covariance, and higher-order
moments can be empirically calculated.

8.3.2 Generalized polynomial chaos expansion with point collocation

When using polynomial chaos, we construct a surrogate model for the model response
using a low-order expansion. An expansion in general is an approximation of a function
by a sum of other functions that are common, well-studied and therefore easier to handle.
Polynomial chaos expansions describe a class of expansions which utilize polynomials as
basis functions. Since the term “chaos” can be misleading, they are often also called
spectral expansions. The model response f(x) is represented by an infinite expansion
[Smith, 2014, p. 208]

f(x) = f0P̂0 +

∞∑
i1=1

fi1P̂1(Qi1) +

∞∑
i1=1

∞∑
i2=1

fi1,i2P̂2(Qi1 , Qi2) (8.1)

+

∞∑
i1=1

∞∑
i2=1

∞∑
i3=1

fi1,i2,i3P̂3(Qi1 , Qi2 , Qi3) + . . .

=

∞∑
k=0

fkΨk(Q1, Q2, . . .) (8.2)

with deterministic coefficients f0, fi1 , fi2 , . . . for the basis functions Ψk(Q) with increasing
interactions terms. Ψk(Q) are orthogonal polynomials. When using only K terms, the
expansion approximates the model response:

f(x) ≈
K∑
k=0

fkψk(Q1, Q2, . . .) (8.3)

This expansion separates the deterministic and stochastic parts into the coefficients
and basis functions, respectively. The orthogonal polynomials are chosen based on the
distribution of the uncertain input parameters, compare Table 8.1. Point collocation,
as well as stochastic Galerkin and discrete projection, are approaches to calculate the
coefficients for the expansion. Point collocation is a non-intrusive method and provides
high flexibility due to the regression approach. We solve the regression problem with

141

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

least-squares using M ≥ K+1 samples from the parameter space, that are the collocation
points qm,

minfk ‖ f(qm)−
K∑
k=0

fkψk(qm) ‖ . (8.4)

Based on the expansion, the statistical moments of the model response can be evalu-
ated [Smith, 2014, p. 209]:

E[f(x)] ≈ E[fK] = f0(t) (8.5)

Var[f(x)] ≈ Var[fK] =

K∑
k=1

f2
k (t)γk (8.6)

where γk = E[Ψ2
k(Q)] is a normalization factor.

Especially when propagating multiple parameters, the collocation nodes need to be
chosen carefully. Regularly sampled points can produce spurious oscillations and lead to
ill-conditioned collocation matrices [Smith, 2014, p. 217]. In addition, Lagrange polyno-
mials can be used to avoid large collocation matrices due to a high number of necessary
collocation points.

8.4 Studying impact of uncertain parameters on the prediction
uncertainty

At first, I demonstrate Monte Carlo sampling for propagating one uncertain parameter
in a single bottleneck scenario. In addition, I show how forward propagation can be
performed with generalized polynomial chaos using the point collocation approach. After
these rather didactic examples, I use forward propagation to quantify the uncertainty in
the model response for the scenario with five bottlenecks. I do this at three stages of the
process: (1) Before sensitivity analysis, using flat prior distributions for each parameter
according to Section 3.2.1, (2) with factor fixing in which all non-influential parameters
are fixed to arbitrary values within their prior ranges, and (3) using the joint posterior
distribution obtained by calibrating the influential parameters.

8.4.1 Propagation with Monte Carlo sampling

First, we take a look at how propagation with Monte Carlo sampling works by evaluat-
ing the uncertainty in the model response for a single bottleneck. I choose the widest
bottleneck (1.2 m) of the scenario with five bottlenecks. I propagate 1000 samples of the
uniform distribution for the free-flow speed mean, U(0.5, 2.2), through the optimal steps
model and evaluate the flow through the bottleneck. Figure 8.2 shows the histogram
of the Monte Carlo samples at which the model was evaluated together with the his-
togram of the model responses. We observe that the flow values are not uniform but
asymmetrically distributed. This is a consequence of a nonlinear relationship between
free-flow speed mean and flow. The flow varies between 1 s−1 and 6 s−1. While this is

142

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

a large variation, it is not surprising because of the wide distribution of the free-flow
speed mean.

(a) Prior samples (b) Model response

Figure 8.2: Forward propagation of prior parameter interval for free-flow speed mean in the
bottleneck scenario using Monte Carlo sampling.

8.4.2 Propagation with generalized polynomial chaos expansion

Second, we look into propagation using a generalized polynomial chaos expansion. I
calculate an expansion of order 2 from 100 model evaluations without averaging rep-
etitions. I determine the coefficients of the expansion using point collocation. That
means I perform a regression over the flow values. The expansion nodes are generated
by Monte Carlo sampling. The resulting expansion yields a coefficient of determination
of R2 = 0.9887. That means it fits the data well. Figure 8.3a shows the expansion for
the flow, the quantity of interest.

Now, we can calculate statistical modes of the distribution of flow directly from the
expansion. We are, however, also interested in the distribution of the flow values. In
order to obtain the distribution of the flow values, I employ kernel density estimation
(KDE). Typically, KDE is used to empirically estimate the probability density function
for a random variable for a given set of realizations. We obtain a data set by evaluating
the expansion at several points, here 10.000 points. This is cheap because it requires only
evaluations of a polynomial. Then, I apply the Gaussian KDE from chaospy to estimate
the probability density function of the quantity of interest, the flow. An important
step in kernel density estimation is smoothing. An important parameter is the kernel
bandwidth of the smoothing operator, often termed h or ε. In chaospy, the rules of
thumb by Scott [Scott, 1992, p. 144] and Silverman [Silverman, 1986, p. 45ff] are used
to choose the bandwidth. Figure 8.3b shows the probability density function of the
flow obtained by the Gaussian KDE. The distribution of the flow values agrees with the
results for Monte Carlo sampling implying that the expansion represents the model well.

143

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

(a) Generalized polynomial chaos expansion
for the flow

(b) Kernel density estimation (KDE) for the
probability density of the flow

Figure 8.3: Forward propagation of the free-flow speed mean in the bottleneck scenario to sim-
ulate the flow through the bottleneck using generalized polynomial chaos expansion
(gPCe) by point collocation approach.

8.4.3 Measuring the reduction of uncertainty in the simulation output due
to calibration

After the rather didactic examples of both Monte Carlo sampling and generalized poly-
nomial chaos expansion for propagation, we look into the propagation for the scenario
with five bottlenecks. We compare the flat priors with factor fixing and the joint poste-
rior obtained from calibration. I choose Monte Carlo sampling for propagation because it
allows us to utilize the posterior samples. Propagation using polynomial chaos expansion
cannot make use of posterior samples.

8.4.3.1 Propagation of initial parameter intervals

At first, I take the flat prior used for the sensitivity analysis presented in Section 3.2.1
and propagate them through the model. Figure 8.4 illustrates the distribution of the
flow for each bottleneck width. The obtained distribution is strongly asymmetric due
to the nonlinear relationship between uncertain parameters and the quantity of interest.
The probability mass lies mainly between the flow values of 0.5 s−1 and 2.5 s−1. As a
measure for the variation in the posterior, we take a look at the standard deviation. In
Table 8.2, we can see that the variation in the flow increases with increasing bottleneck
width. The standard deviation is about one-third of the average flow for each width.

8.4.3.2 Propagation with factor fixing

In the next step, I employ factor fixing: I fix the parameters that were deemed non-
influential in the sensitivity analysis, the number of agents, and the minimum step length,
to arbitrary values within their ranges. Figure 8.5 displays the resulting distribution of

144

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

Figure 8.4: Histogram of flow values for each bottleneck width (from 0.8 m to 1.2 m) for prop-
agating the uniform distributions for the uncertain parameters.

Table 8.2: Variation in flow after propagating initial flat parameter distributions. The coeffi-
cient of variation is the ratio of the standard deviation to the mean.

Bottleneck width [m] 0.8 0.9 1.0 1.1 1.2

Standard deviation of flow [1/s] 0.3885 0.4413 0.4819 0.5493 0.6146
Coefficient of variation 0.3649 0.3761 0.3745 0.3834 0.3853

the flow. From the standard deviation in Table 8.3, we can see that fixing the non-
influential parameters has no impact on the propagation. This is what I expected.
However, I vary fewer parameters with factor fixing and therefore need fewer evaluations.

Table 8.3: Variation in flow after propagating parameters not affected by factor fixing.

Bottleneck width [m] 0.8 0.9 1.0 1.1 1.2

Standard deviation of flow [1/s] 0.3641 0.4057 0.4569 0.5166 0.5715
Coefficient of variation 0.3454 0.3468 0.3562 0.3620 0.3590

8.4.3.3 Propagation of posterior distribution obtained with Bayesian inference

Even after calibration, there is still uncertainty in the output due to uncertainty in
the data used for calibration, uncertainties in the estimation process, and stochasticity
in the simulator when propagating samples. When we perform a simulation with a
calibrated model, this uncertainty must be quantified. I analyze the specific model
for the bottleneck scenario. Therefore, I keep non-influential parameters fixed. The
influential parameters are drawn from the joint posterior distribution obtained in Section

145

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

Figure 8.5: Histogram of flow values for each bottleneck width for propagating the flat priors on
the influential parameters, non-influential parameters were fixed to defaults (factor
fixing).

6.4.3.3. When propagating this model, we obtain the flow distribution illustrated in
Figure 8.6. The width of the posterior is considerably reduced compared to the previous
propagations. The probability mass lies between 1.25 s−1 and 2.5 s−1. When we take a
look at the standard deviation, in Table 8.4, we observe a considerable reduction of the
uncertainty in the propagation by a factor of about 3.3. In the application, this makes
a major difference to, say, the designer of an evacuation route who has to judge the
capacity of the doors in order to allow for a certain flow.

146

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

Figure 8.6: Histogram of flow values for each bottleneck width for propagating the joint pos-
terior for free-flow speed mean, free-flow speed standard deviation, personal space
strength, and obstacle repulsion obtained with Bayesian inference. Non-influential
parameters are fixed.

Table 8.4: Variation in flow when propagating the joint posterior for free-flow speed mean,
free-flow speed standard deviation, personal space strength, and obstacle repulsion.

Bottleneck width [m] 0.8 0.9 1.0 1.1 1.2

Standard deviation of flow [1/s] 0.1137 0.1192 0.1307 0.1558 0.1692
Coefficient of variation 0.0767 0.0725 0.0716 0.0758 0.0736

8.5 Summary

This chapter focused on answering the research question Q3: “How can we quantify the
uncertainty in the prediction for the bottleneck scenario?”. I answered two sub-questions:

Q3.1: Which uncertainty analysis methods are suited for crowd simulations?
I presented two methods for uncertainty analysis that are suitable for crowd simulations:
Monte Carlo sampling and a generalized polynomial chaos expansion based on point
collocation. The former works with all parameter distributions, even with posterior
distributions obtained with Bayesian inference. The latter performs well when simulating
scenarios with high computational demand due to a large topography or many agents.
I illustrated how the methods work on a didactic example. I propagate the free-flow
speed according to the prior distribution from Section 3.2.1 and evaluated the quantity
of interest, the flow.

Q3.2 How large is the uncertainty in the prediction for the bottleneck scenario before
and after calibrating influential parameters?

147

8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output

I applied Monte Carlo propagation to study the uncertainty before and after calibra-
tion. First, I propagated the flat priors for all parameters and evaluated the uncertainty
in the flow. Second, I performed factor fixing which means I fixed the non-influential
parameters to arbitrary values within their ranges. As expected, this does not affect
the output uncertainty. It does, however, reduce the input parameter space. Finally,
I used the four-dimensional joint posterior distribution obtained from Bayesian infer-
ence in Section 6.4.3.3 for propagation. The results showed that the uncertainty in the
output was reduced to less than a third of the original output uncertainty into a range
that makes, e. g., the evaluation of escape routes much clearer. As a measure for the
uncertainty in the response, I used the standard deviation of the distribution of the flow
values. My results demonstrate how a careful identification and estimation of parame-
ters can considerably reduce the uncertainty in the prediction. Even after calibration,
residual uncertainty is present in the response. Quantification of uncertainty in the simu-
lation output is therefore also necessary when predicting crowd behavior with calibrated
models.

148

9 Summary, conclusions, and future
directions

In this final chapter of my thesis, I briefly summarize the work presented in the previous
chapters and review what has been accomplished (Section 9.1). Then, I draw conclusions
(Section 9.2) and give an outlook on future work (Section 9.3).

9.1 Summary

The thesis started with a motivation for uncertainty analysis for crowd dynamics: For
simulations to contribute to pedestrian safety, we must know how reliable they are. We
need to identify and consider uncertainties in the modeling and simulation process to
quantify and reduce the uncertainty in the prediction.

In Chapter 2, I discussed the modeling of crowd behavior based on the modeling cycle.
Two essential steps are verification and validation. Uncertainty quantification can be
understood as a part of the validation. It needs to be included in all steps of modeling
and simulation to assess and improve the reliability of predictions. I described different
types of uncertainty and explained how they are introduced in the modeling process. In
this thesis, I focused on uncertainty in parameters due to lack of knowledge, which is an
epistemic uncertainty.

In the next chapter, Chapter 3, I introduced the models and scenarios that I examine.
Throughout the thesis, I analyzed a bottleneck scenario. Since constrictions can lead
to high densities and delays in evacuations, studying bottlenecks scenarios is crucial for
pedestrian safety. In addition, I investigated the multi-directional flow in a train station
overpass. With real-world trajectory data provided by Swiss Federal Railways (SBB), I
conducted a feasibility study on obtaining origin-destination matrices for dynamic ini-
tialization of the simulation. After introducing the scenarios, I described two locomotion
models, the optimal steps model and an emulator for the social force model. I used both
to simulate the flow through a bottleneck scenario. In addition, I briefly introduced the
crowd simulation framework Vadere with which I performed the simulations. Finally,
I described two effects observed in the simulation outcomes, stochasticity and noise. I
explained why and where stochastic terms are introduced in the simulation and outlined
how I handle them.

Chapter 4 was dedicated to finding suitable software to perform uncertainty quantifi-
cation for crowd simulations. I derived the functional (FR) and non-functional require-
ments (NFR) on such software. Then, I presented state-of-the-art software frameworks
and their shortcomings with respect to these requirements. While there are several

149

9 Summary, conclusions, and future directions

frameworks available, none of them fulfills all mandatory requirements. Therefore, I de-
cided to design and implement my own framework. The architecture of the framework
assures modularity (NRF1). More precisely, I employ the strategy pattern to separate
algorithms from infrastructure so that the framework is easily expandable. For increased
readability, the framework follows the Python coding style, PEP 8 (NFR2). The frame-
work provides routines for parameter identification (FR3), parameter estimation (FR4),
and uncertainty analysis (FR5). The methods are adapted to crowd simulations and
can be applied to all models implemented in Vadere (FR2). They are carefully tested by
unit tests which are carried out in a continuous-integration pipeline (NFR4). Existing
interfaces such as the suq-controller to Vadere are supported (FR1). The results are re-
producible (FR6) and can be stored to file (FR7). The resulting framework is provided
open-source (NFR3), and I used it throughout the thesis.

In Chapter 5, I presented methods from uncertainty quantification to identify influ-
ential parameters and to rank them by their impact on the simulation outcome. I chose
two methods that are particularly suitable for crowd simulations: Sobol’ indices and
activity scores. I calculated both measures for the flow through the bottleneck. As a
byproduct of the active subspace method, I also obtained the first eigenvector metric and
the derivative-based global sensitivity metrics. All metrics rank the parameters in the
bottleneck scenario consistently: The most influential parameter is the free-flow speed
mean, followed by the free-flow speed standard deviation, the obstacle repulsion, and
the personal space strength. The individual free-flow speed of each agent is the speed
which with it moves unhindered through a space. It is drawn from a truncated normal
distribution. The parameters obstacle repulsion and personal space strength ensure that
agents keep a natural distance to each other and to walls. The analysis also showed
that interactions are only present between free-flow speed mean and standard deviation.
Two parameters, the minimum step length, and the number of agents were deemed non-
influential. For subsequent studies, these parameters can be fixed to an arbitrary value
within their range. In addition to ranking the individual parameters, the active subspace
method also found a one-dimensional subspace of the input parameter space from which
a reduced-order model can be derived.

The next chapter, Chapter 6, focused on the calibration of the influential parame-
ters in the bottleneck scenario. So far, calibration in crowd dynamics has mainly been
performed through point estimates such as maximum likelihood estimates. In contrast,
Bayesian inference provides full posterior distributions which consider residual uncer-
tainty after calibration. I identified two approaches for Bayesian inference that are
suitable for crowd simulation: the likelihood-based random walk Metropolis algorithm
and the likelihood-free approximate Bayesian computation. I successfully performed a
proof-of-concept with artificial data for both methods. Then, I compared approximate
Bayesian computation as a representative for Bayesian inference to a point estimate, the
posterior mean, in three case studies. The results highlighted that point estimates can
be sufficient when the posterior distribution is symmetric and unimodal. However, when
a non-symmetric or multi-modal posterior is present, the full posterior distribution needs
to be considered for subsequent studies. It can only be provided by Bayesian inference.
For multi-dimensional calibration, the joint posterior distribution contains additional

150

9 Summary, conclusions, and future directions

information about the parameters and the calibration process: For the calibration of the
four influential parameters, the shape of the univariate posterior distribution showed
that the free-flow speed mean, the obstacle repulsion, and the personal space strength
were well informed by the dataset employed for calibration. The free-flow speed standard
deviation, however, was not informed to the same degree. Additionally, the posterior
revealed correlations between the free-flow speed mean and each other parameter con-
cerning the experimental data.

In Chapter 7, I tackled the challenge of a dynamic initialization for real-time simula-
tions of crowds during events. The origins and destinations of the agents are crucial for
this. Origin-destination matrices describe the popularity of combinations of origins and
destinations. I conducted a feasibility study on whether we can predict origin-destination
matrices for the simulation from live sensor data in form of density heatmaps. These
heatmaps can be reliably and quickly obtained from a variety of sensors. For this study,
Swiss Federal Railways (SBB) provided real-world trajectory data from the train station
overpass obtained from stereo sensors. I employed two statistical learning models for
the estimation: a multivariate linear regression model and random forest. Both mod-
els are simple, robust, and explainable. The linear regression successfully predicts the
OD matrices. To address the nonlinearities in the input-output relationship, I applied
a random forest model which captured the shape of the output space better but over-
all performed slightly worse in terms of R2 score. My results show that both learning
models successfully predict origin-destination matrices from density heatmaps.

The last chapter, Chapter 8, was dedicated to quantifying the uncertainty in the
prediction for the bottleneck scenario after calibration. I presented two methods for
uncertainty analysis that are suitable for crowd simulations: Monte Carlo sampling
and a generalized polynomial chaos expansion based on point collocation. The former
works with all parameter distributions, even with posterior distributions obtained with
Bayesian inference. The latter is in particular well suited for scenarios with high com-
putational demand, e. g. when the topography is large or when there are many agents. I
applied Monte Carlo propagation to compare the uncertainty before and after calibration.
I propagated the prior parameter distributions and the four-dimensional joint posterior
distribution obtained from Bayesian inference. The results showed that the uncertainty
in the output was reduced to less than a third of the original output uncertainty.

9.2 Conclusions

In this thesis, I investigated the impact of parameter uncertainty on the simulation results
and proposed a three-step approach to form a specific model with reduced uncertainty:
(1) identification of influential and non-influential parameters, (2) calibration of influ-
ential parameters, (3) quantification of the uncertainty in the simulation output for the
specific model. Throughout the thesis, I investigated an essential dynamic in all ingress
and egress scenarios: the flow through a bottleneck. My results show that calibration of
the influential parameter considerably reduced the uncertainty in the prediction. This
is crucial for a reliable simulation.

151

9 Summary, conclusions, and future directions

In particular, I addressed one requirement and answered four research questions:
R1: Choose or design a software for uncertainty quantification for crowd simulations

I defined the functional and non-functional requirements for an uncertainty quantifica-
tion software for crowd simulations. Since none of the available frameworks fulfill all
requirements, I designed and implemented my own framework. It provides implemen-
tations of methods for parameter identification, parameter estimation, and uncertainty
analysis adapted to crowd simulations. I designed the framework in a modular way by
employing the strategy pattern so that algorithms are separated from infrastructure.
The framework is the basis for all studies that I performed throughout this dissertation.
Moreover, it is available open-source for the scientific community to perform uncertainty
quantification studies for crowd simulation. This closes a gap and I expect it to promote
the use of uncertainty quantification methods in crowd dynamics.

Q1: How can we identify influential parameters in the optimal steps model for the
bottleneck scenario? I identified Sobol’ indices and activity scores as suitable metrics
for parameter ranking in crowd simulations. For the bottleneck scenario, both metrics
ranked the parameters consistently: The most influential parameter is the free-flow speed
mean, followed by the free-flow speed standard deviation, the obstacle repulsion, and the
personal space strength. We need to concentrate our efforts on these parameters (factor
prioritization). The analysis revealed that interactions are only present between free-
flow speed mean and standard deviation. Two parameters, the minimum step length,
and the number of agents were deemed non-influential. These parameters are fixed to
arbitrary values within their range for subsequent studies (factor fixing). This is helpful
in practice because it reduces the number of model evaluations necessary for calibration
and forward propagation. Moreover, the active subspace method which provides the
activity scores revealed a one-dimensional active subspace in the input parameter space.
That means the model response varies primarily along a linear combination of the input
parameters. Especially for computationally expensive scenarios, a reduced-order model
based on the active subspace allows otherwise infeasible parameter studies.

Q2: How can we calibrate the influential parameters in the bottleneck scenario? So far,
calibration of crowd dynamics models is typically carried out with point estimates such
as maximum likelihood estimates. I proposed Bayesian inference methods for calibration
which provide a full posterior distribution of the parameters instead of a single value.
The posterior reflects the remaining uncertainty after calibration due to measurement
noise in the data and model error. This uncertainty has to be considered for subsequent
studies. In three case studies, I compared a Bayesian inference method, approximate
Bayesian computation, to point estimation. While the point estimate appeared sufficient
when the posterior is unimodal and symmetric, it fails when the posterior is multimodal.
In the case study, this lead to miscalculated egress times at a bottleneck. When one
plans large events, this can endanger pedestrian safety. This example also exposed a
need for caution when transferring calibrated parameters from one safety scenario to
another. When multiple parameters are calibrated, the posterior distribution provides
insight into parameter correlations with respect to the data and how well each parameter
is informed by the data. High correlations among parameters highlight the need to infer
all parameters simultaneously rather than calibrating them separately.

152

9 Summary, conclusions, and future directions

Q2*: Can we predict origin-destination matrices for the initialization of origins and
destinations in the simulation from live sensor data in form of density heatmaps? One
crucial step towards real-time simulations is the online initialization of the simulation.
For this, initial and boundary conditions need to be continuously estimated. Origin-
destination (OD) matrices contain all information regarding the agents’ sources and
destinations. These are mandatory for the simulation. I performed a case study in
which I estimated dynamic OD matrices from density heatmaps. Density heatmaps can
nowadays be automatically extracted from sensor data. For this study, Swiss Federal
Railways (SBB) provided trajectory data obtained with stereo sensors in the overpass
of the Basel train station. I proposed two statistical learning models, multivariate linear
regression and random forest for the estimation because they are both easy to under-
stand, robust, and explainable. Both models successfully predicted the OD matrices.
However, there is still room for improvement in terms of accuracy. I consider this a
promising direction for new research. Altogether, the case study showed how classi-
cal parameter estimation can be complemented with new methods when it comes to
real-time simulations.

Q3: How can we quantify the uncertainty in the prediction for the bottleneck scenario?
For the bottleneck scenario, I applied Monte Carlo propagation to measure the effect
of the calibration of the influential parameters: First, I propagated the prior parameter
distribution through the model. Then, I employed the specific model defined by the joint
posterior distribution obtained from calibration and by fixing non-influential parameters
and performed propagation. The uncertainty in the prediction of the specific model was
reduced to less than a third compared to the original parameter intervals into a range
that makes, e. g., the evaluation of escape routes much clearer. My results demonstrate
how a careful identification and estimation of parameters can significantly reduce the
uncertainty in the prediction. They also highlight the importance of uncertainty analysis
because they showed that there is still uncertainty in the simulation output present even
after careful calibration.

9.3 Future directions

Real-time predictions are an emerging challenge in crowd dynamics. They are an essen-
tial step towards decision support systems. The three-step approach of this thesis aims
at beforehand studies. It is computationally expensive and therefore not necessarily suit-
able for real-time predictions. It helps however to focus on influential parameters when
the quantities of interests are known beforehand. However, the estimation of parame-
ters and initial and boundary conditions based on sensor data as well as propagation
must be performed in real-time. Future work must therefore deal with the identification
and adaption of efficient methods that ideally run continuously alongside the prediction
throughout an event. Along these lines, Chapter 7 focused on the estimation of ini-
tial and boundary conditions for the dynamic initialization of a simulation. My results
encourage spending more time on the identification of a suitable nonlinear statistical
learning model that represents the data better.

153

9 Summary, conclusions, and future directions

Crowd simulations are being used for ever larger and computationally more demanding
scenarios. To speed up their calibration, Bayesian inference can be carried out in an
active subspace instead of the full input parameter space. This reduces the effective
number of parameters to calibrate. I described the approach in Section 6.4.4. One
central step is the construction of a so-called ridge approximation, a surrogate model
based on the active subspace. In order to make this approach available to the scientific
community, the construction of the surrogate model needs to be implemented and a
proof-of-concept should be performed.

Dynamic surrogate models for crowd dynamics models could address two challenges:
non-continuous parameter types in conventional models and the comparison of reality
to simulation. In a surrogate model, all parameter types can be sampled continuously,
independent of the parameter type in the original model. Surrogate models based on the
Koopman operator rely on the eigenfunctions of the system that is to be emulated. These
eigenfunctions can be used to compare simulations and real data. Such a comparison
serves as a basis for parameter estimation, which requires that the model and the data
represent the same system. In addition, surrogate models can be evaluated cheaply.
This allows parameter studies for large scenarios with many agents. Hence, I consider
surrogate models a promising approach to perform parameter studies for models with
non-continuous parameter types to compare underlying dynamics between observations
and simulations.

This thesis focused on the influence of parameter uncertainties on the prediction.
However, beyond that, there are other uncertainties and errors in the process. One is
model error, which is the discrepancy between model and reality. It is well known that
a model is a simplified representation of reality and that this simplification introduces
errors. However, the size and distribution of the errors are usually unknown. For a
complete analysis of uncertainty, this uncertainty needs to be estimated. This certainly
is a gigantic task. Especially since observation of crowds is not comparable to measuring
a device. Nevertheless, modelers should always stay aware of it.

Parameter studies such as those presented in this thesis are limited by the nature
and structure of the models. Ideally, the models have continuous input parameters
and there is a continuous relationship between input variables and simulation results.
When designing new models, parsimony and comprehensibility are often emphasized,
and rightly so. However, one should also make sure that the models can be sufficiently
analyzed to increase the reliability of the simulations and thus enhance the confidence
in the simulations. In particular, heuristic models often violate the assumptions that
are necessary for parameter studies due to numerous yes-no decisions and true-false
parameters. As a consequence, approaches such as the active subspace method that
relies on gradients, cannot be applied to these models. I consider the design of a new
model for crowd dynamics that are easy to analyze as a challenging continuation of the
ideas presented in this work.

154

Bibliography

Brian M. Adams, William J. Bohnhoff, Keith R. Dalbey, Mohamed S. Ebeida, John P.
Eddy, Michael S. Eldred, Gianluca Geraci, Russell W. Hooper, Patricia D. Hough,
Kenneth T. Hu, John D. Jakeman, Mohammad Khalil, Jason A. Maupin, Kathryn A.
Monschke, Elliott M. Ridgway, Ahmad A. Rushdi, J.A. Stephens, Laura P. Swiler,
Dena M. Vigil, Timothy M. Wildey, and Justin G. Winokur. Dakota, a multilevel
parallel object-oriented framework for design optimization, parameter estimation, un-
certainty quantification, and sensitivity analysis: Version 6.11 User’s manual. Techni-
cal report, Sandia National Laboratories, 2014. URL https://dakota.sandia.gov/

sites/default/files/docs/6.11/Users-6.11.0.pdf.

Juliane Adrian, Nikolai Bode, Martyn Amos, Mitra Baratchi, Mira Beermann, Maik
Boltes, Alessandro Corbetta, Guillaume Dezecache, John Drury, Zhijian Fu, Roland
Geraerts, Steve Gwynne, Gesine Hofinger, Aoife Hunt, Tinus Kanters, Angelika
Kneidl, Krisztina Konya, Gerta Köster, Mira Küpper, Georgios Michalareas, Fergus
Neville, Evangelos Ntontis, Stephen Reicher, Enrico Ronchi, Andreas Schadschneider,
Armin Seyfried, Alastair Shipman, Anna Sieben, Michael Spearpoint, Gavin Brent
Sullivan, Anne Templeton, Federico Toschi, Zeynep Yücel, Francesco Zanlungo, Iker
Zuriguel, Natalie van der Wal, Frank van Schadewijk, Cornelia von Krüchten, and
Nanda Wijermans. A glossary for research on human crowd dynamics. Collective
Dynamics, 2019. doi:10.17815/CD.2019.19.

Yoongho Ahn, Tomoya Kowada, Hiroshi Tsukaguchi, and Upali Vandebona. Estimation
of passenger flow for planning and management of railway stations. Transportation Re-
search Procedia, 25:315–330, 2017. doi:10.1016/j.trpro.2017.05.408. World Conference
on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016.

Amani A. Alahmadi, Jennifer A. Flegg, Davis G. Cochrane, Christopher C. Drovandi,
and Jonathan M. Keith. A comparison of approximate versus exact techniques for
Bayesian parameter inference in nonlinear ordinary differential equation models. Royal
Society Open Science, 7(3):191315, 2020. doi:10.1098/rsos.191315.

American Society of Mechanical Engineers. Guide for Verification and Validation in
Computational Solid Mechanics. ASME V&V. American Society Of Mechanical En-
gineers (ASME), 2006. ISBN 9780791873168.

Gianluca Antonini, Michel Bierlaire, and Mats Weber. Discrete choice models of pedes-
trian walking behavior. Transportation Research Part B: Methodological, 40(8):667–
687, 2006. doi:10.1016/j.trb.2005.09.006.

155

https://dakota.sandia.gov/sites/default/files/docs/6.11/Users-6.11.0.pdf
https://dakota.sandia.gov/sites/default/files/docs/6.11/Users-6.11.0.pdf
https://doi.org/10.17815/CD.2019.19
https://doi.org/10.1016/j.trpro.2017.05.408
https://doi.org/10.1098/rsos.191315
https://doi.org/10.1016/j.trb.2005.09.006

Bibliography

Jason D. Averill. Five grand challenges in pedestrian and evacuation dynamics. In
Richard D. Peacock, Erica D. Kuligowski, and Jason D. Averill, editors, Pedestrian and
Evacuation Dynamics, pages 1–11, Boston, MA, 2011. Springer US. doi:10.1007/978-
1-4419-9725-8 1.

Gabriel Baglietto and Daniel R. Parisi. Continuous-space automaton
model for pedestrian dynamics. Physical Review E, 83(5):056117, 2011.
doi:10.1103/PhysRevE.83.056117.

Muhammad Baqui and Rainald Löhner. Towards real-time monitoring of the hajj. In
Proceedings from the 9th International Conference on Pedestrian and Evacuation Dy-
namics, pages 394–402, 2020. doi:10.17815/CD.2020.75.

Chris P. Barnes, Sarah Filippi, Michael P. H. Stumpf, and Thomas Thorne. Considerate
approaches to constructing summary statistics for abc model selection. Statistics and
Computing, 22(6):1181–1197, 11 2012. doi:10.1007/s11222-012-9335-7.

Michaël Baudin, Anne Dutfoy, Bertrand Iooss, and Anne-Laure Popelin. OpenTURNS:
An Industrial Software for Uncertainty Quantification in Simulation, pages 2001–2038.
Springer International Publishing, Cham, 2017. doi:10.1007/978-3-319-12385-1 64.

Dietmar Bauer. Estimating origin-destination-matrices depending on the time of the
day from high frequent pedestrian entry and exit counts. IET Intelligent Transport
Systems, 6(4):463–473, 2012. doi:10.1049/iet-its.2011.0156.

Mark A. Beaumont, Wenyang Zhang, and David J. Balding. Approximate Bayesian
computation in population genetics. Genetics, 162(4):2025–2035, 2002. ISSN 0016-
6731. URL https://www.genetics.org/content/162/4/2025.

Mario Bebendorf. A Note on the Poincaré Inequality for Convex Domains. Zeitschrift
für Analysis und ihre Anwendungen, 22(4):751–756, 2003. doi:10.4171/ZAA/1170.

Michael G.H. Bell. The estimation of origin-destination matrices by constrained gen-
eralised least squares. Transportation Research Part B: Methodological, 25(1):13–22,
1991. doi:10.1016/0191-2615(91)90010-G.

Nicola Bellomo and Abdelghani Bellouquid. On multiscale models of pedestrian crowds
from mesoscopic to macroscopic. Communications in Mathematical Sciences, 13(7):
1649–1664, 2015. doi:10.4310/cms.2015.v13.n7.a1.

Jean L. Berrou, Jonathan Beecham, Philippe Quaglia, Marios A. Kagarlis, and Alex
Gerodimos. Calibration and validation of the legion simulation model using empirical
data. In Nathalie Waldau, Peter Gattermann, Hermann Knoflacher, and Michael
Schreckenberg, editors, Pedestrian and Evacuation Dynamics 2005, pages 167–181,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-47064-9 -
15.

156

https://doi.org/10.1007/978-1-4419-9725-8_1
https://doi.org/10.1007/978-1-4419-9725-8_1
https://doi.org/10.1103/PhysRevE.83.056117
https://doi.org/10.17815/CD.2020.75
https://doi.org/10.1007/s11222-012-9335-7
https://doi.org/10.1007/978-3-319-12385-1_64
https://doi.org/10.1049/iet-its.2011.0156
https://www.genetics.org/content/162/4/2025
https://doi.org/10.4171/ZAA/1170
https://doi.org/10.1016/0191-2615(91)90010-G
https://doi.org/10.4310/cms.2015.v13.n7.a1
https://doi.org/10.1007/978-3-540-47064-9_15
https://doi.org/10.1007/978-3-540-47064-9_15

Bibliography

Bert Bettonvil and Jack P.C. Kleijnen. Searching for important factors in simulation
models with many factors: Sequential bifurcation. European Journal of Operational
Research, 96(1):180–194, 1997. doi:10.1016/S0377-2217(96)00156-7.

Carlo Bianca and Caterina Mogno. A thermostatted kinetic theory model for event-
driven pedestrian dynamics. The European Physical Journal Plus, 133, 2018.
doi:10.1140/epjp/i2018-12055-5.

Daniel H. Biedermann, Carolin Torchiani, Peter M. Kielar, David Willems, Oliver Han-
del, Stefan Ruzika, and André Borrmann. A hybrid and multiscale approach to model
and simulate mobility in the context of public events. Transportation Research Proce-
dia, 19:350–363, 2016. doi:10.1016/j.trpro.2016.12.094. Transforming Urban Mobility.
mobil.TUM 2016. International Scientific Conference on Mobility and Transport.

Jean-Baptiste Blanchard, Guillaume Damblin, Jean-Marc Martinez, Gilles Arnaud, and
Fabrice Gaudier. The Uranie platform: an open-source software for optimisation,
meta-modelling and uncertainty analysis. EPJ Nuclear Sci. Technol., 5(4):1–32, 2019.
doi:10.1051/epjn/2018050.

Michael G.B. Blum. Choosing the summary statistics and the acceptance rate in ap-
proximate Bayesian computation. In Yves Lechevallier and Gilbert Saporta, editors,
Proceedings of COMPSTAT’2010, pages 47–56, Heidelberg, 2010. Physica-Verlag HD.
doi:10.1007/978-3-7908-2604-3 4.

Eric Bonabeau. Agent-based modeling: Methods and techniques for simulating human
systems. Proceedings of the National Academy of Sciences, 99(suppl 3):7280–7287,
2002. doi:10.1073/pnas.082080899.

Emanuele Borgonovo. A new uncertainty importance measure. Reliability Engineering
& System Safety, 92(6):771–784, 2007. doi:10.1016/j.ress.2006.04.015.

Emanuele Borgonovo and George E. Apostolakis. A new importance measure for risk-
informed decision making. Reliability Engineering & System Safety, 72(2):193–212,
2001. doi:10.1016/S0951-8320(00)00108-3.

Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review of re-
cent advances. European Journal of Operational Research, 248(3):869–887, 2016.
doi:10.1016/j.ejor.2015.06.032.

André Borrmann, Angelika Kneidl, Gerta Köster, Stefan Ruzika, and Markus Thiemann.
Bidirectional coupling of macroscopic and microscopic pedestrian evacuation models.
Safety Science, 50:1695–1703, 2012. doi:10.1016/j.ssci.2011.12.021.

Ernst Bosina. A New Generic Approach to the Pedestrian Fundamental Diagram. PhD
thesis, Institut für Verkehrsplanung und Transportsysteme (IVT), ETH Zürich, 2018.
URL https://doi.org/10.3929/ethz-b-000296226.

157

https://doi.org/10.1016/S0377-2217(96)00156-7
https://doi.org/10.1140/epjp/i2018-12055-5
https://doi.org/10.1016/j.trpro.2016.12.094
https://doi.org/10.1051/epjn/2018050
https://doi.org/10.1007/978-3-7908-2604-3_4
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1016/j.ress.2006.04.015
https://doi.org/10.1016/S0951-8320(00)00108-3
https://doi.org/10.1016/j.ejor.2015.06.032
https://doi.org/10.1016/j.ssci.2011.12.021
https://doi.org/10.3929/ethz-b-000296226

Bibliography

Ernst Bosina and Ulrich Weidmann. Estimating pedestrian speed using aggregated
literature data. Physica A: Statistical Mechanics and its Applications, 468:1–29, 2017.
doi:10.1016/j.physa.2016.09.044.

Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. Classifi-
cation and Regression Trees. Chapman & Hall, London, 1st edition, 1984. ISBN
9780412048418.

Hans-Joachim Bungartz, Stefan Zimmer, Martin Buchholz, and Dirk Pflüger. Modeling
and Simulation: An Application-Oriented Introduction. Springer Undergraduate Texts
in Mathematics and Technology. Springer, Berlin Heidelberg, 2014. doi:10.1007/978-
3-642-39524-6.

Tom Burr and Alexei Skurikhin. Selecting summary statistics in approximate Bayesian
computation for calibrating stochastic models. BioMed Research International, 2013:
210646, 2013. doi:10.1155/2013/210646.

Mario C. Campanella, Serge P. Hoogendoorn, and Winnie Daamen. A methodology
to calibrate pedestrian walker models using multiple-objectives. In Richard D. Pea-
cock, Erica D. Kuligowski, and Jason D. Averill, editors, Pedestrian and Evacuation
Dynamics, pages 755–759, Boston, MA, 2011. Springer US. doi:10.1007/978-1-4419-
9725-8 69.

Ennio Cascetta. Estimation of trip matrices from traffic counts and survey data: A
generalized least squares estimator. Transportation Research Part B: Methodological,
18(4):289–299, 1984. doi:10.1016/0191-2615(84)90012-2.

K.S. Chan, William H.K. Lam, L.Q. Ouyang, and S.C. Wong. Simultaneous estimation
of the pedestrian origin-destination matrix and parameter of the activity/destination
choice model. Journal of the Eastern Asia Society for Transportation Studies, 6:1760–
1773, 2007. doi:10.11175/easts.7.1760.

Jiayan Chen, Jia Yu, Jiahong Wen, Chuanrong Zhang, Zhan’e Yin, Jianping Wu, and
Shenjun Yao. Pre-evacuation time estimation based emergency evacuation simulation
in urban residential communities. International Journal of Environmental Research
and Public Health, 16(23):4599, 11 2019. doi:10.3390/ijerph16234599.

Xu Chen, Martin Treiber, Venkatesan Kanagaraj, and Haiying Li. Social force models
for pedestrian traffic – state of the art. Transport Reviews, 38(5):625–653, 2018.
doi:10.1080/01441647.2017.1396265.

Mohcine Chraibi, Armin Seyfried, and Andreas Schadschneider. Generalized centrifugal-
force model for pedestrian dynamics. Physical Review E, 82(4):046111, 2010.
doi:10.1103/PhysRevE.82.046111.

Chih-Yuan Chu. A computer model for selecting facility evacuation design using cellular
automata. Computer-Aided Civil and Infrastructure Engineering, 24(8):608–622, 2009.
doi:10.1111/j.1467-8667.2009.00619.x.

158

https://doi.org/10.1016/j.physa.2016.09.044
https://doi.org/10.1007/978-3-642-39524-6
https://doi.org/10.1007/978-3-642-39524-6
https://doi.org/10.1155/2013/210646
https://doi.org/10.1007/978-1-4419-9725-8_69
https://doi.org/10.1007/978-1-4419-9725-8_69
https://doi.org/10.1016/0191-2615(84)90012-2
https://doi.org/10.11175/easts.7.1760
https://doi.org/10.3390/ijerph16234599
https://doi.org/10.1080/01441647.2017.1396265
https://doi.org/10.1103/PhysRevE.82.046111
https://doi.org/10.1111/j.1467-8667.2009.00619.x

Bibliography

Andrew Collins, Terra Elzie, Erika Frydenlund, and R. Michael Robinson. Do groups
matter? An agent-based modeling approach to pedestrian egress. Transportation
Research Procedia, 2:430–435, 2014. doi:10.1016/j.trpro.2014.09.051. The Conference
on Pedestrian and Evacuation Dynamics 2014 (PED 2014).

Annachiara Colombi, Marco Scianna, and Alessandro Alaia. A discrete mathematical
model for the dynamics of a crowd of gazing pedestrians with and without an evolving
environmental awareness. Computational and Applied Mathematics, 36:1113–1141,
2017. doi:10.1007/s40314-016-0316-x.

Paul G. Constantine. Active Subspaces: Emerging Ideas for Dimension Reduction
in Parameter Studies. Society for Industrial and Applied Mathematics, 2015.
doi:10.1137/1.9781611973860.

Paul G. Constantine and Paul Diaz. Global sensitivity metrics from active subspaces. Re-
liability Engineering & System Safety, 162:1–13, 2017. doi:10.1016/j.ress.2017.01.013.

Paul G. Constantine, Carson Kent, and Tan Bui-Thanh. Accelerating Markov Chain
Monte Carlo with active subspaces. SIAM Journal on Scientific Computing, 38(5):
A2779–A2805, 2016. doi:10.1137/15M1042127.

Winnie Daamen and Serge P. Hoogendoorn. Calibration of pedestrian simulation model
for emergency doors by pedestrian type. Transportation Research Record, 2316(1):
69–75, 2012. doi:10.3141/2316-08.

Winnie Daamen, Mario Campanella, and Serge P. Hoogendoorn. Calibration of Nomad
parameters using empirical data. In Valery V. Kozlov, Alexander P. Buslaev, Alexan-
der S. Bugaev, Marina V. Yashina, Andreas Schadschneider, and Michael Schrecken-
berg, editors, Traffic and Granular Flow ’11, pages 109–120, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-39669-4 11.

Maria Davidich and Gerta Köster. Towards automatic and robust adjustment of human
behavioral parameters in a pedestrian stream model to measured data. Safety Science,
50(5):1253–1260, 2012. doi:10.1016/j.ssci.2011.12.024.

Maria Davidich and Gerta Köster. Predicting pedestrian flow: A methodology and
a proof of concept based on real-life data. PLoS ONE, 8(12):1–11, 12 2013.
doi:10.1371/journal.pone.0083355.

Etienne de Rocquigny, Nicolas Devictor, and Stefano Tarantola, editors. Uncertainty in
Industrial Practice. John Wiley & Sons, Ltd, 2008. doi:10.1002/9780470770733.

Bert Debusschere, Khachik Sargsyan, Cosmin Safta, and Kenny Chowdhary. The uncer-
tainty quantification toolkit (UQTk). In Roger Ghanem, David Higdon, and Houman
Owhadi, editors, Handbook of Uncertainty Quantification, pages 1807–1827. Springer
International Publishing, 2017. doi:10.1007/978-3-319-12385-1 56.

159

https://doi.org/10.1016/j.trpro.2014.09.051
https://doi.org/10.1007/s40314-016-0316-x
https://doi.org/10.1137/1.9781611973860
https://doi.org/10.1016/j.ress.2017.01.013
https://doi.org/10.1137/15M1042127
https://doi.org/10.3141/2316-08
https://doi.org/10.1007/978-3-642-39669-4_11
https://doi.org/10.1016/j.ssci.2011.12.024
https://doi.org/10.1371/journal.pone.0083355
https://doi.org/10.1002/9780470770733
https://doi.org/10.1007/978-3-319-12385-1_56

Bibliography

Charitha Dias and Ruggiero Lovreglio. Calibrating cellular automaton models for
pedestrians walking through corners. Physics Letters A, 382(19):1255–1261, 2018.
doi:10.1016/j.physleta.2018.03.022.

Charitha Dias, Miho Iryo-Asano, Hiroaki Nishiuchi, and Tomoyuki Todoroki. Calibrat-
ing a social force based model for simulating personal mobility vehicles and pedes-
trian mixed traffic. Simulation Modelling Practice and Theory, 87:395–411, 2018.
doi:10.1016/j.simpat.2018.08.002.

Felix Dietrich and Gerta Köster. Gradient navigation model for pedestrian dynamics.
Physical Review E, 89(6):062801, 2014. doi:10.1103/PhysRevE.89.062801.

Felix Dietrich, Florian Künzner, Tobias Neckel, Gerta Köster, and Hans-Joachim Bun-
gartz. Fast and flexible uncertainty quantification through a data-driven surro-
gate model. International Journal for Uncertainty Quantification, 8:175–192, 2018.
doi:10.1615/Int.J.UncertaintyQuantification.2018021975.

John Drury. Recent developments in the psychology of crowds and collective behaviour.
Current Opinion in Psychology, 35:12–16, 2020. doi:10.1016/j.copsyc.2020.02.005.

Dorine C. Duives. Analysis and Modelling of Pedestrian Movement Dynamics at Large-
scale Events. PhD thesis, Delft University of Technology, 2016. URL https://doi.

org/10.4233/uuid:08831f69-9b8e-44cf-8afe-f4a3e7bc9a9c.

Dorine C. Duives, Winnie Daamen, and Serge P. Hoogendoorn. Continuum mod-
elling of pedestrian flows - Part 2: Sensitivity analysis featuring crowd movement
phenomena. Physica A: Statistical Mechanics and its Applications, 447:36–48, 2016.
doi:10.1016/j.physa.2015.11.025.

Christian Eilhardt and Andreas Schadschneider. Stochastic headway dependent velocity
model for 1d pedestrian dynamics at high densities. Transportation Research Procedia,
2:400–405, 2014. doi:10.1016/j.trpro.2014.09.043. The Conference on Pedestrian and
Evacuation Dynamics 2014 (PED 2014).

Paul Fearnhead and Dennis Prangle. Constructing summary statistics for approximate
Bayesian computation: semi-automatic approximate Bayesian computation. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 74(3):419–474,
2012. doi:10.1111/j.1467-9868.2011.01010.x.

Jonathan Feinberg and Hans P. Langtangen. Chaospy: An open source tool for designing
methods of uncertainty quantification. Journal of Computational Science, 11:46–57,
2015. doi:10.1016/j.jocs.2015.08.008.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, Boston,
MA, 1994. ISBN 0201633612.

160

https://doi.org/10.1016/j.physleta.2018.03.022
https://doi.org/10.1016/j.simpat.2018.08.002
https://doi.org/10.1103/PhysRevE.89.062801
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018021975
https://doi.org/10.1016/j.copsyc.2020.02.005
https://doi.org/10.4233/uuid:08831f69-9b8e-44cf-8afe-f4a3e7bc9a9c
https://doi.org/10.4233/uuid:08831f69-9b8e-44cf-8afe-f4a3e7bc9a9c
https://doi.org/10.1016/j.physa.2015.11.025
https://doi.org/10.1016/j.trpro.2014.09.043
https://doi.org/10.1111/j.1467-9868.2011.01010.x
https://doi.org/10.1016/j.jocs.2015.08.008

Bibliography

Ziyou Gao, Yunchao Qu, Xingang Li, Jiancheng Long, and Hai-Jun Huang. Simulating
the dynamic escape process in large public places. Operations Research, 62(6):1344–
1357, 2014. doi:10.1287/opre.2014.1312.

Alan E. Gelfand. Gibbs sampling. Journal of the American Statistical Association, 95
(452):1300–1304, 2000. doi:10.1080/01621459.2000.10474335.

Andrew Gelman, Gareth O. Roberts, and Walter R. Gilks. Efficient Metropolis jumping
rules. In Bayesian Statistics, volume 5, pages 599–607, 1996. ISBN 9780198523567.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-6(6):721–741, Nov 1984. doi:10.1109/TPAMI.1984.4767596.

Roger Ghanem, David Higdon, and Houman Owhadi, editors. Handbook of uncertainty
quantification. Springer, Cham, 06 2017. doi:10.1007/978-3-319-12385-1.

Peter G. Gipps and Bertil S. Marksjö. A micro-simulation model for pedestrian flows.
Mathematics and Computers in Simulation, 27(2–3):95–105, 1985. doi:10.1016/0378-
4754(85)90027-8.

Marion Gödel, Rainer Fischer, and Gerta Köster. Applying Bayesian inversion with
Markov Chain Monte Carlo to Pedestrian Dynamics. In UNCECOMP 2019, 3rd
ECCOMAS Thematic Conference on Uncertainty Quantification in Computational
Sciences and Engineering, 2019a. doi:10.7712/120219.6322.18561.

Marion Gödel, Rainer Fischer, and Gerta Köster. Towards inferring input parameters
from measurements: Bayesian inversion for a bottleneck scenario. In Traffic and
Granular Flow ’19, 2019b. doi:10.1007/978-3-030-55973-1 12.

Marion Gödel, Rainer Fischer, and Gerta Köster. Sensitivity analysis for microscopic
crowd simulation. Algorithms, 13, 2020a. doi:10.3390/a13070162.

Marion Gödel, Gerta Köster, Daniel Lehmberg, Manfred Gruber, Angelika Kneidl,
and Florian Sesser. Can we learn where people go? Collective Dynamics, 2020b.
doi:10.17815/CD.2020.43.

Marion Gödel, Luca Spataro, and Gerta Köster. Can we learn where people come from?
Retracing of pedestrians origins in merging situations. Technical report, Munich Uni-
versity of Applied Sciences, 2020c. URL https://doi.org/10.48550/arXiv.2012.

11527.

Marion Gödel, Nikolai Bode, Gerta Köster, and Hans-Joachim Bungartz. Bayesian
inference methods to calibrate crowd dynamics models for safety applications. Safety
Science, 147:105586, 2022. doi:10.1016/j.ssci.2021.105586.

161

https://doi.org/10.1287/opre.2014.1312
https://doi.org/10.1080/01621459.2000.10474335
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1007/978-3-319-12385-1
https://doi.org/10.1016/0378-4754(85)90027-8
https://doi.org/10.1016/0378-4754(85)90027-8
https://doi.org/10.7712/120219.6322.18561
https://doi.org/10.1007/978-3-030-55973-1_12
https://doi.org/10.3390/a13070162
https://doi.org/10.17815/CD.2020.43
https://doi.org/10.48550/arXiv.2012.11527
https://doi.org/10.48550/arXiv.2012.11527
https://doi.org/10.1016/j.ssci.2021.105586

Bibliography

Ren-Yong Guo, Hai-Jun Huang, and S.C. Wong. Route choice in pedestrian evac-
uation under conditions of good and zero visibility: Experimental and simula-
tion results. Transportation Research Part B: Methodological, 46(6):669–686, 2012.
doi:10.1016/j.trb.2012.01.002.

Stephen J. Guy, Jur van den Berg, Wenxi Liu, Rynson Lau, Ming C. Lin, and Dinesh
Manocha. A statistical similarity measure for aggregate crowd dynamics. ACM Trans.
Graph., 31(6):190:1–190:11, 2012. doi:10.1145/2366145.2366209.

Heikki Haario, Eero Saksman, and Johanna Tamminen. Adaptive proposal distribution
for random walk metropolis algorithm. Computational Statistics, 14:375–395, 1999.
doi:10.1007/s001800050022.

Jacques Hadamard. Sur les problèmes aux dérivés partielles et leur signication physique.
Princeton University Bulletin, 13:49–52, 1902.

Panagiotis E. Hadjidoukas, Panagiotis Angelikopoulos, Costas Papadimitriou, and Pet-
ros Koumoutsakos. Π4U: A high performance computing framework for Bayesian un-
certainty quantification of complex models. Journal of Computational Physics, 284:
1–21, 2015. doi:10.1016/j.jcp.2014.12.006.

Milad Haghani, Majid Sarvi, and Abbas Rajabifard. Simulating indoor evacuation of
pedestrians: The sensitivity of predictions to directional-choice calibration parameters.
Transportation Research Record, 2018. doi:10.1177/0361198118796351.

Edward T. Hall. The Hidden Dimension. Doubleday, New York, 1966.

Flurin S. Hänseler, Nicholas A. Molyneaux, and Michel Bierlaire. Estimation of pedes-
trian origin-destination demand in train stations. Transportation Science, 51(3):981–
997, 2017. doi:10.1287/trsc.2016.0723.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020. doi:10.1038/s41586-020-2649-2.

Florian Hartig, Justin M. Calabrese, Björn Reineking, Thorsten Wiegand, and Andreas
Huth. Statistical inference for stochastic simulation models - theory and application.
Ecology Letters, 14(8):816–827, 2011. doi:10.1111/j.1461-0248.2011.01640.x.

Wilfried K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970. doi:10.2307/2334940.

Dirk Helbing and Anders Johansson. Pedestrian, Crowd and Evacuation Dynamics,
pages 697–716. Springer New York, New York, NY, 2011. doi:10.1007/978-1-4419-
7695-6 37.

162

https://doi.org/10.1016/j.trb.2012.01.002
https://doi.org/10.1145/2366145.2366209
https://doi.org/10.1007/s001800050022
https://doi.org/10.1016/j.jcp.2014.12.006
https://doi.org/10.1177/0361198118796351
https://doi.org/10.1287/trsc.2016.0723
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1111/j.1461-0248.2011.01640.x
https://doi.org/10.2307/2334940
https://doi.org/10.1007/978-1-4419-7695-6_37
https://doi.org/10.1007/978-1-4419-7695-6_37

Bibliography

Dirk Helbing and Péter Molnár. Social force model for pedestrian dynamics. Physical
Review E, 51(5):4282–4286, 1995. doi:10.1103/PhysRevE.51.4282.

Dirk Helbing, Illés Farkas, and Tamás Vicsek. Simulating dynamical features of escape
panic. Nature, 407:487–490, 2000. doi:10.1038/35035023.

Jon Herman and Will Usher. SALib: An open-source Python library for sensitivity
analysis. The Journal of Open Source Software, 2(9), 01 2017. doi:10.21105/joss.00097.

K. Hirai and K. Tarui. A simulation of the behavior of a crowd in panic. In Proc. of the
1975 International Conference on Cybernetics and Society, page 409, 1975.

Serge P. Hoogendoorn and Piet H. L. Bovy. Pedestrian route-choice and activity schedul-
ing theory and models. Transportation Research Part B: Methodological, 38(2):169–
190, 2004. doi:10.1016/S0191-2615(03)00007-9.

Serge P. Hoogendoorn and Winnie Daamen. Microscopic parameter identification of
pedestrian models and implications for pedestrian flow modeling. Transportation Re-
search Record, 1982(1):57–64, 2006. doi:10.1177/0361198106198200108.

Serge P. Hoogendoorn and Winnie Daamen. Microscopic calibration and validation of
pedestrian models: Cross-comparison of models using experimental data. In Andreas
Schadschneider, Thorsten Pöschel, Reinhart Kühne, Michael Schreckenberg, and Di-
etrich E. Wolf, editors, Traffic and Granular Flow’05, pages 329–340. Springer Berlin
Heidelberg, 2007. doi:10.1007/978-3-540-47641-2 29.

Serge P. Hoogendoorn, Femke L.M. van Wageningen-Kessels, Winnie Daamen, and
Dorine C. Duives. Continuum modelling of pedestrian flows: From microscopic prin-
ciples to self-organised macroscopic phenomena. Physica A: Statistical Mechanics and
its Applications, 416:684–694, 2014. doi:10.1016/j.physa.2014.07.050.

Roger L. Hughes. The flow of large crowds of pedestrians. Mathematics and Computers
in Simulation, 53(4):367–370, 2000. doi:10.1016/S0378-4754(00)00228-7.

Mohamed Hussein and Tarek Sayed. A methodology for the microscopic calibra-
tion of agent-based pedestrian simulation models. In 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC), pages 3773–3778, Nov 2018.
doi:10.1109/ITSC.2018.8569395.

John Kells Ingram. A history of political economy. Cambridge University Press, 1888.

Bertrand Iooss and Paul Lemâıtre. A review on global sensitivity analysis methods, pages
101–122. Springer US, Boston, MA, 2015. doi:10.1007/978-1-4899-7547-8 5.

Tsutomu Ishigami and Toshimitsu Homma. An importance quantification technique
in uncertainty analysis for computer models. In [1990] Proceedings. First Inter-
national Symposium on Uncertainty Modeling and Analysis, pages 398–403, 1990.
doi:10.1109/ISUMA.1990.151285.

163

https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1038/35035023
https://doi.org/10.21105/joss.00097
https://doi.org/10.1016/S0191-2615(03)00007-9
https://doi.org/10.1177/0361198106198200108
https://doi.org/10.1007/978-3-540-47641-2_29
https://doi.org/10.1016/j.physa.2014.07.050
https://doi.org/10.1016/S0378-4754(00)00228-7
https://doi.org/10.1109/ITSC.2018.8569395
https://doi.org/10.1007/978-1-4899-7547-8_5
https://doi.org/10.1109/ISUMA.1990.151285

Bibliography

Michiel J.W. Jansen. Analysis of variance designs for model output. Computer Physics
Communications, 117(1):35–43, 1999. doi:10.1016/S0010-4655(98)00154-4.

Anders Johansson, Dirk Helbing, and Pradyumn Shukla. Specification of the social
force pedestrian model by evolutionary adjustment to video tracking data. Advances
in Complex Systems, 10:271–288, 2007. doi:10.1142/S0219525907001355.

Fredrik Johansson, Anders Peterson, and Andreas Tapani. Waiting pedestrians in the
social force model. Physica A: Statistical Mechanics and its Applications, 419:95–107,
2015. doi:10.1016/j.physa.2014.10.003.

Hsuan Jung and Paul Marjoram. Choice of summary statistic weights in approximate
Bayesian computation. Statistical applications in genetics and molecular biology, 10
(23089822):45, 09 2011. doi:10.2202/1544-6115.1586.

Armel U. Kemloh Wagoum, Antoine Tordeux, and Weichen Liao. Understanding human
queuing behaviour at exits: an empirical study. Royal Society Open Science, 4(1):
160896, 2017. doi:10.1098/rsos.160896.

Armel Ulrich Kemloh Wagoum, Bernhard Steffen, Armin Seyfried, and Mohcine Chraibi.
Parallel real time computation of large scale pedestrian evacuations. Advances in En-
gineering Software, 60-61:98–103, 2013. doi:10.1016/j.advengsoft.2012.10.001. CIVIL-
COMP: Parallel, Distributed, Grid and Cloud Computing.

Sultan D. Khan, Stefania Bandini, Saleh Basalamah, and Giuseppe Vizzari.
Analyzing crowd behavior in naturalistic conditions: Identifying sources and
sinks and characterizing main flows. Neurocomputing, 177:543–563, 2016.
doi:10.1016/j.neucom.2015.11.049.

Jack P.C. Kleijnen. Review of random and group-screening designs. Com-
munications in Statistics - Theory and Methods, 16(10):2885–2900, 1987.
doi:10.1080/03610928708829548.

Benedikt Kleinmeier and Gerta Köster. Experimental setups to observe evasion maneu-
vers in low and high densities. In Iker Zuriguel, Ángel Garcimart́ın, and Raúl Cruz,
editors, Traffic and Granular Flow 2019, Springer Proceedings in Physics. Springer,
2020. doi:10.1007/978-3-030-55973-1 15.

Benedikt Kleinmeier, Benedikt Zönnchen, Marion Gödel, and Gerta Köster. Vadere: An
open-source simulation framework to promote interdisciplinary understanding. Col-
lective Dynamics, 4, 2019. doi:10.17815/CD.2019.21.

Benedikt Kleinmeier, Gerta Köster, and John Drury. Agent-based simulation of collective
cooperation: From experiment to model. Journal of the Royal Society Interface, 17:
20200396, 2020. doi:10.1098/rsif.2020.0396.

Angelika Kneidl. S2UCRE - Sicherheit in Städtischen Umgebungen: Crowd Monitor-
ing, Prädiktion und Entscheidungsunterstützung; Teilvorhaben: Regelkreis zwischen

164

https://doi.org/10.1016/S0010-4655(98)00154-4
https://doi.org/10.1142/S0219525907001355
https://doi.org/10.1016/j.physa.2014.10.003
https://doi.org/10.2202/1544-6115.1586
https://doi.org/10.1098/rsos.160896
https://doi.org/10.1016/j.advengsoft.2012.10.001
https://doi.org/10.1016/j.neucom.2015.11.049
https://doi.org/10.1080/03610928708829548
https://doi.org/10.1007/978-3-030-55973-1_15
https://doi.org/10.17815/CD.2019.21
https://doi.org/10.1098/rsif.2020.0396

Bibliography

Realdaten und Simulation für realitätsnahe Prädiktion: Schlussbericht, 2021. URL
https://www.tib.eu/de/suchen/id/TIBKAT%3A1756553068.

Moonsoo Ko, Taewan Kim, and Keemin Sohn. Calibrating a social-force-based pedes-
trian walking model based on maximum likelihood estimation. Transportation, 40(1):
91–107, 01 2013. doi:10.1007/s11116-012-9411-z.

Anna Kormanová. A review on macroscopic pedestrian flow modelling. Acta Informatica
Pragensia, 2013(2):39–50, 2013. doi:10.18267/j.aip.22.

Gerta Köster and Benedikt Zönnchen. Queuing at bottlenecks using a dynamic
floor field for navigation. Transport Research Procedia, pages 344–352, 2014.
doi:10.1016/j.trpro.2014.09.029. The Conference on Pedestrian and Evacuation Dy-
namics 2014 (PED 2014).

Gerta Köster, Franz Treml, and Marion Gödel. Avoiding numerical pitfalls in social force
models. Physical Review E, 87(6):063305, 2013. doi:10.1103/PhysRevE.87.063305.

Gerta Köster, Franz Treml, Michael J. Seitz, and Wolfram Klein. Validation of crowd
models including social groups. In Ulrich Weidmann, Uwe Kirsch, and Michael
Schreckenberg, editors, Pedestrian and Evacuation Dynamics 2012, pages 1051–1063.
Springer International Publishing, 2014. doi:10.1007/978-3-319-02447-9 87.

Gerta Köster, Daniel Lehmberg, and Angelika Kneidl. Walking on stairs: Experiment
and model. Phys. Rev. E, 100:022310, 08 2019. doi:10.1103/PhysRevE.100.022310.

George Kouskoulis, Ioanna Spyropoulou, and Constantinos Antoniou. Pedestrian simu-
lation: Theoretical models vs. data driven techniques. International Journal of Trans-
portation Science and Technology, 7(4):241–253, 2018. doi:10.1016/j.ijtst.2018.09.001.
Special Issue on Advances in Transportation Modeling and Policy in the Modern Era.

Tobias Kretz, Anna Grünebohm, and Michael Schreckenberg. Experimental study of
pedestrian flow through a bottleneck. Journal of Statistical Mechanics: Theory and
Experiment, 2006(10):P10014, 10 2006. doi:10.1088/1742-5468/2006/10/P10014.

John K. Kruschke. Doing Bayesian Data Analysis: A Tutorial with R, JAGS and Stan.
Academic Press, Inc., 2nd edition, 2015. ISBN 9780124058880.

Sergei Kucherenko, Daniel Albrecht, and Andrea Saltelli. Exploring multi-dimensional
spaces: a comparison of Latin hypercube and quasi Monte Carlo sampling techniques.
arXiv, 2015. doi:10.48550/arXiv.1505.02350.

Florian Künzner. Efficient non-intrusive uncertainty quantification for large-
scale simulation scenarios. Dissertation, Technical University of Munich, Mu-
nich, 2021. URL http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:

91-diss-20210118-1576066-1-1.

165

https://www.tib.eu/de/suchen/id/TIBKAT%3A1756553068
https://doi.org/10.1007/s11116-012-9411-z
https://doi.org/10.18267/j.aip.22
https://doi.org/10.1016/j.trpro.2014.09.029
https://doi.org/10.1103/PhysRevE.87.063305
https://doi.org/10.1007/978-3-319-02447-9_87
https://doi.org/10.1103/PhysRevE.100.022310
https://doi.org/10.1016/j.ijtst.2018.09.001
https://doi.org/10.1088/1742-5468/2006/10/P10014
https://doi.org/10.48550/arXiv.1505.02350
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20210118-1576066-1-1
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20210118-1576066-1-1

Bibliography

Valentina Kurtc, Gerta Köster, and Rainer Fischer. Sensitivity analysis for resilient
safety design: Application to a bottleneck scenario. In John Littlewood, Robert J.
Howlett, and Lakhmi C. Jain, editors, Sustainability in Energy and Buildings 2020,
volume 203, pages 255–264. Springer Science + Business Media, 2021. doi:10.1007/978-
981-15-8783-2 21.

Gustave Le Bon. La Psychologie des Foules. Alcan, 1895.

Kurt Lewin. Field theory in social science: Selected theoretical papers. Harper, New
York, 1951.

Yan Li, Majid Sarvi, and Kourosh Khoshelham. Pedestrian origin-destination
estimation in emergency scenarios. In 2019 9th International Conference on
Fire Science and Fire Protection Engineering (ICFSFPE), pages 1–5, 2019.
doi:10.1109/ICFSFPE48751.2019.9055868.

Weichen Liao, Armin Seyfried, Jun Zhang, Maik Boltes, Xiaoping Zheng, and Ying
Zhao. Experimental study on pedestrian flow through wide bottleneck. Transportation
Research Procedia, 2:26–33, 2014. doi:10.1016/j.trpro.2014.09.005. The Conference on
Pedestrian and Evacuation Dynamics 2014 (PED 2014).

Jack Liddle, Armin Seyfried, Wolfram Klingsch, Tobias Rupprecht, Andreas Schad-
schneider, and Andreas Winkens. An experimental study of pedestrian conges-
tions: Influence of bottleneck width and length. arXiv, 0911.4350(v2), 2009. URL
https://arxiv.org/abs/0911.4350.

Ruggiero Lovreglio, Enrico Ronchi, and Daniel Nilsson. Calibrating floor field cel-
lular automaton models for pedestrian dynamics by using likelihood function opti-
mization. Physica A: Statistical Mechanics and its Applications, 438:308–320, 2015.
doi:10.1016/j.physa.2015.06.040.

Lili Lu, Ching-Yao Chan, Jian Wang, and Wei Wang. A study of pedestrian group
behaviors in crowd evacuation based on an extended floor field cellular automaton
model. Transportation Research Part C: Emerging Technologies, 81:317–329, 2017.
doi:10.1016/j.trc.2016.08.018.

Stefano Marelli and Bruno Sudret. UQLab: A Framework for Uncertainty Quan-
tification in Matlab, pages 2554–2563. American Society of Civil Engineers, 2014.
doi:10.1061/9780784413609.257.

Paul Marjoram, John Molitor, Vincent Plagnol, and Simon Tavaré. Markov chain Monte
Carlo without likelihoods. Proceedings of the National Academy of Sciences, 100(26):
15324–15328, 2003. doi:10.1073/pnas.0306899100.

Francisco Martinez-Gil, Migual Lozano, and Fernando Fernández. Strategies for simu-
lating pedestrian navigation with multiple reinforcement learning agents. Autonomous
Agents and Multi-Agent Systems, 2015. doi:10.1007/s10458-014-9252-6.

166

https://doi.org/10.1007/978-981-15-8783-2_21
https://doi.org/10.1007/978-981-15-8783-2_21
https://doi.org/10.1109/ICFSFPE48751.2019.9055868
https://doi.org/10.1016/j.trpro.2014.09.005
https://arxiv.org/abs/0911.4350
https://doi.org/10.1016/j.physa.2015.06.040
https://doi.org/10.1016/j.trc.2016.08.018
https://doi.org/10.1061/9780784413609.257
https://doi.org/10.1073/pnas.0306899100
https://doi.org/10.1007/s10458-014-9252-6

Bibliography

Ryan G. McClarren. Introduction to Uncertainty Quantification and Predictive Science,
pages 3–17. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-
99525-0 1.

Wes McKinney. Data structures for statistical computing in Python. In Proceedings of
the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX, 2010.
doi:10.25080/Majora-92bf1922-00a.

Kerrie L. Mengersen, Pierre Pudlo, and Christian P. Robert. Bayesian computation
via empirical likelihood. Proceedings of the National Academy of Sciences, 110(4):
1321–1326, 2013. doi:10.1073/pnas.1208827110.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21:1087–1092, 1953. doi:10.1063/1.1699114.

Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 8th edition, 2013. ISBN 9781118146927.

Max D. Morris. Factorial sampling plans for preliminary computational experiments.
Technometrics, 33(2):161–174, 1991. doi:10.1080/00401706.1991.10484804.

Mehdi Moussäıd, Simon Garnier, Guy Theraulaz, and Dirk Helbing. Collective infor-
mation processing and pattern formation in swarms, flocks, and crowds. Topics in
Cognitive Science, 1(3):469–497, 2009. doi:10.1111/j.1756-8765.2009.01028.x.

Neelamkavil. Computer Simulation and Modelling. John Wiley & Sons, Inc., USA, 1987.
ISBN 0471911305.

Katsuhiro Nishinari, Ansgar Kirchner, Alireza Namazi, and Andreas Schadschneider.
Extended floor field CA model for evacuation dynamics. IEICE TRANSACTIONS
on Information and Systems, E87-D(3):726–732, 03 2004. URL https://arxiv.org/

abs/cond-mat/0306262.

William L. Oberkampf and Christopher J. Roy. Verification and Validation in Scientific
Computing. Cambridge University Press, Cambridge, 2010. ISBN 9780521113601.

Tinsley Oden, Robert Moser, and Omar Ghattas. Computer predictions with quantified
uncertainty, Part I, 2010. URL https://archive.siam.org/pdf/news/1842.pdf.

John O’Keefe and Lynn Nadel. The Hippocampus as a Cognitive Map. Oxford: Claren-
don Press, 1978. ISBN 0198572069.

Edoardo Patelli. COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantifi-
cation and Risk Management, pages 1–69. Springer International Publishing, Cham,
2016. doi:10.1007/978-3-319-11259-6 59-1.

167

https://doi.org/10.1007/978-3-319-99525-0_1
https://doi.org/10.1007/978-3-319-99525-0_1
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1073/pnas.1208827110
https://doi.org/10.1063/1.1699114
https://doi.org/10.1080/00401706.1991.10484804
https://doi.org/10.1111/j.1756-8765.2009.01028.x
https://arxiv.org/abs/cond-mat/0306262
https://arxiv.org/abs/cond-mat/0306262
https://archive.siam.org/pdf/news/1842.pdf
https://doi.org/10.1007/978-3-319-11259-6_59-1

Bibliography

Karl Pearson and Francis Galton. VII. Note on regression and inheritance in the case of
two parents. Proceedings of the Royal Society of London, 58(347-352):240–242, 1895.
doi:10.1098/rspl.1895.0041.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. URL
https://arxiv.org/abs/1201.0490.

Anselmo Ramalho Pitombeira Neto, Francisco Moraes de Oliveira Neto, and Carlos Fe-
lipe Grangeiro Loureiro. Statistical models for the estimation of the origin-destination
matrix from traffic counts. Transportes, 2017. doi:10.14295/transportes.v25i4.1344.

Matti Pouke, Jorge Goncalves, Denzil Ferreira, and Vassilis Kostakos. Practical simu-
lation of virtual crowds using points of interest. Computers, Environment and Urban
Systems, 57:118–129, 2016. doi:10.1016/j.compenvurbsys.2016.02.004.

Ernesto E Prudencio and Karl W Schulz. The parallel C++ statistical library ’QUESO’:
Quantification of uncertainty for estimation, simulation and optimization. In Euro-Par
2011: Parallel Processing Workshops, pages 398–407. Springer, 2012. doi:10.1007/978-
3-642-29737-3 44.

Vincenzo Punzo, Marcello Montanino, and Biagio Ciuffo. Do we really need to calibrate
all the parameters? Variance-based sensitivity analysis to simplify microscopic traffic
flow models. IEEE Transactions on Intelligent Transportation Systems, 16(1):184–193,
02 2015. doi:10.1109/TITS.2014.2331453.

Simon Rahn, Marion Gödel, Rainer Fischer, and Gerta Köster. Dynamics of a simulated
demonstration march: An efficient sensitivity analysis. Sustainability, 13(6):3455,
2021. doi:10.3390/su13063455.

Craig W. Reynolds. Steering behaviors for autonomous characters. In Game Developers
Conference, pages 763–782, San Jose, CA, 1999. Miller Freeman Game Group, San
Francisco, CA. URL http://www.red3d.com/cwr/papers/1999/gdc99steer.html.

RiMEA. Guideline for Microscopic Evacuation Analysis. RiMEA e.V., 3.0.0 edition,
2016. URL http://www.rimea.de/.

Thomas Robin, Gianluca Antonini, Michel Bierlaire, and Javier Cruz. Specification,
estimation and validation of a pedestrian walking behavior model. Transportation
Research Part B: Methodological, 43(1):36–56, 2009. doi:10.1016/j.trb.2008.06.010.

Enrico Ronchi, Erica D. Kuligowski, Paul A. Reneke, Richard D. Peacock, and Daniel
Nilsson. The process of verification and validation of building fire evacuation models.
Technical Note 1822, National Institute of Standards and Technology (NIST), U. S.
Department of Commerce, 2013. URL https://doi.org/10.6028/NIST.TN.1822.

168

https://doi.org/10.1098/rspl.1895.0041
https://arxiv.org/abs/1201.0490
https://doi.org/10.14295/transportes.v25i4.1344
https://doi.org/10.1016/j.compenvurbsys.2016.02.004
https://doi.org/10.1007/978-3-642-29737-3_44
https://doi.org/10.1007/978-3-642-29737-3_44
https://doi.org/10.1109/TITS.2014.2331453
https://doi.org/10.3390/su13063455
http://www.red3d.com/cwr/papers/1999/gdc99steer.html
http://www.rimea.de/
https://doi.org/10.1016/j.trb.2008.06.010
https://doi.org/10.6028/NIST.TN.1822

Bibliography

Enrico Ronchi, Paul A. Reneke, and Richard D. Peacock. A method for the analysis
of behavioural uncertainty in evacuation modelling. Fire Technology, 50:1545–1571,
2014. doi:10.1007/s10694-013-0352-7.

David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental learn-
ing for robust visual tracking. International Journal of Computer Vision, 77(1):125–
141, 2008. doi:10.1007/s11263-007-0075-7.

Christian Rudloff, Thomas Matyus, and Stefan Seer. Comparison of different calibra-
tion techniques on simulated data. In Ulrich Weidmann, Uwe Kirsch, and Michael
Schreckenberg, editors, Pedestrian and Evacuation Dynamics 2012, pages 657–672,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-02447-9 55.

Tobias Rupprecht, Armin Seyfried, Wolfram Klingsch, and Maik Boltes. Bottleneck
capacity estimation for pedestrian traffic. In Proceedings of the Interflam 2007, pages
1423–1430, 2007. URL https://juser.fz-juelich.de/record/59573.

Tobias Rupprecht, Wolfram Klingsch, and Armin Seyfried. Influence of geometry pa-
rameters on pedestrian flow through bottleneck. In Richard D. Peacock, Erica D.
Kuligowski, and Jason D. Averill, editors, Pedestrian and Evacuation Dynamics, pages
71–80. Springer US, 2011. doi:/10.1007/978-1-4419-9725-8 7.

Andrea Saltelli and Ilya M. Sobol’. About the use of rank transformation in sensitivity
analysis of model output. Reliability Engineering & System Safety, 50(3):225–239,
1995. doi:10.1016/0951-8320(95)00099-2.

Andrea Saltelli, Marco Ratto, Stefano Tarantola, and Francesca Campolongo. Sen-
sitivity analysis for chemical models. Chem. Rev., 105(7):2811–2828, July 2005.
doi:10.1021/cr040659d.

Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni,
Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global Sensitivity Analysis.
The Primer. John Wiley & Sons, Ltd., 2008. doi:10.1002/9780470725184.

Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and
Stefano Tarantola. Variance based sensitivity analysis of model output. design and
estimator for the total sensitivity index. Computer Physics Communications, 181(2):
259–270, 2010. doi:10.1016/j.cpc.2009.09.018.

Andreas Schadschneider. Cellular automaton approach to pedestrian dynamics - theory.
In Michael Schreckenberg and Som Deo Sharma, editors, Pedestrian and Evacuation
Dynamics, pages 75–86. Springer, 2001. URL https://arxiv.org/abs/cond-mat/

0112117.

Stewart Schlesinger. Terminology for model credibility. Simulation, 32(3):103–104, 1979.
doi:10.1177/003754977903200304.

169

https://doi.org/10.1007/s10694-013-0352-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/978-3-319-02447-9_55
https://juser.fz-juelich.de/record/59573
https://doi.org//10.1007/978-1-4419-9725-8_7
https://doi.org/10.1016/0951-8320(95)00099-2
https://doi.org/10.1021/cr040659d
https://doi.org/10.1002/9780470725184
https://doi.org/10.1016/j.cpc.2009.09.018
https://arxiv.org/abs/cond-mat/0112117
https://arxiv.org/abs/cond-mat/0112117
https://doi.org/10.1177/003754977903200304

Bibliography

David W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization.
John Wiley & Sons, Inc., 1992. doi:10.1002/9780470316849.

Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical modeling
with Python. In 9th Python in Science Conference, 2010. doi:10.25080/MAJORA-
92BF1922-011.

Stefan Seer, Norbert Brändle, and Carlo Ratti. Kinects and human kinetics: A new
approach for studying pedestrian behavior. Transportation Research Part C: Emerging
Technologies, 48(0):212–228, 2014a. doi:10.1016/j.trc.2014.08.012.

Stefan Seer, Christian Rudloff, Thomas Matyus, and Norbert Brändle. Validating social
force based models with comprehensive real world motion data. Transportation Re-
search Procedia, 2:724–732, 2014b. doi:10.1016/j.trpro.2014.09.080. The Conference
on Pedestrian and Evacuation Dynamics 2014 (PED 2014).

Michael J. Seitz. Simulating pedestrian dynamics: Towards natural locomotion and
psychological decision making. PhD thesis, Technical University of Munich, Munich,
Germany, 2016. URL http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:

bvb:91-diss-20160623-1293050-1-6.

Michael J. Seitz and Gerta Köster. Natural discretization of pedestrian
movement in continuous space. Physical Review E, 86(4):046108, 2012.
doi:10.1103/PhysRevE.86.046108.

Michael J. Seitz and Gerta Köster. How update schemes influence crowd simulations.
Journal of Statistical Mechanics: Theory and Experiment, 2014(7):P07002, 2014.
doi:10.1088/1742-5468/2014/07/P07002.

Michael J. Seitz, Gerta Köster, and Alexander Pfaffinger. Pedestrian group behavior
in a cellular automaton. In Ulrich Weidmann, Uwe Kirsch, and Michael Schrecken-
berg, editors, Pedestrian and Evacuation Dynamics 2012, pages 807–814. Springer
International Publishing, 2014. doi:10.1007/978-3-319-02447-9 67.

Michael J. Seitz, Nikolai W. F. Bode, and Gerta Köster. How cognitive heuristics can
explain social interactions in spatial movement. Journal of the Royal Society Interface,
13(121):20160439, 2016. doi:10.1098/rsif.2016.0439.

James. A. Sethian. A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595, 1996.
doi:10.1073/pnas.93.4.1591.

Armin Seyfried, Oliver Passon, Bernhard Steffen, Maik Boltes, Tobias Rupprecht, and
Wolfram Klingsch. New insights into pedestrian flow through bottlenecks. Transporta-
tion Science, 43:395–406, 2009. doi:10.1287/trsc.1090.0263.

Georges Sfeir, Constantinos Antoniou, and Nivine Abbas. Simulation-based evacuation
planning using state-of-the-art sensitivity analysis techniques. Simulation Modelling
Practice and Theory, 89:160–174, 2018. doi:10.1016/j.simpat.2018.09.017.

170

https://doi.org/10.1002/9780470316849
https://doi.org/10.25080/MAJORA-92BF1922-011
https://doi.org/10.25080/MAJORA-92BF1922-011
https://doi.org/10.1016/j.trc.2014.08.012
https://doi.org/10.1016/j.trpro.2014.09.080
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160623-1293050-1-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160623-1293050-1-6
https://doi.org/10.1103/PhysRevE.86.046108
https://doi.org/10.1088/1742-5468/2014/07/P07002
https://doi.org/10.1007/978-3-319-02447-9_67
https://doi.org/10.1098/rsif.2016.0439
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1287/trsc.1090.0263
https://doi.org/10.1016/j.simpat.2018.09.017

Bibliography

Meng Shi, Eric Wai Ming Lee, and Yi Ma. A newly developed mesoscopic
model on simulating pedestrian flow. Procedia Engineering, 211:614–620, 2018.
doi:10.1016/j.proeng.2017.12.055. 2017 8th International Conference on Fire Science
and Fire Protection Engineering (ICFSFPE 2017).

Meng Shi, Eric Wai Ming Lee, Yi Ma, Wei Xie, and Ruifeng Cao. The density-speed
correlated mesoscopic model for the study of pedestrian flow. Safety Science, 133:
105019, 2021. doi:10.1016/j.ssci.2020.105019.

Anna Sieben, Jette Schumann, and Armin Seyfried. Collective phenomena in crowds
— where pedestrian dynamics need social psychology. PLOS ONE, 12(6):1–19, 2017.
doi:10.1371/journal.pone.0177328.

Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall/CRC, 1st edition, 1986. ISBN 9780412246203.

Ralph C. Smith. Uncertainty Quantification: Theory, Implementation, and Applica-
tions. Computational Science and Engineering. Society for Industrial and Applied
Mathematics, 2014. ISBN 9781611973211.

Ilya M. Sobol’. Sensitivity estimates for nonlinear mathematical models. Mathematical
Modelling and Computational Experiment, 1:407–414, 1993.

Ilya M. Sobol’. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Mathematics and Computers in Simulation, 55:271–280, 2001.
doi:10.1016/S0378-4754(00)00270-6.

Ilya M. Sobol’ and Sergei Kucherenko. Global sensitivity indices for nonlinear mathe-
matical models. Review. Wilmott magazine, 2005. URL http://www.broda.co.uk/

gsa/sobol_global_sa.pdf.

Ilya M. Sobol’ and Sergei Kucherenko. Derivative based global sensitivity measures and
their link with global sensitivity indices. Mathematics and Computers in Simulation,
79(10):3009–3017, 2009. doi:10.1016/j.matcom.2009.01.023.

Martijn Sparnaaij, Dorine C. Duives, Victor L. Knoop, and Serge P. Hoogendoorn.
Multiobjective calibration framework for pedestrian simulation models: A study on
the effect of movement base cases, metrics, and density levels. Journal of Advanced
Transportation, 2019. doi:10.1155/2019/5874085.

Charles Spearman. The proof and measurement of association between two things. The
American Journal of Psychology, 15(1):72–101, 1904. URL http://www.jstor.org/

stable/1412159.

Albert Steiner, Michel Philipp, and Alex Schmid. Parameter estimation for a pedestrian
simulation model. In Swiss Transport Research Conference, 2007. URL https://

digitalcollection.zhaw.ch/handle/11475/14141.

171

https://doi.org/10.1016/j.proeng.2017.12.055
https://doi.org/10.1016/j.ssci.2020.105019
https://doi.org/10.1371/journal.pone.0177328
https://doi.org/10.1016/S0378-4754(00)00270-6
http://www.broda.co.uk/gsa/sobol_global_sa.pdf
http://www.broda.co.uk/gsa/sobol_global_sa.pdf
https://doi.org/10.1016/j.matcom.2009.01.023
https://doi.org/10.1155/2019/5874085
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://digitalcollection.zhaw.ch/handle/11475/14141
https://digitalcollection.zhaw.ch/handle/11475/14141

Bibliography

Miroslav Stoyanov, Damien Lebrun-Grandie, John Burkardt, Drayton Munster, and US-
DOE. Tasmanian, 9 2013. URL https://www.osti.gov//servlets/purl/1631296.

Andrew M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:
451–559, 2010. doi:10.1017/s0962492910000061.

Bruno Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability
Engineering & System Safety, 93(7):964–979, 2008. doi:10.1016/j.ress.2007.04.002.
Bayesian Networks in Dependability.

Tim J. Sullivan. Introduction to Uncertainty Quantification. Springer International
Publishing, 1st edition, 2015. doi:10.1007/978-3-319-23395-6.

Neda Taherifar, Homayoun Hamedmoghadam, Sushmitha Sree, and Meead Saberi. A
macroscopic approach for calibration and validation of a modified social force model
for bidirectional pedestrian streams. Transportmetrica A: Transport Science, 15(2):
1637–1661, 2019. doi:10.1080/23249935.2019.1636156.

Floris Takens. Detecting strange attractors in turbulence. Lecture Notes in Mathematics,
pages 366–381, 1981. doi:10.1007/bfb0091924.

Ming Tang and Hongfei Jia. An approach for calibration and validation of the so-
cial force pedestrian model. In Proceedings 2011 International Conference on Trans-
portation, Mechanical, and Electrical Engineering (TMEE), pages 2026–2031, 2011.
doi:10.1109/TMEE.2011.6199614.

Till Tantau. The tikz and pgf packages, 2021. URL https://pgf-tikz.github.io/.

Simon Tavaré, David J. Balding, R. C. Griffiths, and Peter Donnelly. Inferring coales-
cence times from dna sequence data. Genetics, 145(2):505–518, 1997. ISSN 0016-6731.
URL https://www.genetics.org/content/145/2/505.

Mario Teixeira Parente, Daniel Bittner, Steven A. Mattis, Gabriele Chiogna, and
Barbara Wohlmuth. Bayesian calibration and sensitivity analysis for a karst
aquifer model using active subspaces. Water Resources Research, 55(8), 2019.
doi:10.1029/2019WR024739.

Kardi Teknomo. Microscopic Pedestrian Flow Characteristics: Development of an Image
Processing Data Collection and Simulation Model. PhD thesis, Tohoku University,
Japan, 2002. URL https://doi.org/10.48550/arXiv.1610.00029.

Kardi Teknomo and Gloria P. Gerilla. Sensitivity analysis and validation of a multi-
agents pedestrian model. Journal of the Eastern Asia Society for Transportation
Studies, 6:198–213, 2005. doi:10.11175/easts.6.198.

Kardi Teknomo and Gloria P. Gerilla. Mesoscopic Multi-Agent Pedestrian Simulation,
pages 323–336. Nova Science Publishers Inc, 2008. ISBN 9781604560312.

172

https://www.osti.gov//servlets/purl/1631296
https://doi.org/10.1017/s0962492910000061
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1007/978-3-319-23395-6
https://doi.org/10.1080/23249935.2019.1636156
https://doi.org/10.1007/bfb0091924
https://doi.org/10.1109/TMEE.2011.6199614
https://pgf-tikz.github.io/
https://www.genetics.org/content/145/2/505
https://doi.org/10.1029/2019WR024739
https://doi.org/10.48550/arXiv.1610.00029
https://doi.org/10.11175/easts.6.198

Bibliography

Charles Tong. Problem Solving Environment for Uncertainty Analysis and Design
Exploration, pages 1695–1731. Springer International Publishing, Cham, 2017.
doi:10.1007/978-3-319-12385-1 53.

Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael P.H. Stumpf.
Approximate Bayesian computation scheme for parameter inference and model selec-
tion in dynamical systems. Journal of The Royal Society Interface, 6(31):187–202,
2009. doi:10.1098/rsif.2008.0172.

Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds.
ACM Transactions on Graphics (SIGGRAPH 2006), 25(3):1160–1168, 2006.
doi:10.1145/1141911.1142008.

Mark A. Tumeo. The Meaning of Stochasticity, Randomness and Uncertainty in Envi-
ronmental Modeling, pages 33–38. Springer Netherlands, 1994. doi:10.1007/978-94-
011-1072-3 3.

Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity ob-
stacles for real-time multi-agent navigation. In IEEE International Confer-
ence on Robotics and Automation, 2008 (ICRA 2008), pages 1928–1935, 2008.
doi:10.1109/ROBOT.2008.4543489.

Elske van der Vaart, Dennis Prangle, and Richard M. Sibly. Taking error into account
when fitting models using approximate Bayesian computation. Ecological Applications,
28(2):267–274, 2018. doi:10.1002/eap.1656.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R.J. Nelson, Eric Jones, Robert Kern, Eric Larson, C.J. Carey,
İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in Python.
Nature Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.

Daniil Voloshin, Dmitriy Rybokonenko, and Vladislav Karbovskii. Optimization-
based calibration for micro-level agent-based simulation of pedestrian be-
havior in public spaces. Procedia Computer Science, 66:372–381, 2015.
doi:10.1016/j.procs.2015.11.043. 4th International Young Scientist Conference on
Computational Science.

Cornelia von Krüchten and Andreas Schadschneider. A cognitive, decision-based model
for pedestrian dynamics. In Iker Zuriguel, Angel Garcimartin, and Raul Cruz, editors,
Traffic and Granular Flow 2019, pages 141–147, Cham, 2020. Springer International
Publishing. doi:10.1007/978-3-030-55973-1 18.

173

https://doi.org/10.1007/978-3-319-12385-1_53
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1145/1141911.1142008
https://doi.org/10.1007/978-94-011-1072-3_3
https://doi.org/10.1007/978-94-011-1072-3_3
https://doi.org/10.1109/ROBOT.2008.4543489
https://doi.org/10.1002/eap.1656
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.procs.2015.11.043
https://doi.org/10.1007/978-3-030-55973-1_18

Bibliography

Isabella von Sivers and Gerta Köster. Dynamic stride length adaptation according to
utility and personal space. Transportation Research Part B: Methodological, 74:104–
117, 2015. doi:10.1016/j.trb.2015.01.009.

Isabella von Sivers, Florian Künzner, and Gerta Köster. Pedestrian evacuation sim-
ulation with separated families. In Proceedings of the 8th International Confer-
ence on Pedestrian and Evacuation Dynamics (PED2016), Hefei, China, 10 2016a.
doi:10.17815/CD.2016.11.

Isabella von Sivers, Anne Templeton, Florian Künzner, Gerta Köster, John Drury, An-
drew Philippides, Tobias Neckel, and Hans-Joachim Bungartz. Modelling social iden-
tification and helping in evacuation simulation. Safety Science, 89:288–300, 2016b.
doi:10.1016/j.ssci.2016.07.001.

Harvey M. Wagner. Global sensitivity analysis. Operations Research, 43(6):948–969,
1995. doi:10.1287/opre.43.6.948.

Chen Wang, Qingyun Duan, Charles H. Tong, Zhenhua Di, and Wei Gong. A GUI
platform for uncertainty quantification of complex dynamical models. Environmental
Modelling & Software, 76:1–12, 2016. doi:10.1016/j.envsoft.2015.11.004.

Ulrich Weidmann. Transporttechnik der Fussgänger, volume 90 of Schriftenreihe des
IVT. Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau
(IVT) ETH, Zürich, 2nd edition, 1993. doi:10.3929/ethz-b-000242008.

Richard David Wilkinson. Approximate Bayesian computation (abc) gives exact re-
sults under the assumption of model error. Statistical Applications in Genetics and
Molecular Biology, 12(2):129–141, 2013. doi:10.1515/sagmb-2013-0010.

David Wolinski, Stefen Guy, Anne-Helene Olivier, Ming Lin, Dinesh Manocha, and
Julien Pettré. Parameter estimation and comparative evaluation of crowd simulations.
Comput. Graph. Forum, 33(2):303–312, 2014. doi:10.1111/cgf.12328.

Szechun C. Wong and Chungon O. Tong. Estimation of time-dependent origin-
destination matrices for transit networks. Transportation Research Part B: Method-
ological, 32(1):35–48, 1998. doi:10.1016/S0191-2615(97)00011-8.

Simon N. Wood. Statistical inference for noisy nonlinear ecological dynamic systems.
Nature, 466:1102––1104, 2010. doi:10.1038/nature09319.

Dongbin Xiu. Efficient collocational approach for parametric uncertainty analysis. Com-
munications in computational physics, 2(2):293–309, 2007. ISSN 1991-7120.

Dongbin Xiu. Stochastic collocation methods: A survey. In R. Ghanem, H. Owhadi, and
D. Higdon, editors, Handbook of uncertainty quantification, volume 45, pages 699–716.
Springer International Publishing, 2017. doi:10.1007/978-3-319-12385-1 26.

174

https://doi.org/10.1016/j.trb.2015.01.009
https://doi.org/10.17815/CD.2016.11
https://doi.org/10.1016/j.ssci.2016.07.001
https://doi.org/10.1287/opre.43.6.948
https://doi.org/10.1016/j.envsoft.2015.11.004
https://doi.org/10.3929/ethz-b-000242008
https://doi.org/10.1515/sagmb-2013-0010
https://doi.org/10.1111/cgf.12328
https://doi.org/10.1016/S0191-2615(97)00011-8
https://doi.org/10.1038/nature09319
https://doi.org/10.1007/978-3-319-12385-1_26

Bibliography

Shanwen Yang, Tianrui Li, Xun Gong, Bo Peng, and Jie Hu. A review
on crowd simulation and modeling. Graphical Models, 111:101081, 2020.
doi:10.1016/j.gmod.2020.101081.

Weiliang Zeng, Hideki Nakamura, and Peng Chen. A modified social force model for
pedestrian behavior simulation at signalized crosswalks. Procedia - Social and Behav-
ioral Sciences, 138:521–530, 2014. doi:10.1016/j.sbspro.2014.07.233. The 9th Interna-
tional Conference on Traffic and Transportation Studies (ICTTS 2014).

Weiliang Zeng, Peng Chen, Guizhen Yu, and Yunpeng Wang. Specification and calibra-
tion of a microscopic model for pedestrian dynamic simulation at signalized intersec-
tions: A hybrid approach. Transportation Research Part C: Emerging Technologies,
80:37–70, 2017. doi:10.1016/j.trc.2017.04.009.

Jun Zhang, Wolfram Klingsch, Andreas Schadschneider, and Armin Seyfried. Tran-
sitions in pedestrian fundamental diagrams of straight corridors and T-junctions.
Journal of Statistical Mechanics: Theory and Experiment, 2011(06):P06004, 2011.
doi:10.1088/1742-5468/2011/06/P06004.

Jinghui Zhong and Wentong Cai. Differential evolution with sensitivity analysis and the
powell’s method for crowd model calibration. Journal of Computational Science, 9:
26–32, 2015. doi:10.1016/j.jocs.2015.04.013. Computational Science at the Gates of
Nature.

Benedikt Zönnchen. Efficient parallel algorithms for large-scale pedes-
trian simulation. Dissertation, Technical University of Munich, Munich,
2021. URL http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:

91-diss-20210521-1593965-1-9.

Benedikt Zönnchen and Gerta Köster. A parallel generator for sparse unstructured
meshes to solve the eikonal equation. Journal of Computational Science, 32:141–147,
2018. doi:10.1016/j.jocs.2018.09.009.

Benedikt Zönnchen and Gerta Köster. GPGPU computing for microscopic pedestrian
simulation. In Ian Foster, Gerhard R. Joubert, Luděk Kučera, Wolfgang E. Nagel,
and Frans Peters, editors, Parallel Computing: Technology Trends, volume 36, pages
93–104, 2020. doi:10.3233/APC200029.

175

https://doi.org/10.1016/j.gmod.2020.101081
https://doi.org/10.1016/j.sbspro.2014.07.233
https://doi.org/10.1016/j.trc.2017.04.009
https://doi.org/10.1088/1742-5468/2011/06/P06004
https://doi.org/10.1016/j.jocs.2015.04.013
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20210521-1593965-1-9
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20210521-1593965-1-9
https://doi.org/10.1016/j.jocs.2018.09.009
https://doi.org/10.3233/APC200029

Appendix

176

A Infrastructure

I would like to give a brief overview of the tools used for this thesis. Most of the tools
are open-source or at least freeware. I am grateful to the developers for providing them.

The uncertainty quantification framework designed and implemented in this thesis
is written in Python 3.7. I chose JetBrains’ PyCharm1 community edition 2020.2.3
as development environment. The framework depends on the following external soft-
ware packages: suq-controller2, SALib [Herman and Usher, 2017], chaospy [Feinberg
and Langtangen, 2015]. I used established Python packages such as NumPy [Harris
et al., 2020], SciPy [Virtanen et al., 2020], statsmodels [Seabold and Perktold, 2010],
scikit-learn [Pedregosa et al., 2011], and Pandas [McKinney, 2010].

For tasks related to the open-source crowd simulation framework Vadere [Kleinmeier
and Köster, 2020] such as programming new output processors, I relied on JetBrains
IntelliJ IDEA3 community edition 2020.2 and OpenJDK4 11.0.2. For version control
and collaborative software development, Git5 and Gitlab6 were used.

The document was created with LATEXusing TeXstudio7 3.1.1. I built on the LaTeX
template provided by the Chair of Integrated Systems8. Citations were managed using
JabRef9 5.1. I plotted the results of my studies with Matlab (R2020b) with colorbrewer
schemes10. UML diagrams were created with draw.io11 15.5.8. Snapshots of Vadere
simulations are supported by Vadere’s Tikz [Tantau, 2021] generator. The mind maps
that provide an overview of uncertainty quantification methods were created with XMind
2021.

1https://www.jetbrains.com/pycharm/
2https://gitlab.lrz.de/vadere/suq-controller
3https://www.jetbrains.com/idea/
4https://openjdk.java.net/
5https://git-scm.com/
6https://gitlab.lrz.de/vadere
7https://texstudio.org/
8https://github.com/TUM-LIS/tum-dissertation-latex
9https://www.jabref.org/

10Charles (2021). cbrewer : colorbrewer schemes for Matlab (https://www.mathworks.com/
matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab), MATLAB
Central File Exchange.

11https://www.draw.io

177

https://www.jetbrains.com/pycharm/
https://gitlab.lrz.de/vadere/suq-controller
https://www.jetbrains.com/idea/
https://openjdk.java.net/
https://git-scm.com/
https://gitlab.lrz.de/vadere
https://texstudio.org/
https://github.com/TUM-LIS/tum-dissertation-latex
https://www.jabref.org/
https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab
https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab
https://www.draw.io

B State of the art of parameter
identification in crowd simulations

Table B.1: State-of-the-art forward propagations that analyze the variation in the output for
different parameters for crowd dynamics models.

Reference [Sparnaaij et al., 2019]
Model Pedestrian dynamics by INCONTROL, locomotion by social forces

model
Scenario 5 scenarios, bidirectional, corner (low and high density), t-junction,

bottleneck
Method OAT approach
Quantity of interest Distribution of instantaneous speeds of all pedestrians
Parameter(s) 7 parameters, 2 from route following, 5 from collision avoidance, among

them minimum desired speed and personal distance
Stochasticity Number of necessary replications calculated using convergence method

similar to [Ronchi et al., 2013], Result: 30−100 replications depending
on scenario

Note Parameters are classified as “not sensitive to”, “slightly sensitive”, and
“sensitive”.

Reference [Kouskoulis et al., 2018]
Model Social force model
Scenario Aboveground platform of Moschato metro station in Athens
Method OAT approach
Quantity of interest Root Mean Squared Percentage Error between simulated and observed

trajectories
Parameter(s) 9 parameters, among them desired speed (mean and standard devia-

tion), repulsive forces from obstacles and pedestrians
Stochasticity No information on how stochasticity is handled, even though it is men-

tioned that the agents’ speeds are drawn from a Gaussian distribution.

Reference [Baglietto and Parisi, 2011]
Model Contractile particle model (continuous-space automaton combined with

social forces)
Scenario Circular racetrack
Method OAT
Quantity of interest Velocity-density-diagram (fundamental diagram)
Parameter(s) Minimum agent radius rmin, maximum agent radius rmax, exponent in

relationship between radius and desired speed β
Stochasticity Random initial position of particles, handling of stochasticity is not

discussed.

Reference [Colombi et al., 2017]
Model Microscopic-discrete mathematical model based on the concept of

walker behavioral strategy

178

B State of the art of parameter identification in crowd simulations

Scenario Bottleneck scenario in which 200 agents pass from one room through a
constriction to an adjacent room to reach a door in the second room

Method OAT approach, visual comparison of variation in the simulation out-
come after propagation

Quantity of interest Evacuation time (for all parameters except visual region), trajectories
for visual region parameters

Parameter(s) Eleven parameters from five groups: visual region, wall repulsion, in-
terpersonal repulsion, interpersonal contract, and size of the crowd.

Stochasticity Starting positions are random; they are fixed for the sensitivity analysis.

Reference [Collins et al., 2014]
Model Extended social force model with a group model
Scenario Bottleneck, evacuation of 500 agents through a single exit
Method No information provided. Judging from the resulting figure, both pa-

rameter were varied simultaneously.
Quantity of interest Time to evacuate
Parameter(s) Two parameters of the group extension, maximum group size and bias

towards exit
Stochasticity For the group extension, a stochastic selection between heading options

is chosen. There is information provided on how the authors dealt with
the stochasticity for the sensitivity analysis.

Reference [Haghani et al., 2018]
Model Combined microscopic model with social force model for locomotion

and a new probabilistic discrete-choice route choice model for the tac-
tical model.

Scenario Controlled laboratory experiment of evacuation with a choice among
four exits

Method OAT approach
Quantity of interest Average total evacuation time and average individual evacuation time
Parameter(s) All parameters of the tactical model β1, . . . , β5 (DIST, CONG, FLTO-

VIS, VIS, FLTOINVIS)
Stochasticity Probabilistic route-choice model. For each parameter value, 50 repeti-

tions were performed.

Reference [Johansson et al., 2015]
Model Social force model with extension for waiting behavior
Scenario Straight corridor scenario with a group of waiting agents in the middle,

a second group of agents passes by to reach their destination.
Method No information is provided on the sampling approach.
Quantity of interest Density along the corridor
Parameter(s) Non-physical parameter M for the waiting extension, no clear behav-

ioral or physical interpretation.
Stochasticity No information provided.

Reference [Davidich and Köster, 2013]
Model Floor field cellular automaton model with a hexagonal grid
Scenario Station hall in a German train station where agents can head to plat-

forms and food stands
Method OAT approach
Quantity of interest Fitness of simulated density to observed density
Parameter(s) Five parameters, mean and standard deviation of free-flow speed,

density-flow relationship, pedestrian appearance schedule, and origin-
destination distributions

179

B State of the art of parameter identification in crowd simulations

Stochasticity The CA model contains stochastic terms. No information provided on
handling of the stochasticity.

Reference [Shi et al., 2021]
Model Grid-based mesoscopic model with an irregular grid using a static or

dynamic floor field (CA)
Scenario Bottleneck, agents evacuate from a room with a wide exit.
Method Full factorial design
Quantity of interest Average evacuation time
Parameter(s) Time step δ, free moving velocity V , dynamic field (static vs. dynamic),

pedestrian number N
Stochasticity 100 repetitions are performed for each configuration
Note One parameter, the time step, is ranked as non-influential for the evac-

uation time.

Reference [Teknomo and Gerilla, 2005]
Model Force-based model with feedback loop inspired by social forces model
Scenario Not clear, probably a pedestrian crossing in Sengai
Method Full factorial analysis
Quantity of interest 1) Mean of average speed, 2) slope of the speed-density graph, 3) free-

flow speed
Parameter(s) Separate analyzes for two groups of parameters: 1) control variables

of feedback loop, maximum speed and number of agents, 2) motion
parameters, mass m, α, β, χ. α, β, and χ are non-physical parameters
that serve to generalize the model.

Stochasticity Averaging over 10 simulations (for motion parameters)
Note For the motion parameters α, β, χ,m, only interactions show influence

on the chosen quantities of interest.

Reference [Lu et al., 2017]
Model Extended Floor-field cellular automaton that considers group behavior
Scenario Hall with two exits, resembling a university hall
Method OAT approach
Quantity of interest Evacuation time
Parameter(s) Parameters of the group extension k′S , kd, and ki: kd is the strength of

the attraction to the leader, k′S is the strength of the static floor field
when group members make decisions, ki is the strength of adherence
to the group leader

Stochasticity Different sources of stochasticity in the model: 1) sequential update
of agents according to a random number assigned to each agent, 2)
random starting positions, 3) probabilistic transition rules. For model
calibration, 30 simulations are averaged. However, for propagation, no
information is provided.

Reference [Bianca and Mogno, 2018]
Model Event-driven microscopic thermostatted kinetic theory model
Scenario Agents leaving a metro station with n gates
Method Runge-Kutta formula, different parameter combinations are evaluated
Quantity of interest Time evolution of the distribution function and the shape of the asymp-

totic state
Parameter(s) 1) Initial conditions (L,R,C,H), 2) magnitude F of the external force

field, 3) number of gates n
Stochasticity No information provided.

180

B State of the art of parameter identification in crowd simulations

Reference [Shi et al., 2018]
Model Grid-based mesoscopic model using a static floor field (CA)
Scenario Evacuation from a room with a single exit (bottleneck)
Method Single parameter is varied, no details on the sampling method.
Quantity of interest Evacuation time
Parameter(s) Time step length δ
Stochasticity Probabilistic transition rules for the cellular automaton, 1000 repeti-

tions are performed.

Reference [Duives et al., 2016]
Model Macroscopic continuum model
Scenario 4 scenarios - uni-directional short bottleneck, uni-directional corner,

bi-directional straight, intersecting flow scenario (two groups of agents)
Method Equidistant sampling, full factorial setup
Quantity of interest Spatial distribution of density and velocity as proxies for traffic state,

for the intersecting flows, also the number of lanes are counted to ana-
lyze the traffic state.

Parameter(s) For scenarios with one groups, one parameter, the local βl route choice
component is studied. The global route component is a dependent
parameter βg = 10 − βl. When two groups of agents are present, also
βδ=d is studied, which is concerned with the avoidance of high density
areas, are studied (dependent parameter βδ 6=d = 10 − βδ=d).

Table B.2: State-of-the-art sensitivity analysis for crowd dynamics models.

Reference [Zhong and Cai, 2015]
Model Social force model
Scenario Two case studies, 1) evacuation from a room (bottleneck), 2) real-world

cross-walk with observational data
Method Probably an OAT approach with equidistant sampling (uniform sam-

pling)
Metric Entropy-based measure
Quantity of interest For calibration, a distance measure for the local density is used; for

sensitivity analysis, no information is provided.
Parameter(s) Interaction strength A and range B for other agents and obstacles, k1,

k2, free-flow speed v0, maximum speed vmax, time step (discretization)
τ

Stochasticity Stochastic terms in the model, e. g. random initial positions. For cal-
ibration, 30 repetitions are averaged, for sensitivity analysis, no infor-
mation is provided.

Reference [Chen et al., 2019]
Model Random forest models trained on questionnaire data, 1) with pre-

evacuation time, 2) without pre-evacuation time
Scenario Evacuation of a skyscraper in an urban residential area, Luoshanqicun

Community in Shanghai
Method OAT approach
Metric Local sensitivity index from [Saltelli et al., 2005]
Quantity of interest Total evacuation time

181

B State of the art of parameter identification in crowd simulations

Parameter(s) Walking speed, shoulder width, acceleration time, distance to obstacles,
comfortable distance, CdQ from queue density, persist time, collision
response time

Stochasticity No information provided.

Reference [Kurtc et al., 2021]
Model Optimal steps model
Metric Sobol’ indices
Scenario Corridor scenario
Method 1) Monte Carlo calculation of Sobol’ indices and 2) generalized poly-

nomial chaos expansion for model output, Sobol’ indices are calculated
from the expansion

Quantity of interest Density in the corridor
Parameter(s) Mean and standard deviation of free-flow speeds, number of agents
Stochasticity Model contains stochastic term, handling by averaging 10 repetitions

for the gPCe.

Table B.3: State-of-the-art sensitivity analysis for traffic models.

Reference [Sfeir et al., 2018]
Model Microscopic traffic simulator
Metric Sobol’ indices
Scenario Evacuation of a parking garage in Athens, Greece. Four different con-

figurations of the scenario are analyzed.
Method Scatter plots for a pre-selection of influential parameters and then

Sobol’ indices (using Monte Carlo sampling and a low discrepancy sam-
pling)

Quantity of interest Evacuation time
Parameter(s) Maximum acceleration, normal deceleration, maximum speed, reaction

time (of the driver)
Stochasticity Averaging of 10 simulations to “eliminate” the randomness of a single

simulation.

Reference [Punzo et al., 2015]
Model microscopic traffic flow models, social force model for car-following
Metric Sobol’ total indices
Scenario NGSIM I80-1 data set
Method Variance-based global sensitivity analysis
Quantity of interest Goodness-of-fit between observed and simulated trajectories
Parameter(s) Six parameters: follower’s desired speed VMax

f , aMax
f follower’s maxi-

mum acceleration, comfort deceleration rate bf , portion of the desired
distance from the leader ∆S1, minimum time headway between leader
and follower T , constant α

Stochasticity No information provided.
Note Identifies non-influential parameters and applies factor fixing setting to

obtain a reduced model version.

182

C Estimation of initial and boundary
conditions

C.1 Random forest parameters

There are three main parameters to tune the performance of random forest: First, the
number of estimators or trees that are trained to the data. Second, the maximum depth
for each tree. Third, the number of features used in each split. We study the impact
of each parameter separately to find a suitable configuration for our problem. For each
parameter, I analyze the impact regarding two configurations: predicting the full OD
matrix and predicting two components of the target PCA.

C.1.1 Number of trees

In Figure C.1 the performance of random forest for different numbers of trees is shown
(number of features 0.75 · 321, maximum depth: 15). I choose 100 trees.

(a) Full origin-destination (OD) matrix (b) First two components of principal compo-
nent analysis of the OD matrix

Figure C.1: Performance of random forest against the number of trees.

C.1.2 Number of features for split

Figure C.2 displays the results for random forests with different numbers of features
considered when looking for the best split (number of trees: 100, maximum depth: 15).
I choose all features (321) to be considered for the split.

183

C Estimation of initial and boundary conditions

(a) Full origin-destination (OD) matrix (b) First two components of principal compo-
nent analysis of the OD matrix

Figure C.2: Performance of random forest against the number of features considered when
looking for the best split.

C.1.3 Maximum depth of the trees

Figure C.3 depicts the scores for random forest with different values for the maximum
depth of the trees (number of trees: 100, max features: 0.75 ·321). The maximum depth
has the largest impact on the results. The best test scores with a minimum distance
between train and test score are obtained with a maximum depth of 10.

(a) Full origin-destination (OD) matrix (b) First two components of principal compo-
nent analysis of the OD matrix

Figure C.3: Performance of random forest against the maximum depth.

184

C Estimation of initial and boundary conditions

C.2 Overlapping data set

In order to increase the sample size, I generate a data set with overlapping time intervals.
Overlapping means that consecutive samples are no longer from disjoint time intervals,
but the time intervals of ten seconds are now chosen only one second apart. This mimics
Taken’s time-delayed embedding [Takens, 1981], a technique used to reconstruct a dy-
namic system from a sequence of observations. The new dataset contains approximately
130000 samples.

Due to the large amount of input data, I use the incremental PCA approach by Ross
et al. [Ross et al., 2008] implemented in [Pedregosa et al., 2011]. That means, the PCA
is fitted iteratively with batches of 5 · 20520 samples.

The results using overlapping time intervals are shown in Figure C.4. The performance
of random forest could not be improved using overlapping time intervals.

Figure C.4: Performance of random forest model using overlapping time intervals for the in-
put samples. Instead of full origin-destination (OD) matrices, components of the
principal component analysis (PCA) are predicted.

185

	1 Introduction
	1.1 Motivation
	1.2 Scope and overview of this work
	1.3 Structure of this work

	2 Background
	2.1 Modeling and simulation
	2.2 Pedestrian dynamics
	2.2.1 Modeling crowd behavior
	2.2.2 Microscopic crowd simulation
	2.2.3 Wayfinding using navigational fields
	2.2.4 Locomotion models

	2.3 Uncertainty quantification
	2.3.1 Definition of uncertainty
	2.3.2 Types of uncertainty
	2.3.3 Overview of uncertainty quantification methods

	2.4 Summary

	3 Modeling choices: locomotion model, scenario, and stochasticity
	3.1 Locomotion models
	3.1.1 Optimal steps model
	3.1.2 Social force model emulator for a bottleneck scenario

	3.2 Studied scenarios
	3.2.1 Bottleneck scenario: crucial for improving safety
	3.2.2 Train station overpass: multi-directional flow

	3.3 Vadere crowd simulation framework
	3.3.1 Core of the simulation: simulation loop
	3.3.2 Building a scenario

	3.4 Stochasticity and noise
	3.4.1 Stochastic terms in crowd simulations
	3.4.2 Effects of stochastic terms
	3.4.3 Handling stochasticity and noise

	3.5 Summary

	4 Uncertainty quantification framework
	4.1 Requirement analysis
	4.2 State of the art on uncertainty quantification software
	4.3 Architecture of the framework
	4.3.1 Parameter identification
	4.3.2 Parameter estimation
	4.3.3 Uncertainty analysis

	4.4 Algorithms
	4.4.1 Parameter identification: Sobol' indices and activity scores
	4.4.2 Parameter estimation: Metropolis algorithm and rejection sampling
	4.4.3 Uncertainty analysis: Monte Carlo sampling and generalized polynomial chaos expansion

	4.5 Interface with Vadere crowd simulation
	4.6 Code verification
	4.7 Summary

	5 Parameter identification: identifying influential parameters
	5.1 Introduction
	5.2 State of the art on parameter identification in crowd simulation
	5.3 Overview of methods for parameter identification
	5.3.1 Sobol' indices
	5.3.2 Activity scores, first eigenvector, and derivative-based global sensitivity metrics
	5.3.3 Links between indices

	5.4 Studying parameter sensitivities in a bottleneck scenario
	5.4.1 Relationship between parameters and quantity of interest
	5.4.2 Sobol' first-order and total indices
	5.4.3 Derivative-based global sensitivity metrics, first eigenvector metric, and activity scores
	5.4.3.1 Active variable
	5.4.3.2 Confidence intervals for the eigenvalues and the subspace distance

	5.4.4 Sensitivity ranking
	5.4.5 Time-dependent analysis of sensitivities
	5.4.6 Efficient sensitivity analysis for computationally expensive scenarios

	5.5 Summary

	6 Parameter Estimation: finding values for influential parameters
	6.1 Introduction
	6.2 State of the art on parameter estimation in crowd simulation
	6.3 Methods for parameter estimation
	6.3.1 Posterior mode as point estimate
	6.3.2 Bayesian inference with likelihood: Markov chain Monte Carlo method
	6.3.3 Bayesian inference without likelihood: approximate Bayesian computation

	6.4 Studying calibration of crowd simulation
	6.4.1 Likelihood-based inference with Markov chain Monte Carlo
	6.4.1.1 Proof-of-concept: artificial data, surrogate for data misfit
	6.4.1.2 Bayesian inference in the bottleneck scenario: experimental data, surrogate for data misfit
	6.4.1.3 Proof-of-concept: artificial data, averaging of model runs
	6.4.1.4 Bayesian inference in the bottleneck scenario: experimental data, averaging of model runs
	6.4.1.5 Evaluation

	6.4.2 Likelihood-free inference with approximate Bayesian computation
	6.4.2.1 Proof-of-concept: artificial data
	6.4.2.2 Bayesian inference in the bottleneck scenario: experimental data
	6.4.2.3 Discussion of tolerance
	6.4.2.4 Evaluation

	6.4.3 Comparison of Bayesian inference to a point estimate
	6.4.3.1 Unimodal posterior
	6.4.3.2 Bimodal posterior
	6.4.3.3 Multivariate posterior
	6.4.3.4 Evaluation

	6.4.4 Higher-dimensional Bayesian inference

	6.5 Summary

	7 Estimation of initial and boundary conditions
	7.1 Introduction
	7.2 State of the art on online parameter learning in crowd simulation
	7.3 Statistical learning models for online parameter learning
	7.3.1 Multivariate linear regression
	7.3.2 Random forest

	7.4 Studying statistical learning for origins and destinations of pedestrians
	7.4.1 Analysis of trajectory data
	7.4.1.1 Speeds
	7.4.1.2 Pedestrian count

	7.4.2 Preprocessing of raw data
	7.4.2.1 From trajectories to density heatmaps
	7.4.2.2 Decomposition of input samples
	7.4.2.3 Ground truth: defining origins and destinations
	7.4.2.4 Setup of the learning models

	7.4.3 Performance of the models
	7.4.3.1 Performance metric: R2 score
	7.4.3.2 Cross-validation
	7.4.3.3 Linear regression
	7.4.3.4 Analysis of predicted components
	7.4.3.5 Nonlinear model: random forest
	7.4.3.6 Component and performance analysis

	7.5 Summary

	8 Uncertainty analysis: measuring the reduction of uncertainty in the simulation output
	8.1 Introduction
	8.2 State of the art on uncertainty analysis in crowd simulation
	8.3 Methods for uncertainty analysis
	8.3.1 Monte Carlo
	8.3.2 Generalized polynomial chaos expansion with point collocation

	8.4 Studying impact of uncertain parameters on the prediction uncertainty
	8.4.1 Propagation with Monte Carlo sampling
	8.4.2 Propagation with generalized polynomial chaos expansion
	8.4.3 Measuring the reduction of uncertainty in the simulation output due to calibration
	8.4.3.1 Propagation of initial parameter intervals
	8.4.3.2 Propagation with factor fixing
	8.4.3.3 Propagation of posterior distribution obtained with Bayesian inference

	8.5 Summary

	9 Summary, conclusions, and future directions
	9.1 Summary
	9.2 Conclusions
	9.3 Future directions

	Bibliography
	Appendix
	A Infrastructure
	B State of the art of parameter identification in crowd simulations
	C Estimation of initial and boundary conditions
	C.1 Random forest parameters
	C.1.1 Number of trees
	C.1.2 Number of features for split
	C.1.3 Maximum depth of the trees

	C.2 Overlapping data set

