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Abstract

Analysis of data with the help of statistical methods is a key element of modern scien-
tific research. A powerful framework for such analyses is Bayesian inference, which allows
testing models and updating information about their parameters in an easy-to-interpret
manner. The developments presented in this thesis contribute to the field of Bayesian com-
putations and show a practical application of Bayesian inference to a problem formulated
by the Advanced Wakefield Experiment (AWAKE) at CERN.

The first part of this thesis presents two algorithms that improve Bayesian numeri-
cal methods. The first algorithm, called Integration with an Adaptive Harmonic Mean
(AHMI), allows the estimation of the integral of the target density function — often de-
noted as the Bayesian evidence — using samples drawn from the target density. The
second algorithm presents an approach to parallelize and improve Markov Chain Monte
Carlo sampling of complex target densities using space partitioning. These two algorithms
are implemented in the Bayesian Analysis Toolkit software package, whose functionalities
are discussed. Both algorithms are tested on multiple benchmark densities and show a
reliable performance on problems with up to 20 dimensions.

The second part of this thesis presents a detailed statistical analysis of the incoming
proton bunch parameters used in the AWAKE experiment. Our analysis combines the
data from multiple beam imaging systems located at di�erent positions along the beam-
line to reconstruct the envelop trajectory of the bunch profile. The parameters of two
di�erent models are fitted to represent the observed data using Bayesian inference. The
analysis is tested on simulated data and then applied to the experimental data. Multiple
advanced statistical algorithms are used to compare the accuracy of the fits and to post-
process posterior distributions, including the AHMI algorithm, a two-sample classifier test,
and Hamiltonian Monte Carlo sampling. The self-modulation of the proton bunches in
the plasma is studied using numerical plasma modeling with the measured proton bunch
parameters as input.
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Motivation and Overview
Throughout the history of science, data — the outcome of experimental observations —
has been a crucial element that helped scientists to advance our understanding of Nature
and the Universe. In fact, the scientific method used since at least the 17th century
consists of the validation of certain subjective hypotheses based on the observed data;
and the process of hypotheses validation is one of the key elements of scientific research.
One of the earliest historical examples of this scientific approach is the discovery of laws
of planetary motion made by J. Kepler. Namely, Kepler used the data recorded by the
astronomer T. Brahe to develop equations of planet motion and showed that the orbit of
Mars could be described as an ellipse.

A lot of time has passed since then. Rapid growth in technologies in the last few
decades significantly a�ected almost all aspects of humans life. In the research world, the
complexity of experiments, the amount of data, and the number of available analysis tools
have drastically increased. Yet, the main scientific paradigm remained largely unchanged
— for making discoveries, we still need to test empirical hypotheses using now often much
larger and more complex datasets.

Just to give a feel of what modern experimental data frontiers are, let us consider a few
oft-encountered examples. The experiments at the European Organization for Nuclear
Research (CERN) that perform investigations in particle and high energy physics produce
approximately 115 PB of data per year [1]. The data from the Large Hadron Collider
(LHC) represent the results of several billion recorded collisions each year. This data is
transmitted and stored around the Globe using a worldwide computing grid, with data
processing rates of several PB/day. To make important discoveries, such as the discovery
of the Higgs Boson, the data should be carefully analyzed to find an order of tens of
collisions of interest out of billions recorded. Another example is the Square Kilometre
Array [2], an intergovernmental radio telescope planned to consist of thousands of small
telescopes spread over an area of several thousand square kilometers. The data from
these telescopes can be combined to produce datasets of extremely high sensitivity and
angular resolution; with data rates estimated to be of the order of 130 PB per year [3].
Earth sciences is another field of science which deals with huge data volumes and requires
advanced analyses. Namely, satellite observations, seismograph stations, weather and buoy
stations, and tiltmeters generate databases used to make predictions over time-scales from
minutes (such as earthquakes predictions) to hundreds of years (such as global warming).

Hence, just over a few hundred years after Kepler’s discovery, it became common for sci-
entists to analyze large volumes of data to make new valuable discoveries and predictions.
The need to deal with this data also changes the conventional way of doing science —
theory and experiments are now heavily supported by computations. New disciplines such
as computational physics, computational biology, and data science emerged to respond to
the need of having experts in these interdisciplinary fields. Dedicated research institutions
and programs, such as the Alan Turing Institute in London or the Origins Data Science
Laboratory in Munich, have been established that aim to solve problems for both science
and industry.

The work on this thesis was conducted in the scope of one such program, called the IN-
SIGHTS Marie Sklodowska-Curie Innovative Training Network. The goal of this program
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is to develop advanced statistical methods, implement them in software, and apply them to
solve problems in physics and other fields. The training network consists of multiple work
packages, such as statistical methods, software tools, physics applications, and statistics
for society. These research projects are conducted at 10 partner institutions across Europe,
with the Max Planck Institute for Physics in Munich among them. The developments pre-
sented in this thesis belong to the work package Statistical Methods. They can be divided
into two categories: Development of algorithms for Bayesian computations and Markov
Chain Monte Carlo (MCMC) methods, and the application of statistical methods to the
analysis of proton bunch parameters in the Advanced Proton Driven Plasma Wakefield
Acceleration Experiment (AWAKE) at CERN.

This thesis is organized as follows: Chapter 1 provides a general introduction to Bayesian
analysis and MCMC methods and gives a brief description of current developments to en-
hance the e�ciency of MCMC methods. This is followed by Chapter 2, in which the
algorithms for numerical evidence estimation and MCMC parallelization are presented,
and their implementation in the Bayesian Analysis Toolkit (BAT.jl) software package.
The second part of the thesis starts with Chapter 3, in which a brief introduction to con-
ventional and plasma-based particle accelerators is given, and the AWAKE experiment is
discussed. In Chapter 4, a detailed statistical analysis of the proton bunch parameters
in the AWAKE experiment is presented and the self-modulation of the proton bunches
with measured parameters is studied using plasma modeling. Finally, the thesis is con-
cluded with a brief summary of presented developments and a discussion of their recent
applications.
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1 Introduction to Bayesian Inference

There are two main schools of statistical reasoning: Bayesian and frequentist. A long
philosophical debate about the primacy of one of the two approaches has been conducted
by generations of scientists, and this debate is yet not finished. The reason for this is
rooted in di�erent interpretations of the meaning of probability.

In the frequentists schools, developed by R. Fisher [4], J. Neyman and E. Pearson [5],
probability shows the frequency of various outcomes of an experiment given a large number
of trials. This probability is independent of opinion, and it can be determined by a
repeatable, objective process.

In the Bayesian school, developed originally by T. Bayes and R. Price [6] and later
by P. Laplace [7], probability represents an abstract concept that measures a state of
knowledge or a degree of belief in a given proposition. It does not assign a single value for
the probability of an outcome, and instead, a range of values is considered, each with its
probability of being true. A Bayesian approach requires one to specify a subjective prior
that expresses the initial knowledge about the hypothesis.

For most of the 20th century, the frequentist school has been dominant, especially in
fields like medicine, biology, and the social sciences. The rapid growth in computing
power and big data renovated interest in Bayesian approaches. Moreover, it made it very
promising for many practical applications, especially those with a need to continuously
update knowledge about the model parameters when the new data becomes available.

Bayesian analysis plays a central role in this thesis; therefore, its theoretical background
together with the common numerical techniques for practical applications are discussed
next.

1.1 Bayes’ Theorem

In 1933 A. Kolmogorov introduced the basic axioms of the mathematical formulation of
probability [8] from which many useful rules for studying probabilities can be deduced.
To describe them, we define a measure space as (�, F, P ), where � is a non-empty set of
possible states, F is the set of subsets of � that has � as a member (that is closed under
complementation and union), and P (A) is the probability of some event A œ F . In the
following, ‘event’ will denote occurrence of a state in F .

The Kolmogorov axioms are defined as follows:

Axiom 1. The probability of A that belongs to a subset of F is a non-negative real
number

P (A) œ R, P (A) Ø 0, ’A œ F. (1.1)

Axiom 2. The probability that at least one event from the entire state space � will occur
is one

P (�) = 1. (1.2)

3



CHAPTER: 1

Axiom 3. The probability of mutually exclusive events is equal to the sum of their
probabilities

P (A fi B) = P (A) + P (B), ’A, B œ F ÷A fl B = ¶. (1.3)

The conditional probability describes the probability of one event, given that some other
event occurred. For example, if we denote two events by A and B, then the conditional
probability of P (A|B) denotes a probability of event A being true given that B is true.
The conditional probability can be expressed together with the joint probability P (AflB)
as

P (A|B) = P (A fl B)
P (B) if P (B) ”= 0. (1.4)

The same reasoning can be applied to the probability P (B|A). Taking into account that
the joint probabilities P (A fl B) and P (B fl A) are equal, one can write

P (B|A) = P (A|B)P (B)
P (A) if P (A) ”= 0, P (B) ”= 0, (1.5)

and the last equation is called Bayes’ theorem. We can consider the case when � is
partitioned into n sets, i.e., {B1, ..., Bn}, Bi fl Bj = ¶ for i ”= j, and

q
n

i=1 Bi = �. Then
P (A) can be described by the law of total probability

P (A) =
nÿ

i=1
P (A|Bi)P (Bi), (1.6)

Using this, we can rewrite Eq. 1.5 as

P (Bj |A) = P (A|Bj)P (Bj)
q

n

i=1 P (A|Bi)P (Bi)
, (1.7)

which is also called the Bayes-Laplace Theorem, acknowledging that Laplace was the first
who used it for scientific purposes.

Eq. 1.7 has a particular meaning if instead of considering events A and B we consider a
data D and a hypothesis H that describes the data. In that case, P (H|D) is the posterior
that describes the probability of a hypothesis given the data, P (H) is the prior probability
of H being true, P (D|H) is called the likelihood, and it presents the probability of data
given that the hypothesis is true, and P (D) is called evidence, representing a probability
of the data.

1.2 Bayesian Parameter Inference

In scientific experiments, we typically have some data D that we want to use to draw
conclusions about the underlying process or processes. The standard procedure for doing
this in a Bayesian context is, for example, to develop a model M that is characterized by
the parameter vector ⁄ = {⁄i, ..., ⁄d} œ Rd where d is the number of dimensions1, and find
the parameters that represent the data most precisely. The process of determining the
best parameter values is called ‘parameter inference’, and if it uses Bayes’ theorem, then

1In the following, ⁄ will represent a scalar, and ⁄ = {⁄i, ..., ⁄d} will represent a d-dimensional vector
unless otherwise stated.
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SECTION: 1.2. BAYESIAN PARAMETER INFERENCE

‘Bayesian parameter inference’. In this context, we can reinterpret Bayes’ theorem as

P (⁄|D, M) = P (D|⁄, M)P (⁄|M)
P (D|M) . (1.8)

The denominator is called ‘Bayesian evidence’ or ‘marginal likelihood’ and similarly to
Eq. 1.6 it is given by

P (D|M) =
⁄

P (D|⁄, M)P (⁄|M)d⁄. (1.9)

Bayes’ theorem described by Eq. 1.8 is well known for both frequentist and Bayesian
schools of statistics, and it should be used by everyone if the prior P (⁄|M) is known
exactly. If the prior is not known, Bayesians develop one using the best knowledge that
they have. After that, they use the data to draw conclusions about their hypothesis. In
contrast to this, frequentists draw conclusions about their data using only the likelihood
P (D|⁄, M).

The prior probability density is a key aspect of the Bayesian approach as it allows to
incorporate information about parameter distributions, constraints, etc., into inference us-
ing mathematical representation. To utilize the prior information and update its posterior,
the following procedure is used:

1. Define a prior probability density P (⁄|M) that expresses prior belief about param-
eters ⁄ of the model M .

2. Build a statistical model that represents the probability of the data, P (D|⁄, M),
given the model parameters ⁄.

3. Use observed data D to update a prior probability distribution to posterior proba-
bility distribution, P (⁄|D, M), using Bayes’ theorem.

The posterior probability distribution is the solution to the Bayesian inference problem.
It contains the information about the model parameters, given the measured data, and it
can be used as a prior for the next analysis if the new data becomes available.

It is sometimes more convenient to summarize the posterior distribution using a point
estimate and the probability ranges. There are multiple standard approaches, e.g., the
mean and the standard deviation, the median and the central interval, or the mode and
the shortest interval. For example, for one-dimensional ⁄ the mean and the variance can
be defined as

µ © È⁄Í
P

=
⁄ Œ

≠Œ
⁄P (⁄|D, M)d⁄,

‡
2 ©

e
(µ ≠ ⁄)2

f

P
=

⁄ Œ

≠Œ
(µ ≠ ⁄)2

P (⁄|D, M)d⁄.

(1.10)

Alternatively, one can compute the posterior median, ⁄med, and the central interval, C =
[⁄min, ⁄max], defined as

⁄
⁄med

≠Œ
P (⁄|D, M)d⁄ =

⁄ Œ

⁄med
P (⁄|D, M)d⁄ = 0.5,

⁄
⁄min

≠Œ
P (⁄|D, M)d⁄ =

⁄ Œ

⁄max
P (⁄|D, M)d⁄ = –/2,

(1.11)

where 1 ≠ – represents probability enclosed by the central interval, so the parameter ⁄

belongs to this interval with probability 1 ≠ –.
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CHAPTER: 1

Bayesian inference allows to compare which one of two models represents the data more
accurately. Assuming that we have two models, denoted as M1 and M2, with the prior
probabilities P (M1) and P (M2), the posterior odds can be defined as

K © P (M1|D)
P (M2|D) ,

= P (D|M1)P (M1)
P (D|M2)P (M2) ,

(1.12)

where P (M1)
P (M2) is called the prior odds, and B = P (D|M1)

P (D|M2) is called the Bayes factor. If the
two models are given by the same prior probabilities, then the Bayes factor is equal to the
posterior odds. Values of B larger than one indicate that the model M1 represents the
data more accurately than the model M2.

Bayesian model comparison considers integrated support of the posterior probability
distribution, and therefore the choice of parameter priors should be carefully considered.
For example, suppose initial knowledge about the model parameters is absent, and one
uses the uniform priors to model it. In that case, the resulting value of the Bayes factor
can vary in favor of one model or another depending on the range of the prior parameters.
Additionally, Bayesian evidence has an intrinsic property to satisfy Occam’s razor prin-
ciple [9], penalizing unnecessarily complex models. Namely, the inclusion of additional
parameters to otherwise equivalent models requires one to specify their priors. Broad and
non-informative priors on these parameters can introduce a penalty to the Bayesian evi-
dence that can play in favor of another, simpler model. Thus, indicating that the simpler
model that does not overfit the data should be preferred. A detailed explanation of the
Bayesian Occam’s razor principle can be found in [10, 11].

For many practical applications, a solution of Eq. 1.8 cannot be obtained analytically.
This is the case, e.g., when the likelihood is given by a separate program that models the
performance of some experimental device, binned histograms represent the prior knowl-
edge, or just a closed-form solution to the integral cannot be evaluated. In such situations,
one has to consider numerical algorithms to approximate the posterior distributions.

6



SECTION: 1.3. SAMPLING TECHNIQUES

1.3 Sampling Techniques

Let us assume that we have an unnormalized target density function given, for instance,
by a product of the likelihood and prior in Eq. 1.8, i.e.,

f(⁄) ≥ P (D|⁄, M)P (⁄|M), (1.13)

where D and M are fixed. Let us also assume that our goal is to compute expectation
values of a form

r © ÈgÍ
f

=
s

g(⁄)f(⁄)d⁄s
f(⁄)d⁄

, (1.14)

where g represents a function of interest, such as the mean or standard deviation. De-
pending on the dimensionality of the parameter space ⁄ and the form of the target density
f(⁄), di�erent approaches to approximate the target density and the expectation values
ÈgÍ

f
exist.

The simplest one is to construct d-dimensional grid of uniformly distributed points and
use them to evaluate local values of the target density. This approach is e�ective for
problems with a small number of dimensions. If the number of dimensions is large, then
the overall number of points will scale as N

d, where N is a number of points per dimension.
The exponential scaling of the number of evaluation points makes the grid approximation
extremely ine�cient.

Another approach is to approximate the target density by drawing random samples from
it. The class of algorithms that uses random sampling to approximate numerically density
functions is called Monte Carlo (MC) sampling. This name was given by N. Metropolis
and S. Ulam [12] in 1949, intuitively referring to the city in Monaco, which has a large
number of casinos.

According to the law of large numbers [13], the average of a function g(⁄) over the set of
independent and identically distributed2 (i.i.d.) samples {⁄} = {⁄1, ..., ⁄N } drawn from
a distribution f(⁄), approaches the expectation value r when the number of samples N is
large3, i.e.

r̂ = 1
N

Nÿ

i=1
g(⁄i). (1.15)

The convergence of r̂ to r is characterized by the average error proportional to ≥ N
≠1/2,

and it is independent of the number of dimensions [14]. This makes the sampling approach
much more computationally e�cient compared to the d-dimensional grid approximation
in high dimensional spaces. Hence, the problem of estimation of the expectation values
reduces to the problem of accurate sampling from the target densities. A variety of tech-
niques exist for drawing samples from the target density, and a description of a few of
them is given next.

2The definition of i.i.d. samples is given in Section 1.3.1.
3In the following, ⁄i will denote one sample drawn from a target density, and {⁄} will denote a set of N

samples.
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1.3.1 Independent and Identically Distributed Samples
A set of N one-dimensional samples {⁄1, ..., ⁄N } drawn from a distribution f(⁄) is defined
as i.i.d. if the following two conditions hold

F⁄i(x) = F⁄j (x), for i, j = 1...N, i ”= j,

F⁄1,...,⁄N (x1, ..., xN ) =
Ÿ

i=1,...,N

F⁄i(xi), (1.16)

where F⁄i(x) denotes a cumulative distribution function (CDF):

F⁄i(x) =
s

x

≠Œ f⁄i(t)dt
s Œ

≠Œ f⁄i(t)dt
, (1.17)

and F⁄1,...,⁄N (x1, ..., xN ) denotes a joint cumulative distribution function, defined, e.g., in
[15].

In general, generating i.i.d. samples from arbitrary distributions is a non-trivial and
often not possible task. However, there are a couple of approaches that can be used for
specific distributions. Their detailed description is given in [16], and some of the methods
are listed below:

• In the ‘inversion method’, the explicit expression for the CDF is required. Given it,
the inverse CDF can be defined as

F
≠(u) = inf {x : F (x) Ø u} . (1.18)

To generate samples according to F (x), one can generate samples {U1, ..., UN } ac-
cording to the uniform probability distribution U(x|0, 1) where

U(x|a, b) = 1/(b ≠ a) for a < x < b and x œ R, (1.19)

and then make the transformation x = F
≠(u). Even though this approach requires

only uniform random number generator, the practical application of it is limited
because the explicit expression for CDF is not always available.
For example, the exponential distribution, E(x|‹) = ‹ exp (≠‹x) for x > 0, ‹ > 0,
has a CDF F (x|‹) = 1 ≠ exp (≠‹x). The uniform samples {U1, ..., UN } drawn from
U(x|0, 1) can be transformed into exponential as X = ≠ log (1 ≠ U)/‹.

• The ‘relationships method’ takes advantage of some known relationships between
di�erent distributions. For example, the Box-Muller algorithm allows generating
samples from a unit Normal distribution4, N (x|0, 1), defined as

N (x|µ, ‡) = 1
‡

Ô
2fi

exp
C

≠(µ ≠ x)2

2‡2

D

, (1.20)

where µ represents the mean and ‡
2 represents the variance. Two samples {U1, U2}

drawn from U(x|0, 1) can be transformed into samples {X1, X2} from N (x|0, 1) using
the following transformation

X1 =


≠2 log U1 cos 2fiU2,

X2 =


≠2 log U1 sin 2fiU2.

(1.21)

4In the following, the terms ‘Normal distribution’ and ‘Gaussian distribution’ will be used interchangeably.
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Another example is the generation of samples from the Poisson distribution defined
as

P(x|‹) = e
≠‹

‹
x

x! , for ‹ > 0, x œ Z. (1.22)

One can first generate samples {X1, ..., XN } from E(x|‹) and then use the fact that
they are connected to the Poisson distribution through the Poisson process [17, 18].
The samples N ≥ P(x|‹) can be obtained from the following condition

P(N = k|‹) = P(X1 + ...Xk 6 1 < X1 + ...Xk+1|‹), (1.23)

which requires generating exponential random samples until their sum exceeds 1.
This approach is simple for implementation, but it is not computationally e�cient
for large ‹ (see [16] for detailed discussion).

• The ‘rejection method’ uses the geometrical probability interpretation of density
functions when it is not possible to exploit their probabilistic properties directly.
This approach can be used to generate samples from the densities that: (a) Have a
finite support range, (b) Function values are bounded.

Due to their statistical properties, i.i.d. samples should be always preferred from other,
possibly correlated, samples. If the generation of i.i.d. samples is not possible, then one has
to consider other methods, that sacrifice the condition of independence but still resemble
the exact target density.

1.3.2 Markov Chain Monte Carlo Sampling

Markov Chain Monte Carlo (MCMC) is a class of algorithms that allows generating sam-
ples with a distribution proportional to a given target density function using properties
of Markov Chains. It was first developed approximately with the development of the first
computers, and it has been used to solve problems required for the Manhattan project in
1939 [19].

Markov Chain

There exist a variety of random processes such as Gaussian processes [20, 21], Poisson pro-
cesses [17, 18], autoregressive models [22], Markov chains [23, 24]. Each of these processes
has its unique properties that can be used to study them.

The Markov chain is a random process in which, for any given iteration, the conditional
distribution of the future state is completely determined by the current state of the system
and not by the past states. In other words, the process is memoryless, and it is not possible
to get any additional information about the future behavior of the process by collecting
information about the past.

To discuss some properties of the Markov process, let us assume that we wants to
generate a sequence of N vectors in a discrete state space ⁄i æ ⁄j æ ... æ ⁄N . Each
of these states is characterized by the transition matrix W , where the matrix element
W (⁄j |⁄i) gives the probability that the system makes a transition from state ⁄i to state
⁄j , where j ≠ i = 1. The dynamics of such transitions in the state space can be described
in terms of the master equation [25]

df(⁄i)
dt

=
ÿ

j

f(⁄j)W (⁄i|⁄j) ≠ f(⁄i)
ÿ

j

W (⁄j |⁄i). (1.24)
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Given a time-homogeneous state space, i.e.,
ÿ

j

f(⁄j)W (⁄i|⁄j) = f(⁄i)
ÿ

j

W (⁄j |⁄i), (1.25)

a Markov chain has ‘stationary distribution’ if the following condition holds:

f(⁄i) =
ÿ

j

f(⁄j)W (⁄i|⁄j). (1.26)

A Markov chain is called ‘irreducible’ if there exist a finite number of steps, N < Œ,
needed to reach any two points in a state space, i.e., W

N (⁄j |⁄i) > 0. If a Markov chain is
irreducible and has a stationary distribution, then this stationary distribution is unique,
and the chain is ‘positive recurrent’. An aperiodic Markov chain that is positive recurrent
and has a stationary distribution is ‘asymptotic’, meaning that the stationary distribution
can be reached from any point of a state-space in a limit of a large number of iterations.
Irreducible Markov chains with unique stationary distributions are called ‘ergodic’, and
they allow to approximate expectation values defined in Eq. 1.14 using the estimator
defined in Eq. 1.15.

If the dynamic of the chain remains unchanged if the chain runs backward while being at
a stationary distribution, then we can say that the chain is time reversible and it satisfies
the condition of detailed balance:

f(⁄j)W (⁄i|⁄j) = f(⁄i)W (⁄j |⁄i). (1.27)

The condition of time reversibility should not necessarily be satisfied to guarantee the
existence of an asymptotic stationary distribution. But if this condition is satisfied, then
it guarantees that the limiting stationary distribution exists. This allows using the detailed
balance condition to construct algorithms for generating MCMC samples.

Due to their great properties, Markov chains are widely used in many fields such as
statistics [16, 23], biology [26, 27], and queueing theory [28, 29].

Sampling using Markov Chains

MCMC methods are typically used to solve problems with intractable many-dimensional
target densities. There are various MCMC algorithms, and their main di�erence is in the
way how they define a transition matrix W (⁄i|⁄j) of the Markov chain. These algorithms
have in common that (1) the representative samples can be generated after reaching a
certain number of burn-in iterations needed for the Markov chain to approach stationary
distribution, and (2) that the resulting samples are correlated.

Convergence To determine whether the samples represent target distribution correctly,
M chains can be run from di�erent starting points, and their distributions can be com-
pared. There are no methods to detect a convergence of samples from multidimensional
target densities, and the convergence criteria can only be used to detect convergence fail-
ure. One of the most popular criteria was proposed by A. Gelman and D. B. Rubin in [30],
and it compares variance within chains and the pooled variance estimate. For example, if
we have a one-dimensional parameter space and each of M chains produced N samples,
i.e., {⁄i,j} for i = 1, ..., M , j = 1, ..., N , then we can compute the estimator

R̂ = V̂

W
, (1.28)
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where

W =
Mÿ

i=1

Nÿ

j=1

(⁄i,j ≠ È⁄iÍ)2

M(N ≠ 1) ,

V̂ = (N ≠ 1)W
N

+
Mÿ

i=1

(È⁄iÍ ≠ È⁄Í)2

M ≠ 1 ,

(1.29)

and È⁄iÍ represents i-th chain mean and È⁄Í is the overall mean. The degree of convergence
is measured by the closeness of R̂ to the value 1, and values that are larger than 1 indicate
that chains did not converge. There exist other convergence approaches whose review is
presented in [31].

E�ective sample size Samples that originated from one MCMC chain are correlated.
The degree of sample correlation depends on the acceptance probability, number of chains,
complexity of the target density function, etc. The e�ective number of samples can be
estimated as

Neff = N

·̂
, (1.30)

where N is the number of samples and ·̂ is the integrated autocorrelation time, estimated
via the normalized autocorrelation function fl̂(·):

·̂k = 1 + 2
Œÿ

·=1
fl̂k(·), (1.31)

fl̂k(·) = ĉk(·)
ĉk(0) , (1.32)

ĉk(·) = 1
N ≠ ·

N≠·ÿ

i=1
(⁄k,i ≠ È⁄kÍ) (⁄k,i+· ≠ È⁄kÍ) , (1.33)

where k refers to the one of the d dimensions of the multivariate sample {⁄k,i}, i reefers
to the one of the N samples, and È⁄kÍ is the average of the k-th component of all the N

samples.
The two most famous sampling algorithms in Bayesian calculations are the Metropolis-

Hastings sampler and the Gibbs sampler.

Metropolis-Hastings Algorithm

This algorithm is the oldest and most general algorithm for constructing a sequence of
random Markov chain samples from the target density. It has been proposed by Metropolis
et al. in 1953 [32] and later generalized by K. Hastings in 1970 [33].

The proposed idea consists of defining a transition probability W (⁄i|⁄j) in the following
way

W (⁄i|⁄j) = Tgen(⁄i|⁄j)Aacc(⁄i|⁄j), (1.34)

where Tgen(⁄i|⁄j) is a proposal probability distribution, i.e., a probability to generate a
trial move from state ⁄j to state ⁄i, and Aacc(⁄i|⁄j) is a probability to accept this move.
Taking into account Eq. 1.27, one can rewrite the detailed balance condition:

f(⁄j)Tgen(⁄i|⁄j)Aacc(⁄i|⁄j) = f(⁄i)Tgen(⁄j |⁄i)Aacc(⁄j |⁄i). (1.35)
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The acceptance probability that satisfies the solution of this equation can be written as

Aacc(⁄i|⁄j) = min
I

1,
f(⁄i)Tgen(⁄j |⁄i)
f(⁄j)Tgen(⁄i|⁄j)

J

, (1.36)

and it has been shown by A. Barker [34] that this solution results in the fastest mixing rate
of samples compared to other methods. The algorithm can be presented by the following
pseudo-code:

Listing 1.1: Metropolis-Hastings Algorithm⌥ ⌅
���
Input:

target : Target probability density
pr_prob : Proposal probability density
startpt : Starting point
nsteps : Number of steps

Output:
samples : Vector of samples

���
function sample(target, pr_prob, startpt, nsteps)

⁄_i = startpt
samples = []

for t in 1:nsteps
⁄_j = draw_sample(pr_prob(⁄_j|⁄_i))
accept = target(⁄_j) * pr_prob(⁄_i|⁄_j) / (target(⁄_i)*pr_prob(⁄_j|⁄_i))
a = draw_sample(Uniform from 0 to 1)
if a < minimum([1, accept])

⁄_i = ⁄_j
else

⁄_i = ⁄_i
end
push!(samples, ⁄_i)

end

return samples
end⌃ ⇧

A proposal probability distribution can be defined in many di�erent ways, resulting in
di�erent versions of the Metropolis-Hastings algorithm. The most typical are Gaussian,
Student’s t, and Uniform distributions. The width of the proposal probability distribution
is the tuning parameter, and it a�ects the correlation between MCMC samples. Choosing
a broad width of the proposal distribution makes the samples less correlated and the
acceptance rate smaller. By making the width of the proposal distribution narrow, the
correlation between samples and the acceptance rate increase. The parameters of the
proposal distribution are typically tuned to have the acceptance rate in the range of
[0.15, 0.35], which has been proved to be optimal [35].

Gibbs Sampling

This algorithm was described by brothers Geman in 1984 [36], and it is named after the
physicist J. W. Gibbs.

The idea of the Gibbs sampler, which is a special case of the Metropolis-Hastings algo-
rithm [16], is to replace sampling from a full joint distribution by sampling over conditional
distributions. To define the transition probability of the simplest Gibbs sampler, let us
assume that the parameter vector ⁄i consist of d components, i.e., ⁄i = {⁄1,i, ⁄2,i, ..., ⁄d,i}.

12
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The probability to construct a displacement from ⁄i to ⁄j is then given by

W (⁄j |⁄i) =
dŸ

k=1
P (⁄k,j |⁄1,j , ..., ⁄k≠1,j , ⁄k+1,i, ..., ⁄d,i), (1.37)

and it assumes that one can generate samples from the distribution of each variable in
turn, conditional on the current values of the other variables.

This definition of the transition probability does not satisfy the time reversibility con-
dition. This can be fixed, for instance, by picking random components of the parameter
vector and sampling them consecutively. The following pseudo-code summarizes the sim-
plest time-reversible Gibbs algorithm:

Listing 1.2: Gibbs Sampling Algorithm⌥ ⌅
���
Input:

target : Target probability density
startpt : Starting point
nsamples : Number of samples

Output:
samples : Vector of samples

���
function sample(target, startpt, nsamples)

⁄ = startpt
samples = []
for t in 1:nsteps

ind = draw_sample(integer from 1 to number of dimensions)
⁄[ind] = draw_sample(target(|all parameters are constant despite ⁄[int]))
push!(samples, ⁄)

end
return samples

end⌃ ⇧
The Gibbs sampler is usually preferred from the Metropolis-Hastings sampler for prob-

lems where the decomposition of the joint distribution into conditionals is easy to imple-
ment and fast to run. In such problems, the Gibbs sampler generates samples with the
acceptance probability of one. If such decomposition includes multi-modality, then the
convergence of the Gibbs sampler will be slower than the convergence of the Metropolis-
Hastings sampler because the variables in the Gibbs sampler cannot evolve jointly [16].
In this scenario, tuning the proposal in the Metropolis-Hasting algorithm might produce
a higher sampling e�ciency.

1.3.3 Hamiltonian Monte Carlo

One of the most sophisticated sampling methods is Hamiltonian Monte Carlo (HMC)
[37, 38, 39]. By using a proposal function that is adjusted to the shape of the target
distribution, HMC algorithms can yield higher acceptance rates and less correlated samples
than other sampling algorithms based on random walks, thus reducing the number of
samples required to fully explore the target distribution.

In HMC, the d-dimensional parameter space is expanded to 2d dimensions by intro-
ducing so-called momenta p as hyperparameters, moving from the original phase space
to the canonical phase space q æ (q, p). In order to conform to standard notation when
discussing HMC, q is used here to represent the parameters of the model in place of ⁄.

In the HMC formalism, the target distribution f(q) is lifted to the canonical phase space
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using a joint probability distribution

f(q, p) = f(p|q)f(q) = e≠H(q,p)
, (1.38)

where the probability distribution of the momenta f(p|q) is chosen to be conditional. The
last equality in Eq. (1.38) comes from defining the so-called Hamiltonian as

H(q, p) = ≠ log f(q, p) = ≠ log f(p|q) ≠ log f(q) . (1.39)

The di�erential equations

dqi

dt
= ˆH

ˆpi

,
dpi

dt
= ≠ˆH

ˆqi

, (1.40)

are well known from classical mechanics and referred to as Hamilton’s equations of motion.
Solving the equations of motion for a certain time T allows moving along trajectories „

and gives a transition in the canonical phase space

(q, p) æ „T (q, p) = (qú
, pú) , (1.41)

resulting in the new point (qú
, pú). By marginalizing over the momenta p, we obtain

a new proposal point qú in the original parameter space. This proposal is then either
accepted as a new sampling point or rejected by calculating an acceptance ratio, similar
to the Metropolis-Hasting algorithm. Since the proposal points are generated using in-
formation of the target distribution, their acceptance rates are higher than samples using
non-problem-specific proposal distributions.

The key steps of the HMC algorithm can be described by the following pseudo-code:

Listing 1.3: Hamiltonian Monte Carlo Algorithm⌥ ⌅
���
Input:

target : Target probability density
pr_prob : Proposal probability density
startpt : Starting point
max_time : The time during which trajectory evolves

Output:
samples : Vector of samples

���
function sample(target, pr_prob, startpt, max_time)

q = startpt
samples = []

for t in 0:max_time

p = draw_sample(initial momentum)
q*, p* = run Leap Frog algorithm starting at q, p
accept = target(q*) * pr_prob(q|q*) / (target(q) * pr_prob(q*|q))
a = draw_sample(Uniform from 0 to 1)
if a < minimum([1, accept])

q = q*
else

q = q
end
push!(samples, q)

end

return samples
end⌃ ⇧
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Since HMC requires gradient information and introduces multiple hyperparameters
(such as momenta and integration times) into the sampling process, performing Bayesian
analyses with HMC samplers is usually not as straight-forward as using the MH algo-
rithm as it requires additional computational steps such as the numerical integration of
the equations of motions and the selection and tuning of the hyperparameters. In modern
computing languages like Julia, there exist packages that allow automatic di�erentiation
of arbitrary code, allowing to increase the applicability of HMC algorithms.

1.3.4 Nested Sampling

Nested Sampling (NS) is another very e�cient approach for Bayesian calculations pre-
sented in 2004 by J. Skilling [40]. It inverses the traditional procedure for Bayesian calcu-
lation, where the emphasis is placed on evaluating posterior samples. Instead, NS allows
an estimate of the Bayesian evidence directly, providing posterior samples at no extra cost.
The NS algorithm does not require a gradient of the target density compared to HMC,
and it proved to be very e�cient for sampling multimodal and many-dimensional target
densities.

The motivation of the algorithm is to estimate the following integral

I =
⁄

P (D|⁄, M)P (⁄|M)d⁄, (1.42)

given constant D and model M . The NS algorithm defines the so-called cumulative prob-
ability of the likelihood restricted prior (also called the prior mass) as

X(Lmin) = Prob {P (D|⁄, M) > Lmin}

=
⁄

P (D|⁄,M)>Lmin

P (⁄|M)d⁄.
(1.43)

where Lmin denotes the minimum likelihood value. Given that, a possibly many-dimensional
integral I can be transformed into a one-dimensional integral of form

I ©
⁄ 1

0
Lmin(X)dX, (1.44)

where the integrand is a positive and decreasing function. Eq 1.44 can be approximated,
e.g., using standard quadrature methods,

Î =
jÿ

i=1
Li(Xi≠1 ≠ Xi), (1.45)

where Li = Lmin(Xi), and 0 < Xj < ... < X0 < 1 is an arbitrary grid in the range [0, 1].
The likelihood values Li are selected by the following procedure: (1) Draw N independent
samples from the prior distribution. (2) Find the sample with the smallest likelihood and
assign its likelihood value to L1. (3) Replace this sample with another sample that is
drawn from the likelihood restricted prior. (4) Repeat (1)-(3) until a given stopping rule
is satisfied, recording Li for each iteration.

In the above description, the values of Xi are generally unknown. Skilling proposed to
approximate them as Xi = exp (≠i/N), such that log Xi is the expectation of log X(Li)
(see [40]). A simple version of the nested sampling algorithm can be described by the
following pseudo-code:
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Listing 1.4: Nested Sampling Algorithm⌥ ⌅
���
Input:

prior : Prior probability density
likelihood : Likelihood
niter : Number of iterations
npoints : Number of points

Output:
samples : Vector of samples
weights : Weights of the samples
I : Bayesian evidence

���
function sample(prior, likelihood, niter, npoints)

⁄ = draw_sample(prior, npoints) # generate N samples from prior
samples = []
weights = []
I = 0
x_0 = 1

for i in 1:niter
⁄_i = find sample with smallest likelihood
L_i = likelihood(⁄_i)
x_i = exp(-i/N)
w_i = x_{i-1} - x_i
I = I + L_i * w_i

push!(samples, ⁄_i) # save sample with weight w_i
push!(weights, w_i)

Update ⁄_i with with a sample that keep the likelihood above L_i

end
return samples, weights, I

end⌃ ⇧
The most challenging part of the NS algorithm is to replace the sample with the smallest
likelihood with another sampled from the likelihood restricted prior. There exist di�erent
variants of the NS implementations, such as those that are using MCMC or HMC to
generate new samples more e�ciently. A detailed review of recent developments in this
field is presented in [41].

1.4 Enhancing the E�ciency of Sampling Methods
Overall, one of the major strengths of MCMC techniques is that they can converge to the
target density even if target functions are highly multidimensional and multimodal. A
major di�culty is that convergence is reached only asymptotically, and approaching the
stationary distribution can require a very large number of sampling steps. For many real-
world applications, evaluation of a target density can be very computationally costly, and
there is usually a limit to how far a single target evaluation can be parallelized e�ciently;
this can make MCMC sampling very costly.

A further complication stems from the fact that a large number of burn-in steps need to
be performed for each MCMC chain before representative samples can be generated. The
burn-in duration can even exceed the sampling time, especially for target densities that
have a complex shape. While separate Markov chains can be run independently and in
parallel, simply increasing their number while producing fewer samples from each chain is
therefore not an e�ective parallelization strategy as the length of the burn-in process for
each chain would not change.

Significant research has been conducted to enhance the e�ciency of MCMC methods.

16



SECTION: 1.4. ENHANCING THE EFFICIENCY OF SAMPLING METHODS

The developments in this field can be divided into several categories [42].
The first is based on exploiting the geometry of the target density function. As discussed

earlier, the HMC sampling belongs to this category, and it introduces an auxiliary vari-
able momentum that proposes displacements solving a Hamiltonian equation of motion.
A numerical solution of the Hamiltonian equation using, for instance, standard Euler’s
method creates an unstable approximation to the trajectory of motion. This induces a
bias, and the approximated trajectory drifts away from its true values. Symplectic inte-
grators of di�erent orders of accuracy have been developed to approximate equations of
motions more accurately [43], and one of the most famous in terms of speed and accuracy
is the so-called leapfrog approximation. The discretization of the Hamiltonian equation
introduces two free parameters, the step size and the trajectory length, and one of the
most widely used heuristics to chose these parameters are implemented in the ‘no-U-turn
sampler’ (NUTS) [44]. A further attempt to speed up HMC sampling has been proposed
in [20] and [45] where the exact target density is replaced by a computationally faster
approximation. Overall, the HMC provides less correlated samples than the Metropolis-
Hastings algorithm; however, the gradient of the density is not always readily available or
cannot be computed in a reasonable time, remaining a practical interest for improving the
performance of non-gradient based samplers.

The second approach of accelerating MCMC is based on improving the proposal func-
tion. Techniques such as simulated tempering [46, 47], adaptive MCMC [48], and multi-
proposal MCMC [49, 50] are available and have been shown to be e�ective for many ap-
plications [51, 52, 53, 54, 55]. The simulated tempering has the drawback that it requires
a run time that scales exponentially with a number of dimensions to reach a convergence
if the modes of the target density have very di�erent structures. The adaptive MCMC
has the drawback that it relies too much on the existing samples to tune the proposal,
reinforcing the exclusion of those parts of the space that has not been previously explored.
The multi-proposal MCMC methods require generating many additional samples to make
a proposal, which can be very expensive if the target density is computationally costly.

The third approach is based on breaking initially complicated problems into simpler
pieces. For example, separate MCMC chains explore the parameter space in parallel, and
the resulting samples are merged together [56, 57]. As discussed earlier, this approach
does not simplify convergence of chains to the stationary distribution. Another approach
is to partition the data space [57, 58, 59] or parameter space [60, 61, 62] into simpler
pieces that can be processed independently. An e�ective partitioning can thereby change
the task from sampling from a complicated target distribution to sampling from many,
simpler target distributions. The approach of space partitioning requires knowledge of the
integrated normalization factor to stitch multiple posteriors together; evaluation of this
normalization factor is a numerically challenging task that will be discussed in the next
chapter.
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2 Development of Advanced Techniques for
MCMC Sampling

In this chapter, I present the development and numerical implementation of two algorithms
for Bayesian computations.

In the first section, the Adaptive Harmonic Mean Integration Algorithm (AHMI) is
presented, following closely its description published in [63]. This algorithm has been
proposed and developed by joint e�orts of my colleagues, A. Caldwell, P. Eller, R. Schick,
O. Schulz, M. Szalay, and me. Given samples drawn according to a probability distribution
proportional to the function, the AHMI algorithm estimates the integral of the function
and the uncertainty of the estimate by applying a harmonic mean estimator to adaptively
chosen regions of the parameter space.

In the second part, an approach to improve the e�ciency of the MCMC sampling
is described that is based on the division of parameter space into simpler regions. An
e�ective partitioning of the parameter space can change the task from sampling from a
complicated target distribution to sampling from many, simpler target distributions. This
approach requires evaluation of the integral over the target density, which is performed
using the AHMI algorithm. This algorithm is presented in [64], and it has been proposed
and developed jointly by my colleagues, P. Eller, O. Schulz, A. Caldwell, and me.

Both of the algorithms are implemented in the BAT.jl [65] package that can be found
on the following GitHub page [66]. A short overview of the BAT.jl package is given in the
last section, following its original description published in [65].

In this Chapter, by mentioning ‘we’ in the text, I will refer to those colleagues with
whom the collaborative work has been performed, who supervised me and helped with
di�erent aspects of my work.

2.1 Integration With an Adaptive Harmonic Mean
As it was briefly mentioned earlier, estimating the integral of density functions in high
dimensional spaces is a nontrivial task. However, there exist a number of application
where such integration is needed, such as Bayesian evidence calculation, or evaluation
of thermodynamic potentials. In context of this Chapter, we will consider a problem of
target density normalization using a samples drawn from an unnormalized target density

{⁄} ≥ f(⁄), f(⁄) > 0 ’⁄ œ Rd
, (2.1)

where f(⁄) is given by Eq. 1.42. The integral that we want to evaluate is

I ©
⁄

�
f(⁄)d⁄, (2.2)

where � described the support of f . The underlying assumption of the integration al-
gorithm that is presented in this section is that it will not provide a correct result if
the sampling algorithm has failed in correct sampling. The AHMI algorithm is aimed to
provide integral estimate without the need to regenerate new samples.
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A variety of techniques to estimate evidence in Bayesian calculations have been suc-
cessfully developed. A summary can be found in [67], where a number of MCMC related
techniques are reviewed, including Laplace’s method [68], Harmonic Mean Estimation
(HME) [69], Chib’s method [70], annealed importance sampling techniques [71], NS [72]
and thermodynamic integration methods [73, 74].

Only the HME (see Section 2.1.1) and Laplace techniques allow the direct estimation
of the evidence from available samples, and the Laplace technique makes the unwanted
assumption that the target density is a single multivariate Gaussian. The Laplace approxi-
mation fails badly for multimodal distributions or distributions with significant probability
mass in the tails of the distribution. The HME method has been strongly criticized (even
called ‘worst Monte Carlo Method ever’ [75]), since its estimator can easily diverge. The
algorithm presented in this section is aimed to improve the performance of HME by adap-
tively finding subvolumes where the integration can be performed without a divergence of
HM estimator.

2.1.1 Reduced Volume Harmonic Mean Estimate

We are interested in estimating the integral I from Eq. 2.2. We start by defining the
integral

I� ©
⁄

�
f(⁄)d⁄ (2.3)

with � µ � a finite integration region, and the ratio

r © I�
I

. (2.4)

Given our assumption that the sampling algorithm has successfully sampled from f(⁄),
we use the following as an estimator to our ratio

r̂ = N�
N�

, (2.5)

which is the fraction of the total number of samples that fall within � µ � . Defining the
normalized density over �

f̃�(⁄) = f(⁄)
I�

⁄ œ �, (2.6)

allows us to perform a harmonic mean calculation as follows:

E

5 1
f(⁄)

6

f̃�(⁄)
=

⁄

�

1
f(⁄) · f̃�(⁄)d⁄ =

⁄

�

1
f(⁄) · f(⁄)

I�
d⁄ = V�

I�
(2.7)

where V� is the volume of the region defined by �. An estimator for this expectation
value is the harmonic mean

X̂ = 1
N�

ÿ

⁄iœ�

1
f(⁄i)

. (2.8)

The HME for the reduced volume integral then follows as

Î� = V�
X̂

= N�V�q
⁄iœ�

1
f(⁄i)

. (2.9)
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This calculation is performed directly from the values of the target density f(⁄i) given by
the sampling algorithm, and does not require any extra sampling. An estimator for the
integral over the full space � can then be written down as

Î = Î�
r̂

= N�V�q
⁄iœ�

1
f(⁄i)

. (2.10)

The task of estimating our integral therefore reduces to choosing one or several subspaces
�—typically small regions around local modes of f(⁄). The full space � over which the
integration ought to be performed can be large or even infinite, while this does not a�ect
the outcome of our integral estimate. We discuss the bias and uncertainty of this estimator
in the following subsection.

In general, MCMC samples come with weights (e.g. repeated samples, with the weight
being the number of repetitions). We therefore rewrite Eq. 2.10 as

Î = W�V�q
⁄iœ�

wi
f(⁄i)

(2.11)

with wi the weights assigned to the samples at parameter values ⁄i and W� =
q

i
wi the

sum of all weights. The use of weights also allows this technique to be applied to samples
obtained from, for example, importance sampling.

Illustration of the Technique

To illustrate our technique for applying harmonic mean integration, we consider the unit
normal distribution P (x) = N (x|0, 1). A fixed number of samples (3 · 103) was generated
from directly sampling the unit normal distribution, and Eq. 2.10 was used to calculate the
integral for di�erent sub-regions �. These regions are defined as windows of x centered on
0 and varied in width from 0.02 up to 9. This was repeated 1.5 · 104 times, and the mean
and standard deviation were evaluated. Figure 2.1 shows the results of the integration as
a function of window size. As is seen in the figure, harmonic mean integration applied
to a finite region gives an accurate value for the integral over a wide range of sampling
windows. The variation in the integral results is largest for small windows due to the small
number of samples used, and for large windows due to the divergence of the harmonic mean
estimator. We discuss the biases in the next section.

Bias and Uncertainty of the Estimator

We can estimate the bias and uncertainty on Î given in Eq. 2.10 by separately analyzing
the behavior of r̂ and X̂. As described below, we choose regions � for which the range of
target density values is moderate. For i.i.d. sampling, this would imply, via the Central
Limit Theorem, that X̂ follows a Normal distribution. Assuming we can approximate the
distribution of X̂ with a Normal distribution, we have

P (X̂) ¥ N

Q

aµ̂X = X̂, ‡̂
2
X =

q
⁄iœ�( 1

⁄i
≠ X̂)2

N�(N� ≠ 1)

R

b

where P (X̂) is the probability distribution for X̂ with mean µ and variance ‡
2 estimated

from the observed samples. Since X̂ appears in the denominator in Eq. 2.10, this produces
a bias in our integral of size ‡̂

2
X

/µ̂
2
X

. The fractional uncertainty in our integral estimator
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Figure 2.1: Demonstration of the reduced harmonic mean technique with the unit normal
distribution. The left panel shows in blue the mean (solid line) and the region
covering 68 % of results (from 1.5 ·104 repeated trials) of the integral estimates
as a function of the window extent. The true integral value is 1.0, indicated
in red. The gray shaded distribution shows the unit normal pdf (right y-axis
scale). For the three window extents indicated by the black, vertical lines
(Window 1: |x| < 0.24, Window 2: |x| < 1.61, Window 3: |x| < 4.20) the full
distribution of integral estimates from the 1.5 · 104 trials are plotted on the
right side as histograms.
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Figure 2.2: Left: The average uncorrected (Eq. 2.10) and corrected (b · Î) integrals as a
function of the extent of the window used to accept samples. The results are
from averaging 1.5 · 104 integration results, where each integration test was
performed from 3 · 103 samples in the full function range. Right: Individual
contributions to the bias correction from the Binomial (r̂) and the 1/f terms.

is ‡̂X/µ̂X .
The estimator r̂ will also typically follow approximately a Normal distribution with

parameters that can be estimated from i.i.d. sampling and Binomial statistics as

P (r̂) ¥ N
3

µ̂r = r̂, ‡̂
2
r = r̂(1 ≠ r̂)

N�

4

Since r̂ also appears in the denominator, it will also produce a bias in our integral of size
‡̂

2
r/µ̂

2
r . The fractional uncertainty in our integral estimator from r̂ is, in the approximation

of i.i.d. sampling and a Normal distribution, ‡̂r/µ̂r.
We can therefore write down an explicit correction factor

b = (1 ≠ ‡̂
2
X

µ̂
2
X

≠ ‡̂
2
r

µ̂2
r

) (2.12)

that we apply to the integral estimate Î by multiplication.
The correction is illustrated in Fig. 2.2 using the same numerical experiments discussed

in section 2.1.1. The resulting uncorrected and corrected average integral values are dis-
played. Focusing on small window sizes, it can be seen that the term from r̂ dominates, as
the binomial uncertainty is largest for small numbers of samples. With the bias correction
applied, already for as few as ¥ 20 samples inside the integration volume (corresponding
to roughly |x| < 0.01), accurate results are produced, while without the correction factor
applied much large windows, starting at around |x| < 0.5, are necessary.

Towards larger windows the bias produced from X̂ become dominant, as the range of
values of f of the contained samples grows. The bias correction successfully mitigates this
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e�ect as illustrated.
Once the window size exceeds the space where samples are present, the integral starts

diverging. For our example using 3 · 103 samples, we expect those to cover a region up to
only |x| ¥ 3.58, which explains well the observed trend.

Many samplers such as MCMC algorithms generate strong correlations amongst samples
and using the binomial uncertainty discussed here can be inaccurate. We therefore also
numerically evaluate the uncertainty as described in detail below. The integration regions
are chosen such that the bias correction can be neglected.

2.1.2 An Adaptive Harmonic Mean Integration Algorithm
AHMI uses the HME on multiple subregions �i to estimate the integral of f(⁄) over
its full support �. In this subsection we present our example algorithm in detail and
will show benchmark tests on several distributions in Sec. 2.1.3. As discussed previously,
defining a set of suitable regions is crucial in obtaining a robust and unbiased estimate of
the integral of f(⁄). In particular, to avoid biasing the result, it is essential not to use
the same elements of the sample set {⁄} for both the definition of �i and estimates of the
integral Îi.

The general flow of the AHMI algorithm, including the procedure of defining the �i, is
summarized in Fig. 2.3. The various involved steps are discussed in more technical detail
in the following subsections.

Samples, Preprocessing and Splitting

We start with a given set of samples {⁄} that we assume are drawn according to the
probability distribution proportional to our function f(⁄), obtained for example from
MCMC sampling.

In order to de-correlate the sample space we apply a whitening transformation. In
general, a whitening transformation maps a set of random variables with a known non-
singular covariance matrix to a new set of variables with a covariance matrix equal to I.
A Cholesky Decomposition is used to whiten the samples, and the AHMI estimator for
the integral becomes

Î = W�V
Õ

�
det R ·

q
⁄Õ

iœ�
wi

f(⁄Õ
i)

(2.13)

where det R is the determinant of the whitening matrix and the primed symbols represent
the quantities in the transformed space. In the following we drop this explicit addition of
prime symbols and work in the whitened space (unless otherwise stated).

The full set of samples is then divided into two equally sized and mutually exclusive
subsets A and B.

Hyper-rectangle Generation

We illustrate the hyper-rectangle generation steps in more detail using a two-dimensional
Gaussian shell example with distribution

f(⁄|c, r, Ê) = 1Ô
2fiÊ2

exp
A

≠(|⁄ ≠ c| ≠ r)2

2Ê2

B

. (2.14)

In our examples, we use the following settings: radius r = 5, width Ê = 2 and c = 0̨. The
integration region extends from [≠25, 25] in each dimension. Samples from this distribution
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Î

Figure 2.3: Overview of the di�erent steps in the AHMI algorithm, including the procedure
of finding subvolumes �i and computing integral estimates Îi.

are shown in Fig. 2.4a.
The algorithm starts by creating seed points around which to construct the integration

regions �i. These points should lie in areas of high density and should result in broadly
distributed starting points.

In order to limit computation time, a simple space-partitioning tree is used to divide
the whitened space into subsets of non-overlapping regions. A tree is constructed by
performing cuts in every dimension in such a way to have an equal number of samples on
the left and right leaves. The number of cuts in each parameter axes is determined by
the total number of samples and the number of dimensions and is chosen in a way, that
the number of samples in each leaf does not exceed 200. An example of such a space-
partitioning tree is shown in Fig. 2.4b. For each partition i, the sample with the largest
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(a) MCMC samples after whitening transforma-
tion. The size of each point is proportional to
its weight.

(b) Two dimensional space-partitioning tree. All
regions contain an equal number of unique
samples.

(c) Initial hypercubes �̃ around seed points.
(d) Hyper-rectangles after adjustments. Only the

red hyper-rectangles are used in the final in-
tegral estimate.

Figure 2.4: Process of finding integration regions in a two dimensional example for the
Gaussian shells test function.
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function value contained in that partition is defined as seed point ⁄seed

i
.

The following steps produce hyper-rectangle-shaped regions suitable for AHMI. In order
to limit this variance and ensure numerical stability, the ratio between the highest and the
lowest probability of samples inside a hyper-rectangle is bound by the following condition:

fmax
fmin

Æ t . (2.15)

Although this threshold is user-selectable, by default it is equal to 500 (an example of
integration with di�erent threshold values is shown in Sec. 2.1.3).

To create M regions for integration, we select the seed point ⁄seed
i

with the overall
largest value f(⁄seed

i
) and follow the steps below. Then we recursively repeat the same

procedure M ≠ 1 times using the remaining seed points.

1. The algorithm starts by building a small hyper-cube �̃i around the selected seed
point ⁄seed

i
, see Fig. 2.4c.

2. This hyper-cube is then incrementally either increased or decreased in size, until the
probability ratio of contained samples matches the threshold t within some tolerance,
or until it contains more than one percent of the total samples.

3. The faces of the hyper-cube are then iteratively adjusted (expand or contract),
to adapt to the density of the contained samples, while enforcing the condition
fmax/fmin Æ t. This step turns the d-dimensional hyper-cube into a d-dimensional
hyper-rectangle. This hyper-rectangle adaptation algorithm continues as long as
changes to the hyper-rectangle’s faces are accepted. The stopping criterion is based
on the fraction of samples accepted or rejected compared to expectation from the
volume change. However, the hyper-rectangle adaption algorithm always ensures
that no modification to the hyper-rectangle’s faces are made if such a modification
would result in fmax/fmin > t.

Figure 2.4d shows the resulting set of M hyper-rectangles for our example. A detailed
description of the rectangle optimization procedure can be found in [76].

Integral Estimates

Once M integration regions are defined, we can compute the integral estimates Î
A

i
for

each �B

i
, according to Eq. 2.11. The procedure is the same for Î

B

i
, so we shall drop the

superscripts A and B in the following. The two resulting, separate estimates Î
A and Î

B

will then be combined to obtain the final estimate.
From the distribution of all estimates Îi we select only the 68% central percentile to

reject outliers—a procedure that was empirically found to work well. This is indicated
in Fig. 2.4d labeled as ‘accepted’ and ‘rejected’ rectangles. We proceed to combine the
remaining estimates Îi into a single estimate Î using a robust and unbiased estimator for
the combination of correlated measurements as suggested in [77].

Î =
ÿ

i

wiÎi ‡
2(Î) =

ÿ

i,j

wiwj ‡̄ij , (2.16)

where the weights wi are defined as:

wi =
1

‡̄
2
iq

j

1
‡̄

2
j

. (2.17)
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The variances ‡̄
2
i

© ‡̄ii and covariances ‡̄ij of the mean assigned to integration regions �i

and �j are estimated in the next section.

Covariance Estimate

The following procedure is used to estimate the covariance between individual integral
estimates Îi:

1. We partition {⁄} into a number S of subsets {⁄1}, {⁄2} ... {⁄S}, chosen in a way
that reduces their correlation. The default value for S is 10.

2. Separate estimates Îi,k (k indexes the S partitions) of the integral are then performed
for all sample subsets {⁄k} resulting in S integral estimates for each subspace �i:

Ë
Îi,1 Îi,2 ... Îi,S

È

3. The covariance of the separate integral values then is

‡
2
ij = 1

S ≠ 1

Sÿ

k=1
(Îi,k ≠ Īi)(Îj,k ≠ Īj)

with

Īi = 1
S

Sÿ

k=1
Îi,k

4. The estimate of the covariance of Īi ¥ Îi and Īj ¥ Îj is then ‡̄
2
ij

= ‡
2
ij

S
.

Final AHMI Integral Estimate

As we have now obtained two values of Î and two variances ‡
2(Î) from the two sets {⁄A}

and {⁄B}, we combine those into the final result like

Î = Î
A

/‡
2
A

+ Î
B

/‡
2
B

1/‡
2
A

+ 1/‡
2
B

with variance estimate

‡
2 =

A
1

‡
2
A

+ 1
‡

2
B

B≠1
.

2.1.3 Benchmark Examples
To validate our algorithm, we apply it to estimate the integral of several test functions
in varying dimensionality (up to d = 25) for which an analytic (or accurate numerical)
solution of the integral value is available.

The test functions were chosen to pose di�erent challenges to the algorithm. For our first
test problem, we start with the canonical example of a multivariate normal distribution.
For the second test case we look at Gaussian shells, for which the mode of the distribution
does not lie on a single point but has infinite modes on d≠1-dimensional surface. Next we
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0.95

1.00

1.05

R
at

io
to

T
ru

th

t=500

5 10 15 20 25
# Dimensions

0.95

1.00

1.05
t=100

Figure 2.5: AHMI value for the multivariate normal distribution as ratio to the true
integral shown as a function of dimensionality for three threshold values
t = [100, 500, 1000]. The solid black lines give the mean result over ten in-
dependent trials and the shaded bands show the standard deviation of these
trials. The dashed lines show the average errors reported by AHMI. Samples
are obtained from i.i.d. sampling, 106 for each run.

study the heavy-tailed Cauchy distribution with multiple modes, and in the end explore
the asymmetric ‘Funnel’ function. Additional information of the number of integration
volumes used and the computation time are only provided for the first example, as these
are very similar for the other three examples.

The samples {⁄} on which our integration is based are obtained from Metropolis-
Hastings MCMC, and in the case of the multivariate normal from i.i.d. sampling. The
sample size is fixed to 2 · 106 for Gaussian shells example and it is equal to 106 for other
examples.

Multivariate Normal Distribution

The first test case is a unit normal distribution (centered at zero, width one) in two up
to 25 dimensions. The samples input to AHMI are obtained from i.i.d. sampling. The
resulting integral estimates are shown in Fig. 2.5 as a function of the dimensionality for
three di�erent threshold values t = [100, 500, 1000].

For both threshold values, t = [500, 1000], we get unbiased and consistent results up to
around 21 dimensions, after which results start to become positively biased for t = 1000.
This bias seems to be intrinsic to the method itself or our implementation of the algorithm
and will be the subject of future studies. The coverage for one standard error for t = 500
(220 trials) is 0.52 ± 0.03. For the threshold value t = 100 we get an unbiased integral
estimate up to 14 dimensions, and after that hyper-rectangles can no longer be created.
The default value of t = 500 was used for the remaining examples below.

In Fig. 2.6 we show the execution time of the algorithm, and the number of hyper-
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Figure 2.6: Left: Average AHMI execution time for the multivariate normal distribution
(t = 500) in total CPU seconds (run on a system with a 2.3 GHz Intel Xeon
6140 processor, SPECrate2017-FP equivalent ca. 180) as a function of di-
mensionality. Right: Average number of hyper-rectangles used by AHMI for
computing the integral estimate for the multivariate normal distribution as a
function of dimensionality.

rectangles used for integration for the threshold value t = 500. The execution time rises
with the number of dimensions almost linearly. The change in slope at low dimensionality
is likely due to CPU caching behaviour. The number of hyper-rectangles starts to decay
after 18 dimensions indicating that there exist fewer hyper-rectangles that satisfy Eq. 2.15.

Gaussian Shell Distribution

The functional form was given in Eq. 2.14 and an example distribution in the first two
dimensions is shown in Fig. 2.7. The AHMI algorithm results (Fig. 2.8) shows a simi-
lar behaviour as for the multivariate normal distribution for this more complicated test
function. However, integration was possible up to 17 dimensions. Up to that point the
integral estimates, including errors, are well behaved, with a coverage for one standard
error of 0.48 ± 0.04 (160 trials).

Multimodal Cauchy Distribution

The Cauchy distribution, with its heavy tails, is a notoriously di�cult problem and used
here to point out possible weaknesses of our algorithm. We further increase complexity
for the hyper-volume creation process by using four separate, shifted Cauchy distributions
creating multiple modes. The functional form can be written as

f (⁄) =
2Ÿ

i=1

1
2 [Cauchy (⁄i | µ, ‡) + Cauchy (⁄i | ≠µ, ‡)] ·

dŸ

j=3
Cauchy (⁄j | 0, ‡) , (2.18)

where µ = 1, ‡ = 0.2 and n is a dimensionality of ⁄. An example of this target distributions
is provided in Fig. 2.9. The integration region extends from [≠8, 8] in each dimension.
Our results are collected in Fig. 2.10 and indicate that integration is possible up to seven
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Figure 2.7: One and two dimensional distributions of samples along the first two dimen-
sions of the Gaussian shell target function.

dimensions, given the fixed sample size of 106. For this range, the AHMI results are very
reliable. The coverage (120 trials, one standard error) for this function is 0.42 ± 0.05.
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Figure 2.8: AHMI value for the Gaussian shell distribution as ratio to the true integral
shown as a function of dimensionality. The solid line gives the mean result
over ten independent trials and the shaded band show the standard deviation
of these trials. The dashed lines show the average errors reported by AHMI.
The samples are obtained from Metropolis-Hastings MCMC and the sample
size is 2 · 106.
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Figure 2.9: One and two dimensional distributions of samples along the first four dimen-
sions of the multimodal Cauchy target function.
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Figure 2.10: AHMI value for the multimodal Cauchy distribution as ratio to the true
integral shown as a function of dimensionality. The solid line gives the mean
result over twenty independent trials and the shaded band show the standard
deviation of these trials. The dashed lines show the average errors reported
by AHMI.
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Figure 2.11: One and two dimensional distributions of samples along the first three di-
mensions of the Funnel target function.

Funnel Distribution

The final problem we study is the so-called ‘Funnel’ distribution, that is described in [78].
The functional form of this distribution can be written as

f (⁄) = N
1
⁄1 | 0, a

2
2 dŸ

i=2
N (⁄i | 0, exp (2b⁄1)) , (2.19)
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Figure 2.12: AHMI value for the ‘Funnel’ distribution as ratio to the true integral shown as
a function of dimensionality. The solid line gives the mean result over twenty
independent trials, with the shaded band showing the standard deviation of
these trials. The dashed lines show the average errors reported by AHMI.
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where a = 1, b = 0.5 and n is a dimensionality of ⁄. An example of the distribution in
its first three dimensions on the parameter range [≠50, 50] is provided in Fig. 2.11. The
results (Fig. 2.12) show a similar performance as for the previous example with reliable
estimates up to seven dimensions, with a coverage of 0.41 ± 0.04 (120 trials, one standard
error).

2.1.4 Harmonic Mean with Spherical Volumes
As shown in the previous section, there is a limit on the number of dimensions for which one
can use the AHMI integration with rectangular volumes and obtain accurate results. The
integration algorithm fails for problems with more than 10-20 dimensions depending on the
complexity of the target density, and it shows a non-linear increase in computational time.
The reason for this is a curse of dimensionality that makes the use of hyperrectangular
integration volumes ine�cient. An approach to improve the AHMI algorithm has been
investigated by J. Thiel in the scope of the Bachelor’s thesis [79] that I co-supervised. The
idea and key results are discussed briefly.

Often, typical target densities that one is interested in sampling and integrating are
spherical-like or can be partitioned and transformed to be such. Fitting them with hyper
rectangles is not e�cient because most of the volume of the hyper rectangle is located in
its corners, whose number scales non-linearly with the number of dimensions. To improve
integration accuracy, one can use integration volumes in the form of spheres or spherical
shells. In the case of a spherical volume, one has to tune only one parameter, i.e., the
radius of the sphere. For the spherical shell, two parameters should be tuned, i.e., the inner
and outer radius. To ensure that the samples can be e�ciently fitted with hyperspheres,
the samples of the target density should be whitened (see Sec. 2.1.2).

A comparison of the performance of the AHMI integration with hyper rectangles and
hyperspheres is presented in Fig. 2.13. We draw 105 i.i.d. samples from the multivariate
normal distribution with unitary covariance for a number of dimensions, d, in the range
from 0 to 50. For each d, we evaluate the AHMI integral using di�erent sizes of the
hypervolume. As Fig. 2.13 shows, the hyperrectangular integration volume has limited
applicability to problems with up to 20-30 dimensions. After that, the integral estimate
tends to overestimate the true value significantly. In contrast to this, hyperspheres allow
obtaining accurate integral estimates for the whole range of dimensions, i.e., from 0 o 50.
Moreover, spherical volumes give a much wider range of optimal size parameters that result
in an accurate integral estimate compared to hyperrectangular volumes. This shows that
spherical integration volumes are more suitable for integration than rectangular volumes.

Finding an optimal integration volume is, in general, a challenging task. Adjustment
of the hyperrectangular volumes requires tuning each edge separately, and this becomes
extremely computationally costly with an increasing number of dimensions. In the case
of spherical volumes, one needs to solve only a one-dimensional optimization problem, in
which optimal radius size has to be obtained that satisfies a predetermined log-likelihood
ratio (see Eq. 2.15). The following algorithm has been proposed in [79] to estimate best
parameters for spherical shell:

1. Whiten samples to have the identity covariance matrix.

2. Compute radial distribution function of samples with respect to the mean of the
sample.

3. Select ball with a certain fraction of samples inside (equivalent to the spherical shell
with inner radius zero).
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Figure 2.13: Integral estimates of the multivariate normal distribution using HM with
rectangular (left) and spherical (right) volumes. The volume size denoted a
half of the rectangle edge for rectangular volumes and the radius for spherical
volume. Color coding represents deviations from the truth. The results are
averaged over 30 independent trials.

4. Decrease volume to lower likelihood ratio, t, by removing 1% of samples from in-
ner/outer radius of spherical shell separately and calculate the reduction in t for
both options.

5. Apply that volume change that gives more reduction in t.

6. Repeat steps 4 and 5 until t is smaller than the given threshold or a maximum
number of iterations is reached.

With this procedure, one can find a subset of initial integration volume that has the largest
fraction of samples inside and satisfies the required log-likelihood ratio.

A di�culty with this approach arises when one uses correlated samples instead of i.i.d..
The algorithms for a whitening transformation are known to perform poorly when the
number of dimensions is large, or the e�ective number of samples is small [80]. They
introduce highly biased eigenvalues of the sample covariance matrix, and the inversion
of the matrix gets numerically unstable. As seen from Eq. 2.13, the determinant of the
whitening transformation appears in the denominator of the harmonic mean estimate,
and this produces an unstable integral estimate. To overcome this problem, alternative
techniques for the whitening transformation should be considered, such as Factor Anal-
ysis, LW-Shrinkage, or Nonlinear Shrinkage [80]. Although they provide an improved
transformation matrix, they require additional — often significant — computational time.

2.1.5 AHMI Conclusions
We have developed an Adaptive Harmonic Mean Integration (AHMI) algorithm that can
be used to integrate a non-normalized density function using the samples drawn according
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to the probability distribution proportional to the function. The fundamental assumption
is that the sampling algorithm has faithfully produced samples from this distribution.
Given this, the AHMI algorithm can be used to produce both an estimate of the integral
of the function over its full support as well as an estimate of the uncertainty of the integral.
In this first implementation of the AHMI algorithm, finite hyper-rectangles are generated
in the whitened space of the samples covering the full support. The adaptive algorithm
ensures that the range of function values enclosed by the hyper-rectangles is limited such
that the variance of the integral results are moderate. This allows for reliable results both
for the integral values as well as for reliable uncertainty estimates.

The algorithm has been tested on a number of examples and found to produce reliable
and unbiased integral estimates up to around twenty dimensions for the first two test
problems, and up to seven for the latter two, more di�cult test cases. The reported errors
provide a useful measure of uncertainty, while slightly under covering at around 40-50%
(expecting 68%). The use of hyper-rectangles however limits the applicability to a not-
too-large number of dimensions (¥ 20 in the case of the multivariate normal distribution)
because a large fraction of the volume is in the corners of the hyper-rectangles. The AHMI
algorithm with spherical volumes has demonstrated much better performance on a toy
problem compared to the integration with rectangular volumes. However, to increase the
applicability of AHMI integration to a larger number of dimensions, an accurate estimation
of the whitening transformation is needed.
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2.2 Sampling Parallelization via Space Partitioning
Now, as we discussed an approach to normalize a target density function using samples of
the function, we can use it to improve the performance of MCMC samplers on multimodal
target densities. The text presented in this section closely follows [64].

2.2.1 Algorithm Overview
As in the previous section, we consider generating samples according to a target density
function f(⁄) where ⁄ œ Rd and � is the support of the function. To illustrate key steps
of our method, we will use as example the sum of four bivariate normal distributions with
⁄ = (⁄1, ⁄2):

f(⁄) =
4ÿ

i=1
ai · N (⁄|µi, �i), (2.20)

where a1 = a2 = 0.48, a3 = a4 = 0.02, µi = (±3.5, ±3.5), �1 = �2 = (0.33, 0.17; 0.17, 0.33),
and �3 = �4 = (0.019, ≠0.003; ≠0.003, 0.017). Each bivariate normal distribution is indi-
vidually normalized. Two, in the upper-right and lower-left quadrants, have large weights
(0.48) and the other two, in the other quadrants, have small weights (0.02). The co-
variances are relatively small compared to the separations of the modes, making this a
challenging target distribution to sample from for many MCMC algorithms. Probability
contours of this test function are shown in Fig. 2.14-1.

Our approach consists of the following four steps illustrated in Fig. 2.14:

1. Generate a set of Nexp exploration samples {⁄ú
i
}

i=1..Nexp
œ �, distributed amongst

Nchains, where Nexp is a small number compared to the desired number of final
MCMC samples and Nchains is the number of chains. The chains should have dif-
ferent (possibly randomly chosen) starting points and can be run in parallel. The
samples are used to find regions of the parameter space with a high density and
the MCMC chains are not required to converge. An initial sampling of our example
function with Nexp = 500 generated using Nchains = 25 with 20 samples per chain is
shown in Figure 2.14-1.

2. Partition the parameter space into Nsp mutually exclusive subspaces

{Êk}
k=1..Nsp

œ � (2.21)

in such a way that fiÊk = �, Êk flÊm = ¶ if k ”= m (see also Figure 2.14-2). While in
general, the boundaries of the subspaces could be arbitrary shapes, in the following,
‘N space partitions’ will refer to N cuts along di�erent, single parameter axes. This
splits the parameter space into N + 1 rectangular subspaces.

3. Generate N
k
samp samples

Ó
⁄k

i

Ô

i=1..Nk
samp

œ Êk in each subspace k with the distribu-

tion proportional to f(⁄) using a sampling algorithm of choice (see Figure 2.14-3).
Note that each sampler has to perform its burn-in cycle only in the reduced sub-
space Êk, which significantly reduces tuning time. If the sampling algorithm failed
for some reason in one of the subspaces, e.g., Êj , generate an additional partition
in that subspace using the existing samples N

j
samp. Afterward, generate new sam-

ples in each of two resulting subspaces, Êj,1, Êj,2. Repeat this procedure until the
convergence criteria is passed in each subspace or a maximum number of recursive
iterations is reached.
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Figure 2.14: The subplots show the key steps in the partitioned sampling approach: (1)
The 500 exploration samples are generated from the target density. The
red dashed lines demonstrate contours of the true density. (2) The parame-
ter space is partitioned into 30 subspaces. The black lines demonstrate the
boundaries of subspaces. (3) The 104 samples are generated in each subspace
from the individual MCMC chains. (4) The samples are reweighted in the
full space.

4. Determine the integrated density of the target distribution in each subspace by com-
puting Ik =

s
Êk

f(⁄)d⁄ and assign the following weights to the sample of subspace
k

wk Ã Ik

Nk
samp

.

5. Stitch the now weighted samples together resulting in the final sampling distribution
(see Figure 2.14-4).

There are many ways of implementing the described idea based on choices of samplers,
integrators and space partitioning strategies. In the following, we describe our implemen-
tation that is also made available in the BAT.jl package (see Section 2.3).
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2.2.2 Implementation
Exploration samples

Exploration samples play an important role in this algorithm, since the parameter space
is partitioned based on them. If exploration samples represent the structure of the target
density closely enough — for example indicating the presence of multiple modes by clusters
of spatially neighboring points — then the space partitioning algorithm can capture these
features and generate partitions in such a way to split those clusters. This simplifies
the target density in each subspace and thus allows for much faster burn-in and tuning
procedures. In our implementation, we generate exploration samples by running a large
number of MCMC chains, where each chain generates a few hundred samples. There is no
tuning or convergence requirement for these chains, but a small set of samples are initially
used to set the parameters of the proposal functions for each chain. Some knowledge of the
form of the target distribution is useful in determining how many chains and how many
samples will be necessary. While the morphology of the resulting sample clouds should
resemble that of the target density as closely as possible, this initial exploration should be
fast compared to the following sampling time in the partitioned space.

Space Partitioning

Given the discussed exploration samples, we partition our parameter space into rectangular
subspaces in such a way as to split clusters of spatially neighboring samples. To do so, a
binary tree is used where each node is determined by a cut that is orthogonal to parameter
axes. For the sake of illustration, we consider a one-dimensional problem with the samples
{⁄} shown in Fig 2.15. The cut position perpendicular to the ⁄ axis is denoted as Â⁄ and
it is selected by finding the minimum of the following cost function:

Â⁄ = inf
a

{W (a, ⁄)} = inf
a

Y
]

[
ÿ

⁄i<a

--⁄i ≠ È⁄Í
⁄<a

--2 +
ÿ

⁄i>a

--⁄i ≠ È⁄Í
⁄>a

--2
Z
^

\ , (2.22)

where È⁄Í denote the mean of samples. This process is then repeated iteratively resulting
in the desired number of partitions.

The blue lines in Figure 2.15 demonstrate how this cost function depends on the cut
positions for 3 partitioning steps. The partitioning procedure is ended when a minimal
change in the cost function results from further partitioning or a maximum number of
subspaces is reached. The evolution of the cost function for our example is also shown in
Figure 2.15.

The partitioning procedure is analogous for higher dimensional space. If, for instance, a
sample vector is d-dimensional, then we evaluate Equation 2.22 for every dimension which
results in proposed cut positions Â⁄i with corresponding cost values Wi(ai,

Â⁄i) for dimension
i = (1, ..., d). The minimum cost value is selected and the cut along the corresponding
dimension is accepted. Additionally, if preliminary knowledge about the structure of the
target density is present, the user can specify manually along which parameters partition-
ing of the parameter space should be performed.

Sampling

Sampling in the subspaces is performed independently and does not require communication
between MCMC processes. It can therefore be trivially divided into tasks and executed in
parallel on multiple processors using distributed computing. In the following, we define a
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Figure 2.15: Illustration of the space partitioning algorithm using 5 · 103 one-dimensional
exploration samples ⁄

ú with a distribution demonstrated in the upper left
histogram. The red dashed lines demonstrate the first three cut positions Â⁄.
The blue lines show the value of W (a, ⁄) as a function of the cut position for
3 iterations of space partitioning. The gray dashed lines show the value of the
cost function at its minimum for each iteration. The bottom right subplot
illustrates the dependence of W as a function of the number of cuts.

‘worker’ as a computing unit (this can either be a node of a cluster, networked machine,
or a single machine) that consists of multiple CPU cores used to perform one task; i.e.,
sample the target density in one subspace. All the cores that belong to one worker are
called threads and are used to run multiple MCMC chains in parallel within one subspace.
Running multiple chains within one subspace is necessary for determining convergence of
the MCMC process. Our implementation allows running subspaces on multiple remote
hosts using Julia’s support for compute clusters. Communication between workers can be
performed via MPI/TCP/IP protocols. By default, to generate MCMC samples on each
subspace the Metropolis-Hastings algorithm is used. However, it can be replaced by other
samplers if needed.

It is possible that one or more modes of the target distribution were missed in the
exploration step, or that the space partitioning algorithm did not choose the optimal
mode separation locations. If the convergence criteria is not met in one or more of the
subspaces, then these subspaces are further subdivided. The cut position is defined by
using the already generated samples. These samples contain much more information about
the target density structure than the initial exploration samples and thus can be used as
a more accurate approximation of the target density. This procedure is repeated until
samplers in all subspaces report successful convergence tests, or a maximum number of
partitioning cycles is reached.

Reweighting

Samples that originate from di�erent subspaces have di�erent, and a priori unknown,
normalizations with respect to each other. In order to correctly stitch those together, a
weight proportional to the integral of the target density within the subspace needs to be
applied. Given that samples are drawn from the target function

Ó
⁄k

Ô
≥ f(⁄) in each
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subspace k, we compute the following integrals:

Ik =
⁄

Êk

f(⁄)d⁄ . (2.23)

We perform this integration using the AHMI algorithm (see Sec. 2.1). However, alternative
algorithms for numerical integral evaluation can be considered if needed.

Final sample

Once the sampling and weighting are performed, the weighted samples from multiple
subspaces are concatenated and returned to the user. The total integral of the function
f(⁄) is then estimated by summing the weights of the subspaces I =

q
k=1..Nsp

Ik.
Our implementation was used to generate the results shown in Figure 2.14.

2.2.3 Performance Benchmark

Example 1

In this example, we evaluate the performance of our algorithm on a more complicated test
density function. The function was chosen in such a way to (a) have a known analytic inte-
gral, (b) allow generating i.i.d samples, and (c) have multiple modes in many dimensions
and thus be challenging for a classical Metropolis-Hastings algorithm. With this aim, we
have chosen a mixture of four multivariate normal distributions in 9-dimensional space:

f(⁄) =
4ÿ

i=1
aiN (⁄|µi, �i), (2.24)

where all ai = 1/4 and µ and � are randomly assigned mean vector and a covariance
matrix. Figure 2.16 illustrates one and two dimensional distributions of 105 i.i.d samples
drawn from this density.

There are two primary points that we demonstrate in this section. The first one is the
ability to improve the wall-clock time spent on sampling by utilizing e�ciently computa-
tional resources. The second one is the ability to improve the quality of samples once we
increase the number of space partitions. Measurements of the performance were evaluated
as follows:

• We use a varying number of subspaces S = (1, 2, 4, 8, 16, 32). Sampling and integra-
tion in di�erent subspaces are executed in parallel using 1 worker per subspace with
10 CPU cores per worker. All the CPU cores that are available for the worker are
used for multithreaded chain execution.

• In addition, we also vary the wall-clock time that workers can spend on generating
samples, considering time intervals of 3, 7, 11, and 15 seconds.

• For every combination of space partitions and wall-clock times, we repeat the sam-
pling process 3 times to evaluate statistical fluctuations.

The overall number of MCMC runs is 72. An example run is: 8 subspaces and 8 workers
with 10 CPU cores each are used to sample 10 chains for 11 seconds of wall-clock time,
after which samples are integrated and returned; sampling with this setting is repeated 3
times.
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Figure 2.16: One and two dimensional distributions of the density function given by
Eq. 2.20. Histograms are constructed using 105 i.i.d samples.

Sampling Rate A summary of the benchmark run is demonstrated in Fig. 2.17. We
used the MPCDF HPC system DRACO1 with Intel ‘Haswell’ Xeon E5-2698 processors
(880 nodes with 32 cores @ 2.3 GHz each) to perform parallel MCMC executions. While
sampling with space partitions, each subspace requires a di�erent amount of time on
sampling and integration, depending on the complexity of the underlying density region.
The time of the slowest one is reported in Fig. 2.17. It can be seen that, by changing
the number of subspaces from 1 to 32 (and the number of total CPU cores from 10 to
320), the number of generated samples increases almost two orders of magnitude while the
wall-clock time remains constant.

Figure 2.17 can be rearranged into a slightly di�erent form in order to demonstrate the
sampling rate. We define N0 as the number of samples that the sampler with no space
partitions has generated during the time interval �t0 = tstop ≠ tstart (tstop is the wall-
clock time when integration has finished and tstart is the wall-clock time when sampling
on subspace has started). We further denote as Nk the total number of samples from the
run with k subspaces, and the time spent on each subspace as �tk. The sampling rate is
defined as

S = Nk

max
k

�tk

· �t0
N0

. (2.25)

1https://www.mpcdf.mpg.de/services/computing/draco/about-the-system
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Figure 2.17: Summary of the benchmark runs for the target density function given by
Eq. 2.20. The di�erent colors represent runs with di�erent numbers of parti-
tions; the number of subspaces is denoted by S. The vertical axis is common
for all subplots and gives the ratio of the total number of samples generated
per single run to the number of samples that are generated if no space parti-
tion is performed (Nref = 3.3 · 104). Left subplot: The horizontal axis shows
the ratio of the time spent on sampling and integration to the time that a
single worker spent if no space partition is performed (tref = 14.5 s). The
lines are from linear fits of measurements. Middle subplot: The horizontal
axis shows the ratio of the integral to the true value; error bars are obtained
from the integration algorithm. Right subplot: The horizontal axis illustrates
the ratio of the e�ective number of samples (separately for each dimension)
to the total number of samples. An e�ective number of samples is estimated
per dimension and the error bars represent the standard deviation across di-
mensions. Dashed colored lines represent the average fraction over the runs
with the same number of space partitions.
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Figure 2.18: The figure illustrates sampling rate (upper subplot) and per-chain sampling
rate (lower subplot) versus the number of space partitions. The gray lines
represent average over 3 runs.

In addition to the wall-clock time, we measure a CPU time spent on sampling and integra-
tion on each subspace using the CPUTime.jl package2. We denote it as ·i, where i is the
subspace index, and ·0 is a CPU time when no space partitions are used. The per-chain
sampling rate is defined as

Sper≠chain = Nkq
i=1..k

·i

· ·0
N0

. (2.26)

Eq. 2.25 and Eq. 2.26 do not include time spent on the generation of exploration samples
and construction of the partition tree. A time spent on the generation of exploration sam-
ples depends primarily on the complexity of a likelihood evaluation, and for our problem,
it is equal to 4 seconds. The time required to generate the space partition tree primarily
depends on the number of exploration samples, it is about 2 seconds for our problem.

The sampling rate and the per-chain sampling rate versus the number of space partitions
are presented in Fig. 2.18. The figure shows that the sampling rates are improved for
both cases. Improvements in the per-chain sampling rate indicates that by partitioning
the parameter space we simplify the target density function resulting in faster tuning and
convergence (tuning and convergence are occurring in every subspace). While improvement
in the sampling rate is expected due to the scaling of the number of CPU cores, its
faster-than-linear behavior can be explained by a superposition of the improved per-chain
sampling rate and the linear sampling rate.

Density Integration and E�ective Sample Size Another important characteristic to
track is the integral estimate of the target density function. If, for example, samples are
not correctly representing the target function, then the integral will deviate from the truth.

2A detailed definition of the CPU time can be found in the package documentation.
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Figure 2.19: The ratio of the integral to the true value (left panel) and the average num-
ber of e�ective MCMC samples (right panel) for the di�erent numbers of
subspaces and sampling times. In the right panel, the values are referenced
to the average e�ective number of samples generated for one subspace and a
running time of 3 seconds: Nref = 267.

By partitioning the parameter space we are simplifying tasks for both the sampler and
integrator; the complicated problem has been split into a number of simpler ones. This
results in better integral estimates, which can be seen in Fig. 2.17 (middle subplot).

In order to determine the e�ective number of samples, we evaluate the sum given by
Eq. 1.31 using a heuristic cut-o� given by Geyer’s initial monotone sequence estimator
[81]. This technique allows us to calculate an e�ective sample size for each dimension
Neff,k = N

·̂k
. As it is shown in Fig. 2.17 (right subplot), the e�ective number of samples

increases with the number of space partitions. It can also be seen that in our example
there is no increase of the fraction of e�ective samples when the number of subspaces
exceeds 8.

Summary of Scaling Performance A summary of the performance enhancement from
partitioning and sampling in parallel is presented in Fig. 2.19. The accuracy of the integrals
of the function for di�erent numbers of subspaces as a function of sampling wall-clock time
is shown in the left panel. There, we see that even with the longest running times tested,
the integral estimate without partitioning deviates considerably from the correct value.
Good results are seen already for the shortest running times with 4 subspaces, and running
on 32 subspaces gives excellent results in all running times tested.

The right panel in Fig. 2.19 shows the average number of e�ective samples for di�erent
combinations of numbers of subspaces and running times. We find a dramatic increase in
the number of e�ective samples: the factor achieved in the e�ective number of samples
is an order of magnitude larger than the increase in the computing resources (number of
processors). This is due to the much simpler forms of the distributions sampled in the
subspaces.

Both of these results show that a strong scaling of the performance is achieved using
the partitioning scheme that we have outlined.
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Figure 2.20: The plot illustrates histograms of the p-values from the two-sample
Kolmogorov-Smirnov test to verify whether MCMC and i.i.d samples come
from the same distribution. Di�erent colors represent di�erent numbers of
space partitions. One set of MCMC samples results in 9 p-values for every
dimension.

Sampling Accuracy Since our algorithm requires the weighting of samples from di�erent
subspaces and stitching them together, we test whether this results in a smooth posterior
approximating the true target density function. For comparison, we also approximate the
true density by directly generating i.i.d samples. In the following, we will use the two-
sample Kolmogorov-Smirnov test [82] and a two-sample classifier test [83] as a quantitative
assessment of how close our MCMC samples are to the i.i.d ones.

The two-sample Kolmogorov-Smirnov test is used to test whether two one-dimensional
marginalized samples come from the same distribution. P-values from this test for every
marginal and di�erent number of space partitions are shown in Fig. 2.20. We use the
e�ective number of samples to calculate p-values for the Kolmogorov-Smirnov test. If two
sets of samples stem from the same distribution, then the Kolmogorov-Smirnov p-values
should be uniformly distributed. It can be seen that for a small number of space partitions
p-values are peaking around 0 and 1. Peaks close to 1 indicate that the e�ective number of
MCMC samples is likely underestimated, demonstrating that samples are very correlated.
In contrast to this, the peaks near p-values of zero indicate that marginals of i.i.d and
MCMC distributions deviate from each other. When using more than 4 partitions, p-
values are uniformly covering the range from 0 to 1, indicating that marginals of i.i.d and
MCMC samples are in a good agreement.

A second approach to determining whether two samples are similar to one another uses
a binary classifier aiming at distinguishing them. A training dataset is constructed by
pairing MCMC and i.i.d samples with opposite labels. If samples are indistinguishable,
the classification accuracy on the test dataset should be close to that obtained from a
random guess. To train a classifier, we use a simple neural network model with two dense
layers with sizes 9 ◊ 20 and 20 ◊ 2, and the sigmoid activation function. To construct
training and testing datasets, we generate MCMC and i.i.d samples with equal weights.
By default, i.i.d samples come with weight one. For our weighted MCMC however, we
generate 3·104 samples with unit weights by using ordered resampling implemented in [65].
In total, 4 ·104 samples are used for training and 2 ·104 for testing with an equal fraction of
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Figure 2.21: The figure illustrates the results of the classifier two-sample test performed to
distinguish i.i.d samples and MCMC samples with space partitioning. The
left subplot shows a modified receiver operating characteristic (ROC) where
TPR stands for true positive rate and FPR for false positive rate. Di�erent
lines correspond to a di�erent number of subspaces (S). The right subplot
shows area under the ROC curve versus the number of samples.

MCMC and i.i.d samples. Training is performed for every MCMC run that is described in
Fig. 2.17 individually and results are presented in Fig. 2.21. The left subplot in Fig. 2.21
shows the modified receiver operating characteristic (ROC), where the vertical axis is a
di�erence between true positive rate (TPR) and false positive rate (FPR) for di�erent
MCMC runs. If the classifier cannot distinguish two samples, then the line will fluctuate
around zero. The right subplot in Fig. 2.21 shows the integral under the ROC curve
(expected to be close to 0.5 for indistinguishable distributions) versus the number of
MCMC samples (before resampling was performed). It can be seen that even though the
training datasets consist of the same number of MCMC samples, there is a di�erence in
their distinguishability. Samples obtained from the runs with a large number of space
partitions have ROC curve integrals much closer to 0.5. It was not possible to detect this
di�erence in the one-dimensional Kolmogorov-Smirnov tests.

Example 2

In this example, we consider a problem in which the algorithm needs to detect subspaces
where the convergence test was not passed and simplify and resample these subspaces
until convergence is reached. We construct a target density function as a mixture of
eleven bivariate normal distributions, in which covariances scale exponentially. The density
function is defined as

f(x, y) =
10ÿ

i=0
aiN (x, y|µi,x, µi,y, �i), (2.27)
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Figure 2.22: The left subplot shows the samples of the target density given by Eq. 2.27
obtained using the partitioned sampling. The gray lines show the boundaries
of the subspaces. The horizontal and vertical histograms compare i.i.d and
space partitioned samples. The area enclosed by a green color is zoomed in
the upper left corner. The right subplot shows the density integral normalized
by truth for 100 runs. The orange region shows the mean error, and the gray
region shows the standard deviation of the results.

where

µx,i = e
0.35i cos i,

µy,i = e
0.35i sin i,

�i = diag(0.45
Ò

µ
2
x,i

+ µ
2
y,i

, 0.45
Ò

µ
2
x,i

+ µ
2
y,i

),
(2.28)

and weights ai are assigned randomly such that they are non-zero and their sum is equal
to one. As in the previous example, this target density allows for i.i.d sampling, it is
challenging for the Metropolis-Hastins algorithm, and the true value of the density integral
is known.

We test our algorithm by first drawing exploration samples with 30 chains and 700
samples per chain. The chains typically get trapped in one of the modes of the target
density, and their samples do not represent the entire space correctly. Our algorithm
generates 17 initial space partitions using the exploration samples. Due to imperfect
exploration sampling, some of these subspaces contain regions with multiple modes. We
find that in repeated testing, typically 3 additional subspaces are generated due to a
convergence failure. An example of posterior samples from one run and a summary of
100 runs are shown in Figure 2.22. It can be seen that the marginals of the MCMC and
i.i.d samples overlap, indicating that the target density was sampled accurately. Also, the
density integral for 100 runs is close to the true value, with a small average underestimation
of 0.1%. The error bars are slightly underestimated, with coverage of 48%.
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2.2.4 Space Partitioning Conclusions
We have presented an approach to both improve and accelerate MCMC sampling by
partitioning the parameter space of the target density function into multiple subspaces
and sampling independently in each subspace. These subspaces can be sampled in parallel
and the resulting samples then stitched together with appropriate weighting. The scheme
relies on a good space partitioning, which we achieve using a binary partitioning algorithm,
that can recursively generate new space partitions in those subspaces where convergence
tests of the samplers were unsuccessful; and a good integrator for determining the weights
assigned to the samples in the di�erent subspaces. The integrations in our examples
were performed using the AHMI algorithm. This approach provides the user with a
normalization constant of the target density function - the Bayesian evidence is provided
at no extra cost.

We have benchmarked this technique by evaluating the quality of samples and the
sampling rate for a mixture of four multivariate normal distributions in 9-dimensional
space. We demonstrate that the space partitioning allows us to obtain a 50-fold increase
in the sampling rate while increasing the number of CPUs by a factor 32. This increase
is a superposition of two e�ects: a linear scaling with the number of CPU cores, and a
CPU-time reduction due to the simplification of the target density function. In addition
to the increase in the sampling rate, sampling with space partitioning also resulted in an
increased quality of MCMC samples by reducing their correlations. This was evidenced
in particular by more accurate integral values of the target density.

We have evaluated the correctness of the resulting sampling distributions by comparing
the MCMC samples with i.i.d samples using a two-sample Kolmogorov-Smirnov test and
with a two-sample classifier test. Both show that increasing the number of space partitions
leads to a better agreement between MCMC and i.i.d samples.

We have also demonstrated an example of a recursive partitioning scheme using a target
density with exponentially scaled covariances. In this problem, the algorithm was reparti-
tioning recursively those subspaces where the MCMC chains failed convergence tests. The
estimated evidence averaged over 100 runs is consistent with the true value.

2.3 BAT.jl: A Julia-Based Tool for Bayesian Inference
As disused above, there exist a large number of algorithms for Bayesian computations.
To use them in practice, it is also important to have robust, reliable, and optimized
implementations of them. This section discusses BAT.jl — a software toolkit for Bayesian
inference written in the Julia programming language. The text presented in this section
closely follows [65]. The reader is referred to the original publication for a more detailed
description.

2.3.1 Motivation and Overview
Nowadays, a variety of automated statistical analysis tools are available, usually tailored to
the needs of a particular field of research or a class of statistical models, such as STAN [84],
PYMC [85], R [86] or OpenBUGS [87]. An important criterion to choose one tool over
the others is its compatibility with the rest of the infrastructure used in a research field,
typical data bases or programs used for processing the results obtained.

There is a lack of tools for Bayesian calculation in the field of particle physics. Due
to this, the Bayesian Analysis Toolkit [88] C++ library was developed in 2008 under
the open-source LGPL license. It features several numerical algorithms for optimization,
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integration and marginalization with a strong focus on the use of MCMC algorithms. BAT
has been widely used over the years and examples of advanced applications in physics [89,
90, 91, 92, 93], cosmology [94], astrophysics [95], and nuclear physics [96].

Given the wide range of possible applications, there was a need to have a more easily
portable version of BAT that does not come with the heavy dependencies on particle-
physics software stacks and that also allows for smart parallelization. In 2017, the work
on complete redesign of the package has started, and it resulted in a new package called
BAT.jl implemented in Julia [97].

BAT.jl aims to help solve a wide range of complex and computationally demanding
problems. The design of the implementation was guided by the requirement to support
multi-threaded and distributed code and o�ers a choice of sampling, optimization and
integration algorithms. BAT.jl has a user-facing interface that makes it easy to quickly
solve comparatively simple problems, while o�ering the direct access to lower-level func-
tionality and tuning parameters that an expert may need to solve very hard problems.
In addition, the package is very easy for the user to interact with and visualize results of
BAT.jl’s algorithms.

2.3.2 Functionalities
Several algorithms for marginalization, integration and optimization are implemented in
BAT.jl, giving it a toolbox character that also allows for the future inclusion of further
methods, algorithms and software packages. The central algorithms available in BAT.jl
are summarized in the following.

Sampling BAT.jl currently provides a choice of a few main sampling algorithms to the
user: Metropolis-Hastings, HMC, NS, Grid Sampling, Sampling with Space partitioning.

The package will by default use the Metropolis-Hastings algorithm with four MCMC
chains, which are iterated in parallel on multiple threads (and in the future, also on mul-
tiple compute nodes). Each MCMC chain is initialized with a random sample drawn
from the prior, and we require that e�cient sampling is possible for all priors. Typi-
cally, priors will be composed from common distributions provided by the Julia package
Distributions.jl, which supports i.i.d. sampling for all of it’s distributions.

In order to determine if the Markov chains have converged and the burn-in phase can
stop, BAT.jl uses the Gelman-Rubin convergence test [98] and the Brooks-Gelman test [99].

Algorithms for point estimates The global mode of a posterior distribution is often a
quantity of interest. While the MCMC sample with the largest value of the target density
may come close to the true mode, it is sometimes not as close as required. It is, however,
an ideal starting point for a local optimization algorithm than can then further refine the
mode estimation. BAT.jl o�ers automatic mode-estimation refinement using the Nelder-
Mead [100] and LBFGS [101] optimization algorithms, by building on the Optim.jl [102]
package. When using LBFGS, a gradient of the posterior distribution is required. We
utilize the Julia automatic-di�erentiation package ecosystem to automatically compute
that gradient.

Another quantity that is often computed from samples is a marginal mode. To con-
struct marginals, a binning of the samples is performed. The optimal number of bins can
be determined by using Square-root choice, Sturges’ formula, Rice Rule, Scott’s normal
reference rule, or the Freedman-Diaconis rule.

BAT.jl also provides functionality to estimate other quantities such as the median, the
mean, quantiles and standard deviations, and to propagate errors on a fit function.
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Integration algorithms There are two main algorithms implemented in BAT.jl that allow
for evidence estimation. The first one is the AHMI integration with rectangular integration
volumes. The second algorithm provides an interface to CUBA [103] integration library.
Cuba implements multiple integration algorithms that cover a range of (Monte-Carlo and
deterministic) importance sampling, stratified sampling and adaptive subdivision integra-
tion strategies. These will typically not scale to high-dimensional spaces, but can provide
quick and robust results for low-dimensional problems.

Parameter space transformations Di�erent algorithms have di�erent requirements on
the structure and domain of the densities they operate on. HMC, for example (like other
gradient-based algorithms), requires a continuous target density. As a result, it does not
perform well if the density is bounded. CUBA, on the other hand, can only operate on
the unit hypercube, and so requires a bounded density. It is therefore often necessary to
perform a change of variables, transforming the original density into one more suitable for
the chosen algorithm. The prior distribution will typically contain su�cient information on
the structure and domain of the posterior distribution to choose an suitable transformation.

BAT.jl will, by default, automatically try to internally transform posterior densities
so that the prior becomes equivalent to a standard multivariate-normal or multivariate-
uniform distribution in the transformed space, depending on the requirements of the al-
gorithm chosen to operate on the posterior. Prior distributions are often product dis-
tributions and these are simply transformed element-wise. For univariate distributions,
BAT.jl will transform according to their (inverse) CDF, multivariate normal distributions
are transformed according to their covariance matrix, and hierarchical distributions are
transformed iteratively. The mechanism can be extended by specialized transformations
for complex or custom prior distributions.

Visualization of results A key element of all statistical analyses is the graphical rep-
resentation of outcomes. BAT.jl includes functionalities to create visualizations of the
analyses results in a user-friendly way. By providing a collection of plot recipes to be used
with the Plots.jl package, several plotting styles for one-dimensional and two-dimensional
representations of (marginalized) distributions of samples and priors are available through
simple commands. Properties of the distributions, such as highest density regions or point
estimates like mean and mode values, can be automatically highlighted in the plots. Fur-
ther recipes to visualize the results of common applications, such as function fitting, are
provided. While the plot recipes provide convenient default options, the details of the
plotting styles can be quickly modified and customized. Since all information about the
posterior samples and the priors are available to the user, completely custom visualizations
are of course also possible.
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3 Introduction to Particle Acceleration and
AWAKE

This chapter introduces the second part of this thesis, which shows a solution to a practical
problem from the AWAKE experiment. The chapter starts with a short overview of
developments of conventional particle accelerators. This is followed by a discussion of
plasma-based particle acceleration, and the chapter concludes with an overview of the
AWAKE experiment at CERN.

3.1 Conventional Particle Acceleration
Since the late 19th century, particle accelerators have been the main driving force that
advanced our knowledge about the structure of matter from early J. Thomson’s the-
ory of atoms [104] to a much more complicated scientific picture, the so-called ‘standard
model’ [105], that describes fundamental particles and forces.

3.1.1 Historical Overview
The history of particle accelerators starts with an electrostatic generator constructed by
the British physicists J. Cockcroft and E. Walton, in which charged particles could ac-
celerate in a constant electric field to energies of 400 keV [106]. The energy of particles
obtained in such accelerator was limited by a maximum voltage (approximately 700 kV)
that could be generated in their system. To avoid the need to increase electrostatic poten-
tials further, Swedish physicist G. Ising proposed to apply the same accelerating voltage
periodically through a series of drift tubes connected to a Radio Frequency (RF) genera-
torr [107]. With this began the era of RF-based particle accelerators, which are still widely
used today.

At the same time as the development of linear accelerators, E. Lawrence proposed
another approach, called a cyclotron [108]. He suggested that particles can be accelerated
along a spiral path where a static magnetic field controls the particles’ trajectory and
a rapidly varying RF electric field increases the particles’ energy. The main limitation
of this technology was that relativistic e�ects (that become significant at high energies)
desynchronize the phase between RF and particles motion, thus preventing particles from
further acceleration. The cyclotron was superseded in 1944 by a new, improved idea
called synchrotron [109, 110]. In a synchrotron, particles are accelerated using RF voltage
via a gap or cavity, and they stay in the stationary orbit as their velocity increases.
To keep particles on a circular trajectory, Lorentz’s force created by dipole magnets is
used. In addition, quadrupole magnets are used to control the shape of the beams. The
next advancement in particle acceleration was made by transitioning from fixed-target
experiments to storage ring colliders, in which particles collide head-on in the center-of-
mass system. This was followed by the use of superconducting magnets, which allowed to
reach higher magnetic fields to keep particles on circular trajectories.

Overall, the field of particle accelerators has undergone significant progress since the
developments of Cockcroft and Walton. Among the largest and most advanced machines
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that have been built since that time, there are the following: The linear accelerator at
SLAC, which could accelerate electrons and positrons up to 50 GeV. A circular particle
accelerator called Tevatron at Fermi National Accelerator Laboratory that could accelerate
protons and antiprotons to energies of up to 1 TeV. Hadron-Electron Ring Accelerator at
DESY in Hamburg in which electrons-positrons collisions were conducted at center-of-
mass energies of 318 GeV. A detailed review of historical developments of these and other
particle accelerators can be found in [111].

In 1951, there was an intergovernmental meeting of UNESCO in Paris, during which
the resolution about the foundation of the European Council for Nuclear Research — also
known by the acronym CERN — was established. Since then, CERN has become the
largest particle physics laboratory in the world. CERN operates as a chain of accelerators
where the largest one is called the Large Hadron Collider (LHC) — a synchrotron accel-
erator with a size of 27 kilometers in circumference. In the LHC, protons are accelerated
in ultrahigh vacuum (pipes pressure ≥ 10≠11mbar) using RF cavities and they can reach
energies of centre-of-mass collisions of 14 TeV. To control particles trajectories, supercon-
ducting magnets at temperatures of 1.9 K are used. Accelerators at CERN helped to make
many important achievements in particle physics, e.g., the discovery of W and Z bosons
in the UA1 and UA2 experiments [112], the first creation of antihydrogen atoms in the
PS210 experiment [113], discovery of the Quark-Gluon Plasma [114], discovery of direct
CP violation in the NA48 experiment [115]. In 2012, the LHC was used to discover the
Higgs Boson [116], which was predicted by P. Higgs and independently by F. Englert and
R. Brout in 1966. For this discovery, P. Higgs and F. Englert were awarded the Nobel
Prize in 2013.

Even though particle accelerators have already significantly advanced our knowledge
about the structure of the Universe, there are still many unsolved problems in physics,
e.g., quantised theory of gravity [117, 118], the hierarchy problem [119, 120, 121], search
for dark matter and dark energy [122, 123], and the origin of neutrino mass [124, 125, 126].
Increasing the energy of collisions even further is one of the most promising directions that
can help to test new fundamental theories.

3.1.2 Future Accelerators

Nowadays, the construction of another, more powerful particle accelerator requires making,
among others, the following two choices: (a) Linear vs. Circular collider; (b) Lepton vs.
Hadron collisions. Hadrons, by their nature, are composite particles, and they produce
collisions with a significant background; this makes precise analysis of such collisions very
di�cult. In contrast, leptons are point-like particles; they generate much cleaner collisions
and are more suitable for precision measurements.

The di�culty in using light particles, e.g., electrons, in circular colliders is that the
particles would emit intense synchrotron radiation, which would result in a significant loss
of energy. For example, the energy loss per turn �E of the charged particle when it moves
at a circular trajectory with radius rs is

�Es ≥ E
4

rsm
4
0c8 , (3.1)

where m0 is the particle rest mass, E is the particle energy, and c is the speed of light.
�Es can be minimized by building accelerators with a large radius or by accelerating
heavy particles, e.g., protons. In general, the synchrotron radiation severely limits the
maximum achievable beam energy of light particles in circular colliders, making the use
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of linear colliders more suitable for precision measurements [127].
Another limitation of circular collides is the maximum magnetic field that can be cre-

ated by magnets. The bending radius fl produced by a dipole with magnetic field |B|
perpendicular to the trajectory of a particle with energy E can be estimated as [128]:

1
fl

[m] = |B| [T ]
E [GeV] . (3.2)

To keep particles on a constant trajectory, powerful magnets are needed. For example,
the LHC uses 1232 dipole magnets with a field strength of 8.3 T each; they all are 15 m
long and weigh up to 28 t. The overall space occupied by such magnets is 2/3 of the total
length of the accelerator. They are challenging to construct and maintain (a current of ¥
11 kA passes through a superconducting coil), and significant research is currently ongoing
to develop more powerful magnets [129, 130]. Hence, reaching new frontier energies of
accelerators also requires the development of new technologies to generate, control and
maintain stronger magnetic fields.

Many new projects to extend the frontiers of particle accelerations are under construc-
tion or undergo detailed studies, e.g., Compact Linear Collider at CERN [131] (electron-
positron center-of-mass energies up to 3 TeV), International Linear Collider [132] in Japan
(center-of-mass energies up to 500 GeV). One of the most impressive proposals that cur-
rently undergo feasibility study is the Future Circular Collider [133] (FCC) with a circum-
ference of 100 km proposed to be constructed at CERN. If constructed, it can produce
hadron collisions with energies up to 100 TeV, or lepton collisions with energies up to
400 GeV.

In contrast to circular accelerators, to improve the maximum attainable energy of parti-
cles in linear accelerators, the size of the accelerators and/or accelerating gradients should
be increased. To preserve the reasonable size of the accelerator facilities and avoid stag-
ing of multiple accelerators, one has to be able to increase accelerating gradients. Novel
accelerating mechanisms for high energy physics applications have been proposed, such as
laser-driven plasma wakefield accelerators (LWFA) [134], particle-driven plasma wakefield
accelerators (PWFA) [135], structure wakefield accelerators (SWFA) [136], and dielectric
laser accelerators (DLA) [137]. A detailed review of these approaches can be found, e.g.,
in [138]. As discussed in the next section, PWFA is one of the most promising ones for
the design of future colliders
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3.2 Plasma-Based Particle Acceleration

Plasma mediums consist of ionized particles, and they can sustain much higher electric
fields compared to other medias. For example, the maximum electric field that can be
created at a given plasma density can be estimated by the cold plasma wavebreaking field
as

Emax ¥ mecÊp

e
¥ 100 V

m

Ò
ne[cm≠3], (3.3)

where me is the electron mass, e is the fundamental charge, ne is the density of plasma
electrons, and Êp the plasma electron frequency (see Sec. 3.2.1). A plasma density of
1014 cm≠3 can provide accelerating gradients up to 1 GV m≠1. Hence, high electric fields
can produce high accelerating gradients, making plasma-based particle accelerators very
promising for many applications.

3.2.1 A Digression Into Plasma Theory

Plasma Definition

Plasma can be viewed as a state of matter, along other states such as solid, fluid, gaseous, or
Bose–Einstein condensate, present in our Universe. In the book written by F. F. Chen [139]
a plasma is defined as ‘A quasineutral gas of charged and neutral particles which exhibits
collective behavior’.

The condition of ‘collective behavior’ means that motion of plasma particles depend
not only on local parameters but also on the state of the plasma overall. This is because
interactions between charged particles are described by the long-ranged Coulomb force,
which implies that the volume elements of plasma can a�ect one another at large distances.

The quasi-neutrality means that the dimension of the plasma system L should be much
larger than the Debye length ⁄D, defined1 as

⁄D =
Û

‘0kbTe

nee2 , (3.4)

where ‘0 is the vacuum permittivity, kB is the Boltzmann constant, and Te is a the
temperatures of the electrons. The condition ⁄D π L means that local fluctuations
of plasma density (and generated electric potentials) are vanished by the shielding and
therefore plasma remains neutral in the large scale. An ideal plasma approximation implies
that the number of particles per Debye sphere is large, i.e., ND = ne

4fi

3 ⁄
3
D

∫ 1. Classical
plasma theory assumes that ne⁄

3
D

∫ 1, which implies that collective e�ects in plasma are
dominant over collisions between particles.

Oscillations in Plasma Fluid Theory

One of the very common approaches to describe plasma phenomena mathematically is to
use so-called fluids model. In this model, plasma is assumed to be electromagnetic fluid,
or a combination of fluids (if motion of mulitple charges is considered, e.g., electrons and
ions). To define a set of closure equations, let us consider the case when the plasma is cold
(i.e., the electron temperature is Te = 0.0) and isotropic (without external magnetic fields);
and the ions are slightly charged (Z = 1) and immobile (vi = 0), with the equilibrium
density ni = n0. Neglecting thermal fluctuations and considering that plasma electron

1Assuming that the mobility of ions is negligible.
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density is slightly perturbed, n = n0 + ne, Maxwell’s equations that describe electric, E,
and magnetic, B, fields in plasma can be written as

O · E = ≠ e

‘0
ne,

O ◊ E = ≠ˆB

ˆt
,

c
2
O ◊ B = ≠ e

‘0
nev + ˆE

ˆt
,

O · B = 0.

(3.5)

The motion of such plasma is a�ected by the Lorentz force and constrained by the conti-
nuity equation

dv
dt

= ≠eE/m,

ˆne

ˆt
+ n0Ov = 0,

(3.6)

where v is the perturbed velocity of the plasma. Eq. 3.5 and Eq. 3.6 form a closed set of
equations that described linear and non-linear processes in a cold isotropic plasma.

One of the most fundamental processes that occur in plasmas are oscillations caused
by perturbations of the electron density. Namely, if a small amount of electrons is dis-
placed with respect to the immobile ions, then the Columb force attracts the electrons
back, restoring equilibrium configuration. Di�erentiating Eq. 3.6 (2) over time, then sub-
stituting Eq. 3.6 (1) and Eq. 3.5 (1) gives the di�erential equation for the plasma density
fluctuations:

ˆ
2
ne

ˆt2 + Ê
2
pne = 0, (3.7)

where Ê
2
p = e

2
n0/‘me is the electron plasma frequency — the most fundamental time-scale

in plasma. A solution to this equation is the harmonic oscillation of plasma density with
the frequency Êp.

Perturbation of Plasma by a Bunch of Charged Particles

In the context of this thesis, it is of particular interest to consider a response of the
plasma on the perturbation caused by the bunch of relativistic particles (further denoted
as a ‘driver’ bunch), e.g., protons, that propagates in plasma at velocity c. For this, let us
define the cylindrical charge density of the bunch as

flb(r, ’) = flz(’)flr(r), (3.8)

where ’ = z ≠ ct is the distance along the bunch in the co-moving frame, flz(’) and flr(r)
are normalized longitudinal and radial charge densities. Let us also assume that the proton
bunch has a density much smaller than the density of plasma n0.

When the bunch penetrates plasma, it perturbs its equilibrium state, and the plasma
responds to the perturbation by radiating electromagnetic fields also called ‘wakefields’.
To describe the perturbation, the right hand side of the Eq. 3.5 (1) can be rewritten as
flb(r, ’)/‘0 ≠ ene/‘0. Keeping only linear therms in Eq. 3.5 and Eq. 3.6, the di�erential
equation describing the response of the electron density on the external perturbation can
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be defined as
ˆ

2
ne

ˆt2 + Ê
2
pne =

Ê
2
p

e
flb(r, ’). (3.9)

The last equation describes the motion of the harmonic oscillator a�ected by the external
force, and the solution to it is given by the Green’s function response (see [140] for detailed
solution). Solving this equation together with Maxwell’s equations for E, and B, allows
to find wakefields that are produced by the driver bunch. The longitudinal and transversal
components of the wakefield can be computed as

Ez(r, ’) = Z
Õ(’)R(r),

Er(r, ’) = Z(’)RÕ(r),
(3.10)

where Z
Õ = ˆZ

ˆ’
, R

Õ = ˆR

ˆr
, and

Z
Õ(’) = ≠ 1

‘0

⁄ Œ

’

d’
Õ
flz(’ Õ) cos kp(’ ≠ ’

Õ),

R(r) =
k

2
p

2fi

⁄ 2fi

0
d◊

⁄ Œ

0
r

Õ
dr

Õ
flr(rÕ)K0(kp

--r ≠ rÕ--),
(3.11)

and K0 denotes zero-order modified Bessel function of the second kind. Eq. 3.10 and
Eq. 3.11 describe the response of the plasma on the perturbation caused by the driver
bunch, and they indicate that the strength of the radiated wakefields depend on the
proton bunch density flb(r, ’).

3.2.2 Plasma Wakefield Acceleration

As discussed above, when the driver beam propagates in plasma, it creates wakefields.
When the second beam, also called a witness beam, is passing behind the driver, it can
gain the energy from the wakefield — like a wake surfer that rides down a watery hill.
This simple idea underlines a powerful concept of plasma wakefield acceleration that is
being actively developed in recent decades.

Lasers and particle beams can be considered as drivers of the wakefield. The idea
that lasers can create wakefields that can trap and accelerate electrons was proposed by
T. Tajima and J.M. Dawson in [141] and later tested by C. Clayton in [142]. In 2006,
a regime known as the forced wakefield has been used to produce electron beams with
finite energy spread applying intense laser pulses [143]. Later, in 2014, electrons were
accelerated to energies of 4.2 GeV with the 300 TW laser system in Berkeley [144]. An
alternative idea was proposed in 1985 by P. Chen et al. to use relativistic electron beam
as a driver in wakefields [145]. This was successfully tested by J. Rosenzweig in 1988 [146].
Experiments performed at SLAC in 2007 reported acceleration of electrons from 42 GeV
to 84 GeV in 85 cm of plasma [147].

In the former experiments, the energy gain was limited by the driver energy and by
the propagation distance in the plasma. To reach better performance, the energies of
several individual drivers can be combined by staging drivers across many separate stages
[148, 149]. Staging of accelerating sections is a technically-challenging procedure. Namely,
strong focusing of beams in wakefield results in high-divergence beams in the staging
regions. To preserve the quality of the bunches with a finite energy spread, more beam
optics is needed in between of the accelerating sections. This optics is space consuming —
which results in an overall longer accelerator, making the e�ective accelerating gradient
smaller.
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To avoid staging of the multiple sections, an alternative approach is to use a driver
bunch with higher energy. Protons have a larger mass, they can carry high energy, and
they can drive wakefields over much longer distances than other drivers. Proton bunches
with high energies are routinely used in many accelerators. For example, ideal candidates
for the plasma wakefield experiment can be proton bunches produced at CERN’s particle
accelerators, such as PS, SPS, or LHC. These accelerators can produce bunches with
energies of 24, 450 or 7000 GeV, longitudinal length of ¥ 3 ≠ 20 cm and the radial size
of ¥ 100 ≠ 400 µm. Theory predicts that to reach accelerating gradients of GV m≠1 and
above, the length of the proton bunch should be of the order of plasma wavelength (i.e.,
of the order of a millimeter) [150]. Therefore long proton bunches should be e�ciently
compressed into shorter ones.

A bunch-shortening mechanism based on the controlled self-modulation of the long
proton bunch is of particular interest in the scope of this thesis. Namely, when the
relativistic proton bunch enters the plasma, it seeds longitudinal and transversal wakefields
at the plasma frequency. The wakefield acts on the bunch by modulating its radius. The
proton distribution with a modulated density produces stronger wakefields. This creates
a feedback loop that amplifies the modulation amplitude and eventually splits the long
bunch into a group of many micro-bunches with a characteristic length given by the plasma
wavelength. This process is known as self-modulation, and it can be used to utilize long
proton bunches to drive wakefields in plasma. A relativistic ionization front that co-
propagates with the driver bunch can be used to control the seeding of self-modulation,
resulting in seeded self-modulation.
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3.3 The AWAKE Experiment

The AWAKE experiment is a research and development, proof-of-principle experiment
that investigates proton-driven plasma wakefield acceleration. The experiment is a part
of the CERN accelerator complex, and it has used long proton bunches with the energy
of ¥ 400 GeV to accelerate a low-energy witness bunch of electrons from ¥ 20 MeV to two
GeV over short distances. To divide the long driver bunches into a group of shorter ones,
a seeded self-modulation mechanism is used.

3.3.1 Experiment Overview

The AWAKE experiment is located at the Eastern side of the CERN accelerator complex,
as schematically shown in Fig. 3.1. The acceleration of protons used in AWAKE starts
with Linac 4, which is the first accelerator in the chain; it accelerates the proton bunch to
the energy of 50 MeV. This is followed by the Proton Synchrotron Booster (PSB), which
accelerates the protons to 1.4 GeV. The next in the chain is Proton Synchrotron (PS)
which increases the bunch energy to 25 GeV. After this, protons are sent to Super Proton
Synchrotron (SPS), pushing the bunch energy to 450 GeV. The final accelerating stage is
LHC, where a maximum bunch energy of 6.5 TeV has been obtained. For the AWAKE
experiment, bunches from SPS are optimal, as they have su�ciently high energy, and they

Figure 3.1: Overview of the CERN accelerator complex. Retrieved from [151].
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Figure 3.2: The layout of the AWAKE experiment. Electron, proton, and laser beams that
propagate from left to right are shown in blue, red, and green colors, respec-
tively. The bottom subplot shows the proton bunch at the plasma entrance
and exit. Retrieved from [152].

are more easily extracted than the bunches from the LHC.
After reaching the desired energy, bunches are sent from SPS to AWAKE, which is

located in the CERN Neutrinos to Gran Sasso (CNGS) facility — a deep underground
tunnel designed for neutrino generation with high-energy proton bunches. The transfer
line that connects SPS and AWAKE is ≥ 900-meter long, and the plasma section, electron,
and laser beams together with various diagnostics are installed downstream of the CNGS
tunnel. A layout of the AWAKE experiment is presented in Fig. 3.2.

In AWAKE, the proton bunch enters a ten-meter-long rubidium vapor section [153,
154] together with the co-propagating laser pulse (see Fig. 3.2). According to the Run 1
baseline [155], the bunch is focused at zw = (5 ± 3) cm after the entrance to the rubidium
section. The radial size is ‡x,y = (0.20 ± 0.04) mm, longitudinal size is ‡z = 6 ≠ 8 cm and
angular divergence is ‡

Õ
x,y = (4 ± 2) ◊ 10≠5 rad, where ‡ represents a Gaussian standard

deviation. The parameters of proton bunches, such as the bunch centroid and population,
fluctuate from event to event.

The laser pulse [156] with a maximum energy of 450 mJ and a central wavelength
of 780 nm ionizes the rubidium vapor, creating a relativistic ionization front that co-
propagates with the proton bunch. The relativistic ionization front is much shorter than
the typical period of the wakefields (> 3 ps) and it is used to seed the controlled self-
modulation instability of the proton bunch. The resulting microbunches then act reso-
nantly to drive large wakefields during the plasma section.

The electron beam with an energy of 18 MeV, maximum charge of 656 pC and with
length of the order of the plasma wavelength is injected near the plasma entrance. In
this region, significant self-modulation of the proton bunch has not yet occurred. Due
to this, some of the electrons are captured by focusing and defocusing phases of the
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field. Those in the focusing regions are accelerated up to 2 GeV by the wakefield and sent
to the electron spectrometer diagnostic, where their energy can be measured [152]. To
increase maximum energy attainable by the witness bunch and prevents destruction of
the driver microbunches at the final stage of self-modulation, gradients in plasma density
are proposed for future use [157].

The Run 1 period of the AWAKE experiment (2016-2018) has shown that self-modulation
of a long proton beam in plasma is possible and that this is a fully deterministic and
repeatable process [158, 159]. It has also demonstrated that injected electrons can be
accelerated by the wakefield from 18 MeV to 2 GeV [160, 152]. After two years of CERN’s
Long Shutdown 2, the experiment is resuming its operation in the scope of the Run 2
program which is planned from 2021 onward. The goal for this run is to demonstrate the
scalable acceleration of an electron bunch while controlling its emittance.

3.3.2 Proton Bunch Diagnostics in AWAKE
The diagnostic tools to control proton bunch quality are present in both the SPS-ring and
the AWAKE facility. The SPS diagnostics measure the parameters of the bunch during
the acceleration process and before the extraction to AWAKE. The AWAKE diagnostics
is used to observe the structure of the proton bunch before and after the plasma section,
allowing to analyze self-modulation of the bunch.

In the SPS accelerating ring, wire scanners are used to measure the transverse and
longitudinal bunch emittances with the accuracy of 20% [150, 161, 162]. The Beam Quality
Monitors [163, 164] are used to measure longitudinal bunch profiles, and Beam Current
Transformers (BCT) [165] are used to determine the bunch intensity during the whole
accelerating cycle.

In AWAKE, transversal and longitudinal structures of the bunch can be observed before
and after the plasma section using a diagnostics based on the Transition Radiation (TR)
or scintillating light, which is produced when the bunch crosses light-emitting screens
placed at 45¶ to the beamline. The TR light is prompt as the electromagnetic radiation
is produced when the charged particles pass the screen boundary, and it is used as a fast
picosecond-scale diagnostic. The scintillating light is slow (up to tens of milliseconds) due
to its luminescence nature; it follows an exponentially decaying light profile, and a decay
constant is determined by the screen properties, such as material or thickness. The light
yield of the scintillating screen is larger compared to the light yield of the TR screen.
However, this comes with the price of increased smearing of the signal. A comparative
study of various light-emitting screens used in the AWAKE experiment can be found
in [166].

The TR light is produced in a broad spectrum. The incoherent part of the spectrum
corresponds to the wavelengths of the visible range (400≠800 nm), and is called the Optical
Transition Radiation (OTR) light. It carries information about the bunch longitudinal and
transverse structure in a temporal intensity of the light. It can be used to observe the
modulation of the individual proton bunches of size ¥ 1.2 mm, by projecting the light
onto the slit of a streak camera for time-resolved measurements and onto a screen of a
CCD/CMOS camera for time-integrated measurements.

The coherent part of the TR spectrum (CTR) produced by the modulated proton bunch
radiates in the microwave frequency range 90 ≠ 300 GHz. It can be mixed with a local
oscillator signal to convert the CTR into a signal in the range of 5 ≠ 20 GHz which can
be detected by an oscilloscope with a high spectral resolution of 1 ≠ 3 GHz. This allows
to perform measurements of the modulation frequency of the proton bunch [167].

In addition to the beam observing systems, Beam Position Monitors (BPM) are used
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to control positions of the beam, and the beam losses are controlled by the Beam Loss
Monitors (BLM).

3.3.3 Impact of the Proton Bunch on the Wakefield Amplitude

The driver bunch plays a central role in the wakefield acceleration. We can estimate a quan-
titative impact of its parameters on the wakefields using formulas provided in Sec. 3.2.1.
For this, let us assume that the relativistic bunch density is defined as

flb(r, ’) = flz(’)flr(r)

= Nq

(2fi)3/2‡z‡2
r

e
≠ ’2

2‡2
z

≠ r2
2‡2

r ,

(3.12)

where N is the number of particles in the bunch, and ‡r/’ is the r.m.s. size of the bunch.
The strength of the longitudinal wakefield Ez(r, ’) can be obtained from Eq. 3.10 and
Eq. 3.11. The integration shows that the maximum on-axis longitudinal field behind the
bunch center, ’ π ‡z, is equal to
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In the former equations, �(–, —) =
s Œ

—
t
–≠1

e
≠t

dt is the incomplete Gamma function, and
kp = Êp/c denotes the plasma wave-number.

As discussed earlier, AWAKE operates in a self-modulation regime in which the initially
long proton bunch, ‡z,0, is divided into a group of short microbunches with the size ‡z.
To ensure that optimal wakefields are created, a few criteria should be met [168]: (a) The
axisymmetric instability mode should develop faster than filamentation of the bunch; (b)
the modulation of microbunches should be well-developed; (c) the wakefield amplitude
given by Eq. 3.13 should be maximized. The first condition requires that the plasma skin
depth is at least as large as the transverse size of the bunch. Examination of Eq. 3.14 and
Eq. 3.13 shows that these conditions are satisfied when ‡rkp = 1 and ‡

2
zk

2
p = 2. In this

case, the longitudinal size of the microbunch ‡z is fixed by the plasma wavelength, and
the plasma wavelength is fixed by the transverse size of the proton bunch ‡r. To ensure
that the self-modulation is well developed in the center of the bunch, bunches with a large
aspect ratio should be considered.

The maximum electric field created by a group of microbunches can be estimated by
assuming that fields from all microbunches add coherently and that each microbunch
contains 1/2 of the initial number of charges within one plasma wavelength [168]. Summing
up contributions from microbunches, and assuming that optimal plasma parameters are
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chosen, i.e., kp‡r ¥ 1, k
2
p‡

2
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As follows from the last equation, the crucial element that determines the maximum
attainable strength of the wakefield amplitude in the modulated proton bunch is the ratio
of the bunch population to the square of the transverse bunch size N/‡

2
r . In another words,

knowing bunch parameters is necessary to understand amplitudes of the experimental
wakefields.

3.3.4 Importance of the Proton Bunch for Plasma Modelling
Computer simulations of plasma have been broadly used in various stages of the AWAKE
experiment. One of the input parameters that should be provided for plasma modeling is
the distribution of protons at the entrance of plasma. A recent study by A. Gorn et al. [169]
compares the experimentally-measured distribution of defocused due to self-modulation
protons with the results of plasma modeling. The study shows that agreement between
experimental observations of the defocused protons and plasma modeling is sensitive to the
parameters of the proton bunch. Namely, a 20% uncertainty in the beam radius results
in visible disagreement with measured data. To make the comparative analysis more
accurate, a smaller uncertainty on the bunch parameters is needed. For this, more precise
and systematic event-to-event measurements of bunch parameters should be performed.
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4 Analysis of Proton Bunch Parameters in
the AWAKE Experiment

As discussed in the last section, proton bunch parameters play a central role in the AWAKE
experiment. They impact the development of the proton bunch modulation and define the
resulting plasma wakefields. To make detailed comparisons of the simulation and experi-
mental data, an accurate proton bunch description is needed. This chapter contributes to
the AWAKE experiment by performing a detailed statistical analysis of the parameters of
the proton bunches that drive wakefields.

The work presented here has been submitted for publication [170] as an AWAKE
collaboration-wide paper. In the following, by mentioning ‘we’ in the text, I will refer
to those colleagues who supervised me and helped me with di�erent parts of this project.

4.1 Proton Bunch Measurements

4.1.1 Experimental Setup

We use four beam imaging systems that capture images of the transverse profile of the
unmodulated proton bunch before and after the rubidium vapor section. Parameters of
the beam imaging systems are summarized in Table 4.1. The first three stations have
CCD cameras with OTR screens, and the last station has a digital CMOS camera with a
scintillating screen. Fig. 4.1 illustrates the relative positions of the measurement stations,
the plasma section, and the envelope trajectory of the unmodulated bunch for the baseline
parameters. It can be seen that the first two stations are located very close to the waist
position, so they mainly carry information about the size of the bunch close to the focus.
The last two stations are located much farther from the waist position, and they are
primarily sensitive to the angular divergence of the bunch.

Cam. 1 Cam. 2 Cam. 3 Cam. 4
Full Name BTV412350 BTV412353 BTV412426 BTV412442
Position, z (m) 0.000 1.478 15.026 23.164
Screen Type OTR OTR OTR Scint.
Screen Material Si coated Ag Si coated Ag Si coated Ag Chromox
Screen Drawing BTVWS0041 BTVWS0041 BTVWS0042 BTVAA0006
Camera Type CCD CCD CCD CMOS
Camera Res. 400 ◊ 300 400 ◊ 300 400 ◊ 300 1280 ◊ 960

Table 4.1: Description of the beam observing systems (denoted as Cam. 1-4) used in the
measurements. The position along the beamline is denoted as z, and it is
measured from the position of the first camera.
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Figure 4.1: The standard deviation of the transverse proton bunch profile versus the beam-
line position for nominal bunch parameters without plasma. Gray solid lines
show positions of four beam observation systems. The position of the plasma
section is shown by a red dotted line.

4.1.2 The Dataset

We performed measurements on October 10, 2018, during which a dataset that consists
of 672 events was collected. By ‘event data’ we denote 4 images from the beam imaging
systems and the proton bunch population measured in the SPS using the BCT. Four
types of proton bunches were requested from the SPS operators with the parameters
summarized in Table 4.2. The first two types correspond to the bunches with small,
(7.77≠10.30)◊1010

p
+, and large, (23.20≠28.00)◊1010

p
+, populations. These events are

intended to study the impact of the bunch population on the bunch emittance and focal
size. The second two types represent bunches with or without longitudinal compression.
The bunch compression is achieved via a rotation in longitudinal phase space using a
voltage step with a fast rise time [171, 172]. The typical longitudinal bunch length (rms)
without the bunch rotation is ¥ 9.6 cm and with the bunch rotation ¥ 7.9 cm. The
acquired dataset represents proton bunches commonly used in the later stages of Run 1
data-taking period.

Symbol q [1e
10

, p
+] Rotation # Enevts

D11 7.77 - 10.30 ON 181
D12 7.77 - 10.30 OFF 160
D21 23.20 - 28.00 ON 139
D22 23.20 - 28.00 OFF 192

Table 4.2: Events are divided into 4 categories, i.e., small and large bunch population and
bunch rotation ON and OFF.
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Figure 4.2: Images from one event with the proton bunch population q = 24.04 · 1010
p

+.
Subplots correspond to the four beam observing systems specified in Table 4.1.
Color-coding represents the values recorded by the camera pixel, and it is in
the range [0, 4095].

An example of the event data with a population of q = 24.04◊1010
p

+ is shown in Fig. 4.2.
The central part of the images represents the OTR light on the first three screens and the
scintillating light on the last screen produced by the proton bunch. The background noise
is produced primarily by secondary particles that are generated upstream of AWAKE.

The integrated intensity of the signal in four cameras is summarized in Fig. 4.3. It can
be seen that the intensity is correlated with the bunch population. Namely, it increases
with the increasing bunch population in Cam. 1, 2, 4, and decreases in Cam. 3. The
decrease in Cam. 3 is explained by the change in the camera setting, that was made to
avoid signal saturation.

4.2 Preliminary Investigations
The analysis relies on knowledge of calibration factors and resolutions scales for the devices
used. These are described briefly.

4.2.1 Pixel Calibration Factor
To determine the calibration factor of the pixel sizes, we use calibration frames that are
engraved on the surface of each light-emitting screen. Parameters of the frames, such as
width, height, and sizes of the engraving lines, are known to high precision. The screens
are placed at an angle of 45° with respect to the beamline and rotated on the horizontal
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Figure 4.3: The plot illustrates the integrated light intensity and the proton bunch popu-
lation versus the event number for four cameras. The shaded regions specify
datasets that were measured with the same experimental settings.

axis. The images of the calibration frames that are taken from the viewports of each
camera are shown in Fig. 4.4. To calculate the horizontal calibration factor, we divide the
absolute size of the frame by the number of pixels that correspond to it. To determine
the vertical calibration factor, the absolute size of the frame is multiplied by cos(fi/4) and
then divided by the number of corresponding pixels.

For illustration, let us compute the calibration factor for Cam. 1. It has a calibration
frame with a technical drawing BTVWS0041, width 15 mm and height 16.97 mm. Since
the frame is visible at 45°, its width is 15 mm and height is 16.97 ·cos(45) = 8.91 mm. The
horizontal value is estimated as

�x = 0.5 · frame width
number of pixels = 7.5 mm

277 px = 0.0271 mm. (4.1)

The thickness of the engraving line is 0.4 mm, and it is larger than the pixel size. This
creates uncertainty on finding the optimal position of the measuring grid shown by the
dashed lines in Fig. 4.4. This uncertainty can be estimated as a standard deviation of the
uniform distribution given by

‡(�x) = 1Ô
12

· line thickness
0.5 · frame width · �x = 42 · 10≠5 mm. (4.2)

This gives the calibration factor of �x = (27.1 ± 0.42) · 10≠3 mm. The same procedure is
performed for other cameras, and the results are summarized in Table 4.3. In the following,
we assume that the pixel size includes the correct calibration factors.
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Figure 4.4: Calibration images used to determine pixel size. The dashed lines show an
approximation to the frame edges. The width of the engraving lines is 0.4
mm. References to the detailed technical drawings are provided in Table 4.1.

Name �x (µm) �y (µm)

Cam. 1 27.1 ± 0.42 30.5 ± 0.59
Cam. 2 21.6 ± 0.33 23.4 ± 0.45
Cam. 3 114.0 ± 0.88 125.0 ± 1.2
Cam. 4 40.6 ± 0.23 40.0 ± 0.29

Table 4.3: Summary of the pixel size calibration.

4.2.2 Resolution Functions

Optical resolution is a characteristic of the system to resolve details of the signal that is
being measured. The features of the signal that are smaller than the resolution size will
be smeared and not detected by the measurement. For the one-dimensional signal, the
resolution e�ect can be presented as a convolution

f(x) =
⁄ Œ

≠Œ
g(·)k(x ≠ ·)d·, (4.3)

where g(x) is the incoming signal, f(x) is the response of the measurement device, and
k(x) is the resolution kernel. The resolution kernel can be presented using a Gaussian
function centered at 0 with a standard deviation of ‡̃

k(x) = N (x|0, ‡̃). (4.4)
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Figure 4.5: Left column: Calibration images used to estimate resolution functions. The
regions enclosed by dashed lines show pixels that were used in the fit. Right
column: The data points and the best-fit models for di�erent rows/columns of
the camera. The resulting resolution parameters are summarized in Table 4.4.

Images of the bunch profile obtained from the beam observing systems contain two types
of resolution e�ects. The first one is the resolution of the optical system of the camera
that is denoted as ‡̃c. The second one is the resolution of the light-emitting screen denoted
as ‡̃s. We assume that they both are Gaussian smearings, and their superposing e�ect is
given by a quadrature sum of individual components, i.e., ‡̃tot =


‡̃2

s + ‡̃2
c .

The camera’s resolution, ‡̃c, depends on the parameters of the optical system, camera
magnification, and signal-to-noise ratio. This resolution can be determined with high
precision by sending into a camera a signal profile with a known shape and measuring
the response of the camera, as it is done, e.g., in the USAF resolution test. In our case,
this precise calibration was not performed, and therefore an upper limit of the resolution
function is estimated using images of the calibration frame. Namely, similarly to the pixel
calibration test, it is assumed that the calibration frame has perfectly shaped rectangular
edges with known width of the lines. The rectangular edge can be presented as a product
of Heaviside step functions g(x) = H(x)H(w ≠ x), with w denoting the width of the
engraving line. Given this incoming signal, the response of the camera is

f(x|‡̃, w, �x) =
⁄ Œ

≠Œ
H(·)H(w ≠ ·)N (x ≠ · |0, ‡̃ · �x)d·. (4.5)

We perform a fitting procedure to determine the best resolution parameters that approx-
imate the data (see Fig. 4.5). The resulting resolution parameters are summarized in
Table 4.4.

The resolution of the light-emitting screen is a process that is determined by the mecha-
nism of the OTR or scintillating light creation, and it depends on the screen material and
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Figure 4.6: Background distributions from di�erent regions of Cam. 1. The frequency
represents the number of counts present in each bin normalized such that the
sum of frequencies from each bin is equal to one. The pixels enclosed by
the white dotted lines are used to determine the parameters of the proton
bunch. The background distributions from four rectangular regions enclosed
by the dashed lines are shown in the right subplot. The dashed line in the
right subplot shows the truncation threshold. The filled region represent the
distribution of the signal (enclosed by the white dotted line).

thickness. Precise calibration of the resolution of the light-emitting screens has not been
performed in the AWAKE experiment. A study performed at the CERN HiRadMat test
facility indicates that scintillating screens are characterized by a worse resolution com-
pared to the OTR screens [166]. We include the additional smearing from the scintillating
screen in our analysis using nuisance variables and consider constant resolution parameters
for 3 cameras with OTR screens.

4.2.3 Background Distribution

We divide the image from each camera into di�erent regions (see Fig. 4.6). Those pixels
located in the central region — which is approximately 4-5 standard deviations around the
bunch centroid — are used to infer the parameters of the proton bunch. The remaining
pixels are combined from multiple events to approximate the background distribution via
binned histograms. We use separate background distributions for each camera and datasets
with small and large bunch populations. An example of the background distributions from

Name ‡̃x/y (px) ‡̃x/y (µm)

Cam. 1 1.91 ± 0.1 58.3 ± 3.05
Cam. 2 2.11 ± 0.16 49.37 ± 3.74
Cam. 3 1.76 ± 0.25 200.6 ± 28.5
Cam. 4 6.97 ± 1.54 283.0 ± 62.5

Table 4.4: The upper limits of the optical resolution function given in pixels and microns.
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Figure 4.7: Background distributions corresponding to the dataset with a small (top) and
large (bottom) bunch populations. The dark red colors show the distribution of
the background only. The filled histograms show the distributions from pixels
used in the analysis of bunch parameters, and they represent the superposition
of signal and background. Orange lines show positions of the cuto� values.
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four di�erent regions of one camera is shown in Fig. 4.6. It can be seen that all histograms
significantly overlap, demonstrating that the background follows a similar distribution in
di�erent parts of the camera.

Background distributions from the four di�erent cameras are shown in Fig. 4.7 for events
with a small and large bunch populations.. The histograms corresponding to cameras with
the OTR screens have a similar structure. Namely, they all have a maximum at 0, long
tails that extend to the amplitudes of > 2000, and a small bump of saturated pixels at the
righthand side of the histograms. To avoid a possible negative impact of the saturation
on the analysis, we discard those pixels that exceed the threshold values of 2700, 3400,
2400,1750, for each camera, respectively (see also dashed lines in Fig. 4.7). The histograms
of signal and background show a smooth behavior up to these threshold values without
signs of saturation.

The images produced by the last beam observing system have approximately ten times
more pixels compared to the images from the three other cameras. To improve the run-
time of the analysis, we average every 3 ◊ 3 pixels from the last camera. Averaging of the
pixels reduces the long tail of the distribution as can be seen in Fig. 4.7 (bottom subplot).
In the following, we will assume that the background on each pixel of the last camera is
well-modeled with a truncated (form 0 to 4095) Gaussian distribution. The distribution
variance is determined from the histogram, and the mean is fitted with a free parameter.
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4.3 Statistical Model
We perform the statistical analysis using a Bayesian approach. Prior probabilities about
parameters ⁄, ‹ of the model M are updated to posterior probabilities using Bayes’ the-
orem

P (⁄, ‹|M, D) = P (D|⁄, ‹) · P (⁄, ‹|M)s
P (D|⁄, ‹) · P (⁄, ‹|M)d⁄d‹

, (4.6)

where P (D|⁄, ‹) is a likelihood that represents a probability of data given the model,
P (⁄, ‹|M) is a prior, and P (⁄, ‹|M, D) is a posterior probability distribution. The data
from one event is denoted as D ©

Ó
d

j
x,y

Ô
, where d is a signal from one pixel, x, y are

the row, column of the pixel and j represents the camera index. The dataset consists of
multiple events {D}

i
where i denotes the event index. In Eq. 4.6, ⁄ represents parameters

of interest, and ‹ represents nuisance parameters. Some of the nuisance parameters are
kept constant, and others are free parameters of the fit that will be marginalized at the
final stage of the analysis.

4.3.1 Likelihood Definition
The measured datasets consist of multiple events, and their parameters (e.g., transverse
size of the bunch, angular divergence, waist position, bunch alignment) fluctuate from
event to event. The parameters of the experimental setups (e.g., pixel size, camera res-
olution) are also characterized by uncertainties, and their true (unknown) values were
constant at the whole measurement process. Given this, there are two ways to define the
likelihood function.

In the first approach, all events can be analyzed simultaneously. This allows the
experiment-specific parameters to be free variables of the fit. In this case, experiment-
specific parameters will be tuned globally, such that they represent the optimal values for
every event of the dataset. The likelihood that corresponds to this case can be defined as

P ({D} |⁄, ‹) =
Ÿ

Dœ{D}

Ÿ

jœNcam

Ÿ

yœNrows

Ÿ

xœNcolumns

p(dj

xy|⁄, ‹), (4.7)

where p(dj
xy|⁄, ‹) denotes the likelihood of one pixel. The likelihood given by Eq. 4.7

requires approximately 16.8 · 103 free parameters of the model, and each likelihood ex-
ecution require 6 · 106 evaluations of p(dj

xy|⁄, ‹). This large number of free parameters
and expensive likelihood-evaluation would make the sampling procedure very challenging.
Therefore, approximations should be considered to simplify the computations.

Another, simpler, approach is to analyze individual events consecutively. To ensure that
all events are analyzed at the same experiment-specific parameters, the last should be kept
constant. The likelihood that corresponds to this case can be written as

P (D|⁄, ‹) =
Ÿ

jœNcam

Ÿ

yœNrows

Ÿ

xœNcolumns

p(dj

xy|⁄, ‹), (4.8)

and it replaces one many-dimensional problem with many problems with fewer dimensions.
Eq. 4.8 gives a compromise between numerical complexity of the likelihood evaluation and
accuracy of the models, and it will be further considered in our analysis.

The d
j
xy are composed of a background noise, with a probability distribution denoted as

Pb(dj
xy), and a signal Pp(dj

xy|⁄, ‹) produced by the proton bunch. In the following, we will
avoid indices x, y, j in d

j
xy for notational convenience if one pixel is considered. We assume

that, for the given camera, the background is the same for all pixels and we approximate
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Ĩp = 130

Sig. Sig. + B-gr. B-gr.

10�4
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Figure 4.8: Convolutions of the probability distribution of the signal created by the proton
bunch and the background distribution are shown for di�erent assumed mean
signal amplitudes and variances for Cam. 3. The signal from the proton bunch,
Pp(d|⁄, ‹), is assumed to be normally distributed (shown in dashed lines). The
filled histograms show the background noise. The red lines show a numerical
convolution represented by p(d|⁄, ‹).

it by a binned histogram (see previous section). The resulting superposition of these two
contributions is given by the convolution

p(d|⁄, ‹) =
⁄

Pp(· |⁄, ‹) · Pb(d ≠ ·)d·. (4.9)

The convolution is computed numerically for the first three cameras due to the non-analytic
form of the background, and it is computed analytically for the last camera, where the
background is Gaussian. An example for such a convolution is shown in Fig. 4.8, where
it is assumed that the signal from the proton bunch has a Gaussian distribution. The
evaluation of the numerical convolutions is computationally expensive, but it is needed to
include correctly the non-analytic features of the background.

The key component of the equation Eq. 4.9 is a probability distribution of the camera’s
signal intensity created by the proton bunch Pp(d|⁄, ‹). To compute it, one needs to
simulate the trajectory of the bunch along the beamline and then convert a distribution
of protons at each screen position into a signal on a camera.

4.3.2 Bunch Propagation Equation
We consider a model in which each particle of the bunch follows a linear equation of motion
defined as

ri = r0i + rÕ
i (z ≠ zw) , (4.10)

where i denotes the particle’s index, zw denotes the waist position, i.e., the coordinate
along the beamline in which the radial bunch size is minimal, r0 = (x0, y0) is the particle
position at the waist, and rÕ = (dx/dz, dy/dz) ¥ (◊xz, ◊yz) is the particle angle with
respect to the beamline in the x ≠ z and y ≠ z planes. The distance along the beamline is
denoted by z and is defined as the trajectory of the bunch centroid.

We measure distances in the transverse directions relative to the center of the proton

75



CHAPTER: 4

Figure 4.9: The figure illustrates trajectories of 104 particles and their envelope equation
for the nominal bunch parameters. The envelope equation is computed using
Eq. 4.12 and it is shown by the blue surface.

bunch. To determine the center of the bunch, we use two parameters per camera, one for
the x and one for the y directions, labeled as µj,x, µj,y with j denoting the camera index.

The envelope equation that describes the transverse size of such a bunch along the
beamline can be defined as

‡2 =
e
r2

f

=
e
r2

0
f

+ 2
+
r0rÕ, (z ≠ zw) +

e
rÕ2

f
(z ≠ zw)2

,

(4.11)

where È·Í denotes the average over the ensemble of particles. It is assumed that there is
no correlation between the x and y projections of the bunch, and that r0 and rÕ are not
correlated at the waist position, i.e., Èr0rÕÍ = 0. For notational convenience, the bunch
size at the waist will be denoted as ‡0 =

Ò+
r2

0
,
, and the angular spread of the bunch as

‡Õ =


ÈrÕ2Í. Eq. 4.11 can be rewritten as

‡2 = ‡2
0 + ‡Õ2(z ≠ zw)2

. (4.12)

We consider two models that describe the distribution of protons in the beamline.
In the first model, we assume that the proton bunch is represented by a single Gaussian

distribution in the transverse and longitudinal directions. The transverse distribution
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of the protons at each light-emitting screen can be described by a bivariate Gaussian
distribution with the bunch size, ‡(⁄, ‹), described by Eq. 4.11

Ip(x, y|⁄, ‹, M1) = N (x, y|µ(⁄, ‹), ‡(⁄, ‹)), (4.13)

and this model will be further denoted as ‘Single Gaussian’. Trajectories of individual
particles and the envelop equation for this model are shown in Fig. 4.9.

In the second model, denoted as ‘Double Gaussian’, we assume that the proton bunch is
represented by a mixture of two Gaussian components. These components have the same
alignment but di�erent sizes, waist positions, and angular divergence. In this model, the
transverse distribution of the protons at the light-emitting screen is defined as

Ip(x, y|⁄, ‹, M2) = –N (x, y|µ1(⁄, ‹), ‡1(⁄, ‹)) +
+(1 ≠ –)N (x, y|µ1(⁄, ‹), ‡2(⁄, ‹)) (4.14)

where – controls the significance of each contribution. The component with larger angular
divergence will be called ‘halo’ and the smaller ‘core’, and their parameters will be denoted
by subscripts ‘c’ and ‘h’, respectively. The single and double Gaussian models are nested,
and they predict the same result if – = 1.

4.3.3 Camera Modeling
Light with intensity proportional to the number of particles in the bunch is emitted
when the proton bunch crosses the light-emitting screen. This light experiences opti-
cal smearing that can be represented by a convolution of Ip(x, y|⁄, ‹) with a Gaussian
kernel N (x, y|0, ‡̃) with zero mean and resolution parameters ‡̃, i.e.

Ĩp(x, y|⁄, ‹) =
⁄ Œ

≠Œ

⁄ Œ

≠Œ
Ip(x ≠ ·1, y ≠ ·2|⁄, ‹) ◊

◊N (·1, ·2|0, ‡̃)d·1d·2. (4.15)

The amount of light captured by one pixel is given by the integral over the pixel surface

I =
⁄

x+�x

x

⁄
y+�y

y

Ĩp(x, y|⁄, ‹)dxdy. (4.16)

We assume that the signal at each pixel is described by a Gaussian probability distribution
with the mean given by ijI, and the standard deviation of fj

Ô
I, where j denotes the

camera index and ij , fj are coe�cients of proportionality represented by free parameters,
i.e.,

Pp(d|⁄, ‹) = N (d|ijI, fj

Ô
I). (4.17)

This expression is used in Eq. 4.9 to compute the likelihood for one pixel. The likelihoods
from all pixels are multiplied together to get the final event likelihood described by Eq. 4.8.

4.3.4 Likelihood Implementation
As discussed before, the likelihood P (d|⁄, ‹) cannot be written in closed form, and it
should be computed numerically. The following pseudo-code summarizes the key steps
that are used in the likelihood implementation:

⌥ ⌅
Input:

77



CHAPTER: 4

data : Images from four cameras
⁄ : Proton bunch parameters
‹ : Nuisance parameters

Output:
log_likelihood : Logarithm of the likelihood

���
function log_likelihood(data, ⁄, ‹)

log_likelihood = 0.0
for j in camera_ind

I = compute_bunch_distribution(j, ⁄, ‹)
I = apply_smearing(I, ⁄, ‹)
for x in column_ind, y in row_ind

pdf_signal = Normal(µ=‹[1]*I[x,y], ‡=‹[2]*
Ô
I[x,y])

pdf_signal_noise = conv(pdf_signal, pdf_noise)
log_likelihood += log(pdf_signal_noise[data[j,x,y]])

end
end
return log_likelihood

end⌃ ⇧
This function returns a logarithmic value of the likelihood for better numerical stability.
To optimize the performance of the likelihood evaluation, the convolution given by Eq. 4.9
is precomputed in advance for all possible values of the camera signal and accessed from
the lookup table.

We sample the posterior distribution given by Eq. 4.6 using Metropolis–Hastings MCMC
algorithm. The likelihood is implemented in the Julia programming language, and the
BAT.jl [65] package is used for the statistical inference.

4.3.5 Model Validation

To validate that the analysis leads to the correct reconstruction of the parameters, we
performed the following procedure:

1. True parameters of the models were defined.

2. Simulated events were generated that correspond to these parameters. The simulated
events include background noise, lights fluctuations, optical smearing of cameras.

3. The analysis algorithms were applied and the resulting parameters were compared
to the true values.

The validation procedure was performed for both single and double Gaussian models.
Excellent agreement was found between the extracted and true parameters for both mod-
els. An example of the simulated data and the fitted model for the single and double
Gaussian bunch densities is presented in Fig. 4.10. A violin plot with the parameter dis-
tributions is shown in Fig. 4.11. It can be seen that true parameters are well within the
95% central interval of the posterior distribution for both models.

Fig. 4.11 shows that some of the parameters, such as the alignment of the bunch,
can be reconstructed with great accuracy, with uncertainties smaller than 3% of pixel
sizes. Another group of parameters, such as the transverse size and angular divergence,
is characterized by uncertainties of a few percent. The nuisance parameters that describe
the resolution function of the scintillating screen have the largest uncertainty. The camera
with the scintillating screen is located at the largest distance from the waist position,
and the bunch size is determined primarily by the angular divergence of the beam. The
resolution is not a critical parameter, and it is not correlated significantly with the proton
bunch parameters.
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Figure 4.10: A comparison of the simulated data and the best-fit result is shown for the
single (top) and double (bottom) Gaussian models. The blue step-lines show
an integrated signal over rows/columns of the camera. The grey-filled regions
show the 95% central probability intervals of the model including background
and signal. The signal from the proton bunch is shown as points. The grey
band for Camera 4 overlaps with the data and is not visible.

We have tested the sensitivity of the analysis to the truncation of the data. Pixels
that exceed the threshold values determined from the experimental data were discarded
from the analysis, and the change in the resulting posterior means is well within the
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Figure 4.11: The figure illustrates the posterior distribution obtained from the simulated
event analysis for the single (top) and double (bottom) Gaussian models.
Each parameter is divided by truth to standardize the scale of the error bars.
Blue horizontal ticks show 95% central probability intervals and means.

uncertainties of the parameter values.
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4.4 Parameters

4.4.1 Model Parameters

The parameters that describe the proton bunch distribution are

⁄SG =
)
‡, ‡Õ

, zw

*
,

⁄DG =
)
‡c, ‡h, ‡Õ

c, ‡Õ
h, zw,c, zw,h, –

*
,

(4.18)

where the two vectors correspond to the single and double Gaussian models, respectively.
In addition, the nuisance parameters are

‹ = {µj , �xj , �yj , ‡̃j , ij , fj , p4} , (4.19)

where j = 1 .. 4 denotes the camera index, and the bold font is used for the parameters
that have the x and y components. A summary of all the parameters is given in Table 4.5
and Table 4.6 for the single and double Gaussian models, respectively.

The prior probability distributions for the proton bunch parameters are selected based
on the AWAKE design report. The priors of the transverse size of the core and halo com-
ponents of the bunch at the waist position (denoted as ‡c,x, ‡c,y, ‡h,x, ‡h,y) are described
by Gaussian probability distributions with means of 0.2 mm and standard deviations of
0.04 mm.

The priors of the angular divergences of the bunch (denoted as ‡
Õ
c,x, ‡

Õ
c,y, ‡

Õ
h,x

, ‡
Õ
h,y

) are
described by Gaussian probability distributions with means of 4 ◊ 10≠5 rad and standard
deviations of 2 ◊ 10≠5 rad. Initially, very broad prior ranges were considered for the
proton bunch parameters. After learning about the typical locations of the posteriors,
the prior ranges were restricted to reduce computational time. We truncate the angular
divergence of the core component, denoted as ‡

Õ
c,x, ‡

Õ
c,y, to the range [1◊10≠5

, 8◊10≠5] rad;
and the halo component, denoted as ‡

Õ
h,x

, ‡
Õ
h,y

, to the range [1 ◊ 10≠5
, 4 ◊ 10≠5] rad to

clearly identify the halo and core components. The prior probability distributions for the
waist positions of the core and halo components, denoted as zw,c, zw,h, are described by
a Gaussian distribution with means of 2.774 m and standard deviations of 0.03 m. The
coe�cient that defines the intensity ratio for the halo and core component is denoted as
– and is described by a uniform prior.

Parameters that represent the bunch centroid at the camera j along the x and y direc-
tions are denoted as µx,j , µy,j , and they are given by uniform prior probability distributions
in the ranges specified in Table 4.5 and Table 4.6. The pixel sizes along the x and y di-
rections are denoted as �xj and �yj , and they are represented by the Dirac delta prior
distributions (further denoted as ‘constant prior’). The resolution parameters along the
x and y directions, denoted as ‡̃j,x, ‡̃j,y, are assumed to be constant for the cameras that
have OTR screens. The prior for the camera with the scintillating screen was modeled
with a mean of 3 pixels and a standard deviation of 1.5 pixels. The conversion of the
proton bunch distribution into the pixel signal is performed by defining proportionality
coe�cients ij , that are described by uniform priors. The standard deviations of the Gaus-
sian fluctuations of the light are defined by fj (see section 4.3.3). This parameter has a
constant prior for those cameras where the numerical convolutions of the background and
signal are computed. For the last camera, the signal fluctuation (f4) and the mean of the
background (p4) are kept as free variables with uniform priors.
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4.4.2 Sampling Parameters
To approximate the posterior probability distribution given by Eq. 4.6, a Metropolis-
Hastings sampler implemented in BAT.jl is used. The sampling process consists of initial-
ization, tuning, and convergence steps, and they require tuning parameters that are listed
below:

• To find optimal initial positions for MCMC chains, the MCMC pool initialization
strategy is used with the following settings:

⌥ ⌅
init = MCMCChainPoolInit(init_tries_per_chain = 50 .. 150, nsteps_init = 1500)⌃ ⇧

• To adjust proposal probability distribution for optimal acceptance probability, we
use the following tuning parameters:

⌥ ⌅
tuning = AdaptiveMHTuning(

⁄ = 0.5, – = ClosedInterval(0.15,0.25),
— = 1.5, c = ClosedInterval(1e-4,1e2), r = 0.5,)⌃ ⇧

• The Brooks-Gelman criteria with the following parameters is used to test convergence
of multiple MCMC chains:

⌥ ⌅
convergence = BrooksGelmanConvergence(threshold = 1.15, corrected = false)⌃ ⇧

• During the burning cycle, a proposal distribution is tuned, and chains are tested for
convergence. The following tuning settings are considered:

⌥ ⌅
burnin = MCMCMultiCycleBurnin(max_ncycles = 160, nsteps_per_cycle = 40000)⌃ ⇧

Approximately 60 tuning cycles are needed to tune and converge 4 MCMC chains. The
sampling of 1 event with 106 samples requires approximately 40 minutes of run-time on a
system with a 2.3 GHz Intel Xeon 6140 processor with 12 hyperthreaded CPUs.
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4.5 Sampling Results

We analyzed each event summarized in Table 4.2 independently, using single and double
Gaussian bunch models. A comparison of the data from one event (with a small bunch
population and the bunch rotation OFF) to the best-fit predictions from the two models
is shown in Fig. 4.12. It can be seen that the double Gaussian model fits the data more
closely than the single Gaussian model. The prediction from the single Gaussian model
shows a visible discrepancy with the data in the first, third, and fourth cameras. It is
especially evident for the events with a small bunch population. A much better data-model
agreement is reached for the double Gaussian model, showing that the data fluctuations
are covered reliably by the 95% central interval of the posterior probability distribution.
A small disagreement of the distribution for Cam. 4 (see the bottom subplot in Fig. 4.12)
resulted from the fact that some of the pixels were discarded from the analysis due to their
saturated signals.

In the following, we discuss the results obtained by using the single and double Gaussian
proton bunch models.

4.5.1 Analysis of Experimental Data: Single Gaussian Model

Even though this model does not accurately represent the data, we will present the re-
sulting parameters because they provide a simple approximation to the double Gaussian
model, i.e., representing average parameters of the halo and core components.

The transverse sizes of the proton bunches at the waist position are illustrated in
Fig. 4.13 (upper left). It can be seen that the bunch size is smaller than the prior expecta-
tions for all range of bunch populations, and the bunch size increases with the increasing
bunch population. The bunch profile is slightly elliptical, with a larger vertical component.
The angular spread for individual events is shown in Fig. 4.13 (upper right). It increases
with the increasing bunch population, and it is relatively close to the value of the prior
mode. The bunch emittance can be computed using the transverse size of the bunch and
angular spread as

‘ = 426.0 · 103 · ‡[mm] · ‡
Õ[10≠5 rad], (4.20)

and it is shown in Fig. 4.13 (lower center). It can be seen that the emittance increases
with the increasing bunch population. Events with the large population are close to the
mode of the prior distribution. A detailed description of the average parameters for a
small and large bunch populations is given in Table 4.5.

4.5.2 Analysis of Experimental Data: Double Gaussian Model

The transverse sizes of the halo and core components of the bunch at the waist position
are shown in Fig. 4.13 (upper left). The size of the core is larger than the size of the halo
for all events, and both components are significantly smaller than the mode of the prior
distribution. There is a correlation of the bunch size with the increasing bunch population.
The transverse bunch profile is elliptical.

The angular divergences for di�erent events are shown in Fig. 4.13 (upper right). Events
with a larger bunch population have a smaller angular divergence of the halo component.

The waist positions of the halo and core components are shown in Fig. 4.13 (lower
right). The figure shows that the core component of the bunch is focused much closer
to the expected waist position compared to the halo component, which is focused further
downstream.
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Figure 4.12: A comparison of the experimental data and the best-fit result for the single
(top) and double (bottom) Gaussian models. The blue step-lines show data
from one event integrated over rows/columns. The model prediction is plotted
for the mean value of the posterior. The grey-filled regions show the 95%
central probability intervals of the model including background and signal.
The grey band for Camera 4 overlaps with the data and is not visible.
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Figure 4.13: The transverse size of the proton bunch at the waist position (upper left),
the angular divergence of the bunch (upper right), and the bunch emittance
(lower center) are shown for events with di�erent bunch populations using a
single Gaussian model. Each event is represented by a symbol, and darker
symbols correspond to a larger bunch population. The color scale is non-
linear.
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Parameter Symbol Unit Prior Posterior 1 Posterior 2
Proton Bunch
Transverse size x ‡x mm N (0.20, 0.04) 0.089 ± 0.004 0.11 ± 0.006
Transverse size y ‡y mm N (0.20, 0.04) 0.11 ± 0.004 0.14 ± 0.006
Angular spread x ‡Õ

x 10≠5 rad N (4.0, 2.0) 4.42 ± 0.24 4.73 ± 0.17
Angular spread y ‡Õ

y 10≠5 rad N (4.0, 2.0) 4.14 ± 0.24 4.43 ± 0.17
Waist position zw m N (2.774, 0.03) 2.98 ± 0.046 3.2 ± 0.055
Nuisance
Alignment on Cam. 1, x µ1,x px [23.0, 48.0] 35.2 ± 1.79 35.6 ± 2.06
Alignment on Cam. 2, x µ2,x px [23.0, 48.0] 36.2 ± 2.06 36.7 ± 2.38
Alignment on Cam. 3, x µ3,x px [10.0, 30.0] 21.4 ± 0.362 21.5 ± 0.373
Alignment on Cam. 4, x µ4,x px [23.0, 48.0] 35.7 ± 0.508 35.3 ± 0.45
Alignment on Cam. 1, y µ1,y px [23.0, 48.0] 35.4 ± 0.484 35.3 ± 1.32
Alignment on Cam. 2, y µ2,y px [23.0, 48.0] 36.0 ± 0.483 36.0 ± 1.22
Alignment on Cam. 3, y µ3,y px [10.0, 30.0] 20.6 ± 0.275 20.7 ± 0.356
Alignment on Cam. 4, y µ4,y px [23.0, 48.0] 34.6 ± 0.201 34.7 ± 0.575
Pixel size on Cam. 1, x �x1 µm 27.1 - -
Pixel size on Cam. 2, x �x2 µm 21.6 - -
Pixel size on Cam. 3, x �x3 µm 114.0 - -
Pixel size on Cam. 4, x �x4 µm 121.8 - -
Pixel size on Cam. 1, y �y1 µm 30.5 - -
Pixel size on Cam. 2, y �y2 µm 23.4 - -
Pixel size on Cam. 3, y �y3 µm 125.0 - -
Pixel size on Cam. 4, y �y4 µm 120.0 - -
Resolution e�ect on Cam. 1, x ‡̃1,x px 1.0 - -
Resolution e�ect on Cam. 2, x ‡̃2,x px 1.0 - -
Resolution e�ect on Cam. 3, x ‡̃3,x px 1.0 - -
Resolution e�ect on Cam. 4, x ‡̃4,x px N (3.0, 1.5) 4.09 ± 0.635 5.19 ± 0.333
Resolution e�ect on Cam. 1, y ‡̃1,y px 1.0 - -
Resolution e�ect on Cam. 2, y ‡̃2,y px 1.0 - -
Resolution e�ect on Cam. 3, y ‡̃3,y px 1.0 - -
Resolution e�ect on Cam. 4, y ‡̃4,y px N (3.0, 1.5) 3.37 ± 0.787 4.9 ± 0.358
Signal amplitude on Cam 1 i1 counts [1.0, 13.0] 2.79 ± 0.171 8.01 ± 0.391
Signal amplitude on Cam 2 i2 counts [1.0, 17.0] 3.89 ± 0.238 11.1 ± 0.4
Signal amplitude on Cam 3 i3 counts [1.0, 5.0] 2.01 ± 0.142 2.51 ± 0.131
Signal amplitude on Cam 4 i4 counts [1.0, 13.0] 2.55 ± 0.159 8.16 ± 0.324
Signal fluctuations on Cam 1 f1 one 2.0 - -
Signal fluctuations on Cam 2 f2 one 2.0 - -
Signal fluctuations on Cam 3 f3 one 2.0 - -
Signal fluctuations on Cam 4 f4 one [1.0, 3.0] 1.75 ± 0.197 2.33 ± 0.276
Pedestal on Cam 4 p4 counts [4.0, 40.0] 22.2 ± 1.06 32.9 ± 2.41
Calculated
Emittance x ‘x mm mrad - 1.7 ± 0.12 2.1 ± 0.16
Emittance y ‘y mm mrad - 2.0 ± 0.14 2.6 ± 0.17
Bunch population q 1010p+ - 9.1 ± 0.6 25.9 ± 0.9

Table 4.5: The table summarizes the parameters used in the analysis of the proton bunch
with the single Gaussian model. Parameters are separated into the proton
bunch (⁄), nuisance (‹), and calculated categories. The fourth column de-
scribes prior probability distributions. If the distribution is uniform on a cer-
tain region or truncated, the corresponding region is specified in rectangular
parentheses; a single number denotes the argument of the Dirac delta distribu-
tion, N (µ, ‡) stands for a Gaussian distribution with a mean µ and a standard
deviation ‡. The fifth and sixth columns show the mean and standard deviation
of the parameters averaged over the datasets with small (1) and large (2) bunch
populations.
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Figure 4.14: The transverse size of the proton bunch at the waist position (upper left), the
angular divergence of the bunch (upper right), the bunch emittance (lower
left), and the waist positions (lower right) are shown for events with di�erent
bunch populations using the double Gaussian model. Blue colors represent
the core component, red colors represent the halo component, and green color
denotes the bunch population. Darker colors represent a larger bunch popu-
lation; the color scale is non-linear. .
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Figure 4.15: Parameter – that defines the significance of the halo component is shown
versus the bunch population. A more significant halo component is observed
in the bunches with a larger bunch population.

The posterior distributions of the halo and core emittances are summarized in Fig. 4.13
(lower left). It can be seen that the bunch emittance increases with the increasing bunch
population for both components. The x component of the halo emittance is more strongly
correlated with the bunch population than the y component.

The coe�cient that shows the intensity of halo and core components is shown in
Fig. 4.15. There is a correlation of – with the proton bunch population that shows that
the halo component is more significant for the events with a larger bunch population.

A detailed description of the posterior parameters for small and large bunch populations
is given in Table 4.6.
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Parameter Symbol Unit Prior Posterior 1 Posterior 2
Proton Bunch
Transverse size x, core ‡c,x mm N (0.2, 0.04) 0.099 ± 0.0031 0.13 ± 0.0065
Transverse size y, core ‡c,y mm N (0.2, 0.04) 0.11 ± 0.0041 0.14 ± 0.012
Transverse size x, halo ‡h,x mm N (0.2, 0.04) 0.056 ± 0.012 0.086 ± 0.011
Transverse size y, halo ‡h,y mm N (0.2, 0.04) 0.11 ± 0.0079 0.13 ± 0.0069
Angular spread x, core ‡Õ

c,x 10≠5 rad N (4.0, 2.0) 2.28 ± 0.14 2.41 ± 0.18
Angular spread y, core ‡Õ

c,y 10≠5 rad N (4.0, 2.0) 2.19 ± 0.11 2.25 ± 0.15
Angular spread x, halo ‡Õ

h,x 10≠5 rad N (4.0, 2.0) 6.5 ± 0.31 5.99 ± 0.26
Angular spread y, halo ‡Õ

h,x 10≠5 rad N (4.0, 2.0) 5.95 ± 0.27 5.6 ± 0.22
Waist position, core zw,c m N (2.774, 0.03) 2.73 ± 0.011 2.74 ± 0.013
Waist position, halo zw,h m N (2.774, 0.03) 3.01 ± 0.082 3.14 ± 0.081
Intensity ratio – one [0.25, 1.0] 0.54 ± 0.041 0.69 ± 0.05
Nuisance
Alignment on Cam. 1, x µ1,x px [23.0, 48.0] 35.2 ± 1.79 35.6 ± 2.06
Alignment on Cam. 2, x µ2,x px [23.0, 48.0] 36.2 ± 2.06 36.7 ± 2.38
Alignment on Cam. 3, x µ3,x px [10.0, 30.0] 21.4 ± 0.362 21.5 ± 0.373
Alignment on Cam. 4, x µ4,x px [23.0, 48.0] 35.7 ± 0.508 35.3 ± 0.45
Alignment on Cam. 1, y µ1,y px [23.0, 48.0] 35.4 ± 0.484 35.3 ± 1.32
Alignment on Cam. 2, y µ2,y px [23.0, 48.0] 36.0 ± 0.483 36.0 ± 1.22
Alignment on Cam. 3, y µ3,y px [10.0, 30.0] 20.6 ± 0.275 20.7 ± 0.356
Alignment on Cam. 4, y µ4,y px [23.0, 48.0] 34.6 ± 0.201 34.7 ± 0.575
Pixel size on Cam. 1, x �x1 µm 27.1 - -
Pixel size on Cam. 2, x �x2 µm 21.6 - -
Pixel size on Cam. 3, x �x3 µm 114.0 - -
Pixel size on Cam. 4, x �x4 µm 121.8 - -
Pixel size on Cam. 1, y �y1 µm 30.5 - -
Pixel size on Cam. 2, y �y2 µm 23.4 - -
Pixel size on Cam. 3, y �y3 µm 125.0 - -
Pixel size on Cam. 4, y �y4 µm 120.0 - -
Resolution e�ect on Cam. 1, x ‡̃1,x px 1.0 - -
Resolution e�ect on Cam. 2, x ‡̃2,x px 1.0 - -
Resolution e�ect on Cam. 3, x ‡̃3,x px 1.0 - -
Resolution e�ect on Cam. 4, x ‡̃4,x px N (3.0, 1.5) 4.6 ± 0.15 4.7 ± 0.19
Resolution e�ect on Cam. 1, y ‡̃1,y px 1.0 - -
Resolution e�ect on Cam. 2, y ‡̃2,y px 1.0 - -
Resolution e�ect on Cam. 3, y ‡̃3,y px 1.0 - -
Resolution e�ect on Cam. 4, y ‡̃4,y px N (3.0, 1.5) 4.1 ± 0.13 4.5 ± 0.2
Signal amplitude on Cam 1 i1 counts [1.0, 13.0] 3.0 ± 0.185 8.31 ± 0.329
Signal amplitude on Cam 2 i2 counts [1.0, 17.0] 3.9 ± 0.241 11.1 ± 0.381
Signal amplitude on Cam 3 i3 counts [1.0, 5.0] 2.51 ± 0.168 2.67 ± 0.117
Signal amplitude on Cam 4 i4 counts [1.0, 13.0] 2.8 ± 0.17 8.59 ± 0.303
Signal fluctuations on Cam 1 f1 one 2.0 - -
Signal fluctuations on Cam 2 f2 one 2.0 - -
Signal fluctuations on Cam 3 f3 one 2.0 - -
Signal fluctuations on Cam 4 f4 one [1.0, 3.0] 1.62 ± 0.22 1.78 ± 0.414
Pedestal on Cam 4 p4 counts [4.0, 40.0] 18.4 ± 1.04 27.7 ± 2.97
Calculated
Emittance x, core ‘c,x mm mrad - 0.96 ± 0.07 1.3 ± 0.13
Emittance y, core ‘c,y mm mrad - 1.02 ± 0.074 1.4 ± 0.16
Emittance x, halo ‘h,x mm mrad - 1.5 ± 0.3 2.2 ± 0.27
Emittance y, halo ‘h,y mm mrad - 2.7 ± 0.18 3.1 ± 0.17
Bunch population q 1010p+ - 9.1 ± 0.6 25.9 ± 0.9

Table 4.6: The table summarizes the parameters used in the analysis of the proton bunch
with the double Gaussian model. Parameters are separated into the proton
bunch (⁄), nuisance (‹), and calculated categories. The fourth column de-
scribes prior probability distributions. If the distribution is uniform on a cer-
tain region or truncated, the corresponding region is specified in rectangular
parentheses; a single number denotes the argument of the Dirac delta distribu-
tion, N (µ, ‡) stands for a Gaussian distribution with a mean µ and a standard
deviation ‡. The fifth and sixth columns show the mean and standard deviation
of the parameters averaged over the datasets with small (1) and large (2) bunch
populations.
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4.5.3 Stability Analysis

Data Truncation

To estimate how the truncation of saturated pixels a�ects posterior distributions of the
bunch parameters, we applied the analysis to one simulated and one experimental event
with and without data truncation. The result of the simulated event analysis is shown
in Fig. 4.16 (top), and it indicates that the mean of the posterior has changed with an
absolute value of less than 2%. The result of the experimental event analysis is shown in
Fig. 4.16 (bottom). It can be seen that the data truncation does not impact significantly
on the posterior bunch parameters.
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Figure 4.16: The figure illustrates the posterior distribution with and without truncation
of saturated pixels for the simulated event (top), and experimental event
(bottom). Each parameter is divided by truth to standardize the scale of
the error bars. Horizontal ticks represent 5%, 50%, 95% quantiles of the
probability distributions. The reference in the bottom subplot represents the
mean of the distribution.
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Figure 4.17: Posterior distributions of the transverse bunch size using di�erent priors on
experiment-specific parameters. S1 denotes a setting where pixel sizes and
resolution functions are constant. S2 denotes a setting where pixel sizes are
free parameters and resolution functions are constant. S3 denotes a setting
where pixel sizes and resolution functions are free parameters. The single
Gaussian model (M1) is shown in dotted lines, and the double Gaussian model
(M2) is shown in solid lines. Evidence values for each setting are presented
in the right subplot.

Stability and Postprocessing

To determine whether the bunch profile has a rotation in the transverse plane, the model
was extended with an additional rotation parameter „, that acts on the coordinates x, y

as C
x

Õ

y
Õ

D

=
C
cos(„) ≠sin(„)
sin(„) cos(„)

D

·
C
x

y

D

, (4.21)

where x
Õ and y

Õ show a position in the rotated coordinate system. We analyzed a few
randomly selected events to determine posterior distributions of „. The results indicate
that the rotation parameter has absolute values close to zero and does not significantly
impact posterior distributions of other parameters of the model.

Nuisance Parameters

To determine the impact of the experiment-specific parameters on the posterior distri-
butions of the proton bunch parameters, we analyzed one event without constraining
pixel size and resolution function to the constant values. The following configurations of
parameters are considered: (S1) Pixel sizes and resolution functions are constant; (S2)
Resolution functions are free parameters, and pixel sizes are constant; (S3) Resolution
and pixel sizes are free parameters. These settings are used with both single and double
Gaussian models. The prior probability distributions for the pixel sizes and resolution
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Figure 4.18: Posterior distributions of the resolution parameters for Cam. 4. Each event
is represented by one symbol that indicates the posterior mean and standard
deviation. Darker colors correspond to a larger bunch population. The color
scale is non-linear.

functions are constructed using Table 4.3 and Table 4.4. The resulting posterior distri-
butions for the transverse bunch size for one event are shown in Fig. 4.17. As the figure
shows, the size of the halo and core components decreases with the increasing number of
free parameters for the double Gaussian model; and it increases for the single Gaussian
model. At the maximal number of free parameters, the size of the bunch predicted by the
single Gaussian model is equal to the size of the core component of the double Gaussian
model. The uncertainty of transverse bunch size increases with an increasing number of
free parameters.

To determine which model best fits our data, we estimate Bayesian evidence using the
AHMI integration algorithm. The single and double Gaussian models are nested; therefore,
absolute values of evidence integrals can be compared. As can be seen from Fig. 4.17, the
double Gaussian model has much larger evidence compared to the single Gaussian model.
The inclusion of free resolution slightly increases the evidence, but it saturates when the
pixel sizes are unconstrained.

The prior and posterior distributions of the resolution parameters are presented in
Fig. 4.18. The average resolution e�ect is ≥ 568 µm and ≥ 518 µm in the x and y projection,
respectively. These values are larger than prior expectations, and the systematic study of
the optical and scintillating resolutions is a subject for future study.

Correlations Between Posterior Parameters

Given a multidimensional dataset, correlation matrices can be used to visualize relations
between model parameters, i.e., which parameter influence each other and how strongly. A
correlation matrix constructed from the samples of one randomly selected event is shown
in Fig. 4.19 (top). It indicates that the sizes of the halo and core components of the bunch
are inversely proportional; the waist position of the core component is weakly a�ected by
other parameters compared to the waist position of the halo component, which is strongly
a�ected by the halo size and angular divergence.
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Figure 4.19: Top: A correlation matrix of posterior parameters from one randomly selected
event using the double Gaussian model. Bottom: A correlation matrix of the
mean posterior parameters constructed from multiple events with a large
bunch population using the double Gaussian model.
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Figure 4.20: The figure illustrates the positions of the bunch centroids at each screen. An
example of trajectory prediction for one event (marked by the red point) is
shown in dashed contours. Blue shaded regions show the sizes of the pixels.

A correlation matrix constructed from the mean parameters of the dataset with a large
bunch population is shown in Fig. 4.19 (bottom). It demonstrates that the sizes of the
halo and core components of the bunch are directly proportional to the bunch population.
It also shows that bunches with larger charge are typically focused further downstream
for the core component and further upstream for the halo component.

E�ect of the Longitudinal Bunch Rotation on Bunch Parameters

As discussed in Sec. 4.1, the dataset {D} has been measured with 4 experimental settings,
i.e., small and large bunch populations and bunch rotation ON and OFF.

It is easy to notice di�erences in parameters between events with large and small bunch
populations by looking at posterior distributions. Namely, events from these two categories
are characterized by di�erent transverse sizes, angular divergences, and emittances, and
they can be trivially distinguished by eye, as shown, for example, in Fig. 4.14. However,
it is not possible to see if there are some trends in parameters if the longitudinal bunch
shortening is applied simply by looking at 2-dimensional posterior distributions.
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Figure 4.21: Positions of the bunch centroids at the waist. The left plot shows the drift of
the bunch centroid with the time of the measurement. The right plot shows
the same data with subtracted time drift.

Multivariate analysis can be more e�ective for such a problem by looking at samples in
many-dimensional spaces instead of two-dimensional. A binary classifier that consists of
2 dense layers was trained to distinguish events with bunch rotation ON and OFF. If the
bunch rotation has no impact on the samples, then the classification accuracy should equal
a random guess, i.e., 50% (see also Section 2.2.3). Otherwise, the classification accuracy
should be more than 50%.

The classification test indicated that the ROC curve is close to the diagonal line for
training and testing datasets. This tells that neither single nor double Gaussian models
allow detecting di�erences in the bunch profile when the longitudinal bunch shortening
is applied. To include information about the longitudinal structure of the bunch, a more
detailed model should be constructed, e.g., utilizing information from the streak cameras.

4.5.4 Bunch Drift
In the analysis, we use nuisance parameters to determine the coordinates of the bunch at
each screen. These coordinates can be combined to determine the relative alignments of
the screens together with polar and azimuthal angles of the individual bunch centroids.
We use Hamiltonian Monte Carlo to fit individual bunch centroids and approximate 1350-
dimensional posterior distribution. An example of the resulting trajectory for one event
is shown in Fig. 4.20. As the figure shows, the model predicts the position of the bunch
centroid accurately, with uncertainty smaller than the pixel size.

By propagating individual bunch centroids to the waist position, the drift and jitter of
the bunch can be computed. Fig. 4.21 shows that the bunch center drifts as a function
of event number, which is proportional to the time at which measurement occurred. The
standard deviation at the waist is ‡(µx) ¥ 43 µm, ‡(µy) ¥ 20 µm. Once the time-drift of
the bunch is subtracted, the resulting jitters are ‡(µx) ¥ 41 µm and ‡(µy) ¥ 8 µm.
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4.6 Self-Modulation of the Proton Bunch in Plasma
As shown above, the measurement of proton bunch parameters indicates that the bunch
has a non-Gaussian radial distribution and considerably smaller radial size at the waist
compared to the AWAKE baseline model. In this section, by using numerical plasma
modeling we show how the bunches described by the measured parameters self-modulate
when they propagate in the plasma. We also demonstrate the di�erence between the
wakefields created by the protons with the baseline and measured parameters.

The modeling is performed by John Farmer (the results are presented in [173, 174])
using the QV3D code [175] that is built on the VLPL platform [176].

4.6.1 Description of the QV3D Code

The QV3D code is a three-dimensional quasi-static Particle-in-Cell (PIC) code that allows
modeling non-linear processes in plasmas. The PIC codes rely on the kinetic model of
plasma, which treats plasma as an ensemble of charged particles. These particles deposit
charge or current, which can be used to calculate the fields, which are then used to update
the particles. In the PIC codes, however, particles are not physical, and they represent
clusters of real particles with the same charge-to-mass ratio. Using macro-particles instead
of the real ones allows a drastic decrease in the number of degrees of freedom, thus speedup
performance and applicability of the code to large-scale problems. Over the past decade,
plasma modeling that uses PIC codes has proven to be very reliable and successful in
many applications including AWAKE [177, 178, 179, 180].

The quasi-static condition imposed in the QV3D code allows separating slow and fast
processes in plasma to accelerate simulations [181]. For example, the smallest scale of
the plasma-based accelerators typically corresponds to the laser wavelength (order of mi-
crometers) or the plasma wavelength (tens of micrometers to millimeters). The driver
bunches can be of a medium scale, e.g., 6 ≠ 12 cm. Finally, the largest scale is typically
the length of the accelerating regions, and it can be from a few centimeters to kilome-
ters [182]. The quasi-static approximation assumes that the driver changes slowly over
distances compared to its length. Therefore the driver can be advanced with the larger
time steps compared to the plasma particles. This approximation allows simulating the
evolution of drivers in plasma over longer distances compared to the plasma wavelength,
extending the applicability of codes to real-world problems. The limitation of this ap-
proach is that it cannot describe fast in time radiation processes, limiting applications
only to static electromagnetic fields.

Codes that use two-dimensional plasma models are much faster than three-dimensional,
and they give the same accuracy as three-dimensional for axisymmetrical problems. These
codes, however, do not allow to simulate o�-axis witness bunch injection (as used in part
of the AWAKE Run 1), drivers with non-round shape, and other non-axisymmetrical
problems. As discussed earlier, measurements show that the transverse shape of the proton
bunch is elliptical. To test how these bunches self-modulate in plasma, a three-dimensional
code should be used.

4.6.2 Plasma Modeling Results

Plasma simulations are performed for three proton bunch models: (1) Single Gaussian
with measured parameters, (2) double Gaussian with measured parameters, and (3) single
Gaussian with baseline parameters (further referred to as ‘baseline model’). To select
optimal input parameters for the first two models, we average the parameters over events
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Figure 4.22: The figure illustrates the proton bunch self-modulation at the plasma exit
for the single Gaussian bunch model. The upper and bottom subplots show
longitudinal and radial plasma electric fields (in the Cartesian coordinate
system). Black dots show the radial positions of protons.

with a large bunch population. All models assume that the bunch is Gaussian in the
longitudinal direction with ‡z = 325 ps (≥ 9.74 cm). The relativistic ionization front is
simulated by a sharp cut at the midpoint of the bunch, so only half of the bunch travels in
the plasma. The window length is 100/kp (≥ 3.73 cm), and it represents only a section of
the bunch. The density of the plasma is 2.03 cm≠3. The cell size is (0.1◊0.025◊0.025)/kp,
with a plasma timestep of 0.025/Êp and a beam timestep of 500/Êp. The window size is
(100 ◊ 12.8 ◊ 12.8)/kp, and the plasma has a radius 5.36/kp (≥ 2 mm). There are on
average 400 beam particles per cell on the axis at the focus for the single Gaussian bunch
model.

An example of self-modulation of the proton bunch in plasma is shown in Fig. 4.22. It
can be seen that an initially long proton bunch is divided into a group of micro bunches
located on-axis in the focusing phases of the wakefields. Particles that appeared in the
defocusing phases of the field are repulsed from the center of the bunch, forming a defo-
cused halo. It can be seen that the amplitude of the longitudinal field is stronger than
the amplitude of the transverse field, and that the strength of the field increases from the
head of the bunch to its tail.
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Figure 4.23: The density di�erence between the halo and core components of the modu-
lated bunch represented by the double Gaussian model. Dashed lines illus-
trate the contours of the core component.

Halo and core components of the double Gaussian model are treated in the plasma
modeling as particles of two di�erent species, and the self-modulation of both of them can
be visualized separately. Histograms of the radial coordinates of the self-modulated halo
and core components are compared in Fig. 4.23. The core component of the unmodulated
bunch has a smaller angular spread, and the analysis predicts that it is focused more
strongly at the plasma exit than the halo component. As follows from Fig. 4.23, core
microbunches have a more dense structure compared to the halo microbunches. It can
be also seen that the core component has a smaller defocusing region at the head of the
bunch and larger at the tail of the bunch compared to the halo component.

A comparison of self-modulated protons for di�erent bunch models is shown in Fig. 4.24.
The upper subplot shows that the single Gaussian model has a noticeably larger radial
defocusing of protons in the bunch tail compared to the baseline model. It also shows
that the first few microbunches of the single Gaussian model are more focused compared
to the baseline. To visualize contribution from the radially focused protons and phasing
of the bunch, the e�ective current can be computed

Ieff (’) = 4fi

⁄ Œ

0
fl(r, ’)K0(kpr)rdr. (4.22)

As Fig. 4.25 shows, the amplitude of the e�ective current for the baseline model is smaller
at the head of the bunch and larger at the tail of the bunch. As Fig. 4.24 and Fig. 4.25
show, the main di�erence in the self-modulation of the protons described by the single and
double Gaussian models is in the first few microbunches. Namely, the double Gaussian
model predicts a more tightly focused first two microbunches and slightly more defocused
halo compared to the single Gaussian model.

A comparison of the maximum longitudinal electric fields versus a propagation distance
in the plasma for di�erent bunch models is shown in Fig. 4.26. It can be seen that
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Figure 4.26: The longitudinal electric field versus the propagation distance for di�erent
bunch models.

the maximum field is 7% larger for the bunches with measured parameters compared to
the bunches with baseline parameters. Also, the maximum longitudinal electric field for
bunches with measured parameters is reached 1 m upstream compared to the baseline
parameters. The saturated amplitude at the end of the plasma section is, however, the
same for the three models. As shown by Eq. 3.15, a smaller radial bunch size should
generate wakefields with larger amplitudes, and this agrees well with the results of plasma
modeling.
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4.7 Conclusions
We have developed and applied an approach to analyzing the parameters of the proton
bunch in the AWAKE experiment. In this approach, the data from multiple beam imaging
systems that capture integrated radial bunch profiles were used to determine optimal
parameters of the model that describe proton bunch propagation along the beamline. The
fitting procedure was performed using a Bayesian approach, and the MCMC sampling was
used to extract the posterior distributions.

Two models that describe the radial bunch density were considered. In the first model,
the transverse bunch profile was represented as a Gaussian function, in the second model
— as a mixture of two Gaussians denoted as halo and core. By definition, the halo
component has a larger emittance compared to the core. These models have been tested
using simulated events, and the results show that reconstruction of true parameters is
possible with typical uncertainties of a few percent.

We have acquired a dataset with 671 proton bunch extractions, each characterized
by varying proton bunch parameters, and applied the developed analysis scheme to this
experimental data. It has been demonstrated that the double Gaussian model gives much
better agreement with the experimental data compared to the single Gaussian model. The
resulting posterior parameters for the double Gaussian model indicate the following:

– The transverse size of the proton bunch at the waist position is smaller than the
baseline parameters for all bunch populations.

– Sizes of the halo and core components increase with the increasing bunch population.

– The transverse bunch profile is elliptical (the horizontal size is smaller than the
vertical by ¥ 8% and ¥ 40% for the core and halo components, respectively).

– The contribution of the halo component increases with the bunch population.

– The bunch emittance is smaller than the nominal parameters.

A systematic drift of the bunch centroid was observed of approximately 50 µm during 6
hours of measurements. The jitter of the bunch at the waist position after drift correction
is ‡(µx) ¥ 41 µm and ‡(µy) ¥ 8 µm.

Plasma modeling has indicated that the bunches with measured parameters produce
a 7% larger longitudinal wakefield amplitude than those with baseline parameters. The
maximum wakefield is reached 1 m upstream for measured parameters compared to the
baseline. During the self-modulation, the bunches with measured parameters show more
significant focusing in the head of the bunch and more significant defocusing in the tail of
the bunch compared to the baseline parameters.
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Afterword

Although conclusions of individual projects are provided in Section 2.1.5, Section 2.2.4,
and Section 4.7, there are a few general points that I would like to address as an afterword
to this thesis.

The analysis of the proton bunch parameters presented in Chapter 4 was recently suc-
cessfully used in the AWAKE control room during the early phase of the second data-taking
period. Now, this analysis is a part of the standard procedures performed before each run,
and it allows monitoring of the stability of proton bunch parameters over long operat-
ing times. To make the analysis faster and more suitable for quick monitoring during
the experiment run-time, two-dimensional projections of the data were considered and
the MCMC sampler was replaced by an optimizer that finds the posterior mode without
sampling the full space. The detailed MCMC analysis, however, remains as an o�ine di-
agnostic that can provide precise parameter estimations with corresponding uncertainties
when the run-time of the analysis is not strictly limited. I believe that this development
can contribute to AWAKE successes in a long-term perspective.

The development of the algorithm for sampling with space partitioning presented in
Section 2.2 was motivated by the need to have an approach to parallelize MCMC tech-
niques e�ciently and improve sampling accuracy of complex multimodal (but not only)
densities. The first attempts of the analysis of the proton bunch parameters in AWAKE
indicated that resulting posterior distributions are multimodal, so the sampling with space
partitioning was intended to be applied to this problem. However, a detailed preprocess-
ing of the experimental data noticeably simplified the analysis, making posteriors easy to
sample with the standard Metropolis-Hastings algorithm. As a result, sampling with space
partitioning was not used in the AWAKE analysis, and it was rather parallel development
as a part of the BAT.jl package. The current implementation of this algorithm is very
generic: It allows utilizing arbitrary samplers implemented in BAT.jl (e.g., Metropolis-
Hastings, HMC, NS) together with arbitrary integrators (e.g., AHMI, CUBA, and soon
the Bridge Sampler). In addition, the algorithm is implemented using functionalities of
distributed computing. It can utilize high-performance computing resources by default,
without a requirement to write additional, parallelizable code. I believe that this tool can
be of help to those who need to solve problems with complex, multimodal posteriors and
time-expensive likelihoods in physics or elsewhere.
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