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A Novel Illumination-Robust Hand Gesture
Recognition System With Event-Based
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Abstract— The hand gesture recognition system is a noncontact
and intuitive communication approach, which, in turn, allows for
natural and efficient interaction. This work focuses on developing
a novel and robust gesture recognition system, which is insensitive
to environmental illumination and background variation. In the
field of gesture recognition, standard vision sensors, such as
CMOS cameras, are widely used as the sensing devices in state-of-
the-art hand gesture recognition systems. However, such cameras
depend on environmental constraints, such as lighting variability
and the cluttered background, which significantly deteriorates
their performances. In this work, we propose an event-based
gesture recognition system to overcome the detriment constraints
and enhance the robustness of the recognition performance.
Our system relies on a biologically inspired neuromorphic vision
sensor that has microsecond temporal resolution, high dynamic
range, and low latency. The sensor output is a sequence of
asynchronous events instead of discrete frames. To interpret the
visual data, we utilize a wearable glove as an interaction device
with five high-frequency (>100 Hz) active LED markers (ALMs),
representing fingers and palm, which are tracked precisely in
the temporal domain using a restricted spatiotemporal particle
filter algorithm. The latency of the sensing pipeline is negligible
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compared with the dynamics of the environment as the sensor’s
temporal resolution allows us to distinguish high frequencies
precisely. We design an encoding process to extract features
and adopt a lightweight network to classify the hand gestures.
The recognition accuracy of our system is comparable to the
state-of-the-art methods. To study the robustness of the system,
experiments considering illumination and background variations
are performed, and the results show that our system is more
robust than the state-of-the-art deep learning-based gesture
recognition systems.

Note to Practitioners—This article addresses the robustness
of the hand gesture recognition system that is important for
gesture recognition-based applications. Existing methods rely on
either the large-volume data to train a deep learning model or
to restrict the applied environments (e.g., an ideal environment
without dynamic background). However, a vision-based deep
learning model requires large computational resources, while the
ideal environment limits the practicality of the system. In this
work, we introduce a biologically inspired neuromorphic vision
sensor and an ALM glove and build a novel gesture recognition
system to tackle the above issue. The neuromorphic vision sensor
has a microsecond temporal resolution and a high dynamic
range. With these properties, the sensing system of our prototype
operates in a very low-latency space, which, in turn, ensures
that our gesture recognition system is robust to illumination
variance and dynamic background. Thus, this work is valuable to
the research of illumination-robust gesture recognition systems.
Preliminary experiments suggest that our system prototype is
feasible, but it has not yet been incorporated into an online
gesture recognition system nor tested with complex gestures.
In future work, we will concentrate on the improvement of the
signal processing methods that advance the current system to
complex and practical applications.

Index Terms— Active LED marker (ALM), biologically
inspired learning, biologically inspired signal processing, dynamic
and active-pixel vision sensor (DAVIS), event-based neuromor-
phic vision, hand gesture recognition, illumination-robust system,
wearable device.

I. INTRODUCTION

HAND gesture is an intuitive and ubiquitous approach
to represent people’s thoughts and intentions naturally

and directly. In the last decade, hand gesture recognition has
witnessed remarkable progress due to the rapid development
of computer vision and machine learning. Accordingly, appli-
cations such as human–machine interface [1], [2], body sign
language [3]–[5], and virtual reality [6] are developed rapidly.
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Fig. 1. Illustration of the different working principles of frame-based CMOS
camera and neuromorphic vision sensor. The green ball is rotating around a
black ball. Frame-based CMOS camera captures intensity values at a fixed
rate, while the neuromorphic vision sensor (DAVIS) captures intensity changes
asynchronously.

In recent years, many of the state-of-the-art works [7]–[13]
develop their gesture recognition algorithms with conventional
monocular cameras. Although they achieve great success in
regards to the recognition accuracy, the robustness and adap-
tation abilities at the system level are ignored by most of
them. However, as Rautaray and Agrawal [14] mentioned,
illumination variations bring difficulties to gesture detection
and recognition. The challenging lighting conditions are con-
founding, a typical approach to alleviate this problem is fusing
different data modalities and developing multimodal gesture
recognition methods [8], [15]. RGB-D camera is natively
suitable for the fusion of data modalities, it captures both
the depth information and RGB images; thus, it provides an
alternative solution for hand gesture recognition. Although
some approaches based on RGB-D cameras have demonstrated
good performance in environments with illumination variation
[16], [17], there are still two major issues. First, they need
to design sophisticated architectures and carefully initialize
individual modalities. Second, they are developed on data sets
that are collected with common lighting condition changes,
such as saturation, high contrast shadows, and light flicker.
However, their adaption abilities are still unknown because
the analysis of influences caused by luminance variance is
ignored.

To tackle the above issues, we propose a biologically
inspired vision-based hand gesture recognition system in this
work. The bio-inspired vision sensor used in our system is
an event-based neuromorphic vision sensor, named dynamic
and active-pixel vision sensor (DAVIS) [18], [19]. Instead of
measuring the absolute brightness of all pixels at a constant
rate, they capture the per-pixel brightness changes (called
events) asynchronously,1 as shown in Fig. 1. This results
in outstanding properties compared with frame-based CMOS
cameras: very high temporal resolution and low latency (in the
order of microsecond), very high dynamic range (140 dB),
and low power consumption [20], [21]. Thus, they have a
large potential for gesture recognition in challenging sce-
narios where CMOS cameras do not have a comparative
performance [22], [23].

1The DAVIS sensor also generates images at fixed frame rate, which are
called active pixel sensor (APS) frames that are the same as RGB images by
standard CMOS cameras.

A recent work [24] presents a detailed experimental analysis
and indicates that color markers are more robust to uneven
illumination, thus marker-based models can outperform bare-
hand systems in real-world scenarios. The design of our
prototype system pays particular attention to the robustness
and adaption abilities; thus, we develop a wearable glove
with high-frequency (>100 Hz) active LED markers (ALMs).
Five ALMs that blink at different frequencies are fixed to
the thumb, forefinger, middle finger, ring finger, and palm,
respectively. The blink frequencies exceed the frequency trig-
gered by changeable environmental illuminations by a large
margin. The reason for using ALMs is that we are able to inter-
pret the event stream at the microsecond level; thus, the latency
of our system’s sensing component is negligible compared
with the dynamics of the background. This property is crucial
for the following feature extraction and recognition algorithms
and enhances the robustness and adaption abilities of the
entire system as well. We adopt a restricted spatiotemporal
particle (RSTP) filter to extract the trajectories of the ALMs.
Inspired by skeleton-based action recognition algorithms
[11]–[13], [25], we design a set of motion capture fuzzy mem-
bership functions to generate representative feature sequences
for gestures based on the ALMs’ trajectories. Finally, we use a
shallow long short-term memory (LSTM) network to classify
the hand gestures.

In summary, our contributions to this work are as follows.
1) A novel hand gesture recognition system is developed.

Our system addresses the challenges faced by most of
the state-of-the-art systems: the illumination variations
and cluttered background in the scenarios. We tackle
them at the sensor-level by introducing a recently devel-
oped neuromorphic vision sensor in our system, which
is fundamentally different from other works that aim to
solve these issues at the algorithm level (e.g., relying
on a large-scale data set and elaborated deep neural
networks).

2) The latency of our sensing pipeline is negligible com-
pared with the dynamics of the background. We design
a wearable glove with high-frequency ALMs that fully
exploit the properties (high temporal resolution and
low latency) of the DAVIS sensor. Experiments are
performed to exam the robustness and adaption abilities
our system gains. Results show that our system is
much more robust compared with state-of-the-art deep
learning-based methods in challenging scenarios.

The rest of this article is organized as follows. In Section II,
we discuss the related works. In Section III, we describe
all details of our illumination-robust hand gesture recognition
system. Section V demonstrates the experiments and results,
and finally, we conclude our work in Section VI.

II. RELATED WORKS

The basic and general principle components of a common
hand gesture recognition system can be summarized as data
acquisition, hand localization, feature extraction, and gesture
classification.

According to the sensors used to capture the motion,
gesture recognition systems can be generally divided into
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two basic categories: vision-based systems [11]–[13], [26]
and nonvision-based systems [27]. Among the vision-based
systems, the monocular RGB camera has been widely uti-
lized, and most of the state-of-the-art gestural recognition
methods with RGB cameras elaborate on convolutional neural
network (CNN) architectures and achieve high recognition
accuracy. Wang et al. [7], [8] and Tran et al. [28] develop
their methods using CNNs based on spatiotemporal fea-
tures extracted at body and hand levels. In recent years,
the emergence of depth camera has significantly facilitated the
development of hand gesture recognition. Two recent works
[29], [30] review the 3-D hand gesture recognition algorithms
based on several typical depth cameras, such as Microsoft
Kinect. Pisharady and Saerbeck [31] conduct 2-D and 3-D
sensor-based hand gesture recognition comparison experi-
ments and conclude that 2-D appearance-based approaches
are more computationally efficient, while 3-D model-based
approaches have a better generality for distance, orientation,
and viewing angle.

However, frame-based cameras have their fundamental
drawbacks. The monocular camera is highly sensitive to
illumination variation [14], and the data redundancy of 3-D
depth sensors makes the computation resource consumption
extremely high [32]. Compared with conventional frame-based
cameras, the neuromorphic cameras have several outstanding
properties that can significantly improve recognition perfor-
mance, while feature extraction of events is totally different.
These works [33]–[37] develop effective feature representation
method for the event stream; also, some studies develop
event-based hand gesture recognition systems. Lee et al. [32]
are the first to develop an event-based hand gesture recognition
system with dynamic vision sensors (DVSs), and it proposes a
processing method for raw events named leaky integrate-and-
fire (LIF) neurons. Amir et al. [22] develop an energy-efficient
real-time hand gesture recognition system with event-based
processors; also, one of its main contributions is a new hand-
gesture data set collected under three illumination conditions
with an event-based camera. However, it focuses on real-
time performance without making any further analysis of
the influences of different illumination conditions. Maro and
Benosman [38] take full advantage of the high temporal
resolution of event-based cameras to remove dynamic back-
grounds caused by walking, which makes the hand gesture
recognition algorithm suitable for outdoor scenarios. A recent
work [39] proposes a graph-based spatiotemporal feature for
neuromorphic vision sensors, which makes a great contribution
to action recognition tasks using event-based cameras.

Although hand gesture recognition has witnessed consider-
able progress and achieved great success in applications, there
are still some important factors that can degrade the robustness
of recognition systems, such as lighting variability and clut-
tered backgrounds. Confronted with the challenges, there have
been some effective algorithms. Rautaray and Agrawal [14]
summarize the early methods adopted to increase invariance
against illumination variability, such as approximating the
chromaticity of skin rather than its apparent color value in
color space. Besides, in [40] and [41], the effects of illumina-
tion are analyzed via normalization, modeling, and invariant

Fig. 2. Illustration of our hand gesture recognition system. A system
prototype consists of an event-based neuromorphic vision sensor and an ALM
glove.

representation. Similarly, in [42], time-varying illumination
is handled by dynamic illumination estimation. The recent
works [43], [44] are focused on shadow removing at the
learning stage. Wang et al. [43] propose a new illumination-
invariant feature based on the approximation estimation strat-
egy of bidirectional reflectance distribution function to move
cast shadows, but its efficiency still needs to be optimized.
Instead of constructing models to represent illumination at
the learning stage or conducting complicated illumination pre-
processing, we adopt an event-based vision sensor and a high-
frequency ALM glove to improve the illumination invariance
of recognition performance from the system perspective. With
advantageous properties of the event-based camera, the high-
frequency ALMs can be distinguished simply in the light-
changing scenarios with disturbed dynamic backgrounds, and
thus, the robustness of our system can be improved effectively.

III. NEUROMORPHIC GESTURE RECOGNITION SYSTEM

In this section, the neuromorphic gesture recognition system
is introduced. We systematically describe the implementation
and algorithm of our system, including the system prototype,
ALM tracking algorithm, feature extraction method, and the
lightweight gesture classifier.

A. System Prototype

The prototype of our illumination-robust hand gesture
recognition system consists of an event-based neuromorphic
vision sensor (DAVIS3462) and an ALM glove that is shown
in Fig. 2. As a novel sensor, DAVIS346 has a high dynamic
range, which makes it suitable for scenes with illumination
changes in a wide range. Its temporal resolution (μs) is several
orders of magnitude higher than frame-based cameras that
capture the scene at fixed frame rates (ms). This motivates
us to build a gesture recognition system that operates in a
low-latency space, which is not affected by the motions and
dynamics in the environment. To achieve this, we design
an ALM glove that contains five high-frequency (>100 Hz)
ALMs. Five ALMs are fixed to the thumb, forefinger, middle
finger, ring finger, and palm. Compared with a CMOS camera-
based gesture recognition system, our system has two differ-
ences. First, the data recorded by our system are the changing
directions of the intensities instead of the intensity values
at each pixel. Second, the ALMs operate in the frequency

2https://inivation.com/dvs/dvs-product-variants/
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Fig. 3. Illustration of processing a sequence of raw events that occur on the
same pixel within a certain temporal window. Event data processing consists
of three stages: raw events, transitions, and intervals. Raw events are translated
into intervals (�) via transitions, and intervals serve as robust estimators for
blinking periods of ALMs.

domain at high frequencies, which calls for novel processing
algorithms that are different from image-based approaches.

B. ALM Tracking Method

This section describes the ALM tracking method with event
streams. The purpose is to extract the trajectory of each ALM.
These trajectories will be further processed by the feature
extraction method to classify the gesture. The ALM tracking
method consists of two phases: the event data processing and
the RSTP filter.

1) Event Data Processing: The aim of the event data
processing phase is to transfer the raw event data into the
direct input of the RSTP filter. Inspired by Censi et al. [45]
and Chen et al. [21], our event data processing process has
three stages: raw events, transitions, and intervals (see Fig. 3).

a) Raw events: Event data stream generated by a DAVIS
camera can be described as tuples: {ti , pi , (xi , yi)}, where i
represents the index of an event in event stream, pi is its
polarity and pi ∈ {on, off}, the on polarity represents a positive
change of relative light intensity (from dark to light), while
off represents a negative one (from light to dark), ti is the
occurrence timestamp of the event with the unit of μs, and
(xi , yi) is the coordinate of the event in the image plane,
xi ∈ {0 . . . 345} and yi ∈ {0 . . . 259}.

b) Transitions: The transition is designed to represent the
polarity changes of the raw events and each transition inherits
timestamp from certain raw events. Compared with the last
event polarity, if the current event polarity has switched, then
a transition is generated. Also, a transition has two kinds of
polarities ∈ {positive, negative}, which reflects the changing
directions of events’ polarity. If the current event’s polarity
transfers from on to off, a negative transition is generated, and
it gains a timestamp from off event; on the contrary, a reverse
transformation generates a positive transition with on event’s
timestamp. We describe the transition as {tk, Ti,k, (xi , yi)}
(i ≥ 2), where Ti,k is the kth transition generated by the i th
and (i − 1)th events at pixel (xi , yi), and tk is the timestamp
of Ti,k . The transition is a prerequisite for calculating intervals
in the next stage.

c) Intervals: We define the interval as the time between
two successive transitions with the same polarity (i.e., both

Fig. 4. Histograms of intervals are generated by blinking ALMs in a
dynamic environment. The x-axis represents detected interval values in the
unit of μs. (a) Single ALM with a blinking frequency of 200 Hz and a period
of 5000 μs. (b) Single ALM with a blinking frequency of 250 Hz and a
period of 4000 μs. (c) Single ALM with a blinking frequency of 500 Hz and a
period of 2000 μs. (d) Single ALM with a blinking frequency of 1000 Hz and
a period of 1000 μs. (e) Dynamic background without ALMs. (f) Five ALMs
blinking simultaneously with frequencies of 167, 200, 250, 286 and 333 Hz.

of the transitions are positive or negative). An illustration is
shown in Fig. 3. An interval is described as {�n, (xi , yi)},
representing the nth interval at pixel (xi , yi). Intuitively,
we can speculate that statistics of intervals has a strong
correlation with the blinking frequencies of ALMs. As shown
in Fig. 4(a), we can clearly observe that the distribution of
{�n, (xi , yi )} is well approximated by a Gaussian distribution
with a mean of 5000 μs for an ALM blinking at the frequency
of 200 Hz. Similar distributions can be seen in Fig. 4(b)–(d).
Thus, intervals can serve as an important estimator for the
ALMs. However, as shown in Fig. 4(c) and (d), the robust-
ness of the intervals declines as blinking frequencies of
ALMs increase because the distribution of intervals cannot be
accurately approximated by unimodal Gaussian distribution.
Hence, the ALM frequencies should be carefully selected. It is
worth noting that the frequency selection is a result of trial
and error by observing the histogram of intervals generated
with five ALMs simultaneously. At the same time, we need
to consider the timer limitation of the microcontroller. In this
work, we manually select five blinking frequencies of ALMs
as 167, 200, 250, 286, and 333 Hz. As shown in Fig. 4(f),
five peaks are clearly visible and well separated. Except for
the ALM blinking frequency, we also explore the statisti-
cal property of intervals generated by dynamic background.
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As shown in Fig. 4(e), intervals of the dynamic background
are chaotic. In summary, the distributions of intervals can
be approximated with five different Gaussian distributions.
We write the Gaussian distribution with N(pm , σ 2

m), where
m ∈ {0, 1 . . . 4} means the index of ALM, pm is the mean,
and σm is the standard deviation.

2) Restricted Spatiotemporal Particle Filter: Based on the
transitions and intervals, we develop an RSTP filter to detect
and track five ALMs simultaneously.

a) Evidence map: We adopt a sliding-time window strat-
egy to process the asynchronous event stream. For each
ALM, we construct an evidence map Em,k(x, y), where
m ∈ {0, 1 . . . 4} represents the index of ALM, (x, y) is the
pixel coordinate corresponding to the resolution of camera,
k ∈ {1 . . . Niter} means the index of sliding-time windows, and
Niter depends on the length of raw event data stream. The
evidence map can be interpreted as the likelihood that the i th
ALM is detected at pixel (x, y) in the kth sliding-time window.
The window length in our algorithm is 10 ms, and the step
size is 5 ms. Each window represents a 10-ms length of a slice
from the event stream. As discussed above, intervals can be
approximated by the Gaussian as N(pm , σ 2

m), so each interval
{�n, (xi , yi)} contributes to the evidence map and rises the
probability that ALMs settles at (xi , yi). The evidence map is
computed as

Em,k(x, y) =
Nint�
n=1

N
�
�n

��pm, σ 2
m

�
(1)

where m is the index of ALM, k is the index of sliding-
time window, Nint represents the total number of intervals,
and �n means the valid intervals at pixel (x, y).

For each ALM, we assign 2000 random particles. However,
after the normalization, some particles have extremely small
evidence values that lead to the tracking inefficient. Therefore,
after the particle selection, we conduct a reselection process
that is expressed as

Np�
j=1

Em,k(x j , y j) < T (2)

where j ∈ {1 . . . Np} is the index of the particle, Np is the
particle number, (x j , y j) is the coordinate of the particle, and
T represents the reselection threshold. In our experiment, T is
set to 0.5. When (2) is satisfied, we replace particles that have
smaller evidence values with particles having higher evidence
values and then normalize them again.

b) Spatial restriction: As shown in Fig. 4(f), the his-
togram cannot be totally separated; some parts still overlap
with each other. For example, an interval of 3500 μs gener-
ated by the 333-Hz ALM will inevitably affect the evidence
of 286-Hz ALM. Fig. 5(a) and (b) shows that, when the
evidence values at the palm and the thumb are relatively
weak, the tracking results tend to drift toward other fingers.
However, from the spatial perspective, we discover that the
evidence value for each ALM can be differentiated easily.
Since the moving distance of an ALM is lower than 3 pixels
within 5 ms, while the distances among ALMs are much larger,
we put a spatial restriction to alleviate the mutual influence

Fig. 5. Tracking results with traditional particle filter and RSTP filter.
(a) Evidence map for the particle filter. (b) Tracking results of a traditional
particle filter without spatial restriction. (c) Tracking results of our RSTP filter
(with restriction).

among ALMs. When computing the evidence map, we set
an additional threshold to restrict the distance between the
interval occurrence position and the current ALM position.
The expression is

Em,k(x, y) =

⎧⎪⎨
⎪⎩

ε, if


(x, y)− �

xm
l , ym

l

�

 ≥ 15
Nint�
n=1

N
�
�n

��pm, σ 2
m

�
, otherwise

(3)

where m is the ALM index, k is the index of the sliding-time
window, (x, y) is the coordinate of evidence map, (xm

l , ym
l ) is

the latest position of the mth ALM, �(x, y)− (xl, yl)� means
the distance of two points, and ε is set to 1e − 4 to keep
particle weight updating.

The evidence map is applied to update weights of
particles as

wm
j,k = wm

j,k−1 × Em,k(x j , y j ) (4)

where wm
j,k is the weight of the particle, j is the index of the

particle, and m and k represent the index of ALM and sliding-
time window, respectively. With the updated particle weight,
we check the degeneration degree of the current particles via
computing effective number of particles Neff as

Neff = 1�Np

j=1

�
wm

j,k

�2 (5)

where Np is particle number. If Neff < Theff × Np , a resam-
pling is inevitable. In our experiments, Theff is set to 0.5.
In addition, the motion model is simplified because the moving
distance is lower than 3 pixels in a sliding-time window.
In prediction stage, we simply add motion ∼N(0, 3) to the
current position. Finally, the normalization of weights is
conducted as

W m
j,k =

wm
j,k�N

i=1 wm
j,k

. (6)

The details of the RSTP filter are shown in Algorithm 1.

C. Feature Extraction

In action recognition, the skeleton-based methods achieve
good performance by designing handcrafting features to rep-
resent the position, orientation, and motions of the human body
parts [46], [47]. In this work, we create two kinds of features:
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Algorithm 1 RSTP Filter
function (TRAJECTORIES) = RSTP(Raw Event Stream)

Initialize j Particles
Last Position←0
for k ← 1 : Niter do

Calculate {�n, (x, y)} based on Raw Event Stream
for m ← 1 : 5 do

if �Last Posi tion − (x, y)� < 15 then
Em,k(x, y) =�Nint

n=1 N({�n, (x, y)}|pm, σ 2
m)

else
Em,k(x, y) = ε

end if
Normalize Em,k

if
�Np

j=1 Em,k(x j , y j) < T then
Reselect Particles

end if
for j ← 1 : 2000 do

wm
j,k = wm

j,k−1 × Em,k(x j , y j )
end for
Normalize wm

j,k

if Ne f f = 1�N p
j=1 (wm

j,k)
2

< T hef f × Np then

Resample Particles
end if
Normalize wm

j,k into W m
j,k

Calculate Position based on W m
j,k

Append Position to Trajectories
Last Position← Position
for j ← 1 : 2000 do

Add Motion to (x j , y j)
end for

end for
end for

end function

the holistic motion feature and the local shape feature. The
holistic motion feature describes the motion orientation and
velocity of the hand. The local shape feature is composed of
the relative position and distance between the keypoints (here
keypoints are marked by the ALMs positions). We define our
feature matrix as

featurest = [post , orit , shapet ] (7)

where post is translation feature, orit is orientation feature,
shapet is the shape feature, and t is the index of sampled
sliding-time windows. We adopt the fuzzy membership func-
tions [47] to normalize these features.

1) Translation Features: The translation feature post con-
tains [posXt , posYt ], which represents the location of the hand.
Due to the changing distances between the hand and DAVIS
camera, we introduce a scale factor to address this problem.

We define the finger length as the 2-D distance between
the ALM position of the finger and the ALM position of the
palm. According to the statistical analysis, the average values
of finger lengths are 63, 87, 95, and 86 pixels for thumb,
forefinger, middle finger, and ring finger. We define the scale
factor fs as the mean of the ratios of the finger lengths at time

t0 to the corresponding average values of finger lengths, where
t0 is the initial time of the gesture

fs = 1

4

�
63

�thumbt0 − palmt0�
+ 87

�foret0 − palmt0�
+ 95

�middlet0 − palmt0�
+ 86

�ringt0 − palmt0�



(8)

where (palm, thumb, fore, middle, ring) means the position
of palm, thumb, forefinger, middle finger, and ring finger. For
normalization, we introduce a fuzzy membership function

Tr(x, k) =
⎧⎨
⎩

x, 0 ≤ |x | < k
k

|x | x, k ≤ |x | (9)

where k is a constant. As the moving distance of a fingertip
during an entire period of a gesture is lower than 100 pixels,
we compute the translation feature as

[posXt , posYt ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0, 0], t = t0

Tr([posXt−1, posYt−1] + 1

100
×Tr( fs · (palmt − palmt−1), k0), 1).

otherwise

(10)

where k0 is determined by the interval between successive
sampled sliding-time windows.

2) Shape Features: The feature shapet contains [shapeTt ,
shapeFt , shapeMt , and shapeRt ], which represents the shape
feature of the thumb, forefinger, middle finger, and ring finger.
To describe the shape changes of hand gestures, we compute
the finger length at each timestamp t and get the ratio of these
finger lengths to their first appearances at t0 (where t0 is the
initial time of the gesture). Thus, the motion of the hand is
converted to a motion in the standard plane. To normalize the
shape features, we introduce a normalization function as

Sh(x) =

⎧⎪⎪⎨
⎪⎪⎩

x − 1, 0 < x ≥ 1
x − 1

5
, < x ≥ 5

1, x > 5.

(11)

Then, the shape feature of each finger is computed as

shapeTt = Sh

� �thumbt − palmt�
�thumbt0 − palmt0�




shapeFt = Sh

� �foret − palmt�
�foret0 − palmt0�




shapeMt = Sh

��middlet − thumbt�
�middlet0 − palmt0�




shapeRt = Sh

��ringt − thumbt�
�ringt0 − palmt0�



. (12)

3) Orientation Features: The orientation feature orit con-
tains [oritH , oritP , oritT ], which represents the hand orienta-
tion, palm moving direction, and thumb moving direction,
respectively. We define the orientation vector of the hand as
�nt

H = middlet − palmt . In addition, to represent the moving
direction of the hand and fingers, we also define two moving
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Fig. 6. Illustration of our event-based hand gesture recognition data set. The first raw presents typical environment settings during data collection. The second
raw is the visualization of event data recorded in corresponding environments. (a) Recording data in an ideal environment without distraction. (b) Recording
data with illumination changes caused by a concurrent flashlight. (c) Recording data in a low-brightness environment. (d) Recording data with dynamic
background caused by a waving hand. (e) Recording data with dynamic background caused by a walking person.

orientation vectors as �nt
P = palmt − palmt−1 and �nt

T =
thumbt − thumbt−1. We choose the orientation of the x-axis,
which is expressed as �ex as the basic orientation. The fuzzy
membership function for the orientation feature is defined as

Tw(θ) = θ − π

2π
, 0 ≤ θ ≤ 2π. (13)

The normalized orientation features are computed as

oritH = Tw
���nt

H , �ex
��

oritP = Tw
���nt

P , �ex
��

oritT = Tw
���nt

T , �ex
��

. (14)

D. Classification

The LSTM network [48] is a typical recurrent neural
network that can remember the previous information with
memory cells. Consequently, it is commonly used to process
a temporal sequence of patterns. In our system, we also
adopt the LSTM network to capture and learn the feature
of hand gestures consecutively. The input sequence is the
temporal feature matrix extracted from the ALM trajectories.
The number of neurons in the hidden layer is set to 48, and
the dimension of the fully connected layer is 48× 12, which
corresponds to the number of our gesture classes. At last,
a softmax function is used to calculate the probability of each
class.

IV. DATA SET

The motivation of our work is to develop an illumination-
robust event-based hand gesture recognition system on top of
ALM tracking. To develop our system and evaluate its perfor-
mance, the data set must contain samples recorded in various
scenarios instead of in an ideal environment. We employ a
DAVIS346 camera that has a temporal resolution of 1 μs and a
high dynamic range of 140 dB to record the raw event stream.
There are ten subjects participating in our data collection.
Before the recording, we show the hand gesture tutorial videos
to make sure that they can follow our gesture definitions
exactly. We design 12 different hand gestures, including typ-
ical hand motions such as translation, rotation, and circling.
The specific gesture definitions are shown in Table I.

TABLE I

LIST OF GESTURE CLASSES DEFINED IN OUR EVENT-BASED

GESTURE RECOGNITION DATA SET

Our data set consists of four sub-data sets: Normal-ALM-
ON, Disturbed-ALM-ON, Normal-ALM-OFF, and Disturbed-
ALM-OFF. The “Normal” means that the data sets are
collected in an ideal environment without illumination vari-
ation or cluttered background, while the “Disturbed” means
that data sets are recorded in special scenarios with at least one
kind of distraction factor (see Fig. 6). There are four distraction
factors introduced to our recording procedures: a concurrent
flashlight, low-brightness condition, a waving hand, and a
walking person as dynamic backgrounds. Since the ALMs that
we choose are brighter than the background, we record two
data sets, Normal-ALM-OFF and Disturbed-ALM-OFF, with
ALMs off for comparison study. Also, two augmented data
sets, named Mixed-ALM-ON and Mixed-ALM-OFF, are built,
which are the sum of corresponding sub-data sets, respectively.
We show the details of our data set in Table II.

V. EXPERIMENTS

In this section, we evaluate the performance of our hand
gesture recognition system. To test the robustness and adap-
tion abilities of our system, we carry out experiments from
two aspects: the ALM trajectory tracking experiment and
the gesture recognition comparison experiments. In compar-
ison experiments, we compare our system to state-of-the-art
deep learning-based approaches with different modalities (Raw
Event, Event Frame, and APS Frame) under challenging
scenarios.

A. Implementations

1) Data Modalities: The data recorded by DAVIS346 sensor
contain both event stream generated by a DVS and APS frames
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TABLE II

EVENT-BASED HAND GESTURE RECOGNITION DATA SET

Fig. 7. Visualization of different data modalities. (a) Event stream. (b) APS frame. (c) Event frame.

captured by an integrated built-in CMOS camera. In the fol-
lowing experiments, three modalities are used: Event Stream
(with ALM trajectories), APS Frame, and Event Frame. The
Event Frame represents the encoded event frames by using
the Surface of Active Events (SAE) method, which is widely
used in recognition tasks of neuromorphic vision [35], [49].
The SAE encoding method reflects the temporal information
since the pixel value and its gradient represent the moving
direction and speed of the object, and it translates the raw event
into gray-scale images. The pixel value σ(x, y) for each Event
Frame is calculated by tp(x, y) and t0(x, y) (initial timestamp)
as follows:

σ(x, y) = 255 · tp(x, y)− t0(x, y)

T
(15)

where T is the frame intervals and t0(x, y) is the timestamp
of the most recent events at pixel (x, y). Samples of the three
modalities are shown in Fig. 7. We can see that the APS
Frame and the Event Frame are frame-based images that are
originally suitable for deep learning algorithms.

2) Lightweight Model and Comparison: The LSTM net-
work applied in our method is lightweight and has only
48 neurons in the hidden layer. We adopt Adam as the
optimizer with an initial learning rate of 0.001. The lightweight
LSTM network is evaluated with top-one accuracy in all
the experiments with data modality Event Stream. In this
work, we also compare our approach to CNN-based methods,
as they have been proved to perform well in video-level
classification tasks, such as action recognition and gesture
recognition. Specifically, two state-of-the-art gesture recog-
nition algorithms, temporal segment network (TSN) [7] and
3-D convolutional network (C3D) [28], are evaluated with data
modalities APS Frame and Event Frame.

B. ALM Trajectory Tracking Results

In Figs. 8 and 9, we show the ALMs trajectory tracking
results under different experimental conditions. Although we

cannot quantitatively evaluate the tracking performance due to
the impossibility of getting trajectory ground truths, we show
the repeatability of tracking trajectories of the same gestures
under different experimental settings and the distinction of
tracking trajectories of adjacent ALMs. Fig. 8(b) (the first row)
clearly shows that, even though the ALMs of the middle finger
and ring finger are close to each other, our tracking algorithm
can still separate them into two targets. In a similar case with
a frame-based camera, this could be a problem because of the
high latency. In Fig. 8(b), we can see that the ALMs tracking
results are not affected by changing illuminations and dynamic
backgrounds. In Fig. 9, we choose the gesture Circle Anti-
clockwise to demonstrate the trajectory repeatability because,
in a rotation gesture, the distances between fingers and the
palm remain almost unchanged. For each finger, the ratio of
finger-to-palm distance versus middle-finger-to-palm distance
is calculated. Fig. 9 shows that, in three lighting conditions,
the variation of the calculated ratios is small, which, to a
certain extent, demonstrates the repeatability of trajectories
and the robustness of the tracking results.

C. Gesture Recognition Results

1) Results: Two sets of experiments are conducted to
demonstrate the overall performance and the robustness,
as well as adaptation abilities of our proposed system.

a) Overall performance: In this experiment, the Mixed-
ALM-ON data set is split into the training set, validation
set, and testing set with a ratio of 6:2:2, respectively. All of
the models are trained from scratch except that the TSN
method adopts a pretrained BN-Inception as a backbone.
We report the performance with three different testing-set
settings: Mixed-ALM-ON, Normal-ALM-ON, and Disturbed-
ALM-ON. As we can see from Table III, the modality Event
Frame with TSN has the best performance (99.28%), and the
modality APS Frame with C3D has the worst performance
(95.10%). Although our proposed system with lightweight
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Fig. 8. Visualization of ALMs tracking results. The pink, red, yellow, green, and blue points in each image represent the tracking results of the palm, thumb,
forefinger, middle finger, and ring finger, respectively. (a) From top to bottom are the tracking results for Move Down, Move Up, Move Right, Move Left,
Rotate Clockwise, and Rotate Anti-clockwise gestures from the Normal-ALM-ON data set. Each row shows three random samples from the corresponding
gesture. (b) From top to bottom are the tracking results for Circle Clockwise, Circle Anti-clockwise, Zoom Out, Zoom In, Thumb Up, and Thumb Down
gestures from the Disturbed-ALM-ON data set. Each row shows three random samples from the corresponding gesture.

Fig. 9. Ratios of the fingers’ (thumb, forefinger, middle finger, and ring finger) length to middle finger length under different light conditions. (a) Data
recorded in an ideal environment. (b) Data recorded with the concurrent flashlight. (c) Data recorded in a low-brightness environment.

LSTM does not achieve the best performance, it has higher
overall accuracy (95.36%) than C3D. To analyze the perfor-
mance of our own method thoroughly, we show the confusion
matrix of the results in Fig. 10. As illustrated in the figure, our
method has quite good performance for most of the gestures;
however, Circle Clockwise and Circle Anti-clockwise (class
indices 7 and 8) have worse true-positive rates. Because only
the lightweight LSTM network is optimized during the training
phase, we conclude that the representative ability of our feature
extraction method is poor for the circling gestures. In our
method, handcrafting skeleton-based features are predefined.

Unlike deep learning architectures, they are not optimized on
the data set.

The modality APS Frame with C3D is affected to a larger
extent by the testing sources, and the accuracy of the C3D
method declines by 4.3% when switching the testing source
from the Normal-ALM-ON data set (97.01%) to the Disturbed-
ALM-ON data set (92.30%). Moreover, with the APS Frame
modality, the accuracy of the C3D method declines by 10.7%
when switching the testing source from the Normal-ALM-
ON data set (98.44%) to the Disturbed-ALM-ON data set
(87.74%). It is worth noting that the training set contains
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TABLE III

EXPERIMENTS RESULTS OF OUR METHOD AND CONVOLUTIONAL ARCHITECTURES TRAINED ON THE MIXED-ALM-ON DATA SET
WITH DIFFERENT INPUT MODALITIES. STANDARD DEVIATION IS CALCULATED OVER FIVE REPEATED EXPERIMENTS

Fig. 10. Classification results of our method trained on the Mixed-ALM-ON data set. (a) Testing on Mixed-ALM-ON. (b) Testing on Normal-ALM-ON.
(c) Testing on Disturbed-ALM-ON.

both the data from the Normal-ALM-ON data set and
the Disturbed-ALM-ON data set for all the experiments
in Table III. In this experiment, TSN, the state-of-the-art
algorithm has a constantly outstanding performance that is
always better than our method; however, this is based on
the assumption that the illumination changes in the testing
data set are also incorporated in the training data set, and
it cannot reveal the robustness of it when working under
new lighting condition settings. Thus, we will analyze the
robustness in the following experiments. It is also interesting
to see that although both Event Frame and APS Frame are
frame-based modalities, the average performance of Event
Frame is slightly better than APS Frame. This is because the
DAVIS sensor has a larger dynamic range (140 dB) compared
with the CMOS camera (60 dB), which can still record
the changes of illuminations in either strong-light or dark
environments.

b) Robustness and adaption abilities: Most of the SOTA
works concentrate on the data from a single domain and
does not handle the discrepancy between training and testing
phases. Usually, transfer learning is used to solve this problem,

which incorporates rich privileged information by exploring
additional data distribution. The challenge is that, in real-world
applications, the testing scenarios are always unpredictable.
Instead of tackling this problem from the algorithm level as
many previous works do, we attempt to work on it from the
system-level perspective. In this experiment, we separate the
training set and testing set to investigate how the discrepancy
between training and testing phases affects the performances
of different modalities and approaches. All the methods are
trained on the Normal-ALM-ON data set, and the perfor-
mances of different testing sets are reported in Table IV.
We can see very clearly that the recognition accuracy is
strongly influenced by the discrepancy between the training
and testing phases. We define the degree of reduction (DoR)
as the deterioration of the accuracy by the same method
and modality, while the testing set is switched from Normal-
ALM-ON to Disturbed-ALM-ON. The DoR is 9.39% for our
proposed system. Fig. 11 shows the confusion matrix of the
testing results; we can see that the distractions have strong
side effects on Move Up, Move Right, Move Left, Circle
Clockwise, Circle Anti-clockwise and Zoom Out, but, for the
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TABLE IV

EXPERIMENT RESULTS OF OUR METHOD AND CONVOLUTIONAL ARCHITECTURES. METHODS ARE TRAINED WITH THE TRAINING SET OF
NORMAL-ALM-ON DATA SET AND TESTED WITH THE TESTING SET OF NORMAL-ALM-ON/DISTURBED-ALM-ON DATA SET.

DOR MEANS THE DETERIORATION OF THE RECOGNITION ACCURACY BY THE SAME METHOD AND MODALITY WHEN

THE TESTING SET IS SWITCHED FROM THE NORMAL-ALM-ON TO THE DISTURBED-ALM-ON
DATA SET. STANDARD DEVIATION IS CALCULATED OVER FIVE REPEATED EXPERIMENTS

Fig. 11. Classification results of our method trained on the Normal-ALM-ON data set. (a) Testing on Normal-ALM-ON. (b) Testing on Disturbed-ALM-ON.

TABLE V

EXPERIMENT RESULTS OF THE CONVOLUTIONAL ARCHITECTURES. WE TRAIN THE MODEL WITH THE TRAINING SET OF NORMAL-ALM-OFF DATA

SET AND TEST THE MODEL WITH TESTING SET OF NORMAL-ALM-OFF/DISTURBED-ALM-OFF DATA SET. DOR MEANS THE DETERIORATION
OF THE RECOGNITION ACCURACY BY THE SAME METHOD AND MODALITY WHEN THE TESTING SET IS SWITCHED FROM THE

NORMAL-ALM-OFF TO DISTURBED-ALM-OFF DATA SET. STANDARD DEVIATION

IS CALCULATED OVER FIVE REPEATED EXPERIMENTS

rest gestures, the performance is still stable. Although our
system’s performance deteriorates, it still achieves a relatively
high mean accuracy at 86.43%. In contrast, for the modalities
Event Frame and APS Frame, either the TSN or C3D, both
of them get a large DoR (31.86% and 63.20% for the TSN
with Event Frame and APS Frame and 79.94% and 84.34%
for the C3D with Event Frame and APS Frame). We also

witness similar performances with the Normal-ALM-OFF
and Disturbed-ALM-OFF data sets in Table V. In summary,
experimental results show that our system is much more
illumination robust than SOTA deep learning-based methods,
such as the TSN and C3D. The relatively small DoR of our
system demonstrates that the adaption ability, which has been
absent in SOTA methods, has been enhanced.
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VI. CONCLUSION

In this work, we propose an illumination-robust hand
gesture recognition system. For a long time, the effects
of illumination variation and dynamic backgrounds on the
recognition performance are underestimated. State-of-the-art
methods heavily rely on large-volume data to overcome the
performance deterioration caused by the discrepancy between
source data (training) and target data (testing). We tackle this
challenge from the system level with a novel neuromorphic
vision sensor. The key contribution of our work is that we pro-
pose a biologically inspired sensing system for gesture recog-
nition that works in μs temporal resolution. Thus, the latency
is negligible compared with the dynamics of environments.
Our experiment results show that, with a lightweight classifier,
our system achieves comparable performance with state-of-
the-art methods. Moreover, the experiment proves that our
illumination-robust hand gesture recognition system has strong
robustness and adaption abilities that are absent in previous
works. In the future, we will replace the current handcrafting
feature extraction method with convolutional architectures,
such as a fully convolutional network. Besides, although the
primary objective of this study is not the improvement of
recognition accuracy, a simple fusion strategy by fusing the
results from Event Stream and Event Frame can be explored
to increase the overall performance while maintaining the
robustness.
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