IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 2, APRIL 2022

207

KAM-Net: Keypoint-Aware and Keypoint-Matching
Network for Vehicle Detection From 2-D Point Cloud

Tianpei Zou, Guang Chen

Abstract—Two-dimesional (2-D) LiDAR is an efficient alterna-
tive sensor for vehicle detection, which is one of the most critical
tasks in autonomous driving. Compared to the fully developed 3-D
LiDAR vehicle detection, 2-D LiDAR vehicle detection has much
room to improve. Most existing state-of-the-art works represent
2-D point clouds as pseudo-images and then perform detection with
traditional object detectors on 2-D images. However, they ignore
the sparse representation and geometric information of vehicles
in the 2-D cloud points. To address these issues, in this article,
we present a novel keypoint-aware and keypoint-matching network
termed as KAM-Net, which focuses on better detecting the vehicles
by explicitly capturing and extracting the sparse information of
L-shape in 2-D LiDAR point clouds. The whole framework con-
sists of two stages—namely, keypoint-aware stage and keypoint-
matching stage. The keypoint-aware stage utilizes the heatmap and
edge extraction module to simultaneously predict the position of
L-shaped keypoints and inflection offset of L-shaped endpoints.
The keypoint-matching stage is followed to group the keypoints
and produce the oriented bounding boxes with axis by utilizing the
endpoint-matching and L-shaped-matching methods. Further, we
conduct extensive experiments on a recently released public dataset
to evaluate the effectiveness of our approach. The results show that
our KAM-Net achieves a new state-of-the-art performance. The
source code is available at https://github.com/ispc-lab/KAM-Net.

Impact Statement—This article is motivated by the problem of
detecting and locating surrounding vehicles using 2-D LiDAR. Ex-
isting 2-D images-based and 3-D LiDAR-based methods of vehicle
detection are less robust or too expensive. This article proposes a
novel approach which is based on the cheaper but accurate 2-D
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LiDAR. In summary, our method can be considered as a process,
which detects and groups the key-points of L-shape to produce the
bounding boxes of vehicles via deep learning. The experimental
results verify the effectiveness and robustness of the proposed
approach in vehicle detection. For the future work, we will extend
our KAM-Net to other object detection applications.

Index Terms—Artificial intelligence algorithmic design and
analysis, artificial intelligence in transportation, deep learning,
supervised learning.

I. INTRODUCTION

ITH the rapid development of autonomous driving, sur-
W rounding vehicle perception/detection attracts more and
more attention, especially for collision avoidance [1], mobile
parking robots [2], and safer autonomous driving [3]-[5]. Most
existing vehicle perception methods are based on 3-D LiDAR
point clouds [6]-[9] or RGB images [10]-[14]. Generally, 3-D
LiDAR-based and 2-D image-based detectors are suitable for
vehicle detection due to their strong capability of capturing 3-D
structures or semantic information. However, the 3-D LiDAR
is plagued by the expensive price and the 2-D image-based
methods are not robust for environment illumination changing,
which make them cannot fully satisfy the practical application.
To alleviate above issues, some researchers attempt to utilize 2-D
LiDAR as supplementation or alternative. The earlier presented
methods leverage predesigned heuristics [15]-[20] while such
hand-crafted features are less robust and easily confused. Re-
cently, some deep learning networks based on pseudoimage have
been proposed [21]-[23], and a specialized dataset and network
for vehicle detection are proposed by Chen et al. [24] which
achieves great success. However, these deep learning methods
directly utilize the traditional image-based object detection net-
work and ignore the differences between 2-D pseudoimages and
2-Dimages. 1) The 2-D pseudoimages only contain objects edge
information but the traditional convolutional neural network
(CNN) detectors pay more attention to the center of object. 2)
The expressions of vehicles in 2-D pseudoimages are unified
L-shape. Thus, the conventional anchor-based methods which
directly predict the center and orientation angle are hard to in-
terpret and have unsatisfactory performance. And the pointwise
methods [25], [26] which are widely used in dense 3-D LiDAR
point clouds are imprecise in the 2-D LiDAR detection task as
proposed by Chen er al. [24].
To address the above challenges, we propose a 2-D point
clouds-based method named keypoint-aware and keypoint-
matching network (KAM-Net). Considering that the current
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state-of-the-art 3-D vehicle detection algorithms, such as [6]
and [27], tend to use “To BEV’ “(to bird’s eye view) or pillar
method which is a method that transforms 3-D to 2-D, our net-
work follows previous work applying CNN on the pseudoimages
and achieves new state-of-the-art performance by fully exploring
the L-shaped geometric information of pseudoimages of 2-D
LiDAR point clouds.

Our KAM-Netis designed as a keypoint predicted anchor-free
framework, which consists of a keypoint-aware stage and a
keypoint-matching stage. Specifically, after the feature extractor,
our keypoint-aware stage firstly learns to predict the keypoints
and inflection offset of L-shape to harvest candidate vehicle
bounding boxes. Following CornerNet [28], we utilize an Hour-
glass network as a feature extractor to extract descriptive features
and leverage the prediction branches to predict heatmaps for
keypoints. Parallel to the prediction branches, we adopt an
inflection shift branch to explicitly capture and extract the sparse
edge information through using deformable convolution with
supervision. It also learns and predicts the inflection shift, which
is the displacement vectors from endpoint to the corresponding
inflection point. Although predicting the offsets of point clouds
is widely used in 3-D point cloud prediction, here we present
for the first time a method that explicitly captures and extracts
the information of sparse 2-D point clouds. Moreover, different
from normal keypoint predicted anchor-free prediction archi-
tectures, we propose an additional classification branch which
integrates the edge information from the inflection shift branch
and an adaptive keypoints selection strategy to model inference
self-adaption. With the positions of keypoints and the inflection
shifts, the keypoint-matching stage then adopts the spatial re-
lationship of three keypoints to compose an oriented bounding
box with axis. Nonmaximum suppression is finally adopted to
remove duplicate predictions. We conduct extensive comparison
and ablation studies on the recently released dataset [24], and
the results show that our KAM-Net framework achieves a new
state-of-the-art performance.

Our main contributions lie in the following.

1) We propose a keypoint-aware and keypoint-matching net-

work termed KAM-Net, which can better capture the
keypoints and edge information to achieve interpretable
and reasonable offsets prediction in 2-D point cloud
pseudoimages.
We provide a unique anchor-free oriented object detection
architecture, which integrates an adaptive keypoints selec-
tion method and can avoid messy and challenging oriented
bounding boxes regressions.

2)

II. RELATED WORK
A. Two-Dimensional Point Clouds-Based Vehicle Detection

Existing 2-D point clouds-based vehicle methods can be
divided into two categories, nondeep learning methods and deep
learning. The earlier present methods extract the hand-crafted
feature from point clouds with conventional nondeep learning
methods. Most of them leverage predesigned heuristics such as
the L-shape of cars to detect vehicles [15]-[20] or the shape of
legs for human detection [29]-[32]. Considering the occlusion
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problem, in [18], a weighted least-squares method is leverage to
fit the line and right angle corner. In [19], the L-shape fitting is
considered as an optimization problem, and an efficient search
method is proposed to find the optimal solution. However, such
hand-crafted features based methods are less robust and easily
confused when objects are occluded or deformed.

With the development of deep learning, some works based
on convolutional networks have been proposed [21]-[23] for
some specific tasks. Beyer et al. [21] propose a depth prepro-
cessing step and a voting scheme that significantly improves
CNN performance. Beyer et al. [22] provides a small, fully
online temporal window in the network to further boost de-
tection performance. Guerrero-Higueras et al. [23] describe a
tool named PeTra based on an off-line trained full CNN capable
of tracking pairs of legs in a cluttered environment. Recently,
a specialized model based on 2-D point clouds pseudoimage
for vehicle detection has been devised by Chen ef al. [24] and
obtained a good result. The main method adds a cascade pyramid
and a direction detection head on faster R-CNN [33] to better
predict the oriented bounding box. The deep learning meth-
ods are more effective and robust through automatic diversity
feature learning from vast amounts of annotation data instead
of particular hand-crafted features. Although there have been
several works to research 2-D point cloud detection based on
pseudoimage with deep learning, most of them directly apply the
traditional image-based object detection and ignore the differ-
ence between 2-D point cloud pseudoimage and vision-image,
which makes them unsuitable for pseudoimage. Therefore, we
propose our KAM-Net for vehicle detection in the 2-D point
cloud pseudoimage.

B. Image-Based Deep Learning Object Detection

1) Anchor-Based Detectors: Anchor-based detectors try to
predict the category confidence of existing objects in each preset
anchor box and regress the box to match the object tightly.
Anchor-based methods generally fall into two categories, two-
stage and one-stage methods.

Derived from R-CNN [34]-[36], two-stage methods apply
selective search [37] method to judge and regress the region
of interest (Rol) candidates. Two of the most classic methods
are faster-RCNN [38] and mask-RCNN [39]. The former work
employs the RPN to obtain Rols and focuses on the object detec-
tion, while the latter work applies RolAlign instead of RoIPool
and focuses on the segmentation. Compared with two-stage
methods, one-stage methods predict the category confidence and
regress the preset anchor boxes directly. YOLOv2 [40] improves
YOLOvI [41] in several aspects, such as batch normalization,
high resolution classifier, and so on. SSD [42] extracts different
scales of feature maps to detect different scales of objects. Focal
loss [43] is also proposed to solve the remaining problem, the
imbalance number between negative and positive samples.

2) Anchor-Free Detectors: Without preset anchor boxes,
anchor-free detectors try to directly predict the center with four
sides of a bounding box or the keypoints which can group
bounding boxes.
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The first type of detectors predicts the center. To some extent,
YOLOVI1 [41] belongs to this category due to its direct predic-
tion of size and shape. Besides, DenseBox [44], UnitBox [45],
FCOS [46] all belong to this type. Among them, FCOS [46]
considers all the points in the ground truth as positive samples to
cope with low recall, and it has become one of the state-of-the-art
detectors. As the second type, detectors locate and group the
keypoints of the bounding boxes. CornerNet [28] predicts the
position of top left point and down right point of the target object
including the embedding vector of the corresponding point to
group them as a bounding box. CenterNet [47] adds a center
detection into CornerNet. ExtremeNet [48] predicts and groups
five keypoints. RepPoints [52] first proposes the deformable
convolution with supervision to improve the performance.

Unlike most prior detection tasks where the target has a clear
center, the 2-D point clouds pseudoimages are hard to extract
effective knowledge of center from sparse points, which means
the anchor-based approaches and the first type of anchor-free
approaches are not adequate. The second anchor-free methods
are also less leveraged in the oriented bounding box prediction.
To cope with the above problems, we propose our anchor-free
approach adjusted from the second anchor-free method. Further-
more, our approach is also extensible to more general detection
tasks through its symbiotic architecture with existing object
detectors.

III. DATASET PRELIMINARIES

The training and testing of our model are conducted on
the large-scale recent dataset proposed by [24]. As we predict
the keypoints of the bounding boxes, the original dataset and
annotations need to be adjusted to meet our approach.

A. Pseudoimage Preprocess

We convert 2-D point cloud frames into pseudoimages by
projecting points onto the ground plane and resizing them to
512 x 512. To increase robustness, we also apply flip augmen-
tation and rotation data augmentation. We mainly consult the
preprocess method proposed by Chen [24].

B. Annotation Preprocess

To make original annotation suit our method, we pretreat the
annotation without relabeling by defining I-point, D-point, and
A-point. The term “I-point” refers to the inflection point of
L-shape, which is the closest point to the self-vehicle in the
ground truth box. The term “D-point” means the point in the
same direction as the target vehicle axis. The “A-point” means
another endpoint of L-shape. We predict the direction of the
vehicle axis instead of the heading of the vehicle. Because if
we know the vehicle axis, it is easy to predict the heading when
the vehicle is in motion. The final ground truth of each instance
includes I-point (z;,y;), A-point (x4, Y ), and D-point (x4, yq)
as shown in Fig. 1 and (., y., w, h), which are the  and y axis
coordinates of the center of the annotated vehicle bounding box,
and the corresponding width and height, respectively.

Fig. 1. Dataset visualization. Upper row: The visualization of 3-D cloud
points; Lower row: The visualization of 2-D cloud points. The bounding boxes
mean the ground truth. The lines in the bounding boxes are the target vehicle
axes. The dotted circle is the self-car and the arrows are the inflection shifts.
The “I,” “D,” and “A” mean I-point, D-point, and A-point which are additional
ground truths.The lower row shows the corresponding 2-D cloud points zoomed
in to achieve a better view, which causes the self-car to be invisible.

IV. METHODS

As we mentioned before, the anchor-based and center
predicted anchor-free approaches are unsuitable for this task
since there is only edge information in the 2-D point clouds
pseudoimage. To address this challenge, we present our keypoint
predicted anchor-free method, KAM-Net, which can better
capture edge information and has a reasonable architecture. The
framework is presented in Fig. 2. As the framework shows, our
KAM-Net mainly consists of two stages: keypoint-aware stage
and keypoint-matching stage. The keypoint-aware stage predicts
and classifies the keypoints and corresponding inflection shifts.
The keypoint-matching stage proposes two methods to matching
the keypoints and producing the final bounding boxes. In the
following, we will present more details about our KAM-Net.

A. Keypoint-Aware Stage

The Keypoint-aware stage consists of four branches: endpoint
prediction branch, inflection point prediction branch, inflection
shift prediction branch, and endpoint classification branch. In
this stage, the network learns to predict the locations of three
keypoints and the inflection shifts of two endpoints. Then it
leverages the extracting feature from inflection shifts prediction
to adaptively classify and select the two endpoints for determin-
ing the orientation angle.

1) Endpoint Prediction Branch: We feed the pseudoimage
feature map into the endpoint prediction branch to locate the
endpoints. Since itis hard to distinguish the endpoints of L-shape
directly, the endpoint prediction branch predicts the confidences
of both A-points and D-points in one heatmap. The classification
of them is in another branch. As we only predict vehicles, the
heatmap has only one channel to represent the confidences of
endpoints. Other settings are similar to CornerNet [28].

2) Inflection Point Prediction Branch: The inflection predic-
tion branch is similar to the endpoint prediction branch. This
branch predicts the confidences of inflection points, other sets
are the same as the endpoint prediction branch.
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3) Inflection Shift Prediction Branch: The edge information
of 2-D point cloud pseudoimage introduces challenges both
on meaningful feature selection and the disturbance of sim-
ilar objects. Inspired by the articles presented in [50]-[52],
we proposed the inflection shift prediction branch to explicitly
extract the edge information and output the inflection shift via
deformable convolution with supervision. We will describe it in
detail as follows.

Edge extraction module: Unlike the traditional image object
detection, whose main information usually concentrates in the
center of objects, the edge information in 2-D point clouds
pseudoimage is uncertain and deformable. Thus, we construct an
edge extraction module to explicitly capture the variable vehicle
edges, as shown in Fig. 3. Inspired by the articles presented
in [50]-[52], a deformable convolution with supervision is
applied to capture the edge information. Specifically, we first
feed the feature map into the 3 x 3 convolution layer to obtain the
guiding map as f;. Because of both positive and negative vectors

existing, we design f; to predict the offset in the corresponding
position with polar coordinates, which guides the deformable
convolution to capture the edge information. We compute offsets
between ground truth endpoints and inflection points and regard
offsets as targets of f; to supervise in training

ab; = (O(A", T7),d(A", T"))

ai

ab; = (0(D",17),d(D", 1)) (1)

where A, D', and I'* means the A-point, D-point, and I-point
in the feature map, respectively, 6(, ) denotes the angle of the
vector, d(, ) means the distance of two points in the feature map
and « is the supervision shift. We train @ applying smooth L1
loss with the ground truth offset o

1
L, =

=

N
Z [SmoothLi (i, Qai) + SmoothLy (agi, Gg;)]-
i=1

@)
Then, we decoded the offset from polar coordinates to carte-
sian coordinates to fit the traditional deformable convolutional
proposed in [50]. After decoded to cartesian coordinates, another
convolution layer is used to obtain the offset of deformable
convolution. As a result, the deformable convolution tries to
capture and utilize the edge feature.
Inflectional shift: We feed the feature map obtained from edge
extraction module into a new convolution layer to predict the
inflection shift from endpoint to inflection point. For

oriented_bbox' = (Iz', Iy', Dx', Dy', Az", Ay")
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Two matching methods. The “A,” “D,” and “I” mean A-point, D-point, and I-point. “A*” and “D*” mean assumed I-points (decode points) derived by

“A” and “D”. The boxes shown here have been projected to get rectangle. (a) First method, endpoint-matching, whose input is the location of two endpoints and
corresponding inflection shifts. (b) Endpoint-matching allows the “A” and “D” to compose the bounding box alone if the decode point is close enough to each other.
If so, we account the “I*” on the line which consists by “A*” and “D*”. The confidences of “A” and “D” also influence the position of “T*” (“I*’ should be close
to the high confidence int). (¢) Second matching method, L-shaped-matching, whose inputs are the location of A-point, D-point, and I-point and inflection shift.
(d) We only show the box that can form the approximate right-angle. Here are three candidate boxes, and the biggest one will be screened out due to the decode

points is far away from the I-point.

we define the ground truth inflection shift for endpoint in the
pseudoimage as

61211 = (H(Ala Il)a d*(Alvjz))
8g; = (0(D', I'),d" (D", I')) 3)

where A%, D?, and I means the A-point, D-point, and I-point
in the pseudoimage, respectively, d consisted 6(, ) function with
normalization and d*(,) with log() function for narrowing the
range of shift, and A, D, and I means the A-point, D-point, and
I-point on the pseudoimage, respectively. During training, we
apply smooth L1 loss to approach ground truth shift

Ls = 1 i [Smoothh (5@,&“‘) + SmoothlL; (6di78\di)}

N .
n “)
where ¢ denotes prediction.

4) Endpoint Classification Branch: As we mentioned before,
it is hard to distinguish the endpoint directly. In this branch,
we fuse the information of edge from the previous branch to
adaptively select and classify the A-point and D-point. We first
connect the output of deformable convolution to the original
feature map. Then, we apply a convolution layer to classify each
endpoint, which is similar to the heatmap convolution. The main
difference between endpoint classification branch and normal
keypoint predicted anchor-free method is that the latter predicts
the fixed top-k numbers of different keypoints in inference.
While in our method, we select fixed top-k endpoints number,
as the two numbers of A-points and D-points are different, we
only maintain the small one and reduce the big one. For example,
we assume there are m A-points and n D-points in top-k end-
points. Next, only Minimum(m,n) points of both A-points
and D-points will be sent into the keypoint-matching stage.In
this way, we can get a self-adaption model, which can maximize
the advantages of anchor-free approach. We performed ablation
experiments and demonstrated its effectiveness in Section V.

B. Keypoint-Matching Stage

By considering the locations of keypoints and the inflection
shifts of endpoints predicted from the keypoint-aware stage,
it is reasonable to aggregate all the information within the
spatial relationship of L-shape to match and produce the oriented
bounding box. In the keypoint-matching stage, we propose and
fuse two complementary methods to obtain the bounding boxes:
endpoint-matching matches the endpoints using their shifts and
locations to get high recall under less stringent criterion, L-
shaped-matching, which combines locations of three keypoints
and shifts to get high precision even under high standards, is the
supplement of the first methods.

1) Endpoint-Matching: We propose our first matching
method, endpoint-matching, for high recall due to its lower
matching condition. As shown in Fig. 4(a) and (b), endpoint-
matching groups the endpoints to produce the oriented bound-
ing box utilizing the locations of endpoints and corresponding
inflection shifts as input. In this method, we first combine the
locations and inflection shifts of endpoints (“A,” “D”) to generate
assumed I-points which we present as “A*” and “D*”. Then, itis
intuitive and reasonable that two endpoints belonging to a same
bounding box should have the related assumed I-points which
are close to each other

d(D*, A*) x 1 < d(D, A) 5)

where D and A represent the two different endpoints,  indicates
the severity of matching conditions.

If two endpoints satisfy the above inequality, we consider
the A-point and D-point can march a bounding box. We screen
out the combinations which do not satisfy the inequality and
calculate the scores of the bounding box

S =wi(Sh +Sp)/2 (6)
d(A'DY) /K

bi = log( G amipery

) w; =0;/Max(0) @)
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Fig. 5. Method of generating the bounding box. Once we match the points to
form a triangle, we project the I-point to the circle which takes two endpoints
as its diameter to form a right-angle bounding box. The rectangle is the final
output.

where w; is the weight to introduce distance in, Max() is the
maximum, Sp, S4 and Sp is the score of the bounding box,
A-point and D-point. Finally the I-point is inferred on the line
consisted by “A*” or “D*.” To improve the location quality of
I-point we leverage the confidence of A-point and D-point as
weight to decide which point the I-point prediction will close to

SaLocys + SpLocp-
Sa+Sp

where Loc is the location of keypoint.

2) L-Shaped-Matching: The endpoint-matching obtain high
recall due to the lower matching condition. However, the inflec-
tion shift prediction compared with the keypoint prediction is
hard and inaccurate, which means it performs badly in strict
criteria. We introduce the second method named L-shaped-
matching as a supplement method which aims at high precision.
The overview of this method is shown in Fig. 4(c) and (d). This
method is inspired by following observations. 1) Three keypoints
of the same bounding box form a right angle. 2) The assumed
I-points should be close to the predicted I-point. Motivated by
the above observations, we first calculate the vectors from two
endpoint candidates to inflection point candidates with normal-
ization presented as “Al” and “DI”. Then we compute the angle
of “AI” and “DI” as v through vector dot products. Finally, the
v < ¢ would be screened out. Here, ¢ is the lower bound of
angles.

We also screen out the combinations if the assumed inflection
points (A*, D¥) are far from predicted inflection points obtained
by heatmap and enhance the rest. The restrictions are more strict
than the endpoint-matching, and the output uses I-points, A-
points, and D-points, directly. That means for the same box,
the predictions of L-shaped-matching and endpoint-matching
are different, and the prediction of L-shaped-matching will get
more significant scores than endpoint-matching generally. As
we mentioned before, it is reasonable as the endpoint-matching
usually cannot obtain the accurate location of I-point and L-
shaped-matching can be a supplement.

3) Generating Bounding Box: However, after two matching
methods, we usually cannot obtain a right triangle. To address
this challenge, we maintain two endpoints but project the inflec-
tion point to the circle which takes two endpoints as its diameter
to refine the original bounding box as shown in Fig. 5.

Locy-

®)
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C. Optimization Objective

Points detection loss and local offset loss which use variant
focal loss are defined as CornerNet [28]

pl] l g(pij) if Yij = 1
Ldet N )
;; { 1— i) (pij)*log(1 — pij) if yiy # 1
&)
LN
Logs = N kz::l SmoothL1Loss(0;;,0;;) (10)

where NN is the number of keypoints in a pseudoimage, and «
and [ are the hyper-parameters which we set 2 and 4 based on
experience. And p;; and o;; are the score and location offset of
keypoint at location (4, ) in predict heatmap and offsetmap. We
use the two different ground truths of endpoint and inflection
point to calculate the two different Leget, Lidets Leofys, and
Lioyy, respectively, and leverage them to supervise the two
prediction branches distinguishing the endpoint and inflection
point. The classifier of endpoints also leverages the same detec-
tion loss Lyt as L.s. Stated thus, total training loss is obtained
by summing the above loss items

Liotar = Leder + Leoff + Liget + Lioff + BLOL + ’YLS + Les

11
where we set 5 = 0.05 and v = 0.5. Following CornerNet [28],
we add intermediate training and supervision, but we only
choose the second prediction as output.

V. EXPERIMENTS AND EVALUATIONS

In this section, we conduct extensive experiments on a re-
cently released 2-D point clouds benchmark dataset [24] to
evaluate the performance of our proposed KAM-Net.

A. Experimental Setup

1) Dataset: In [24], there are 10 522 annotated frames of
point clouds scans captured from nine types of scenes, in-
cluding campus road, merging into traffic, T-junction, express-
way, country road, crossroad, exiting traffic, parking lots, and
underground garage. To permit a fair comparison, we follow
the article presented in [24] to divide the dataset into train,
validation, and test parts, each with 3604, 212, and 424
scans, respectively. For ablation studies and comparing with
other approaches, we train on the training set and report results
on the test set.

2) Evaluation Metric: Following the article presented
in [24], our experiments and evaluations are conducted with the
same metrics that the predictions are evaluated by combining
different kinds of vehicle center location and axis direction angle
errors. Only when a prediction satisfies both location and angle
errors, it will be considered accurate. We apply these metrics
instead of ToU to calculate the AP and introduce the AP@d&0
to represent the AP under d&6 criterion where d is the center
location error and 6 is the axis direction angle error. The unit of
distance is meter and the unit of angle is degree.
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TABLE I
OBJECT DETECTION PERFORMANCE COMPARISON

Model AP@0.15(%) AP@0.3(%) AP@0.15&5(%) AP@0.15&15(%) AP@0.3&5(%) AP@0.3&15(%)
Cascade Pyramid RCNN [24] 81.2 89.8 70.6 79.4 76.4 88.2
Faster RCNN [33] 80.6 89.4 -1 - - -
SSD [42] 74.4 81.6 - - - -
Retinanet [43] 82.0 90.9 - - - -
Hybrid Resnet Lite [24] 60.5 78.9 40.5 53.4 68.2 76.3
CornerNet [28] 84.3 87.4 - - - -
KAM-Net 90.0 91.5 80.5 89.0 81.7 90.3
1We do not use angle error criterion because original baseline models like faster RCNN, Retinanet, and CornerNet are not capable of predicting box orientations.
The significance of bold entities in Table I is to emphasize which method in each column (i.e. evaluation indicator) achieves the best performance.
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Fig. 6. (a) PR curves of different center positioning and vehicle axis direction
error criterion. (b) PR curves of different center positioning error criterion only,
without vehicle axis direction.

3) Implementation Details: In the matching part, we set x
to 4, ¢ to 80°. In the training process, our model is trained on
an 8GB RTX 2070 GPU with a batch size of 2, and the model
is trained with stochastic gradient descent (SGD) for 30 epochs
with the initial learning rate of 0.01. The learning rate is decayed
after every 5 epochs, and the weight decay and momentum are
0.0001 and 0.9. Four branches are both trained in an end-to-end
training neural network, and no other special training strategies
are used. During training, we apply the data augmentations
mentioned before, and training this detection network on one
RTX 2070 GPU takes about 20 h.

During testing, our KAM-Net firstly predicts the locations of
keypoints and inflection shifts. Here we only select Lop50 scored
endpoints and top25 inflection points, then classify the endpoints
with the edge information. Finally, we perform matching oper-
ations and apply soft-NMS with 0.4 IOU.

B. Method Comparisons

Our precision-recall curves under different center position-
ing and axis direction error criterion are shown as Fig. 6(a).
The precision-recall curves under different center positioning
error criterion only are also shown in Fig. 6(b). We report
the results of vehicle detection on the test set of [24], as
presented in Table I. As given in Table I, our KAM-Net achieves
around AP@0.15&15 of 89.0%. Compared to the state-of-
the-art anchor-based model proposed by Chen et al. [24], our
KAM-Net achieves a 2% AP@0.3&15 improvement and a

Fig. 7. Method of generating the bounding box. Once we march the points to
form a triangle, we project the I-point to the circle which takes two endpoints
as its diameter to form a right-angle bounding box.

significant improvement (10%) under more stringent evalua-
tion criteria. As for inference time, KAM-Net takes about 58
ms per frame in 2080 ti, i.e., above 17 Hz, which is little
slow than cascade pyramid RCNN [24] but still acceptable and
real-time.

C. Ablation Study

The ablation studies are given in Table II to exam the validity
of our modules, and try putting forward as convincing explana-
tions as possible.

1) Effectiveness of Matching Methods: To analyze the con-
tribution of two matching methods, we exam two models that
generate bounding boxes by one matching method. As a re-
sult, the endpoint-matching model performs better under low
criterion, while the L-shaped matching performs better under
rigid criterion. The reason is that as we mentioned before, the
I-points inferred by shifts in endpoint-matching are inaccurate.
The L-shaped-matching method has high precision because it
uses the output I-point of the inflection prediction branch as the
input.

2) Effectiveness of Endpoint Discrimination: The endpoint
discrimination can be removed for the task without orientation
estimation. Here, we try to verify the effectiveness of our ar-
chitecture by comparing with the architecture which fuses the
endpoints classification into the endpoint prediction branch.
Specifically, we set up an architecture fusing two branches as
shown in Fig. 7, each branch predicts the position and inflection
shift of different kinds of endpoints. The AP decreases 8% and
the decline is more severe in rigid criterion even after refinement.
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TABLE II
SUMMARY OF EXPERIMENT AND ABLATION STUDIES

Model Coordinates Matching Endpoint classification  Inflection Shift ~AP@0.15(%) AP@0.15&5(%) AP@0.15&15(%)
KAM-Net Polar Fusion! Classification branch v 90.0 80.5 89.0
KAM-Net Polar Endpoint-Matching? Classification branch v 89.6 80.2 88.6
KAM-Net Polar Lshaped-Matching? Classification branch v 87.2 81.0 85.9
KAM-Net Polar Fusion -5 v 86.0 69.1 81.0
CornerNet - Lshaped-Matchingt* Classification branch - 86.5 74.5 80.0

1,2,3Represent the matching method in the inference module.
41t means the matching method is similar to the L-shaped-matching, but different.
5]t means the endpoint classification branch integrates into the prediction branch.

The significance of bold entities in Table II is to emphasize which method in each column (i.e. evaluation indicator) achieves the best performance.

TABLE III
ABLATION RESULTS FOR MATCHING WITH DIFFERENT K AND ¢

Method AP@0.15(%) AP@0.3(%) AP@0.15&5(%) AP@0.15&15(%) AP@0.3&5(%) AP@0.3&15(%)
k=1 89.1 90.8 79.3 87.9 80.3 89.2
K=2 89.9 91.4 80.2 88.7 81.3 90.1
K=3 90.1 91.8 80.4 88.8 81.5 90.1
k=4 90.0 915 80.5 89.0 81.7 90.3
K=25 90.2 91.4 80.9 89.1 81.7 90.1
K=06 89.8 90.9 81.4 89.3 82.2 90.3
k=T 89.8 91.2 80.9 88.8 81.7 89.9
¢ = T75° 88.9 90.4 80.2 87.9 81.4 89.0
¢ = 80° 90.0 91.5 80.5 89.0 81.7 90.1
¢ = 85° 89.0 90.7 80.1 88.0 81.5 89.4

Setting ¢ = 80° when we experiment , and setting £ = 4 when we experiment ¢.

(@) (b)

Fig.8. Two wrong detection results by CornerNet [28]. There are some wrong
matching pairs and cannot be restrained by NMS. The model may wrongly
combine the points of two similar and close objects.

That is because due to removing our classification branch, the
self-adaption approach also is removed. Meanwhile, through
our observations, there are also some incorrect classifications
for the endpoints without edge information from deformable
convolution.

3) Deformable Convolution and Inflection Shift: To verify
the effectiveness of our inflection shift, we rewrite the code of
CornerNet [28]. To make it suit this task to predict the oriented
bounding box, we add a module to inflection point with an
embedding vector. As CornerNet [28] does, we use “push” and
“pull” loss to make sure the three points which belong to the
same bounding box have similar embedding vectors. We also

apply the endpoint classification branch without deformable
convolution. Without inflection shift means that the endpoint-
matching method can’t be used. As given in Table II, our method
based on inflection shift performs better than CornerNet [28].
By observing the output, we also find CornerNet [28] generates
a few false corner pairs because of similar embedding vectors
caused by similar appearance as shown in Fig. 8.

4) Ablation on the Parameters r and ¢: We use different
values of k in the keypoint-matching stage. The performance
varies as given in Table III. A big k£ means strict matching
condition. Matching with such a £ may miss many potential
instances, but some slightly larger values perform better at strict
criteria. On the contrary, a small k increases the risk of matching
wrong keypoints into one, but some slightly smaller values
perform better at loose criteria. We empirically set k to 4. We
also test different values of ¢ and set ¢ to 80°.

D. Qualitative Results

We present our prediction result as shown in Fig. 9 with
oriented bounding boxes and vehicle axes. The points are the
encoded pixels from 2-D point clouds, the boxes with lines in the
upper row are ground truth and the boxes with lines in the middle
and lower row mean prediction bounding box. It is apparent that
most prediction bounding boxes fit the targets well, and our
model can classify other confusing objects.

As shown in Fig. 9, compared to our model, the main dis-
advantage of the anchor-based model is that it tries to find a
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(a) (b)

(c) @

Fig. 9. Detection results. Upper row: Ground truth boxes in yellow. Middle row: Predicted bounding boxes generated by cascade pyramid RCNN in green. Lower
row: Predicted bounding boxes generated by our model in green. Compared with cascade pyramid RCNN, our model predict are more accurate.
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Fig. 10.  Detection failure cases demonstrated. Upper row: Ground truth boxes in yellow. Lower row: Predicted bounding boxes generated by our model in green.
(a) False positive. (b) Missing detection. (c) Missing detection. (d) Wrong detection.

center which is hard to get useful information. Our experiment
also evaluates that the more challenging the evaluation standard
becomes, the more remarkable improvement we will get. It is
apparent from this Table I that our model obtains a more accurate

location of center. The prediction process is more “visual,” rea-
sonable, and credible. Because we apply the inflection shift and
rational inference process instead of embedding vector, we can
achieve oriented bounding box prediction which is less achieved
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in anchor-free approaches . It also overcomes the problems that
anchor-free textcolorredapproaches, such as CornerNet [28], do
not perform well when the similar objects of the same category
are concentrated. The messy regression problem in the oriented
bounding box detectors is also be avoided. Besides, our archi-
tecture allows the model to adjust the number of bounding boxes
that can make full use of the anchor-free approach.

However, in some minor cases, the model predicts false posi-
tives on some L-shape confusing objects and false negatives on
some blurry edges. As shown in Fig. 10, the missing detection
may be the biggest problem due to our theory design. When the
speed of vehicle reaches a level or the LiDAR scanning rate is
not enough, the L-shaped would be distorted, which may cause
our model to miss some detections. Nevertheless, as we can see,
most of the predictions are still right and tight.

VI. CONCLUSION

In this article, we propose the KAM-Net, an anchor-free
based method for vehicle detection from 2-D LiDAR point
clouds pseudoimages. Our KAM-Net can explicitly capture the
keypoint and edge information from hollow 2-D pseudoim-
ages and achieve more interpretive and robust detection results
compared to existing anchor-based methods. To avoid messy
and challenging oriented bounding boxes regression existed in
current methods, we integrate an adaptive candidate keypoints
selection strategy to our KAM-Net. Extensive experiments on a
recently released public benchmark demonstrate our KAM-Net
superiority over current state-of-the-art methods. This method
can theoretically be popularized to other similar detection works
of oriented bounding box, such as scene text detection which
has a clear direction. For future work, we will also explore
the possibility of utilizing the multiview-based parameter free
approach proposed in [53] for vehicle detection from groups of
feature points.
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