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Abstract
Phenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for
tracking and communicating these changes. The phenological observation network across Germany is operated by the National
Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly
decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from
map interpolation.We studied uncertainties in interpolatedmaps from decreasing phenological records, by comparing long-term trends
based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolatedmaps
in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncer-
tainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year−1

for spring and summer, while late autumn and winter showed a delay of around 0.1 days year−1. Throughout the year, temperature
sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology
by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers
indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining
phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological
patterns across Bavaria and their links to climate change–induced temperature changes.

Keywords Phenological season .Map interpolation .Multiple linear regression . Inversedistanceweighting .Leave-one-outcross
validation . Citizen science

Introduction

Phenology plays an important role in ecosystem processes and
functioning. It is one of the clearest and most responsive bio-

indicators of climate change (IPCC 2007; Menzel et al. 2006),
which is particularly vivid besides temperature measurements
(Anderson et al. 2013). Phenological data especially by ob-
servers on the ground and in situ measurements have been
collected worldwide, contributing to a series of long-term phe-
nological records for climatic research studies such as trend
analysis and validation for remote sensing and imaging
(Izquierdo-Verdiguier et al. 2018), as well as for pollen and
agrometeorology (Chuine et al. 2004; Migliavacca et al. 2012)
and citizen science, since the majority of observers in these
networks are volunteers (citizen scientists) (Lehmann et al.
2018). Ground observations are valuable since they start from
observing responses of individual species, later on sum chang-
ing patterns or even (warming) trends from the long-term se-
ries, and finally end up with assessing consistency among
dominant phenology (Badeck et al. 2004). Based on these
data, many studies have shown the attributable link from cli-
mate variability to phenology, particularly referring to the
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occurrence dates of earlier (i.e., advanced) flowering and other
spring onset phases (e.g., Chmielewski et al. 2004; Menzel
et al. 2020; Rafferty et al. 2020). For instance, Rosenzweig
et al. (2007) summarized in the IPCC Working Group II
Fourth Assessment Report a clearly advancing trend of 0.23
to 0.52 days year−1 for spring phases in the 30 years prior to
that study. In Europe, the spring and summer phenological
events were earlier by 0.25 days year−1 on average from
1971 to 2000 (Menzel et al. 2006), while Menzel et al.
(2020) found a slightly less advancing trend of 0.24 days
year−1 for leaf unfolding and flowering in Germany but de-
tected more portions of negative trends (around 90%) during
1951–2018. At the same time, prolongation of the phenolog-
ical growing season has been identified not only for trees and
shrubs (Fridley 2012) but also for fruit trees and crops
(Chmielewski et al. 2004; Chmielewski and Rötzer 2002;
Menzel et al. 2020).

Systematic phenological observations and networks have
beenwell established over the globe with particularly numerous
historical records across Europe (Schnelle 1955) such as the
International Phenological Gardens (IPG) of Europe
(Chmielewski et al. 2013; Menzel and Fabian 1999) and the
Pan European Phenological (PEP725) database for a joint
European infrastructure (Templ et al. 2018). In Germany, the
National Meteorological Service (Deutscher Wetterdienst,
DWD) is responsible for managing the observation network
which is well equally distributed over whole Germany
(Bissolli et al. 2005), maintaining the long-term phenological
database (Kaspar et al. 2014), as well as presenting data visu-
alization to the public (Kaspar et al. 2013). However, the ob-
servation numbers in the voluntary phenological network have
experienced a decreasing trend since 1966 with a maximum of
approximately 3700 observers (Bissolli et al. 2005;Wittich and
Liedtke 2015). Similarly, the number of observers in other net-
works, such as in Austria, is also declining and requires con-
certed action. Large concerns should be addressed on such
declining records, as long-term time series with adequate sam-
ple sizes are fundamental for systematic statistical analysis, as
well as consistency and homogeneity in plant phenology across
space and time (Brugnara et al. 2020; Bush et al. 2017).
Climatic parameters, especially temperature as the main driver
for phenology (e.g., Cramer et al. 2014; Fu et al. 2015), are also
variable across space and time so that the interactive relation-
ship can be better studied if desirably long and widely distrib-
uted phenological data are gathered.

In order to evaluate consequences from decreasing num-
bers of observations, mapping phenology via spatial interpo-
lation could be considered, which allows visualization of phe-
nological changes from the point to regional (continental) per-
spective (Gerstmann et al. 2016). Regarding individual
ground observations, spatial interpolation or extrapolation
must be performed when analyzing the phenological phases
in space due to the importance of regional peculiarities (Dose

and Menzel 2004; Jochner et al. 2013). Meanwhile, map in-
terpolation is also able to validate and provide phenological
reference for single observations, as large-scale climatic cir-
culation patterns usually dominate the local phenological re-
sponses considering additionally geographical influences of
latitude, longitude, and altitude (Bissolli et al. 2005; Ziello
et al. 2009). At the same time, the map interpolation provides
more insights into likely phenological trends when gaps in
phenological observations hamper a solid analysis, since with
few observations throughout long-term periods only the
resulting fragmentary trend would not be meaningful nor rep-
resentative (Bush et al. 2017). Furthermore, reliable phenolog-
ical information derived from map interpolation with confi-
dence is beneficial for models in predicting future scenarios
(Migliavacca et al. 2012) and climate reconstruction (Ge et al.
2014), also asWolkovich et al. (2012) suggested to implement
interpolated observation data for building and evaluating ex-
perimental data–driven models.

The two main research questions of this study are (1) how
is the performance of the phenological map interpolation im-
pacted by varying number of observations/observers and (2)
how do the long-term phenological time series spatially and
temporally change when comparing observations versus inter-
polated products. The interpolated product was produced fol-
lowing a similar interpolation technique developed by the
German Meteorological Service (Deutscher Wetterdiens,
DWD) for climatological and phenological maps (Maier
et al. 2003; Müller-Westermeier 1995; personal communica-
tion withW. Janssen). Ten phenophases representing the main
phenological seasons were used based on the available phe-
nological time series from 1951 to 2019 for the Bavarian
region of Germany (Kaspar et al. 2014). Statistical analyses
were performed for evaluating the map interpolation and its
uncertainty using derived gridded mean onset dates and cor-
responding standard deviations, together with the root-mean-
square errors (RMSE) calculated for each interpolated
phenophase. The phenological trends as well as correlation
analyses were calculated and compared between observations
and interpolated maps. At the end, a selected observation sta-
tion was compared for local agreements together with the
satellite-derived normalized difference vegetation index
(NDVI) and a Shiny app proposed to support volunteer ob-
servers in getting access to these types of analyses.

Materials and methods

Phenological observations

The phenological data are based on observations in Germany
from 1951 to 2019 collected from DWD. Both annual and
immediate reporters contribute to the phenological network
by submitting occurrence dates throughout the whole
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vegetation period either once a year or immediately after-
wards. Observations should be done at least twice or three
times a week depending on the season. Only annual observa-
tions were considered in this study for the complete coverage
of the most important species as well as clearly visible
phenophases in the development cycle (Kaspar et al. 2014).
Ten combinations of species and phases, i.e., phenophases,
were used, representing ten phenological seasons as selected
indicators for all other phenological events (see Table 1). The
phenological growing season was consequently described as
the period from first spring (flowering of forsythia) to winter
(leaf fall of pedunculate oak) for Germany (Kaspar et al.
2014). Data for nine phenophases were available for the full
time period (1951–2019) and only for the phase leaf fall of
pedunculate oak (= winter) the period 1961–1990 was lack-
ing. The detailed observation instructions and automated data
quality controls had been performed by DWD, and therefore
no further data filtering was made (Deutscher Wetterdienst
1991; Kaspar et al. 2014; Zimmermann and Polte-Rudolf
2013).

Mapping phenology

The spatial interpolation method for mapping phenology in
this study is based on Hopkins’ “Bioclimatic Law”, proposing
that changes in phenological onsets were dependent on lati-
tude, longitude, and elevation (Chen 2017; Vitasse et al.
2018). In consideration of computation time and regional rep-
resentation, the phenological interpolated maps in this study
were produced for all ten phenological seasons in Bavaria of
Germany from 1951 to 2019, following an interpolation rou-
tine of climatological and phenological maps by DWD. First
of all, annual phenological observations in day of the year
(DOY) were retrieved together with the geographical informa-
tion of the observers’ sites. The whole area of Germany was
divided into 30 overlapping equal-sized circles (five in

latitude by six in longitude) with a radius of 1.95° (see
Supplementary Figure S1). Multiple linear regressions were
fitted for the onset date DOY depending on topographic ele-
vation h, longitude lon, and latitude lat for each circle based
on the phenological observations covered.

DOY ¼ a0 þ a1*hþ a2*lonþ a3*lat;

where the corresponding regression coefficients a0/a1/a2/a3
were assigned to the centered point of each circle, and later
used for inverse distance weighting (IDW) interpolation (with
power of 1) for all available grid points based on their sur-
rounding circles involved (possibly two to four circles, see
Supplementary Figure S2). The interpolation was performed
with the multiple linear model in terms of interpolated regres-
sion coefficients and based on the digital terrain model
(Digitales Geländemodell Gitterweite 1000 m, DGM1000)
with grid width of 1000 m for the topographic altitude for all
grid points, and information regarding the mapping bound-
aries (from state to district level) was derived and mapped
based on the administrative areas (Verwaltungsgebiete,
VG1000), which were available on http://www.bkg.bund.de
(©GeoBasis-DE/BKG 2020). Due to the lack of phenological
observations for elevated regions (area size less than 1% of
Bavaria), this study only focuses on the areas with elevations
lower than 1000 m above sea level (a.s.l.) with 70,609 1-km
grid points.

Interpolation validation

Interpolated phenological maps were validated by the root-
mean-square errors RMSE. To assess the multiple regression
fits of circles as well as the predictive interpolation perfor-
mances, the leave-one-out cross validation LOOCV was used
for all 30 circles by calculating the circle-specific RMSE. The
multiple regression models for each circle were trained on all
available phenological observations in the corresponding

Table 1 Number of observations
and uncertainty metrics for
interpolated phenological seasons
in Bavaria, Germany, in 2019.
The number of observations (n) in
Germany and Bavaria,
respectively, are shown. The
leave-one-out cross validation
uncertainty (RMSELOOCV) is
shown as gridded averages with
one standard deviation

Phenological season Phenophase ID n RMSELOOCV

(days ± 1 × sd)
Germany Bavaria

Prespring Hazel (flowering) 113-5 969 191 9.4 ± 0.8

First spring Forsythia (flowering) 109-5 988 192 6.3 ± 0.3

Full spring Pedunculate oak (leaf unfolding) 132-4 897 182 7.8 ± 0.3

Early summer Black elder (flowering) 129-5 956 188 8.0 ± 0.4

Midsummer Large-leaved lime (flowering) 130-5 866 173 8.1 ± 0.4

Late summer Apple early ripeness (fruiting) 311-29 652 135 12.7 ± 0.4

Early autumn Black elder (fruiting) 129-62 887 179 10.7 ± 0.5

Full autumn Pedunculate oak (fruiting) 132-62 613 103 11.8 ± 0.4

Late autumn Pedunculate oak (leaf coloring) 132-31 860 168 12.6 ± 0.6

Winter Pedunculate oak (leaf fall) 132-32 837 164 14.9 ± 0.5
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circle except for the ith one. The test errors were averaged
after all observations had been excluded once as
RMSELOOCV and assigned to the centered points.

RMSELOOCV ¼ 1

n
∑n

i¼1 Pi
−ið Þ−Oi

� �2
� �1

2

;

where Pi
(−i) denotes the predicted DOY excluding the ob-

served DOY at point i, while Oi denotes the observed DOY.
The resulting RMSELOOCV were further spatially interpolated
across all grid points following the same IDW routine as for
multiple linear regression coefficients of phenological
observations.

We also studied the potential influence of reduced obser-
vation numbers on the uncertainty of interpolated phenology
in a bootstrap method. This was done by randomly selecting
certain percentages of the available phenological observations
(10%, 20%, …, 90%) and then calculating the respective
RMSELOOCV for each interpolation circle. For each percentage
level, the random selection and calculation of RMSELOOCV
were repeated 1000 times to derive an averaged
RMSELOOCV. No manual controls of the spatial distribution
(whether equally distributed or not) of the phenological obser-
vations in each interpolation circle were done in order to mim-
ic the real observing situation.

Statistical analyses

The interpolated phenological onset dates were visualized as
anomalies which were determined as onset dates subtracted
from the gridded 2019 values averaged over all available grid
points (70,609) in Bavaria, for each of ten phenological sea-
sons. The long-term phenological trends for each phenologi-
cal season across Bavaria, Germany, from 1951 to 2019 were
calculated and compared between in situ observations (Obs)
and interpolated maps (Interpol) by using the Theil-Sen slope
estimator (Sen 1968; Theil 1992; Xu et al. 2018). For interpo-
lated maps, all available grid points (70,609) were extracted
from 1951 to 2019 and treated separately as individual time
series, while only observations with time length ≥ 30 years
were considered (except for winter ≥ 15 years).

The Spearman’s rank correlations were calculated for onset
dates of all ten phenophases in relation to respective air tem-
perature. Grids of monthly averaged daily air temperature (2
m) over Germany from DWD Climate Data Center (CDC)
were used, being aggregated into an averaged air temperature
raster layer of grids (same as interpolation) from the tempera-
ture of the current, first, and second preseason months of the
onset dates for each phenophase.

A selected observation station with a nearly full phenolog-
ical record over 1951–2019 for the studied phenophases,
Burgbernheim (Ph) (49.45° N, 10.32° E, 350 m a.s.l.), was
chosen to show the local differences between the phenological

observations and interpolated values regarding R2 of simple
linear regression. For this site, ground-level phenological on-
set dates were compared with satellite indices start of the sea-
son (SOS) and end of the season (EOS) using phenological
seasons first spring and winter, since high correlations were
found between green-up and flowering dates (Delbart et al.
2015) as well as between threshold NDVI value and the end
date of the growing season (Chen et al. 2001; Liang et al.
2011). The 16-day MODIS maximum value composite
NDVI data (MOD13Q1 product) was downloaded for the
years 2001–2019 using the MODISTools package in R
(Tuck et al. 2014). The NDVI data has a spatial resolution
of 250 m and is corrected for atmospheric and bidirectional
reflectance anomalies (Didan 2015). Additionally, the corre-
sponding pixel reliability information layer that describes the
overall pixel quality (e.g., good, marginal, snow/ice, and
cloudy) was downloaded using the R package. Only those
observations marked as good and marginal were retained.
Missing data in time series were filled using the mean annual
profile values, otherwise known as climatology (Kandasamy
et al. 2013; Zhang et al. 2017). The NDVI time series was then
smoothed and interpolated to daily values using a LOESS
function (Hufkens et al. 2019). Subsequently, the start and
end of season were calculated using the widely cited half-
amplitude method (Fisher et al. 2006; Misra et al. 2016;
White et al. 2009).

All analyses including map interpolation and visualization
were performed using R programming language (R Core
Team 2020).

Results

Annual numbers of phenological observations

Across 69 years, there were in total 6576 phenological annual
observers (both active and inactive) all over Germany, with
1171 being located in Bavaria. In 2019, for whole Germany,
only 1034 observers have actively reported phenological
events of the studied phenophases shown in Fig. 1. All ten
phenological seasons exhibited similar changes in annual
numbers of observations. The number of annual observations
increased from the beginning until 1960s to 1970s (max: n =
3231, flowering of black elder in the reference year 1966),
while it decreased afterwards, more considerably in the late
1990s. The decreasing trends were weakened since 2000 but
still traceable until the end of the record. From 2001 to 2019,
simple linear regressions on the annual numbers of observa-
tions resulted in similar decreasing trends for all phenophases,
ranging from −28.4 observations year−1 (fruiting of black el-
der) to −19.6 observations year−1 (fruiting of early ripening
apple varieties).
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Interpolated phenological seasons and uncertainties
in Bavaria 2019

The spatially interpolated maps for the Bavarian region of
2019 revealed gridded mean onset dates for the ten phenolog-
ical seasons ranging from DOY 53.9 to 313.7 (see Fig. 2). In
prespring, the earliest spots in Bavaria are found in the warm
areas of lower Franconia in the northwest. For first to full
spring, the areas in lower Bavaria in the southeast speed up
in their development until late summer when these areas near-
by the Danube River are the first in their seasonal develop-
ment. In full autumn, the southeast of Bavaria is characterized
by the earliest onset dates, whereas in late autumn and winter,
higher elevated areas in the Alps and the Bavarian Forest to

the east experience earliest leaf coloring and leaf fall. Thus, in
spring and late autumn, temperature variations with elevation
may be responsible for the spatial variation between low lying
areas in the northwest and highest altitudes in the Bavarian
Forest and the Alps. On the other hand, the spatial variability
of phenology varied with seasons, as the highest standard
deviation was found in prespring (8.5 days) and the lowest
in winter (3.9 days). And as a result, the phenological growing
season from first spring to winter could be calculated from the
interpolated maps lasting around 230 days in 2019, which was
nearly 30 days longer than the growing season in 1951.

In Table 1, the lowest interpolation uncertainty was found
for first spring (6.3 days) and the maximum for winter (14.9
days). Early phenophases (prespring to midsummer) always

Fig. 1 Annual numbers of phenological observations for ten phenological seasons in Germany from 1951 to 2019 collected from the German
phenological observation network (DWD). Loess smoothing is applied to all numbers showing decreasing trend since 1970s

Fig. 2 Anomalies in days as interpolated phenological onset dates
subtracted from gridded means averaged over all available grid points
(70,609) in Bavaria, Germany, 2019 for each of ten phenological
seasons. Numbers in brackets present the gridded averaged onset dates

in DOY ± one standard deviation. Negative values are shown in red for
advances of onset dates and positive values in blue for delays as
compared with the respective Bavarian gridded means
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exhibited lower values than later phenophases (late summer to
winter). The respective averaged RMSELOOCV for early and
later phenophases showed a difference of 4.6 days, which
was much larger than the spatial variability of RMSELOOCV
w.r.t. one standard deviation of each phenophase (0.3–0.8
day) showing a clear seasonal difference.

Phenological changes from 1951 to 2019

Figure 3 shows that both trend slopes (Obs and Interpol) were
almost identical in their means, with slight differences (less
than 0.05 days year−1) for all phenophases. The long-term
trends exhibited more negative (i.e., advancing) for earlier
phenophases than for later phases, as well as indicating posi-
tive changes (i.e., delayed phenological dates) for late autumn
and winter only.

Considering the significance of trends, the proportions of
significantly negative trend slopes were between 80 and 90%
of the total negative trends, where the positive respective pro-
portions varied from 16 to 65% for phenophases from
prespring to full autumn (see Fig. 3). No clear patterns in
proportions were found for late autumn and winter with the
positive mean trends (around 0.1 days year−1 for both sea-
sons). Interestingly, the trend slopes derived from interpolated
grids did not only follow the above-described patterns but also
presented a much more enhanced picture. Most of the signif-
icant proportions amounted to nearly 100% in the overall
trend slopes (prespring to late autumn), and even in winter a
clear difference (6%/46%) could be seen. With such clearly
significant signs of trending, the interpolated maps seem to be
very suitable for showing climate change in the regional (or
potentially global) scale with respect to change in phenology.

Correlation with temperature

From prespring to full autumn, the mean air temperature ex-
hibited on average negative correlations with the phenological
onset dates (valid for both observations and interpolated maps
in Fig. 4), while in late autumn and winter, positive correla-
tions were found (for interpolation, late autumn: 0.60 mean
rank correlation; winter: 0.26). For spring and summer sea-
sons, strong negative correlations were derived especially for
interpolated phenology spanning around −0.90. And the cor-
relations become weaker as phenological seasons progressed
(for interpolation, late summer: −0.64; early autumn: −0.53;
full autumn: −0.36).

Impact of observation numbers

Even though the numbers of observations were not related
to the interpolation uncertainty for early and late
phenophases (see Table 1), we were still interested in
how many data (i.e., percentages of data) is needed for
producing comparable good-quality interpolated pheno-
logical maps, since station density is the key for uncer-
tainty in observation-based gridded data sets (Herrera
et al. 2019). Figure 5a clearly underlines that the perfor-
mance of our spatial interpolation would remain quite
stable (~6.3 days) until including only 40% of the pheno-
logical observations were reached. When smaller percent-
ages were selected, RMSELOOCV would start to increase,
evidently reaching 13.1 days with 10% of selected data.
Based on the available numbers of observations for first
spring in 2019 in Table 1, this finding implies that there
wil l be a higher risk of not well capturing the

Fig. 3 Distribution of Theil-Sen regression trend slopes (in days year−1)
for both observations (green, Obs, time length ≥ 30 years, ≥ 15 years for
winter) and interpolated gridded maps (black, Interpol), based on pheno-
logical observations in Bavaria, Germany, from 1951 to 2019 (except for
winter from 1961 to 1990 due to a lack of data, see Fig. 1). Numbers in the

header refer to the mean trends. Red blocks stand for proportions of
statistically significant (p < 0.05) negative trends in all negative trends
and blue for proportions of statistically significant (p < 0.05) positive
trends in all positive trends
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phenological changes when only around 300 observers
were existing all over Germany (60 in Bavaria).
Concerning the current decreasing trend in German phe-
nological observing network (−26.3 observational site
year−1, see Fig. 1), such circumstances would be met in
around two decades.

Furthermore, we looked more into the temporal changes
in the historical time series of first spring regarding
RMSELOOCV and compared them with not only annual
numbers of observations but also mean spring temperature
for which gridded averaged air temperature from February

to April was used. As shown in Fig. 5b, only at the begin-
ning of the time series, the extremely high RMSELOOCV

values (19.1 days) fit well with the lowest number obser-
vations available. Afterwards, the effect of observation
numbers on the uncertainty seemed to be limited, since
the RMSELOOCV continually exhibited a slightly decreasing
trend with fluctuations. On the other hand, a continuing
warming trend was observed in spring temperature, and it
can also be observed that the temperature extremes could
influence the RMSELOOCV to some extent, but whether it is
positive/negative/lagged still remains unclear.

Fig. 4 Violin plots of Spearman’s rank correlations between phenological onset dates (Interpol—interpolated maps vs. Obs—observations) for ten
phenological seasons and averaged monthly air temperature (current, first, and second previous months) in Bavaria, Germany, from 1951 to 2019

Fig. 5 a Gridded averaged RMSELOOCV (in days) of increasing
percentages of phenological observations randomly selected from 10 to
100% for first spring (forsythia flowering) in Bavaria, Germany, 2019. b
Gridded averaged RMSELOOCV (in days), gridded averaged spring

temperature (mean Tspring for February, March, and April, in °C), and
annual number of phenological observations for first spring in Bavaria,
Germany, from 1951 to 2019
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Case study on point phenology

Taking a closer look on how mapping phenology differs from
in situ observation on the point scale, a selected observation
station Burgbernheim (Ph) with best possible data coverages
for most of the phenological seasons was chosen and present-
ed in Fig. 6a, while a further comparison for the start of season
and the end of season with the remote sensing technique was
made. Results mirrored RMSELOOCV (see Table 1); again bet-
ter agreements between observed and modeled data can be
seen in earlier phenophases (R2 ≈ 0.8) than in later ones
(R2 ≤ 0.4). And the interpolated phenology always exhibited
less variation than the phenological observations as supported
by the highly consistent phenological trends shown in Fig. 3.
Interestingly from full autumn to winter, the observed pheno-
logical events appeared to be systematically earlier than the
interpolation. Regarding the satellite-derived NDVI indices,
in general, good agreements were reached with the ground-
level phenology indices (see Fig. 6b). For the start of season
(first spring for observation and interpolation), peaks and

troughs in the phenological signals were almost perfectly cap-
tured by the satellite, such as in the years 2002, 2006, 2013,
2014, and 2017.

Discussion

Spatial variability in map interpolation

The interpolated phenological maps indicated a coherent spa-
tial distribution of the interpolated phenological DOYs from
prespring to full autumn across the Bavaria region and its
elevational gradients. Comparable spatial differences were
modeled by Gerstmann et al. (2016) for shooting (DOYs
100–130) and yellow ripening (DOYs 180–220) of winter
wheat across Germany where these Kriging-interpolated phe-
nological phases also showed delays of plant development in
mountainous and coastal regions. Since the interpolation
method applied uses regression coefficients frommultiple lin-
ear regression models which most importantly account for the

Fig. 6 Comparison of a interpolated onset dates (DOYInterpol) with
phenological observations (DOYObs) for all phenological seasons from
1951 to 2019 and of b the normalized difference vegetation index (NDVI,

SOS—first spring/EOS—winter) with ground-level phenology indices
(DOYObs and DOYInterpol) from 2001 to 2019 at the observation site
Burgbernheim (Ph) (49.45° N, 10.32° E)
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elevation, this spatial difference proves to be reasonable.
However, late autumn and winter exhibited not only the op-
posite spatial patterns in DOYs but also interestingly de-
creased spatial variabilities (w.r.t. standard deviations) com-
pared with early phenophases. Schnelle (1979) already men-
tioned that autumn phenological events were difficult for map
interpolation because no consistent relationship with altitude,
latitude, and longitude existed. Such patterns could be ex-
plained by the insufficient responses (or nonlinearity relation-
ship) of plant developments to topographic conditions or pa-
rameters varying with topography in later phenophases
(Hwang et al. 2011), which was also supported by the higher
interpolation uncertainties (12.6/14.9 days) observed for late
autumn and winter, respectively. Moreover, it seems to be
irrelevant or at least cannot be fully explained by the numbers
of observations across phenophases. Except for late summer
(n = 652/135) and full autumn (n = 613/103), there are
throughout 800–1000 phenological observations in Germany
and 160–200 in Bavaria for spatial interpolation, respectively.
Besides, a lack of phenological data for regions above 1000 m
is also critical for the uncertainty assessment since interpola-
tion in mountainous regions was evaluated to be associated
with high uncertainty according to Gerstmann et al. (2016).

Interpolation performance

Regarding the performance of interpolated phenology, similar
uncertainty estimations were derived by other studies. Ziegler
et al. (2020) used meteorological variables in a regional cli-
mate model to predict the flowering of forsythia with the
RMSE of 8.6 days, while prediction uncertainties in terms of
Kriging standard deviations for shooting and yellow ripening
of winter wheat mainly ranged from 4 to 8 days (Gerstmann
et al. 2016). When comparing phenological trends with other
studies, a good accordance could also be found with trends
especially of the leaf unfolding and flowering phases in
Germany (Bissolli et al. 2005; Menzel et al. 2020) as well as
within Europe (Fu et al. 2014; Jin et al. 2019; Menzel et al.
2006). However, major differences between phenological ob-
servations and interpolated products were revealed w.r.t. data
distribution as well as proportions of statistically significant
trends (p < 0.05). The trends on observational data exhibited
much higher fluctuations across stations than the gridded in-
terpolation across Bavaria. This result clearly underlines that
the differences among temporal trends of single phenological
observers/stations could be considerable due to two likely
reasons: shorter (30+) time series instead of the full 1951–
2019 series and observer sites with considerable microclimatic
variation, perhaps also switch in observed individuals. In con-
trast, the spatial interpolation approach with multiple linear
regression models was advantageous by transferring single
observations into central integrations and then assigning the
theoretically phenological onset date back to each grid point.

Even more in situ observations were basis of this interpola-
tion, as records from regions outside Bavaria which still fell
into the modeled circles were taken into consideration.
Therefore, from this perspective, the interpolated phenological
maps are more representative for a broader scale (from point
to region). Furthermore, a number of observations seem not to
be decisive for interpolation performance yet until 10–20%
observations remained, but spring temperature might play a
role in the interpolation uncertainty especially from the ob-
served inter-annual variations shown in Fig. 5b. In any case,
such short-term variations in temperature (or anomalies)
should be considered properly, since Herrera et al. (2019)
already stated that the interpolation uncertainty would bemore
dependent on the number of stations if more significant inter-
nal variability exists in the mapping grids.

Temperature dependence on phenophases

We observed a contrasting phenological response to temper-
ature between early and later phenophases. This mirrors pre-
vious findings in the literature that spring onset is advanced by
the prominent increase in preseason temperatures and autumn
coloring is delayed by warm summers (Asse et al. 2018;
Estrella and Menzel 2006). Similarly, Bissolli et al. (2005)
reported correlation coefficients varying from −0.6 to −0.8
for all selected spring and summer phases in Germany and
Slovakia, while a range of −0.3 to −0.7 was calculated for
spring and summer phases in Poland by Jatczak and
Walawender (2009). On the other hand, Jiang et al. (2020)
detected a significantly positive correlation between leaf fall
end dates and autumn preseason mean air temperatures at
stations in temperate northern China from 1981 to 2012.

The resulting correlations showed the predominant influ-
ence of temperature to the early phenophases by their higher
responses to mean temperatures as well as by the higher spa-
tial variability of the phenological onset dates and lower inter-
polation uncertainty compared with later phenophases. This is
also proved by the better adaptation of early phases to frost
temperature (Scheifinger et al. 2003). The strong negative
correlation coefficients together with high proportions of sig-
nificant advancing phenological trends also clearly pointed
out global warming as the main forcing driver for phenolog-
ical changes, as supported by Rosenzweig et al. (2008) with
similarly high percentages (~90%) of phenological data con-
sistent with significant changes in warming found in Europe.
Additionally, speaking of phenological observations, only the
correlations for prespring and first spring showed comparable
strong relationships as the pixels of the interpolated maps,
while the correlations for other seasons exhibited quite
scattered responses. Such similar prominent patterns for
spring phases were also observed by Menzel et al. (2006).
One potential reason is that certain local climate
conditions—thus in situ (single) observations—might not

1385Int J Biometeorol (2021) 65:1377–1390



well correspond to gridded averaged temperatures (Bissolli
et al. 2005). However, given that temperature measurements
cannot fully match the specific locations of phenological ob-
servations in the regional scale, only such interpolated tem-
perature products were used and compared in this study.
Further studies could focus on whether stronger correlations
would occur when using station-wise temperature records and
additional climatic variables such as moisture status, i.e.,
droughts, etc., equally mirroring the topographic effect, or
whether more significant nonlinear response could be detected
for phenological observations with more extreme environ-
ments as stated in Jochner et al. (2016).

Local or regional representation

We also compared phenological seasons based on observa-
tions and interpolated products at a single station
Burgbernheim (Ph), which matches the respective goodness
of fit of 83% and 32% for the beginning and the end of grow-
ing season in Rötzer and Chmielewski (2001). The systemat-
ically earlier occurrences of the later phenophases in observa-
tions suggest the representation of interpolated maps is still

insufficient, at least the triggering factors for phenological
development are less accurately spatially interpolated than
spring temperature. If more observations were available, ide-
ally in the nearby or even the same interpolated grid, for the
interpolation circle and thus better training the multiple linear
regression model, the performance of spatial interpolation
would be clearly improved. From the satellite perspective,
the perfect match in phenological start of season derived
from phenological and NDVI indices agrees well with
Delbart et al. (2015) that the interannual variations in observed
phenological onsets matched with green-up dates. The end of
season (winter), on the other hand, shows a more similarly
consistent pattern with the interpolated maps despite certain
extreme values in the time series (deviations of 50–100 days
in advance). These lower extremes were more likely related to
phases such as cereal harvesting and intercropping, hinting
towards a lower representation of regrowth signal due to cov-
erage mismatch of spatial resolution problem. In contrast to
the start of season, satellite-based end of season has been
widely reported to be poorly corresponding with ground ob-
servations (Bórnez et al. 2020; Misra et al. 2018). Bolton et al.
(2020) reported a higher RMSE between satellite- and

Fig. 7 Screenshot of the R Shiny app implemented in the BAYSICS web for mapping phenology in Bavaria, Germany (available soon at https://www.
portal.baysics.de/)
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phenocam-based end of season as compared with start of sea-
son, while Stöckli et al. (2008) reported low and sometimes
even negative correlations between ground- and satellite-
based end of season. The issue of matching phenology esti-
mates of pixel averaged areas from satellite to ground obser-
vations of species-specific phenology, when compounded
with the less understood autumn phenology, only increases
the uncertainty in our models (Estrella and Menzel 2006;
Gallinat et al. 2015; Stöckli et al. 2008). However, satellites
provide data with a more consistent spatial and temporal cov-
erage than ground-based observations that are often difficult
to collect and are available with intermittent gaps. With the
given knowledge, one could expect to have a more regional
representation from the interpolated maps rather than the ob-
servations themselves.

R Shiny app for citizen scientists

Visualizing the phenological changes is important and needs
further contributions, especially with unforeseen climatic
changing conditions as well as losing contributions from reg-
ular phenological observers. An insightful implementation of
citizen scientists and decision-making communities is of great
potential to gain insights attributing to climate (Delbart et al.
2015). An online interactive platform “PhenoInterpol” (see
Fig. 7) was implemented for citizen science project
BAYSICS—Synthesis-Information-Citizen Science Portal
for Climate Change Research and Science Communication
in Bavaria (Batsaikhan et al. 2020). It provides functionalities
of visualizing phenological interpolated maps of desired
phenophases across Bavaria (updated regularly with more
species and years), collecting voluntary phenological data
from users, evaluating long-term trends and preseason tem-
perature correlations with phenological time series, and more.
Most platforms only include volunteer observers in the first
step of the whole process: data collection (e.g., Beaubien and
Hamann 2011; Fuccillo et al. 2015). To keep observers inter-
ested and increase data quality, it is important to integrate
them also in other scientific processes, e.g., asking research
questions and analyzing and playing with data (e.g., Bonney
et al. 2016; Kennett et al. 2015). Through tools and offers like
these, volunteers grasp and appreciate the impact of their ob-
servations and feel valuable (Irwin 2018). Thus, they are not
only volunteer observers but also become citizen scientists.
Their voluntary work is appreciated and communicated back
as important for science, making them more motivated to par-
ticipate in the long run. An open communication through op-
portunities like research questions is started, leading to more
transparency as well as an exchange of knowledge. More va-
rieties of phenological measurements (such as phenocams)
and methodologies such as breakpoint detection (Brugnara
et al. 2020) and circular statistics (Rafferty et al. 2020) could

further contribute to improving the mapping phenology and
observation network.
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