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A B S T R A C T   

Individual tree crown (ITC) segmentation supports numerous applications in forest management and ecology. In 
the latter context, special attention is dedicated to the study of angular reflection effects, caused by the inter
action of incident sunlight with a canopy. High precision airborne analysis of these effects requires multi-view 
sensor systems and multi-view ITC segmentation. In particular oblique view image segmentation is difficult 
and has been addressed by numerous template based methods. This contribution identifies persistent short
comings in the state of the art and tackles the problem by a multi-step workflow utilizing the digital surface 
model (DSM), derived from multi-view stereo data. A slightly revised version of the previously published 
levelset-watershed segmentation of the DSM is presented as the first step. In the second step, the contour of the 
visible part of a candidate tree in images with known orientation is obtained by means of ray casting and concave 
hull calculation. The method was tested on a deciduous, mixed and coniferous plot, whose aerial images were 
acquired using the 3K camera system in 2018 at Kranzberg Forest, Bavaria, Germany. Accuracies were assessed at 
hand of human operator generated groundtruth tree tops for the DSM as well as images with zenit angles of 
approximately 0, 45 and 52 degrees. The resulting F1-scores, averaged over the plots, are 
0.909/0.902/0.886/0.876 for the DSM/near-nadir-/oblique-/maximum-oblique-images, respectively.   

1. Introduction 

Individual tree crown segmentation emerged in forest inventory and 
management (White et al., 2016). It is the foundation to collect single 
tree parameters (location, height, crown diameter) (Popescu et al., 
2003) and to harness object based spectral analysis (Asner and Martin, 
2009). Moreover, it enables to derive structural parameters, to estimate 
biomass (Koch, 2010) and to map carbon (Coomes et al., 2017) on the 
stand level and beyond using allometry (Jucker et al., 2017). The present 
article is focusing on the segmentation of individual tree crowns in 
oblique view aerial images. The need arises in forest ecology, where 
directional reflection properties are studied (Chen and Leblanc, 1997; 
Asner, 2000; Schaepman, 2007). Specifically, leveraging the approxi
mation of the bidirectional reflectance distribution function (BRDF, 
(Nicodemus et al., 1977)) of a single tree requires its segmentation from 
several, in particular also oblique views. The principle of the proposed 
method can be brought forward to also differentiate sunlit and shaded 
sections of canopies (Martin et al., 2020). 

LiDAR is already offered as operational solution in forestry applica
tions and is able to capture the tree structure below the canopy. 
Nevertheless, tradeoffs between cost and quality are discussed (Jaku
bowski et al., 2013). Aerial optical imagery is considerably less expen
sive and thus to be favoured regarding feasible repetition rates of 
campaigns, based on a fixed budget. Frequent measurements are 
necessary to capture phenological behaviour, which has early been 
demonstrated to facilitate species discrimination in airborne, very high 
resolution images (Key et al., 2001) and later on using satellite imagery 
(Elatawneh et al., 2013). Moreover, special multicamera photogram
metric systems such as 3 K (with one nadir and two off-nadir looking 
cameras) can increase the performance of dense stereo reconstructions 
(Leitloff et al., 2014). Finally, off-nadir LiDAR measurements severely 
affect forest structure metrics (Liu et al., 2018). 

Also oblique image acquisition is known to introduce problems, 
caused by projective - geometric effects, such as occlusions and scale 
effects, as well as (radiometric) BRDF effects (Remondino and Gerke, 
2015; Gerke and Vosselman, 2016). On the contrary to the fact that the 
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BRDF poses a problem to e.g. orthoimage generation, its knowledge 
allows to draw conclusions about the properties of a surface, such as 
roughness and constitutent materials (Chen et al., 2003). In canopy 
spectroscopy, vegetation parameters are inferred by inversion of canopy 
spectra (Ferreira et al., 2018). Closely related and also known as ray
tracing in computer graphics, forward simulations, e.g. (Ward, 1992; 
Gastellu-Etchegorry et al., 2017), use also BRDF-databases of materials, 
e.g. (Hueni et al., 2009), which are often built using ground-based 
goniospectrometer measurements (Fairchild et al., 1990; Roosjen 
et al., 2012). 

Correct BRDF approximation requires accurately delineated tree 
crowns and knowledge of shadow areas within the boundaries. Conse
quently, segmentation should take into account the following effects, 
which are exemplified in Fig. 1:  

• Occlusions, that originate from the object itself or from other objects 
in its vicinity, i.e. the camera’s line of sight to a given object point 
intersects another object point that is closer to the camera. Those are 
even more critical, since neighbouring objects likely have similar 
color and texture.  

• Cast shadow, that - again - originates from the object itself or from 
objects in the vicinity, but may occur as superposition of both cases 
as well. Geometric (hard) shadow points can be determined as an 
occlusion along the sun’s line of sight towards the point in question. 
However, since trees exhibit scattering, and due to directional- 
hemispheric illumination, hard shadow detection is insufficient to 
detect the true tree crown boundary in the presence of shadows. 

It should be noted, that the present contribution is solely dedicated to 
occlusion handling. Besides occlusion and shadow casting, the vari
ability of the shape of a tree crown under different projections poses an 
additional difficulty: While the transformation of a shape on a plane due 
to a change of the camera parameters can be derived using the 
homography condition (Zhuo et al., 2019), this does not hold for tree 
contours. One could argue that a limited number of projections is 
generally sufficient to reconstruct a 3D object up to a limited level of 
detail. But this would require knowledge about the scene content and in 
particular the symmetry properties of the contained objects in advance. 

1.1. Related work 

Numerous approaches for ITC detection and segmentation have been 
developed in the past decades. This section is focused on fully automatic 
methods that explicitly address oblique views or appear suitable for 
adaptation. 

Raytraced Templates. The first and widely adopted idea is the tem
plate matching (TM) approach of Pollock (Pollock, 1994; Pollock, 1996): 
A tree crown model is defined as the generalized ellipsoid of revolution 
(EOR). In the supervised training step, instances of the model, i.e. a set of 
EORs with fixed parameters, are generated. Rendering image templates 

presumes initialization of the sensing geometry, scene irradiance, tree 
crown shape and size, reflectance and scattering properties of trees as 
well as background intensity. Template matching is realized using least 
squares, while weighting pixels by distance from the crown edge and 
testing lack of fit as well as significance of the regression. The optimal 
configuration of resulting recognition instances is found using Simulated 
Annealing, whose objective function avoids overlaps and prefers high 
correlations. (Larsen and Rudemo, 1998) extends the Pollock model in 
the aspect of modeling the ground around a tree by a plane, such that 
shadow that is casted by a tree itself, whose extent exceeds the ground 
projected area of the tree, is included in the template image. The 
precondition of a priori known number of trees for the matching pro
cedure in this approach was attempted to overcome by template voting 
(Larsen, 1999). 

Stochastic Models A Marked Point Process (MPP) is used in (Perrin 
et al., 2005): Tree objects are modeled as the marks, namely ellipses 
parameterized by the location, the lengths of the principal axes and its 
orientation. A prior term penalizes overlaps and rewards regular align
ments. The latter requires an additional hard constraint on the minimum 
distance, to ensure stability. The likelihood term (of the image data 
given a configuration) is modeled as a gaussian mixture of foreground 
(bright pixels) and background (dark pixels). Energy minimization is 
performed using Reverse Jump Markov Chain Monte Carlo (RJMCMC) 
to sample the MPP, while it incorporates a Simulated Annealing scheme. 
(Descombes and Pechersky, 2006) make use of a pairwise Markov 
Random Field (MRF) with three labels, indicating background, vegeta
tion and a tree centre, respectively. A pairwise MRF is a tuple of random 
fields which is markovian, but each one alone is not. This allows to 
segment images without model approximation of the prior, as compared 
to hidden MRFs (Pieczynski and Tebbache, 2000). The model is defined 
by two concentric ellipses, which represent the tree crown and its sur
rounding background, respectively. The prior term is the sum of a 
penalty for overlapping inner ellipses and a data-fitting term which 
distinctively evaluates the inner and outer ellipsis. As in the previously 
mentioned work, the likelihood is modeled as gaussian mixture, and 
similarly optimization is carried out using MCMC embedded into 
Simulated Annealing. Perrin et al. (2006) extend their previous work 
with concentric ellipses as well as ellipsoids with shadows, that are 
projected onto a plane along the direction of the sunlight. The data term 
is adapted by means of the Bhattacharyya distance. MPPs and MRFs are 
utilized in (Tolpekin et al., 2010 and Ardila et al., 2011), respectively, 
for superresolution mapping of trees in very high resolution (VHR) 
satellite imagery of urban areas. 

Variational Methods. Multitemporal tree crown monitoring using 
coregistered red and near infrared (NIR) band images is performed in 
(Ardila et al., 2012). For the first image of the time series, the procedure 
is as follows: Initially, tree crowns are detected by fitting an elliptical 
Gaussian to vegetated regions in the normalized difference vegetation 
index (NDVI) image. The vegetated regions are found by aggregating 
pixels, starting from peaks in the NDVI image. The gaussian filter pa
rameters are adapted to the area of the resulting regions. Ellipses are 
then simultaneously optimized using localized active contours (Lankton 
and Tannenbaum, 2008). (Polewski et al., 2015) reports on dead tree 
detection in colour infrared (CIR) imagery. Candidate regions are 
detected using a bayesian three component gaussian mixture model 
(GMM), corresponding to living vegetation, dead trees and shadows. In 
more detail, dead tree pixels are those, whose maximum component of 
the a posteori probability (found through expectation maximization) 
corresponds to the a priori probability of the so called “snags“. There
after an iterative levelset segmentation with shape and intensity priors is 
carried out. The priors are introduced by bayesian reformulation of the 
energy term (Cremers, 2007), while the training shapes are represented 
by the eigenmodes of their signed distance functions (Tsai et al., 2003). 

Fig. 1. In both views, shadow and an illuminated parts of a tree can be 
distinguished. In the oblique view, trees become subject to occlusion. 
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Starting points are determined as the pixels with highest dead tree 
propability within circles (sized according to training shapes) that cover 
the candidate regions. 

Miscellaneous. In (Gomes and Maillard, 2014; Gomes and Maillard, 
2016; Gomes et al., 2018), raytraced templates (without consideration 
of scattering (Whitted, 1980)) are integrated into MPPs in order to 
detect semi-isolated trees in satellite imagery. A pulse coupled neural 
network (Johnson and Padgett, 1999) gave good results in (Li et al., 
2009) for trees in a sparsely vegetated savanna utilizing CIR imagery, 
but was unable to decompose tree clusters. (Zhao et al., 2018) compares 
two convolutional neural networks (UNet (Ronneberger et al., 2015), 
MaskRCNN (He et al., 2017)) for UAV images of a plantation. 

Comparing local maxima detection, valley following, region- 
growing, template matching, scale-space theory and techniques based 
on stochastic frameworks for six different forest types (from homoge
neous plantation, area with isolated tree crowns, to an extremely dense 
deciduous forest), (Larsen et al., 2011) concludes that none of the al
gorithms alone could successfully analyse all different cases. Still, region 
growing (Erikson, 2003) gave the best results for unmangaged, dense, 
mixed forests, which are in the focus of our investigations. 

Summary. Prior developments do not model occlusions originating 
from neighbouring trees explicitly. The same holds for shadows, which 
are at most modeled as casted by a single tree on flat and level ground. 
Thus, topography of the canopies is ignored, which is insufficient for 
densely forested areas. Another problem is texture handling, which is 
only addressed in (Pollock, 1994). However, the regression analysis 
seeks to find the texture induced matching error merely on the basis of 
grey values, whereas texture clearly has a pattern with spatial variation 
and its saliency depends on the local illumination. All these non- 
modelled issues give rise to ambiguities, whose remedial measures, e. 
g. maximization of an objective function or template voting only have 
limited success. On the one hand, TM, MPP and MRF methods only 
detect trees and do not produce precise boundaries. On the other hand, 
in spite of good demonstrated performance in respective study sites, it 
seems tedious to devise suitable training strategies for levelsets with 
priors or CNNs regarding multiple views of heterogenous areas like 
unmanaged forests. 

In the field of computer graphics, the rendering of 3D scenes, 
including oblique views and occlusion detection is a well studied 
problem. First applications in photogrammetry and remote sensing can 
be traced back to e.g. (Dubayah and Dozier, 1986). But also more 
recently these techniques have proven useful for pointcloud analysis 
(Alsadik et al., 2014) and object detection (Ji et al., 2019). This moti
vates a two step approach for oblique view delineation, which is to be 
presented. 

1.2. Contribution 

This paper presents the first part of methods to overcome the 
mentioned shortcomings in a geometric fashion. The underlying idea is 
to segment the DSM in the first step and to deduce visible contours of 
each segment for a given image with known orientation parameters.1 

Comparing oblique images or disparity maps of oblique stereo pairs with 
corresponding DSMs, tree shapes appear to be less complex in the latter. 

Simple projection of segmented DSM boundaries into an oblique 
image is not correct, as demonstrated in Fig. 2. Fig. 2a shows a profile 
view of boundary point projection: Simple transformation of P0 
(occluded) and Q0 (self-occluded) leads to false points in the image, 
namely projections of P1 and Q1. The visible range P2Q2 of T is spanned 
by the intersections of the outermost rays through C with T, that do not 
yield intersections closer to C. The projection of P1 falls inside the 
projection of T′ and outside the projection of the visible range of T. The 
projection of Q1 falls inside the visible projected range, leading to visible 
points outside the simple projected boundary. If no occlusion was pre
sent, the visible projected range would contain the simple projected 
range. Instances of the bespoke cases can be observed in Fig. 2b. 
Different scenarios can be pictured by moving the camera point C, 
jointly with the associated simple projection lines of P0,Q0 (and inter
section points P1,Q1) as well as visible projection lines of P2,Q2. 

To our knowledge (Kempf et al., 2019) and this work are the first 
contributions since 2007 that employ DSMs generated from airborne 
optical images (noteworthy the first-ever with a multiview camera sys
tem) for ITC segmentation of unmanaged, densely forested areas. Using 
multistereo 3 K-DSMs, the developed segmentation method, which was 
inspired by (Wang et al., 2004) gives promising results. Therefore, 
concerns uttered in (Straub, 2003) about degrading results due to low 
resolution/quality stereo DSMs should be reconsidered. 

Compared to an attempt to directly segment tree crowns in oblique 
images, the two step approach has some important advantages: Even if 
only disjoint areas of a tree are visible in the oblique view, the knowl
edge that these are part of the same tree is preserved. Besides, calcu
lating visible contours is computationally less expensive than most 
segmentation methods that are conceivable for oblique view segmen
tation. This should be emphasized, as BRDF construction requires sam
pling of the hemisphere in reasonably small azimuth and zenith angles, 
which in turn demands to process large amounts of the image stack. 

Fig. 2. (a) Simple (red) versus visible (green) boundary transformation for the 3D boundary (blue) of an ellipsoidal tree model (black). (b) An oblique image (zenit 
angle ≈ 40◦) with projected DSM boundaries (white) and visible projected points (coloured). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

1 Strictly speaking, the image is not segmented and hence the method is 
termed delineation. 
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1.3. Overview 

Section 2.1 describes the camera system and the processing chain for 
DSM generation as well as the test dataset. The workflow for oblique 
delineation is depicted in Fig. 3: DSM segmentation is presented in 
Section 2.2 and composed of Preprocessing (Section 2.2) to produce the 
preprocessed DSMP, Active Contours without Edges (ACWE) (Section 
2.2.1), Blob Detection (Section 2.2.2) and Marker controlled Watershed 
Transformation (MCWST) (Section 2.2.3). Visible Boundary Determi
nation (Section 2.3) is subdivided into Mesh/triangulated irregular 
network (TIN) Construction (Section 2.3.1), Visible Point Determination 
(Section 2.3.2) and Hull Computation (Section 2.3.3). Sections 3.1 and 
3.2 present the results and accuracy assessment of DSM segmentation 
and Visible Boundary Determination, respectively. The paper concludes 
with a discussion and evaluation of DSM Segmentation and Visible 
Boundary Determination in Sections 4.1 and 4.2, additionally pointing 
out directions for future research. 

2. Material and methods 

2.1. Sensor and data 

2.1.1. Sensor and processing chain 
The airborne optical sensor system 3K (Leitloff et al., 2014) is 

composed of three Canon EOS 1Ds Mark III and provides multi-view, 
very high resolution (VHR) images (one nadir, two off-nadir) with 

several possible setups (e.g. along track, across track) in the aircraft. This 
allows to generate VHR DSMs. Details about the calibration and the 
accuracy assessment of the camera system may be found in (Kurz et al., 
2007 and Kurz, 2009), respectively. Image pre-orientation is accom
plished by direct georeferencing using global navigation satellite sys
tems (GNSS) and intertial data. With overlaps found, scale invariant 
feature transform (SIFT) feature-points are detected, matched, filtered 
using random sample consesus (RANSAC) and refined using least 
squares. The final orientation is obtained using self calibrating bundle 
adjustment of the validated (SIFT-) tie points. The point cloud is 
calculated using semi-global matching (d’Angelo, 2016) for small- 
baseline images, with an overlap of at least 60%. The DSM is derived 
using interpolation as suggested in (Hirschmuller, 2008). 

2.1.2. Test data 
The test data was acquired in 2018 at Kranzberg forest, Bavaria, 

Germany. At the flying height of 1000 m, the 3K camera system covers 
an area of 2560 × 480 meters with a ground sample distance of 13 cm. 
Altogether, an area of approximately 4700m × 9100m was captured 
with the 3 K camera system, which was set up in along track mode, i.e. 
one forward, one nadir and one backward looking camera.2 The 

Fig. 3. Workflow for individual tree delineation in oblique images (for acronyms, see the main text of Section 1.3).  

2 It is well known that the highest anisotropic effects occur along the sun’s 
principal plane. Therefore, it is necessary to take flight time, camera pointing 
vectors and flight trajectories into account when planning the campaign. 
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resolution of the DSM is 20cm. Three plots (deciduous, coniferous, 
mixed), sized 91.2m × 91.2m each, were selected in the vicinity of the 
KROOF project (Pretzsch et al., 2020). Referring to Fig. 4, these regions 
of interest (ROIs) were selected using the DSM before the corresponding 
image extents for 3 different zenit angles each (Table 1) were calculated 
by projection of the ROI corners. The experimental crane of the KROOF 

site, which is located in the central mixed area has the geographic co
ordinates (latitude, longitude) 48◦25′10.0′′N, 11◦39′40.3′′E. Further
more, three towers are situated in the test site. 

The accuracy of the DSM was tested using manually marked tree tops 
in the image and the transformed coordinates of the DSM (Kempf et al., 
2019). A comparison of nominal and actual transformed tree top 

Fig. 4. From left to right: deciduous, mixed and coniferous test plots in the vicinity of the KROOF area. From top to bottom: ≈ 0◦/45◦/52◦ zenit angle images (with 
overlaid DSM-ROI) and the corresponding DSMs. 
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markers showed a deviation (maximum absolute error) of less than 0.5 
m. The DSM is given in a 2D raster representation with height h ∈ N and 
width w ∈ N, where each cell holds a real height value and its center 
corresponds to a UTM map coordinate. Formally, the height mapping 
using the cell indices is denoted as DSM : Ω→R,Ω = {0,…,w}× {0,…,

h}, and is written DSM[x,y] ∈ R. Whenever map coordinates are referred 
to, DSMUTM[x, y] is used. 

2.2. DSM segmentation 

Vast amounts of methods for the segmentation of optical image or 
LiDAR based DSMs have been published. An in-depth review would be 
desirable, but is out of the scope of the present article. Kempf et al. 
(2019) compared two variational approches to correct or circumvent 
that contours resulting from watershed segmentation on the inverted 
DSM are located in the middle of (potentially large) gaps between 
canopies, respectively. The approach that performed best combines 
Active Contours without Edges (ACWE) and Marker controlled Water
shed Transformation (MCWST), henceforth abbreviated ACWE-MCWST, 
is revisited in the following. 

The underlying idea was to improve (Wang et al., 2004) in using a 
non-local instead of a local method to create an approximate object 
mask prior to marker detection and watershed transform. Single steps of 
the algorithm (illustrated in Fig. 5) are enumerated below, utilizing the 
following definitions: The masking operation on raster arrays using an 
equally sized boolean matrix B : Ω→{0, 1} is notated as DSM|B =

[DSM[x,y] : B[x,y] = 1]. Elementwise evaluation of a matrix on a number 
field A ∈ Kw×h with respect to a relational operator ∘rel : K × K→{0, 1}
is written as A∘relk ∈ {0,1}w×h

, (k ∈ K).  

1. Global thresholding of the DSM, followed by morphological closing 
yields DSMthr ∈ {0,1}w×h.  

2. Local histogram equalization (LHE) of DSM|DSMthr=1 produces DSMlhe.  
3. Gaussian smoothing of DSMlhe gives DSMgs.  
4. ACWE segmentation of DSMgs yields the levelset ϕ*

DSM ∈ {0,1}w×h.  
5. Blob detection on DSMgs|ϕ*

DSM=1 results in the set MBlobs = {(xi, yi,

radiusi) : i ∈ N}.  
6. MCWST on DSMgs|ϕ*

DSM=1, using the markers M = {(x, y) : (x, y,
radius) ∈ MBlobs}. 

The final result is a label array, denoted LAB, consisting of fore
ground labels of MCWST and the background label. The boundaries of 

the foreground segments are denoted ΓLAB. 
A canopy height model (CHM) is actually required for the first step. 

The test area is relatively flat and the ground height is found manually in a 
preliminary examination of the data. The global threshold is set according 
to the minimum crown base height (e.g. 10 meters). Morphological 
closing with a circular structuring element with radius of 5 pixels (≈ 1m) 
is used to eliminate trees that are considered too small or noise. In the 
resulting foreground area DSM|DSMthr=1, LHE (Gonzalez and Woods, 2001) 
is carried out, with the mask size set such that it is larger than the ex
pected minimum gap between two trees (here: 20 pixels ≈ 4m). This is 
followed by one pass of gaussian smoothing with σ = 1 of DSMlhe and 
results in DSMgs. Preprocessing the DSM as just described enables the 
application of ACWE to DSMgs, globally. Without LHE, the DSM violates 
the assumptions for the piecewise constant image model too heavily. 

2.2.1. Active contours without edges 
Let C(q) : [0,1]→R2 be a parametric curve, represented (cf. (Osher 

and Sethian, 1988)) as zero-levelset C = {(x, y) : ϕ(x, y) = 0} and let 
D : Ω→R+ the preprocessed DSM. Chan and Vese (2001) solve the 
piecewise constant case of the Mumford-Shah functional, which ap
proximates D as D̃ : Ω→{v1, v2}, (v1, v2 ∈ R2) with edges C. The asso
ciated energy functional is additively composed of a fitting and a 
regularization term. The fitting term is 
∫

(x,y)∈Ω:ϕ(x,y)<0

⃒
⃒D(x, y) − v1

⃒
⃒2dxdy +

∫

(x,y)∈Ω:ϕ(x,y)>0

⃒
⃒D(x, y) − v2

⃒
⃒2dxdy, (1)  

where v1 = average({D(x, y) : (x, y) ∈ Ω ∧ ϕ(x, y) < 0}), v2 =

average({D(x, y) : (x, y) ∈ Ω ∧ ϕ(x, y) < 0}). The regularisation term is 
μ|C|, where |C| is the length of the boundary and μ ∈ R. The goal is to 
find v1, v2,C that minimize the sum of fitting and regularization term. 
The levelset representation of C assures topology adaptivity during the 
contour evolution. Variational formulation requires the heaviside 
function 

H(ϕ) =
{

1, ϕ ⩾ 0
0, ϕ < 0, (2)  

such that one can rewrite 
⃒
⃒C
⃒
⃒ =

∫

Ω

⃒
⃒∇H(ϕ)

⃒
⃒, where ∇ is the gradient 

operator. Here, the initial levelset ϕ0
D̃ 

is allocated as a chessboard pattern 

(Getreuer, 2012). The obtained final levelset ϕ*
D̃ 

serves as object mask in 

the forthcoming steps. 

2.2.2. Blob detection 
In general, a blob denotes a bright feature on dark background or 

vice versa. One possibility to detect such features with approximately 

circular shape is the Laplacian of a Gaussian (LoG). Let g(x, y, σ) =
1

2πσe
−

x2+y2
2σ denote a gaussian kernel. The convolution of a raster array D 

(the preprocessed DSM) with g at different scales σ creates a scale space 
representation (Lindeberg, 1994) 

L(x, y, σ) =
{

D(x, y) , σ = 0
g(x, y, σ) ∗ D(x, y)) , σ > 0, (3) 

Fig. 5. Input (a), intermediate results (b-d) and final output (e-f) of ACWE-MCWST.  

Table 1 
Zenit angles of the near nadir/oblique/maximum oblique view images of each 
plot, given in degrees. The sign is defined negative for azimut angles in [0,180)
and positive otherwise, where the azimut angle is calculated with respect to the 
north pointing vector.   

Deciduous Mixed Coniferous 

image N0125/R0110/ 
R0105 

N0124/R0108/ 
R0104 

N0122/R0107/ 
R0102 

zenit 
angle 

− 1.4/44.8/52.8 − 2.2/44.6/51.9 − 0.9/44.3/52.5  
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where ∗ denotes the convolution operator. The Laplace operator is 
defined as the trace of the principal axis representation H′ of the Hessian 
matrix: 

∇2 = trace(H ′

) =
∂2

∂x2 +
∂2

∂y2 (4)  

The scale normalized Laplacian of a Gaussian is defined as 

∇2
normg = σ∇2g. (5)  

Using ∇2
normg, a discrete 3D-laplacian scale space can be built up. A point 

(x, y, σ) in this scale space is identified as a blob if it is the argument of 
the maximum normalized filter response among its 26 neighbours. The 
scale range is chosen such that it matches the expected sizes of the tree 
crowns and the union of blobs is referred to as MBlobs. Based on the scale 
space maxima selection, there can still exist blobs that overlap. 
Brandtberg and Walter (1998) removes smaller blobs when an overlap of 
a certain percentage is exceeded. Since this can lead to omissions when 
crowns indeed overlap and it is also not evident which blobs are 
spurious, all blobs are retained as seeds for the subsequent MCWST in 
the present approach. Critically, this implies a bias towards over
segmentation. Ambiguities can be resolved using a MRF model on the 
detected blobs, similar to (Zhang and Sohn, 2010), for example. 

2.2.3. Marker controlled watershed transformation 
Visually speaking, watershed transformation (WST) mimics a 

flooding simulation that starts from the minima of all catchment basins 
in a heightmap. A watershed line is created, where the water of neigh
bouring segments meets. For unseeded WST, this often leads to an 
oversegmentation due to spurious local minimas, created by noise. 
Hence, seeded WST (MCWST) uses a restricted set of minima to start the 
flooding process. The previously introduced LoG-Blob feature detector is 
one possible way to find the non-spurious minima. The exact definition 
of watershed lines, namely the skeleton of geodesic influence zones, can 
be found in (Beucher and Lantuéjoul, 1979). MCWST is applied on 
D− 1

gs |ϕ*
D=1, with D− 1 = [max(D) − D[x,y] : (x,y) ∈ Ω], using the marker set 

M = {(x, y) : (x, y, radius) ∈ MBlobs} and yields a label array 
LAB : Ω→Labels ∪ {0}, where Labels = {1,…, |M|} are the foreground 
labels (corresponding to the tree crowns) and the zero labels the back
ground pixels (x, y) with ϕ*

DSM(x, y) = 0. The corresponding contours 
ΓLAB are the set of boundary points of foreground segments, i.e. for l ∈
Labels,ΓLAB(l) = ∂LAB|LAB=l,ΓLAB = ∪l∈LabelsΓLAB(l). 

2.3. Visible boundary determination 

At this stage of processing, given an oriented image IMG, and the 
label array LAB of the segmented DSM, the visible boundary for each 
foreground label l ∈ Labels in a simulated view of the DSM according to 
the orientation of IMG is to be deduced. Let (x, y)T be a pixel coordinate 
of IMG and let (X,Y,Z)T

∈ UTM be its corresponding point of DSMUTM. 

The transformation.3 between image coordinates and world coordinates 
is described by the homogenous projection matrix P ∈ R4x4. P is 
composed of the camera matrix K ∈ R3x3 (holding the intrinsic param
eters), a rotation matrix R ∈ R3x3 and a translation to the camera center 
C in world coordinates (constituting the extrinsic parameters) (Hartley 
and Zisserman, 2004): 

(
x
y

)

= K
[

R − RC
0 1

]

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
P

⎛

⎜
⎜
⎝

X
Y
Z
1

⎞

⎟
⎟
⎠ (6)  

In the first place, it is required to determine the visible surface points. A 
lower bound for the problem of O(n2) was already proven in (McKenna, 
1987). One alternative is the well known z-Buffer algorithm (Foley et al., 
1996), which is based on investigation of depth values in the parallel 
projection of the DSM, viewed according to the image orientation. It 
suffers the drawbacks that depth resolution is limited to machine pre
cision and rasterization of objects can lead to aliasing. Therefore ray- 
object intersection (ray casting) tests are preferred, which presume a 
surface representation, such as meshes. The visible boundary is defined 
as the concave hull of visible points. Its computation consists of the 
following steps and is illustrated in Fig. 6:  

1. Convert the DSMUTM to a triangle mesh (TIN) and assign the cell 
labels of DSM to the associated vertices of TIN. Retrieving the label of 
a vertex v is noted as label(v).  

2. Perform ray casting according to the orientation of IMG for each 
vertex of the TIN to obtain the set of visible points VIS. Let VIS(l) =
{v : v ∈ VIS ∧ label(v) = l} for l ∈ Labels.  

3. For each l ∈ Labels, calculate the concave hull of VISP(l) =

{Pv : v ∈ VIS(l)}, abbreviated ΓVISP (l). The set of visible boundaries is 
ΓVISP = ∪l∈LabelsΓVISP (l). 

2.3.1. Triangle mesh generation 
Let S⊆R2 be the set of points, henceforth called sites, which is ob

tained by dropping the height coordinate of DSMUTM points. The Vor
onoi Region of a site s ∈ S, Vs, is defined as the set of points x ∈ R2, 
whose distance to s is not greater than to any other site s′ ∈ S, formally: 

Vs =
{

x ∈ R2 : s ∈ S ∧ ∀s′

∈ S
(
s′

∕= s⇒
( ⃒
⃒x − s

⃒
⃒⩽

⃒
⃒x − s′ ⃒⃒

)}
. (7)  

Points in Vs are intersections of a finite number of closed half planes and 
form a convex polygon. Two distinct Voronoi regions can only intersect 
along their boundaries. Three adjacent Voronoi regions intersect in a 
point. If no four sites lie on the same circle, S is said to be in general 
position. Moreover the union of Voronoi regions covers R2. The Voronoi 
Diagram of S is the set of Voronoi Regions for each of the sites, and was 
firstly described in (Voronoi, 1908). 

Fig. 6. Inputs (a-b), intermediate results (c-d) and final output (e) of visible boundary determination.  

3 Here, the dependence of the exterior camera orientation on the GPS position 
and IMU parameters (Kurz et al., 2007) can be ignored. 
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Under the assumption of general position, the Delaunay Triangula
tion is the dual graph of the Voronoi Diagram. So given the sites S, the 
Delaunay Triangulation (Delaunay, 1934) of S is a graph with vertex set 
S. Its edge set is obtained from the Voronoi Diagram of S by creating one 
edge between each two sites that have adjacent Voronoi regions. The 
created graph is maximal planar, i.e. no additional edge can be added 
between any two points without crossing an existing edge. The 
computation for n points in R2 can be performed in O(nlogn). More 
details on properties of triangulations and efficient algorithms may be 
found (Guibas et al., 1992 and de Berg et al., 2008). Fig. 7a demonstrates 
the construction of the Delaunay triangulation from the Voronoi dia
gram on a grid and Fig. 7b shows the resulting TIN, i.e. the Delaunay 
Graph with reintroduced height coordinates, for the DSM in Fig. 6a. 

2.3.2. Visible point determination 
A point (X,Y,Z)T of DSMUTM is visible according to the orientation of 

the image IMG in the pinhole model, with camera center C, if the line 

Ct+

⎛

⎝
X
Y
Z

⎞

⎠(1 − t), t ∈ [0, 1], (8)  

between both points does not intersect any triangle or any other point of 
the previously constructed mesh. The union of visible points is denoted 
as the set VIS. 

In order to solve problems like object intersection and visibility 
efficiently, several approaches to build a hierarchical structures were 
developed (Ericson, 2004). These data structures subdivide the point 
space to accelerate queries. One distinguishes between spatial de
compositions (using e.g. binary space partitioning (BSP) trees, K-d trees 
or Octrees) and bounding volume hierarchies (e.g. trees of spheres, axis 
aligned bounding boxes (AABB), oriented bounding boxes (OBB), k - 
discretely oriented polytopes (k-DOP) and swept sphere volumes (SSV)). 
The latter are more focused on objects than the former. The enumeration 
of bounding volumes just mentioned is according to increasing 
complexity of their construction, which goes hand in hand with their fit 
to the object. Hence, the OBB is a well balanced, yet efficient bounding 
volume. The related bounding volume hierarchy is the OBB-tree and was 
developed in (Gottschalk et al., 1996). 

An OBB is defined by the principal axes of a set of vertices, which are 
given by the Eigenvectors of the covariance matrix. Let A and B be two 
OBBs and let T be the vector that connects their centers. A and B are 
separated if there exists an axis L, such that the sum of their projected 
radii rA and rB is less than the distance between their projected centers, i. 
e. if 

|T⋅L| > rA + rB. (9)  

At most 15 axes must be tested to determine the OBB overlap status, 
namely those that correspond to the three faces of A, the three faces of B, 
and nine pairwise combinations of edges facing each other (Gottschalk 
et al., 1996). So, A and B are disjoint if and only if there exists one 
separating axis for which the axis test fails. 

The OBB-tree is built up in a top-down manner: An OBB is firstly 
fitted to the complete TIN before nested OBBs are used to subdivide the 
enclosed space and thereby define a hierarchy. This principle is 
continued recursively, as illustrated in Fig. 8. Splitting inside an OBB 

Fig. 8. Recursive subdivision for building the OBB-tree.  

Fig. 7. (a): An example that demonstrates the construction. Input points and 
Delaunay edges are shown in green. The Voronoi Diagram is shown in orange 
(b): The Delaunay Mesh for the DSM patch. (c): A magnified region of the mesh. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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happens across the plane which is perpendicular to its longest axis and 
located at the mean of its vertices. Primitives on the splitting plane are 
assigned towards the side of their centroid. If a subdivision along this 
axis is not possible, then the second longest is chosen. If no split can be 
established in that manner, the set of primitives is declared indivisible. A 
balanced tree is created using this procedure, if the partition coordinate 
is set to the median center point. 

The calculation of the covariance matrix and the eigenvectors from 
all points can result in an OBB with bad fit. Several attempts have been 
made to sort out the problem, e.g. using the convex hull after uniform 
sampling (Gottschalk et al., 1996), or a continuous formulation of 
covariance using triangle-wise covariance calculation with incremental 
matrix construction (Gottschalk, 2000), which will be considered in 
future work. The projected and labeled visible points for a subarea of 
each test plot in test images with approximately 40 degrees zenit angle 
are displayed in Fig. 9. 

2.3.3. Hull Computation 
Let l ∈ Labels be a label and let S⊆R2 be the sites, that are obtained 

from VIS(l) by projection, 

S = VISP(l) =
{

P(X, Y, Z, 1)T
: (X,Y,Z)T

∈ VIS(l)
}
. (10)  

The determination of the shape of a point set essentially depends on the 
perception which points belong to the boundary, or in other words, on 
the point density characterizing the interior of the recognized objects. 
The convex hull is independent of the point density. Mathematical 
preliminaries of convex sets can be found concisely in (Baerentzen et al., 
2012). In particular the following definition is essential in the present 
context: For a set of points S, the convex hull is the intersection of half 
spaces containing S, formally: 

CH(S) =
⋂

H⊇S∧H is a half space
H. (11)  

It evoked investigations to replace the hyperplane with other structural 
elements. One of the first approaches is known as the Jarvis construction, 
which studied the effect of finite hyperplanes on concavities. Edels
brunner instead introduced the use of disks, which is the basic idea of the 
α-shape (Edelsbrunner et al., 1983) and explained more precisely below. 
The concept was later on extended for weighted points in (Edelsbrunner, 
1992) and 3D (Edelsbrunner and Mücke, 1994). The proven worst case 
times for 2D and 3D are O(nlogn) and O(n2), respectively. 

Different approaches were published for concave hulls: (Moreira and 
Santos, 2007) is using k-nearest neighbours in order to disassemble 
cluttered point sets, composed of multiple objects with slightly inho
mogeneous point distribution. Asaeedi et al. (2013) aims for a single 
object by imposing a bound on the interior angles of the bounding 
polygon. In the present study, the point density problem can be avoided: 
Triangles can be split after Delaunay triangulation by considering a 
histogram of triangle areas. Thus, a homogeneous point distribution can 
be obtained, which is maintained throughout the visibility analysis step. 
α-shapes have been widely utilized, especially in the study of 

biochemical cell structures. Some examples for applications within 
remote sensing and forestry are (Escalante, 2012; Ning et al., 2016 and 
Trochta et al., 2017; Yan et al., 2019), respectively. Now, necessary 
definitions in (Edelsbrunner et al., 1983) are recapitulated.4 

Let x ∈ R2. The open disk of points, which are closer than distance r 
from x is denoted D(x, r). Its closed complement is denoted D() and is 
written as 

D(x, r) =
{

x
′

∈ R2 :

⃦
⃦
⃦x

′

− x
⃦
⃦
⃦⩾r

}
. (12)  

Let α ∈ R. If α < 0, the intersection of all closed complements of disks 
with radii − 1/α, that contain all points of S is called the α-hull of S, 
formally: 

α − hull(S) =
⋂

x∈R2

{

D(x, − 1/α) : D(x, − 1/α)⊇S
}

, (α < 0). (13) 

A point of S is called α-extreme, for some α ∈ R, if it is on the α-hull. 
Two extreme points that are adjacent on the boundary of the same open 
disk are called α-neighbours. The α-shape is the straight line graph, 
whose vertices are the α-extreme points and whose edges connect the 
α-neighbours. Let α ∕= 0 and let F be a face of the α-shape of S. 
Furthermore, let e = (p, q) be a boundary edge of F. For α < 0, e is called 
positive edge of F, if there exists an open disk with radius − 1/α, and 
with p and q on its boundary, such that it (i) contains at least one point of 
S and (ii) has its center on the same side of e as F. Otherwise e is called 
negative. F is called interior (exterior), if one of its boundary edges is a 
positive (negative) edge of F. 

Three facts are proven for vertices and edges, which harness the 
construction from the Delaunay triangulation: (1) The α shape for α < 0 
is a subgraph of the closest point Delaunay triangulation.5 (2) The range 
of α values, for which a site of S is α-extreme is bounded. (3) The range of 
α values, for which a Delaunay edge is also an edge of the α-shape is 
bounded. Another fact is stated for faces, which ultimately describes the 
construction of the α-shape from the Delaunay Triangulation: (4) For 
α < 0, the set of interior faces of the α-shape equals the union of triangles 
in the closest point Delaunay triangulation, whose circumcircle radius is 
not greater than − 1/α. 

With respect to the outline at the beginning of Section 2.3, ΓVISP (l) =

ΓS = α − shape(S). 
Fig. 10 demonstrates the principle for the visible, projected points of 

an example segment: For α = 0, the α-shape is the convex hull. As α is 
decreased, the number of triangles that are removed increases until, for 
a certain α > − ∞, the α-shape becomes the set of isolated points S. 

Fig. 9. Visible points (coloured per tree) at zenit angle ≈ 40◦, projected onto associated images, for a subarea of the deciduous, mixed and coniferous plot (from left 
to right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

4 This is restricted to the case α < 0, which results in concave hulls. In pub
lications that succeed the original one, the convex hull case for α > 0 is often 
ignored and the definitions are adapted to handle only the concave case. 
Concretely, as a consequence, α > 0 is used to define concave hulls. Here, the 
terminology of the original publication is adpopted.  

5 This is the variant introduced in Section 2.3.1, where the Voronoi Diagram 
could likewise be called closest point Voronoi Diagram. 
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3. Experiment and results 

3.1. DSM segmentation 

ACWE-MCWST was applied to each of the test plots, that were pre
sented in Section 2.1.2, Fig. 4. The best results were achieved for the 
coniferous plot, followed by the deciduous and the mixed plot (Fig. 11). 
One cause for errors in the mixed plot is the presence of the towers in the 
experimental site, which could not be excluded as done for the crane 
during the DSM generation. One possibility to overcome this would be to 
manually mask those objects. For operational applications, it seems 
more appropriate to exclude those object via preliminary analysis of 
coregistered NIR or hyperspectral images. In more general, coniferous 
and deciduous trees can be well segmented, but there are kinds of de
ciduous tree clusters where separation is not possible for the human eye 
and also not for the algorithm. Comparing the top and bottom row of 
Fig. 11, it is apparent, that segments are slightly contracted, which arises 
out of local histogram equalization. Albeit, it was found in (Kempf et al., 
2019), that this improves the performance of the LoG-Blob detection and 
enables to disassemble deciduous tree clusters to a certain extent. 

Table 2 summarizes the detection accuracy of the method. The 
groundtruths consist of tree crown tops/centers in pixel coordinates 
(CC), which were manually created by inspection of the surface models 
and corresponding orthorectified images. If a CC is contained in no 
segment, this is defined as omission (also false negative, FN). Otherwise, 
if no, one, or n > 1 CC(s) is (are) contained in a segment, this is defined 

as a commission (also false positive, FP), detection (also true positive, 
TP) or combined 1-detection - (n-1)-omission, respectively.6 Therefore, 
the number of CCs is #CC = TP+FN and the number of segments is #
SG = TP + FP. Due to pixel representation, the contingency table for the 
bespoke values can be built in #CC+#SG steps. 

Based thereupon, the following metrics, cf. e.g. (Fawcett, 2006) or 
(Tharwat, 2018), are calculated7: 

Precision,PC = TP/(TP + FP),

Recall,RC = TP/(TP + FN),

F1 − Score,F1 =
2

1/PC + 1/RC

= 2TP/(2TP + FP + FN).

(14)  

3.2. Visible boundary determination 

The full set of intermediate results, i.e. the visible points projected 
onto the corresponding images is shown in Appendix B, Fig. 15. Fig. 13 
shows the final results of the described method for each of the test im
ages. The oblique visible ROI, shown in blue, is calculated from the ROI 
of the corresponding DSM and the visible boundaries (see Appendix A 
for details). The groundtruth points, shown in green and cyan, are ob
tained by transformation of the DSM groundtruth coordinates, trans
lated by − 0.5m in the z-coordinate, into the image according to Eq. (6). 
No visual-manual adjustment of the groundtruth was performed. Hence, 
three factors influence the detection results:  

• The contingencies and calculated metrics in Table 3 reflect the height 
errors of the DSM. Thus, a groundtruth crown center (CC) can be 
slightly outside its segment, despite it was detected during ACWE- 
MCWST in the DSM. Two cases can be distinguished: The CC can 
fall into a neighbouring segment and hence is counted as one omis
sion and one commission error. In this manner, systematic height 
errors and the topology of segments can lead to a chain effect where 
errors compensate. A CC that falls outside of its segment into the 
background equally counts as one omission and one commsission 
error. Projecting groundtruth points with lower z-coordinate to solve 
these issues is not always correct, e.g. for flat or occluded objects. 
Examples for the former can be seen at the right border of the de
ciduous plot.  

• A CC might be hidden. There are again two cases (assuming that the 
involved CCs are within the boundary of the occluding segment): 
When the complete segment is hidden, this leads to an omission 
error. An additional commission error occurs, when parts of the 
occluded segment are visible. The latter happened in the upper right 
corner of the mixed plot.  

• A close look at Fig. 15 reveals that the point density is decreasing for 
oblique views at surface areas with steep slopes, as present for 
coniferous trees. Too large α values then lead to removal of triangles, 
disintegrated components or even vanishing α shapes without edges. 
The choice of α in the case of heterogenous point density needs to 
compromise between exact hulls (with stronger concavities) and 
omissions. This problem can be solved by mesh refinement after the 
Delaunay triangulation in step one of the visible boundary deter
mination. Here, it was scrutinized that no segment disappeared. 

Tables 3,4 list the results of accuracy assessment of visible boundary 
determination and the differences to the DSM segmentation for com
parison, respectively. One groundtruth point of the mixed plot, (i, j, z) =
(420.24, 308.25, 529.18164), was discarded because its transformation 

Fig. 10. The Delaunay triangulation is shown in gray. The alpha shape for 
several α-values is shown in blue. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

6 The only true negative, TN, is the background label, which is not considered 
a segment.  

7 The F1-score is also called F-measure. 
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was out of image bounds. The decreasing numbers of segments in the 
oblique cases of the deciduous and mixed area are indeed caused by 
occlusions, where at most two points were visible. The associated 
groundtruth points were not removed. Concerning factors one and two, 
it can be observed that the result in the nadir view cases is similar to that 
of the DSM segmentation. Additional omissions and commissions that 
occured in the oblique view cases are prevailingly caused by segments 
that miss the groundtruth points very closely. 

In general, due to occlusion, the result of visible boundary determi
nation can be fundamentally different from the DSM segmentation, not 
only in terms of altered segment boundaries, but also in terms of exis
tence of a segment. So in order to apply the same strategy for the ac
curacy detection as for the DSM, it is necessary to determine the subset 
of visible CCs. But this is still not sufficient, since a groundtruth tree top 

Fig. 11. Segmented boundaries (displayed in yellow/orange/red for detection/omission/commission) and groundtruth tree tops (displayed as green/cyan markers 
for detection/omission) are superimposed on DSMgs (top row) and DSM (bottom row) for the deciduous, mixed and coniferous plot (from left to right). 

Table 3 
Detection accuracy of visible boundary determination based on ACWE-MCWST 
segmentation of the DSM for the test plots in images with ≈ 0◦/45◦/52◦ zenit 
angle.   

Deciduous Mixed Coniferous 

image N0125/R0110/ 
R0105 

N0124/R0108/ 
R0104 

N0122/R0107/ 
R0102 

total trees 205/205/205 271/270/270 224/224/224 
total 

segments 
222/222/221 298/295/295 220/220/220  

detections 190/188/185 247/239/236 211/207/205 
omissions 15/17/20 24/31/34 13/17/19 

commissions 32/34/35 51/56/60 9/13/15  

precision 0.859/0.847/0.841 0.829/0.810/ 
0.797 

0.959/0.941/0.932 

recall 0.927/0.917/0.902 0.911/0.885/ 
0.874 

0.942/0.924/0.915  

F1-score  0.890/0.881/0.871 0.868/0.846/ 
0.834 

0.950/0.932/0.923  

Table 4 
Differences of contingencies and metrics in the accuracy of visible boundary 
determination and DSM segmentation for the test plots in images with ≈ 0◦/45◦/

52◦ zenit angle.   

Deciduous Mixed Coniferous 

image N0125/R0110/ 
R0105 

N0124/R0108/ 
R0104 

N0122/R0107/ 
R0102 

total 
segments 

0/0/− 1 0/− 2/− 2 0/0/0  

detections − 3/− 5/− 8 − 1/− 9/− 12 0/− 4/− 6 
omissions +3/+5/+8 +1/+8/+11 0/+4/+6 

commissions +3/+5/+6 +1/+6/+10 0/+4/+6  

precision − 0.010/− 0.022/ 
− 0.028 

− 0.003/− 0.022/ 
− 0.035 

0.0/− 0.018/ 
− 0.027 

recall − 0.014/− 0.024/ 
− 0.039 

− 0.004/− 0.030/ 
− 0.041 

0.0/− 0.018/ 
− 0.027  

F1-score  − 0.014/− 0.023/ 
− 0.033 

− 0.004/− 0.026/ 
− 0.038 

0.0/− 0.018/ 
− 0.027  

Table 2 
Detection accuracy of ACWE-MCWST for the test plots.   

Deciduous Mixed Coniferous 

total trees 205 271 224 
total segments 222 298 220  

detections 193 248 211 
omissions 12 23 13 

commissions 29 50 9  

precision 0.869 0.832 0.959 
recall 0.941 0.915 0.942  

F1-score  0.904 0.872 0.950  
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can be hidden, while parts of the tree are still visible. Apart from the 
implications from occlusion, the chosen α-value can substantially affect 
the result, as also demonstrated in Fig. 10. 

It is concluded, that a region based groundtruth evaluation is 

required. The question is whether the accuracy should be evaluated with 
respect to the image (which includes uncertainties from DSM genera
tion) or with respect to the DSM (which enables a sensitivity analysis for 
α). In the former case, one groundtruth image is required for each image, 
which seems impractical for exhaustive evaluation and what is more, is 
that the delineation of coniferous trees in oblique views is precarious for 
human operators. In the latter case, no deterministic, qualitative state
ment about the alignment with the image objects can be made. Actually 
both cases need investigation to systematically account for errors. A 
practical solution will be outlined in Section 4. 

As a consequence, pragmatically, reprojection of the boundary onto 
the mesh is performed for visual assessment. An example is given in 
Fig. 12 for a close-up part of the coniferous and deciduous region. 
Rendering of the reprojection is done without displaying the mesh 
edges, since backfaceculling needs to be turned off in the VTK graphics 
pipeline (cf. (Schroeder et al., 2006)) for the case when the reprojected 
boundary is decided to be below the surface. 

Fig. 13. Visible boundaries (displayed in yellow/orange/red for detection/omission/commission) and groundtruth tree tops (displayed as green/cyan markers for 
detection/omission) are overlaid on images of each plot (from left to right) in forward, nadir and backward view (from top to bottom). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Close up of the reprojected visible boundaries.  
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4. Discussion 

The present approach avoids difficulties in image based correlation 
matching, introduced through analytic templates, by segmenting tree 
crowns in the DSM and transforming visible boundaries into the image. 
The labeling of a DSM segment is carried over to the image, also when it 
displays as disconnected parts in oblique views. 

4.1. DSM segmentation 

Referring to (Larsen et al., 2011), the proposed method is intended 
for dense, unmanaged forest types. Admittedly, the author believes that 
more recent extensions of ACWE allow to formulate individual tree 
crown segmentation solely as a global energy minimization, that does 
not require a detection or postprocessing step. The former seems pro
hibited, as deciduous trees do neither always inhibit a unique salient 
maxima, nor exhibit a typical boundary shape (especially when they are 
part of a tree cluster). This was the actual motivation to use the Chan- 
Vese segmentation. Critically, the piecewise constant Mumford-Shah 
image model is not appropriate for forests. The problem is threefold: 
(i) Trees have approximately the surface shape of an upper ellipsoid, 
such that the foreground objects are not constant. (ii) The height of 
different trees typically varies. (iii) The background can be either the 
ground between two trees or points above the ground, where canopies 
touch each other. Observation (i) implies that a piecewise smooth model 
is necessary, which can be solved by e.g. (Nielsen, 1997; Pock et al., 
2009). (ii) and (iii) suggests that the segmentation has to consider the 
local context. However, the DSM is a topographic surface and so the 
topology of its decomposition into levelsets is known, which can 
constrain the segmentation model. 

4.2. Visible boundary determination 

Worst case and average case runtimes for building spatial data 
structures and performing intersection have been studied extensively in 
literature. They can differ significantly, depending on the point distri
bution, or in other words, on the topography and topology of the scene. 
As surfaces of densely forested areas are similar, it is worthwhile to 
evaluate the performance from an empirical and theoretical point of 
view in order to assure best performance, especially considering large 
datasets. In this respect, future investigations are planned on the use of 
triangle octrees (Bern and Plassmann, 2000) instead of OBB-trees. 
Moreover, the creation of the data structures as well as the intersec
tion queries can be parallelized to accelerate runtime. Another notable 
alternative is the direct method of (Katz et al., 2007), where it is shown 
that the visible points of a point cloud are those, residing on the convex 
hull of its spherical flipping transform and the viewpoint. 

The accuracy of the presented visibility detection is limited by the 
density of points: The vertices of a triangle can be visible while parts of the 
triangle are hidden. The maximum possible error of the resulting boundary 
effectively depends on the area of the triangle. For accurate boundaries, 
area intersection between the triangle and occluding projected triangles is 
required. A triangle A is occluding another triangle B if the line of sight 
through vertices of A intersects B. Thus, compared to the current imple
mentation for visible points, also intersections behind a point (relating to 
the front to back order in the camera view) must be queried. The bespoke 
limitation can be alleviated through mesh refinement at the expense of 
runtime. Then, a triangle can be regarded as approximately visible, if all its 
vertices are visible. An in-depth analysis of the complexity of each scenario 
is out of the scope of the present discussion. 

Following up, it should be mentioned that the boundary of visible 
points could be deduced directly as the exterior boundary of the 
cascaded union of visible triangles. This can be achieved in the 2.5D 
triangle mesh or in the image space. The latter requires to maintain the 
edge relations throughout the projection. However, there are some pit
falls with this approach: Visibility determination may remove points in 

the interior of a segment, depending on the topography of the segment 
itself and other segments in the line of sight. Therefore, the visible 
submesh can contain holes or fragment into several parts. This requires a 
rather tedious postprocessing step, just as the adjustment of the level of 
detail, by using e.g. spline fitting. In comparison, the α-shape readily 
handles all these issues. 

Coming back to accuracy assessment, a practical way to describe the 
quality of boundaries can be achieved as follows: First, a region based 
groundtruth is created for the DSM. This reference, processed with ray 
casting and calculation of the α-shape according to a given image gives a 
contour, whose points can be associated with their standard deviation at 
the DSM location. The evaluation of the detected visible boundaries with 
respect to the visible reference can be accomplished as in (Brandtberg 
et al., 2003), but additionally considering the standard deviation of 
boundary points. 

5. Conclusion 

This contribution presented a novel approach to the problem of indi
vidual tree crown segmentation in oblique view aerial images of forested 
areas. The method was tested on images with zenit angles of approxi
mately 0, 45 and 52 degrees for a deciduous, mixed and coniferous plot. 
Good detection performance with F1-scores between 0.834 (for the mixed 
plot) to 0.923 (for the coniferous plot) were attained for oblique views 
with ≈ 52◦ zenit angle. For decreasing zenit angles, performance improved 
up to 0.868 (for the mixed plot) and 0.950 (for the coniferous plot), which 
almost equals the result for the DSM segmentation. The measured per
formance decrease for oblique views is largely attributed to accuracy 
assessment using simply transformed DSM groundtruth. 

Since the method relies on the digital surface model, the accuracy of 
the final image boundaries is affected by height errors that propagate via 
the segmentation of the digital surface model and visible boundary 
determination w.r.t. oriented images. Different scenarios are conceiv
able for boundary refinement in the image, which is envisaged in future 
work, e.g. by respecting the standard deviation of the digital surface 
model in the definition of energy functionals. The asymmetric difference 
of visible segments and refined segments can further serve to iteratively 
optimize DSM generation, precisely the merging procedure of semi- 
global matching derived point clouds. 

The principle of the method can be transferred to other oblique view 
delineation problems by adapting the segmentation method of the digital 
surface model to the objects in question. Moreover, replacing the camera 
position with the sun position allows to compute shadow regions for the 
direct illumination case. Most important for forest ecology, the proposed 
oblique view individual tree crown delineation permits to construct 
bidirectional reflection distribution functions with high accuracy and 
hence paves the way for high precision analyses of reflection effects. 
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Appendix A. Calculation of the oblique visible ROI 

Let a RECT = (x0, x1, y0, y1) be the lateral rectangular extent of the 
DSM : Ω→R, such as the three plots that were selected for segmentation 
tests. Further, let LAB : Ω→Labels ∪ {0} be the labeled DSM and let IMG 
be an oriented image. Simple projection of corner points, constructed 
from RECT by introducing actual height coordinates of the DSM or fixed 
height coordinates leads to a quadrilateral that does not fit the visible 
projected segments. Specifically, if the height of far (near) side corners 
underestimates (overestimates) the far (near) side segment heights, then 
projection will be outside of the quadrilateral. Analogously, if the height 
of far (near) side corners overestimates (underestimates) the far (near) 
side segment heights, then projection will have an offset inside of the 
quadrilateral. 

In order to obtain a ROI, that is similar to the quadrilateral con
structed from the projection of corner points with fixed height, denoted 
Qf , and bounds the extent of the union of segment polygons exactly, the 
following steps are carried out:  

1. Calculate Qf = [q0, q1, q2, q3] with points in counterclockwise order.  
2. Project the foreground points of DSMUTM to IMG: 

S =
{

P
(
X,Y,Z

)
:
(
X,Y,Z

)
∈ DSMUTM |LAB∕=0

}
.

3. Compute the convex hull of S : H = CH(S).  
4. Calculate the centroid c of Qf .  
5. For each side li = (qi, q(i+1)mod 4), i = 0,…,3 of Qf :  

(a) For points r of H, such that crqi
̅̅→ is a rightturn and crq(i+1)mod 4

̅̅̅̅̅̅̅̅→ is a 
leftturn, store the signed distance between r and its projection 

onto l, r′ , as DIST(r). The sign is defined positive, if |cr→| < | cr′
̅→

|

and negative otherwise.  
(b) Determine r* = argmax(DIST).  
(c) Perform parallel translation of li into r* to obtain l

′

i.  
6. Calculate the intersections of consecutive l

′

i, i.e. the corners of the 
adapted quadrilateral Qv. 

Fig. 14 demonstrates the construction of the oblique visible ROI for 
forward looking images of the three test plots that were selected for the 
oblique view delineation experiment. 

Fig. 14. The initial ROI, the convex hull of visible boundaries and the calculated visible ROI is shown in red, green and blue, respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix B. Results of visible point determination 

See Fig. 15. 
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