
Received: 18 December 2019 Revised: 26 March 2021 Accepted: 29 March 2021

DOI: 10.1002/nme.6680

R E S E A R C H A R T I C L E

Algebraic multigrid methods for saddle point systems
arising from mortar contact formulations

Tobias A. Wiesner1 Matthias Mayr2,3 Alexander Popp2

Michael W. Gee4 Wolfgang A. Wall5

1Leica Geosystems AG, Heerbrugg,
Switzerland
2Institute for Mathematics and
Computer-Based Simulation, University
of the Bundeswehr Munich, Neubiberg,
Germany
3Data Science & Computing Lab,
University of the Bundeswehr Munich,
Neubiberg, Germany
4Mechanics & High Performance
Computing Group, Technical University
of Munich, Garching, Germany
5Institute for Computational Mechanics,
Technical University of Munich,
Garching, Germany

Correspondence
Matthias Mayr, Institute for Mathematics
and Computer-Based Simulation,
University of the Bundeswehr Munich,
Werner-Heisenberg-Weg 39, D-85577
Neubiberg, Germany.
Email: matthias.mayr@unibw.de

Abstract
In this article, a fully aggregation-based algebraic multigrid strategy is developed
for nonlinear contact problems of saddle point type using a mortar finite element
approach. While the idea of extending multigrid methods to saddle point systems
can already be found, for example, in the context of Stokes and Oseen equations
in literature, the main contributions of this work are (i) the development and
open-source implementation of an interface aggregation strategy specifically
suited for generating Lagrange multiplier aggregates that are required for cou-
pling structural equilibrium equations with contact constraints and (ii) a review
of saddle point smoothers in the context of constrained interface problems. The
new interface aggregation strategy perfectly fits into an aggregation-based multi-
grid framework and can easily be combined with segregated transfer operators,
which allow to preserve the saddle point structure on the coarse levels. Further
analysis provides insight into saddle point smoothers applied to contact prob-
lems, while numerical experiments illustrate the robustness of the new method.
We have implemented the proposed algorithm within the MueLu package of
the open-source Trilinos project. Numerical examples demonstrate the robust-
ness of the proposed method in complex dynamic contact problems as well as
its scalability up to 23.9 million unknowns on 480 MPI ranks.
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1 INTRODUCTION

Many engineering applications require the simulation of large-scale contact problems. Therefore, it is not surprising
that recent years have seen significant progress in modeling and simulation of contact interaction and its associated
phenomena, such as friction,1-3 wear,4-7 adhesion,8,9 or multiscale contact phenomena.10,11 This is particularly true
with regard to robust finite element based discretization techniques for finite deformations and efficient nonlinear
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solution algorithms. Above all, mortar finite element methods—originally introduced in the context of domain
decomposition12,13—are meanwhile well established as a basis for state-of-the-art contact formulations and widely
accepted among researchers as being superior to more classical discretization techniques, such as the node-to-segment
(NTS) method, the Gauss-point-to-segment (GPTS) method, and other collocation based approaches.14-18

Nowadays, constraint enforcement in the context of mortar methods is often based on a regularized Lagrange multi-
plier scheme or an augmented Lagrange method instead of a simple, yet often insufficient penalty approach. Independent
from the actual details of the constraint enforcement implementation, the discrete Lagrange multipliers constitute
an additional set of degrees of freedom in the mortar finite element contact formulation. When using a dual mortar
approach,19-25 the discrete Lagrange multiplier basis is chosen based on a biorthogonality condition with the underlying
finite element basis. This allows for the localization of the contact constraints and, thus, from a more algebraic point of
view, for the trivial condensation of the additional Lagrange multiplier degrees of freedom from the final linearized sys-
tems of equations. If such a static condensation is not desired or not feasible (e.g., when choosing a standard basis rather
than dual basis functions for the Lagrange multipliers, see, e.g., References 24,26), the linear system remains in its gener-
alized saddle point format arising from the contact constraint equations. Both the standard and the dual mortar approach
have become increasingly popular in recent years, with new contributions focusing for example on higher-order finite
element interpolation,27,28 isogeometric mortar methods,29-33 or improved robustness of the solution algorithms,34-36 to
name only a few particularly active research directions.

It is striking, however, that almost all current research endeavors concerned with mortar finite element meth-
ods for contact mechanics focus exclusively on the modeling of various contact phenomena. Yet, for large-scale and
industrial applications the appropriate modeling of contact problems is not sufficient. In fact, the demand for effi-
cient solution strategies tailored to the specifics of contact simulations is eminent in order to achieve optimal overall
performance. Whereas one could use parallel direct solvers to solve the linear systems, they are not an option for
very large problems. Iterative solvers for sparse systems (e.g., References 37,38) combined with good precondition-
ing strategies are a far better choice with respect to computational resources. In particular, multigrid methods39,40

are known to be among the most efficient solution and preconditioning strategies, at least for certain classes of
problems.

From the perspective of the linear solvers and multigrid-based preconditioners, the condensation of the Lagrange
multipliers seems to be very attractive, since it allows to circumvent the more sophisticated saddle point formulation.
For contact problems though, we have experienced that the resulting linear systems after condensation suffer from some
challenging matrix properties which cause severe convergence problems for standard preconditioning techniques. In
particular, the matrices tend to be nondiagonally dominant due to different (local) coordinate systems that are typically
used for the formulation of the structural equilibrium equations and the contact constraints. In our previous work,41 we
have developed multilevel preconditioners that address such issues and are specifically tailored to contact problems using
the dual mortar method in a condensed formulation.

On the other hand, multigrid methods already have been successfully applied to saddle point problems as they arise
from different applications (e.g., Stokes flow42 or incompressible Navier–Stokes problems43,44) and even in the con-
text of mortar finite element methods.45,46 The multigrid theory for this particular class of saddle point problems has
evolved starting from special multigrid methods for mortar finite element methods (e.g., References 47-50) to mortar
finite element methods in saddle point formulation (e.g., References 51,52). Based on these ideas, specific multigrid
methods for contact problems in saddle point formulation have been developed in Reference 53. However, most of
the literature available on multigrid for mortar finite element methods and contact problems in saddle point formu-
lations is primarily on geometric multigrid methods with abundant work on saddle point smoothers (cf., Reference
54). A first algebraic multigrid preconditioner for mortar-based contact problems has been proposed by Adams,55 per-
forming standard aggregation on the graph of an auxiliary matrix imitating the Lagrange multipliers. Alternatively,
multigrid methods for contact problems not requiring an outer iteration loop or active set strategy have been developed in
References 56,57.

In this article, we address the case of mortar-based contact problems in saddle point formulation and show how to
tailor iterative solvers with algebraic multigrid preconditioners to such problems. In contrast to geometric multigrid meth-
ods, algebraic multigrid methods (e.g., Reference 58) do not rely on geometric user-provided mesh information, but use
only purely algebraic information from the fine-level matrix. Since static condensation of Lagrange multiplier unknowns
is not required, our approach is applicable to mortar methods using both standard or dual shape functions. The proposed
multigrid method is based on the (smoothed) aggregation algebraic multigrid algorithms (cf., References 59-63) with spe-
cial extensions for block matrices and some minor contact-specific adaptions. We propose a novel aggregation strategy for
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the discrete Lagrange multiplier unknowns along the contact interface, which we consider simpler to implement, compu-
tationally less expensive, and more intuitive for contact problems compared with the ideas from Reference 55. Inspired by
our prior work on fluid–structure interaction,64,65 where we have investigated the beneficial effect of satisfying interface
constraints within the preconditioner, we will then use segregated transfer operators suitable for block matrices to trans-
fer and incorporate the contact constraints in all coarse levels. We analyze various Schur complement block smoothers
and assess their suitability for satisfying the contact constraints. Finally, we demonstrate and assess the performance of
the proposed preconditioner in several three-dimensional examples.

The remainder of this article is organized as follows: Section 2 provides a brief introduction to mortar methods for
finite deformation contact problems in saddle point formulation. After the basic notation is introduced, we specifically
present the resulting linear system that is arising if the discrete Lagrange multipliers are explicitly included into the set
of unknowns to be solved for. After a brief introduction to the general idea of multigrid methods, Section 3 describes our
strategy to tailor a multigrid preconditioner to contact problems in saddle point formulation. It comprises the coarsening
of the mortar contact constraints as detailed in Section 4 as well as suitable block smoothers as discussed in Section 5.
Finally, Section 6 presents numerical examples that showcase the robustness, scalability, and performance of the proposed
multigrid preconditioners, before we close with some final remarks.

2 MORTAR METHODS FOR FINITE DEFORMATION CONTACT

As this article is concerned with preconditioning of the system of linear equations arising from contact problems, just
a brief summary to the contact formulation and discretization is given here. For a detailed presentation, the reader is
referred to our previous work.23

2.1 Problem formulation and governing equations

We consider two solid bodies, which are represented by Ω(1)
0 , Ω(2)

0 ⊂ Rd with d∈ {2, 3} in the reference configuration. Their
surfaces 𝜕Ω(i)

0 , i ∈ {1, 2} are decomposed into three disjoint subsets Γ(i)
D , Γ(i)

N , and Γ(i)
c denoting the Dirichlet boundary, the

Neumann boundary, and the potential contact interface with unknown contact tractions t(i)c , respectively. The solid bodies
themselves are governed by nonlinear elasticity. Since we are only interested in the algebraic block structure of the final
system of equations after discretization and linearization, it is sufficient to discuss a quasi-static contact problem with
only two deformable bodies.

In order to describe the contact phenomenon, we state the Hertz–Signorini–Moreau conditions

gn ≥ 0 ∧ pn ≤ 0 ∧ gnpn = 0. (1)

Therein, gn defines a so-called gap function, which measures the distance of a point on the slave interface 𝛾 ()c to the
projected corresponding point on the master side 𝛾 ()

c of the contact interface in the current configuration. Furthermore,
pn denotes the normal contact traction. In the mathematical formulation, one introduces the negative slave side contact
traction t(1)c as Lagrange multiplier, that is, 𝝀 = −t(1)c . Using n to denote the outward unit normal vector, the normal part
of the contact stress can be denoted by 𝜆n ∶= 𝝀Tn and the tangential part by 𝝀𝜏 ∶= 𝝀 − 𝜆nn.

We employ the usual function spaces 
(i) and 

(i) for the displacement field u of the solid body and its weighting
function v, respectively. Furthermore, a suitable function space + for the Lagrange multiplier field 𝝀 and its weighting
function 𝝁 is assumed. The weak form of the governing equations then reads: Find (u,𝝀) ∈  ×+ such that

−𝛿int,ext + ∫𝛾 ()c

𝝀
(

v(1) − v(2)
)

dA = 0, ∀ v ∈  , (2a)

∫𝛾 ()c

(𝜇n − 𝜆n) gn dA ≥ 0, ∀ 𝝁 ∈ +. (2b)

Herein, the internal and external virtual work contributions 𝛿int,ext are defined as usual in nonlinear solid mechanics
(eg, Reference 66) and, thus, further details are omitted. The second term in (2a) can be identified as contact virtual
work 𝛿c and the expression in (2b) as variational inequality formulation of the contact constraints. An extension to
frictional contact based on Coulomb’s law is straightforward and can be found in our previous work1 for example.
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2.2 Finite element discretization

For spatial discretization of the displacement field, either isoparametric finite elements with first-order and second-order
Lagrange interpolation or isogeometric analysis (IGA) with NURBS-based shape functions are employed. After discretiza-
tion, the discrete representation of displacement unknowns is given by the nodal degrees of freedom (DOFs)

u =
[
u1

,u ,u,u2

]T
.

Therein, the ui
, i∈ {1, 2}, contain all degrees of freedom associated with the mesh nodes of the corresponding solid

body without the nodes at the contact interface, where we use the convention that indices 1 and 2 denote the slave and
master “body,” respectively. The degrees of freedom associated with the contact interface on the slave and master side are
represented by u and u, respectively.

Since (2) represents a mixed variational form, we also have to discretize the Lagrange multiplier field 𝝀. We choose
to follow a mortar approach for its mathematical properties and its superiority to other schemes.14-18 As usual for mortar
methods, the Lagrange multiplier field is discretized on the slave side contact interface 𝛾 ()c in the current configuration.
We either use standard ansatz functions, that is, Lagrange polynomials with a trace space relation with the underlying
volume element, or dual shape functions. The latter satisfy a biorthogonality property and, thus, allow for a computation-
ally cheap condensation of the additional unknown Lagrange multipliers from the final system of equations. For details
on dual basis functions in the context of mortar-based contact discretizations, we refer to References 24,27,67. Their inter-
play with preconditioners for iterative linear solvers has been discussed in our previous work.41 The vector of discrete
Lagrange multipliers is now referred to as 𝝀. A schematic mesh illustrating interior, slave interface, and master interface
nodes is sketched in Figure 1.

The final spatially discretized formulation of the quasi-static frictionless problem (2) using the nodal vector represen-
tation now emerges as

fint(u) + fco(u,𝝀) = fext, (3a)(
g̃n,h

)
j ≥ 0, (𝜆n) j ≥ 0,

(
g̃n,h

)
j (𝜆n) j = 0, j = 1, … ,n(), (3b)
(𝝀𝜏) j = 0, j = 1, … ,n(). (3c)

The internal forces fint(u) and external forces fext are common in nonlinear finite element methods and need no further
explanation. The discrete vector of contact forces fco is computed based on two mortar matrices D and M, arising from
the integral over the slave interface 𝛾 ()c in (2a), and the discrete Lagrange multiplier vector 𝝀. For details regarding the
computation of D and M, see References 15,23 for example. Using

(
g̃n,h

)
j to denote the discrete weighted gap function

at node j, a closer look at the discrete contact constraints reveals that (3b) basically represents a discrete version of the
Karush–Kuhn–Tucker (KKT) type conditions in (1) with an additional weighting based on the Lagrange multiplier shape
functions 𝜓j, while the nodal enforcement of frictionless sliding in (3c) is straightforward anyway.

F I G U R E 1 Schematic mesh illustrating
interior, master and slave interface nodes
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Since the discrete contact constraints summarized in (3b) are still formulated as inequalities, an active set strat-
egy usually referred to as primal-dual active set strategy (PDASS) is needed in addition to the usual nonlinear solution
procedure to identify the currently active and inactive contact regions  and  =  ⧵, respectively. It has been
demonstrated in References 68-70 that the PDASS can equivalently be interpreted as a semi-smooth Newton method,
thus allowing for an integrated treatment of all nonlinearities (including the search for the active set) within one
single-Newton–Raphson-type iteration loop. Meanwhile, many successful applications to small and large deformation
contact problems can be found in the literature.1,20,21,23

2.3 Algebraic formulation of linear systems

For efficient iterative solution strategies based on multigrid methods for nonlinear contact problems, one is primarily
interested in the structure of the linear systems arising in each nonlinear iteration step of the underlying Newton–Raphson
scheme. For the sake of brevity, details on the linearization process and on the Newton–Raphson procedure are omitted
here and the interested reader is instead referred to References 22,23.

Consistent linearization of (3) and a subsequent update of the active set  and inactive set  yields the system

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝖪11
𝖪1 𝟢 𝟢 𝟢 𝟢 𝟢

𝖪1
𝖪 𝖪 𝖪 𝟢 −𝖬𝖳 −𝖬𝖳

𝟢 𝖪 𝖪 𝖪 𝖪2
𝖣𝖳 𝖣𝖳

𝟢 𝖪 𝖪 𝖪 𝖪2
𝖣𝖳 𝖣𝖳

𝟢 𝟢 𝖪2 𝖪2 𝖪22
𝟢 𝟢

− − − − − − − − − − − − − − − − − − − − −
𝟢 𝟢 𝟢 𝟢 𝟢 𝖨 𝟢

𝟢 𝖭 𝖭 𝖭 𝟢 𝟢 𝟢

𝟢 𝟢 𝖥 𝖥 𝟢 𝟢 𝖳

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δu1

Δu
Δu
Δu
Δu2

− − −
Δ𝝀
Δ𝝀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ru
1

ru
ru
ru
ru
2

− − −
r𝝀

r𝝀,n
r𝝀,𝜏

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

to be solved in every nonlinear iteration. The 2× 2 block matrix indicated by the dashed lines in (4) describes a linear
system with a typical generalized saddle point structure. The upper left block consists of the entries of the tangential
stiffness matrix (i.e., linearized internal forces) as well as linearizations of contact forces w.r.t. displacement degrees of
freedom u. The upper right block mirrors the discrete contact operator C(u), that is, basically the two mortar matrices D
and M, representing the linearizations of the contact forces w.r.t. the Lagrange multiplier unknowns 𝜆. The kinematic
constraints are incorporated in the bottom left block. The very simple sixth block row emerges from (3b) and (3c) for
inactive nodes, while the last block row imposes frictionless sliding in the directions tangential to the contact interface.

The distinct pattern of zero entries in the upper left block reveals that the two solid bodies (indices 1 and 2)
are indeed only coupled through the slave and master sides of the contact interface (indices  and ). Even though
formulated for two solid bodies, the generalization to n solid bodies is straightforward and only a matter of notation.

In case of dual shape functions, the matrix D reduces to a diagonal matrix and, thus, allows for a cheap condensation
of the Lagrange multiplier unknowns. Algebraic multigrid preconditioners for this type of condensed system have been
proposed in our earlier paper.41 Furthermore, matrices N, N , and N denote the linearizations of the weighted gap
function of (3b) at all active contact nodes. Finally, linearizations of the frictionless sliding condition (3c) are referred to
by matrices F , F, and T, respectively.

Note that the given matrix has eight block rows but only seven block columns in our notation in order to emphasize
that the normal and tangential parts of the contact constraints for active nodes are considered separately, that is, these
two rows contain consistent linearizations of the active branch of (3b) and of (3c). Again, we point out that this sepa-
rate notation is possible due to the fact that a local convective coordinate system is employed for evaluating the contact
constraints/Lagrange multiplier weights 𝝁, while the standard Cartesian frame is still applied for the discrete Lagrange
multiplier values 𝝀 as well as the displacement unknowns. Yet, of course, the system matrix remains a square matrix with
the total numbers of rows and columns being identical. The discrete vector g contains all weighted gap values

(
g̃n,h

)
j

associated with the active nodes at the contact interface.
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For ease of notation, the following short block notation is used in the remainder of the manuscript:(
K CT

1

C2 −Z

)[
Δu
Δ𝝀

]
= −

[
ru

r𝝀

]
. (5)

3 MULTIGRID SCHEME FOR CONTACT PROBLEMS IN SADDLE POINT
FORMULATION

Although multigrid methods can be used as standalone solvers for linear systems, they are usually incorporated into an
iterative linear solver as a preconditioning method. Throughout this article, we use a preconditioned generalized minimal
residual (GMRES) solver71 with one multigrid V-cycle sweep for preconditioning. A general introduction into the idea of
preconditioning is beyond the scope of this article. The reader is referred to the literature, for example, Reference 72.

3.1 Algebraic multigrid methods in a nutshell

Multigrid methods are based on the finding that many well-known and computationally cheap iterative methods (e.g.,
relaxation based iterative methods such as Jacobi or Gauss–Seidel methods) to solve linear systems Ax = b effectively
damp the high frequency part of an error vector but are less effective in damping out the low frequency error modes.
Multigrid methods heavily make use of this smoothing property by applying such cheap smoothing methods on different
coarsened representations of the original fine-level problem.

3.1.1 Basic multigrid cycle and algorithm

The multigrid algorithm given in Figure 2(A) is briefly described as follows: on each multigrid level 𝓁, a level smoothing
algorithm 𝒮𝓁 performs 𝜈1 presmoothing sweeps before the residual vector r is transferred to the next coarser level 𝓁 + 1
using the restriction operator R. After the coarse-level problem has been solved on the coarsest level, the correction c is
then prolongated using the prolongation operator P and the solution vector is smoothed using 𝜈2 postsmoothing sweeps.
Figure 2(B) illustrates this basic multigrid V-cycle, exemplifying a three-level setting. As one can see from Figure 2(B),
applying a multigrid method basically means applying level smoothers on coarse representations A𝓁 of the fine-level
problem A0.

3.1.2 Algebraic multigrid methods

There are different strategies for defining the transfer operators P and R which are necessary to generate coarse-level
matrices A𝓁 (𝓁 > 0). For algebraic multigrid (AMG), the fine-level operator A0 is sufficient to generate coarse-level

(A) (B)

F I G U R E 2 Multigrid algorithm and V-cycle
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matrices A𝓁 . An important class of AMG is given with the smoothed aggregation AMG which is based on so-called aggre-
gates (see, e.g., References 60,73). The fine-level nodes are agglomerated and put into aggregates, which then represent
“supernodes” on the next coarser level. The aggregation information together with the null space information of A0 is
used to construct the corresponding tentative transfer operators R̂ (for restriction) and P̂ (for prolongation). Transfer oper-
ators are used to restrict the fine-level residual to the next coarser level and to interpolate the coarse-level correction to
the next finer level via prolongation. For an efficient multigrid method, the interaction of fine and coarse levels tackles
those error modes, which appear as low-frequency modes on the fine level and cannot effectively be reduced by iterative
smoothing methods on the fine level, but resemble high-frequency modes on a coarser level, such that iterative smooth-
ing methods are effective again. On the coarsest level, a direct solver can take care of the remaining error modes. For
smoothed aggregation multigrid (cf., References 60,74), the prolongation operator is found by applying one smoothing
sweep with a damped Jacobi iteration using

P = P̂ − 𝜔D−1AP̂ (6)

with D being the diagonal part of A and a damping parameter 𝜔 > 0. Depending on the symmetry of the system matrix
A, the restriction operator is either chosen as R=PT or smoothed independently using, for example a Petrov–Galerkin
approach (cf., Reference 63).

3.2 Algebraic multigrid methods for block matrices

Block matrices usually arise if multiple types of equations are coupled together. In the present context of contact problems
in saddle point formulation, two types of equations, namely the balances of linear momentum of the solid bodies and
the contact constraints, are connected via the off-diagonal blocks in (5). Similarly, multiphysics problems also yield block
matrices where the coupling between different physical fields manifests itself in the off-diagonal blocks of the monolithic
system matrix.

From a multigrid perspective, the most important question is where to consider the coupling between the different
equations within the overall solver layout. In general, there are only two possible strategies to apply multigrid ideas to
coupled block systems:

Nested multigrid approach: Multigrid methods can serve as local single-field smoothers or solvers within
well-known block preconditioners such as the SIMPLE method
(cf., Reference 75) and variants for Schur complement based preconditioners
or the block Gauss–Seidel (BGS) method. The coupling of the different fields or
variables is only considered on the finest level in the outer (SIMPLE or BGS)
iteration. This approach is well known in the literature, for example, for the
Navier–Stokes equations,43,58 fluid–structure interaction,64,76 or general n-field
problems.77 The implementation is very easy and allows to use existing
multigrid components in a standalone fashion within the solver. A graphic
representation of this approach is shown in Figure 3(A).

Fully coupled multigrid approach: Truly monolithic algebraic multigrid methods aim at coarsening the fully
coupled fine-level problem such that the block structure of the fine-level matrix
is preserved and the coupling information is present on all coarser levels,
cf., Figure3(B). This is often achieved by using segregated transfer operators to
preserve the characteristics of the sparsity pattern across all levels. Then, each
level utilizes block smoothers to address the coupling. In Reference 78, a
coupled AMG method is developed and analyzed for a stabilized mixed finite
element discretization of the Oseen equations. Fully coupled multigrid
methods for multiphysics problems have been described in References 64,77,79.

While the nested multigrid approach is easier to implement, it also allows for a high degree of modularity, since
the multigrid hierarchies used to approximate the block inverses of the block smoother on the fine level can easily by
swapped by any other method, either another type of multigrid algorithm, or another type of multilevel scheme (e.g.,
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(A) (B) F I G U R E 3 Multigrid for
block matrices

based on domain decomposition), or even any single-level approach if the block is of moderate size and scalability is not
deteriorated. This flexibility is particularly useful if the coupled blocks differ a lot in size or if the user wants to apply
a highly optimized solver for an individual block. The fully coupled multigrid method does not offer such a degree of
flexibility, yet it propagates the coupling conditions throughout the entire preconditioner. Thus, one expects a stronger
and more robust preconditioning effect, since the coarse-level corrections are aware of the coupling conditions. This
expectation will later be confirmed in the numerical experiments, where the number of iterations for the fully coupled
scheme is lower and more independent of the active contact nodes than for the nested multigrid approach.

3.3 Designing algebraic multigrid methods for contact problems

In the present context, we can interpret the mortar contact problem in saddle point formulation as the coupling of two
types of equations: the structural equations and the contact equations which serve as constraint equations. Since the con-
tact constraint equations are only defined along the contact interface, we can further classify the mortar contact problem
as an interface-coupled problem (in contrast to volume-coupled problems). This information is important for the choice
of coarsening strategy. The contact constraint equations are also responsible for the characteristic saddle point structure,
which needs special attention when choosing an appropriate coupling algorithm between the structural equations and the
contact constraints. Considering the class of fully coupled AMG schemes, the generalized saddle point problem (5) has to
be preserved on all multigrid levels such that the contact constraints are considered on all levels. Due to the constraints,
this will require Schur complement based level smoothers on all levels.

Altogether, the key ingredients for designing an algebraic multigrid method for contact problems in saddle point
formulation are the coarsening strategy as proposed in Section 4 and the level smoother and the coupling iteration as
detailed in Section 5.

4 A COARSENING STRATEGY FOR MORTAR CONTACT CONSTRAINTS

4.1 Segregated transfer operators

To keep the characteristic saddle point block structure (5) on all multigrid levels, the common approach is to use segregated
transfer operators

P𝓁+1 =

(
Pu 0

0 P̂
𝝀

)
𝓁+1

and R𝓁+1 =

(
Ru 0

0 R̂
𝝀

)
𝓁+1

, (7)

as, for example, introduced in References 55,80. The segregated block transfer operators (7) are put together from the
transfer operator blocks for the different physical and mathematical fields. Here, Pu and Ru describe the transfer operator
blocks corresponding to the stiffness matrix block K in (5). The transfer operators P̂

𝝀
and R̂

𝝀
define the level transfer for

the Lagrange multipliers.
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The block diagonal structure in (7) guarantees that the primary displacement variables and the secondary Lagrange
multipliers are not “mixed up” on the coarser levels. That is, the coarse-level matrix still has the same block structure
with a clear distinction of momentum and constraint equations as for the fine-level problem since the columns and rows
of the transfer operators P𝓁+1 and R𝓁+1 can be interpreted as some kind of basis functions.

For many volume-coupled problems, for example in thermo-structure-interaction problems,81 it is straightforward to
generate P̂

𝝀
and R̂

𝝀
to be consistent with Pu and Ru. That is, in context of smoothed aggregation algebraic multigrid we

just use the same aggregates for building Pu and P̂
𝝀

(and the same for the restrictors, respectively).
For interface-coupled problems with interface constraints it is more difficult. Due to the saddle point structure of (5),

the nonzero pattern of the Z block is insufficient to generate valid aggregates for the Lagrange multipliers. Consequently,
we need a special routine for finding aggregates for the Lagrange multipliers𝝀 to be able to build the (nonsmoothed) trans-
fer operators P̂

𝝀
and R̂

𝝀
. Nevertheless it seems natural to reflect the aggregation information of the structural equations

along the contact interface in the choice of the aggregates for the corresponding Lagrange multipliers 𝝀.

4.2 Aggregation strategy for displacement variables

In order to preserve the physics of the fine-level contact problem, it is important to keep the two solid bodies separated
in the matrix representation on all coarse levels. Therefore, we apply the standard aggregation strategy to a modified K
block from (5), where all off-diagonal entries representing connections between the two solid bodies are dropped—in
particular the matrix blocks K,K,K , and K—in order to make sure that the resulting displacement aggregates
𝒜u

𝓁 do not cross the contact interface (see Figure 4). Neglecting these blocks during aggregation guarantees that the two
solid bodies are not melted together in the coarse matrix representation. We stress that the modified K is never formed
explicitly, but rather the off-diagonal entries are dropped on the fly during the aggregation process.

4.3 Aggregation strategy for Lagrange multipliers

In contrast to geometric multigrid methods, there is not so much literature on aggregation-based AMG methods for
contact problems in saddle point formulation. The only publication, the authors are aware of covering all aspects of
smoothed aggregation methods for structural contact problems in saddle point formulation, is Reference 55, which also
discusses a special aggregation strategy for the Lagrange multipliers. To find aggregates 𝒜 𝝀

𝓁 for the Lagrange multipliers,
Adams55 proposes to apply the standard aggregation algorithm to the graph of a suitable matrix representing the Lagrange
multipliers. However, this approach has some drawbacks: First, the graph used for the aggregation of the Lagrange
multipliers 𝝀 has to be built explicitly to serve as input for the standard aggregation algorithm. Secondly, one has to run
the aggregation algorithm sequentially both for the displacement degrees of freedom and for the Lagrange multipliers.

F I G U R E 4 Aggregation for contact example in
saddle point formulation
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For the second run of the aggregation method, one might have to use a different set of aggregation parameters to obtain
optimal results, which further increases the complexity for the user. Algorithmically, the resulting aggregates 𝒜 𝝀

𝓁 for the
Lagrange multipliers are built independently from the displacement aggregates 𝒜u

𝓁 .
In this work, we propose a different approach to build aggregates 𝒜 𝝀

𝓁 for the Lagrange multipliers, which does not
suffer from above drawbacks. Instead of explicitly building some helper matrix for the aggregation routine, interface
aggregates 𝒜 𝝀

𝓁 for the Lagrange multipliers are directly generated using the aggregation information of the displacement
variables (see Figure 4). The resulting interface aggregates for the Lagrange multipliers are by construction aligned with
the corresponding displacement aggregates.

Algorithm 1. Aggregation algorithm for Lagrange multipliers

Procedure LagMultAggregation(𝒜u
𝓁 ,𝖣)

Initialize empty set and counter for aggregates 𝒜 𝝀
𝓁

𝒜 𝝀
𝓁 ← ∅, l ← 0

Initialize empty mapping of displacement aggregates to Lagrange multiplier aggregates
𝖽(k) ← ∅ ∀k = 1,… ,m𝒜𝓁

u

Loop over slave displacement DOFs (rows of 𝖣)
for i ∈  do

Find displacement node nu id corresponding to displacement DOF i
nu ← n(i)

Find aggregate index k that contains displacement node nu

Find k with 𝒜 (k)
𝓁 ∈ 𝒜u

𝓁 where nu ∈ 𝒜 (k)
𝓁

Loop over all Lagrange multipliers j
for j ∈ 𝝀 do

Check whether Lagrange multiplier j is coupled with row i
if 𝖣i,j ≠ 0 then

Find pseudo node n𝜆 for Lagrange multiplier j
n𝜆 ← n(j)

Check whether to build a new Lagrange multiplier aggregate
if 𝖽(k) = ∅ then

Increment internal aggregation counter
l ← l + 1

Build a new aggregate and add Lagrange multiplier node n𝜆
𝒜 (l)

𝓁 ← {n𝜆}

Associate displacement aggregate k with Lagrange multiplier aggregate l
𝖽(k) ← {l}

Add new aggregate to set of Lagrange multiplier aggregates 𝒜 𝝀
𝓁

𝒜 𝝀
𝓁 ← 𝒜 𝝀

𝓁 ∪𝒜 (l)
𝓁

else
Extend aggregate 0 ≤ 𝖽(k) ≤ l with pseudo node
𝒜 (𝖽(k))

𝓁 ← 𝒜 (𝖽(k))
𝓁 ∪ {n𝜆}

end
end

end
end

Return aggregates for Lagrange multipliers
return 𝒜 𝝀

𝓁
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The exact aggregation procedure is described in Algorithm 1. Assuming that the standard aggregates 𝒜u
𝓁 for the

displacement degrees of freedom are available, new aggregates 𝒜 𝝀
𝓁 are built by collecting the corresponding Lagrange

multiplier degrees of freedom. Beside the displacement aggregates𝒜u
𝓁 , only the mortar matrix D is needed to algebraically

reconstruct the contact interface and find the associated Lagrange multipliers. The new aggregates 𝒜 𝝀
𝓁 for the Lagrange

multipliers can be interpreted as the natural extension of the displacement aggregates 𝒜u
𝓁 at the interface. This facilitates

to keep the ratio of coarse-level nodes at the slave contact interface and the coarse Lagrange multipliers constant, which
also balances the ratio of contact constraints and inner structural displacement degrees of freedom over all multigrid
levels.

The coarsening strategy outlined in Algorithm 1 as well as all other AMG components of the presented saddle-point
preconditioner for contact problems have been implemented in MueLu,82 the next-generation multigrid package within
the Trilinos project.83 For further details on the implementation, we refer to the MueLu user’s guide82 and the MueLu
website.84

5 BLOCK SMOOTHING METHODS FOR MORTAR CONTACT PROBLEMS

Using saddle point preserving aggregation and segregated transfer operators as outlined in Section 4 to generate a fully
coupled AMG hierarchy (see Section 3.3), the coupling of structural equilibrium equations and contact constraints on all
levels of a fully coupled AMG hierarchy is now addressed by block smoothing methods on each level. Schur complement
based coupling iterations present themselves as ideal candidates to deal with the saddle point structure resulting from
the constraint-like contact equations.

Nevertheless, not all classical Schur complement based block smoothers for saddle point systems behave the same
way when applied to contact problems. Specifically, it is important that the block smoothers account for the contact con-
straints in (5). While each iteration’s intermediate solution itself is not of great interest, its satisfaction of the contact
constraints impacts the overall number of required iterations to reach convergence, since only an intermediate solution
that satisfies the contact constraints can then also be accepted as the final solution of the iterative process. While an
exact satisfaction of the contact constraints by the block smoothers is desirable, practical computations require a com-
promise between the accuracy of the block smoothers and their computational effort in order to obtain computationally
competitive preconditioners.

In Section 5.1, we first revisit some classical smoothing methods for saddle point systems. Therefore, we assume
exact inverses for the predictor and corrector step of each smoother to focus on the systematic error resulting from
the specific block structure of the smoother. The assumption of exact inverses allows to assess the behavior of each
block smoother via an error matrix, such that the impact of the block smoother on the contact constraints can be
characterized. Afterwards, we introduce computationally cheaper variants with inexact block inverses in the pre-
dictor and corrector step as a compromise between accuracy and performance in Section 5.2, however preventing
the discourse on error matrices. While the approximations due to the block structure of a specific smoother origi-
nate from the definition of the smoothing method, the quality of the approximate block inverses can fully be con-
trolled by the user. Finally, Section 5.3 discusses their application in the context of saddle point systems for contact
formulations.

5.1 Block smoothers for saddle point problems

Now, we study the systematic errors introduced by specific block smoothers and their impact on the contact constraints.
Therefore, we first assume exact mathematical block operations. To carefully distinguish between systematic errors and
errors stemming from practical Schur complement approximations, we postpone the discussion of such approximations
to Section 5.2.

The general block smoothing scheme can be written as

[
Δuk+1

Δ𝝀k+1

]
=

[
Δuk

Δ𝝀k

]
+ Q−1

([
rk

u

rk
𝝀

]
−

(
K CT

1

C2 −Z

)[
Δuk

Δ𝝀k

])
, (8)
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where Q describes the 2× 2 block preconditioning matrix approximating the 2× 2 block operator in (5). Typical block
smoothers consist of an outer coupling iteration with nested subsolvers to build the inverses of the diagonal blocks of
Q in an algorithmic predictor–corrector scheme. In the following, a few classical block smoothers from literature (e.g.,
Reference 85) are introduced, stating that this list is by far not complete. All of them can be interpreted as block extensions
of classical iterative smoothing methods following the general block scheme (8), but depending on the definition of Q with
a different effect on the contact constraints by introducing certain systematic errors. In general, the better Q approximates
the block operator from (5), the lower the number of linear iterations will be when using the block smoother within a
multigrid preconditioner.

5.1.1 Uzawa smoother

For the (inexact) Uzawa smoother, one chooses

QUZ ∶= 1
𝛼

(
K 0

C2 −S̃

)
. (9)

The parameter 𝛼 > 0 is a damping parameter and S̃ describes a cheap approximation of the Schur complement
S = Z + C2K−1CT

1. For a theoretical review of Uzawa like smoothers, the reader is referred to References 86-88.
With the off-diagonal coupling block C2 in (9), the smoother performs a one-way coupling in the sense that

the Lagrange multiplier increments now depend on the current increment of the displacement degrees of freedom.
Algorithm 2 represents the practical implementation as a predictor–corrector method. In each smoothing iteration,
one calculates a prediction for the displacement increments 𝛿uk+1, which are taken into account when solving for the
corresponding Lagrange multiplier increments 𝛿𝜆k+1.

Algorithm 2. Uzawa smoother

Procedure Uzawa(𝛼, kmax)

Apply kmax smoothing sweeps with the Uzawa algorithm
for k ← 0 to kmax − 1 do

Prediction step: solve for 𝛿uk+1

𝖪 𝛿uk+1 = rk
u − 𝖪Δuk − 𝖢𝖳

1Δ𝝀
k

Correction step: solve for 𝛿𝝀k+1

−S̃ 𝛿𝝀k+1 = rk
𝝀
− 𝖢2Δuk + 𝖹Δ𝝀k − 𝖢2 𝛿uk+1

Update step: update solution variables
Δuk+1 ← Δuk + 𝛼 𝛿uk+1

Δ𝝀k+1 ← Δ𝝀k + 𝛼 𝛿𝝀k+1

end

Return smooth solution vector
return

(
Δukmax ,Δ𝝀kmax

)

Assuming the smoothing iteration has converged, the error matrix for the Uzawa smoother is given as

EUZ ∶= A − QUZ =

(
(1 − 1

𝛼
)K CT

1

(1 − 1
𝛼
)C2 −Z + 1

𝛼
S̃

)
. (10)

With 𝛼 = 1, S̃ = Z + C2K̃
−1

CT
1 being an approximation to the Schur complement, and K̃ denoting an easy-to-invert

approximation of K, for example, the diagonal of K as a cheap variant for the approximation K̃, that is, K̃ = diag(K), it is
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easy to verify that the error matrix of the Uzawa smoother reduces to

EUZ =

(
0 CT

1

0 C2K̃
−1

CT
1

)
. (11)

That is, since the second block row in the error matrices (10) or (11) does not vanish, the Uzawa smoother by definition
cannot exactly fulfill the contact constraints, but adds a systematic error for the contact constraints. This might have a
negative impact on the overall performance of the iterative linear solver.

5.1.2 Braess–Sarazin smoother

Originally introduced for the Stokes problem in Reference 80, the Braess–Sarazin smoother belongs to the class of block
approximate smoothers and is based on the choice

QBS ∶=

(
𝛼K̃ CT

1

C2 −Z

)
(12)

for the block preconditioning matrix Q in (8). Again, the parameter 𝛼 > 0 denotes a scaling parameter and K̃ refers to an
easy-to-invert approximation of K.

Algorithm 3. Braess–Sarazin smoother

Procedure BraessSarazin(𝛼, kmax)

Apply kmax smoothing sweeps with Braess–Sarazin algorithm
for k ← 0 to kmax − 1 do

Prediction step: determine prediction Δuk+ 1
2 by calculating

Δuk+ 1
2 = Δuk + 1

𝛼
�̃�−1(rk

u − 𝖪Δuk − 𝖢𝖳
1Δ𝝀

k)
Correction step: solve for 𝛿𝝀k+ 1

2

−
(
𝖹 + 1

𝛼
𝖢2�̃�−1𝖢𝖳

1
)
∼ 𝛿𝝀k+ 1

2 = rk
𝝀
+ 𝖹Δ𝝀k − 𝖢2Δuk+ 1

2

Update step: update solution variables
Δ𝝀k+1 ← Δ𝝀k + 𝛿𝝀k+ 1

2

Δuk+1 ← Δuk+ 1
2 − 1

𝛼
�̃�−1𝖢𝖳

1 ∼ 𝛿𝝀k+ 1
2

end

Return smooth solution vector
return

(
Δukmax ,Δ𝝀kmax

)

Assuming convergence of the smoother, the error matrix for the Braess–Sarazin smoother is given as

EBS ∶= A − QBS =

(
K − 𝛼K̃ 0

0 0

)
. (13)

With the second block row in the blocked operator (5) being retained in (12), the Braess–Sarazin smoother seems to
be a reasonable choice for dealing with contact constraints. The error matrix in (13) reveals that the quality of the block
smoother only depends on the choice of K̃.

The implementation as a predictor–corrector method is based on the splitting of (12) into
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(
𝛼K̃ CT

1

C2 −Z

)
=

(
𝛼K̃ 0

C2 −Z − 1
𝛼

C2K̃
−1

CT
1

)(
I 1

𝛼
K̃
−1

CT
1

0 I

)
. (14)

As one can easily see from Algorithm 3, the prediction step can be understood as one hard-coded sweep with a
(damped) Jacobi iteration. In other words, the quality of the prediction for the displacement degrees of freedom must be
considered rather poor. Exactly fulfilling contact constraints with respect to a rather poor prediction of the displacement
variables might not be optimal for the overall performance of the preconditioner.

5.1.3 SIMPLE variants

Originally introduced in References 75,89, the SIMPLE method is based on the approximate block factorization

QSIMPLE ∶=

(
K 0

C2 −S̃

)(
I K̃

−1
CT

1

0 1
𝛼

I

)
=

(
K KK̃

−1
CT

1

C2 (1 − 1
𝛼
)C2K̃

−1
CT

1 −
1
𝛼

Z

)
(15)

for the iterative method in (8). In (15), S̃ denotes an approximation of the Schur complement S ∶= Z + C2K−1CT
1 with a

cheap and easy-to-invert approximation K̃ of the block K. Algorithm 4 shows the implementation of the SIMPLE method
using the predictor–corrector scheme (cf., Reference 90).

Algorithm 4. SIMPLE smoother

Procedure SIMPLE(𝛼, kmax)

Apply kmax smoothing sweeps with SIMPLE algorithm
for k ← 0 to kmax − 1 do

Prediction step: solve for Δuk+ 1
2

𝖪Δuk+ 1
2 = rk

u − 𝖢𝖳
1Δ𝝀

k

Correction step: solve for 𝛿𝝀k+ 1
2

−S̃ 𝛿𝝀k+ 1
2 = rk

𝝀
+ 𝖹Δ𝝀k − 𝖢2Δuk+ 1

2

Update step: update solution variables
Δ𝝀k+1 ← Δ𝝀k + 𝛼 ∼ 𝛿𝝀k+ 1

2

Δuk+1 ← Δuk+ 1
2 − 𝛼�̃�−1𝖢𝖳

1 ∼ 𝛿𝝀k+ 1
2

end

Return smooth solution vector
return

(
Δukmax ,Δ𝝀kmax

)

For our applications, we found the diagonal matrix containing the row sums of |K| = (|aij|)i,j=1,… ,nK
to be a good

approximation for block K. This corresponds to the SIMPLEC method as introduced in Reference 91. That is, K̃ is defined
as the diagonal lumping of |K| with

K̃ = diag

( nK∑
j=1

|aij|) , i = 1, … ,nK. (16)

The default choice for S̃ is consequently S̃ = 𝛼Z + 𝛼C2K̃
−1

CT
1 with K̃ as defined in (16). A more theoretical

discussion on the mathematical consequences of approximations for the Schur complement S can be found in
Reference 54.
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For the SIMPLE preconditioner, the error matrix is calculated by

ESIMPLE ∶= A − QSIMPLE =

(
0 CT

1 − KK̃
−1

CT
1

0 −Z − C2K̃
−1

CT
1 +

1
𝛼

S̃

)
. (17)

As one can see from (17), SIMPLE perturbs the Lagrange multipliers, but it does not affect the terms that operate on
the primary displacement variables since the first block column in (17) is zero. Choosing S̃ = 𝛼Z + 𝛼C2K̃

−1
CT

1, the error
matrix reduces to

ESIMPLE =

(
0 CT

1 − KK̃
−1

CT
1

0 0

)
. (18)

That is, an appropriate approximation S̃ of the Schur complement S allows to exactly satisfy the contact constraints
within one smoothing sweep. Depending on the choice for the approximation K̃, the SIMPLE method admits an error in
the coupling between displacements and contact constraints. However, compared with the Braess–Sarazin method from
Section 5.1.2, we put more focus on a good prediction for the displacements with a consistent update for fulfilling the
contact constraints.

5.2 Cheap variants of block smoothers

As one can easily see from the Algorithms 2–4, all block smoothing methods internally require inverses of the matrix
blocks on the matrix diagonal and of the Schur complement operator S̃. Specifically, there is one linear system to be solved
in the prediction step and one during the correction step. To keep the computational costs low in practical computations,
one does not solve for the block inverses exactly, but applies a cheap approximation, for example, by using a fixed number
of smoothing sweeps with a relaxation-based smoothing method such as symmetric Gauss–Seidel or an ILU sweep. This
allows for more flexibility for finding a good compromise between quality and performance, as the user can decide how
much effort should be put on finding a good prediction and fulfilling the Schur complement equation in the corrector step.
While the systematic errors introduced by the choice of the block smoother from Section 5.1 are fixed, the practitioner
has full control over the quality of the block inverses.

The numerical examples in Section 6 show that such an approximation leads to efficient and computationally reason-
able block smoothing methods. As a naming convention, the prefix “cheap” is added to the name of the block smoothing
method to indicate the usage of a cheap approximation for finding the inverse of the diagonal blocks in addition to the
systematic approximations of building the Schur complement operator as discussed in Section 5.1.

The block smoothing methods and their cheap variants are available in the Xpetra package of the Trilinos
project.83 For further details on the implementation, we refer to the MueLu user’s guide82 and the MueLu and Xpetra
websites,84,92 respectively.

5.3 Comparison of saddle point smoothing methods for contact problems

Considering the block scheme of (5), there are two main challenges for contact problems. First, we have the two distinct
sets of equations as described in Section 2.3: the structural equations formulated in cartesian coordinates and the set of
contact constraints formulated in normal-tangential coordinates relative to the contact surface. Second, the coupling of
those two distinct sets of structural equations and contact constraint equations.

Algorithmically, the coupling of structural equations at the contact interface via the off-diagonal blocks in (5) is only
considered within the block smoothers from Section 5.1. Therefore, constraint smoothers (cf., Reference 93) are the nat-
ural choice for contact problems, since the contact problem is implicitly governed by the contact constraint equations.
Only solutions that are in alignment with the contact constraints are of interest.

Under certain preconditions as discussed in Section 5.1 and assuming sufficient smoother iterations to reach con-
vergence of the smoother, both the Braess–Sarazin method and the SIMPLE-based methods would exactly fulfill the
contact constraints as one can see from Equations (13) or (18). Therefore, with a systematic error in the lower-right block
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of (11), the Uzawa method seems to be less promising for contact problems. In the Braess–Sarazin method, the approxi-
mation K̃ = diag(K) is hard-coded with some scaling parameter 𝛼 > 0 and consistently used within the approximate Schur
complement operator, which is defined by S̃ = Z + 1

𝛼
C2K̃

−1
CT

1.
In contrary to the Braess–Sarazin method, the SIMPLE based methods keep the full K block whenever possible in the

block factorization and use K̃ only where its inverse is required. Consequently, in “cheap” variants of the SIMPLE method,
more elaborate smoothing strategies can be used for the K block instead of a hard-coded Jacobi sweep. Therefore, one can
think of the SIMPLE methods to allow for a more balanced quality of approximations for the displacement degrees of
freedom and Lagrange multipliers for the contact constraints, whereas the Braess–Sarazin method exhibits an imbalance
in the sense that the computational effort spent for approximating the constraints is much higher than for dealing with
the displacement variables.

6 NUMERICAL EXAMPLES

For the numerical examples, we use our in-house code BACI94 that internally uses various capabilities from the Trilinos
project.83 The implementation of the multigrid algorithms is based on Trilinos’ MueLu package.82,95 In particular, all
block smoothers from Section 5 as well as the contact specific aggregation strategy for the Lagrange multiplier unknowns
as described in Section 4 are readily available in MueLu.

6.1 Two solid bodies example

With the first example, we want to study the effect of the block smoothers from Section 5 for contact problems. Here, we
not only compare different block smoothers, but also highlight the effect of varying the quality of the subsmoothing steps
within the block smoother versus increasing the number of outer coupling iterations.

Motivated by findings in our previous work,41 this example briefly revisits a detail that has been problematic in
the context of contact problems in condensed contact formulations. While the discrete global unknowns (u,𝝀) are—as
usual—formulated with respect to the global Cartesian frame, the discrete Lagrange multiplier weights 𝝁 and therefore
the contact constraint equations in (3b) and (3c) are formulated with respect to a local convective coordinate system.
This local system is defined at each slave node j by a surface normal vector and two tangent vectors, that is, by a triad
of orthonormal basis vectors (n)j, (𝝉𝜉)j, and (𝝉𝜂)j. Although it represents a quite intuitive and natural choice in contact
mechanics, this local constraint formulation may lead to nondiagonally dominant system matrices and therefore poses a
serious challenge to the development of iterative linear solvers as has been elaborated in Reference 41. In the following,
we will also investigate the susceptibility of the proposed saddle point preconditioners to this phenomenon.

6.1.1 Geometrical setup

Since we are interested in the solver behavior, by intention we choose a simple 3D contact example as shown in Figure 5.
There are two solid bodies with the same material parameters using a Neo-Hookean material (density 𝜌0 = 0.1 kg

m3 , Young’s
modulus E = 10 GPa, Poisson’s ratio 𝜈 = 0.3). The initial gap between the two solid bodies is 0.02 m. The upper solid body
(size: 0.8 m × 0.8 m × 0.5 m) is moving down with constant velocity along the normal to the contact interface toward the
lower fixed solid body (size: 1.0 m × 1.0 m × 1.0 m).

F I G U R E 5 Two solid
bodies example—Geometric
configuration and parameters
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6.1.2 Experimental setup

To investigate a potential impact of the contact formulation in different coordinate systems (cartesian coordinates for the
structural degrees of freedom and normal-tangential coordinates for the Lagrange multipliers) on the linear solver, we
perform a similar experiment as introduced in Reference 41 and rotate the example setup around 𝛼y and 𝛼z as shown in
Figure 6. We expect the number of linear iterations to be independent of the rotation angles 𝛼y and 𝛼z, since the underlying
physics do not change. Any dependency of the linear solver on 𝛼y and 𝛼z would be a result of purely numerical effects
and would turn out highly problematic for the iterative solution of large and complex contact problems. For reasons of
symmetry, it is sufficient to vary 𝛼y and 𝛼z within 0 ≤ 𝛼y, 𝛼z ≤ 𝜋

2
.

6.1.3 Discretization

The spatial discretization is based on a 10× 10× 10 mesh for each solid block with altogether 6000 dis-
placement degrees of freedom and 300 Lagrange multipliers modeling the contact coupling constraints for
the 10× 10 slave nodes at the contact interface (see Figure 5). The simulation runs for 40 time steps with
a time step size of 0.01 s on four processors. After six time steps (t = 0.06 s) both bodies come into con-
tact and are deformed. We assume frictionless contact here. With this example we reduce the contact-specific
effects (such as the contact search based on an active set strategy) to a minimum, such that one can focus
on the linear solvers. That is, the contact zone is not changing once the two solid bodies are in con-
tact.

6.1.4 Stopping criteria

The nonlinear iteration inside each time step stops if either ‖Δu‖e < 10−8 holds for the Newton increment of the
displacement degrees of freedom, or alternatively, if the conditions

‖‖ru
i
‖‖e < 10−6 ∧ ‖‖‖r𝝀i

‖‖‖e
< 10−4 (19)

hold for the nonlinear residuals ru
i and r𝝀i in (4) after applying i Newton iterations. Thereby, ‖•‖e denotes the Euclid-

ian vector norm. Those stopping criteria for the nonlinear solver are chosen to result in the same number of nonlinear
iterations in each time step for an easier comparison of the linear solver behavior.

F I G U R E 6 Two solid bodies example—Experimental setup to
study independence of spatial orientation
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Within each Newton iteration, the saddle point system (4) is solved iteratively using a preconditioned GMRES method
with a three-level AMG preconditioner as described in Section 3. The iterative process for the linear system is considered
to be converged, if it is ‖‖‖‖rk

r0

‖‖‖‖e
< 10−8 (20)

for the full residual vector rk =
[

ru

r𝝀
]

in the linear iteration step k. Here, the subscript i for the nonlinear Newton iteration

is dropped.
In this work, we focus on the behavior of the linear solver. Therefore, a fixed stopping criterion for all tested variants

is chosen in (20). This allows the comparison of different preconditioning techniques including their effect on the linear
solution strategy. For real world problems, and especially for coupled multiphysics problems, the task of choosing appro-
priate stopping criteria for both the nonlinear and linear solver turns out to be quite challenging. Usually, one would
choose a combination of different (length-scaled) norms for the partial vectors ru and r𝝀. In order to reduce the solver
time in the inner linear solver, it is recommended to adapt the linear (relative) solver tolerance according to the residual
norms of the outer nonlinear solver.

6.1.5 Results

First, the effect of the different saddle point smoothers on the number of linear iterations is explored. Table 1 summarizes
the average number of linear iterations per time step for different combinations of the rotation angles 𝛼y and 𝛼z. The num-
bers in brackets denote the maximum number of linear iterations needed for solving one linear system during the full
simulation, roughly indicating the variation of the number of linear iterations within the simulation. For the CheapUzawa
smoother, the number of iterations does not show a dependence on the rotation angles 𝛼y and 𝛼z. Comparing the numbers
from Table 1(a) with the results for the CheapBraessSarazin smoother in Table 1(b), the CheapBraessSarazin smoother
heavily suffers from the worse approximation of the displacement degrees of freedom using one internal hard-coded
Jacobi sweep (cf., Section 5.1.2). The resulting iteration numbers show an obvious dependency on the rotation angles.
With a CheapSIMPLEC block smoother, the number of iterations is lower than for the CheapUzawa smoother and inde-
pendent from 𝛼y and 𝛼z when compared with the CheapBraessSarazin smoother (see Table 1(c)). So, the linear solver
has some benefit from the two-way coupling of displacements and Lagrange multipliers within the AMG preconditioner.
Compared with the Uzawa smoother, the additional computational costs for the CheapSIMPLEC method are very low
with only one additional matrix–vector product by K̃

−1
CT

1 per iteration. Therefore, CheapSIMPLEC is the preferred level
smoother for our further experiments with some cheap approximations for the internal single fields using some sweeps
with a (symmetric) Gauss–Seidel (SGS) method for the structural block or incomplete LU factorization (ILU) for the
Lagrange multipliers.

Table 2 illustrates how the number of CheapSIMPLEC coupling iterations and the quality of the single-field smooth-
ing methods within the CheapSIMPLEC smoother affect the number of linear iterations. Improving the quality of the
Schur complement approximations within CheapSIMPLEC (see Table 2(a) vs. (b)) as well as increasing the number of
CheapSIMPLEC coupling iterations (see Table 2(c)) unsurprisingly reduces the number of linear solver iterations. Aside
from the concrete parameter choices for the level smoother, one can even further reduce the number of linear iterations
with a reasonable transfer operator smoothing strategy for the displacement block, for example, as indicated in (6).

By intention, we do not report solver timings, since this example is too small to perform reasonable time measure-
ments, especially when using four processors for altogether only 6300 degrees of freedom.

The intention of this example is to compare typical saddle point smoothers within a fully coupled AMG precondi-
tioner. One can observe the expected behavior that increasing the number of smoothing sweeps reduces the number of
linear GMRES iterations. However, in practice, the variant with a smaller number of GMRES iterations may not always be
the fastest method. This example shows that the proper choice of block-level smoothing is essential for the overall perfor-
mance of a saddle point multigrid method. The particular choice of the block smoothing method gives the user full control
over the quality of the coupling with field-specific parameters and allows for fine-grained adaptions and problem-specific
optimizations.

With the experience from this example one can choose efficient level smoothers which provide results independent
from the exact geometric configuration.
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T A B L E 1 Two solid bodies
example—Average (maximum) number of
linear GMRES iterations per nonlinear iteration
(over all 40 time steps) for different
combinations of rotation angles 𝛼y and 𝛼z

(a) Level smoother: three CheapUzawa(0.7) with one SGS (0.7) + ILU(0)

𝜶y

0 1
8
𝝅

1
4
𝝅

3
8
𝝅

1
2
𝝅

𝛼z

0 26.2 (30) 26.0 (30) 24.6 (29) 24.6 (30) 26.0 (29)
1
8
𝜋 26.8 (30) 25.8 (37) 25.3 (30) 24.7 (30) 27.3 (31)

1
4
𝜋 25.9 (31) 25.1 (32) 25.3 (30) 28.7 (40) 26.0 (31)

3
8
𝜋 25.9 (31) 25.0 (30) 24.9 (30) 25.5 (33) 25.3 (29)

1
2
𝜋 26.1 (30) 25.4 (32) 25.5 (30) 26.8 (31) 26.0 (30)

(b) Level smoother: three CheapBraessSarazin(1.9) with ILU(0)

𝜶y

0 1
8
𝝅

1
4
𝝅

3
8
𝝅

1
2
𝝅

𝛼z

0 29.9 (37) 29.6 (36) 27.9 (33) 30.7 (38) 29.7 (37)
1
8
𝜋 41.2 (59) 43.1 (68) 42.0 (58) 43.6 (63) 41.4 (59)

1
4
𝜋 56.8 (82) 64.8 (86) 68.6 (95) 64.3 (86) 54.9 (75)

3
8
𝜋 40.9 (60) 55.5 (74) 73.1 (102) 111.1 (141) 41.3 (61)

1
2
𝜋 29.9 (37) 41.0 (55) 56.8 (79) 41.3 (61) 29.7 (36)

(c) Level smoother: three CheapSIMPLEC(0.7) with one SGS (0.7) + ILU(0)

𝜶y

0 1
8
𝝅

1
4
𝝅

3
8
𝝅

1
2
𝝅

𝛼z

0 20.5 (26) 19.3 (21) 18.8 (23) 19.3 (26) 19.3 (20)
1
8
𝜋 20.1 (22) 19.7 (27) 20.0 (24) 19.8 (21) 21.2 (25)

1
4
𝜋 20.1 (25) 19.9 (23) 20.1 (23) 22.0 (26) 20.8 (30)

3
8
𝜋 19.7 (22) 19.8 (22) 19.8 (23) 20.0 (26) 19.7 (23)

1
2
𝜋 19.3 (20) 19.6 (22) 20.4 (27) 20.7 (25) 20.5 (28)

Note: As preconditioner, a three-level AMG method (PA-AMG + PA-AMG, minimum aggregate size:
six nodes) is used with different level smoothers. Within the block smoothers on all multigrid levels,
symmetric Gauss–Seidel is used for the structural degrees of freedoms and ILU for the Lagrange
multipliers.

6.2 Weak scaling behavior

To assess the behavior of the proposed multilevel preconditioner applied to large-scale examples, we now report a weak
scaling study. To exclude side effects (such as changes in the contact active set) and to fully focus on the behavior of the
preconditioner and iterative linear solver, we study a simplified and linear contact problem.

6.2.1 Setup

We consider a small block (dimensions 0.8 m × 0.8 m × 0.4 m) and a slightly bigger block (dimensions
1.0 m × 1.0 m × 0.5 m), where contact will occur between the large faces of both blocks. To reduce the complexity of
the contact problem and to exclude nonlinearities due to changes in the contact active set, the faces opposite to the con-
tact interface are fixed with Dirichlet boundary conditions, while the blocks initially penetrate each other at the contact
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(a) Level smoother: one CheapSIMPLEC(0.7) with one SGS (0.7) + ILU(0)

𝜶y

0 1
8
𝝅

1
4
𝝅

3
8
𝝅

1
2
𝝅

𝛼z

0 37.5 (57) 35.6 (43) 35.2 (46) 36.1 (44) 35.7 (45)
1
8
𝜋 36.4 (45) 37.6 (44) 38.5 (47) 36.3 (43) 38.1 (53)

1
4
𝜋 39.1 (50) 37.8 (47) 37.0 (47) 39.2 (48) 37.0 (44)

3
8
𝜋 36.3 (43) 37.0 (48) 37.8 (46) 37.2 (51) 36.4 (43)

1
2
𝜋 36.2 (47) 38.0 (51) 39.8 (50) 36.9 (50) 36.6 (53)

(b) Level smoother: one CheapSIMPLEC(0.7) with three SGS (0.7) + ILU(0)

𝜶y

0 1
8
𝝅

1
4
𝝅

3
8
𝝅

1
2
𝝅

𝛼z

0 29.5 (41) 27.5 (34) 28.4 (36) 28.5 (37) 27.1 (36)
1
8
𝜋 29.3 (37) 30.1 (40) 32.7 (40) 28.8 (35) 28.4 (38)

1
4
𝜋 30.0 (35) 29.6 (37) 28.5 (37) 31.1 (38) 29.2 (36)

3
8
𝜋 28.8 (36) 27.8 (34) 28.1 (34) 29.1 (39) 28.1 (34)

1
2
𝜋 28.5 (38) 28.4 (34) 29.7 (40) 27.9 (35) 27.1 (35)

(c) Level smoother: three CheapSIMPLEC(0.7) with three SGS (0.7) + ILU(0)

𝜶y

0 1
8
𝝅

1
4
𝝅

3
8
𝝅

1
2
𝝅

𝛼z

0 15.5 (16) 17.0 (19) 16.9 (20) 15.3 (16) 15.2 (16)
1
8
𝜋 16.2 (17) 16.1 (17) 16.3 (17) 15.9 (17) 16.1 (17)

1
4
𝜋 16.0 (17) 16.0 (17) 16.0 (17) 15.6 (18) 15.6 (16)

3
8
𝜋 15.7 (17) 15.9 (17) 15.9 (17) 15.5 (19) 15.6 (16)

1
2
𝜋 15.6 (16) 15.8 (16) 15.7 (16) 15.4 (16) 15.1 (16)

Note: As preconditioner, a three-level AMG method (minimum aggregate size: six nodes) is used with
different variants of CheapSIMPLEC. Within the CheapSIMPLEC method on all multigrid levels,
symmetric Gauss–Seidel sweeps are used for the structural degrees of freedoms and ILU for the
Lagrange multipliers.

T A B L E 2 Two solid bodies example—
Average (maximum) number of linear GMRES
iterations per nonlinear iteration (over all 40
time steps) for different rotation angles 𝛼y and
𝛼z

interface by 0.001. The smaller block acts as the slave side and its entire contact area is initialized as “active.” Application
of the contact algorithms will then result in a slight compression of both blocks, such that the initial penetration van-
ishes. This problem setup allows to distill the performance of the AMG preconditioner under uniform mesh refinement
and weak scaling conditions.

Both blocks use a Neo-Hooke material with Young’s modulus E = 10 MPa and Poisson’s ratio 𝜈 = 0.3. Denoting the
mesh refinement factor with 𝜅, both blocks are discretized with 2𝜅 linear hexahedral elements along their longer edges
and 𝜅 elements along the shorter edges. The Lagrange multiplier field is discretized with standard shape functions, that
is, linear Lagrange polynomials.

6.2.2 Solver and preconditioner settings

As linear solver, a preconditioned GMRES method is used with a fully coupled multigrid approach as described in
Section 3.2. The convergence criterion for the linear GMRES solver is set to
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‖‖‖‖rk

r0

‖‖‖‖e
< 10−8 (21)

for the full residual vector rk =
[

ru

r𝝀
]

in the linear iteration step k. For the segregated block transfer operator as introduced

in (7), we combine smoothed aggregation (SA-AMG) with a prolongator smoothing factor 𝜔 = 4∕3 for the displacement
aggregates and plain nonsmoothed (PA-AMG) transfer operators for the Lagrange multiplier aggregates. The restriction
operators are built as the transposed of the prolongation operators. Coarsening stops when the total number of rows in
the saddle-point system drops below 5000.

Following the guidance from Section 5.3 and the findings from Section 6.1.5, we apply three sweeps of CheapSIM-
PLE(0.8) as a level smoother, where both the predictor and corrector step are approximated by one sweep of SGS each. We
use the same level smoother layout on all multigrid levels except of the coarsest level. For the coarsest level, we compare
two variants: a direct solver (marked as “LU,” requiring an expensive merging of the block matrix into a regular sparse
matrix format and a subsequent LU factorization) versus the CheapSIMPLE level smoother as on all other multigrid lev-
els (marked as “CheapSIMPLE”). We will study the impact of the coarse solver on scaling behavior, iteration counts, as
well as AMG setup and V-cycle timings.

6.2.3 Results

For the weak scaling study, we target the load per rank to be 50k displacement DOFs. A uniform mesh refinement as
outlined in Table 3 is performed with the finest mesh consisting of roughly 23.9 million unknowns in the saddle-point
system.

Therein, nproc denotes the number of MPI ranks, 𝜅 the mesh refinement factor introduced in Section 6.2.1, nu
DOF,

n𝜆DOF, and ntotal
DOF the overall number of displacement, Lagrange multiplier, and total number of unknowns, nu

DOF/proc the
average load per MPI rank. The mesh refinement factor 𝜅 is chosen such that the targeted average number of displacement
unknowns per MPI rank is met. The number of levels n𝓁 , the actual size of the coarse-level system ntotal(n𝓁)

DOF as well as the
operator complexityA (defined as the ratio of nonzero entries of all multigrid-level matrices A𝓁 with𝓁 = 0, … , n𝓁 − 1 and
the number of nonzeros on the finest level) are reported in the last three columns of Table 3. The operator complexity A
slightly increases with larger problem sizes, but does not grow beyond A ≈ 1.30.

T A B L E 3 Weak scaling study—Mesh refinement and hierarchy details

nproc 𝜿 nu
DOF n𝝀

DOF ntotal
DOF nu

DOF/proc n𝓵 ntotal(n𝓵 )
DOF A

4 20 211,806 5043 216,849 52,951.5 3 948 1.16

8 25 405,756 7803 413,559 50,719.5 3 1275 1.18

16 32 836,550 12,675 849,225 52,284.4 3 2661 1.23

24 36 1,183,038 15,987 1,199,025 49,293.2 3 3426 1.24

48 46 2,439,018 25,947 2,464,965 50,812.9 4 393 1.26

72 52 3,505,950 33,075 3,539,025 48,693.8 4 570 1.27

96 58 4,845,906 41,067 4,886,973 50,478.2 4 762 1.28

144 66 7,110,978 53,067 7,164,045 49,381.8 4 1071 1.28

192 73 9,594,396 64,827 9,659,223 49,970.8 4 1401 1.29

240 79 12,134,880 75,843 12,210,723 50,562.0 4 1713 1.29

288 84 14,566,110 85,683 14,651,793 50,576.8 4 2103 1.30

336 88 16,729,686 93,987 16,823,673 49,790.7 4 2421 1.30

384 92 19,097,550 102,675 19,200,225 49,733.2 4 2709 1.30

432 96 21,678,918 111,747 21,790,665 50,182.7 4 3090 1.30

480 99 23,760,600 118,803 23,879,403 49,501.2 4 3884 1.30
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The scaling study is run on our in-house cluster (20 nodes with 2x Intel Xeon Gold 5118 (Skylake-SP) 12 core CPUs,
480 cores in total, Mellanox Infiniband Interconnect). Solver performance in terms of the number of GMRES iterations
as well as wall clock time spent in the AMG preconditioner construction and its application (i.e., sweeping through the
V-cycle once per GMRES iteration) are summarized in Figure 7.

With respect to iteration counts, both the direct solver as well as the block smoother yield the GMRES iteration count
to be fairly independent of the overall mesh size, especially when taking the slight deviations of the load per core as
detailed in Table 3 into account.

Using a direct solver on the coarsest multigrid level perfectly deals with all left-over error modes that are not properly
handled by the block smoothers on the finer multigrid levels. Therefore, the “LU” variant results in a lower iteration
count and is less sensitive to the actual size of the coarse-level system. In contrast, when using the CheapSIMPLE block
smoother as coarse-level solver, we observe a somewhat higher iteration count together with an obvious impact of the
number of multigrid levels on the iteration count (e.g., when moving from a three-level hierarchy on 24 MPI ranks to a
four-level hierarchy on 48 MPI ranks). Increasing the number of multigrid levels helps to compensate the lack of coupling
of the CheapSIMPLE block smoother compared with a direct solve on the coarsest level.

We show the CheapSIMPLE variants for the coarse solve since this variant in practice might be superior with respect
to the overall performance: Regarding AMG setup time, the cost for the direct coarse solver becomes more expensive
with a growing coarse system size, since (i) more matrix entries need to be moved from a block sparse matrix layout to
a regular sparse matrix layout and (ii) a larger matrix needs to be factorized. For the CheapSIMPLE block smoother as
coarse-level solver, no additional communication is required on the coarsest level. Hence, the mild slope in the graph
for preconditioner setup time for the CheapSIMPLE coarse-level solver originates only from the Galerkin product during
hierarchy construction. In terms of preconditioner application, that is, time spent in the AMG V-cycle, both methods are
almost identical and scale very well.

While proper weak scalability up to 23.9 million unknowns on 480 MPI ranks has been demonstrated, the actual
choice of the coarse solver in practical applications also depends on other factors such as the frequency of rebuilding the
AMG hierarchy or the balance of setup time, V-cycle time, and cost of the additional GMRES iterations, which all together
impact the overall time to solution. In the next example, we will put attention on effects for the linear solver caused by
changes in the active set of contact nodes for larger problems.

6.3 1000 deformable rings

Even though only a 2D example of moderate size, the 1000 rings example comes with frequent changes in the con-
tact active set and, thus, tests the robustness of the proposed multigrid methods. Particularly, we are interested in the
comparison of the fully coupled multigrid approach and the nested multigrid apparoch as described in Section 3.2.

6.3.1 Setup

This example consists of 1000 deformable rings (Neo-Hookean material with E = 210 GPa, 𝜈 = 0.3, and 𝜌0 = 7.83 ⋅
10−6 kg/m3) arranged in a rectangle (see Figure 8). A gravitational force is inducing an acceleration toward a rigid wall.
The simulated time extends to 2.0 s with a time step size of Δt = 0.0005 s, yielding 4000 time steps in total. The full mesh
consists 110,000 nodes with 110 nodes for each deformable ring.

F I G U R E 7 Weak scaling
study—Linear solver iterations
and AMG setup and V-cycle
timings demonstrate proper
weak scaling behavior. The type
of coarse solver is indicated in
parentheses
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(A)

(B) (C)

F I G U R E 8 1000 deformable rings—Characteristic stages at different times

6.3.2 Stopping criteria

In each time step, the nonlinear system is handled by a semismooth Newton method. As convergence criteria, we have
chosen

‖Δu‖e < 10−8 ∧ (‖‖ru
i
‖‖e < 10−8 ∧ ‖‖‖r𝝀i

‖‖‖e
< 10−6). (22)

Here, ru
i and r𝝀i denote the nonlinear residual for the displacement and Lagrange multiplier variables after i Newton

iterations, respectively. Similarly, Δu denotes the solution increment for the displacement variables in the ith Newton
iteration.

For solving the linear systems arising during the simulation a GMRES solver is applied with different variants of AMG
preconditioners listed in Table 4. The relative tolerance of convergence for the GMRES solver is set to ‖‖‖ rk

r0
‖‖‖e
< 10−8 with

rk =
[

ru

r𝝀
]

being the full residual vector in the linear iteration step k. Here, the subscript i for the nonlinear Newton step

is dropped.
The stopping criteria (22) for the nonlinear solver are carefully chosen in such a way that the simulations with all the

tested preconditioner variants shown in Table 4 always result in the same number of nonlinear iterations. This way we
can directly compare the number of linear iterations of all tested solver variants which allow to draw some conclusions
on the multigrid preconditioners.

6.3.3 Results

Table 4 provides an overview of the chosen preconditioner parameters for the level smoothers. For both the nested multi-
grid schemes and the fully coupled multigrid schemes we apply the level smoother on all multigrid levels including the
coarsest level. For each class of multigrid preconditioners, only those variants are presented, that give the best overall
timings and are able to accomplish the all 4000 time steps of the full simulation.

The multigrid parameters are chosen to be the same for all preconditioner variants: the minimum size of the aggregates
is set to six nodes for the two-dimensional problem and the maximum coarse-level size is set to 1000 degrees of freedom,
yielding a three-level multigrid method.

For the fully coupled AMG variants, different transfer operator strategies are compared, namely the nonsmoothed
(PA-AMG) transfer operators and the energy minimization approach with local damping parameters for transfer operator
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T A B L E 4 1000 deformable rings—Different AMG variants

Preconditioner type

Full multigrid based methods Nested multigrid based methods

PA-AMG (CheapSIMPLE) CheapSIMPLE (PA-AMG)

Transfer operators: PA-AMG Block prec.: One CheapSIMPLEC (0.8)

Level smoother: One CheapSIMPLEC (0.8) − Pred. smoother: AMG

− Pred. smoother: Three SGS (0.8) − Transfer op.: PA-AMG

− Corr. smoother: ILU (0) − Level sm.: One SGS (0.8)

− Corr. smoother: KLU

Emin (CheapSIMPLE) CheapSIMPLE (SA-AMG)

Transfer operators: Emin Block prec.: One CheapSIMPLEC (0.8)

Level smoother: One CheapSIMPLEC (0.8) − Pred. smoother: AMG

− Pred. smoother: Three SGS (0.8) − Transfer op.: SA-AMG (0.8)

− Corr. smoother: ILU (0) − Level sm.: One SGS (0.8)

− Corr. smoother: KLU

smoothing denoted by Emin, cf., Reference 63. For the nested AMG variants, we compare transfer operators based on
PA-AMG and SA-AMG. All the simulations have been run on 16 cores (spread over two Intel Xeon E5-2670 Octocore
CPUs).

Figure 9(A) shows for each time step the overall number of linear iterations for all nonlinear iterations stacked onto
each other. Compared with the CheapSIMPLE based methods, the fully coupled AMG variants need a significantly lower
number of linear iterations to solve the problem in each time step. This can be explained by the better approximation of the
displacement degrees of freedom using three instead of one damped Gauss–Seidel sweeps. One can also see how the num-
ber of linear iterations correlates with the number of active contact nodes. Obviously, the fully coupled AMG variants are
less sensitive to the changes in the number of active contact nodes than the CheapSIMPLE based methods. In Figure 9(B),
the overall linear solver time is given for each time step. Again, the fully coupled AMG variants perform better, although
the difference is less pronounced due to the higher computational effort of fully coupled AMG implementations. The
number of nonlinear iterations per time step is 2 for the initial phase without contact and then varies between 4 and 6,
when contact is active. It is the same for all preconditioner variants due to the particular choice of stopping criteria of
the nonlinear solver (see Section 6.3.2). Moreover, the number of nonlinear iterations is independent of the size of the
active set.

Finally, overall timings for the linear solver including preconditioner setup are reported in Table 5. The overall
solver time only varies slightly for all given variants. The variants Emin (CheapSIMPLE) and CheapSIMPLE (SA-AMG)
need more setup time due to the additional effort of prolongator smoothing. Emin (CheapSIMPLE) can fully amor-
tize the additional setup cost during the solve phase due to coarse grid corrections, that respect the contact con-
straints, while CheapSIMPLE (SA-AMG) does not have this benefit and, thus, requires the largest overall solver
time. To show a fair comparison, the preconditioner has been rebuilt in every nonlinear iteration step. Of course,
reuse strategies might increase amortization of setup costs and reduce overall solver timings when solving actual
problems.

6.4 Two tori impact example

Inspired by a similar analysis in Reference 96, with the two tori impact example we test the proposed multi-
grid variants from Section 3.2 on a complex 3D contact example with more than 1 million unknowns. Please
refer to Reference 97 for the detailed problem setup of the two tori impact example with geometry and load
conditions.
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F I G U R E 9 1000
collapsing rings
example—Results for different
AMG preconditioner variants

(A)

(B)

T A B L E 5 1000 deformable
rings—Exemplary timings in (s) of the
different preconditioning variants
from Table 4 for the full simulation
(4000 time steps)

Method Setup costs Solver time Overall solver time

PA-AMG (CheapSIMPLE) 11,870 10,013 21,883

Emin (CheapSIMPLE) 12,820 8679 21,499

CheapSIMPLE (PA-AMG) 11,730 11,103 22,833

CheapSIMPLE (SA-AMG) 12,300 10,763 23,063
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6.4.1 Setup

The example consists of two thin-walled tori with a Neo-Hookean material model (E = 2250 GPa, 𝜈 = 0.3, 𝜌0 = 0.1 kg/m3)
with a major and minor radius of 76 and 24 m and a wall thickness of 4.5 m. The left torus in Figure 10 lies in the xy-plane
with resting initial conditions. The right torus has been rotated around the y-axis by 45◦ and has an initial velocity of
1.0 m/s directed toward the left torus. The simulated time is 10 s divided into 200 time steps with a time step size of
0.05 s using a generalized-𝛼 time integration scheme.98 The mesh consists of 284,672 first-order hexahedral elements with
350,208 nodes.

With the rather complex geometry and contact configuration, that heavily and frequently changes over time, this
example can be considered as a representative test for the robustness and efficiency of the tested numerical methods.

6.4.2 Stopping criteria

The stopping criteria for the semismooth Newton method are chosen as

‖Δu‖e < 10−7 ∧

(‖‖‖‖‖
ru

i

ru
0

‖‖‖‖‖e
< 10−8 ∧ ‖‖‖r𝝀i

‖‖‖e
< 10−4

)
. (23)

Here, ru
i and r𝝀i denote the (nonlinear) residual for the displacement variables and Lagrange multipliers in the ith

Newton iteration, respectively. The quantity Δu describes the solution increment for the displacement variables only.
Again, the stopping criteria in (23) for the nonlinear solver are specifically chosen to produce the same number of non-
linear iterations for all tested solver variants. This allows for an easy comparison of the number of linear iterations during
the simulation.

As linear solver a preconditioned GMRES method is used with the convergence criterion

‖‖‖‖rk

r0

‖‖‖‖e
< 10−8 (24)

for the full residual vector rk =
[

ru

r𝝀
]

in the linear iteration step k.

6.4.3 Results

An overview of the different tested preconditioner variants is given in Table 6. We study variants with the fully coupled
multigrid approach, the nested multigrid approach, and a SIMPLE based variant without multigrid at all. For the fully
coupled AMG variants, the transfer operators for the displacement blocks are varied. Particularly, nonsmoothed transfer
operators (PA-AMG) are compared with smoothed aggregation transfer operators (SA-AMG). For the multigrid schemes
there is no special treatment of the coarsest level. For the fully coupled multigrid schemes as well as for the nested multi-
grid method we apply the same level smoother on all multigrid levels including the coarsest level. All the simulations
have been run on 16 cores (spread over two Intel Xeon E5-2670 Octocore CPUs).

(A) (B) (C) (D)

F I G U R E 10 Two tori impact example—Characteristic stages of deformation
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T A B L E 6 Two tori impact example—Different AMG variants

Full multigrid based methods SIMPLE based methods

PA-AMG (CheapSIMPLE) CheapSIMPLE (SGS)

Transfer operators: PA-AMG Transfer operators: —

Level smoother: One CheapSIMPLEC (0.8) Block prec.: Two CheapSIMPLEC (0.8)

− Pred. smoother: One SGS (0.8) − Pred. smoother: Three SGS (0.8)

− Corr. smoother: ILU (0) − Corr. smoother: ILU (0)

SA-AMG (CheapSIMPLE) CheapSIMPLE (SA-AMG)

Transfer operators: SA-AMG (0.4) Block prec.: Two CheapSIMPLEC (0.8)

Level smoother: One CheapSIMPLEC (0.8) − Pred. smoother: AMG

− Pred. smoother: One SGS (0.8) − Transfer op.: SA-AMG (0.4)

− Corr. smoother: ILU (0) − Level sm.: Two SGS (0.8)

− Corr. smoother: ILU (0)

F I G U R E 11 Two tori
impact example—Results for
different saddle point
preconditioner variants

(A)

(B)



3776 WIESNER et al.

Method Setup costs Solver time Overall solver time

PA-AMG (CheapSIMPLE) 11,630 4658 16,288

SA-AMG (CheapSIMPLE) 12,250 4564 16,814

CheapSIMPLE (SA-AMG) 12,130 4731 16,861

CheapSIMPLE (SGS) 10,270 9320 19,590

T A B L E 7 Two tori impact
example—Exemplary timings in (s) of
the different preconditioning variants
from Table 6 for the full simulation
over 200 time steps

Figure 11(A) shows the overall number of linear iterations performed to solve all nonlinear iterations for each time
step. All preconditioner variants require exactly the same number of nonlinear iterations per time step due to the particu-
lar choice of stopping criteria in (23), ranging between six and 10 nonlinear iterations per time step, while also the number
of nonlinear iterations is independent of the size of the active set. Obviously, the SIMPLE based methods need more linear
iterations than the AMG based methods. In this example, there is nearly no difference between the nonsmoothed transfer
operator variant PA-AMG (CheapSIMPLE) and the smoothed transfer operator variant SA-AMG (CheapSIMPLE). Fur-
thermore, there is no clear and obvious correlation between the number of linear iterations and the number of active
nodes. This indicates that the fully coupled multigrid method is robust and efficient with regard to the increasing complex-
ity of the contact configuration over time, which is not the case for cheaper methods such as the SIMPLE based methods.
Evidently, one can see a significant drop in the linear iterations for the last 20 time steps of the simulation, which may
correspond to the small number of nodes in contact.

When looking at the corresponding solver timings over the time steps in Figure 11(B), one finds the
CheapSIMPLE (SA-AMG) method to be very close to the AMG based methods PA-AMG (CheapSIMPLE) and
SA-AMG (CheapSIMPLE). For the AMG based methods, one sweep with a CheapSIMPLEC method is applied on each
level, which internally uses one sweep with a symmetric Gauss–Seidel iteration for the primary variable and one ILU
sweep for the constraint equation. That is, quite a lot of time is invested in the coupling on all levels with the compa-
rably expensive ILU method. In contrast to the AMG based method, the CheapSIMPLE (SA-AMG) method uses two
sweeps with a CheapSIMPLE preconditioner for the coupling (on the finest level only). Internally, a three-level AMG
multigrid is used with two symmetric Gauss–Seidel sweeps for the level smoother and an ILU sweep for the constraint
correction equation. These parameters have been found to result in a reasonably low number of linear iterations. For
this example the experiment shows that the CheapSIMPLE (SA-AMG) method needs twice as many iterations as the
SA-AMG (CheapSIMPLE) method, but the costs per iteration are only half of the costs of the SA-AMG (CheapSIMPLE).
Nevertheless, the AMG based methods seem to have a small advantage, when the number of nodes in contact increases.

Last but not least, the overall timings for the linear solver are reported in Table 7. Except for the CheapSIMPLE (SGS)
variant, which is far away from the others, there is no clear winner. The setup costs are quite close, since the same transfer
operators have to be built for all methods with only a small difference for smoothed versus nonsmoothed transfer oper-
ators. To show a fair comparison, the preconditioner has been rebuilt in every nonlinear iteration step. Of course, reuse
strategies might increase amortization of setup costs and reduce overall solver timings when solving actual problems.

7 CONCLUSION

We have presented algebraic multigrid schemes designed for saddle point problems arising from contact problems using
mortar finite element methods. The new fully coupled multigrid scheme has the advantage that the contact constraints are
considered on all multigrid levels, which significantly reduces the number of iterations. It gives the user full control over
the coupling process by appropriately choosing the solver parameters. Additionally, we have proposed a novel aggregation
method for the Lagrange multipliers, which reuses existing aggregation information at the contact interface. We have
demonstrated the robustness and efficiency of the overall multigrid method for large examples with increasingly complex
contact configurations over time as well as its weak scalability up to 23.9 million unknowns on 480 MPI ranks.

DATA AVAILABILITY STATEMENT
The implementation of the AMG preconditioner developed and applied in this study is openly available in Trilinos
at https://github.com/trilinos/Trilinos.83 All other data are available from the corresponding author upon reasonable
request.
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