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Abstract
How many chess rooks or queens does it take to guard all squares of a given

polyomino, the union of square tiles from a square grid? This question is a version

of the art gallery problem in which the guards can ‘‘see’’ whichever squares the rook

or queen attacks. We show that bn
2
c rooks or bn

3
c queens are sufficient and sometimes

necessary to guard a polyomino with n tiles. We then prove that finding the mini-

mum number of rooks or queens needed to guard a polyomino is NP-hard. These

results also apply to d-dimensional rooks and queens on d-dimensional polycubes.

Finally, we use bipartite matching theorems to describe sets of non-attacking rooks

on polyominoes.

Keywords Art gallery theorem � NP-hardness � polyomino � Computational

geometry � Chessboard complex � Visibility coverage � Guard number � Domination

problem � N-Queens Problem

Mathematics Subject Classification 03D15 � 05B40 � 05B50 � 00A08

1 Introduction

Perhaps the most famous mathematical problem involving chess pieces is the eight-

queens problem from the mid-1800s, which asked for all the ways to place eight

mutually non-attacking queens on a standard chessboard. Generalizations of this

problem have been popular research quests ever since that time; different results on

n-queens and also on placing other chess pieces have been published since then

[2, 9, 28]. In particular, a recent NP-hardness result addresses the problem of when

further queens can be added to an initial configuration of queens [15]. (In

Theorem 13 we show that the analogous problem for rooks instead of queens is

polynomial-time solvable, even on non-rectangular boards.)
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A polyomino is a finite subset of squares from the infinite regular square

tessellation of the plane such that the interior is connected. Similarly, in d
dimensions, a d-polycube is the union of finitely many d-cubes (tiles) from the

standard tiling of Rd by unit d-cubes, such that the interior of the polycube is

connected. In our paper we use arbitrary polyominoes as our boards for placing

chess pieces, and refer to the squares as tiles. We place chess rooks and queens on

the tiles to guard the polyomino or polycube. (One could also consider the same

questions for other chess pieces, but rooks and queens share the ability to attack

along rows and columns.)

Broadly, we say that our rook or queen’s line of attack ends when it crosses

outside the polycube. More precisely, we imagine the d-cubes centered at the points

of Zd. Suppose that we have a rook at ð0; . . .; 0Þ. For each point that has all

coordinates 0 except for one coordinate �1, we say that the d-dimensional rook

guards or attacks tiles which have coordinates given by all natural-number

multiples of this point such that all the smaller natural-number multiples are tiles of

our d-polycube. Similarly, suppose that we have a queen at ð0; . . .; 0Þ. For each

point that has all coordinates equal to 0 or �1, we say that the d-dimensional queen

guards or attacks the tiles with coordinates given by all natural-number multiples of

this point such that all the smaller natural-number multiples are tiles of our d-

polycube.

This paper addresses the problem of finding the minimum number of rooks or

queens needed to guard all tiles of a given polyomino. A set of rooks or queens that

guards all the tiles of a polyomino is also called a dominating set. The problem of

dominating polyominoes with chessboard pieces has been studied for families of

polyominoes with particular shapes including rhombus, triangle, and saw-tooth

shape [13, 21, 22, 26], but not for general polyominoes as we do in this paper.

The question is similar to the famous art gallery problem of Chvátal, in which bn
3
c

guards are sufficient to see all points in an n-vertex polygon, and some polygons

need this many guards [8]. The paper first introducing the art gallery problem for

polyominoes showss that bnþ1
3
c guards are sufficient and sometimes necessary to see

all points in an n-tile polyomino [5], and there are similar bounds for higher-

dimensional polycubes [24]. Different notions of vision are possible in art gallery

problems. Classically, the guards are points that can see along line segments in all

directions. In our setup, the guards use rook vision that sees horizontally and

vertically from all the points of a given tile, or queen vision that also sees

diagonally. Our Theorems 1 and 2 show that bn
2
c rook guards with rook vision, or

bn
3
c queen guards with queen vision, are sufficient and sometimes necessary to guard

an n-tile polyomino, and similarly for higher-dimensional polycubes. For square

chessboards, asymptotic results are known on the number of queens needed to

dominate [16].

The computational complexity of finding the minimum number of guards for a

given art gallery has been studied for many variations of the original art gallery

setup. The original version is NP-hard [18] and has recently been shown to be 9R-

complete—meaning that it is equivalent to deciding whether a system of polynomial

equations has a real solution [1]. The problem of polyominoes with standard vision
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is also NP-hard, even if the polyomino is required to be bounded by a simple closed

curve (that is, it has no holes, or is simply connected) [4].

Another notion of vision useful for computation on polyominoes is r-visibility, in

which one point can see another if and only if the rectangle with those two points as

opposite corners (aligned with the axes) is completely contained within the

polyomino. The problem of finding the minimum number of r-visibility guards for a

given polyomino is polynomial-time solvable if the polyomino is not required to

have holes [29]. However, Iwamoto and Kume show that the r-visibility guard set

problem on polyominoes with holes is NP-hard [17]; we adapt their proof to prove

Theorems 3 and 4, which say that finding the minimum number of rooks or queens

to guard a given polyomino is NP-hard.

Theorem 3, about the NP-hardness of the art gallery problem for rook vision,

should be contrasted with a very similar art gallery problem. In a paper by Ntafos, a

grid consists of a finite union of horizontal and vertical line segments [20]. (This

setup is described in the book of O’Rourke [23].) With the usual notion of vision,

any guards must then see horizontally and vertically as rooks do, but the problem of

finding the minimum number of guards is polynomial-time solvable [20]. This is

because the two problems are slightly different. For example, a two by three

rectangle polyomino can be guarded by two rooks, but the corresponding grid of two

horizontal and three vertical segments requires three guards, because every point on

every segment must be guarded. The grid art gallery problem in dimension at least

three, though, is NP-hard [20].

1.1 Our Results

Our first pair of results are analogous to the result that gives the minimum number

of guards needed to see all of an n-tile polyomino [5]. The difference is that our

guards are rooks or queens rather than points with standard vision.

Theorem 1 In any dimension d� 2, the number of d-dimensional rooks that are
sufficient and sometimes necessary to guard a d-polycube with n� 2 tiles is bn

2
c.

Theorem 2 In any dimension d� 2, the number of d-dimensional queens that are
sufficient and sometimes necessary to guard a d-polycube with n� 2 tiles is bn

3
c.

Our second pair of results are analogous to the result that shows that finding the

minimum number of r-visibility guards for a polyomino is NP-hard [17]. Instead of

using r-visibility we adapt the proof for rook vision and queen vision. Formally, we

say that an instance of the rook-visibility guard set problem for polyominoes is a

pair (P, m), where P is a polyomino and m is a positive integer. The problem asks

whether there exists a set of m rooks placed in P which guards all tiles of P. A

similar definition applies to d-polycubes for any dimension d; proving that the rook-

visibility guard set problem for polyominoes is NP-hard implies the result for d-

polycubes for any d, because we can restrict to those polycubes that stay in a single

2-dimensional layer. Likewise, we can define the queen-visibility guard set problem

for polyominoes and for d-polycubes for any d.
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Theorem 3 The rook-visibility guard set problem for polyominoes is NP-hard, and
thus the rook-visibility guard set problem for d-polycubes is NP-hard for any
dimension d� 2.

Theorem 4 The queen-visibility guard set problem for polyominoes is NP-hard,

and thus the queen-visibility guard set problem for d-polycubes is NP-hard for any
dimension d� 2.

In Sect. 2, we prove Theorems 1 and 2. Then, in Sect. 3 we prove Theorems 3

and 4. In Sect. 4 we prove several more theorems about non-attacking rooks on

polyominoes, by viewing non-attacking rook sets on polyominoes as matchings in

bipartite graphs. This construction is specific to rooks and specific to 2-dimensional

polyominoes. The paper concludes with some open questions.

2 Polyominoes Most Difficult to Guard

In this section we prove Theorems 1 and 2.

Proof of Theorem 1 First we show that every d-polycube with n tiles can be guarded

by bn
2
c d-dimensional rooks. If the polycube has only one tile, we place one rook on

that tile. Otherwise, we 2-color the polycube according to the parity of the sum of

coordinates of each tile; that is, tiles that share a ðd � 1Þ-dimensional face get

opposite colors. We take the color with the smaller number of tiles, and place rooks

on all tiles of that color, so that there are at most bn
2
c rooks. Because the interior of

the polycube is connected, every tile shares a ðd � 1Þ-dimensional face with some

other tile. Thus, every tile is guarded by at least one of the rooks.

Next we exhibit, for every natural number n, a polyomino with n tiles such that

the minimum number of rooks needed to guard it is bn
2
c. To get an example in any

dimension d, we simply thicken this polyomino to d dimensions. The construction,

shown in Figure 1 for n ¼ 10 and n ¼ 11 tiles, consists of one center column with

individual tiles attached on either side, alternating between left and right. More

precisely, given n ¼ 2m tiles it is possible to form m horizontal dominoes, that we

denote by d1, d2; . . .; dm, and use to construct a polyomino Pn by stacking them

Fig. 1 On the left, we depict a polyomino with 10 tiles that cannot be guarded with fewer than 5 rooks.
On the right, we depict a polyomino with 11 tiles that cannot be guarded with fewer than 5 rooks. Any

polyomino with this kind of shape with n tiles cannot be guarded with fewer than n
2

� �
rook guards
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vertically in the following way: Firstly, place the first domino d1, then place on top

of d1 the second horizontal domino d2 (in such a way that the left tile of d2 is on top

of the right tile of d1,) then, place d3 on top of d2 (in such a way that the right tile of

d3 is on top of the left tile of d2). Then keep placing the rest of the dominoes in the

same way, alternating the right and left placement relationships from one added

domino to the next one. This construction generates a polyomino Pn for even

n ¼ 2m such that each domino has one tile in a common column that we denote by

c�. For an odd number n ¼ 2m� 1 we construct a polyomino Pn by placing a tile on

the bottom-most part of column c� of Pn�1. To prove that n
2

� �
rook guards are

needed, we observe that there are exactly n
2

� �
tiles not in the center column, and that

no two of these can be guarded by the same rook. h

The proof of Theorem 2 relies on labeling the tiles of our d-polycube according

to the number of steps needed to get back to a given root tile. We say that two tiles

are adjacent or are neighbors if they share a ðd � 1Þ-dimensional face. The ‘1-

distance between any two tiles of a d-polycube is the minimum number of steps

needed to get from one to the other, such that each step goes from one tile of the

polycube to an adjacent tile of the polycube.

Lemma 5 In a d-polycube, any queen guards every tile of ‘1-distance at most 2

from that queen.

Proof Suppose our queen is at ð0; . . .; 0Þ, necessarily it guards every tile of ‘1-

distance 1 from it, because those tiles are adjacent to it. Then, consider any tile of

‘1-distance 2 from the queen: If it has all coordinates 0 except for two that are �1,

then we know that the queen guards that tile. If it has all coordinates 0 except for

one that is �2, then we just need to check that the one tile between our chosen tile

and the queen is inside the polycube. But, if it is not, then our chosen tile cannot

have ‘1-distance 2 from the queen, because every path that stays within the polycube

has to go around the missing tile. These are the only possibilities for the tiles within

‘1-distance 2 of the queen, and the queen guards all of them. h

Because of this lemma, when guarding a d-polycube with queens it suffices to

find a placement of the queens such that every tile of the polycube is within ‘1-

distance 2 of a queen.

Proof of Theorem 2 First we show that every d-polycube with n tiles can be guarded

by bn
3
c queens. We select one tile of the polycube to be the root, and label all the

tiles according to their ‘1-distance from the root. If possible, we select as the root a

tile that is adjacent to only one other tile. If every tile of the polyomino is adjacent to

more than one other tile, then we may select any tile as the root.

The tiles are partitioned into three sets, according to whether their ‘1-distance

from the root is 0, 1, or 2 mod 3. If the 2 mod 3 set is empty, then a queen placed on

the root guards the whole polyomino. Otherwise, we find which of the three sets has

the smallest number of tiles—if more than one such set has the smallest number, we

choose arbitrarily among those—and place queens on all the tiles in that set. We
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claim that every tile is within ‘1-distance 2 of at least one queen. If the queen set is

the 0 mod 3 set, then from an arbitrary tile we can find a queen within two steps by

walking along a shortest path to the root. Similarly, if the queen set is the 1 mod 3

set, then from every tile except the root, we can find a queen within two steps by

walking along one of the shortest paths to the root, and we know that the root is also

adjacent to a queen.

If the queen set is the 2 mod 3 set, then from every tile of ‘1-distance at least 2

from the root, we can find a queen within two steps toward the root, so it remains to

check the root and the tiles adjacent to the root. We know that the root is ‘1-distance

exactly 2 from a queen. If it is adjacent to only one tile, then that tile is adjacent to a

queen. If not, every tile in the polyomino is adjacent to at least two tiles. If a tile

adjacent to the root, it must also be adjacent to another tile, and that tile is of ‘1-

distance 2 from the root and thus has a queen—for parity reasons, no two tiles

adjacent to the root are adjacent to each other. Thus in all cases, every tile is within

‘1-distance 2 of a queen, and thus by Lemma 5 it is guarded by a queen.

We exhibit a polyomino with n tiles that needs bn
3
c queen guards, and this

polyomino may be fattened to any dimension d. The construction is very similar to

the construction for rooks and is shown in Figure 2. If n ¼ 3m, we make m rows of 3

tiles each, and stack them so that the center column contains the right-most tile of

the first row, the left-most tile of the second, and the right-most tile of the third, and

continues to alternate. Then if n ¼ 3mþ 1 or n ¼ 3mþ 2, we add the remaining one

or two tiles to the bottom of the center column. Then no two of the m tiles furthest to

the left and right can be guarded by the same queen, so at least m ¼ bn
3
c queens are

needed to guard this polyomino. h

Fig. 2 For every n, there is a polyomino with n tiles that cannot be guarded by fewer than bn
3
c queen

guards. Examples for n ¼ 15; 16; 17 are shown
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3 NP-Hardness Proof

In this section, we prove Theorems 3 and 4 about the NP-hardness of the rook-

visibility and queen-visibility guard set problems, using the NP-hardness of

PLANAR 3SAT. First, we prove the rook version. Then, we show how to make the

minor modifications needed for the queen version.

We reproduce here the definition of PLANAR 3SAT as given by Iwamoto and

Kume [17], who attribute the description to Garey and Johnson [14]. Let U ¼
fx1; x2; . . .; xng be a set of Boolean variables, which take on the values 0 (false) and

1 (true). If x is a variable in U, then x and x are called literals, with the value of x
defined to be 1 if x is 0 and vice versa. A clause is any set of literals over U, such as

fx1; x3; x4g which represents ‘‘x1 is false or x3 is true or x4 is true’’, and the clause is

satisfied by a truth assignment whenever at least one of its literals is true under that

assignment.

An instance of PLANAR 3SAT is a collection C of clauses over U, each

containing either 2 or 3 literals, such that the following bipartite graph is planar: the

vertex set is U [ C, and the pair fx; cg is an edge whenever either literal x or x
belongs to the clause c, as in Fig. 3. The PLANAR 3SAT problem asks whether

there exists a truth assignment for U that simultaneously satisfies all the clauses in

C. This problem is known to be NP-hard. Further, it is known to be NP-hard under

the additional hypothesis that every variable x occurs exactly once positively (as x)

and exactly twice negatively (as x) in C. This problem is called P3SAT3, which

stands for PLANAR 3SAT WITH EXACTLY 3 OCCURRENCES PER VARI-

ABLE [7].

To prove Theorem 3, we give a polynomial reduction that constructs a rook-

visibility guard set problem for each instance of P3SAT3. Given an instance of

{x1, x3, x4} x3

x1 c1 = {x1, x2, x3}

c2 = {x1, x2, x3} x2

x4 c4 = {x2, x3, x4}Fig. 3 This instance of P3SAT3

has clauses c1 ¼ fx1; x2; x3g,
c2 ¼ fx1; x2; x4g,
c3 ¼ fx1; x3; x4g, and
c4 ¼ fx2; x3; x4g. It is satisfiable;
for instance, it is satisfied by
ðx1; x2; x3; x4Þ ¼ ð1; 0; 1; 0Þ. The
example is taken from Iwamoto
and Kume’s Figure 8, which
shows how to convert the
P3SAT3 instance to a polyomino

using slightly different gadgets
from ours [17]
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P3SAT3, we replace each variable by a variable gadget, each clause by a clause

gadget, and each edge between variable and clause by a connection gadget.
Each connection gadget is a path one tile wide from a variable gadget to a clause

gadget. The variable gadget appears in the left of Fig. 4. Recall that each variable

appears in one clause positively and in two clauses negatively. At the variable

gadget, the connection gadget to the clause with the positive literal extends out to

the left from tile A, and the connection gadgets to the two clauses with the negative

literals extend out to the right from tiles B and C. The clause gadget is either three

vertically-consecutive tiles, if the clause contains two literals, or five vertically-

consecutive tiles, if the clause contains three literals. These two options appear in

the right of Fig. 4. The connection gadgets extend sideways from the first and third

tiles, or from the first, third, and fifth tiles.

The proof of Lemma 8 gives more detail on how to construct the polyomino from

the three types of gadgets. First, we prove the distinctive properties of the variable

gadget that will be needed in the main proof to encode P3SAT3.

Lemma 6 There is only one way to guard the variable gadget with four rooks if one
of them is at A, and there is only one way to guard the variable gadget with four
rooks if two of them are at B and C.

Proof In Fig. 5 we depict the variable gadget and we label some of its tiles. Also,

we depict the unique configurations stated in this lemma.

If a rook is on A, then the remaining three rooks have to guard tiles W, B, and

C. Observe that no two of these tiles can be guarded by the same rook because they

are in different rows and in different columns. Then three rooks are needed to guard

tiles W, B, and C, and this cannot be accomplished if one of these three rooks is in

the row containing tiles R, S, and T, because these tiles do not share rows or columns

in common with tiles W, B, or C. Also, the rook on A cannot guard tiles R, S, or

T. This forces the rooks guarding W, B, and C to also guard tiles R, S, and T. This

can only be done if the rooks are placed on tiles X, Y, and Z.

If two rooks are on tiles B and C, then there is a third different rook that has to

guard tile A. None of these three rooks are able to guard tiles R, S, or T. Thus a

fourth rook has to be placed in this row. Tile W cannot be guarded by the rooks at B

A

B

C

Fig. 4 In the polyomino corresponding to an instance of P3SAT3, each variable is represented by the

variable gadget shown on the left, and each clause is represented by one of the clause gadgets shown on
the right, according to whether the clause contains two literals or three
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and C, or by the rook that guards R, S, and T. Thus, W has to be guarded by the rook

guarding A, and this forces that third rook to be placed on U. Also, tile X has to be

guarded, and it cannot be guarded by the rooks guarding tiles B, C, or A. This forces

the fourth rook to be placed on S. h

Corollary 7 Let G be an arbitrary four-rook set guarding all tiles of the variable
gadget. If G has a rook on tile B or C, then G has no rook on tile A, and if G has a
rook on A then it has no rooks on B or C. Also, there does not exist a three-rook set
guarding all tiles of the variable gadget.

Proof In Lemma 6 we have proved that in any four-rook set guarding the variable

gadget, once a rook is placed on A there cannot be a rook placed on B or C; this also

shows that if G has a rook on B or C, then G has no rook on A. If there exists a three-

rook set guarding all tiles of the variable gadget, then none of the rooks can be on A
because of the uniqueness proved in Lemma 6. We can then place a fourth rook on

A. This gives us a four-rook set guarding the variable gadget with a rook placed on

A; meaning this set has to be the one described in Lemma 6, and then if the rook

placed at A is removed, then tile A is not guarded. Thus there cannot exist a three-

rook set guarding the variable gadget. h

In the next lemma, we check that given an instance of P3SAT3, the

corresponding instance of the rook-visibility guard set problem is not too large.

Lemma 8 Let C be an instance of P3SAT3 with n variables. We can construct a

polyomino P(C) with Oðn2Þ tiles, formed by taking a planar drawing of the instance
C and replacing the variable nodes by variable gadgets, the clause nodes by clause
gadgets, and the edges by connection gadgets.

Proof If we did not care about the size of the polyomino, we would simply take any

smoothly differentiable planar drawing of C and scale it up so large that when we

superimposed it on the grid of unit squares, we could locally replace the vertices by

variable and clause gadgets and the edges by grid paths. The question is how to limit

the amount of scaling up necessary to make these local replacements.

We adapt a procedure that creates a planar drawing of the graph of C on the grid

of unit squares in such a way that every vertex is a unit square, every edge is a path

of unit squares between the two vertices of the edge, and the whole drawing fits in

an O(n) by O(n) square [3]. For convenience, we describe the process again here.

Fig. 5 Labeled variable gadget and unique four-guards sets
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Figure 6 depicts the process where the graph is the cube.

A (weak) visibility representation of a planar graph is a way to draw it in the

plane such that: each vertex is a horizontal segment, each edge is a vertical segment,

the endpoints of each edge are on the horizontal segments corresponding to the two

incident vertices, and there are no other intersections among the segments. Every

planar graph has a visibility representation. A quick proof of this fact is based on the

fact that every planar graph can be drawn with straight edges [12].

Given a visibility representation of our planar graph, we look at the collection of

x-coordinates and y-coordinates of the endpoints of all the segments, and assume

without loss of generality that the only repeated coordinates are those that are

implied by having a visibility representation. We thicken each segment slightly to

get a collection of rectangles with the same combinatorial relationship as in our

desired end result. Then we make a new set of rectangles with the same

combinatorial relationship, by moving all the horizontal coordinates to consecutive

integer values while keeping them in the same order, and similarly for the vertical

coordinates.

In our instance C of P3SAT3, there are n variables, so there are exactly 3n edges

and fewer than 6n total nodes. Our drawing has one rectangle for each node and one

rectangle for each edge, so there are at most 9n rectangles, with at most

18n horizontal coordinates and at most 18n vertical coordinates. Thus our new

drawing fits in an 18n by 18n square.

At this stage, each node of the graph of C is represented by a horizontal strip of

squares. And, we know that every node has degree 2 or 3. Therefore, for each node,

if it has degree 2 we select any square of the strip to be the node square, and think of

the remaining squares as edge squares. If it has degree 3, we select the node square

to be the square of the strip that touches the middle one of the three incident edges,

and think of the remaining squares as parts of the two outer edges. In this way, we

Fig. 6 Using a visibility representation, any planar graph can be drawn on the square grid inside a box of
side length OðjV j þ jEjÞ
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have succeeded in drawing the graph of C on the square grid in a square of side

length O(n).

The only further modification needed is to accommodate for the fact that the

variable gadget and the clause gadgets are more than one square large. To do this,

we subdivide the drawing we have made—replacing each unit square by a 15 by 15

grid should be enough. This is sufficient space for the variable gadgets and the

clause gadgets to be placed in the middle of the corresponding node squares; also for

the connection gadgets to extend outward from them toward the corresponding edge

squares, so that they can follow the middles of the edge squares, as in Fig. 7. The

resulting polyomino P(C) has Oðn2Þ tiles. h

The next lemma statement involves counting bends of connection gadgets. A

bend is a tile where the path of the connection gadget changes between horizontal

and vertical. Because each connection gadget is horizontal on both ends where it

connects to the variable and clause gadgets, it must have an even number of bends.

The next two lemmas show that given an instance of P3SAT3, the corresponding

instance of the rook-visibility guard set problem is indeed equivalent.

Lemma 9 Let C be an instance of P3SAT3 as in Lemma 8, and let P(C) be its

associated polyomino. Let m ¼ 4nþ ‘
2
, where n is the number of variables and ‘ is

the total number of bends in all the connection gadgets. If C is satisfiable, then
P(C) can be guarded by m rooks.

Proof Consider a truth assignment that satisfies all the clauses in C. For each

variable, if true in this truth assignment, we guard the corresponding variable gadget

with the four-rook set from Lemma 6 with a rook on tile A; if it is false in this truth

assignment, we use the set with rooks on B and C.

For each edge, we say that the edge joining a variable with a clause is hot if the

variable is true and it appears in the clause, or if the variable is false and its negation

Fig. 7 Within each subdivided
vertex square, the connection
gadgets may have to wind
around to get from their starting
points on the variable or clause
gadget to their neighboring edge
squares
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appears on the clause. So, for each hot edge, we have placed a rook on A, B, or C of

the variable gadget. Then firstly we move that rook sideways along the

corresponding connection gadget to land on the first bend (or all the way to the

clause gadget if there is no bend). Then, we place rooks at every second bend for the

rest of the hot edge, ending with one rook on the clause gadget. For each non-hot

edge, we start with a rook at the second bend leading away from the variable gadget

(the first bend is already guarded by a rook on the variable gadget), and place rooks

at every second bend for the rest of the connection gadget, ending with one rook at

the last bend before the clause gadget.

We have placed 4 rooks on each variable gadget, and on each connection gadget

we have placed a number of additional rooks equal to half the number of bends. In

this way the variable gadgets and connection gadgets are guarded. We also see that

the clause gadgets are guarded because the truth assignment satisfies all the clauses,

so each clause has a hot edge, and there is a rook on the clause gadget at the end of

that hot edge. h

Lemma 10 Let C, P(C), and m be as in Lemma 9. If the polyomino P(C) can be
guarded by m rooks, then the P3SAT3 instance C is satisfiable.

Proof Suppose we have a set of m rooks that guards P(C). Then each clause gadget

has at least one guard. We can assume that it is on one of the squares at the end of a

connection gadget (if not, we can move it and everything is still guarded). As in the

proof of Lemma 9, we call those edges the hot edges. We will deduce the truth

assignment for which these edges have the same property that defined the hot edges

of Lemma 9.

We make the following observation: Given a connection gadget with b bends, if

one end is already guarded up through the first bend, then we can guard the

remainder with b
2

rooks, but if so, there cannot be a rook past the last bend. To prove

this, we can move every rook that appears between bends to the next bend, and then

observe that at least every second bend needs a rook.

Next, we apply this connection observation to each edge. For each hot edge, we

think of the first end as being the one at the clause gadget, which is already guarded

by that first rook. The connection observation implies that there must be at least b
2

more rooks on that connection gadget. For each edge that is not hot, we think of the

first end as being the one at the variable gadget, which may already be guarded; the

connection observation implies that there must be at least b
2

rooks on the connection

gadget itself.

Corollary 7 implies that there must be at least four rooks on each variable gadget

or up through the first bend of each connection gadget coming out of it. For each hot

edge, we need one guard to be shared by the variable gadget and the connection

gadget, and this guard has to be at the first bend of the connection gadget—

otherwise the connection observation implies that we do not have enough guards.

We say the variable is true if it has a hot edge coming into the A side, and false if it

has a hot edge coming into the B or C side. Corollary 7 also implies that the variable

cannot be both true and false if the gadget is guarded by only four rooks. Thus, with
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m ¼ 4nþ ‘
2

rooks in total, we have accounted for all the rooks, and so we have

found a well-defined truth assignment that satisfies our P3SAT3 instance C. h

Proof of Theorem 3 The polyomino P(C) from Lemma 8 is not only of polynomial

size, but can be computed in polynomial time as finding a visibility representation of

a planar graph can be done in linear time [27]. Thus there is a polynomial-time

algorithm to convert any instance C of P3SAT3 into a polyomino P(C) and a

number m ¼ 4nþ ‘
2
, for which Lemmas 9 and 10 imply that the rook-visibility

guard set problem for P(C) and m is equivalent to the P3SAT3 problem for C. The

P3SAT3 problem is NP-hard [7], and therefore the rook-visibility guard set problem

must also be NP-hard. h

The proof of Theorem 4 about queens is similar, but the variable gadget is

different so we must take more care with the connection gadgets. First we give the

queen-variable gadget, shown in Fig. 8, and show that it has the properties we need

for the rest of the proof.

Lemma 11 The queen-variable gadget cannot be guarded by two queens. It can be
guarded by three queens, of which one is at A, or by three queens, of which two are
at B and C. It cannot be guarded by three queens, of which two are at A and B or at
A and C.

Proof No two of the tiles A, B, or C can be guarded by the same queen, meaning

that at least three queens are needed to guard the gadget polyomino.

We show that there is a unique way to guard the polyomino gadget with three

queens when a queen is placed at A. If a queen is placed at A, then none of the tiles

C, B, X, Y, Z, and W are guarded by this queen. First, we notice that to guard tiles

C and B one queen must be placed on a tile along the row containing B, and another

queen must be placed on a tile along the row containing C. Also, it is not possible to

Fig. 8 Labeled queen-variable gadget and unique three-queen-guards sets
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guard both Y and W with the same queen unless this queen is at Q, but if a queen is

placed at Q then it will not be in either of the rows containing B or C. Thus, to guard

Y a queen must be placed at either R, S, or T, and to guard W a queen must be placed

at either L, U, or V. The only options that also allow tiles X and Z to be guarded is to

place these two queens at R and L. This gives the unique way to guard the gadget

polyomino with three queens if one is placed at A.

Now, we prove that there is a unique way to guard the polyomino gadget with

three queens if two of these queens are placed at B and C. If two queens are placed

at B and C, then tiles X, A, and Z are not guarded. The only way to guard these tiles

with one more queen is to place it at tile Q, and this position of the third queen

guards the rest of the gadget polyomino tiles. This gives the unique way of guarding

the gadget polyomino if two queens are placed at B and C.

Finally, as a consequence of the uniqueness of these two three-queen-guard sets,

there is no way to guard the polyomino gadget with three queens in such a way that

a queen is at A and another queen is either at B or C. h

Proof of Theorem 4 Lemma 8, about how to construct the polyomino associated to

an instance of P3SAT3, applies to queens if we use the queen-variable gadget. For

each connection gadget, there must be at least three tiles in each segment between

bends and in each segment between the last bend and a variable or clause gadget.

This is not a concern in the subdivided edge squares, because there is already plenty

of space between bends, and only applies to the subdivided node squares—for

which we may need more than a 15 by 15 subdivision of all squares.

Lemmas 9 and 10 apply to queens if we replace m ¼ 4nþ ‘
2

by m ¼ 3nþ ‘
2

to

account for the fact that the queen-variable gadget needs three queens, and not four.

In Lemma 10, we use the spacing of the bends in the connection gadgets to ensure

that a segment between two bends cannot be guarded entirely by queens beyond

those two bends.

Using these lemmas as modified for the queen case, we have shown that for every

instance of P3SAT3, we can compute in polynomial time a polynomial-size instance

of the queen-visibility guard set problem that is equivalent. Thus the queen-

visibility guard set problem is NP-hard. h

4 Non-attacking Rooks on Polyominoes

In this section we study the special case of rooks on 2-dimensional polyominoes. A

set of rooks is non-attacking if no two rooks are in the same row or column (in the

sense defined above). In this case we have the convenient tool of being able to

encode the attacking relationships between rooks as a bipartite graph. We first

construct this bipartite graph. Then, in the rest of the section we give some theorems

in which we use the properties of the bipartite graph to deduce properties of the rook

placements on polyominoes.

In the bipartite graph, the two partite sets are the set of rows and the set of

columns of the polyomino. To be precise, we say that two tiles X and Y in a

polyomino P are in the same row if the line connecting their centers is horizontal
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and contained in P. Similarly, two tiles X and Y of a polyomino P are in the same

column if the line connecting their centers is vertical and contained in P. This

definition of row and column may be counter-intuitive, in that two tiles of P may be

in the same row or column of the infinite chessboard without being in the same row

or column of P, but it describes the possible lines of attack of rooks on the

polyomino.

Given a polyomino P we denote the corresponding bipartite graph by

GðPÞ ¼ ðV;EÞ. The set of vertices is given by V ¼ C [ R where C has a vertex

for each column and R has a vertex for each row. The graph includes an edge

ðc; rÞ ¼ ðr; cÞ if and only if there is a tile at column c and row r. An example of this

construction appears in Fig. 9.

This bipartite graph has been constructed previously [19], and is analogous to a

construction for grid art galleries [20]. A similar, but not identical, bipartite graph

construction appears a paper that studies the two-player game of placing non-

attacking rooks one at a time until the rooks guard the entire polyomino [11].

Another object that records non-attacking rook positions is the chessboard complex,

which has one vertex for each tile, and connects sets of tiles that constitute non-

attacking positions [6]. It is possible to construct the analogue of the chessboard

complex using non-attacking positions for other chess pieces. As far as we know,

this is the first time that this chessboard complex is studied in polyominoes that are

not rectangular polyominoes. For the purposes of this paper, the bipartite graph

G(P) is the most useful model, but the results can be interpreted in terms of the

chessboard complex.

The information from the bipartite graph tells us many properties of the

polyomino, but studying polyominoes is not identical to studying bipartite graphs.

In Fig. 9 we show two polyominoes that are not congruent or even topologically

equivalent, but their bipartite graphs are isomorphic. In addition, not all bipartite

graphs correspond to polyominoes; for the bipartite graph C6, the cycle with six

vertices, there does not exists a polyomino P such that GðPÞ ¼ C6.

The bipartite graph construction is especially useful for studying sets of non-

attacking rooks, which correspond to matchings in the graph. A matching in any

graph is a set of edges that do not share any vertices. Thus, efficient algorithms for

finding maximum matchings in bipartite graphs also give maximum non-attacking

rook sets in polyominoes.

Fig. 9 Given a polyomino P, the corresponding bipartite graph G(P) has one vertex for each row and
column, and one edge for each tile. The two polyominoes shown both give the same bipartite graph
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Theorem 12 There is a polynomial time algorithm to find the maximum number of
non-attacking rooks on a polyomino.

Proof The maximum number of non-attacking rooks on a polyomino P is equal to

the maximum number of edges in a matching in the bipartite graph G(P). A

maximum matching in a bipartite graph can be found in polynomial time using an

augmenting-path algorithm; see, for example, Section 26.3 of the textbook of

Cormen, Leiserson, Rivest, and Stein [10]. h

The theorem above can be strengthened to address a rook analogue of the

following problem: it is known to be NP-hard to decide whether a given set of non-

attacking queens can be extended by k queens [15]. In the rook case, the problem is

polynomial-time solvable, even on polyominoes.

Theorem 13 There is a polynomial time algorithm to decide the following problem:

given a set of m non-attacking rooks on a polyomino and k[ 0, can the set be
extended to a set of mþ k non-attacking rooks?

Proof It suffices to show how to decide, for any matching of size m in a bipartite

graph G and any k[ 0, whether it can be extended to a matching of size mþ k. Let

M be the matching of size m. Let G0 be the graph obtained by deleting M, all vertices

in M, and all edges incident to those vertices, from G. Then G has a matching of size

mþ k that contains M if and only if G0 has a matching of size k. Thus we may solve

the problem by running an augmenting-path algorithm on G0. h

These theorems show that finding maximum-size sets of non-attacking rooks is

computationally easy. What if instead, we consider the possible sizes of sets of non-

attacking rooks that are maximal—in the sense that no more rooks can be added

without destroying the non-attacking property? Recall that a set of rooks is

dominating if it guards every square of the polyomino. Thus, a set of non-attacking

rooks is maximal if and only if it is dominating. The next lemma shows that the

problem of finding the minimum size of a maximal set of non-attacking rooks is the

same as finding the minimum number of rooks to guard the polyomino, and

therefore is NP-hard as we have shown in Theorem 3.

Lemma 14 If there exists a set of m rooks that dominates a polyomino P, then there
exists a set of at most m non-attacking rooks that dominates P.

Proof Let t1; . . .; tm be the positions of the m rooks that guard P. We consider the

rooks in order, moving them around or removing them so that at the ith step, the first

i rooks are non-attacking. More precisely, we formally create a new ‘‘off the board’’

position that does not attack anything. Then we find new positions t01; . . .; t
0
m that

may be off the board, with the property that for each i, the set of rooks at positions

t01; . . .; t
0
i; tiþ1; . . .; tm still guards P, and the set of rooks at positions t01; . . .; t

0
i is non-

attacking.

To do this, suppose that we have chosen t01; . . .; t
0
i�1. If ti is not in the same row or

column as any of these earlier rooks, then set t0i ¼ ti. If ti is in the same row as one of

the earlier rooks, and also in the same column as one of the earlier rooks, then set t0i
to be off the board. If ti is in the same row as one of the earlier rooks, but not in the
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same column as any of them, then we choose t0i to be a tile in the same column as ti
that is not guarded by any of the earlier rooks—if such a position exists. If every tile

in the same column as ti is guarded by one of t01; . . .; t
0
i�1, then we set t0i to be off the

board. A similar procedure applies in the case where ti is in the same column as an

earlier rook, but not in the same row as any of them. In any of these cases we can

cause t01; . . .; t
0
i to be non-attacking while still guarding the same squares as before,

and potentially more.

After we have finished this process, the rooks at positions t01; . . .; t
0
m, excluding

those that are off the board, guard all of the polyomino P and are non-attacking. h

Note that this lemma statement is false for queens and for higher-dimensional

rooks. For instance, there are polycubes that can be guarded by two higher-

dimensional rooks but these rooks must attack each other, and similarly for queens.

The next theorem shows that although by Theorem 3 it is NP-hard to determine

whether k non-attacking rooks can guard all the squares of a given polyomino, we

can still use the bipartite graphs to say something about the values of k for which

this is possible.

Theorem 15 Represent by min(P) the minimum number of non-attacking rooks that
dominate a polyomino P and by max(P) the maximum number of non-attacking
rooks that can be placed on P. Then, minðPÞ� dmaxðPÞ=2e and for any
minðPÞ� k�maxðPÞ there exists a dominating set of k non-attacking rooks on P.

Proof The statement minðPÞ� dmaxðPÞ=2e follows from the well-known fact that

maximal matchings (meaning that every edge of G(P) is incident to an edge of M)

differ in size by at most a factor of 2. Specifically, let Mmax be a matching of size

max(P) in the bipartite graph G(P), and let Mmin be a maximal matching of size

min(P). (The property of dominating the polyomino corresponds to being a maximal

matching.) Then every edge of Mmax shares at least one vertex with an edge in Mmin,

in order to not contradict the maximality of Mmin; there are 2 � minðPÞ vertices of

Mmin, so there are at most 2 � minðPÞ vertices in Mmax and so minðPÞ� dmaxðPÞ=2e.

To show that there is a dominating set of k non-attacking rooks for every k
between min(P) and max(P), we start with a maximal matching Mmin of size min(P)

and apply an augmenting path algorithm. This algorithm repeatedly increases the

size of the matching by 1 until it reaches size max(P). We claim that at each step,

the matching remains maximal. Specifically, consider any maximal matching M. An

augmenting path has odd length and alternates between edges not in M and edges in

M, starting and ending with edges not in M. The matching M0 is obtained from M by

swapping whether each edge of the augmenting path is in M or not in M. We

observe that M0 is still maximal, because every vertex of M is still a vertex of M0.
Thus the augmenting-path algorithm preserves maximality, and the intermediate

stages between Mmin and a maximum-size matching correspond to dominating sets

of k non-attacking rooks for all k between min(P) and max(P). h

If we know that a polyomino admits a given number of non-attacking or

dominating rooks, a natural question to ask is when that configuration is unique. We

show in Theorem 19 that the maximum-size set of non-attacking rooks is unique in
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the special case that the polyomino has the smallest possible size that admits a given

number of non-attacking rooks. First we show in Theorem 18 that if there are m
non-attacking rooks, then the polyomino has at least 2m� 1 tiles. We use

Lemmas 16 and 17 to prove Theorem 18.

Lemma 16 Given a polyomino P, the corresponding graph G(P) is connected.

Proof Consider an equivalence relation on the tiles of P, generated by the relation

that any two tiles that touch along an edge are equivalent. Because the interior of

P is connected, all tiles of P are in the same equivalence class. Then we observe that

any two tiles that touch along an edge are certainly in the same row or column.

Thus, if we generate an equivalence relation by the relation that any two tiles in the

same row or column are equivalent, then it is also true that all tiles of P are in the

same equivalence class.

The corresponding construction in G(P) is to require that any two edges that

share a vertex are equivalent. In this case, the connectedness of P implies that all

edges in G(P) are in the same equivalence class. Because any two edges that share a

vertex are in the same connected component, this implies that all edges in G(P) are

in the same connected component. Every vertex in G(P) is in some edge, so G(P)

must be connected. h

Lemma 17 In a connected graph G with a matching M of size m there must be at
least m� 1 edges not in the matching.

Proof If M is a matching of size m, then the number of vertices in G is at least 2m.

Then, the connectivity of G implies that G has at least 2m� 1 edges. Thus, G has at

least m� 1 edges that are not in M. h

Using these two lemmas, we are ready to prove Theorem 18.

Theorem 18 The maximum number of non-attacking rooks that can be placed on a
polyomino with n tiles is dn

2
e.

Proof The polyominoes in the family constructed in Theorem 1 to require bn
2
c rook

guards also admit dn
2
e non-attacking rooks. To show that no polyomino admits more

non-attacking rooks, let m be the maximum number of non-attacking rooks on a

given polyomino P with n tiles. Then the bipartite graph G(P) has a matching of size

m, so by Lemma 17 there are at least m� 1 edges of G(P) not in the matching. Thus

G(P) has at least 2m� 1 edges. We know that G(P) has n edges, so n� 2m� 1 and

m�dn
2
e. h

In the special case with the minimum number of tiles for the number of rooks, the

configuration is unique.

Theorem 19 If a polyomino with an odd number of tiles n ¼ 2m� 1 admits a set of
dn

2
e ¼ m non-attacking rooks, then this set dominates and is unique.

Proof Suppose, for the sake of contradiction, that the set of rooks does not

dominate. Then there is a square of the polyomino that is not attacked by a rook. We

can place an additional rook there to make a set of mþ 1 non-attacking rooks,
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contradicting Theorem 18.

For uniqueness, we show that a connected graph G with 2m� 1 edges cannot

have two different matchings of size m. Again, for the sake of contradiction,

suppose that there are two matchings M1 and M2, both of size m. Consider the

subgraph H of G consisting entirely of edges that are either in M1 but not M2, or in

M2 but not M1. Because G has only 2m vertices, each vertex of G is incident to

exactly one edge of each matching, so every vertex of G is incident to either 0 or 2

edges of H. Thus H is a disjoint union of cycles and isolated points. But we know

that G is a tree, because it is connected and has 2m vertices and 2m� 1 edges. Thus

H cannot have any cycles in it, and so the two matchings are identical. h

For uniqueness, it is not enough that the number of non-attacking rooks be

maximum given the number of tiles. Some polyominoes with an even number of

tiles n ¼ 2m will have more than one set of m non-attacking rooks. In Fig. 1 we

gave an example of a polyomino with 10 tiles and with more than one set of 5 non-

attacking rooks. For instance, another four different configurations can be obtained

if we select another rook to guard the center column. The same pattern gives a

sequence of polyominoes with n ¼ 2m tiles and more than one set of m non-

attacking rooks.

However, there are also some cases where a polyomino with 2m tiles admits only

one set of m non-attacking rooks. In Figure 10 we give a family of polyominoes

with even number of tiles n ¼ 2m and with a unique set of m non-attacking rooks.

Theorem 20 There exists a sequence of polyominoes with n ¼ 2m tiles, for m� 3,

and only one set of m non-attacking rooks.

Proof The sequence of polyominoes with n ¼ 2m tiles and only one set of m non-

attacking rooks is constructed as follows: For polyominoes with m ¼ 3; 4; 5, and

their respective sets of m non-attacking rooks are depicted in Fig. 10. For m[ 3, to

recursively construct the polyomino of the sequence with n ¼ 2ðmþ 1Þ tiles from

the polyomino with n ¼ 2m tiles we add a vertical domino next to the right of the

rightmost column of the polyomino, offset from the previous domino so that it

creates a new row. The polyominoes constructed with this recursive algorithm have

n ¼ 2m tiles and m columns. In order to have a set of m non-attacking rooks, each

column must have a rook placed on it. On each one of the polyominoes in the

sequence, the third column, from left to right, has only one tile that we represent

with T for the rest of the proof. Therefore, a rook must be placed on T. This forces

the rest of the rooks that are on the columns to the right of T, to be placed on the tiles

that are not in the same row as T. The tiles that are to the left of T have the same

Fig. 10 For m� 3, we depict in this figure the first three elements a sequence of polyominoes with
n ¼ 2m tiles that have a unique set of dominating non-attacking m rooks. For m ¼ 1 and m ¼ 2 there does
not exists a polyomino with n tiles and a unique set of non-attacking m rooks
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configuration on each one of the polyominoes of the sequence. The leftmost column

of each one of these polyominoes has only one tile that is not on the same row as T,

thus, a rook must be placed there. This forces us to place a rook on the uppermost

tile of the second column from left to right. h

5 Open Questions

Worman and Keil [29] proved that the r-visibility guard set problem is polynomial-

time solvable when restricted to polyominoes without holes. Some results on

polyominoes without holes in terms of the collision graph, which has one vertex for

each square of the polyomino and an edge whenever two squares can be guarded by

the same rook have also been found [19]. An independent set of size k in the

collision graph implies that at least k rooks are needed to guard the polyomino, but

the converse is not true, for instance if the polyomino is rectangular.

Open Question 1 Is the rook-visibility guard set problem for polyominoes still NP-

hard if, in addition, we require that the polyomino be simply connected (that is, not

have holes)?

Open Question 2 This question is about the correspondence established in Sect. 4

between polyominoes and bipartite graphs. Which bipartite graphs can be written as

G(P) for some polyomino P? For those that can, is there a good algorithm for

reconstructing P? Can we deduce anything about the number or size of holes in

P just from knowing G(P)?

Open Question 3 The bipartite graph constructed in Sect. 4 does not work for

analyzing the generalization of the non-attacking rooks problem to higher

dimensions. So, for d-dimensional rooks on d-polycubes what are the analogues

of the theorems in Sect. 4? Can we prove similar results even without the bipartite

graphs?

Open Question 4 Theorem 15 suggests that an entertaining recreational puzzle

may be to give someone a polyomino P and a number k, and to ask that person to

produce a dominating set of k non-attacking rooks on P. For which choices of P and

k is the task of finding a dominating set of k non-attacking rooks on P of appropriate

difficulty for a human? What is a good method for producing such P and k by

computer?

Open Question 5 We can also ask about random polyominoes; there are several

probability distributions on polyominoes [25]. We know that the minimum number

of rooks needed to guard a given polyomino with n tiles ranges between 1 (for a

single-row polyomino) and bn
2
c (as in Theorem 1), and that the maximum number of

non-attacking rooks ranges between 1 and dn
2
e. What is the expected value of the

minimum number of rooks needed to guard a typical polyomino with n tiles? Is it
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bounded below by a linear function of n? How about the maximum number of non-

attacking rooks?
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