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Abstract
Population protocols are a well established model of computation by anonymous, identical
finite-state agents. A protocol is well-specified if from every initial configuration, all fair
executions of the protocol reach a common consensus. The central verification question for
population protocols is the well-specification problem: deciding if a given protocol is well-
specified. Esparza et al. have recently shown that this problem is decidable, but with very high
complexity: it is at least as hard as the Petri net reachability problem, which is TOWER-hard,
and for which only algorithms of non-primitive recursive complexity are currently known. In
this paperwe introduce the classWS3 ofwell-specified strongly-silent protocols andwe prove
that it is suitable for automatic verification. More precisely, we show thatWS3 has the same
computational power as general well-specified protocols, and captures standard protocols
from the literature. Moreover, we show that the membership and correctness problems for
WS3 reduce to solving boolean combinations of linear constraints over N. This allowed us
to develop the first software able to automatically prove correctness for all of the infinitely
many possible inputs.
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1 Introduction

Population protocols [2,3] are amodel of distributed computation bymany anonymous finite-
state agents. They were initially introduced to model networks of passively mobile sensors
[2,3], but are now also used to describe chemical reaction networks (see e.g. [11,29]).

In each computation step of a population protocol, a fixed number of agents are chosen
nondeterministically, and their states are updated according to a joint transition function.
Since agents are anonymous and identical, the global state of a protocol is completely deter-
mined by the number of agents at each local state, called a configuration. A protocol computes
a boolean value b for a given initial configurationC0 if in all fair executions starting atC0, all
agents eventually agree to b—so, intuitively, population protocols compute by reaching con-
sensus under a certain fairness condition. A protocol is well-specified if it computes a value
for each of its infinitely many initial configurations (also called inputs). A well-specified
protocol computes a predicate, namely the function that assigns to each input the corre-
sponding consensus value. In a famous series of papers, Angluin et al. [2,3] have shown that
well-specified protocols compute exactly the predicates definable in Presburger arithmetic
[2–5].

In this paper we search for efficient algorithms for the well-specification problem (Is a
given protocolwell specified?) and the correctness problem (Given a protocol and a predicate,
does the protocol compute the predicate?). These are questions about an infinite family of
finite-state systems. Indeed, for every input the semantics of a protocol is a finite graph with
the reachable configurations as nodes. Deciding if the protocol reaches consensus for a fixed
input, and if so which one, only requires to inspect one of these graphs, and can be done
automatically using a model checker. This approach has been followed in a number of papers
[10,12,30,33], but it only shows well-specification or correctness for some inputs. There
has also been work in formalizing well-specification and correctness proofs in interactive
theorem provers [15], but this approach is not automatic: a human prover must first come up
with a proof for each particular protocol.

Recently, the second author, together with other co-authors, has shown that the well-
specification and correctness problems are decidable [20]. In particular, there is an algorithm
that decides if for all inputs the protocol stabilizes to a boolean value. The proof uses deep
results of the theory of Petri nets, a model very close to population protocols. However, the
same paper shows that the two problems are at least as hard as the reachability problem
for Petri nets, a famously difficult problem: the reachability problem has a non-elementary
lower bound [14], i.e. it generally requires a tower of exponentials of time and space. Existing
algorithms for the reachability problem are notoriously difficult to implement, and they are
considered impractical for nearly all applications.

For this reason, in this paper we search for a class of well-specified protocols satisfying
the following four properties:

(a) No loss of expressive power: the class should compute all Presburger-definable predicates.
(b) Natural: the class should contain most protocols discussed in the literature.
(c) Feasible membership problem: deciding membership in the class should have reasonable

complexity.
(d) Feasible correctness problem: given a protocol in the class and a predicate, deciding if

the protocol computes the predicate should have reasonable complexity.

The classWS of all well-specified protocols obviously satisfies (a) and (b), but not (c) or
(d). So we introduce a new classWS3, standing forWell-Specified Strongly Silent protocols.
We show thatWS3 still satisfies (a) and (b), and then prove two results:
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– The membership problem for WS3 is in the complexity class DP (the class of languages
L such that L = L1 ∩ L2 for some languages L1 ∈ NP and L2 ∈ coNP). This is a dra-
matic improvement with respect to the non-elementary lower bound for the membership
problem for WS.

– The correctness problem for WS3 (i.e., deciding if a protocol of WS3 computes a given
predicate) is also is in DP, when the predicate is expressed as a formula in the quantifier-
free fragment of Presburger arithmetic extended with remainder constraints. Notice that
this fragment is as expressive as Presburger arithmetic itself.

The class WS3 is defined in two steps. Loosely speaking, a protocol is silent if communi-
cation between agents eventually ceases, i.e., if every fair execution eventually reaches a
configuration whose only successor is the configuration itself. In the first step we introduce
and analyze the class WS2 of well-specified silent protocols. It is easy to see that a protocol
belongs toWS2 iff it satisfies two properties for every initial configuration C0: (i) every con-
figuration reachable from C0 can reach a terminal configuration, and (ii) there is a Boolean
value b such that all agents of all terminal configurations reachable from C0 agree to b. We
show thatWS2 still satisfies (a) and (b), but neither (c) nor (d). In the second step we exploit
the characterization of WS2 in terms of (i) and (ii), and define WS3 as the class of protocols
satisfying stronger versions of (i) and (ii). Loosely speaking, the stronger properties require
(i) and (ii) to hold not only for the configurations reachable from C0, but for larger, carefully
chosen sets of configurations.

Our proofs that the membership and correctness problems belong to DP reduces them
to checking (un)satisfiability of two systems of boolean combinations of linear constraints
over the natural numbers. This allows us to implement our decision procedure on top of
the constraint solver Z3 [28], yielding the first software able to automatically prove well-
specification and correctness for all inputs.We have tested our implementation on the families
of protocols studied in [10,12,30,33]. These papers prove correctness for some inputs of
protocols with up to 9 states and 28 transitions. Our approach proves correctness for all
inputs of protocols with up to 20 states in less than one second, and protocols with 70
states and 2500 transitions in less than one hour. In particular, we can automatically prove
correctness for all inputs in less time than previous tools needed to check one single large
input.

The paper is organized as follows. Section 2 contains basic definitions. Section 3 introduces
an intermediate classWS2 of Well-Specified Silent protocols, and shows that its membership
problem is still as hard as forWS. Section 4 characterizesWS2 in terms of two properties, and
introducesWS3 (Well-Specified Strongly Silent protocols) as the class of protocols satisfying
two stronger properties. The section then shows that the two new properties can be tested in
NP and coNP, respectively, which leads to our main result: the membership and correctness
problems for WS3 are in DP. Section 5 proves that WS3-protocols compute all Presburger
predicates. Section 6 reports on our experimental results, and Sect. 7 presents conclusions.

2 Preliminaries

Multisets. A multiset over a finite set E is a mapping M : E → N. The set of all multisets
over E is denoted N

E . For every e ∈ E , M(e) denotes the number of occurrences of e in M ,

and we extend this to sets E ′ ⊆ E by setting M(E ′) def= ∑
e∈E ′ C(e). We sometimes denote

multisets using a set-like notation, e.g. � f , g, g� is the multiset M such that M( f ) = 1,

M(g) = 2 and M(e) = 0 for every e ∈ E \ { f , g}. The support of M ∈ N
E is �M�

def=
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{e ∈ E : M(e) > 0}. The size of M ∈ N
E is |M | def= ∑

e∈E M(e). Addition and comparison

are extended to multisets componentwise, i.e. (M + M ′)(e) def= M(e) + M ′(e) for every

e ∈ E , and M ≤ M ′ def⇐⇒ M(e) ≤ M(e) for every e ∈ E . We define multiset difference as

(M � M ′)(e) def= max(M(e) − M ′(e), 0) for every e ∈ E . The empty multiset is denoted 0,
and for every e ∈ E we write e def= �e�.
Population protocols. A population P over a finite set E is a multiset P ∈ N

E such that
|P| ≥ 2. The set of all populations over E is denoted by Pop(E). A population protocol is a
tuple P = (Q, T , X , I , O) where

– Q is a non-empty finite set of states,
– T ⊆ Q2 × Q2 is a set of transitions such that for every (p, q) ∈ Q2 there exists at least

a pair (p′, q ′) ∈ Q2 such that (p, q, p′, q ′) ∈ T ,
– X is a non-empty finite input alphabet,
– I : X → Q is the input function mapping input symbols to states,
– O : Q → {0, 1} is the output function mapping states to boolean values.

Following the convention of previous papers, we call the populations of Pop(Q) config-
urations. Intuitively, a configuration C describes a collection of identical finite-state agents
with Q as set of states, containing C(q) agents in state q for every q ∈ Q, and at least two
agents in total.

Pairs of agents1 interact using transitions. For every t = (p, q, p′, q ′) ∈ T , we write

(p, q) �→ (p′, q ′) to denote t , and we define pre(t)
def= �p, q� and post(t)

def= �p′, q ′�. For
every configuration C and transition t ∈ T , we say that t is enabled at C if C ≥ pre(t). Note
that by definition of T , every configuration enables at least one transition. A transition t ∈ T
enabled at C can occur, leading to the configuration C � pre(t) + post(t). Intuitively, a pair

of agents in states pre(t) move to states post(t). We write C
t−→ C ′ to denote that t is enabled

at C and that its occurrence leads to C ′. A transition t ∈ T is silent if pre(t) = post(t), i.e.,
if it cannot change the current configuration.

For every sequence of transitions w = t1t2 · · · tk , we write C
w−→ C ′ if there exists a

sequence of configurations C0,C1, . . . ,Ck such that C = C0
t1−→ C1 · · · tk−→ Ck = C ′. We

also write C −→ C ′ if C t−→ C ′ for some transition t ∈ T , and call C −→ C ′ a step. We write
C

∗−→ C ′ if C w−→ C ′ for some w ∈ T ∗. We say that C ′ is reachable from C if C
∗−→ C ′. An

execution is an infinite sequence of configurations C0C1 · · · such that Ci −→ Ci+1 for every
i ∈ N. An execution C0C1 · · · is fair if for every step C −→ C ′, if Ci = C for infinitely many
indices i ∈ N, then C j = C and C j+1 = C ′ for infinitely many indices j ∈ N. We say that
a configuration C is

– terminal if C
∗−→ C ′ implies C = C ′, i.e., if every transition enabled at C is silent;

– a consensus configuration if O(p) = O(q) for every p, q ∈ �C�.

For every consensus configuration C , let O(C) denote the unique output of the states in
�C�. An execution C0C1 · · · stabilizes to b ∈ {0, 1} if there exists n ∈ N such that Ci is a
consensus configuration and O(Ci ) = b for every i ≥ n.

1 While protocols only model interactions between two agents, k-way interactions for a fixed k > 2 can be
simulated by adding additional states [8].
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Predicates computable by population protocols. Every input ν ∈ Pop(X) is mapped to the
configuration I (ν) ∈ Pop(Q) defined by

I (ν)(q)
def=

∑

x∈X
I (x)=q

ν(x) for every q ∈ Q.

A configuration C is said to be initial if C = I (ν) for some input ν. A population protocol
is well-specified if for every input ν, there exists b ∈ {0, 1} such that every fair execution of
P starting at I (ν) stabilizes to b. We say that P computes a predicate � : Pop(X) → {0, 1}
if for every input ν, every fair execution of P starting at I (ν) stabilizes to �(ν). It is readily
seen that P computes a predicate if and only if it is well-specified.

Example 1 We consider the majority protocol of [4] as a running example. Initially, agents
of the protocol can be in either state A or B. The protocol computes whether there are at
least as many agents in state B as there are in state A. The states and the input alphabet are
Q = {A, B, a, b} and X = {A, B} respectively. The input function is the identity function,
and the output function is given by O(B) = O(b) = 1 and O(A) = O(a) = 0. The set of
transitions T consists of:

tAB = (A, B) �→ (a, b)

tAb = (A, b) �→ (A, a)

tBa = (B, a) �→ (B, b)

tba = (b, a) �→ (b, b)

and of silent transitions for the remaining pairs of states. Transition tAB ensures that every
fair execution eventually reaches a configuration C such that C(A) = 0 or C(B) = 0. If
C(A) = 0 = C(B), then there were initially equally many agents in A and B. Transition
tba then acts as tie breaker, resulting in a terminal configuration populated only by b. If, say,
C(A) > 0 and C(B) = 0, then there were initially more As than Bs, and tAb ensures that
every fair execution eventually reaches a terminal configuration populated only by A and a.

3 Well-specified silent protocols

Silent protocols2 were introduced in [17]. Loosely speaking, a protocol is silent if commu-
nication between agents eventually ceases, i.e. if every fair execution eventually stays in
the same configuration forever. Observe that a well-specified protocol need not be silent: fair
executionsmay keep alternating from a configuration to another as long as they are consensus
configurations with the same output.

Definition 1 An execution C0C1 · · · of a protocol is silent if there exist n ∈ N and a config-
uration C such that Ci = C for every i ≥ n. A population protocol P is silent if every fair
execution of P is silent, regardless of the starting configuration. P is a WS2-protocol if it is
well-specified and silent. We letWS2 denote the set of allWS2-protocols.

Example 2 As explained in Example 1, every fair execution of the majority protocol is silent.
This implies that the protocol is silent. If, for example, we add a new state b′ where O(b′) = 1,
and transitions (b, b) �→ (b′, b′), (b′, b′) �→ (b, b), then the protocol is no longer silent since
the execution where two agents alternate between states b and b′ is fair but not silent.

2 Silent protocols are also referred to as protocols with stabilizing states and silent transitions are called
ineffective in [26,27].
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Being silent is a desirable property. While in arbitrary protocols it is difficult to determine
if an execution has already stabilized, in silent protocols it is simple: one just checks if the
current configuration only enables silent transitions. Even though it is was not observed
explicitly, the protocols introduced in [2] to characterize the expressive power of population
protocols belong to WS2. Therefore, WS2-protocols can compute the same predicates as
general ones.

Unfortunately, the following theorem shows that the membership problem forWS2 is still
as hard as the reachability problem for Petri nets. The proof is very similar to the one of [21,
Theorem 10]. However, since it requires several modifications at different places, we present
it in the appendix.

Proposition 1 The reachability problem for Petri nets is reducible in polynomial time to
the membership problem for WS2. In particular, membership for WS2 has non-elementary
complexity.

To circumvent this high complexity, in the next section we introduce a subclass of WS2

with the same expressive power, but a membership problem of much lower complexity.

4 A finer class of silent well-specified protocols:WS3

WS2-protocols are exactly the protocols satisfying the two following properties:

– Termination: for every reachable configuration C , there exists a terminal configuration

C ′ such that C
∗−→ C ′.

– Consensus: for every initial configuration C , there exists b ∈ {0, 1} such that every
terminal configuration C ′ reachable from C is a consensus configuration with output b,

i.e. C
∗−→ C ′ implies O(C ′) = b.

Proposition 2 A protocol belongs to WS2 if and only if it satisfies Termination and Con-

sensus.

Proof We prove a stronger result:

(a) A protocol is silent if and only if it satisfies Termination.
(b) A silent protocol is well-specified if and only if it satisfies Consensus.

((a) ⇒): Follows immediately from the definitions.
((a) ⇐): Let C0 be an arbitrary configuration, and let γ = C0C1C2 · · · be a fair execution
of the protocol. Let C⊥ be the set of terminal configurations reachable from C0. Since Ter-
mination holds for every reachable configuration, and so in particular for all of C1,C2, . . .,
all configurations of γ can reach some cofiguration of C⊥.

For everyCi , let d(Ci ) be the length of a shortest path fromCi to some configuration of C⊥.
We claim that for every n ≥ 0, there are infinitely many indices i such that d(Ci ) ≤ n. Since
there are only finitely many configurations reachable from C0, say K , we have d(Ci ) ≤ K
for every index i ≥ 0. So it suffices to show that if there are infinitely many indices i such
that d(Ci ) ≤ n, then there are infinitely many indices j such that d(C j ) ≤ n − 1.

Let i1 ≤ i2 ≤ i3 · · · be an infinite collection of indices such that d(Ci j ) ≤ n for every
j ≥ 1. By definition of d , for every configuration Ci j there is a step Ci j −→ C ′

i j
such that

d(C ′
i j

) = n−1. By fairness, we haveC ′
i j

= Ci j+1 for infinitely many j ≥ 1, and the claim is
proved. By this claim, there are infinitely many indices i such that d(Ci ) ≤ 0, i.e., Ci ∈ C⊥.
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Let i0 be one of them. Since C⊥ only contains terminal configurations, we have Ci = Ci0 for
every i ≥ i0, and so γ converges to C⊥.
((b) ⇒) Let P be a silent and well-specified protocol. Let C0 be an initial configuration of P,
and let C0C1 · · ·Cn be a finite prefix of an execution such that Cn is terminal. The execution
C0C1 · · · (Cn)

ω is fair. Since the protocol is well-specified, Cn is a consensus configuration.
((b) ⇐) Let P be a silent protocol satisfying Consensus. By silentness, every fair execution
starting at an initial configuration C eventually reaches a terminal configuration. Since P
satisfies Consensus, all these configurations are consensus configurations, and moreover
they all agree to the same boolean value. ��

We introduce the new class WS3 as a refinement of WS2 obtained by strengthening
Termination and Consensus into two new properties called LayeredTermination and
StrongConsensus. These properties are presented in Sects. 4.3.2 and 4.2, where we also
show that their associated decision problems belong to NP and coNP respectively.

Before doing so, let us introduce some useful notions. Let P = (Q, T , X , I , O) be a

population protocol. For every S ⊆ T , P[S] denotes the protocol induced by S, i.e. P[S] def=
(Q, S ∪ T ′, X , I , O) where T ′ def= {(p, q, p, q) : p, q ∈ Q} is added to ensure that any two
states can interact. Let −→S denote the transition relation of P[S]. An ordered partition of T
is a tuple (T1, T2, . . . , Tn) of nonempty subsets of T such that T = ⋃n

i=1 Ti and Ti ∩ Tj = ∅
for every 1 ≤ i < j ≤ n.

4.1 Layered termination

We replace Termination by a stronger property called LayeredTermination, and show
that deciding LayeredTermination belongs to NP. The definition of LayeredTermina-
tion is inspired by the typical structure of protocols found in the literature. Such protocols
are organized in layers such that transitions of higher layers cannot be enabled by executing
transitions of lower layers. For these protocols, Termination can be proven by showing that
every (fair or unfair) execution of a layer is silent.

Definition 2 A population protocol P = (Q, T , X , I , O) satisfies LayeredTermination
if there is an ordered partition (T1, T2, . . . , Tn) of T such that for every i ∈ [n]:
(a) every (fair or unfair) execution of P[Ti ] is silent; and
(b) every (fair or unfair) execution of P[Ti ] starting at a terminal configuration of

P[T1 ∪ · · · ∪ Ti−1] contains only terminal configurations of P[T1 ∪ · · · ∪ Ti−1].
(Observe that both (a) and (b) must hold for all executions of P[Ti ], starting at any configu-
ration, whether it is reachable from some initial configuration or not.)

In other words, condition (a) states that every execution contaning only transitions of Ti
eventually reaches a configuration in which all non-silent transitions of Ti are disabled.
Condition (b) states that if all the the non-silent transitions of T1 ∪ · · · ∪ Ti−1 become
disabled, they cannot be re-enabled by executing transitions of Ti .

Example 3 The majority protocol satisfies LayeredTermination. Indeed, consider the
ordered partition (T1, T2), where

T1 = {(A, B) �→ (a, b), (A, b) �→ (A, a)}
T2 = {(B, a) �→ (B, b), (b, a) �→ (b, b)}.
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All executions of P[T1] and P[T2] are silent. For every terminal configuration C of P[T1],
we have �C� ⊆ {A, a} or �C� ⊆ {B, a, b}. In the former case, no transition of T2 is enabled;
in the latter case, taking transitions of T2 cannot enable T1.

Proposition 3 LayeredTermination implies Termination.

Proof LetP = (Q, T , X , I , O) be a population protocol satisfying LayeredTermination,
and letC be an arbitrary configuration ofP. Let (T1, T2, . . . , Tn) be the ordered partition of T
for LayeredTermination. By condition (a) ofDefinition 2, there exists a sequencew1 ∈ T ∗

1

such thatC
w1−→ C1, andC1 is a terminal configuration ofP[T1]. By the same reasoning, there

exists a sequence w2 ∈ T ∗
2 such that C1

w2−→ C2, and C2 is a terminal configuration of P[T2];
further, by condition (b) of Definition 2, C2 is also a terminal configuration of P[T1 ∪ T2].
Iterating this process we find C1

w1...wn−−−−→ Cn such that Cn is a terminal configuration of
P[T1 ∪ · · · ∪ Tn] = P. ��

In the rest of this section, we prove that checking LayeredTermination is in NP. We
do this by showing that conditions (a) and (b) of Definition 2 can be checked in polynomial
time.

4.1.1 Checking condition (a) of Definition 2

We recall a basic notion of Petri net theory recast in the terminology of population protocols.

LetP = (Q, T , X , I , O) be a population protocol. By definition, for every stepC
t−→ C ′ and

every state q we have C ′(q) = C(q)+post(t)(q)−pre(t)(q). This equality can be extended
to sequences of transitions. Let |w|t denote the number of occurrences of transition t in a
sequence w. If C

w−→ C ′, then we have

C ′(q) = C(q) +
∑

t∈T
|w|t · (post(t)(q) − pre(t)(q)) for every q ∈ Q. (1)

Intuitively, thisflowequation states that, for every stateq , the numberC ′(q)of agents inq after
the execution ofw is equal to the initial number C(q) of agents, plus the number

∑
t∈T |w|t ·

post(t)(q) of agents that enter q during the execution,minus the number
∑

t∈T |w|t ·pre(t)(q)

of agents that leave q . In particular, the final configuration reached after executing w only
depends on how many times each transition occurs in w, and not on the order in which the
transitions occur.

In the following lemma we use the flow equation to characterize the protocols P for
which there exists a configuration C0 such that some non-silent execution starts at C0. The
proof makes crucial use of the fact that for every sequence w of transitions there exists some
configuration C0 that enables w; indeed, since each transition takes at most two agents from
a given state, it suffices to put 2 · |w| agents in each state.

Lemma 1 Let P = (Q, T , X , I , O) be a population protocol and let NS ⊆ T be its set of
non-silent transitions.P has a configuration C0 and a non-silent execution C0C1 . . . iff there
is a non-zero vector x : NS → N such that

∑
t∈NS x(t) · (post(t)(q) − pre(t)(q)) ≥ 0 for

every q ∈ Q.

Proof ⇒) Let C0C1C2 · · · be a non-silent execution of P. Since executing a silent transition
does not change the current configuration, we can assume that all the transitions occurring
in the execution are non-silent. Since the total number of agents of a configuration is left

123



Formal Methods in System Design

unchanged by transitions, there exist indices j < k such that C j = Ck . So C j
w−→ C j for

some non-empty sequence w of non-silent transitions. Instantiating the flow equation with

C
def= C j and C ′ def= C j we get

∑
t∈T |w|t · (post(t)(q) − pre(t)(q)) = 0 for every state q .

Define x(t) def= |w|t for every non-silent transition t . Observe that x is not zero because w is
non-empty.
⇐) Without loss of generality, we can assume x(q) ∈ N. (If this is not the case, we multiply
x by a suitable coefficient.) Letw ∈ NS∗ be any sequence of transitions such that |w|t = x(t)
for every t ∈ NS. Choose a configuration C0 such that C0

w−→ C for some configuration
C . Observe that C0 exists, for example it suffices to take C0(q) > 2 · |w| for every state
q . By the flow Eq. (1), we have C ≥ C0, and as |C | = |C0| also C = C0. It follows that
C0

w−→ C0
w−→ C0

w−→ · · · is a non-silent execution of P, and we are done. ��
Lemma 1 immediately leads to a polynomial algorithm to check condition (a) of Defini-

tion 2:

Proposition 4 Let P = (Q, T , X , I , O) be a population protocol. Deciding whether an
ordered partition (T1, T2, . . . , Tn) of T satisfies condition (a) of Definition 2 can be done in
polynomial time.

Proof By Lemma 1, we can check condition (a) by considering the protocols P[T1], P[T2],
…, P[Tn], one after the other, and checking for each P[Ti ] the (non) existence of a rational
vector xi with xi (t) ≥ 0 for every t ∈ NS∩ Ti satisfying the linear constraints of the lemma.
Sincewe can scale each component xi (t)with the least commonmultiple of all denominators,
such a vector exists iff a vector over the natural numbers satisfying the constraints exists.
Since linear programming is in ¶, the result follows. ��

4.1.2 Checking condition (b) of Definition 2

We first rephrase condition (b) in a more convenient form. Let P = (Q, T , X , I , O) be a
population protocol, and let U ⊆ T be a set of transitions. A configuration C ∈ Pop(Q) is

U -dead if it only enables silent transitions of U ; in other words, if t ∈ U and C
t−→ C ′, then

C ′ = C . We say that P is U -dead from C0 ∈ Pop(Q) if every configuration reachable from

C0 isU -dead, i.e. C0
∗−→ C implies that C isU -dead. Finally, we say that P isU -dead if it is

U -dead from every U -dead configuration C0 ∈ Pop(Q). So, loosely speaking, if a protocol
P isU -dead, then for every configuration either P can immediately execute some non-silent
transition of U , or it can never execute any non-silent transition of U .

Lemma 2 Let P = (Q, T , X , I , O) be a population protocol, and let (T1, . . . , Tn) be an
ordered partition of T . Further, let U0 = ∅, and for every 1 ≤ i ≤ n let Ui = T1∪T2 · · ·∪Ti .
We have: P satisfies condition (b) of Definition 2 iff for every i ∈ [n] the protocol P[Ui ] is
Ui−1-dead

Proof Assume condition (b) holds for some i ∈ [n], and let C0 be aUi−1-dead configuration
of P[Ui ]. By (b) no configuration reachable from C0 by executing transitions of Ti enables
any transition of Ui−1, and so P[Ui ] is Ui−1-dead from C0. Conversely, assume P[Ui ] is
Ui−1-dead, and let C0 be a terminal configuration of P[Ui−1]. Then C0 disables all non-
silent transitions of Ui−1. Since P[Ui ] is Ui−1-dead, no configuration reachable from C0

by executing transitions of Ti enables any non-silent transition of Ui−1. So every execution
starting at C0 contains only terminal configurations of P[Ui−1]. ��
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By this lemma, checking condition (b) in polynomial time reduces to giving a polynomial-
time algorithm to check, given a protocolP = (Q, T , X , I , O) and a setU ⊆ T of transitions,
whether P isU -dead. (Indeed, in order to check (b) for every i ∈ [n] it suffices to instantiate
the algorithm with the protocolsP[U1], . . . ,P[Un] and the setsU0, . . . ,Un−1, respectively.)
To this end, we first characterize the pairs P,U such that P is U -dead.

Lemma 3 Let P = (Q, T , X , I , O) be a protocol and let U ⊆ T be a set of transitions. P is
U-dead iff for every transition s ∈ T \U and every non-silent transition u ∈ U:

pre(u′) ≤ pre(s) + (pre(u) � post(s)) for some non-silent transition u′ ∈ U . (2)

Proof We prove that P is not U -dead iff there exists a transition s ∈ T \U and a non-silent
transition u ∈ U such that:

pre(u′) � pre(s) + (pre(u) � post(s)) for every non-silent transition u′ ∈ U . (3)

⇐) Suppose there exist s ∈ T \U and non-silent u ∈ U such that (3) holds. LetC0 ∈ Pop(Q)

be the configuration C0
def= pre(s) + (pre(u) � post(s)). By (3), C0 does not enable any non-

silent transition of U , and so C0 is U -dead. Since C0 ≥ pre(s), we have C0
s−→ C for

C = (pre(u) � post(s)) + post(s). Further, since pre(u) ≤ C , the configuration C enables
u. So C0 is not U -dead, and therefore P is not U -dead.
⇒) Assume P is not U -dead. Then there exist steps C0

s1−→ C1
s2−→ · · · sn−→ Cn such that

C0, . . . ,Cn−1 are U -dead, s1, s2, . . . , sn ∈ T \ U , and Cn is not U -dead. Let u ∈ U be any
non-silent transition enabled at Cn , i.e. such that pre(u) ≤ Cn . We prove by contradiction
that (3) holds for s := sn and this transition u. Suppose there exists some non-silent u′ ∈ U
such that pre(u′) ≤ pre(sn) + (pre(u) � post(sn)). We have

pre(u′) ≤ pre(sn) + (pre(u) � post(sn))

≤ pre(sn) + (Cn � post(sn)) (by pre(u) ≤ Cn)

≤ Cn � post(sn) + pre(sn)

= Cn−1 (by Cn−1
sn−→ Cn) .

Therefore, Cn−1
u′−→ C for some configuration C . Moreover, C �= Cn−1 because u′ is non-

silent. This contradicts the fact that Cn−1 is U -dead, hence (3) holds. ��
Proposition 5 Let P = (Q, T , X , I , O) be a population protocol. Deciding whether an
ordered partition (T1, . . . , Tn) of T satisfies condition (b) of Definition 2 can be done in
polynomial time.

Proof LetU0 = ∅, and for every 1 ≤ i ≤ n letUi = T1∪T2 · · ·∪Ti . By Lemma 2, condition
(b) holds for a given i ∈ [n] iff the protocol P[Ui ] is Ui−1-dead. By Lemma 3, P[Ui ] is
Ui−1-dead iff the condition of the lemma holds for P := P[Ui ] and U := Ui−1, in other
words, if (2) holds for every pair (s, u) ∈ Ti ×Ui−1 of transitions. Since (2) can be checked
in polynomial time, and the number of pairs is also polynomial, the result follows. ��

Propositions 4 and 5 yield an NP procedure to decide LayeredTermination. Indeed, it
suffices to guess an ordered partition and to check whether it satisfies conditions (a) and (b)
of Definition 2 in polynomial time.

Corollary 1 Deciding if a protocol satisfies LayeredTermination is in NP.
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Via a straightforward reduction from 3-SAT (satisfiability of a formula in conjunctive
normal form, with 3 literals per clause), we show in in Appendix 8.2 that deciding Lay-

eredTermination is NP-hard. Thus we obtain:

Proposition 6 Deciding if a protocol satisfies LayeredTermination is NP-complete.

4.2 Strong consensus

To overcome the high complexity of reachability in population protocols, we strengthen
Consensus by replacing the reachability relation in its definition by an overapproximation,

i.e., a relation ��� over configurations such that C
∗−→ C ′ implies C ��� C ′. Observe that

the flow equations provide an over-approximation of the reachability relation. Indeed, as

mentioned earlier, if C
∗−→ C ′, then there exists x : T → N such that (C,C ′, x) satisfies all

of the flow equations. However, this over-approximation alone is too crude for the verification
of protocols.

Example 4 Consider the configurationsC = �A, B� andC ′ = �a, a�of themajority protocol.
The flow equations are satisfied by the mapping x such that x(tAB) = x(tAb) = 1 and

x(tBa) = x(tba) = 0. Yet, C
∗−→ C ′ does not hold.

To obtain a finer reachability over-approximation,we introduce so-called traps and siphons
constraints borrowed from the theory of Petri nets [16,18,19]. These constraints have been
successfully applied to a number of analysis problems (see e.g. [6,18,19]). Intuitively, for
some subset of transitionsU ⊆ T , aU -trap is a set of states P ⊆ Q such that every transition
of U that removes an agent from P also moves an agent into P . Conversely, a U -siphon is
a set P ⊆ Q such that every transition of U that moves an agent into P also removes an

agent from P . More formally, for every R ⊆ Q, let •R def= {t ∈ T : �post(t)� ∩ R �= ∅} and
R• def= {t ∈ T : �pre(t)� ∩ R �= ∅}. U -siphons and U -traps are defined as follows:

Definition 3 A subset of states P ⊆ Q is a U -trap if P• ∩ U ⊆ •P , and a U -siphon if
•P ∩U ⊆ P•.

For every configuration C ∈ Pop(Q) and P ⊆ Q, let C(P)
def= ∑

q∈P C(q). Consider a

sequence of stepsC0
t1−→ C1

t2−→ · · · tn−→ Cn where t1, . . . , tn ∈ U . It follows fromDefinition 3
that if some transition ti moves an agent to a U -trap P , then C j (P) > 0 for every j ≥ i .
Similarly, if some transition ti removes an agent from aU -siphon, then C j (P) > 0 for every
j < i . In particular:

Observation 1 Let U ⊆ T , let C and C ′ be configurations, and letw be a sequence such that
C

w−→ C ′ and |w|t > 0 for every t ∈ U. For every U-trap P, if C ′(P) = 0, then •P ∩U = ∅.
For every U-siphon P, if C(P) = 0, then P• ∩U = ∅.

We obtain a necessary condition forC
∗−→ C ′ to hold, which we call potential reachability:

Definition 4 Let C,C ′ be two configurations, let x : T → N, and let U = �x�. We say that
C ′ is potentially reachable from C through x, denoted C

x��� C ′, if

(a) the flow equation C ′(q) = C(q) + ∑
t∈T x(t) · (post(t)(q) − pre(t)(q)) holds for every

state q ∈ Q,
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(b) C ′(P) = 0 implies •P ∩U = ∅ for every U -trap P , and
(c) C(P) = 0 implies P• ∩U = ∅ for every U -siphon P .

Example 5 Let us reconsider Example 4. Let U = �x� = {tAB , tAb} and P = {A, b}. Recall
that tAB = (A, B) �→ (a, b) and tAb = (A, b) �→ (A, a). We have P• ∩ U = U which
implies that P is a U -trap. This means that Definition 4(b) is violated as C ′(P) = 0 and
•P ∩U = U �= ∅. Therefore, �A, B�

x��� �a, a� does not hold.

We write C ��� C ′ if C x��� C ′ for some x : T → N. As an immediate consequence of

Observation 1, for every configurations C and C ′, if C ∗−→ C ′, then C ��� C ′. This allows
us to strengthen Consensus by redefining it in terms of potential reachability instead of
reachability:

Definition 5 A protocol satisfies StrongConsensus if for every initial configuration C ,
there exists b ∈ {0, 1} such that every terminal configuration C ′ potentially reachable from
C is a consensus configuration with output b, i.e. C ��� C ′ implies O(C ′) = b.

Since the number ofU -traps andU -siphons of a protocol can be exponential in the number
of states, checking trap and siphon constraints by enumerating them may take exponential
time. Fortunately, this can be avoided. By definition, it follows that the union of twoU -traps
is again aU -trap, and similarly for siphons. Therefore, given a configurationC , there exists a
unique maximalU -siphon Pmax such that C(Pmax) = 0, and a unique maximalU -trap P ′

max
such that C(P ′

max) = 0. Moreover, Pmax and P ′
max can be computed in linear time by means

of a simple greedy algorithm (see e.g. [16, Ex. 4.5]). This simplifies the task of checking
traps and siphons constraints, and yields a coNP procedure for testing StrongConsensus:

Proposition 7 Deciding if a protocol satisfies StrongConsensus is in coNP.

Proof Testing whether a protocol does not satisfy StrongConsensus can be done by guess-
ing C0,C,C ′ ∈ Pop(Q), q, q ′ ∈ Q and x, x′ : T → N, and testing whether

(a) C0 is initial, C is terminal, C ′ is terminal, q ∈ �C�, q ′ ∈ �C ′�, O(q) �= O(q ′), and
(b) C0

x��� C and C0
x′
��� C ′.

Since there is no a priori bound on the size ofC0,C,C ′ and x, x′, we guess them carefully.
First, we guess whether D(p) = 0, D(p) = 1 or D(p) ≥ 2 for every D ∈ {C0,C,C ′} and
p ∈ Q. This gives enough information to test (a). Then, we guess �x� and �x′�. This allows
to test traps/siphons constraints as follows. Let U

def= �x�, let Pmax be the maximal U -trap
such that C(Pmax) = 0, and let P ′

max be the maximal U -siphon such that C0(P ′
max) = 0.

Conditions (b) and (c) ofDefinition4hold if andonly if •(Pmax)∩U = ∅ and (P ′
max)

•∩U = ∅,
which can be tested in polynomial time. The same is done for x′. If (a) and siphons/traps
constraints hold, we build the system S of linear equations/inequalities obtained from the
conjunction of the flow equations together with the constraints already guessed. By standard
results on integer linear programming (see e.g. [32, Sect. 17]), if S has a solution, then it has
one of polynomial size, and hence we may guess it. ��

4.3 WS3-protocols

We introduce the class WS3 of protocols:
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Definition 6 A protocol belongs toWS3 if it satisfies LayeredTermination and Strong-

Consensus.

Since WS3 ⊆WS2 ⊆WS holds, every WS3-protocol is well-specified. We study the com-
putational complexity of the membership problem and correctness problems forWS3:

– Membership: Given a protocol, does it belong to WS3?
– Correctness: Given a protocol and a predicate, does the protocol belong to WS3 and

compute the predicate?

We first show that the membership problem belongs to the classDP. Recall that a language
L belongs to DP if there exist languages L1 ∈ NP and L2 ∈ coNP such that L = L1 ∩ L2

[31].

Theorem 2 The membership problem for WS3-protocols is in DP.

Proof Let L1 and L2 be the languages of population protocols satisfying LayeredTermi-

nation and StrongConsensus, respectively. By Corollary 1 and Proposition 7, we have
WS3 = L1 ∩ L2 where L1 ∈ NP and L2 ∈ coNP, and we are done. ��

Let us now consider the correctness problem. Recall that a protocol over an input alphabet
X computes a predicate Pop(X) → {0, 1}. As mentioned in the introduction, Angluin et
al. [4] have shown that for every finite input alphabet X , a predicate Pop(X) → {0, 1}
is computable by a population protocol over X if and only if it is definable in Presburger
arithmetic, the first-order theory of addition [2,4].

Definition 7 A threshold constraint over a set of variables X is an expression of the form∑k
i=1 ai xi < c, where a1, . . . , ak, c are integers represented in binary, and x1, . . . , xk ∈ X .

A Presburger formula over X is an expression ϕ over the syntax

ϕ::=t | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃x ϕ1 | ∀x ϕ1

where t is a threshold constraint over X , and x ∈ X .
A Presburger formula ϕ(x1, . . . , xn) with free variables x1, . . . xn is interpreted over

Pop({x1, . . . , xn}), i.e., over themappings3 {x1, . . . , xn} → N. Given ν ∈ Pop({x1, . . . , xn}),
the satisfaction relation ν |� ϕ(x1, . . . , xn) is inductively defined as usual; in particular,
ν |� ∑n

i=1 ai xi < c iff
∑n

i=1 aiν(xi ) < c. We let �ϕ� denote the predicate N
n → {0, 1}

given by �ϕ�(ν) = 1 iff ν |� ϕ. Given a finite alphabet X , a predicate � : Pop(X) → {0, 1}
is a Presburger predicate if � = �ϕ� for some Presburger formula ϕ with X as set of free
variables. Two Presburger formulas ϕ,ψ are equivalent if �ϕ� = �ψ�.

In the rest of the section we study the problem of whether a given protocol P is in WS3

and computes a Presburger predicate specified by a Presburger formula ϕ.
By definition, the protocols of WS3 are those satisfying LayeredTermination and

StrongConsensus. Given a Presburger formula ϕ over a set X of variables, we charac-
terize the protocols of WS3 that compute the predicate �ϕ�. For this we introduce a new
property of a protocol P = (Q, T , X , I , O), similar to StrongConsensus:

Definition 8 A protocol satisfies Strong-ϕ-Consensus if for for every input ν ∈ Pop(X),
every terminal configuration potentially reachable from I (ν) is a consensus configuration
with output �ϕ�(ν).

3 In a logical context these mappings are called valuations instead of populations.
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Proposition 8 Let ϕ be a Presburger formula. A protocol P is in WS3 and computes �ϕ� iff
P satisfies LayeredTermination and Strong-ϕ-Consensus.

Proof ⇒) Assume P is in WS3 and computes �ϕ�. Fix some input ν ∈ Pop(X). Since P is
in WS3, it satisfies LayeredTermination and StrongConsensus. By LayeredTermi-

nation and Proposition 3 we have that some terminal configuration C⊥ is reachable from
I (ν). Since P computes �ϕ�, it must hold that O(C⊥) = �ϕ�(ν). Potential reachability is an
over-approximation of reachability, hence reachability of C⊥ implies potential reachability
of C⊥ from I (ν). By StrongConsensus, all potentially reachable terminal configurations
are in the same consensus as C⊥. So all potentially reachable terminal configurations form
the consensus O(C⊥) = �ϕ�(ν) and Strong-ϕ-Consensus follows.
⇐) If P satisfies Strong-ϕ-Consensus, then it also P satisfies StrongConsensus,
as Strong-ϕ-Consensus is a specialization of StrongConsensus. So P belongs to
WS3. Further, as P satisfies LayeredTermination, for every input ν ∈ Pop(X), every
fair execution of P starting at I (ν) reaches a terminal configuration. Since P satisfies
Strong − ϕ − Consensus, every fair execution starting at I (ν) stabilizes to �ϕ�(ν). So
P computes �ϕ�. ��

4.3.1 Complexity of the correctness problem

The complexity of the correctness problem forWS3 depends on the formalism used to repre-
sent Presburger predicates.We choose to represent themas boolean combinations of threshold
and remainder constraints. Before explaining why, we introduce some definitions.

Definition 9 A remainder constraint over a set of variables X is an expression of the form∑k
i=1 ai xi ≡ c (mod m), where a1, . . . , ak, c,m are integers represented in binary with

0 ≤ c < m and m ≥ 2, and x1, . . . , xk ∈ X . A TR-constraint is a boolean combination of
threshold and remainder constraints.

There are two other formalisms with the same expressive power as Presburger formulas,
i.e., able to express exactly the Presburger predicates: TR-constraints and semilinear sets.
Indeed, by the quantifier-elimination procedure for Presburger arithmetic, every Presburger
formula is equivalent to a TR-constraint [13]4. Further, the set of solutions of a Presburger
formula is semilinear, and so it can be finitely represented by listing the roots and periods of
the linear sets that compose it [23].

We choose TR-constraints as specification formalism, because it provides the best trade-
off between readability and tool support. Semilinear sets are difficult to parse by humans.
Full Presburger arithmetic is very succinct, but it has two problems: from the theoretical point
of view, the complexity of the correctness problem is dominated by the complexity of the
satisfiability problem for Presburger arithmetic,which lies between 2-NEXP and 2-EXPSPACE,
and is thus very high [7,22]; from the practical point of view, constraint solvers for Presburger
arithmetic are much less efficient than those for TR-constraints. Moreover, the standard
predicates studied in the literature are already naturally expressed with TR-constraints. For
all these reasons, in the rest of the paper we specify a predicate as a TR-constraint ϕ(X) with
X as set of free variables.

We wish to prove that deciding if P satisfies Strong-ϕ-Consensus, where ϕ is a TR-
constraint, is in coNP. For this we need a lemma.

4 [13] gives an equivalent formula with threshold and divisibility constraints, but the divisibility constraints
can be easily replaced by remainder constraints.
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Lemma 4 The satisfiability problem for TR-constraints is in NP.

Proof Let ϕ(x1, . . . , xn) be a TR-constraint. We show that ϕ(x1, . . . , xn) is equivalent to an
existential Presburger formula of length O(|ϕ|), and use that the satisfiability problem for
existential Presburger arithmetic is NP-complete [24].

By pushing negations inside if necessary, we can transform ϕ into a TR-constraint where
negations only appear in front of threshold or remainder constraints. We have that

k∑

i=1

ai · xi ≡ c (mod m) iff ∃y :
(

m · y + c =
k∑

i=1

ai · xi
)

, and

k∑

i=1

ai · xi �≡ c (mod m) iff ∃y, z :
(

m · y + z =
k∑

i=1

ai · xi
)

∧ (0 ≤ z < m) ∧ (z �= c) .

It is easy to see that ≤, = and �= can be expressed as boolean combinations of threshold
constraints using <. Since existential quantifiers can be moved to the front of the formula,
we are done. ��
Proposition 9 Let ϕ(X) be a TR-constraint, and let P = (Q, T , X , I , O) be a population
protocol. Deciding if P satisfies Strong-ϕ-Consensus is in coNP.

Proof Let � = �ϕ�. Testing whether a protocol does not satisfy Strong-ϕ-Consensus can
be done by guessing x ∈ Pop(X), C ∈ Pop(Q), z : T → N, and testing whether

(a) C is terminal,
(b) I (x)

z��� C ,
(c) O(C) �= �(x).

Since there is no a priori boundon the size ofx,C and z,we guess them in an analogousmanner
to the proof of Proposition 7. First, we guess whether C(p) = 0, C(p) = 1 or C(p) ≥ 2 for
every p ∈ Q. This gives enough information to test (a). Then, we guess �x� and �z�. This
allows to test traps/siphons constraints in the same way as in the proof of Proposition 7. If
siphons/traps constraints hold, we build the systemS of linear equations/inequalities obtained
from the conjunction of the flow equations together with the constraints already guessed. For
(c) we distinguish the two cases: O(C) = 0 or O(C) = 1. The disjunction of the two cases
along with the constraints S yields

ψ
def= S(C, x) ∧ ((O(C) = 0 ∧ ϕ(x)) ∨ (O(C) = 1 ∧ ¬ϕ(x))) .

Since ϕ is a TR-constraint, so is ψ . By Lemma 4, satisfiability of ψ can be decided in
non-deterministic polynomial time. From this, and the fact that Strong-ϕ-Consensus holds
precisely if ψ is unsatisfiable for all guesses of x, C and z, we obtain that Strong-ϕ-Con-
sensus is in coNP. ��
Corollary 2 Let ϕ(�) be a TR-constraint and let P be a protocol. Deciding if P is in WS3

and computes �ϕ� is in DP.

Proof Deciding whether P is in WS3 and computes �ϕ� is by Proposition 8 equivalent to
deciding whether P satisfies LayeredTermination and Strong-ϕ-Consensus. Let L1

and L2 be the languages of population protocols and formulas satisfying LayeredTermi-

nation and Strong-ϕ-Consensus, respectively. By Corollary 1 and Proposition 9 we have
that L1 ∈ NP and L2 ∈ coNP, and thus L1 ∩ L2 ∈ DP, and we are done. ��
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4.3.2 Determining the predicate computed by aWS3 protocol

We show that the procedures for checking LayeredTermination and StrongConsensus

shown in Sect. 4.2, respectively, not only determine whether a given protocol belongs toWS3;
when the protocol does belong toWS3, we can also use them to extract a Presburger formula
for the predicate computed by the protocol. We first prove:

Proposition 10 Let P = (Q, T , X , I , O) be a protocol in WS3, and let � be the predicate
computed by P. For every input ν ∈ Pop(X), we have �(ν) = 1 iff there exists a terminal
configuration C such that O(C) = 1 and I (ν)

∗��� C.

Proof Fix an arbitrary input ν.
⇒) Assume �(ν) = 1. By definition, every fair execution starting at I (ν) eventually stabi-
lizes to 1. Since P belongs toWS3, it is silent, and so every fair execution eventually reaches

a terminal configuration with output 1. So I (ν)
∗−→ C for some configuration C such that

O(C) = 1. Since reachability implies potential reachability, I (ν)
∗��� C holds as well.

⇐) Assume there exists a terminal configuration C such that O(C) = 1 and I (ν)
∗��� C .

We show that every fair execution I (ν)C1 C2 . . . of P stabilizes to 1. Since P satisfies Lay-
eredTermination it also satisfies Termination, and therefore the execution eventually

reaches some terminal configuration Ci . In particular, we have I (ν)
∗−→ Ci , which implies

I (ν)
∗��� Ci . Since P satisfies StrongConsensus, and both C and Ci are potentially

reachable terminal configurations, we have O(Ci ) = O(C) = 1. So the execution stabilizes
to 1. ��

Given a protocol P, it is easy to give Presburger formulas Term(C) and Output1(C)

that hold iff C is a terminal configuration and a configuration with output 1, respectively.
Moreover, it follows from the proof of Proposition 7 that there exists a Presburger formula
PotReach(C,C ′) that holds iff C ∗��� C ′. By Proposition 10, the formula

ϕ(ν) = ∃C : PotReach(I (ν),C) ∧ Term(C) ∧ Output1(C)

characterizes the protocol computed by P.

5 WS3 is as expressive asWS

Recall that Angluin et al. have shown that a predicate is computable by a population protocol
if and only if it is definable in Presburger arithmetic [2,4]. In particular, [2] shows how to
construct a protocol for a given Presburger-definable predicate. The construction exploits
the fact, already mentioned in Section 4.3.1, that every Presburger formula is equivalent
to a TR-constraint; in other words, the Presburger-definable predicates are the smallest set
of predicates containing all threshold and remainder predicates, and closed under boolean
operations [13]. (Recall that, by definition, threshold and remainder predicates are the pred-
icates N

k → {0, 1} expressible by the threshold and remainder constraints introduced in
Definitions 7 and 9, respectively.) We show that all threshold and remainder predicates can
be computed by protocols in WS3, and that WS3 is closed under negation and conjunction.
As a consequence, we obtain thatWS3 is as expressive asWS, the class of all well-specified
protocols.
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5.1 Threshold protocol

We describe the protocol given in [3] to compute the threshold predicate
∑k

i=1 ai xi < c, first
informally, and then formally. Define

vmax
def= max(|a1|, |a2|, . . . , |ak |, |c| + 1).

States are triples of the form (	, n, o), where 	 and o are Booleans, and n ∈ [−vmax, vmax].
Let us first describe the intendedmeaning of n. Intuitively, if an agent is in state (	, n, o), then
n indicates its current wealth (which can be negative). Observe that the wealth of an agent
always lies in the interval [−vmax, vmax]. Initially, agents in state I (xi ) have wealth ai . So
the goal of the protocol is to decide whether the global wealth

∑k
i=1 ai xi owned collectively

by all agents is below the threshold c. Let us now consider the components 	 and o of a state
(	, n, o). Component o indicates the current opinion of the agent, i.e., whether it currently
believes the global wealth is below c. Component 	 indicates whether the agent is active or
passive. Initially all agents are active, and their opinion is given by their own wealth. For
example, if an agent has wealth 3 and c = 2, then its current opinion is that the global wealth
is not below c.

Interactions only take place between an active agent and another agent, which may be
active or not. The two agents update their states as follows:

– The first agent remains active, and the second becomes (or remains) passive.
– The two agents compute their joint wealth, and update their opinions according to it. For

example, if the agents have wealths −2 and 3, and c = 2, then after the interaction both
agents believe the global wealth is below c.

– The two agents redistribute their joint wealth as follows. The second agent receives an
amount whose absolute value is as close to 0 as possible (while respecting the constraint
that individual wealths are in [−vmax, vmax]), and the first agent receives the rest. For
example, if the wealth interval is [−3, 3] and the agents have individual wealths −1 and
3, then after redistribution their wealths become 2 and 0; if they are −2 and −2, they
become −3 and −1; and if they are 0 and 3, they become 3 and 0.

Intuitively, the protocol works because eventually one single agent remains active, and its
wealth stabilizes to a value n satisfying the following property: if the global wealth is in the
interval [−vmax, vmax], then n is the global wealth, and if the global wealth is larger than
vmax (resp. smaller than −vmax), then n = vmax (resp. n = −vmax). In all cases, the opinion
of this agent eventually stabilizes to the correct answer to the question whether the global
wealth is below c, and the agent eventually changes the opinion of all other agents to this
value. More details can be found in [3].

Formally, define

f (m, n)
def= max(−vmax,min(vmax,m + n)),

g(m, n)
def= (m + n) − f (m, n),

b(m, n)
def= ( f (m, n) < c).
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The protocol is Pthr
def= (Q, T , X , I , O), where

Q
def= {0, 1} × [−vmax, vmax] × {0, 1},

X
def= {x1, x2, . . . , xk},

I (xi )
def= (1, ai , ai < c) for every i ∈ [k],

O(	, n, o)
def= o for every state (	, n, o),

and T contains

(1, n, o), (l, n′, o′) �→ (1, f (n, n′), b(n, n′)), (0, g(n, n′), b(n, n′))

for every n, n′ ∈ [−vmax, vmax], 	, o, o′ ∈ {0, 1}. Intuitively, an agent in state (	, n, o) has
value n (which can be positive or negative), opinion o, and is a leader if and only if 	 = 1; it
is useful to think of n as the current wealth of the agent. The wealth of an agent lies always
in the interval [−vmax, vmax]. Initially, agents in state I (xi ) have wealth ai . So, intuitively,
the goal of the protocol is to decide if the total wealth

∑k
i=1 ai xi own by all agents together

is below a threshold c.
Let val(q)

def= n for every state q = (	, n, o) ∈ Q, and let val(C)
def= ∑

q∈Q C(q) · val(q)

for every configuration C ∈ Pop(Q).

Proposition 11 For every C,C ′ ∈ Pop(Q) and x : T → N, if (C,C ′, x) is a solution to the
flow equations, then val(C) = val(C ′).

Proof Assume (C,C ′, x) is a solution to the flow equations. For all m, n ∈ [−vmax, vmax],
we have g(m, n)+ f (m, n) = m + n. Therefore, val(pre(t)) = val(post(t)) for every t ∈ T .
This implies:

val(C ′) =
∑

q∈Q

(

C(q) +
∑

t∈T
x(t) · (post(t)(q) − pre(t)(q))

)

· val(q)

= val(C) +
∑

q∈Q

∑

t∈T
x(t) · (post(t)(q) − pre(t)(q)) · val(q)

= val(C) +
∑

t∈T
x(t) ·

⎡

⎣
∑

q∈Q
post(t)(q) · val(q) −

∑

q∈Q
pre(t)(q) · val(q)

⎤

⎦

= val(C) +
∑

t∈T
x(t) · [

val(post(t)) − val(pre(t))
]

= val(C).

��
Proposition 12 Let C,C ′ ∈ Pop(Q) be terminal configurations that contain a leader. Both C
and C ′ are consensus configurations. Moreover, if val(C) = val(C ′), then O(C) = O(C ′).

Proof We prove the first claim for C . The argument is identical for C ′. Suppose that C is not
a consensus configuration. Let (1,m, o) ∈ �C� be a leader of C . Since C is not a consensus
configuration, there exists (	, n,¬o) ∈ �C�. Therefore, the following transition t is enabled
at C :

(1,m, o), (	, n,¬o) �→ (1, f (m, n), b(m, n)), (0, g(m, n), b(m, n)).
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Moreover, t is non silent which contradicts the fact that C is terminal. Thus, C is a consensus
configuration.

Assume that val(C) = val(C ′). Suppose that O(C) �= O(C ′) for the sake of contradiction.
Without loss of generality, we may assume that O(C) = 1 and O(C ′) = 0. Let pC , pC ′ ∈ Q
be respectively leaders of C and C ′. We have val(pC ) < c < vmax and val(pC ′) ≥ c >

−vmax. We claim that

val(pC ) ≥ val(C) and val(pC ′) ≤ val(C ′). (4)

To see that the claim holds, suppose that val(pC ) < val(C). There exists some qC ∈ �C� such
that val(qC ) > 0. Since val(pC ) < vmax, some part of the value of qC can be transferred to
pC , i.e. there exists a non silent transition t ∈ T with pre(t) = �pC , qC�, which contradicts
that C is terminal. Thus, val(pC ) ≥ val(C) holds. The case val(pC ′) ≤ val(C ′) follows by a
similar argument.

Now, by (4) we have val(C) ≤ val(pC ) < c and val(C ′) ≥ val(pC ′) ≥ c which is a
contradiction since val(C) = val(C ′). Therefore, O(C) = O(C ′). ��

Proposition 13 Pthr satisfies StrongConsensus.

Proof Suppose for the sake of contradiction that Pthr does not satisfy StrongConsensus.
There are two cases to consider.

– There exist C,C ′ ∈ Pop(Q) such that C ��� C ′, C is initial, C ′ is terminal and C ′ is
not a consensus configuration. Since C is initial, it contains a leader. It is readily seen
that the set of leaders forms a U -trap for every U ⊆ T , which implies that C ′ contains a
leader as (C,C ′, x) satisfies the U -trap constraints for all U . By Proposition 12, C ′ is a
consensus configuration, which is a contradiction.

– There exist C0,C,C ′ ∈ Pop(Q) and x, x′ : T → N such that C0
x��� C , C0

x′
��� C ′, C0

is initial, C andC ′ are terminal consensus configurations, and O(C) �= O(C ′). Note that
(C0,C, x) and (C0,C ′, x′) both satisfy the flow equations. Therefore, by Proposition 11,
val(C) = val(C0) = val(C ′). Again, since C0 is initial, it contains a leader, which
implies that both C and C ′ contain a leader. Since val(C) = val(C ′), Proposition 12
yields O(C) = O(C ′) which is a contradiction.

��

Proposition 14 Pthr satisfies LayeredTermination.

Proof Assume c > 0. The case where c ≤ 0 follows by a symmetric argument. Let L0
def=

{(1, x, 0) : c ≤ x ≤ vmax} and N1
def= {(0, 0, 1)}. We claim that the following ordered

partition satisfies layered termination:

T1
def= {t ∈ T : pre(t) �= �q, r� for all q ∈ L0, r ∈ N1},

T2
def= T \ T1.

We first show that every execution of Pthr[T1] is fair. For the sake of contradiction, assume

this is not the case. There exists a non silent executionC0
t1−→ C1

t2−→ · · · whereC0,C1, . . . ∈
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Pop(Q) and t1, t2, . . . ∈ T1. For every i ∈ N, let

leaders(Ci )
def= {q ∈ �Ci � : q is a leader},

nonleaders(Ci )
def= {q ∈ �Ci � : q is not a leader},

num-leaders(Ci )
def=

∑

q∈leaders(Ci )

Ci (q),

zi
def=

∑

q∈nonleaders(Ci )

Ci (q) · |val(q)|.

Since no transition increases the number of leaders, there exists some n1 ∈ N such that
num-leaders(Ci ) = num-leaders(Ci+1) for all i ≥ n1.Moreover, generalizing an observation
made in [3], we have that zi < zi+1 implies num-leaders(Ci ) �= num-leaders(Ci+1), which
entails zn1 ≥ zn1+1 ≥ . . .. Therefore, there exists n2 ∈ N such that zi = zn2 for every i ≥ n2.

Let Lerr
def= {(1, x, b) : −vmax ≤ x ≤ vmax, b �= (x < c)} be the set of leaders whose

opinion is inconsistent with their value. Since no transition of Pthr produces states from Lerr,
transitions involving a state from Lerr can only be taken in finitelymany steps.More formally,

there exists n3 ∈ N such that �pre(ti )�∩ Lerr = ∅ for every i > n3. Let n
def= max(n1, n2, n3).

Any non silent transition ti such that i > n must be of the form:

(1, x, 1), (0, 0, 0) �→ (1, x, 1), (0, 0, 1)

for some x < c, as otherwise one of the above observations would be violated. But such
transitions set the opinion of non leaders to 1, which can only occur for finitely many steps.
Therefore, there exists n′ ≥ n such that every transition enabled in Cn′ is silent. This is a
contradiction.

It is readily seen that any execution of Pthr[T2] is silent since each transition of T2 is of
the form:

(1, x, 0), (0, 0, 1) �→ (1, x, 0), (0, 0, 0)

for some c ≤ x ≤ vmax. Therefore, it remains to prove that Pthr[T2] is T1-dead. Let C ∈
Pop(Q) be a T1-dead configuration. For the sake of contradiction, suppose there exists w ∈
T+
2 and C ′ ∈ Pop(Q) such that C

w−→ C ′ and C ′ enables some non silent transition t ∈ T1.
Since C is T1-dead, transition t must be of the form

(1, y, 1), (0, 0, 0) �→ (1, y, 1), (0, 0, 1)

for some y < c. Moreover, (1, y, 1) already appeared in C . This means that C contains one
leader of opinion 0, and one leader of opinion 1. Therefore, C is not T1-dead, which is a
contradiction. ��

5.2 Remainder protocol

We give a protocol for the remainder predicate

k∑

i=1

ai xi ≡ c (mod m).
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The protocol is Prmd = (Q, T , X , I , O), where

Q
def= [0,m) ∪ {true, false}

X
def= {x1, x2, . . . , xk}

I (xi )
def= ai mod m for every i ∈ [k]

O(q)
def=

{
1 if q ∈ {c, true}
0 otherwise

and where T contains the following transitions for all n, n′ ∈ [0,m) and b ∈ {false, true}:
(n, n′) �→ (n + n′ mod m, n + n′ mod m = c) and

(n, b) �→ (n, n = c).

Intuitively, the protocol works as follows. Each agent initially holds a numerical value.
When two agents interact, one of them stores the sum of their values modulo m, and the
other agent becomes passive. Eventually, one numerical value remains, and passive agents
are converted to true or false depending on whether this value equals c.

Let val(C)
def=

(∑
n∈[0,m) C(n) · n

)
mod m for every C ∈ Pop(Q).

Proposition 15 Prmd satisfies StrongConsensus.

Proof For every C,C ′ ∈ Pop(Q), we claim that:

(a) if (C,C ′, x) is a solution to the flow equations for some x : T → N, then val(C) =
val(C ′).

(b) if C,C ′ ∈ Pop(Q) are terminal configuration that contain a numerical value, then both
C and C ′ are consensus configurations, and if val(C) = val(C ′), then O(C) = O(C ′).

The proof of these two claims follows from the definition of Prmd as in the case of the
threshold protocol.

Suppose for the sake of contradiction that Prmd does not satisfy StrongConsensus.
There are two cases to consider.

– There exist C,C ′ ∈ Pop(Q) such that C ��� C ′, C is initial, C ′ is terminal and C ′ is not
a consensus configuration. Since C0 is initial, it only contains numerical values. Since
numerical values form a U -trap for every U ⊆ T , C contains a numerical value. By (b),
C is a consensus configuration, which is a contradiction.

– There exist C0,C,C ′ ∈ Pop(Q) and x, x′ : T → N such that C0
x��� C , C0

x′
��� C ′,

C0 is initial, C and C ′ are terminal consensus configurations, and O(C) �= O(C ′).
Note that (C0,C, x) and (C0,C ′, x′) both satisfy the flow equations. Therefore, by (a),
val(C) = val(C0) = val(C ′). Again, since C0 is initial, it contains a numerical value,
which implies that both C and C ′ contain a numerical value. Since val(C) = val(C ′),
(b) yields O(C) = O(C ′) which is a contradiction.

��

Proposition 16 Prmd satisfies LayeredTermination.
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Proof We claim that the following ordered partition satisfies layered termination:

T1
def= {t ∈ T : pre(t) = �q, r� for some q ∈ [0,m), r ∈ ([0,m) ∪ {false})}

T2
def= {t ∈ T : pre(t) = �q, true� for some q ∈ [0,m)}

We first show that every execution ofPrmd[T1] is silent. For the sake of contradiction, assume

it is not the case. There exists a non silent execution C0
t1−→ C1

t2−→ · · · where C0,C1, . . . ∈
Pop(Q) and t1, t2, . . . ∈ T1. For every i ∈ N, let numerical(Ci )

def= ∑
n∈[0,m) Ci (n). It is

readily seen that numerical(C0) ≥ numerical(C1) ≥ · · · . Therefore, there exists 	 ∈ N such
that numerical(Ci ) = numerical(Ci−1) for every i > 	. This implies that, for every i > 	, if
ti is non silent, then it is of the form (n, false) �→ (n, true) for some n ∈ [0,m). But, these
non silent transitions can only occur for a finite amount of steps, which is a contradiction.

It is readily seen that every execution of Prmd[T2] is silent since non silent transitions of
T2 are all of the form (n, true) �→ (n, false) for some n ∈ [0,m). Therefore, it remains to
prove that Prmd[T2] is T1-dead. Let C ∈ Pop(Q) be a T1-dead configuration. For the sake
of contradiction, suppose there exists w ∈ T+

2 and C ′ ∈ Pop(Q) such that C
w−→ C ′ and C ′

enables some non silent transition t ∈ T1. We have C(true) > 0 and C(n) > 0 for some
n ∈ [0,m) such that O(n) = 0. Moreover, since C is T1-dead, numerical(C) = 1. Therefore
t must be of the form (n, false) �→ (n, false). We obtain a contradiction since t is non silent.

��

5.3 Negation and conjunction

Let P1 = (Q1, T1, X , I1, O1) and P2 = (Q2, T2, X , I2, O2) be WS3-protocols computing
predicates ϕ1 and ϕ2 respectively. We may assume that P1 and P2 are defined over identical
input alphabet X , for we can always extend the input domain of threshold/remainder pred-
icates by variables with coefficients of value zero. The predicate ¬ϕi can be computed by

replacing Oi by the new output function O ′
i such that O ′

i (q)
def= ¬Oi (q) for every q ∈ Qi .

To compute ϕ1 ∧ ϕ2, we build an asynchronous product where steps of P1 and P2 can be
executed independently.

For every transition t = (q, r) �→ (q ′, r ′), and every pair of states (p, s), let t � (p, s)
denote the transition lifted to (p, s):

((q, p), (r , s)) �→ ((q ′, p), (r ′, s))

Similarly let (p, s) � t denote the lifted transition

((p, q), (s, r)) �→ ((p, q ′), (s, r ′)).

Definition 10 The conjunction of P1 and P2 is defined as the population protocol P def=
(Q, S, I , X , O) such that Q

def= Q1 × Q2, S
def= S1 ∪ S2, I (X)

def= (I1(X), I2(X)) and
O(p, q)

def= O1(p) ∧ O2(q) where

S1
def= {t � (q, r) : t ∈ T1, (q, r) ∈ Q2 × Q2},

S2
def= {(q, r) � t : t ∈ T2, (q, r) ∈ Q1 × Q1}.

In the rest of this section, we show that the conjunction of twoWS3 protocols remains in
WS3. While the proof is relatively simple, it first requires us to introduce technical lemmas
that relate the product of two protocols with projections onto these protocols.
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Let i ∈ {1, 2}. The projection of q ∈ Q onto Qi is the stateπi (q)
def= qi where q = (q1, q2).

The projection of t ∈ Si on Ti is the transition πi (t)
def= (πi (p), πi (q), πi (p′), πi (q ′)) where

t = (p, q, p′, q ′). We lift projections to Pop(Q) and S → N as follows. For every C ∈
Pop(Q) and x : S → N, the projections πi (C) ∈ Pop(Qi ) and πi (x) : Ti → N are
respectively the configuration and mapping such that

πi (C)(q)
def=

∑

r∈Q
πi (r)=q

C(r) for every q ∈ Qi and

πi (x)(t)
def=

∑

s∈Si
πi (s)=t

x(s) for every t ∈ Ti .

Let IP ∈ N
Q×T be the matrix such that IP(q, t)

def= post(t)(q) − pre(t)(q) for every
q ∈ Q and t ∈ T . It is readily seen that (C,C ′, x) satisfies the flow equations if and only if
C ′ = C + IP · x. The same holds for the matrices IP1 and IP2 defined similarly for P1 and
P2. The following holds:

Proposition 17 For every i ∈ {1, 2}, C,C ′ ∈ Pop(Q) and x ∈ S → N we have:

(a) πi (C + C ′) = πi (C) + πi (C ′), and
(b) πi (IP · x) = IPi · πi (x).

Proof For every q ∈ Q, we have

πi (C + C ′)(q) =
∑

r∈Q
πi (r)=q

(C + C ′)(r) (by def. of πi )

=
∑

r∈Q
πi (r)=q

C(r) + C ′(r)

=
∑

r∈Q
πi (r)=q

C(r) +
∑

r∈Q
πi (r)=q

C ′(r)

= πi (C) + πi (C
′) (by def. of πi ).

This shows (a). Let us now prove (b). Let i ∈ {1, 2} and q ∈ Qi . By definition of S, we have
∑

r∈Q
πi (r)=q

IP(r , t) = 0 for every t ∈ S \ Si , (5)

∑

r∈Q
πi (r)=q

IP(r , t) = IPi (q, πi (t)) for every t ∈ Si . (6)

Informally, (5) states that although the effect IP(r , t) may be nonzero for a fixed state
r ∈ Q, the overall effect of t cancels out to zero around a state of Pi , since transition
t ∈ S1−i leaves the states of Pi untouched. For example, consider the specific case of a
transition

t = (q1, q1) ⊗ (
(q2, q2) �→ (q ′

2, q
′
2)

)
from S2 with q2 �= q ′

2.

Let r
def= (q1, q2) and r ′ def= (q1, q ′

2). We have IP(r , t) + IP(r ′, t) = −2 + 2 = 0.
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Similarly, (6) states that the overall effect of a transition t ∈ Si preserves the effect of its
counterpart πi (t) ∈ Ti around a state of Pi .

Therefore, by exploiting (5) and (6), we obtain:

πi (IP · x)(q) =
∑

r∈Q
πi (r)=q

(IP · x)(r) (by def. of πi )

=
∑

r∈Q
πi (r)=q

∑

s∈S
IP(r , s) · x(s)

=
∑

s∈S
x(s) ·

∑

r∈Q
πi (r)=q

IP(r , s)

=
∑

s∈Si
x(s) ·

∑

r∈Q
πi (r)=q

IP(r , s) (by (5))

=
∑

s∈Si
x(s) · IPi (q, πi (s)) (by (6))

=
∑

t∈Ti
IPi (q, t) ·

∑

s∈Si
πi (s)=t

x(s)

=
∑

t∈Ti
IPi (q, t) · πi (x)(t) (by def. of πi )

= (IPi · πi (x))(q).

��
Proposition 18 For every C,C ′ ∈ Pop(Q), x : S → N and i ∈ {1, 2}, if C x��� C ′, then
πi (C)

πi (x)���� πi (C ′).

Proof Flow equations:We have C ′ = C + IP · x j . Therefore, for every i ∈ {1, 2},
πi (C

′) = πi (C + IP · x)
= πi (C) + πi (IP · x) (by Proposition 17(a))

= πi (C) + IPi · πi (x) (by Proposition 17(b)).

Trap constraints: For the sake of contradiction, suppose there exists i ∈ {1, 2} such that a
U -trap constraint is violated by (πi (C), πi (C ′), πi (x)) for some P ⊆ Qi . As both cases are
symmetric, we may assume without loss of generality that i = 1. We have

•P ∩ �π1(x)� �= ∅, P• ∩ �π1(x)� ⊆ •P and C ′(P) = 0 (7)

Let R
def= P × Q2. By definition of projections, we have

π1(C
′)(P) = 0 ⇐⇒ C ′(R) = 0. (8)

where π1(C ′)(P) is the total number of agents the configuration π1(C ′) puts in P . We claim
that

•R ∩ �x� �= ∅, (9)

R• ∩ �x� ⊆ •R. (10)
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Observe that if these claims hold then we are done. Indeed, if (10) holds, then R is a �x�-trap,
and if moreover (9) holds, then, by (8), (πi (C), πi (C ′), πi (x)) violates the �x�-trap constraint
for R.

It remains to prove the claims. For (9), let t ∈ •P ∩ �π1(x)�. By assumption, such a t
must exist. Since t ∈ •P , we have that t : (p, p′) �→ (r , r ′) with r ∈ P or r ′ ∈ P . Moreover,
since t ∈ �π1(x)�, by definition of projections there must exist some t ′ ∈ �x� given by

(
(p, q), (p′, q ′)

) �→ (
(r , q), (r ′, q ′)

)

for some q, q ′ ∈ Q2. It remains to show that t ′ ∈ •R. For this observe that, since r ∈ P or
r ′ ∈ P , we have that (r , q) ∈ R or (r ′, q ′) ∈ R, and thus t ′ ∈ •R. This concludes the proof
of (9).

For (10), let t ∈ R• ∩�x�. There exist p ∈ P and q ∈ Q2 such that (p, q) ∈ •t . Moreover,
x(t) > 0. We must prove t ∈ •R. We consider two cases

– Assume t ∈ S2. By definition of S2, t is of the form
(
(p, q), (p′, q ′)

) �→ (
(p, r), (p′, r ′)

)

for some p′ ∈ Q1 and q ′, r , r ′ ∈ Q2. In particular, we have (p, r) ∈ t• which implies
t ∈ •(P × Q2) = •R.

– Assume t ∈ S1. Let s
def= π1(t). By definition of S2, t is of the form

(
(p, q), (p′, q ′)

) �→ (
(r , q), (r ′, q ′)

)

where pre(s) = �p, p′�, post(s) = �r , r ′� and q ′ ∈ Q2. This implies that s ∈ p• ⊆ P•.
Moreover, since t ∈ �x�, we have s ∈ �π1(x)�. Therefore, by (7), we have s ∈ •P . This
implies that either r ∈ P or r ′ ∈ P , which in turn implies that t ∈ •R.

U-Siphon constraints: Symmetric to U -trap constraints. ��
Proposition 19 For every i ∈ {1, 2}, C ∈ Pop(Q) and t ∈ Ti , t is enabled in πi (C) if and
only if there exists s ∈ Si such that πi (s) = t and s is enabled in C.

Proof We only prove the claim for i = 1, as the case i = 2 is symmetric. Let p, q ∈ Q1 be
such that pre(t) = �p1, q1�. By definition of π1, we have

π1(C)(p1)
def=

∑

p2∈Q2

C(p1, p2), and

π1(C)(q1)
def=

∑

q2∈Q2

C(q1, q2).

This implies that

π1(C) ≥ �p1, q1� ⇐⇒ ∃p2, q2 ∈ Q2 s.t. C ≥ �(p1, p2), (q1, q2)�. (11)

⇒) Assume t is enabled in π1(C). By (11), C ≥ �(p1, p2), (q1, q2)� for some p2, q2 ∈ Q2.
Let

s
def= t � (p2, q2)

We have s ∈ S1. Moreover, s is enabled at C .
⇐) Assume there exists s ∈ S1 such that π1(s) = t and s is enabled at C . By definition of
S1,

s = t � (p2, q2)
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for some p2, q2 ∈ Q2. Since s is enabled at C , we have C ≥ �(p1, p2), (q1, q2)�. By (11),
this implies π1(C) ≥ �p1, q1�, which in turn implies that t is enabled at π1(C). ��
Corollary 3 For every C ∈ Pop(Q), if C is terminal in P, then π1(C) and π2(C) are respec-
tively terminal in P1 and P2.

Proof LetC ∈ Pop(Q) be such thatC is terminal inP. For the sake of contradiction, suppose
there exists i ∈ {1, 2} such that πi (C) is not terminal in Pi . There exists t ∈ Ti such that t is
non silent and enabled in πi (C). By Proposition 19, there exists s ∈ Si such that πi (s) = t
and s is enabled at C . We have s = t � q for some q ∈ Q2 × Q2. This implies that s is non
silent, since t is non silent. We conclude that C is non terminal which is a contradiction. ��
Lemma 5 If P1 and P2 satisfy StrongConsensus, then P satisfies StrongConsensus.

Proof We prove the contrapositive: if P does not satisfy StrongConsensus, then at least
one of P1 and P2 does not satisfy StrongConsensus. Assume P does not satisfy Strong-
Consensus. There are two cases to consider.

(a) There exist C,C ′ ∈ Pop(Q) such that C ��� C ′, C is initial, C ′ is a terminal non con-
sensus configuration. Since C ′ is a non consensus configuration, there exist
(p, q), (p′, q ′) ∈ �C ′� such that O1(p) ∧ O1(q) = O(p, q) �= O(p′, q ′) = O2(p′) ∧
O2(q ′). Without loss of generality, we can assume that O1(p) �= O1(p′). By Corollary 3,
π1(C ′) is terminal in P1. Moreover, since p, p′ ∈ π1(C ′), π1(C ′) is a non consensus
configuration. Therefore, π1(C ′) is a terminal non consensus configuration of P1. More-

over, by Proposition 18 π1(C)
π1(x)����� π1(C ′) which implies that P1 does not satisfy

StrongConsensus.
(b) There exist C0,C,C ′ ∈ Pop(Q) and x, x′ : T → N such that C0

x��� C , C0
x′
��� C ′, C0

is initial, C and C ′ are terminal consensus configurations, and O(C) �= O(C ′). Since C
and C ′ have different opinions, there exist (p, q) ∈ �C� and (p′, q ′) ∈ �C ′� such that
O(p, q) �= O(p′, q ′). Without loss of generality, we can assume that O1(p) �= O1(p′).
By Corollary (3), π1(C) and π1(C ′) are terminal in P1. Moreover, since p ∈ π1(C)

and p′ ∈ π1(C ′), π1(C) and π1(C ′) are terminal configuration with different consensus.

Moreover, by Proposition 18, π1(C0)
π1(x)����� π1(C) and π1(C0)

π1(x′)����� π1(C ′) which
implies that P1 does not satisfy StrongConsensus.

��
Proposition 20 IfP1 andP2 satisfy LayeredTermination, thenP satisfies LayeredTer-
mination.

Proof Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be ordered partitions respectively for Lay-
eredTermination in P1 and P2. We may assume without loss of generality that m ≥ n.

For every n < i ≤ m, we define Yi
def= ∅.

For every i ∈ [m], we let
Zi

def={t � r : t ∈ Xi , r ∈ Q2 × Q2} ∪
{r � t : t ∈ Yi , r ∈ Q1 × Q1}.

Weclaim that Z1, Z2, . . . , Zm is an ordered partition forLayeredTermination inP. Let i ∈
[m]. Let us show that every execution ofP[Zi ] is silent. Suppose for the sake of contradiction
that there exist C0,C1, . . . ∈ Pop(Q) and t0, t1, . . . ∈ Zi such that C0

t0−→ C1
t1−→ · · · is non
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silent. There exists j ∈ {1, 2} such that infinitely many non silent transitions ti belong to S j .
Let i0 < i1 < · · · be all indices such that tik ∈ S j . We have

π j (Ci0)
π j (ti0 )−−−−→ π j (Ci1)

π j (ti1 )−−−−→ · · ·
which is an infinite non silent execution of P1[Xi ] or P2[Yi ] depending on j . This is a
contradiction.

Let W
def= (Z1 ∪ · · · ∪ Zi−1). Let us now prove that P[Zi ] is W -dead. For the sake of

contradiction, assume it is not. There exist C,C ′ ∈ Pop(Q), w ∈ Z+
i and t ∈ W such that

C is W -dead, C
w−→ C ′ and t is enabled at C ′. We have t ∈ S j for some j ∈ {1, 2}. We may

assume without loss of generality that j = 1. SinceC isW -dead, π j (C) is (X1∪· · ·∪Xi−1)-

dead. But then, π1(C)
∗−→ π1(C ′) and t ∈ X1 ∪ · · · ∪ Xi−1 is enabled at C ′ which is a

contradiction. ��

Corollary 4 If P1 and P2 belong to WS3, then P belongs to WS3 and is correct.

Proof By Lemma 5 and Proposition 20, P belongs to WS3. Let w ∈ Pop(X), C
def= I (w),

C1
def= I1(w) and C2

def= I2(w). Note that all three protocols are well-specified since they
belong to WS3. Therefore, there exist terminal consensus configurations C ′ ∈ Pop(Q),

C ′
1 ∈ Pop(Q1) and C ′

2 ∈ Pop(Q2) such that C
∗−→ C ′, C1

∗−→ C ′
1 and C2

∗−→ C ′
2.

We must prove that O(C ′) = O1(C ′
1) ∧ O2(C ′

2). Let j ∈ {1, 2}. Since C ∗−→ C ′, we have
C ��� C ′. By Proposition 18, π j (C) ��� π j (C ′). By definition of I , we have C j = π j (C).
Therefore, C j ��� π j (C ′). Moreover, by Corollary 3, π j (C ′) is terminal in P j . Since P j

belongs to WS3, π j (C ′) is a consensus configuration such that Oj (π j (C ′)) = Oj (C ′
j ).

Altogether, we obtain

O(C ′) = O1(π1(C
′)) ∧ O2(π2(C

′)) (by def. of O)

= O1(C
′
1) ∧ O2(C

′
2).

��

6 Experimental results

We have developed a tool called Peregrine5 that can check whether a given protocol
belongs to WS3 and, if so, whether it correctly computes a given predicate specified as a
TR-constraint. Peregrine is implemented on top of the SMT solver Z3 [28].

Peregrine reads in a population protocolP = (Q, T , X , I , O) and constructs two sets
of constraints. The first set is satisfiable if and only if LayeredTermination holds, and the
second is unsatisfiable if and only if Strong-ϕ-Consensus holds.

For LayeredTermination, our tool Peregrine iteratively constructs constraints
checking the existence of an ordered partition of size 1,2, . . . , |T | and decides if they are
satisfiable. To check that the execution of a layer is silent, the constraints mentioned in the
proof of Proposition 4 are transformed using Farkas’ lemma (see e.g. [32]) into a version that
is satisfiable if and only if all the executions of the layer are silent. Also, the constraints for
condition (b) of Definition 2 are added. A detailed description is given in Section 6.1.

5 Peregrine and benchmarks are available from https://gitlab.lrz.de/i7/peregrine/.
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For StrongConsensus, Peregrine initially constructs the constraints for the flow
equation for three configurationsC0,C1,C2 and vectors x1 and x2,with additional constraints
to guarantee that C0 is initial and C1 and C2 are terminal.

For Strong-ϕ-Consensus, Peregrine constructs the constraints for the flow equation
for two configurations C0,C1 and a vector x, with additional constraints to guarantee that
C0 is the initial configuration for some input X , C1 is terminal, and ϕ(X) �= O(C1). If the
constraints are unsatisfiable, then the protocol satisfies Strong-ϕ-Consensus. Otherwise,
Peregrine searches for aU -trap orU -siphon to show thatC0

x��� C1 does not hold. If, say,
a U -siphon S is found, then Peregrine adds the constraint C0(S) > 0 for all sequences
requiring an agent in S to the set of initial constraints. This process is repeated until either
the constraints are unsatisfiable and Strong-ϕ-Consensus is shown, or all possibleU -traps
and U -siphons are added, in which case Strong-ϕ-Consensus does not hold. We use this
refinement-based approach instead of the coNP approach described in Proposition 7, as that
could require a quadratic number of variables and constraints, and we generally expect to
need a small number of refinement steps. The constraints for StrongConsensus are similar.
A detailed description of the constraints for Strong-ϕ-Consensus is given in Sect. 6.2.

We evaluated Peregrine on a set of benchmarks described below. The verification
times are presented in Table 1. The benchmarks are:

– The threshold protocols of [3] described in Section 5.
This is an infinite family of protocols for the predicates

∑k
i=1 ai xi ≤ c, where

a1, . . . , ak, c ∈ Z. The states and transitions of the protocol for a given predicate depend

only on vmax
def= max(|a1|, |a2|, . . . , |ak |, |c| + 1), i.e., protocols for predicates with the

same value of vmax differ only on their input functions. Table 1 reports on the verification
time for the predicates

∑vmax
i=−vmax

i · xi ≤ 1. We fix c = 1 because the execution time
is almost independent of c. The choice of the ai is the one with the longest verification
time.

– The remainder protocols of [3] described in Section 5.
Again, this is an infinite family of protocols for the predicates

∑k
i=1 ai xi ≡ c (mod m).

The states and transitions depend only on m, i.e., protocols with the same value of m
differ only on the input function. For the same reason as above, Table 1 only reports on
the verification time for the predicates

∑m
i=1 i · xi ≡ 1 (mod m).

– The average-and-conquer majority protocols of [1].
This is yet another infinite family of protocols, but in this case they all compute the
majority predicate x ≥ y, and differ only in their efficiency. The states and transitions
depend on two parameters m and d . Since for d > 1 the protocols do not satisfy Lay-

eredTermination, Peregrine cannot verify them, and so Table 1 only reports on the
case d = 1.

– Four variants of the flock of birds6 protocols, taken from [5,8,10,12].
These are four infinite families of protocols, all of them computing the predicates x ≤ c.
In the first three families the protocol for x ≤ c has c or c + 1 states, whereas in the
family from [8] it has O(log c) states.

– The broadcast protocol of [12], themajority protocol of [4], and the fast majority protocol
of [9].

All experiments were performed on the same machine equipped with an Intel Core i7-
4810MQ CPU and 16GB of RAM. The time limit was set to 1 hour. The results are shown in
Table 1. In all cases where we terminated within the time limit, we were able to show mem-

6 The variant from [12] is referred to as threshold-n by its authors.
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Table 1 Results of the experimental evaluationwhere |Q| denotes the number of states, |T | denotes the number
of non silent transitions, and the time to prove membership forWS3 and correctness is given in seconds. time
denotes reaching the time limit of one hour

Threshold [3] Remainder [3] Average-and-Conquer [1]

vmax |Q| |T | Time m |Q| |T | Time m |Q| |T | Time

2 20 146 2.8 20 22 230 6.3 15 18 122 1.7

4 36 478 29.4 25 27 350 13.2 25 28 327 10.0

6 52 1002 190.2 30 32 495 27.7 35 38 632 45.6

8 68 1718 831.0 35 37 665 59.5 45 48 1037 192.2

9 76 2148 1945.1 40 42 860 120.3 55 58 1542 579.2

10 84 2626 2922.0 45 47 1080 308.6 65 68 2147 1615.1

11 92 3152 time 50 52 1325 time 75 78 2852 time

Flock of birds [5] Flock of birds [10] Flock of birds [12]

c |Q| |T | Time c |Q| |T | Time c |Q| |T | Time

50 50 147 21.0 20 21 210 2.9 100 101 199 63.9

100 100 297 81.9 30 31 465 10.2 200 201 399 256.2

200 200 597 383.1 40 41 820 39.4 300 301 599 678.3

300 300 897 1392.3 50 51 1275 136.8 400 401 799 1432.5

400 400 1197 2688.0 60 61 1830 435.2 500 501 999 2145.9

450 450 1347 3215.3 65 66 2145 670.6 550 551 1099 2774.8

500 500 1497 time 70 71 2485 time 600 601 1199 time

Flock of birds [8] Non-parameterized protocols

c |Q| |T | Time Protocol |Q| |T | Time

1010 45 274 11.3 Broadcast [12] 2 1 0.2

1015 70 625 36.9 Majority [4] 4 4 0.2

1020 93 1036 104.2 Fast Majority [9] 6 10 0.3

1025 103 885 102.9

1030 137 2198 1071.5

1035 157 2821 2763.7

1040 186 4169 time

bership forWS3 and correctness. Generally, showing Strong-ϕ-Consensus took much less
time than showing LayeredTermination, except for the flock of birds protocols, where we
needed linearly many U -traps. In comparison to only showing StrongConsensus, addi-
tionally showing Strong-ϕ-Consensus by additional constraints is usually faster, except
for the remainder protocol.

In the forthcoming Sects. 6.1 and 6.2 , we describe in detail the constraints tested with the
SMT solver in our implementation.
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6.1 Constraints for LAYEREDTERMINATION

Recall that a population protocol P = (Q, T , X , I , O) satisfies LayeredTermination if
there is an ordered partition (T1, T2, . . . , Tn) of T such that for every i ∈ [n]:
(a) every (fair or unfair) execution of P[Ti ] is silent; and
(b) every (fair or unfair) execution of P[Ti ] starting at a terminal configuration of

P[T1 ∪ · · · ∪ Ti−1] contains only terminal configurations of P[T1 ∪ · · · ∪ Ti−1].
Given 1 ≤ n ≤ |T |, we first derive a constraint whose solutions are the partitions

(T1, T2, . . . , Tn) of T that satisfy (b) for every i ∈ [n]. Let NS be the set of non-silent
transitions of P, U0 = ∅ and Ui = T1 ∪ · · · ∪ Ti−1 for every i ∈ [n]. Further, for every
pair of transitions s, u ∈ T let V (s, u) be the set of non-silent transitions u′ ∈ T such that
pre(u′) ≤ pre(s)+(pre(u)�post(s))}. Observe that all the sets V (s, u) can be precomputed.
Proposition 5 shows that (b) holds for a given i ∈ [n] iff:

For every s ∈ Ti and non-silent u ∈ Ui−1, there exists u′ ∈ V (s, u) ∩Ui−1. (12)

For every transition t let b(t) be an integer variable with range {1, 2, . . . , n} and the intended
meaning that b(t) = i iff t ∈ Ti . In other words, the valuations of the array b are in bijection
with the partitions (T1, T2, . . . , Tn) of T (we allow some of the Ti to be empty).We claim that
the assignments satisfying the following constraint correspond to the partitions that satisfy
condition (b) for every i ∈ [n]:

∧

t∈T
1 ≤ b(t) ≤ n ∧

∧

s∈T
u∈NS

⎛

⎝b(s) > b(u) →
∨

u′∈V (s,u)

b(s) > b(u′)

⎞

⎠ . (13)

Indeed, the first conjunct states that every transition is assigned to a set, and the second that
(12) holds for every i ∈ [n].

Let us now derive a constraint whose solutions are the partitions (T1, T2, . . . , Tn) of T
that satisfy condition (a) for every i ∈ [n]. Fix i ∈ [n] and let NSi = NS ∩ Ti be the set of
non-silent transitions of Ti . Proposition 4 shows that (a) holds for a given i ∈ [n] iff:

There is no x : NSi → Q≥0 s.t.:
∑

t∈NSi
x(t) > 0 and for all q ∈ Q :

∑

t∈NSi
x(t) · (post(t)(q) − pre(t)(q)) ≥ 0. (14)

Applying Farkas’ lemma to (14), we obtain that (a) holds for a given i ∈ [n] iff:
There is y : Q → Q≥0 s.t for all t ∈ NSi :

∑

q∈Q
y(q) · (post(t)(q) − pre(t)(q)) < 0. (15)

It follows that the assignments to b for which the following constraint has a solution for
b, y1, . . . , yn correspond to the partitions that satisfy (a) for every i ∈ [n]:

∧

i∈[1,n]
t∈NS

⎛

⎝(b(t) = i) →
⎡

⎣
∧

q∈Q
yi (q) ≥ 0 ∧

∑

q∈Q
yi (q) · (post(t)(q) − pre(t)(q)) < 0

⎤

⎦

⎞

⎠

(16)

This constraint has an intuitive explanation. Let b, y1, . . . , yn be a solution. Each layer

i ∈ [1, n] is given by Ti
def= {t ∈ T | b(t) = i}. Further, each vector yi assigns a value
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yi (C)
def= ∑

q∈Q yi (q) · C(q) to each configuration C . For any configuration C , we have

yi (C) ≥ 0, and for every step C
t−→ C ′ where t ∈ Ti we have yi (C) = yi (C ′) if t is

silent, and yi (C) > yi (C ′) if t is non-silent. So the value never decreases when transitions
of Ti are executed, and strictly decreases when non-silent transitions occur. So yi proves that
every execution of P[Ti ] is silent, because it can only contain finitely many occurrences of
non-silent transitions.

6.2 Constraints for STRONG-'-CONSENSUS

As explained in the previous section, for Strong-ϕ-ConsensusPeregrine constructs the
constraints for the flow equation for two configurationsC0,C1 and a vector x, with additional
constraints to guarantee that C0 is the initial configuration for some input X , C1 is terminal,
and ϕ(X) �= O(C1).

For every state q ∈ Q let c(q) be a variable over N. Observe that the assignments to the
array c are in bijection with the set of configurations. The constraints for initial and terminal
configurations are

Initial(c) def=
∑

q∈I (X)

c(q) ≥ 2 ∧
∑

q∈Q\I (X)

c(q) = 0

Terminal(c) def=
∧

t∈U

∨

q∈•t
c(q) < pre(t)(q)

Letting Qb be the set of states q with O(q) = b, the constraint for ϕ(X) �= O(C1) is:

IncorrectConsensusϕ(c, c′) def=
(

ϕ(c ◦ I ) ∧
∑

q∈Q0

c(q) > 0

)

∨
(

¬ϕ(c ◦ I ) ∧
∑

q∈Q1

c(q) > 0

)

Finally, we introduce constraints related to the definition of potential reachability. For each
transition t ∈ T , let x(t) be a variable over N. We introduce a constraint expressing that the
vectors c, c′, x are a solution of the flow equation:

FlowEquation(c, c′, x) def=
∧

q∈Q
c′(q) = c(q) +

∑

t∈T
x(t) · (post(t)(q) − pre(t)(q))

and for each set R ⊆ Q of states, we introduce constraints expressing conditions (b) and (c)
of potential reachability (Definition 4):

UTrapR(c, c′, x) def=
⎛

⎝
∑

t∈•R
x(t) > 0 ∧

∑

t∈R•\•R
x(t) = 0

⎞

⎠ →
∑

q∈R

c′(q) > 0

USiphonS(c, c
′, x) def=

⎛

⎝
∑

t∈S•
x(t) > 0 ∧

∑

t∈•S\S•
x(t) = 0

⎞

⎠ →
∑

q∈S
c(q) > 0

The constraints for Strong-ϕ-Consensus use the variables c, c′ : Q → N and x : T →
N. For given setsR of U -traps and S of U -siphons (initially empty, and increased gradually
throughout the refinement procedure described in the previous section, the constraints are:

FlowEquation(c, c′, x) ∧ Initial(c) ∧ Terminal(c′) ∧ IncorrectConsensusϕ(c, c′)

∧
∧

R∈R
UTrapR(c, c′, x) ∧

∧

S∈S
USiphonS(c, c

′, x)
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If these constraints are unsatisfiable, then Strong-ϕ-Consensus holds. Otherwise, we com-
pute a solution c,c′,x. We try to find an additional U -trap or U -siphon to add to R or S
showing that c

x��� c′ does not hold. The following constraints are used to find the new U -
trap or U -siphon. They use the variables r : Q → {0, 1}, encoding the U -trap or U -siphon
�r�.

FindUTrap(r) def=
∑

t∈�x�

∑

q∈t•
r(q) > 0 ∧

∑

q∈�c’�

r(q) = 0

∧
∧

t∈�x�

⎛

⎝
∑

q∈•t
r(q) > 0 →

∑

q∈t•
r(q) > 0

⎞

⎠

FindUSiphon(r) def=
∑

t∈�x�

∑

q∈•t
r(q) > 0 ∧

∑

q∈�c�

r(q) = 0

∧
∧

t∈�x�

⎛

⎝
∑

q∈t•
r(q) > 0 →

∑

q∈•t
r(q) > 0

⎞

⎠

7 Conclusion and further work

We have presented WS3, the first class of well-specified population protocols with a mem-
bership and correctness problem of reasonable complexity (i.e. in DP) and with the full
expressiveness of well-specified protocols. Previous work had shown that the membership
problem for the general class of well-specified protocols is decidable, but has non-elementary
complexity.

We have shown thatWS3 is a natural class that contains many standard protocols from the
literature, like flock-of-birds, majority, threshold and remainder protocols. We implemented
the membership and correctness procedure for WS3 on top of the SMT solver Z3, yielding
the first software able to automatically prove correctness of population protocols for all (of
the infinitely many) inputs. Previous work could only prove partial correctness of protocols
with at most 9 states and 28 transitions, by trying exhaustively a finite number of inputs
[10,12,30,33]. Our algorithm deals with all inputs and can handle larger protocols with up to
70 states and over 2500 transitions.

Future work will concentrate on three problems: improving the performance of our tool;
extending our approach to non silent protocols; and the diagnosis problem: when a protocol
does not belong to WS3, delivering an explanation, e.g. a non-terminating fair execution.
We think that our constraint-based approach provides an excellent basis for attacking these
questions.
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8 Appendix

8.1 Missing Proof of Proposition 1

For the proof of Proposition 1 we need to introduce Petri nets. Intuitively, Petri nets are
similar to population protocols, but their transitions can also create and destroy agents.

A Petri net N = (P, T , F) consists of a finite set P of places, a finite set T of transitions,
and a flow function F : (P × T ) ∪ (T × P) → N. Given a transition t ∈ T , the multiset
pre(t) of input places of t is defined by pre(t)(p) = F(p, t), and the multiset post(t) of
output places by post(t)(p) = F(t, p). A marking M of a net N is a multiset of places.
Given a place p, we say that M puts M(p) tokens in p. A transition t ∈ T is enabled
at a marking M if pre(t) ≤ M . A transition t enabled at M can fire, yielding the marking

M ′ = M�pre(t)+post(t). Wewrite this fact asM
t−→ M ′. We extend enabledness and firing

to sequences of transitions as follows. Let σ = t1 . . . tk be a finite sequence of transitions
t j ∈ T .WewriteM

σ−→ M ′ and call it a firing sequence if there exists a sequenceM0, . . . , Mk

of markings such that M = M0
t1−→ M1 · · · tk−→ Mk = M ′. In that case, we say that M ′ is

reachable from M and denote by Reach(N , M) the set of markings reachable from M .

Proposition 1 The reachability problem for Petri nets is reducible in polynomial time to
the membership problem for WS2. In particular, membership for WS2 has non-elementary
complexity.

Proof The proof is very similar to the one of [21, Theorem 10]. However, since the proof
requires small modifications at different places, we give it in full for completeness. The proof
constructs a sequence of reductions from the Petri net reachability problem. Each step in the
sequence transforms a problem on Petri nets into an equivalent problem closer to themodel of
population protocols. The first step uses a well-known result of Hack [25]. The reachability
problem for Petri nets can be reduced in polynomial time to the single-place-zero-reachability
problem:

Given a Petri net N0, a marking M0, and a place p̂: decide whether some marking
M ∈ Reach(N0, M0) satisfies M( p̂) = 0.

We introduce a normal form for Petri nets. A Petri net N = (P, T , F) is said to be in
normal form if F(x, y) ∈ {0, 1} for every x, y ∈ (P × T ) ∪ (T × P), and every transition
t satisfies 1 ≤ |pre(t)| ≤ 2 and 1 ≤ |post(t)| ≤ 2. For every Petri net N = (P, T , F) and
markings M1, M2, one can construct a normal form Petri net N ′ = (P ′, T ′, F ′)with P ⊆ P ′
such that M2 is reachable from M1 in N if and only if M ′

2 is reachable from M ′
1 in N ′, and

M ′
i = Mi + �, where 	 is a special lock place.
Intuitively, each transition t of N withmore than two input and/or output places is simulated

in N ′ by a widget. The widget starts and finishes its execution by acquiring the lock and
releasing it, respectively. This guarantees no two widgets are executing concurrently. When
simulating transition t , its widget first consumes, one by one, the tokens consumed by t
(as given by pre(t)), and then produces, one by one, the tokens produced by t (as given by
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Fig. 1 APetri net transition (left) and its associated widget (right). Circles, squares and arcs depict respectively
places, transitions and the flow function

post(t)). Figure 1 shows a transition and its widget. Observe that all transitions of the widget
are in normal form.

Let N1 be the result of normalizing N0. Let Paux be the set of places of N1 that are
not places of N0, and are different from the lock place 	. The single-place-zero-reachability
problem reduces to

(P1) Does some marking M ∈ Reach(N1, M0 + ‘) satisfy M( p̂) = 0 and M(Paux ) = 0?
(Observe that M(Paux ) = 0 guarantees that no widget is in the middle of its execution.)

Now we add to N1 a new place p0 and a new widget simulating a transition t0 satisfying
pre(t0) = p0 and post(t0) = M0 + ‘. Let the resulting net be N2. Then (P1) reduces to:

(P2) Does some marking M ∈ Reach(N2,p0) satisfy M( p̂) = M(p0) = M(Paux ) = 0?

For our next step, we “reverse” N2: define N3 as the result of reversing all arcs of N2,
i.e., P3 = P2, T3 = T2 but F3(x, y) = F2(y, x) for every two nodes x, y. Clearly, N3 is in
normal form when N2 is. The problem (P2) reduces to:

(P3) Is p0 ∈ Reach(N3, M) for some marking M of N3 satisfying M( p̂) = M(p0) =
M(Paux ) = 0?

In the last step we reduce (P3) to the membership problem forWS2.
Let N3 = (P3, T3, F3). We construct a population protocol P = (Q, T , X , I , O), defined as
follows:

– Q = P3 ∪ {Fresh,Used,Collect}. That is, P contains a state for each place of N3, plus
three auxiliary places.

– X = Q \ ({ p̂, p0} ∪ Paux ), and I is the identity mapping.
– O(p0) = 1 and O(q) = 0 for every q �= p0.
– T = T ′

3 ∪ TP ∪ Ts .

These sets are formally described below. Intuitively, the transitions of T ′
3 simulate the Petri

net transitions of T3, the transitions of TP guarantee that a terminal consensus is reachable
from every configuration that does not represent p0, and the Ts are additional silent actions
to make the protocol well-formed.

The transitions of T ′
3 simulate the behaviour of N3. For this, T ′

3 contains a transition t ′
for every net transition t ∈ T3. If t ∈ T3 has two input places p1, p2 and two output places
p′
1, p

′
2, then t ′ = (p1, p2) −→ (p′

1, p
′
2), The other cases are: if t has one input place p1 and
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two output places p′
1, p

′
2, then t

′ = (p1,Fresh) −→ (p′
1, p

′
2); if t has two input places p1, p2

and one output place p′
1, then t ′ = (p1, p2) −→ (p′

1,Used); if t has one input place p1 and
one output place p′

1, then t
′ = (p1,Fresh) −→ (p′

1,Used).
The transitions of TP test the presence of tokens anywhere, apart from one single token in

p0. For every pair (q, q ′) ∈ ((P3 \ {p0}) × Q) ∪ {(p0, p0)}, the set TP contains a transition
(q, q ′) �→ (Collect,Collect). Further, for every place q ∈ Q, the set TP contains a transition
(q,Collect) �→ (Collect,Collect). Intuitively, these transitions guarantee that as long as the
current marking of N3 is different from p0, the protocol P can reach a terminal configuration
with all agents in state Collect.

The set Ts contains a silent transition (q, q ′) �→ (q, q ′) for every pair (q, q ′) of states.
Assume that p0 ∈ Reach(N3, M) for some marking M such that M( p̂) = M(p0) =

M(Paux ) = 0. Let σ be a firing sequence such that M
σ−→ p0. Observe that σ is nonempty,

and must end with a firing of transition t0. Let K be the number of times that transitions
with only one input place occur in σ . We claim that the initial configuration C given by
C(Fresh) = K , and C(p) = M(p) for every p ∈ P3 has a fair execution that does not reach
a consensus. Indeed, the finite execution ofP that simulates σ by executing the corresponding
transitions of T ′

3 (and which, abusing language, we also denote σ ), reaches a configuration
C ′ with C ′(p0) = 1, C ′(Fresh) = 0, C ′(Used) > 0 (because every transition that moves
an agent to p0 also moves an agent to Used), and C ′(p) = 0 for any other place p. Since
O(p0) = 1 and O(Used) = 0, the configuration C ′ is not a consensus configuration. Since
no transition of T ′

3 ∪TP is enabled at C ′, all transitions enabled at C ′ are silent, and therefore
from C ′ it is not possible to reach a consensus.

Assume now that p0 /∈ Reach(N3, M) for any marking M such that M( p̂) = M(p0) =
M(Paux ) = 0. Then every configuration reachable from any initial configuration enables
some transition of TP . By fairness, every fair execution from any initial configuration contains
at least one transition of TP , and so some configuration reached along the execution populates
state Collect. But then, again by fairness, the execution gets eventually trapped in a terminal
configuration C of the form C(Collect) > 0 and C(q) = 0 for every q /∈ Collect. So every
fair execution is silent and stabilizes to 0, and therefore the protocol belongs toWS2. ��

8.2 Proof that LAYEREDTERMINATION isNP-hard

Proposition 21 LayeredTermination is NP-hard.

Proof Let X be a finite set of variables and let C be a set of 3-clauses defined over X , that is,
the elements of C are clauses of the form (l1 ∨ l2 ∨ l3) where li ∈ X ∪ {¬x | x ∈ X}. The
following problem (3-SAT) is known to be NP-complete: Given C, is

∧
K∈C K satisfiable?

We now show NP-hardness of LayeredTermination via a polynomial reduction from
3-SAT. To this end, we construct a protocol where agents can store either one of the following:

1. Variables x ∈ X and their boolean assignments x := b for b ∈ {0, 1},
2. Clauses K ∈ C, along with variable assignments relevant to the satisfiability of the clause.

The assignments in the second case are collected from the other agents. If the collected
assignment does not satisfy K , then assignments will eventually be reset, and agents may
guess new assignments. If no satisfying assignment exists, then resets will occur infinitely
often in some fair runs, which entails that LayeredTermination is not satisfied. Conversely,
we will construct the protocol in a way that a decomposition into two layers satisfying Lay-
eredTermination exists, whenever the 3-SAT instance is satisfied.
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For a given literal l, let X(l) denote the variable contained in l. Case 1 above can be
represented by states of the form x (no assignment has been made) and (x, b) (assignment
x := b).

For every K = (l1 ∨ l2 ∨ l3) with X(li ) = xi for i ∈ {1, 2, 3}, we may represent
Case 2 from above by states K (no assignment collected) and (K , (b1, b2, b3)) (assignment
(x1, x2, x3) := (b1, b2, b3)). Then we wish to add the transition

(x1, b1), (x2, b2), (x3, b3), K �→ (x1, b1), (x2, b2), (x3, b3), (K , (b1, b2, b3)),

if the assignment (x1, x2, x3) := (b1, b2, b3) satisfies K , and otherwise

(x1, b1), (x2, b2), (x3, b3), K �→ x1, x2, x3, K .

However, this would require a 4-way interaction, instead of the usual pairwise ones, and
so we have to emulate this behavior by a sequence of pairwise interactions that set/reset
assignments in succession. To indicate the direction of the sequential movement (collect or
reset), we replace K by K→ and K←, where K→ denotes the phase of collecting assignments,
and K← denotes that collected assignments should be successively reset.

For a given set of clauses C, we thus define a protocol with states

Q
def= C ∪ X ∪ (X × {0, 1}) ∪

⋃

i∈{1,2,3}
{K←, K→ | K ∈ C} × {0, 1}i

and transitions

T = Tassign ∪ Treset ∪ Tclause.

Wewill now define the transitions. To establish LayeredTermination, neither the input
nor the output is required. We thus omit the specification of the input and output of the
protocol; for the purpose of this proof, they can be given arbitrarily.

The transitions from Tassign assign a boolean value to every x ∈ X . The set Tassign
is constructed as follows. For every x ∈ X , b ∈ {0, 1} and q ∈ Q, we add the following
transition to Tassign:

(x, q) �→ ((x, b), q)

The transitions from Tclause collect the assignments that are relevant to each clause, and
trigger a reset when the assignment is not satisfied. The set Tclause is constructed as follows.
For every clause (l1 ∨ l2 ∨ l3) ∈ C with x = (x1, x2, x3) = (X(l1), X(l2), X(l3)), and every
(b1, b2, b3) = b ∈ {0, 1}3, we add the following transitions:

(K , (x1, b1)) �→ ((K→, b1), (x1, b1))

((K→, b1), (x2, b2)) �→ ((K→, (b1, b2)), (x2, b2))

((K→, (b1, b2)), (x3, b3)) �→
{

((K→,b), (x3, b3)) if assignment x := b satisfies K ,

((K←,b), (x3, b3)) otherwise.

Finally, the transitions from Treset reset assignments that do not satisfy a given clause.
For every (l1 ∨ l2 ∨ l3) = K ∈ C where xi = X(li ), and every (b1, b2, b3) = b ∈ {0, 1}3,
we add the following transitions to Treset:

((K←,b), (x3, b3)) �→ ((K←, (b1, b2)), x3)

((K←, (b1, b2)), (x2, b2)) �→ ((K←, b1), x2)

((K←, b1), (x1, b1)) �→ (K , x1)
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Moreover, for every ◦ ∈ {←,→}, 1 ≤ i ≤ j ≤ 3, b ∈ {0, 1}, b ∈ {0, 1} j , and
K = (l1 ∨ l2 ∨ l3) ∈ C, x = X(li ), such that b �= bi , we add this transition to Treset:

((K◦,b), (x, b)) �→ (K , x).

Assume there exists a satisfying assignment σ : X −→ {0, 1} for ∧
K∈C K . Then it is easy

to verify that the following partition T = T1 ∪ T2 proves LayeredTermination:

T1
def= {x, q −→ (x, σ (x)), q | x ∈ X , q ∈ Q} ∪ Treset ∪ Tclause

T2
def= Tassign \ T1

We have to show that every execution ofP[T1] andP[T2] is silent, and that transitions from
T2 cannot reenable T1. Clearly, transitions from T2 cannot reenable T1, and every execution of
P[T2] is clearly silent. It remains to show that every execution ofP[T1] is silent. By inspection
of T , we have that every non-silent execution must contain infinitely many transitions from
both Treset and Tassign. But T1 only contains those transitions from Tassign that agree
with σ . Thus, every time an assignment is reset and a variable is reassigned, the number of
agents disagreeing with σ is reduced. Eventually the transitions from Tcollect only pick
up assignments agreeing with σ . Since σ is a satisfying assignment, all transitions from
Treset are eventually disabled forever. However, recall that the number of occurrences of
transitions from Treset is infinite in non-silent executions, and so we conclude that all
executions of P[T1] are silent. This shows that LayeredTermination is satisfied whenever
some satisfying assignment σ exists.

Conversely, if there is no satisfying assignment, then LayeredTermination is not sat-
isfied: In this case, it is easy to verify that every fair execution starting in a configuration
C , such that �C� = X ∪ C and C(q) = 1 for every q ∈ �C�, must be non-silent, hence
LayeredTermination must be violated. ��
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