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Abstract

In today’s engineering applications many controllers are still realized as linear multi-
variable control laws. The parameters of the linear control law – the controller gains - are
often designed based on linear models of the system using classical methods from linear
system theory. High fidelity models are often not available or are subject to considerable
model uncertainties, due to cost and time constraints. These controllers typically suffer
from performance deficits or do not satisfy their initial requirements when applied to
a real-world system environment during trails. The reasons are considerable deviations
between the real plant dynamics and the models applied during controller design and
assessment.
With respect to these uncertainties, different robust control design approaches exist, which
synthesize controllers that exhibit high robustness and satisfactory performance despite
expected uncertainties. With this approach, controller parameters are chosen to meet
the design objectives for all a priori assumed uncertainties. This is often time intense
and requires a trade-off between safety (i.e. robustness) and other control objectives like
performance, especially when the model parameters are very uncertain. Furthermore, the
design is not perfectly laid-out for the actual real plant dynamics.
To improve the performance of a linear controller on the true system, this thesis presents
a novel methodology towards a clear, systematic, data-driven tuning process of controller
parameters, based on real measurement data from tests under closed-loop conditions.
The advantage of our approach is its non-parametric nature, i.e. it does not rely on a
parametrized plant model. This allows to take into account the true order of the system
in contrast to parametrized plant models, which approximate the true system typically
with a low order simulation model. Consequently, these models are lacking information
about higher order dynamics, for example aeroelastic modes, actuator or sensor dynamics,
that might be present in the experiment data. Using non-parametric representations, this
information can be retained.
The proposed optimization problem imposes the relevant design criteria by minimizing the
deviation between the desired closed-loop frequency response and the anticipated tuned
closed-loop behavior for a new set of controller parameters in the frequency domain. The
deviation is quantified by a metric, considering a weighted squared error in magnitude and
phase of the respective frequency responses. Furthermore, we propose a regularization by
adding a penalization term, constraining the tuned gains to reasonable bounds around
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the initial gains. Finally, stability criteria are enforced by supplementary constraints.
In addition, we propose a method to calculate the non-parametric, anticipated, tuned
closed-loop frequency response, for an updated set of controller parameters. This method
is based on closed-loop experiments, with an initial controller and the assumption that it
is linear and exactly known.
For a single-input-single-output closed-loop system (with a linear controller, error feed-
back and feed-forward) an analytical expression for the bias between the anticipated and
true updated closed-loop frequency response has been derived. We show that the bias is
small for small changes in the feedback controller, large initial feed-forward gains or large
signal-to-noise ratios.
The controller parameter retuning is demonstrated for a longitudinal baseline controller
on a real flexible large aircraft. The longitudinal baseline controller is part of a modular
flight control system and was flight tested on four different CS-23 aircraft. The retuning
process is analyzed via Monte Carlo simulations on a high-fidelity, six degrees of free-
dom simulation environment. The simulation also includes real world effects like noise,
structural and aeroelastic modes, backlash and light turbulence. Finally, the test-based
retuning concept is successfully demonstrated with real flight tests.
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Zusammenfassung

In den meisten realen Anwendungen der Regelungstechnik werden die Regler als lineare,
multivariable Strukturen umgesetzt. Die Parameter dieser linearen Regelgesetze werden
dabei auf Basis von linearen Modellen der realen Systeme, unter Verwendung klassischer
Methoden aus der linearen Regelungstheorie, ausgelegt. Hochpräzise Systemmodelle sind
oft nicht Verfügbar oder unterliegen signifikanten Modelungenauigkeiten, um den Kosten-
und Zeitrahmen im Projektgeschäft einzuhalten. Die daraus hervorgehenden, ausgelegten
Regler leiden typischerweise unter Performanzdefiziten oder erfüllen die an sie gestellten
Anforderungen nicht, wenn sie während der Erprobung den realen Umgebungsbedingun-
gen und Systemverhalten ausgesetzt werden. Dies begründet sich in den beträchtlichen
Abweichungen zwischen der realen Streckendynamik und den Modellen, die während der
Auslegung und Verifikation verwendet wurden. Um die Unsicherheiten bereits bei der
Auslegung zu berücksichtigen, existieren verschiedene robuste Regelungsauslegungsver-
fahren, die einen hohen Grad an Robustheit gegenüber Modellunsicherheiten aufweisen
und zufriedenstellende Performanz bieten. Nichtsdestotrotz verlangen diese Verfahren
zumeist einen Kompromiss zwischen Sicherheit (Robustheit) und anderen Regelungszie-
len (insbesondere der Performanz). Gerade bei großen Modellunsicherheiten führt dies zu
schlecht ausgelegten Regelstrecken die weit hinter den Möglichkeiten eines ideal für das
reale System abgestimmten Reglers zurückbleiben.
Diese Arbeit stellt eine neue Methode für die systematische, auf Messdaten basierende
Reglerauslegung vor, um basierend auf Experimenten mit dem geschlossenen Regelkreis
die Reglerparameter zu optimieren. Der Ansatz ist nichtparametrisch, d.h. er ist unab-
hängig von der Identifikation eines parametrisierten Streckenmodells. Hierdurch wird die
tatsächliche Ordnung der realen Stecke berücksichtigt, im Gegensatz zu Ersatzmodellen,
die bei parametrischen Methoden zum Einsatz kommen, und von niedrigerer Ordnung
sind. Dort führt die Reduktion zu einem Informationsverlust von Systemcharakteristika,
z.B. Aeroelastische Modi, Aktuator oder Sensordynamik, die jedoch in den Messdaten der
Tests enthalten sind und daher durch den nichtparametrischen Ansatz erhalten werden
können.
Für die neue Methode wird ein Optimierungsproblem formuliert, dass die relevanten
Auslegungskriterien durch die Minimierung der Abweichung zwischen dem gewünschten
Verhalten und dem erwarteten, optimierten Verhalten des geschlossenen Regelkreises im
Frequenzbereich erreicht und neue Reglerparameter ermittelt. Es wird durch eine Metrik
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quantifiziert, die auf dem gewichteten, quadrierten Fehler der Amplitude und Phase der
jeweiligen Frequenzantworten basiert. Ein zusätzlicher Regularisierungsterm begrenzt die
Reglerparameter während der Optimierung auf sinnvolle Bereiche. Ebenso werden Sta-
bilitätskriterien durch zusätzliche Contraints eingehalten.
Zudem wird eine Methode vorgestellt, um die nichtparametrische Frequenzantwort des
geschlossenen, neu-parametrierten Regelkreises zu schätzen. Die Abschätzung erfolgt auf
Basis von Testdaten des geschlossenen Kreises und eines initialen Reglerparameter-Satzes
unter der Annahme, dass der Regler bekannt und linear ist. Durch eine analytische
Herleitung wird gezeigt, dass der Bias zwischen der geschätzten und der tatsächlichen
Frequenzantwort unter gewissen Randbedingungen klein ist.
Alle Verfahren werden an einem Basisregler für die Längsdynamik eines aeroelastischen
Flugzeuges mit großer Streckung demonstriert und im realen Flugversuch erprobt. Der
Basisregler, als Komponente eines modularen Flugsteuerungssystems, wurde in vier ver-
schiedenen CS-23 Luftfahrzeugen erfolgreich Testflügen unterzogen.
Die Simulationen zur Demonstration der Methoden wird an verschiedenen 6-Freiheitsgraden-
Simulationsmodellen mit diversen Störeffekten (Strukturschwingungen, Sensorrauschen,
Aktuatorspiel, etc.) durchgeführt.

iv



Acknowledgemets

This work is the result of one interesting challenge during my employment at the Institute
of Flight System Dynamic of the Technical University of Munich. Therefore, I would first
like to thank Prof. Dr.-Ing. Florian Holzapfel for the opportunity to work at his institute
on a variety of immensely interesting and challenging topics and research projects, in a
highly motivating, open-minded and inspiring atmosphere. I also want to thank him for
his technical inputs and exceptional support in all my concerns - technical or personal na-
ture. Especially, I want to credit his efforts for making the compatibility between family
and career possible, and enabling his employees to succeed in mastering both.
Furthermore, I would like to thank Prof. Dr.-Ing. Oskar J. Haidn for chairing the thesis
committee and Assoc. Prof. doc. Ing. Peter Chudý, Ph.D., MBA for being the second
examiner and reviewing this thesis.
I also want to express my thanks to Moritz Speckmaier and Daniel Gierszewski who de-
voted their time to perform the flight tests, whose results round up the thesis and provided
a couple of insights. Without their commitment and the kind support of Grob Aircraft
SE this would have not been possible. Moreover, I want to thank the German Federal
Ministry for Economic Affairs and Energy (BMWi) for funding the related work of this
thesis including flight tests, within the Federal Aeronautical Research Program LuFO V-I.
Several other people supported my research on a theoretical-technical level. In this con-
text, I like to thank my (former) colleagues in the flight control group, Dr.-Ing. Simon
Schatz, Dr.-Ing. Volker Schneider, Nils Mumm, Alexander Zollitsch, Erik Karlsson and
Lars Peter for their support and the discussions during the initial development of the
baseline controller that was used as an application in this thesis. Specifically, I want
to thank Rasmus Steffensen for the numerous discussions, his critical questioning of the
theory and the motivating atmosphere, which were extremely valuable and contributed a
lot to this work. It has been incredible fun to work with him on different projects and
topics.
I also wish to thank my friends and family that supported me throughout the work on this
thesis. Specifically, I want to thank my parents and my brother, who always supported
me and my children, and enabled my studies from the beginning of my diploma studies
until this work. With all my heart, I finally thank my children and my husband for their
love, patience and distraction, which kept my spirits up and helped me to clear my mind.





Contents

Abstract i

Kurzfassung iii

Acknowledgment v

List of Figures xv

List of Tables xix

Symbols, Indices and Acronyms xxi

1 Introduction 1
1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1.1 Direct Adaptive Control . . . . . . . . . . . . . . . . . . . 6
1.2.1.2 Indirect Adaptive Control . . . . . . . . . . . . . . . . . . 6

1.2.2 Automatic Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2.1 Frequency-Based Method . . . . . . . . . . . . . . . . . . 6
1.2.2.2 Parameter Estimation Method . . . . . . . . . . . . . . . 7
1.2.2.3 Rule-Based Method . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Robust Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3.1 Loopshaping Design . . . . . . . . . . . . . . . . . . . . . 8
1.2.3.2 LQG Control . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3.3 Structured Singular Value Theory . . . . . . . . . . . . . . 8
1.2.3.4 H2 and H∞ Control Theory . . . . . . . . . . . . . . . . . 9
1.2.3.5 ν- gap Metric and ν- Synthesis . . . . . . . . . . . . . . . 9

1.2.4 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Interplay-Area of System Identification and Robust Control . . . . 12
1.2.6 Identification for Control . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.7 Experiment-Based Control Design . . . . . . . . . . . . . . . . . . . 14

1.2.7.1 Model-Based (Indirect) Schemes . . . . . . . . . . . . . . 15

vii



CONTENTS

1.2.7.2 Data-Driven (Direct) Schemes . . . . . . . . . . . . . . . . 17
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Theoretical Preliminaries 31
2.1 Measuring the Frequency Response Function of a Linear Dynamic System . 31

2.1.1 Frequency Response Function of a Linear System . . . . . . . . . . 31
2.1.2 Empirical Transfer Function Estimate . . . . . . . . . . . . . . . . . 32

2.2 Challenges in Measuring the Frequency Response Function . . . . . . . . . 37
2.2.1 Fourier Transform and Fourier Series . . . . . . . . . . . . . . . . . 37
2.2.2 Sampling - Relation between DTFT and FT . . . . . . . . . . . . . 40
2.2.3 Truncation (Finite Length Signals) . . . . . . . . . . . . . . . . . . 45

2.2.3.1 Relation between DTFT and DFT . . . . . . . . . . . . . 45
2.2.3.2 Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.3.3 Avoiding Leakage with Periodic Excitations when Measur-

ing the ETFE . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.4 Effect of Noise on ETFE for Open-loop Plant Estimates . . . . . . 53

2.2.4.1 DFT of Measured Signal with Additive Noise . . . . . . . 56
2.2.4.2 Bias and Variance of ETFE due to Noise . . . . . . . . . . 58

2.2.5 Averaging the ETFE . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.6 Distributions of the Magnitude and Phase of the ETFE . . . . . . . 65

2.3 Closed-loop Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.1 Direct Non-parametric Plant Estimate under Closed-loop Conditions 69
2.3.2 Indirect Non-parametric Plant Estimate under Closed-loop Condi-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Test-Based Controller Retuning Concept 79
3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.2 Initial Model-based Controller Parameters and Nominal Closed-loop 86

3.3 Assumptions and Design Choices . . . . . . . . . . . . . . . . . . . . . . . 88
3.4 Closed-loop Test-Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5 Non-parametric Frequency Domain Estimate of Closed-loop of True Plant

with Initial Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Non-parametric Closed-loop Frequency Response Estimate of True Plant

with Updated Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6.1 Estimate of Anticipated Updated Closed-loop . . . . . . . . . . . . 98
3.6.2 Bias of Anticipated Updated Closed-loop . . . . . . . . . . . . . . . 99
3.6.3 Variance of Anticipated Updated Closed-loop . . . . . . . . . . . . 110

viii



CONTENTS

3.7 Anticipated Stability Margins for Updated Controller . . . . . . . . . . . . 118
3.8 Optimization Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 121
3.9 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.10 Outlook on Further Applications and Adaptations . . . . . . . . . . . . . . 136

4 Application 141
4.1 Demonstration Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.1.1 DA42 M-NG Flying Testbed . . . . . . . . . . . . . . . . . . . . . . 142
4.1.2 Dornier Do228 D-CODE . . . . . . . . . . . . . . . . . . . . . . . . 142
4.1.3 Grob G-520T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.1.4 Very-light all-electric OPV Demonstrator Platform ELIAS . . . . . 144

4.2 Inner-loop Environment - Flight Control System . . . . . . . . . . . . . . . 145
4.3 Simulation Environment and Tool Chain . . . . . . . . . . . . . . . . . . . 146
4.4 Longitudinal Inner-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.4.1 Control law and Controller Structure . . . . . . . . . . . . . . . . . 147
4.4.2 Closed-loop and Open-loop Relations . . . . . . . . . . . . . . . . . 148
4.4.3 Testbased Gain Retuning for Longitudial Inner-loop . . . . . . . . . 150

4.4.3.1 Desired Closed-loop . . . . . . . . . . . . . . . . . . . . . 150
4.4.3.2 Initial Closed-loop ETFE . . . . . . . . . . . . . . . . . . 151
4.4.3.3 Amended Plant Estimate . . . . . . . . . . . . . . . . . . 152
4.4.3.4 Anticipated Closed-loop Estimate and Margins . . . . . . 152
4.4.3.5 Optimization Problem . . . . . . . . . . . . . . . . . . . . 152

4.4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.4.4.1 General Settings - Uncertainties . . . . . . . . . . . . . . . 155
4.4.4.2 General Settings - Reference Excitation Input Signal . . . 155
4.4.4.3 General Settings - Optimization . . . . . . . . . . . . . . . 156
4.4.4.4 Simulation Results for Calm Atmosphere . . . . . . . . . . 156
4.4.4.5 Simulation Results for Light Turbulence . . . . . . . . . . 160
4.4.4.6 Simulation Results with Backlash . . . . . . . . . . . . . . 163

4.4.5 Flight Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.4.5.1 General Settings - Reference Excitation Input Signal . . . 167
4.4.5.2 General Settings - Initial Controller Parameters . . . . . . 168
4.4.5.3 General Settings - Optimization . . . . . . . . . . . . . . . 169
4.4.5.4 Initial Closed-loop ETFE: Transients and Steady State

Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.4.5.5 Initial Closed-loop ETFE: Calm Air versus Turbulent Air 169
4.4.5.6 Retuning Result . . . . . . . . . . . . . . . . . . . . . . . 174

4.5 Lateral Inner-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.5.1 Control Law and Controller Structure . . . . . . . . . . . . . . . . . 176
4.5.2 Closed-loop and Open-loop Relations . . . . . . . . . . . . . . . . . 178
4.5.3 Testbased Gain Retuning for Lateral Inner-loop . . . . . . . . . . . 180

ix



CONTENTS

4.5.3.1 Desired Closed-loop . . . . . . . . . . . . . . . . . . . . . 180
4.5.3.2 Initial Closed-loop ETFE . . . . . . . . . . . . . . . . . . 182
4.5.3.3 Amended Plant Estimate . . . . . . . . . . . . . . . . . . 182
4.5.3.4 Plant Estimate . . . . . . . . . . . . . . . . . . . . . . . . 183
4.5.3.5 Anticipated Closed-loop Estimate . . . . . . . . . . . . . . 183
4.5.3.6 Anticipated Margins . . . . . . . . . . . . . . . . . . . . . 183
4.5.3.7 Optimization Problem . . . . . . . . . . . . . . . . . . . . 184

4.5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.5.4.1 General Settings - Uncertainties . . . . . . . . . . . . . . . 185
4.5.4.2 General Settings - Reference Excitation Input Signal . . . 187
4.5.4.3 General Settings - Optimization . . . . . . . . . . . . . . . 187
4.5.4.4 Simulation Results for Calm Atmosphere . . . . . . . . . . 188
4.5.4.5 Simulation Results for Light Turbulence . . . . . . . . . . 191
4.5.4.6 Simulation Results with Backlash . . . . . . . . . . . . . . 193

4.5.5 Flight Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.5.5.1 General Settings - Reference Excitation Input Signal . . . 198
4.5.5.2 General Settings - Initial Controller Parameters . . . . . . 198
4.5.5.3 General Settings - Optimization . . . . . . . . . . . . . . . 199
4.5.5.4 Evaluation of Multi-sine Maneuvers with Initial Closed-loop200
4.5.5.5 Retuning Results . . . . . . . . . . . . . . . . . . . . . . . 204

5 Summary and Perspective 207
5.1 Contribution 1: Novel Test-based Gain Retuning Procedure for Lineariz-

able Control laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.2 Contribution 2: Optimization Problem for Test-based Gain Retuning . . . 208
5.3 Contribution 3: Calculation of the Non-parametric, Anticipated Closed-

loop Frequency Response for an Updated Controller Parameter Set . . . . 209
5.4 Contribution 4: Analytic Expression for the Bias of the Anticipated Closed-

loop Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.5 Contribution 5: Practical Demonstration on different Aircraft including

Flight Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A Dirac Impulse I

B Relation between Dirac Impulse and Integral of Complex Exponential
Function III

C Relation between Discrete Time Fourier Transform and Fourier Trans-
form V

D Relation between Dirac Comb and sum of Complex Exponential Func-
tions VII

x



CONTENTS

E Fourier Transform of Shifted Dirac Impulse IX

F Relation between DTFT and FT for the Product of Impulse Train with
Continuous Time Signal XI

G Fourier Transform of Dirac Impulse Train (Dirac Comb) XIII

H Relation between DTFT and DFT XV

I Relation between the Sum of Complex Exponential Functions and a
Dirac Comb XIX

J Relation between FT of a Continuous Time Mathematical Model of a
Truncated Sampled Sequence of x(t) and the DFT XXI

K Relation between DTFT and FT for the Product of a Continuous Time
Signal with a Dirac Comb and a Rectangular Window Function XXV

L Fourier Transform and Rectangular Window Function XXVII
L.1 Fourier Transform of Rectangular Window Function . . . . . . . . . . . . . XXVII
L.2 Fourier Transform of Centered Rectangular Window Function . . . . . . . XXVIII

M Statistics XXXI
M.0.1 Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . XXXI
M.0.2 Probability Density Function . . . . . . . . . . . . . . . . . . . . . XXXI
M.0.3 Expected Value Operator . . . . . . . . . . . . . . . . . . . . . . . XXXII
M.0.4 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXII
M.0.5 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXIII
M.0.6 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXIV
M.0.7 Stationarity of a Sequence of Random Variables . . . . . . . . . . . XXXV
M.0.8 Independent and Identically Distributed Random Variables (i.i.d.) . XXXV
M.0.9 Mutual Independence . . . . . . . . . . . . . . . . . . . . . . . . . . XXXV
M.0.10 Normal Distribution / Gaussian Distribution . . . . . . . . . . . . . XXXVI
M.0.11 Standard Normal Distribution . . . . . . . . . . . . . . . . . . . . . XXXVI
M.0.12 Joint Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXVI
M.0.13 Joint Normal Distribution / Multivariate Normal Distribution /

Multivariate Gaussian Distribution . . . . . . . . . . . . . . . . . . XXXVII
M.0.14 Complex Random Variable . . . . . . . . . . . . . . . . . . . . . . . XXXVIII
M.0.15 Distribution of a Complex Random Variable . . . . . . . . . . . . . XXXVIII
M.0.16 Expected Value of a Complex Random Variable . . . . . . . . . . . XXXVIII
M.0.17 Covariance, Pseudo Covariance and Variance of Complex Random

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXIX
M.0.18 Proper Complex Random Variable . . . . . . . . . . . . . . . . . . XLII

xi



CONTENTS

M.0.19 Complex Normal Distribution . . . . . . . . . . . . . . . . . . . . . XLII
M.0.20 Distribution of a Proper Complex Normal Random Variable . . . . XLVII
M.0.21 Distribution of Proper Complex Normal Random Variable in Polar-

coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLVIII
M.0.22 Marginal Distribution of the Amplitude of a Proper Complex Nor-

mal Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . XLVIII
M.0.23 Marginal Distribution of the Phase of a Proper Complex Normal

Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . L
M.0.24 Circular-symmetry of Complex Random Variables . . . . . . . . . . LII
M.0.25 Circular-symmetric Complex Normal Distribution . . . . . . . . . . LIII
M.0.26 Product of Complex Number with its Conjugate Complex . . . . . LV
M.0.27 Sum of Complex Number with its Conjugate Complex . . . . . . . LV
M.0.28 Conjugate Complex of the Product of two Complex Numbers . . . . LV
M.0.29 Conjugate Complex of the Ratio of two Complex Numbers . . . . . LVI

N Characteristics of DFT of i.i.d. Normally Distributed Noise Sequence
with Zero Mean LVII
N.1 Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LVII
N.2 Circular Symmetry of DFT of Noise Sequence . . . . . . . . . . . . . . . . LIX
N.3 Independence of Real and Imaginary part of DFT of i.i.d. Normally Dis-

tributed Noise Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . LX
N.4 Correlation of Real and Imaginary part of DFT of Noise Sequence . . . . . LXI
N.5 Joint Normality of Real and Imaginary part of DFT of Noise Sequence . . LXII
N.6 Characteristics of Product of Complex Valued Constant with DFT of i.i.d.

Normally Distributed Noise Sequence with Zero Mean . . . . . . . . . . . . LXIII

O Characteristics of DFT of a Stationary, Normally Distributed Noise Se-
quence LXVII
O.1 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LXVII
O.2 Second Order Moment Characteristics of Real and Imaginary Part for Un-

correlated Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LXVIII
O.3 Second Order Moment Characteristics of DFT for Uncorrelated Samples . LXX
O.4 Second Order Moment Characteristics of Ratio with Complex Valued Con-

stant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LXXII

P Closed-loop Identification LXXV
P.1 Bias of Indirect Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . LXXV
P.2 Bias of Indirect Estimate - Special Case . . . . . . . . . . . . . . . . . . . LXXVI

Q Cosine and Sine Equalities LXXIX
Q.1 Finite Sum of Cosine and Sine Squared . . . . . . . . . . . . . . . . . . . . LXXIX

xii



CONTENTS

Q.2 Finite Sum of Product of Cosine and Sine . . . . . . . . . . . . . . . . . . LXXX
Q.3 Finite Sum of Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . LXXXI
Q.4 Finite Sum of Complex Exponential . . . . . . . . . . . . . . . . . . . . . . LXXXII

R Scientific Publications LXXXIII

xiii





List of Figures

1.1 Classification of considered system identification method. [Mer19] . . . . . 11

2.1 Visualization of Tw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Fourier Transform and Discrete Fourier Transform of cosine example signal

with fx < fs/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Fourier Transform and Discrete Fourier Transform of cosine example signal

with fx > fs/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Visualization of aliasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Rectangular window function in time domain. . . . . . . . . . . . . . . . . 46
2.6 Absolute value, real part and imaginary part of g(f̄ , f) for f = 0, f = fH ,

f = 2fH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7 Fourier transform of x̃(t) at frequencies f = 0, f = fH , f = 2fH , for

fx = 2fH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 Visualization of leakage on Fourier transform of x̃(t) at frequency f = 0,

for fx 6= mfH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.9 Visualization of excitation signal classification. . . . . . . . . . . . . . . . 55
2.10 Visualisation of noise classification. . . . . . . . . . . . . . . . . . . . . . . 55
2.11 System response with noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.12 System response with filtered noise. . . . . . . . . . . . . . . . . . . . . . 58
2.13 Standard closed-loop framework. . . . . . . . . . . . . . . . . . . . . . . . 68
2.14 Closed-loop framework representation. . . . . . . . . . . . . . . . . . . . . 70
2.15 Alternative closed-loop framework representation. . . . . . . . . . . . . . . 70
2.16 Closed-loop framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.17 Closed-loop framework with feed forward. . . . . . . . . . . . . . . . . . . 77

3.1 Schematic of desired and real closed-loop behavior. . . . . . . . . . . . . . 80
3.2 Schematic of test-based controller parameter retuning concept. . . . . . . 83
3.3 Closed-loop block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4 Desired closed-loop frequency response. . . . . . . . . . . . . . . . . . . . 87
3.5 Closed-loop estimate for SNR of 1. . . . . . . . . . . . . . . . . . . . . . . 94
3.6 Closed-loop estimate for SNR of 10. . . . . . . . . . . . . . . . . . . . . . 95

xv



LIST OF FIGURES

3.7 Sample variance of real parts and of imaginary parts, Left: SNR of 1;
Right: SNR of 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.8 True sensitivity Sc,0(jωk). . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.9 Probability density function of real values of closed-loop estimates at 5′th

harmonic frequency (M = 10000 simulations), Left: SNR of 1; Right:
SNR of 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.10 Sample covariance of real and imaginary part of initial closed-loop esti-
mates, (M = 10000 simulations), Left: SNR of 1; Right: SNR of 10. . . . 97

3.11 Closed-loop estimate for SNR=1. . . . . . . . . . . . . . . . . . . . . . . . 112
3.12 Closed-loop estimate for SNR=0.1. . . . . . . . . . . . . . . . . . . . . . . 112
3.13 Closed-loop estimate for SNR=0.03. . . . . . . . . . . . . . . . . . . . . . 113
3.14 Variation of feed-forward and controller parameters. . . . . . . . . . . . . 114
3.15 Influence of λ on controller frequency responses. . . . . . . . . . . . . . . 115
3.16 Magnitude and phase of closed-loop estimate, Left: SNR of 0.1; Middle:

SNR of 1; Right: SNR of 10. . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.17 Open-loop estimate, Left: SNR of 1; Right: SNR of 10. . . . . . . . . . . 120
3.18 Phase margin of open-loop estimate, Left: SNR of 1; Right: SNR of 10. . 120
3.19 Tuning result for magnitude and phase formulation of cost function for

SNR=10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.20 Tuning result for real and imaginary part formulation of cost function for

SNR=10, visualization of magnitude and phase. . . . . . . . . . . . . . . . 125
3.21 Tuning result for real and imaginary part formulation of cost function for

SNR=10, visualization of real and imaginary part. . . . . . . . . . . . . . 126
3.22 Tuned Feedforward Gain for SNR=10, comparison of cost function in

terms of magnitude and phase and cost function in terms of real and
imaginary part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.23 Tuned Integrator Gain for SNR=10, comparison of cost function in terms
of magnitude and phase and cost function in terms of real and imaginary
part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.24 Tuned Feedback Gain for SNR=10, comparison of cost function in terms
of magnitude and phase and cost function in terms of real and imaginary
part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.25 Phase margin for SNR=10, comparison of cost function in terms of mag-
nitude and phase and cost function in terms of real and imaginary part. . 128

3.26 Tuning result for magnitude and phase formulation of cost function for
SNR=3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.27 Tuning result for real and imaginary part formulation of cost function for
SNR=3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.28 Phase margin for SNR=3, comparison of cost function in terms of magni-
tude and phase and cost function in terms of real and imaginary part. . . 130

xvi



LIST OF FIGURES

3.29 Influence of number of repetitions of maneuver on tuning result for mag-
nitude and phase formulation of cost function for SNR=3. . . . . . . . . . 130

3.30 Tuning results for Monte Carlo simulations with varying plant parameters. 131
3.31 Tuning results for varying initial controller parameters. . . . . . . . . . . . 132
3.32 Proportional feedback and integral controller parameters. . . . . . . . . . 133
3.33 Proportional feedforward controller parameters. . . . . . . . . . . . . . . . 133
3.34 Tuning result for high velocity. . . . . . . . . . . . . . . . . . . . . . . . . 138
3.35 Tuning result for medium velocity. . . . . . . . . . . . . . . . . . . . . . . 139
3.36 Tuning result for low velocity. . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.1 DA42 M-NG flying testbed. [KH18] . . . . . . . . . . . . . . . . . . . . . 143
4.2 Dornier Do228-101 D-CODE. [Kra20] . . . . . . . . . . . . . . . . . . . . 143
4.3 Grob G-520T. © H3 Mission Systems . . . . . . . . . . . . . . . . . . . . 144
4.4 Very-light all-electric OPV demonstrator platform ELIAS. [Kra20] . . . . 145
4.5 Modular flight guidance and control system architecture, adapted for G-

520T. [SSG+] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.6 Longitudinal inner-loop controller structure. [SSG+] . . . . . . . . . . . . 147
4.7 Schematic of simulation setup and nomenclature. [GHSM21] . . . . . . . . 154
4.8 Closed-loop frequency response with initial gains, retuned gains, and de-

sired response, for varying uncertainties under calm air conditions. [GHSM21]157
4.9 Anticipated tuned closed-loop frequency response, desired response, closed-

loop response with initial gains and with retuned gains for varying uncer-
tainties under calm air conditions. . . . . . . . . . . . . . . . . . . . . . . 158

4.10 Step response of control law with initial gains, retuned gains, and desired
response. [GHSM21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.11 Estimates of untuned closed-loop frequency responses with uncertain plant
in calm air and turbulent conditions, compared to the respective tuned
responses in calm air. [GHSM21] . . . . . . . . . . . . . . . . . . . . . . . 161

4.12 Comparison of calm air frequency responses with gains tuned in calm air
or turbulent air by Monte Carlo simulations. [GHSM21] . . . . . . . . . . 162

4.13 Comparison of closed-loop frequency responses with varying backlash ele-
ment (0− 0.7 degrees) and aerodynamic coefficients increased by 10%. . . 163

4.14 Comparison of closed-loop frequency responses with varying backlash ele-
ment (0− 0.7 degrees) and aerodynamic coefficients decreased by 10%. . . 164

4.15 Comparison of closed-loop step responses with varying backlash element
(0− 0.7 degrees) and aerodynamic coefficients decreased by 10%. . . . . . 165

4.16 Comparison of closed-loop frequency responses with varying backlash ele-
ment (0.8− 1.2 degrees) and aerodynamic coefficients decreased by 10%. . 166

4.17 First four periods of the multi-sine signal - visualization of transient response.170
4.18 Untuned closed-loop ETFE in calm and turbulent air. . . . . . . . . . . . 171
4.19 Longitudinal time domain closed-loop responses in calm and turbulent air. 172

xvii



LIST OF FIGURES

4.20 Lateral time domain closed-loop responses, indicated airspeed and altitude
in calm and turbulent air. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.21 Untuned closed-loop ETFE versus tuned ETFE and anticipated tuned
closed-loop frequency response. . . . . . . . . . . . . . . . . . . . . . . . . 175

4.22 Lateral inner-loop controller structure and closed-loop representations. . . 176
4.23 Actuator cuts for calculation of stability margins. . . . . . . . . . . . . . . 180
4.24 Closed-loop frequency response with initial gains, retuned gains, and de-

sired response, for varying uncertainties under calm air conditions. . . . . 189
4.25 Step response of closed-loop systems with initial gains, retuned gains, and

desired closed-loop step response. . . . . . . . . . . . . . . . . . . . . . . . 190
4.26 Tuning results for initial closed-loop frequency responses obtained in tur-

bulent air by Monte Carlo simulations. . . . . . . . . . . . . . . . . . . . . 191
4.27 Tuning results for initial frequency responses obtained in turbulent air by

Monte Carlo Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.28 Comparison of closed-loop frequency responses with varying backlash ele-

ment (0− 0.6 degrees). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.29 Comparison of closed-loop step responses with varying backlash element

(0− 0.6 degrees). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.30 Comparison of closed-loop frequency responses with varying backlash ele-

ment (0.7− 1 degrees). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.31 Comparison of closed-loop step responses with varying backlash element

(0.7− 1 degrees). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.32 Comparison of closed-loop step responses with varying backlash element

(0− 0.4 degrees) for a different optimization setting. . . . . . . . . . . . . 197
4.33 Bank angle command multi-sine measurements. . . . . . . . . . . . . . . . 200
4.34 Lateral specific force command multi-sine measurements. . . . . . . . . . 201
4.35 Measurements of first four periods of the bank angle command multi-sine. 202
4.36 Measurements of first four periods of the lateral specific force command

multi-sine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.37 Untuned closed-loop ETFE versus anticipated tuned closed-loop frequency

response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.38 Untuned closed-loop response versus tuned closed-loop response to a dou-

blet command in bank angle. . . . . . . . . . . . . . . . . . . . . . . . . . 206

xviii



List of Tables

3.1 Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2 Nominal Model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3 Initial controller parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 True plant parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5 Updated controller parameters. . . . . . . . . . . . . . . . . . . . . . . . . 111
3.6 True plant parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.7 Frequency dependent relative weight. . . . . . . . . . . . . . . . . . . . . . 124
3.8 MUAD bounds. [US 97] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.1 Maneuver injection input signal parameters. . . . . . . . . . . . . . . . . . 156
4.2 Frequency depending relative weight. [GHSM21] . . . . . . . . . . . . . . 156
4.3 Maneuver injection input signal parameters. . . . . . . . . . . . . . . . . . 168
4.4 Controller parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5 Frequency depending relative weight. . . . . . . . . . . . . . . . . . . . . . 169
4.6 Multiplicative factors on aerodynamic coefficients. . . . . . . . . . . . . . 186
4.7 Range of multiplicative factors on aerodynamic coefficients within Monte

Carlo simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.8 Maneuver injection input signal parameters. . . . . . . . . . . . . . . . . . 187
4.9 Frequency dependent relative weights for frequency responses from bank

angle command to bank angle and roll rate. . . . . . . . . . . . . . . . . . 188
4.10 Frequency dependent relative weights for frequency responses from bank

angle command to lateral specific force and yaw rate. . . . . . . . . . . . . 188
4.11 Controller parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.12 Frequency dependent relative weights for frequency responses from bank

angle command to output signals. . . . . . . . . . . . . . . . . . . . . . . 199

xix





Symbols, Indices and Acronyms

Acronyms
AFCS Automatic Flight Control System
CAP Control Anticipation Parameter
CbT Correlation-based data-driven Tuning
DFT Discrete Fourier Transform
DTFT Discrete Time Fourier Transform
ETFE Empirical Transfer Function Estimate
FCC Flight Control Computer
FCS Flight Control System
FFT Fast Fourier Transform
FRF Frequency Response Function
FRIT Fictitious Reference Iterative Tuning
FSD Flight System Dynamics
FT Fourier Transform
HMI Human Machine Interface
IFT Iterative Feedback Tuning
i.i.d. independent identically distributed
INDI Incremental Nonlinear Dynamic Inversion
LFT Linear Fractional Transformation
lin linear
LOES Low-Order Equivalent System
LTI Linear Time Invariant
MC Monte Carlo
MIMO Multiple Input Multiple Output
MOC Means of Compliance
MTOW Maximum Take Off Weight
MUAD Maximum Unnoticeable Added Dynamics
nl nonlinear
OPV Optionally Piloted Vehicle
PE Prediction Error Method

xxi



Acronyms

SIMO Single Input Multiple Output
SISO Single Input Single Output
SGT Small Gain Theorem
SNR Signal-to-Noise Ratio
STC Supplemental Type Certificate
TFM Transfer Function Matrix
TUM Technical University of Munich
VRFT Virtual Reference Feedback Tuning

xxii



Symbols, Indices and Acronyms

Symbols
∗ General placeholder
Am Gain margin
C Controller transfer function
c constraint
C∗∗ Pseudo variance of complex random variable *
Ck k’th fourier coefficient
δ Dirac impulse
E[∗] Expected value of *
f Independant variable, mostly frequency in Hz
fH First harmonic frequency
fS Sampling frequency
F{∗} Fourier transform of *
G plant transfer function
Gcl closed-loop transfer function
I Identity matrix
=(∗) Imaginary part of *
J Cost function
j Imaginary unit
K∗∗ Variance of complex random variable *
µ Specific mean value
N Number of samples
N Normal distribution
ω Independant variable, mostly frequency in radian per second
p Parameter vector
Φm Phase margin
Q Controller gain penalty weighting matrix
R number of maneuver repetitions
<(∗) Real part of *
s Operator variable in the Laplace domain
σ2 Specific variance value
t Independant variable, mostly time in seconds
TS Sampling time
u control input
var[∗] Variance of *
w(t) Rectangular window
wA relative weight for magnitude squared-errors
wγ (ωk) Frequency dependent relative weight
wφ relative weights for phase squared-errors
y system output
III Dirac comp

xxiii



Indices

Indices
0 initial
ap amended plant
cl closed-loop
cmd command
des desired
DFT Discrete Fourier Transform
DTFT Discrete Time Fourier Transform
FT Fourier Transform
HOS High Order System
LGE Lower Gain Envelope
LOES Low Order Equivalent System
LPE Lower Phase Envelope
nom nominal
UGE Upper Gain Envelope
UPE Upper Phase Envelope

xxiv



Chapter 1

Introduction

1.1 Motivation and Problem Statement

Since the beginning of aviation more than 100 years ago, aeronautics experienced an
enormous technological progress. One of the numerous developments was the evolution of
flight controls from mechanical linkages between the pilot control inceptor and the con-
trol surfaces towards fly-by-wire systems. Mechanical linkages have been replaced by an
electronic interface, where the desired movements of control surfaces are computed and
transmitted to actuation elements driving the aircraft’s control surfaces by electronic sig-
nals. The associated flight control algorithms underwent a tremendous development. The
degree of automation steadily increased from stability and control augmentation concepts
to autopilot and auto-land systems, to optionally piloted and unmanned aerial systems.
Increasing computational speed and resources inside the flight control computers, better
sensor and more sophisticated data busses accelerated the process and opened a variety
of new possibilities.

Driven by fly-by-wire systems since the days of the Concorde Aircraft in the 1960s, aircraft
manufacturers established proven processes for the development of flight control systems
and the associated flight control algorithms implemented in hardware or software. For a
long time these developments did not progress to the general aviation market due to cost,
weight or space constraints in small and medium-sized aircraft. In recent decades, how-
ever, this dilemma has slowly changed with the availability of off-the-shelf basic autopilot
systems from several companies. Still, the general aviation market is far away from a
widespread use of fully digital fly-by-wire systems. The recent trend towards unmanned
aerial vehicles and optionally piloted vehicles, driven by the wish for new personal trans-
portation forms or cost-effective logistics for remote areas, will demand new flight control
concepts and processes. In the commercial airliner segment, companies can easily afford
long and substantially expensive flight test campaigns to develop and fine-tune their con-
trol algorithms. This is neither possible in terms of time nor financial effort in the general
aviation market, especially when future unmanned platforms must be cost-effective with
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a fast time to market. The industry is in urgent need of new methodologies, which can
be integrated in a sophisticated, yet cost-effective process to establish their digital flight
control systems in future platforms.

For any aerial system exceeding a certain take off mass, flight control systems must be
certified (i.e. approved) by the relevant authorities. Certification refers to the process of
providing substantial evidence to the authorities, showing that the aircraft and its com-
ponents like the flight control laws and algorithms comply with governmental regulations
and industry standards. Furthermore, it aims to assure that the flight control laws and
algorithms were developed in a suitable process to minimize human error and guarantee
a minimum performance level and an adequate level of safety. Authorities issue certi-
fication specifications for certain aircraft classes (distinguished for example by weight,
number of passengers, intended use, etc.), which define means of compliance (MOC) in
order to adhere to the specification. There is no legal obligation to follow the guidelines
and industry standards referred to in the MOC, but any manufacturer is strongly advised
to do so in order to facilitate and streamline the certification process. For the certification
process, a key element is requirements-based verification. The intended behavior of the
flight control algorithms needs to be precisely defined by a set of requirements before its
actual development can be started. During the different verification phases and activi-
ties throughout the development process, the flight control algorithms are tested against
these requirements. A subset of these requirements for example define certain robustness
specifications, while other requirements specify for example the required performance of
the flight control algorithm. For the baseline specification of the intended behavior of a
flight control law, one usually resorts to standards such as SAE AS94900 [SAE07], SAE
ARP94910 [SAE12], MIL-F-8785C [US 80] or MIL-HDBK-1797 [US 97]. These standards
provide minimum performance and robustness criteria for the flight control algorithm of
a given aircraft type, defined mostly in the time and frequency domain. Accepted met-
rics for demonstrating robustness of the flight control law are for example lower limits for
phase and gain margin (according to SAE AS94900) which can only be applied to classical
linear controllers. Also the testing of the performance requirements is easier for classi-
cal linear controllers, due to their linearity and lower complexity compared to nonlinear
controllers. Flight control algorithms are therefore often realized as linear multi-variable
controllers [Bal03], separated into longitudinal and lateral motion. The parameters of the
linear control law – the controller gains - are designed based on linear models of the system
using methods from linear system theory. Flight control algorithms are usually cascaded
systems with outer loops consisting of an autopilot or trajectory controller [BAL11, Ch.
1], [Sch18a] and a baseline controller which translates the outer loop commands into sur-
face deflection commands.
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Chapter 1: Introduction

In commercial aviation the development process of baseline controllers is driven by a
large scale process compliant to the standards which is complex and extremely costly.
Different divisions and departments focus each on distinct elements of the development
process like modeling and system identification, linearization and system analysis, gain
design and assessment etc. resulting in high personnel expenses. Expensive tools, spe-
cialized for supporting the particular tasks in the different divisions and process steps
increase the costs further ([SKFL03],[FVBS02, Ch. 1, Ch. 2],[Bal03]). Furthermore, ex-
tensive flight test campaigns are performed to allow full estimation of the aerodynamic
parameters and time intensive and costly modelling efforts are executed for all system
components.
However, this approach would be too expensive for general aviation aircraft or UAVs.
Due to the lower affordable modelling and development efforts compared to classical
aviation high fidelity models are often not available or subjected to considerable model
uncertainties. In general, all unmodelled or unconsidered effects during controller design
and verification, due to cost and time constraints, might lead to a degraded controller
performance in real-world flight tests. On the one hand the most obvious examples for
unconsidered effects that may lead to a degraded tracking performance are atmospherical
disturbances like gusts or turbulence. On the other hand the most obvious examples for
unmodelled effects that may cause problems when the controller is applied within flight
tests are effects introduced by the real hardware like backlash or aeroelastic modes. Also,
parametric uncertainties especially with respect to aerodynamic and propulsive character-
istics are an important example as they might cause considerable deviations between the
real aircraft dynamics and the models applied during controller design and assessment.
Controller designed only based on these available models typically suffer from perfor-
mance deficits or at worst case do not satisfy their requirements when applied to the
real environment within flight tests due to the present model uncertainties. With respect
to these uncertainties, approaches exist to develop flight controllers in such a way that
they exhibit high robustness and satisfactory performance despite some expected uncer-
tainties. For this purpose the controller parameters are selected in many approaches to
meet the design objectives for all a priori assumed uncertainties. This approach is often
time intense and requires advanced control design skills from the engineer. But most
important it often requires a dissatisfying trade off between safety (i.e. robustness) and
other control objectives like performance, especially when the model parameters are very
uncertain, instead of being perfectly designed for the actual real aircraft dynamics.
Especially baseline controller count as the component of flight control algorithms which
rely the most on the aircraft dynamics. Therefore, they are sensitive to the models used
for gain design and assessment and consequently on the uncertainties, inaccurately or even
unmodelled effects and disturbances. Because the baseline controller is the most inner part
of a Flight Control System, all other components, especially the autopilot and trajectory
control, depend on the closed- loop baseline controller dynamics and behavior regarding

3



1.1 Motivation and Problem Statement

their parametrization and design [KSB+18]. As a consequence the baseline controller is
attributed with a high criticality. Additionally, the inner-loop is responsible for good dis-
turbance rejection before they manifest themselves in the outerloop control variables [kar].

Therefore, a gain update method is highly desirable that assures that in particular the
baseline closed- loop controller dynamics of the real aircraft in real flight correspond as
close as possible to the nominal designed closed- loop behavior. Not only in order to be
compliant to all inner-loop requirements, but also regarding the fulfillment of the require-
ments and performance and stability criteria related to the outer loops, as the assumed
inner-loop dynamics serve as a basis for their gain design and assessment. To account for
the strict cost constraints, the environments of general aviation and UAV are subjected
to, this method shall not rely on very accurate models derived over extensive, expensive
flight test campaigns.
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In model based control design the controller is designed based on a model of the plant.
This nominal plant model, often linear, is only an approximation of the true plant, which
is usually nonlinear and of higher order. Often this discrepancy between the true plant
and the plant model is approximated by an uncertainty model. In general, it is straight
forward to design a linear controller based on a linear nominal plant model, such that the
controlled nominal plant model satisfies specific requirements and control objectives. To
fulfill this task, one or a combination of the various classical control design approaches
can be used. Since the nominal plant is only an approximation of the true system, the
designed controller which is perfect for the nominal plant model might reveal a degraded
performance on the real system because of the discrepancies between the model and the
true system. In the worst case it might even not satisfy the control objectives, it was
designed for, on the true plant or even be unstable. In commercial aviation therefore
much effort and money is put into

• system identification and the modelling to get very accurate models of the aircraft
and uncertainty models

• controller design and assessment with regard to the uncertainties

In general aviation as well in the area of smaller UAV this is not affordable and we
need to deal with relatively high and unknown uncertainties in the models. Many other
applications, beside the aviation domain, share this issue. Some of the most popular
approaches that evolved over time, that account for uncertainties in control are

• adaptive control

• auto-tuning

• robust control

• iterative schemes of identification and control

• data-driven controller tuning

In the following an overview is given.

1.2.1 Adaptive Control

In adaptive control in general, the parameters of a controller are continuously or recur-
sively adjusted to accommodate disturbances and changes in the plant dynamics, resulting
in a time-varying controller. There are two main streams of adaptive control:

• direct adaptive control

• indirect adaptive control
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1.2.1.1 Direct Adaptive Control

In direct adaptive control, controller parameters are adjusted directly from data obtained
in closed-loop operation, such that control design and identification are entwined.

1.2.1.2 Indirect Adaptive Control

The indirect adaptive tuning procedure handles identification and control as separated
steps. In the identification part, parameters of the plant model are updated online by
recursive parameter estimation. Then in the control part, based on this updated model,
the controller parameters are updated with some appropriate control design method.

The field of adaptive control has been extensively investigated in the past decades and
much effort has been put in topics like proving or investigating properties as global stabil-
ity, asymptotic stability, convergence, boundedness of signals, magnitude of the bounded
signals, convergence time and many more. For a long time one main concern in adaptive
control that was raised according to [SB93], has been, that despite its potential to improve
an existing controller it cannot be excluded that a deficient performance could occur. It
is often difficult to guarantee that the transient dynamics inherit a desired behavior.

1.2.2 Automatic Tuning

With automatic tuning usually a gain design is described that on user demand automat-
ically tunes the controller parameters based on experiments. It can be roughly divided
into

• Frequency response methods

• Parameter estimation methods

• Rule-based methods

1.2.2.1 Frequency-Based Method

A well known frequency based method is the relay method, originally developed by [sH84].
This method is especially suitable for PID tuning. As it is based on test-based measure-
ments it is hence practical where little is known about the system characteristics. It does
not require an system identification step. Instead, a nonlinear feedback denoted as relay
type, generates a limit cycle oscillation, hence pushes the system is to the limit of stability.
The period and amplitude of the oscillation are determined when a steady-state oscillation
is obtained, providing a test-based measurement of the ultimate period and gain. Based
on these values the PID controller parameters can be determined, e.g. using the Ziegler-
Nichols frequency response method. The main limitation of these methods is given by
the fact that the tuning is performed at a fixed frequency. This leads to problems related
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to actuator saturation, sluggish responses or excessive derivative action. More advanced
methods, like the enhanced Åström method [TLW96] achieve better performance in the
frequency- and time-domain, though some more effort is required.

1.2.2.2 Parameter Estimation Method

In this context, parameter estimation methods are procedures, where the parameters of
a plant model are estimated and then based on this model the controller parameters are
obtained by some appropriate control design method.

1.2.2.3 Rule-Based Method

The so called rule-based methods do not use an explicit model of the plant. When
transients, set-point changes or load disturbances for example occur, the behavior of
the controlled process is observed (e.g overshoot, decay ratio, time constant, oscillation
frequency) and if it deviates from the specifications the controller parameters are auto-
matically adjusted using some rules of thumb.

1.2.3 Robust Control

The robust control paradigm arose already back in 1980’s, introducing different techniques
for dealing with bounded system uncertainty. For an overview see e.g. [DFT13] and
[ZD98]. Most control design techniques in this domain have in common, that a controller
is synthesized such that specific control design objectives are satisfied not only for the
nominal plant model but also for all plant variations described by an uncertainty model
that approximates the discrepancy between the nominal model and true plant. The related
control design approaches mainly differ in the controller structure, the control objectives
they seek to satisfy and in the different descriptions for the uncertainty modelling they
address.
The book [DFT13] addresses the fundamental issue of performance/stability robustness
trade off with focus on single input and output systems and the technique of loop-shaping,
while [ZD98] deals with multi-variable control. It introduces essentials of H∞ control
theory, and other important state of the art robust control techniques as the ν- gap metric
and ν- synthesis, structured singular value µ and µ- synthesis. In robust control design
one accepts that the (nominal) models, applied during gain design and assessment, are not
accurate and will not entail all the dynamics of the real plant. Almost all related methods
utilize a description of the model uncertainty that quantifies the mismatch between model
and plant. This is incorporated into the gain design and assessment in order to assess
robust stability and performance of the controlled plant or to check the gain design against
requirement satisfaction. The nominal model and uncertainties are assumed in most
robust control paradigms to be given a priori. Since the 80’s extensive research was made
in this field bringing up concepts as
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• Loopshaping design [DFT13], [SP07], [GM89]

• Linear Quadratic Gaussian (LQG) Control [AM07], [KS72]

• structured singular value (µ), µ-synthesis, H2 and H∞ control theory [ZD98], [SP07]

• ν- gap metric and ν- synthesis [ZD98]

to name a selection of the main streams which are the most widely applied control design
techniques for aircraft flight control [Bal03]. The classical ideas behind the different
domains are briefly sketched in the following, giving the basic idea of the concepts.

1.2.3.1 Loopshaping Design

The core idea in the loop shaping approach is to obtain a compensator such that imposed
requirements on the open-loop singular values are satisfied. These open-loop singular
values requirements are derived from closed-loop objectives. Different advanced methods
for performing the loop shaping design exist like e.g. the loop transfer recovery method
in LQG design [KS72] or using the so- called normalized co-prime factor H∞ robust
stabilization problem [MG92].

1.2.3.2 LQG Control

The classical LQG control is a optimization- and signal-based approach where the exoge-
nous signals (process noise, e.g. measurement noise and disturbance signals) are assumed
to be stochastic with known statistical properties and the error terms enter the cost func-
tion in terms of the 2-norm. A shortcoming of the LQG controller, which is a combined
optimal state estimation (Kalman filter) and optimal feedback controller (LQR), is the
lack of satisfactory robustness properties as there are no guaranteed stability margins
[Doyle 1978].

1.2.3.3 Structured Singular Value Theory

The structured singular value theory in combination with a unified framework allows the
treatment of robust stability and robust performance analysis for systems with structured
uncertainty. In the context of flight control law clearance problems µ— analysis can easily
address frequency domain criteria for example the stability margin criterion [FVBS02].
Therefore, the influence of uncertain model parameters on the closed-loop dynamics is
captured via so-called linear fractional transformation (LFT) based uncertainty models.
The captured uncertainties can be structured or unstructured. The structured uncer-
tainties describe uncertainties in parameters such as inertia, center of gravity, stability
derivatives etc., which are known within a specific range. The unstructured uncertainties
in contrast originate from unmodelled dynamics in the model. The small gain theorem
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(SGT), defines a robustness criterion for a closed-loop model containing unstructured un-
certainty. The resulting level of conservatism in the robustness analysis can be reduced
if the uncertainties are structured, meaning that the uncertainty modelling has a certain
structure as it is the case for many uncertainties of aerospace systems as mentioned be-
fore. For these cases based on structured LFT based uncertainty models the structured
singular value robustness measure can be derived with the multi-variable Nyquist stability
theorem [FVBS02]. Moreover, the structured singular value can be interpreted in terms
of classical gain/phase margin and Nichols exclusion region robustness specifications as
done in [FVBS02]. In contrast to gridding approaches traditionally used by industry,
which generally only test for all combinations of the extreme values of the uncertain pa-
rameters, that the criterion is not violated, µ -analysis supplies the possibility to check if
all exclusion regions in the Nichols plane have been avoided for all possible combinations
of the values of the parametric uncertainties.

1.2.3.4 H2 and H∞ Control Theory

The LQG problem constitutes a special case of H2 optimal control. The H∞ optimization
can constitute a fundamental tool for µ-synthesis ([ZD98]) and originated back in the
1980’ motivated by the shortcomings of LQG control. Both H∞ and H2 control require
the solutions to two Riccati equations and involve based on a state-space realization
of a generalized plant a minimization of H∞ and H2 norms respectively. Furthermore,
both techniques provide controllers of equal state dimension as the generalized plant and
exhibit a similar structure as the LQG controller. In contrast to H2 control where the
optimal controller is unique, it is theoretically and numerically complicated to provide an
optimal H∞ controller. Thus, in general a sub-optimal controller is obtained [SP07]. But
on the other hand the H∞ approach is preferred over the more traditional H2 norm when
uncertainties need to be addressed [SP07]. The objective of the H∞ robust stabilization
problem [GM89] is to maximize the stability margin of normalized co-prime factor plant
descriptions, thus stabilizing a set of perturbed models and not only the nominal plant.

1.2.3.5 ν- gap Metric and ν- Synthesis

The gap metric was introduced for the study of the robustness of stability of feedback
systems subjected to uncertainties [El-85]. It was motivated by the fact that examples
can be constructed, where the norm of the difference between two systems is a poor
measure of their distance as it approaches infinity though the systems are close together.
Situations were identified, where the gap metric constitutes a better suited metric for the
distance between two linear systems than a metric based on norms. In addition, the gap
metric can be applied to unstable systems. Seeking for more efficient ways for computing
the gap with better numerical and analytical properties, the gap metric was modified,
resulting in the ν-gap metric which has a clear frequency response interpretation [Vin93].
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It introduces the ν-gap distance, which can be interpreted as a kind of measure of the
importance of the difference in behavior of two systems. The ν-gap can be applied to
measure the difference between a perturbed (uncertain) system and the corresponding
nominal system [FVBS02]. It offers the possibility to analyze stability margin criteria ,
and it is a linear frequency domain method.

Summary - Robust Control Most of the concepts have in common that based on a
nominal plant specific uncertainties are assumed in the one or other way. The uncertainty
model, that approximates the possible discrepancy between nominal plant model and
expected true plant, in this context is often denoted as plant envelope. The real plant
is often assumed to lie within this plant envelope. The model and uncertainties are
commonly assumed to be given a priori. Based on the assumed structure and values of
the uncertainties a control design is performed that assures that the addressed control
objectives are satisfied for a specific set of uncertainties.
A draw back of these approaches is that in general they lead to conservative controller
designs that are not perfectly parametrized for the real plant, which is only one realization
within the uncertainty set. Another risk of these methods is that in case, the discrepancy
between nominal model and real plant was modelled too inaccurately, such that the real
plant lies outside the assumed plant envelope, the resulting controller still might not satisfy
specific control objectives when applied to the true system. Furthermore, the workload
and complexity of these approaches is higher compared to a design of a linear controller
based on a linear nominal plant model using standard, classical methods. In general, it
is straight forward to design a linear controller, based on a linear nominal plant model,
that satisfies some specific control objectives such that the corresponding nominal closed-
loop system of nominal plant model and designed controller, inherits a perfect, desired
behavior. At the beginning of Chapter 3 an example is discussed, that further illustrates
the mentioned drawbacks.
In many applications, like the light UAV or general aviation sector, the nominal models
are often very inaccurate. Furthermore, the uncertainty structure and exact distribution
is often not well known because of the high costs related to system identification and
because the related extensive flight test campaigns are not affordable. The consequence of
the large uncertainties is, that the uncertainty model has to cover a large plant envelope.
The use of large plant envelopes, however, leads to a conservative controller. Besides
the large uncertainties to be covered, under-modelling is another issue. Under-modelling
might arise from

• underestimated uncertainties

• neglected higher order dynamics in the nominal plant model

• neglected nonlinear effects like backlash in the actuation
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Due to the approximate character of the model, one might risk violating the control objec-
tives on the real system. But even in case that the true system is captured exactly by the
uncertainty model, the performance would only lie within some specified boundaries and
might be conservative, i.e. it will not correspond to the perfect, desired response that can
be achieved for the nominal plant model. It will be just acceptable. A desirable situation
though would be to be able to design the controller such that when applied to the true
plant the desired response could be achieved while keeping the costs and therefore the
effort and workload for controller design and assessment as low as possible.

The domain of robust control and model-based control design are in general an important
application area and motivator for the identification of models using experiment data. The
reason is that model-based control design assumes that a reliable model of the considered
plant is available. As a basis for robust control design, additionally a quantification or
suitable measure for the model uncertainty and its uncertainty structure is required.

1.2.4 System Identification

System identification is, as control design, an enormous scientific field which rapidly grew
since the 1950s. There exist different possibilities how to divide or classify this domain
into different research areas. One possibility with focus on the methods used within this
thesis is shown in Figure 1.1. First it is possible to distinguish between time domain and
frequency domain methods. The time domain system identification methods are a huge
domain, which of course can be divided into many subdomains. Since the applied methods
within this thesis are frequency domain methods an overview over the time domain meth-
ods is omitted, as it would clearly go beyond the scope of this thesis. For an overview the

Figure 1.1: Classification of considered system identification method. [Mer19]
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interested reader is referred to [Lju99], which counts as a standard reference work for time
domain system identification. With focus on flight dynamics applications [KM06] can be
named as classical literature. Frequency domain methods use logged experimental time
domain data to calculate the frequency response, by application of discrete Fourier Trans-
forms or spectral analysis, to name the most popular methods. There exist a variety of
standard reference literature on this topic since it enjoyed high popularity in engineering,
research and industry since the 1950s. References are for example [PS12] and [SM+05].
[RT06] applies frequency domain methods on flight dynamics identification, with focus on
rotor-crafts.
Motivated by model based and/or robust control design many identification concepts ad-
dressed methods to provide a nominal model of a plant with unknown dynamics and its
uncertainty region. For a long time, the research in the domain of system identification,
has put emphasis on characteristics such as consistency and efficiency, with regard to
the identification of the real plant based on the measurement data and guarantees on
the specified error/uncertainty bounds. Work focused also on more accurate identifica-
tion methods with tighter error bounds of the mismatch of estimated model and the real
plant. This was motivated by the fact that in model-based control design the performance
attained by controllers when applied to the real plant will rely on the nominal model and
the assumed uncertainties during control design. The higher the uncertainties the more
conservative will be the controller as it seeks to satisfy requirements for the complete
uncertainty set.

1.2.5 Interplay-Area of System Identification and Robust Con-
trol

In almost all domains including aerospace and flight control, control design and system
identification are often separated research areas, despite their actually strong interactions
and inter-dependencies. In the 1990’s the interplay-area of system identification and
robust control actually gained growing interest. Aiming an interaction between robust
control design and system identification a problem area indicated by "identification for
control" (from an identification point of view) or "experiment-based control design" (from a
control design point of view) evolved. These fields explicitly address a joint design of iden-
tification and control. The importance of that topic was advocated in [Gev93]. Until 2003
almost approximately 1500 paper only on the topic of identification for control have been
published according to [Gev05]. The key promoter for this development might have been
the plenary [Gev92] at the 1991 IFAC Symposium on System Identification. It defined
an agenda for research addressing the numerous open questions and key issues in this area.
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1.2.6 Identification for Control

The area of "identification for control” was initially motivated by the insight that even with
very simple models, high performance control can often be readily achieved, given that the
driving dynamical features of the system are accurately captured [Gev05]. Consequently,
since the model is always only an approximation of the true system, the identification shall
be tuned towards the intended application of the model. The reason is that the intended
application of the model determines the required quality of the model or frequency range,
where the model error shall be small.
The area of identification for control gained a lot of interest and according to [Gev05]
three main streams developed:

• experiment design

• control-oriented uncertainty sets

• definition of control-oriented identification criteria

One early attempt related to the area of experiment design was presented in [GL86],
where the experimental conditions for the identification where computed, taking con-
troller performance into account. The controller performance was taken into account by
minimizing the performance degradation, caused by the fact that the controller was com-
puted only based on an estimate of the true system and not the true system itself. This
approach as well as several other optimal control- oriented experiment design for identi-
fication methods suffer according to [Gev05] from the fact that the optimal experimental
conditions depend on the unknown system.
An important paradigm, which was formulated during that time and which is also driving
the concept in this thesis, is that when designing a controller based on a model, finally
all that matters is the achieved performance of this controller on the true system rather
than the quality or structure of the used model. This paradigm led to concepts and appli-
cations, where only the control performance objective was assumed to be known and the
model as well as the controller to be implemented were assumed as unknown. This led,
according to [Gev05], to the following formulation of the control-oriented identification
procedure: “Given a control performance objective, design the identification in such a way
that the worst case performance achieved by the model-based controller on the validated
uncertainty set of models is as high as possible”.
Further research was directed toward control-oriented uncertainty sets and was mo-
tivated by the observation that the design of the identification experiment influences the
model uncertainty set, which influences the set of admissible controllers and their worst
case performance on all models in the set. This further research work concentrated on
the interplay between model uncertainties and robust control in terms of the definition of
so called “control-oriented uncertainty sets” and computation of the corresponding model
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quality measures as a function of the experimental conditions [Gev05]. The field of experi-
ment design addresses topics as for example optimal input design for system identification
for open-loop identification and for closed-loop identification.
In the domain of control-oriented identification, the identified parametric model is
assumed to be good if the closed-loop system of the designed controller with the iden-
tified model is nearly the same as with the true system. Furthermore, it is argued that
the identification objective should be a function of the control performance objective.
The resulting work focused on the definition and computation of control-oriented nomi-
nal models and on “the design of identification criteria that minimize a (control-oriented)
measure of the model error” according to [Gev05]. Already back in the 90’s the developed
concepts aimed to define identification criteria for the plant model that minimize the
difference between the achieved and designed closed-loop. Thereby, the achieved closed-
loop denotes the controlled real plant and the designed closed-loop is the nominal plant
model controlled by the same controller as the real plant. This difference between the
two closed -loops, is usually expressed in terms of a norm of some control performance
criteria. It was found out that this way the control performance objective “shapes the
bias error distribution of the nominal model” [Gev05]. As a result the nominal model is
characterized by a bias error that is reduced especially in frequency regions where it is
important to have an accurate estimate in order to obtain a better controller. Especially
closed-loop experiment-based identification was found to provide good models for control
design, because in many approaches through the closed-loop experiment the identifica-
tion criterion automatically included a frequency weighting by the closed-loop sensitivity
function [HGd96]. The results of the domain of the control-orientated identification were
used in many approaches in the field of experiment-based control design.
Furthermore, they led to

• a revival of closed-loop identification [FL99], [Hea00], [Hea01a], [Hea01b], [Hea02],
[Hea03], [WG02], [WG04] (after observing that identification under closed-loop con-
ditions might be beneficial for many control performance objectives [HGd96])

• the development of iterative schemes of controller and model updates, which can be
subordinated to the domain of experiment-based control design

1.2.7 Experiment-Based Control Design

The domain of experiment-based control design is widespread. Also, the before men-
tioned concepts like adaptive control, auto-tuning using relay methods for example, or
the rule- based methods can be regarded as experiment-based control design methods.
Related concepts are categorized into iterative and non-iterative, into parametric and
non-parametric, into model-based (indirect) and data-driven (direct) as detailed below.

In [FHK14], a study is presented which compares model-based and data-driven con-
troller tuning. The obtained main conclusions of this study are:
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• If a model with not accurately known structure is identified using an ML estimator,
the data-driven approach is capable to statistically outperform the model-based
result regarding the final control cost, though the parameters’ variance remains
larger in the data-driven approach.

• Because under-modelling cannot be circumvented with a low-order model, data-
driven methods may provide better solutions in real applications

The study though only considers stable systems and open-loop experiments under the
assumption that the control objective is achievable. It was stated that a generalization of
the made conclusions is not straightforward.

1.2.7.1 Model-Based (Indirect) Schemes

An interesting area called "iterative schemes of controller and model updates" gained a
lot of interest in the 90’s. [VS95] gives a detailed overview of these iterative schemes and
introduces a generic form and framework within which most of the procedures can be de-
scribed. The iterative methods were developed driven by the desire of a joint identification
and control design, since classical methods in system identification and control design are
optimizing either the model or the controller while the other component is fixed. Because
an simultaneous optimization of both elements is not possible, [VS95], this led to the de-
velopment of iterative schemes directed toward an repeated and sequential optimization of
the controller and the model. For the identification of the model, thereby the results from
the domain of control-oriented identification were applied. Because of the sequential
and iterative character, these approaches were often interpreted as an indirect adaptive
control scheme with a time-scale separation between controller redesign and identification
in closed-loop [Gev05]. The generic form in [VS95] summarizes these iterative schemes.
The concept in this thesis might be interpreted as a method to successfully implement
this scheme in a non-parametric manner with only one iteration. The basic idea for the
iterative schemes is as follows. Based on experiments of the true plant P with a controller
C, a control performance index J(P,C) is calculated. This performance index is then
improved by tuning the controller based on the identified model from the experiment P̂ .
From closed-loop experiments first an approximate plant model P̂ is identified. Based on
this plant model the control performance cost, mainly expressed as a norm of the control
performance index J(P̂ , C) of plant model and controller, is minimized. The minimization
is performed by a control design method providing an updated version of the controller
that was initially tested in the experiment. Driven by the fact, that what really matters
is the performance achieved by the controller in conjunction with the real system, i.e. the
achieved closed-loop performance, the key element of these concepts is a special triangle
equation [Sch92, p. 25-27]. From this triangle equation it becomes obvious that instead of
minimizing the control performance cost of the true plant and controller ||J(P,C)||, which
represents the achieved performance, two other expressions can be minimized instead:
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• First, the performance degradation cost min
P̂
||J(P,C)−J(P̂ , C)||, is minimized with

respect to the plant model P̂ , such that a new plant model is obtained from the
closed-loop experiment. This kind of identification criterion measures the mismatch
between true system and model. This mismatch is measured in terms of the dif-
ference, between the control performance costs of the true system and model when
controlled by the same controller. It originates from the domain of control-oriented
identification, where data from closed-loop experiments is used for identification. It
aims to identify a plant model such that the resulting closed-loop system of model
and controller is as close as possible to the real experimental closed-loop system.

• Second, the estimated plant model is used to update the controller. This is per-
formed by minimizing the designed performance cost min

C
||J(C, P̂ )||, with respect to

the controller, such that a new controller is obtained. This ensures a high nominal
performance.

Once a pair of plant model and new controller is derived, it is evaluated as a candidate
solution to the joint problem of identification and control design. Besides a high nomi-
nal performance, also a robust performance is desired, meaning the achieved performance
shall be close to the designed performance. This is enforced by requiring the performance
degradation cost with the new controller to be small compared to the designed nominal
performance. In general these concepts will yield controller where the designed nominal
performance cost is minimized, but often there is no prior guarantee that this new con-
troller will also achieve this performance when applied to the real plant. Therefore, often
an additional robustness analysis needs to verify this.
Different iterative schemes have been developed following this basic concept but differing
in [VS95]

• the choice of control performance cost

• the way the closed-loop identification is treated

For example in [LAKM93] the performance cost and hence control design is based on the
internal mode control (IMC) paradigm. The approach in [ZBG91] bases its control design
strategy on an infinite horizon LQ-control objective and [SB93] on a H∞ robust control
design method, [BB90].
A common characteristic is though, that a joint performance criterion for both parts -
identification and control design - is used, as already described. In the iterations often
the performance level of the closed-loop is gradually increased such that already achieved
performances are constantly improved rather than aiming immediately for an ideal, but
possibly unachievable desired performance. For example in [LAKM93] or [SB93] the de-
sired closed-loop bandwidth is gradually increased with each iteration of identification
and control design.
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The iterative way of increasing the performance addresses cases, where the achievable
performance is unknown in advance. The iterative character also allows for a cautious
control performance improvement. Caution in the controller update is necessary, because
it is performed based on a model of the true plant and this plant model only approximates
the true plant in the operating condition. Another reason why a cautious controller up-
date or a cautious performance improvement might need to be performed, is that the true
plant might contain some nonlinearities or higher order dynamics, which are not reflected
in the model. As a consequence of these approximations, one might risk a high perfor-
mance degradation, e.g. that the performance of true plant with controller might not be
very close to the designed performance (of controller with plant model), if the controller is
changed too much. For small changes of the controller it is assumed that the plant model
is accurate enough such that in the vicinity of the controller that was used for identifying
this plant model the true closed-loop will behave as the designed closed-loop.
Another common factor of the iterative schemes is, that most approaches use a model
based controller design and therefore estimate a parametric model of the plant. Often
prediction error methods with a least-squares prediction error criterion are used for iden-
tification like in [LAKM93] or in [ZBG91]. In [SB93] the closed-loop identification is
performed based on a coprime factorization that is dual to the Youla parametrization of
stabilizing compensators [Vid11].
A problem that often emerges from the intermediate step of identifying a parametrized
plant model is, that if the model structure is assumed incorrectly or the assumed model
order cannot reflect or approximate the real plant dynamics accurately enough, this causes
modelling errors. This under-modelling of the plant might lead to a loss of information
that was actually present in the data and to a limitation of the achieved performance.
In fact, “it has turned out to be surprisingly difficult to guarantee that for model-based
control design methods, with a model of restricted complexity, the performance is near
optimal“ [Hja98]. But despite the fact that in general these iterative schemes do not
converge to the achievable minimum of the performance cost, as derived in [HGG95], the
concepts found their way into many process control applications (see e.g. [Gev05] for
an overview of these applications). A key driver might have been that in these kinds of
applications an extensive amount of closed-loop data is generated that can be easily used
to improve the controller.

1.2.7.2 Data-Driven (Direct) Schemes

The so called data-driven control methods were developed as an alternative to the model-
based approach. These techniques are denoted as “direct” because the data collected on
the plant is used to directly tune a parametrized controller, without an intermediate plant-
identification step. These techniques can be distinguished into iterative and non-iterative
(one-shot schemes). The most popular methods are:
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• a) Iterative Feedback tuning (IFT)

• b) Virtual reference feedback tuning (VRFT)

• c) correlation-based data-driven tuning (CbT)

a) Iterative Feedback Tuning Iterative Feedback Tuning (IFT) schemes as described
in [Hja98], use collected closed-loop experimental data on the true plant to directly tune
a parametrized controller, without a plant- identification step. The core idea of the IFT
concept originates from the situation that the control design objective is the minimization
of some criterion. The controller parameters are updated based on a gradient based ap-
proach, where the gradient of the criterion with respect to the controller parameters has
to be calculated. The core idea is, to approximate this gradient by using the system itself
instead of an identified parametric model, by performing a specific, additional gradient
experiment. With this direct approach it is avoided to have to solve an identification
step first, which itself requires an iterative minimization procedure. Moreover, when the
controller is changed a new local model of the criterion is created from new experimental
data. It was found in [Hja98] that such methods are less sensitive compared with model-
based methods. Regarding the calculation of the gradient, one of the first concepts was
to do a numerical approximation of the gradient by evaluating the criterion for pertur-
bations of the parameter vector and then calculating a difference approximation. The
need for these additional gradient experiments is especially impractical in applications,
like aircraft, where tests are expensive. Furthermore, the number of experiments is pro-
portional to the number of parameters, what becomes expensive and impractical for a
larger number of parameters. In the context of safety critical applications like aircraft,
another problem might be seen in the gradient experiments, where perturbed gains are
tested without clearance or stability guarantees.
In [HGG94] an LQG type design criterion is used together with closed-loop experiments
in order to perform controller updates in an iterative manner such that the criterion con-
verges to a local minimum, completely without requiring any model of the system. The
criterion includes as first term a quadratic norm of the error between the response of the
true system and the desired response (tracking error) and as a second term the quadratic
norm of the input signal to account for control effort. The gradient of the criterion is
based on closed-loop experiments directly and the approach is thus not model-based. The
objective can be manipulated between iterations in order to improve performance.
In [Hja02] which gives an overview over the iterative feedback tuning (IFT) methods it
is shown, that with the proposed experiment-based gradient estimation an unbiased esti-
mate is obtained. This is a key property of the IFT and allows to prove that under certain
conditions the scheme converges to a stationary point of the design criterion, regardless
of the order of the true LTI plant and the complexity of the controller. Furthermore, IFT
has proven to be robust to the properties of the plant compared with model-based meth-
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ods. As explained in [Hja02], and as simulations and practical experiments indicated, it
even performed well on numerous nonlinear systems like on the DC-servo with backlash
[HGGL98] for example. Further applications of IFT are listed in [Hja02].

b) Virtual Reference Feedback Tuning The virtual reference feedback tuning (VRFT),
[CLS00], is another data-driven controller-tuning method, where no model identification
of the plant is needed and that gained a lot of interest. The idea behind this “direct”
method is to reformulate the problem of designing a model-reference feedback controller
into a standard system-identification problem. It aims to identify the optimal parameters
of the controller such that the two-norm of an approximate model reference criterion is
minimized. The model reference criterion constitutes the difference between the reference
model, which describes the desired closed-loop behavior, and the achieved closed-loop sys-
tem based on the controller with the current parameter setting. The VRFT approaches
apply a specific filtering of the measured signals to calculate a time domain criterion that
approximates the model reference criterion. The filter usually depend on the reference
model and different variants of this filtering evolved. The controller parameters are calcu-
lated via minimization of this time domain criterion using non-standard prediction error
methods (PEM). Due to the dependency of the noise model on the controller parameters
the noise model has to be estimated correctly to derive consistent estimates of the optimal
controller parameters. Several concepts evolved, which propose different approaches to
deal with the problems introduced by the measurement noise. The so-called instrumental
variable approaches for example use multiple measurements, incorporating that the noise
of the different experiments is not correlated. But in general the VRFT approaches are a
“one shot” method, meaning non-iterative, in contrast to the IFT approaches.

c) Correlation-Based Data-Driven Tuning Approach [KvB07] presents the correlation-
based data-driven tuning approach (CbT) for fixed-order controller. The key element is a
convex correlation criterion, with respect to linearly parametrized controllers, that approx-
imates the model-reference control criterion. The main characteristics of this approach
are according to [KvB07]

• it minimizes the correlation between the model-reference error and the reference
signal instead of the two-norm of the model-reference error like in VRFT,

• an estimate of a correlation criterion is minimized using the least-squares algorithm

• for finite data length, however, the estimate of the correlation criterion is biased,
but based on a frequency-domain description of this bias it was shown that it will
in general improve the robustness of the closed-loop system

• it cannot be applied to nonlinear systems
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d) Other Concepts In [KPVDF17] a one-shot direct data-driven gain tuning concept
in the Loewner framework, based on frequency domain data, is presented. As the
VRFT, the proposed control technique is a model-reference based tuning scheme, where
the control objective is expressed in terms of a reference transfer function. This reference
transfer function represents the desired behavior of the closed-loop. Based on an open-
loop experiment, plant input and output time domain data is measured and the frequency
response of the plant is calculated. Thus, a non-parametric plant estimate is obtained.
Based on this plant frequency response and the desired closed-loop reference transfer
function an ideal controller frequency response is calculated. This obtained controller
frequency response is ideal in that sense that the closed-loop frequency response calculated
from the plant and ideal controller frequency response will match the desired frequency
response. The core of the concept is the following step, where the ideal controller is
approximated by a linear time-invariant system. This identification is performed via the
Loewner framework in the frequency domain.

The Loewner approach, which is originally used for model approximation and reduc-
tion by constructing a state-space model from frequency –domain data is here applied to
identify the controller. It constitutes an interpolation approach, where the model performs
a barycentric Lagrange interpolation and allows balancing between model complexity and
accuracy by specifying the controller model order. This design technique is applicable
to systems, where the controller structure is not fixed a priori. Furthermore, as other
data-driven tuning concepts it does not allow for stability and robustness analysis.

Another popular concept is the fictitious reference iterative tuning (FRIT) [Kan13].

e) Applications to Flight Control Experiment-based methods have been also ap-
plied in Flight control. [IPR+16] for example, presents a comparison study of the VRFT
and CbT methods with application to an attitude control law of a variable-pitch quadro-
tor. It was found that both methods provide similar tracking and disturbance rejection
capabilities. The CbT method though, appeared to show better robustness in the pres-
ence of low signal-to-noise ratios (SNR).
[ZIPL20] performs a data-driven MIMO attitude control- design for a multirotor UAV
based on a VRFT method. Because of unavoidable inertial couplings originating from
nonlinear effects and a non-perfect knowledge of the principal axes frame such a decoupled
controller may perform unsatisfactory in reality, such that a retuning might be necessary.
The VRFT method has been extended to allow the execution of data–collection experi-
ments under closed-loop conditions, because experiments for the tuning of such attitude
controllers can be executed safely only under closed-loop conditions. The design results
in a controller with MIMO FIR structure with integral action.

Another iterative experiment based tuning concept with application to flight control is pre-
sented in [Gra18]. Based on closed-loop flight tests with an initial controller a Low-Order
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Equivalent System (LOES) model of the closed-loop short-period dynamics is identified
using a least-squares solution. The control objective is a desired closed-loop short period
pole location, expressed in terms of two design parameters: natural frequency and damp-
ing ratio, but could be also chosen as other criteria like overshoot or settling time. The
control objective is achieved via an optimization. Therein a quadratic cost function of
the deviation of the design parameters from their desired value is minimized with respect
to the controller parameters using a Gauss-Newton optimization. A weighting based on
the residual covariance matrix, which describes the uncertainty on the estimated design
parameters, is incorporated into the cost function to prioritize more accurate data over
less accurate. The gradient of the cost function with respect to the controller parame-
ters, which is needed to update the controller parameters, is obtained from flight tests.
This includes that at each optimization step each controller parameter is sequentially
perturbed around its current value. For each perturbation an additional repetition of the
maneuver is performed with an subsequent identification of the corresponding closed-loop
LOES and the gradient can be computed using finite differences. The calculation of the
gradient, hence, requires the test to be repeated for each controller parameter variation at
each iteration. For higher numbers of parameters this could easily become extensive and
cost intensive. This could be circumvented according to [Gra18] by deriving an analytical
expression for these sensitivities by differentiating the corresponding equations of motion
as performed in [Gra15].

Summary - Data-Driven Schemes A critical step in direct data-driven control tuning
methods, which are based on model reference tuning such as VRFT and IFT tuning, is
the choice of a suitable closed-loop reference model. The difficulty arises from the fact
that the reference model should on one hand reflect the desired closed-loop performance,
but on the other hand it should also take into account the capability of the unknown plant
dynamics to reproduce the desired closed-loop behavior with the tuned controller, hence
be achievable. Consequently, the definition of the reference model is not straightforward,
since it would require knowledge of the plant, which the data-driven framework aims to
eliminate. Furthermore, in general no stability constraints are enforced in the algorithms,
such that stability of the closed-loop resulting from the algorithms with a given reference
model and controller structure, is not a priori guaranteed. This makes the tuning result
of these tuning algorithms and the achieved performance levels reliant on the choice of an
adequate reference model.
In [SPB18] therefore, an approach based on VRFT is proposed that optimizes a reference
model and a controller at the same time. This is achieved by minimizing a performance
index with respect to controller and reference model parameters. The performance index
includes two terms. The first term is composed of the tracking error and control input
efforts that would be present if the reference model was matched perfectly by the closed
loop. The second term penalizes the expected mismatch between the reference model and
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the true closed-loop.
But not only the choice of the reference model in data-driven reference-model based tuning
methods influences the achieved performance levels. Also, the chosen controller structure
has a high impact, since the reference model will be approximated with a different bias
by the resulting closed-loop systems. Other issues that might become critical are non-
minimum phase plants [CEGB11].
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This thesis is to be considered in the context of a linear baseline controller that is developed
as a component of a highly modular flight guidance and auto flight control system for
optionally piloted general aviation (CS-23) aircraft and unmanned systems.
The development process shall cope with the demands arising with the addressed aircraft
systems, i.e. general aviation aircraft. Especially the issue that extensive flight test
campaigns for model identification are not affordable and modelling efforts are time and
cost restricted shall be addressed. As a consequence only low fidelity and low order
models, with large uncertainties will be available for the control design. A controller
obtained with classical model-based methods might therefore underperform when applied
to the true system. In order to improve the performance of the controller a retuning might
be necessary. Other reasons, why a retuning of a controller might be necessary are

• Uncertainties in the plant model used for initial controller design

• reduced plant order, as effects like structural and aero-elasticity are in general not
part of the parametric model

• reduced plant performance due to e.g. components ageing

• variable plant performance due to changes in the operating conditions that are not
reflected by the simulation, e.g. different payloads, environment

• changes in plant performance due to modifications

Objective 1: To accomplish this task, a method shall be developed towards a systematic,
flight test experiment based retuning process of the controller gains.

In [FHK14] it was found that experimental data- driven control approaches without an
intermediate step of parametrized plant model identification might lead to better results
regarding the achievement of the final control objective on the true system. The reason
is that parametrized plant models always represent only an approximation of the true
system and under-modelling cannot be avoided with a low-order model. Hence, the infor-
mation about high order dynamics, e.g. aeroelastic modes, actuator or sensor dynamics
or nonlinearities, e.g. backlash, delays that might be present in the experimental data is
often neglected or gets lost in the model representation.
Objective 2: Therefore, the method shall be data-based and non- parametric, hence not
include an intermediate step of parametrized plant model identification.

In most of the above-mentioned situations, where an initial controller already exists and
where the objective is to improve its performance, an approach where closed-loop test can
be performed is attractive. Closed-loop tests are attractive in these situations, because
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they allow to perform the experiment to collect the data without requiring a special test-
bed and without requiring to modify the system. This significantly simplifies the retuning
process and reduces the costs.
Objective 3: As a consequence the developed method shall allow to update initial low fi-
delity model based controller gains, based on real measurement data from closed-loop flight
test. For the same reasoning, concepts where only the controller parameters are updated,
and the controller structure remains unchanged are beneficial.

Objective 4: The retuning procedure shall be in a deterministic manner and include the
impact of deviations of the real system dynamics from the assumed model on the controller
behavior automatically. The aim is to achieve compliance of the controlled system with all
relevant requirements in the real environment. Therefore, the baseline closed-loop dynam-
ics of the real aircraft in real flight shall correspond as close as possible to the nominal
designed closed-loop behavior.

As we saw in the State- of the Art many experiment-based model reference tuning ap-
proaches lack of the incorporation of stability or robustness constraints. Hence, the sta-
bility of the true closed-loop with retuned controller is not a priori guaranteed. This is
not acceptable for an aircraft.
Objective 5: Therefore, the approach needs to account for stability margins.
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With respect to the previously defined objectives, the main contribution of this thesis is
a novel experiment based controller retuning method. A methodology towards a clear,
systematic, experiment and non-trial and error based tuning process of the controller
parameters, based on real measurement data from tests under closed-loop conditions is
proposed. The aim of the developed method is to improve existing underperforming con-
trollers by retuning.

A beneficial characteristic of the concept is that the proposed method is non-parametric.
The controller parameters are updated directly from closed-loop input–output data, with-
out the intermediate step of a parametric plant-model identification. Since the perfor-
mance of model-based controllers is highly dependent on the model accuracy, one draw-
back of an intermediate model identification is a possible plant-model mismatch due to
inaccuracy in identified model structure or parameters. This problem is mitigated by the
developed concept by the fact that the closed-loop test data is exploited directly without
resorting to a parametrized plant model. This allows to take into account the true order
of the system in contrast to approaches based on a parametrized plant model which are
typically low order approximations of the system. Moreover, the demand for extensive,
costly flight test campaigns (to identify a very accurate model by full estimation of aero-
dynamic parameters, as performed in civil aviation) is mitigated. Hence, the method is
suitable for the currently highly emerging market of novel small to medium sized Manned
and Unmanned Aerial Vehicles as well as Optionally Piloted Vehicles for General aviation
aircraft, which are very cost-sensitive compared to large transport aircraft.

C1: Proposal of a novel test-based gain retuning procedure for linearizable
control laws The objective is to update controller parameters of an initial controller,
such that closed-loop performance requirements are satisfied on the true system. Based
on tests performed on the true system under closed-loop conditions with the initial con-
troller, the closed-loop and open-loop frequency response is estimated. Based on this,
the anticipated closed-loop frequency response and stability margins for an updated set
of controller parameters is calculated and used together with a desired closed-loop fre-
quency response within an optimization problem to adjust these controller parameters
to obtain an improved controller response as detailed below. The desired closed-loop
frequency response shall satisfy all performance requirements such that by minimizing
the deviation between the anticipated tuned closed-loop response and the desired one
sufficiently, the performance requirements are also satisfied on the true system.

C2: Formulation of an optimization problem for test-based gain-retuning A
specific optimization problem is proposed, which imposes the relevant design criteria
through a suitable optimization formulation such that deviations of the real system dy-
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namics from the assumed model are automatically included in the gain retuning. The
proposed optimization problem seeks to determine controller parameters such that the
deviation between the desired closed-loop frequency response and the anticipated closed-
loop behavior for a new controller parameter set in the frequency domain is minimized.
The deviation is quantified by a metric considering a weighted squared error in magni-
tude and phase of the respective frequency responses. The proposed deviation metric was
already used successfully in the context of low order equivalent system (LOES) identifica-
tion by [RT06]. In that context the deviation between measured frequency response and
LOES frequency response is minimized with respect to the plant parameters. The idea
in the context of this thesis is to use a similar structure to minimize the deviation be-
tween a desired closed-loop frequency response and an anticipated closed-loop frequency
response, which is detailed below, with respect to the controller parameters. Further-
more, a regularization is proposed by adding a penalization term, keeping the tuned gains
within reasonable bounds around the initial gains. Finally, stability criteria are enforced
by supplementary constraints.

C3: Method to calculate the non-parametric, anticipated closed-loop fre-
quency response for an updated controller parameter set A method to calculate
the non-parametric, anticipated tuned closed-loop frequency response for an updated con-
troller parameter set, based on closed-loop experiments with an initial controller is pro-
posed. First, based on experimental data a non-parametric closed-loop frequency response
estimate of the true plant with initial controller is calculated. Based on this estimate, the
anticipated closed-loop frequency response for an updated set of controller parameters
can be calculated, assuming that the controller, that was applied during the experiment
is linear and exactly known.

C4: Development of an analytic expression for the bias of the anticipated
closed-loop estimate For a single-input-single-output closed-loop system with a lin-
ear controller with error feedback and feed-forward an analytical expression for the bias
between the anticipated and true updated closed-loop frequency response has been de-
rived. It is shown that the bias is small for small changes in the feedback controller, large
initial feed-forward or large signal-to-noise ratios.

C5: Practical Demonstration on different aircraft including flight tests The
controller parameter retuning is demonstrated for a longitudinal baseline controller on a
real flexible large aircraft. The longitudinal baseline controller is part of a modular flight
control system and was flight tested on four different CS-23 aircraft. The controller entails
all components that are necessary for real applications, e.g. roll off filters to attenuate
noise, notch filters, control allocation, trim compensation etc.. The concept is analyzed
for this application via Monte Carlo simulations on a high fidelity 6 Degrees of Freedom
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simulation environment including real world effects like noise, structural and aeroelastic
modes, backlash and light turbulence. Finally, the concept is successfully demonstrated
with real flight tests.
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1.5 Structure of this Thesis

The remainder of this thesis is organized as follows: In Chapter 2 the theoretical back-
ground regarding the estimation of the Frequency Response Function of a linear dynamic
system is established. Section 2.1 focusses on the Empirical Transfer Function Estimate
(ETFE) under open-loop conditions. In Section 2.2 the ETFE is discussed in more detail
and the challenges in calculating the ETFE are discussed regarding the most relevant
effects and error sources. Finally, Section 2.3 addresses the estimation of the frequency
response of the plant under closed-loop conditions.

Chapter 3 presents the proposed test-based controller retuning concept. Section 3.1
gives an overview over the proposed procedure. The theoretical contents presented in
the following sections are demonstrated based on an illustrative example system, which
is introduced in Section 3.2. First, Section 3.3 introduces the made design choices and
assumptions. It is followed by the description of the closed-loop test maneuvers in Section
3.4, which are used for estimation of the initial closed-loop frequency response estimate.
Section 3.5 describes the estimation of the non-parametric frequency domain estimate
of the closed-loop of true plant with initial controller and its statistical properties. The
non-parametric frequency domain estimate of the closed-loop of true plant with updated
controller parameters is derived in Section 3.6, as well as its statistical properties. This
predicted closed-loop behavior is used as described in Section 3.8, via an optimization,
to determine new controller parameters. The optimization problem that is formulated
for this purpose incorporates constraints on the phase and gain margins to enforce the
required stability criteria on the obtained new system with updated controller parameters.
These are addressed in Section 3.7. Finally, Section 3.9 and 3.10 present evaluation criteria
and and possible adaptations for further applications.

Chapter 4 demonstrates the developed test-based controller retuning concept for an
inner-loop controller of a modular, cascaded flight guidance and control system for op-
tionally piloted general aviation (CS-23) aircraft and unmanned systems, that was suc-
cessfully tested in several flight test campaigns for different platforms. First Section 4.1
briefly presents the demonstration platforms for which the flight control system was devel-
oped and demonstrated on. Section 4.2 introduces the controller environment and Section
4.3 the simulation framework. Section 4.4 and 4.5 focus on the longitudinal and lateral
inner-loop, respectively. Each of the both sections presents the controller structure, the
test-based retuning concept and simulation and flight test results.

Finally, Chapter 5 concludes this thesis, summarizing its achievements as well as open
problems and proposes perspectives for future research.
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Chapter 2

Theoretical Preliminaries

This chapter addresses the theoretical Preliminaries regarding the estimation of the Fre-
quency Response Function of a linear dynamic system. Section 2.1 focusses on the Empir-
ical Transfer Function Estimate (ETFE) under open-loop conditions, giving and overview
and first idea of the concept. In Section 2.2 the ETFE is discussed in more detail and the
challenges in calculating the ETFE are discussed regarding the most relevant effects and
error sources. Finally, Section 2.3 addresses the estimation of the frequency response of
the plant under closed-loop conditions.

2.1 Measuring the Frequency Response Function of
a Linear Dynamic System

Estimating the Frequency Response Function (FRF) of a linear dynamic system together
with quantifying the quality of that estimate is "an old problem that is considered to
be well solved and completely understood" [SVBP09]. The inaccuracy in an estimated
transfer function can be quantified precisely in terms of bias and variance. In the following
subsections the preliminaries for measuring the FRF by an ETFE, are given and related
issues are discussed. As it constitutes an old and well understood problem different
solutions exist to elude many pitfalls.

2.1.1 Frequency Response Function of a Linear System

The transfer functions of continuous time systems are defined in terms of the Laplace-
transform of their input and output signals:

Gyu(s) = Y (s)
U(s) (2.1)
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The transfer function of a system characterizes its frequency response. At any frequency
ω, G(s = jω) is a complex number and hence can be represented by its amplitude and
phase according to

G(jω) = |G(jω)|ej∠G(jω) (2.2)

The frequency response of the system is given by

Y (jω) = G(jω)U(jω) = |G(jω)||U(jω)|ej(∠G(jω)+∠U(jω)). (2.3)

In the discrete case, transfer functions are defined in terms of the z-transform of their
input and output signals:

Gyu(z) = Y (z)
U(z) . (2.4)

The bilateral form of the z transform of a signal x is defined as:

X(z) =
+∞∑

n=−∞
x[n]z−n (2.5)

where x[n] is the n′th time sample of the signal x.

2.1.2 Empirical Transfer Function Estimate

According to Section 2.1.1 the discrete case transfer functions are defined in terms of
the z-transform of their input and output signals according to (2.4). To calculate the
exact z transform of a signal x the entire dataset from n = −∞ to n =∞ is required as
shown in (2.5). In real applications, however only a finite length record can be measured
and processed. The discrete transfer functions can be estimated based on finite, discrete
measurement data by the so called empirical transfer function estimate (ETFE), [Lju99],

Ĝyu(jωk) = YDFT (jωk)
UDFT (jωk)

(2.6)

where the z- transforms are approximated by the Discrete Fourier Transforms (DFTs) of
the input and output signals. The Discrete Fourier Transform (DFT) can be considered
as a special case of the z-transform. It calculates the z-transform for a finite number of
data samples for z on the complex unit circle, i.e. for z = ejω with angular frequency
ω ∈ R. Consider a discrete time sequence

x(t), t = 0, Ts, 2Ts, ..., (N − 1)Ts (2.7)

with sampling time Ts, sampling frequency fs = 1
Ts

and N samples. Note, as it might
be confusing, that it takes not Tw = NTs time to collect the N samples of the data, but
Tw − Ts. This is visualized in Figure 2.1. This means that for measuring periodic signals
with period Tw only a finite time sequence of Tw − Ts is necessary.
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Figure 2.1: Visualization of Tw.

The DFT, which is calculated from the discrete time sequence of x(t), evaluates at a
discrete frequency set fk, as integer multiples of the first harmonic frequency fH = 1

Tw
=

1
NTs

, i.e. the discrete sequence

fk = kfH = k
1

NTs
, k = 0, ..., N − 1 (2.8)

The DFT at the discrete angular frequency ωk = 2πfk is calculated according to [PS12]
as

XDFT [k] = XDFT [jωk]

= 1√
N

N−1∑
n=0

x(nTs)e−jωk(nTs)

= 1√
N

N−1∑
n=0

x(nTs)e−
j2πkn
N , k = 0, ...N − 1

(2.9)

Thereby, a scaling factor of 1√
N

is used, which returns an averaged amplitude [SVBP09].
Note, that different definitions for the scaling factor can be found in the literature. The
fft algorithm of MATLAB, which calculates the discrete Fourier transform (DFT) using
a fast Fourier transform (FFT) algorithm, applies a different scaling factor for example,
and calculates the DFT according to

XDFT [k] =
N∑
n=1

x((n− 1)Ts)ej
2π(k−1)(n−1)

N (2.10)
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Note, that here XDFT [k] denotes the Fourier coefficient at ωk = 2πfk, where

fk = (k − 1)fH = (k − 1) 1
NTs

, k = 1, ..., N (2.11)

which is due to the fact that matlab does not support zero indexing. Note, that the
DFT evaluates at frequencies which are multiple integers of the first harmonic frequency
fH = 1

NTs
, which is inversely proportional to the number of measurements N . Conse-

quently the frequency resolution of the DFT is increased if N is increased (while keeping
the same sampling rate).
According to [Lju99] the term "empirical" in ETFE shall indicate that no other assump-
tions on the system are made except linearity. It should be noted, that the scaling of
the DFT, which, as mentioned, varies in the literature, has no influence on the ETFE
estimates when the same scaling for the input and output signals are used.

The ETFE is a non-parametric model. Non-parametric models often share the prop-
erty that the number of "parameters" grows with the recorded data length. In the case
of the ETFE we saw that the frequency resolution of the DFT is inversely proportional
to the data length. Consequently, the number of frequencies, where the ETFE estimate
is calculated grows proportional to the data length [SVBP09]. In contrast, parametric
models are defined by a finite number of parameters. The number of parameters does
not depend on the data length. Instead, the number of parameters depends, for exam-
ple in the case of a transfer function model for a linear dynamic system, on the system
characteristics, like the number of poles and zeros. However, the ETFE based on the
DFT spectra of the input and output signal measurements as given in (2.6) differs from
the true transfer function Gyu(jωk). There are different sources for these errors. In the
following section the most relevant effects and their influences on the DFT and the ETFE
are discussed.

Example 2.1. Discrete Fourier Transform of cosine signal
The following simple example will be used throughout the following sections to illustrate
the presented theory with regard to the different concepts of measuring the FRF, their
relations, differences and drawbacks or issues. As example a cosine signal will be used, as
periodic functions can be expressed as the sum of sines and cosines through Fourier Series.
Since later, multi-sine signals will be used in the flight test-based gain tuning concept, this
simple example is suitable to illustrate the presented theory and to demonstrate the expected
issues. Consider a cosine signal of the form

x(t) = Ax cos(2πfxt) (2.12)

with amplitude Ax and angular frequency ωx = 2πfx where fx is chosen as an integer
multiple of the first harmonic frequency fH in this example and fx ≤ fs/2. The second
assumption is important in order to prevent aliasing as will be shown and explained later.
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With fx = mxfH = mx
1

NTs
, mx ∈ {mx ∈ N | mx ≤ N

2 } the sampled signal x(t) is expressed
as

x(nTs) = Ax cos(2πfx(nTs)) = Ax cos(2πmxn

N
) (2.13)

The DFT according to Equation (2.10) or (2.9) will provide the two-sided spectrum. Mean-
ing that the amplitude |XDFT | plotted over fk will be zero except for f = fx and f = fs−fx.
The peak at these frequencies will have a value of

∣∣XDFT (fx)
∣∣ =

∣∣XDFT (fs − fx)
∣∣ = Ax

2 N (2.14)

in case the FFT algorithm of MATLAB was used and

∣∣XDFT (fk)
∣∣ =

∣∣XDFT (fs − fx)
∣∣ = Ax

2
√
N (2.15)

in case that Equation (2.9) was used for calculating the DFT. The latter case is demon-
strated in the following:
Derivation. Based on the relations

ejω = cos(ωt) + j sin(ωt) (2.16)

and
e−jω = cos(ωt)− j sin(ωt) (2.17)

sines and cosines can be rewritten as complex exponentials:

ejωt + e−jωt = 2 cos(ωt)⇒ cos(ωt) = ejωt + e−jωt

2 (2.18)

and
ejωt − e−jωt = 2j sin(ωt)⇒ sin(ωt) = ejωt − e−jωt

2j (2.19)

The DFT of the cosine signal (2.13) using (2.9) is

XDFT (k) = 1√
N

N−1∑
n=0

(Ax cos(2πmxn

N
))e−

j2πkn
N

= Ax√
N

N−1∑
n=0

(e
j(2πmxn

N
) + e−j(2π

mxn
N

)

2 )e−
j2πkn
N

= Ax

2
√
N

N−1∑
n=0

(e−j2π
(k−mx)n

N + e−j2π
(k+mx)n

N )

(2.20)

For k = mx it can be immediately seen that the first term of the sum becomes N . For
k 6= mx

N−1∑
n=0

e−j2π
(k−mx)n

N = 0 (2.21)

35



2.1 Measuring the Frequency Response Function of a Linear Dynamic System

holds, which can be derived using the formula for geometric series given by

N−1∑
n=0

rn = 1− rN
1− r (2.22)

for r 6= 1. With r = e−j2π
(k−mx)

N , (2.22) becomes

N−1∑
n=0

(e−j2π
(k−mx)

N )n = 1− e−j2π(k−mx)

1− e−j2π
(k−mx)

N

= 1− e−j2πkej2πmx

1− e−j2π
(k−mx)

N

(2.23)

Since k and mx are integers and ej2πp = 1 for any integer p, (2.23) will be 0 except for
k = mx where r = 1 and the sum becomes N .
Multiplication of the second exponential term in (2.20) with 1 = ej2πn results in

N−1∑
n=0

e−j2π
(k+mx)n

N ej2πn
N
N =

N−1∑
n=0

e−j2π
(k−(N−mx)n

N (2.24)

Using again the geometric series formula it can be shown that (2.24) is N for k = N−mx

and 0 for k 6= N −mx. Consequently (2.20) becomes Ax
√
N/2 for k = mx or k = N −mx

and 0 for all other k:

XDFT (k) =


Ax
2

√
N for k = mx or k = N −mx

0 otherwise
(2.25)

The DFT in (2.20), hence, provides the two-sided spectrum, meaning that there will be a
peak at fx and at fs − fx. For reconstructing the amplitude of the signal x the amplitude
of the conjugate complex XDFT (k) for the first half of frequencies needs to be doubled.
Thereby, the amplitudes at the first frequency at f0 = 0 and fN/2 = fs/2 are excluded
from doubling and are considered only once. Division of the so obtained amplitude by√
N if Equation (2.9) was used or rather by N if the FFT algorithm of MATLAB was

used, results in a value which exactly corresponds to Ax. Note, that the MATLAB "angle"
command, interprets the signal as a cosine. Hence, when calculating the phase of the
complex number XDFT using "angle" and the signal x was a sinus, then the resulting
phase will be shifted by 90 degrees (π/2) as sin(x+ φ) = cos(x+ φ− π/2).
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2.2 Challenges in Measuring the Frequency Response
Function

To understand the most relevant effects and error sources when calculating the ETFE
it is essential to understand how the Fourier Transform (FT), the discrete Time Fourier
Transform (DTFT) and the discrete Fourier Transform (DFT) are connected and what
their application, purpose and reasoning is.

2.2.1 Fourier Transform and Fourier Series

Many time-varying signals have a spectrum, meaning that the signal can be expressed
depending on a continuum of frequencies. The Fourier transform allows to transform
a time-varying signal, which is a representation in "time domain", into the "frequency
domain", meaning a function depending on the frequency. The inverse of the Fourier
transform allows to transform the signal back into time domain. Hence, the representa-
tions in frequency and time domain are for many types of functions equivalent [Osg19].
The Fourier transform or spectrum of an infinite long continuous signal x(t) is defined as
[Pap62, p. 1]

XFT (f) = F{x(t)} =
∞∫
−∞

x(t)e−j2πftdt (2.26)

and in terms of angular frequency ω = 2πf as

XFT (ω) = F{x(t)} =
∞∫
−∞

x(t)e−jωtdt (2.27)

It is possible to represent the signal x(t) by its inverse

x(t) = F−1{XFT (f)} =
∞∫
−∞

XFT (f)ej2πftdf (2.28)

In terms of angular frequency the integral becomes with change of variables by substitution
with dω

df
= 2π, hence df = dω

2π

x(t) = F−1{XFT (ω)} = 1
2π

∞∫
−∞

XFT (ω)ejωtdω (2.29)

Note, that in literature different definitions can be found, introducing a factor of 1
2π

in (2.27) instead in (2.29), or 1√
2π in both equations. Even a change of the sign of

the exponent is possible [Pap62]. As a consequence the confusion is often very high.
This is emphasized by a very representative sentence from the Flying qualities of piloted
aircraft handbook, MIL-STD-1797A, published by the US department of defense, when
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dealing with the implementation matters of atmospheric disturbance models and with
spectral forms: "This matter is particularly confusing because spectral forms are written
in a number of ways - one-sided or two-sided, in terms of spatial or temporal frequency,
or in terms of angular or cyclical frequency. ... Finally, when using the more
complex models it seems nearly impossible to formulate a program without
an error involving a factor of 2 or π"[US 97, p. 694]. Therefore, this thesis starts
with the definition of the Fourier transform and Fourier series, to provide in a complete
and consistent manner the addressed relations. In the appendix detailed derivations of
the given relations can be found, because in literature often important or tedious steps
are left out, which makes it difficult to understand why the stated formulas or why certain
relations hold.
Fourier transforms were motivated by the study of Fourier series, where complicated but
periodic functions with period T can be expressed as the sum of sines and cosines. Under
certain conditions a signal x(t) can be such written as the sum [Pap62, p. 1]

x(t) =
∞∑

n=−∞
Cne

jωnt (2.30)

with ω = 2πf = 2π
T

and where the coefficients are given by

Cn = 1
T

∫ T/2

−T/2
x(t)e−jωntdt (2.31)

The Fourier transform is often interpreted as the decomposition of waves into sinusoids
or as a transformation from time domain to frequency domain. Sines and cosines can be
rewritten as complex exponentials:

ejΦ = cos(Φ) + jsin(Φ) (2.32)

where the current angle is Φ = 2πt and the wave ejΦ completes one cycle per second if t
is measured in seconds.
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Example 2.2. Fourier Transform of cosine signal
For our cosine signal example x(t) = Axcos(2πfx), which was introduced in Section 2.1.1,
the Fourier transform at angular frequency ω = 2πf is given as

XFT (f) = F{x(t)} =
∞∫
−∞

Axcos(2πfx)e−j2πftdt (2.33)

Using (2.18), (2.33) becomes

XFT (f) =
∞∫
−∞

Ax
e−j2πfxt + ej2πfxt

2 e−j2πftdt

= Ax
2

∞∫
−∞

(e−j2π(f+fx)t + e−j2π(f−fx)t)dt
(2.34)

It is commonly known in literature, that the infinite integral of the complex exponential
function is (see Lemma B.0.1):

∞∫
−∞

e−j2πftdt = δ(f) (2.35)

where δ(f) is the Dirac impulse, Definition A.0.1. Using (2.35) in (2.34) leads to

XFT (f) = Ax
2
(
δ(f + fx) + δ(f − fx)

)
(2.36)

This result shows that there will be two infinite peaks at f = ±fx. The amplitude of
the cosine signal can be reconstructed from the Fourier transform by integrating over the
frequency of the cosine signal as follows

−fx+ε∫
−fx−ε

XFT (f)df +
fx+ε∫
fx−ε

XFT (f)df = Ax
2

 −fx+ε∫
−fx−ε

δ(f + fx)df +
−fx+ε∫
−fx−ε

δ(f − fx)df


+ Ax

2

 fx+ε∫
fx−ε

δ(f + fx)df +
fx+ε∫
fx−ε

δ(f − fx)df


= Ax

(2.37)

The integral was found using the sifting property, Property A.0.1, of the Dirac impulse,
resulting in property (A.4) given by

∫ t2

t1
δ(t− t0)dt = 1 (2.38)

for t1 < t0 < t2. Note, that if the investigated signal is composed of a sum of multiple
cosines, there will be diracs at each frequency, associated with their respective amplitude.
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2.2.2 Sampling - Relation between DTFT and FT

Section 2.1.2 introduced the ETFE as the ratio of the DFT spectra of the output and
input signal measurements (2.6). Ideally the ETFE would be calculated using the Fourier
transforms of the signals. Due to different reasons it is not possible to calculate the FT
in many real world applications: First, for digital systems, continuous signals of physical
quantities can only be measured at discrete time steps at some sampling frequency fs.
The signal behavior between these time steps is unknown and only the measured discrete
values are stored and processed in computers. Additionally, the measured signals are
not infinitely long. Hence, it is not possible to calculate the Fourier transform XFT (ω)
of the continuous signal x(t), and instead the frequency response of a transfer function
is estimated over the ETFE by calculating the discrete Fourier transforms of the finite
length sampled input and output signals. When calculating the DFT different essential
errors in the calculated Fourier spectra can occur if for example the sampling or the
observation/measurement time is chosen inappropriately. This section deals with the
sampling effects. The next section will further investigate the effects related to finite
observation length.
In order to understand the effects, when calculating the DFT of a sampled signal, we
will first investigate the discrete time Fourier transform (DTFT), as this deals with the
sampling process, and how the DTFT differs from the FT of the continuous signal. In
contrast to the DFT the DTFT assumes an infinite long signal. But the DFT and DTFT
have in common that they are applied to a signal which is a discrete sequence. The DTFT
according to [Rao08, p. 194] can be defined by

XDTFT (ω) =
∞∑

n=−∞
x[n]e−jω(nTs)

XDTFT (f) =
∞∑

n=−∞
x[n]e−j2πf(nTs)

(2.39)

where ω = 2πf = 2π
T

and x[n] is a discrete sequence of the measured signal’s samples
given by

x[n] = x(nTs) (2.40)

with the sampling time Ts. Note, that the DTFT in (2.39) is continuous in ω or f . It shall
be not confused with the sampling frequency fs = 1/Ts of the discrete sequence (2.40).
Another common definition of the DTFT is given by [Pou18, p. 17-1]

XDTFT (ω̄) =
∞∑

n=∞
x[n]e−jω̄n (2.41)

where ω̄ = ωTs is the frequency in radians per sample and not radians per second like in
(2.39). By Lemma C.0.1, the DTFT (2.39) can be equally expressed by
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TsXDTFT (f) =
∞∑

k=−∞
XFT (f − kfs) (2.42)

This result shows that by calculating the DTFT (2.39) with the discrete sequence x[n]
of the sampled signal x(nTs), the Fourier transform XFT (f) of the continuous signal x(t)
is still entailed. But there will be also copies of XFT (f) with a distance of kfs as the
sum in (2.42) constitutes a periodic repetition of XFT (f). Note, that dependent on the
definition of the DTFT you choose, there may exist a scaling between the DTFT and FT
coefficients. For this specific choice of the DTFT (Equation (2.39)) there will be a scaling
factor of Ts. Figure 2.2 shows the FT and DTFT for the cosine signal x(t) = Ax cos(2πfx)
from our example with fx < fs/2. The continuous FT transform of x(t) is depicted as the
blue spectrum, see also Equation (2.37). The DTFT is the green spectrum and results
from the repetition of the FT with period kfs. To obtain the FT from the DTFT only
frequencies from −fs/2 to fs/2 shall be considered, due to the repetitions.

Figure 2.3 shows the FT and DTFT for the cosine signal x(t) = Ax cos(2πfx) from our
example with fx > fs/2. As the DTFT results from the folding of the FT with period kfs
the DTFT will entail non-zero values in the frequency range from −fs/2 to fs/2, though
the FT is zero in this frequency range. This makes it difficult to determine the origi-
nal frequency of the cosine signal. If the signal is restricted to contain only frequencies
smaller than fs/2 this problem does not occur. Figure 2.4 visualizes this folding effect
in a schematic. Assume that in blue the Fourier Transform of some signal is given. We
see that the signal entails also frequencies larger than fs/2. The DTFT for the frequency
range −fs/2 to fs/2 is depicted in green. It obviously differs from the FT of the signal as
the high frequency content of the FT is folded down to the considered frequency range.
This is called aliasing. It can be summarized that aliasing can be avoided in case
that the frequency content of the considered signal is below fs/2, meaning
that the signal is band limited. The frequency fNy = fs/2 is called Nyquist
frequency.

In literature the sampling of a continuous signal x(t) is often modelled as a multipli-
cation with a dirac comb

IIITs(t)x(t) (2.43)

where
IIITs(t) =

∞∑
n=−∞

δ(t− nTs) (2.44)

A dirac comb is an impulse train, where the dirac impulses are periodically repeated
with period Ts. Note, that this is not equal to the sampled signal x(nTs). It is rather
a mathematical representation that is often used in literature to gain insight into the
properties of the DTFT/DFT. The Fourier transform of (2.43) is equal to the DTFT of
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the sampled sequence x(nTs) by Lemma F.0.1.

F{IIITs(t)x(t)} = XDTFT (f) (2.45)

We will use this construct in the next section to obtain more insight into the effects related
to finite observation length.
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Figure 2.2: Fourier Transform and Discrete Fourier Transform of cosine example signal
with fx < fs/2.

Figure 2.3: Fourier Transform and Discrete Fourier Transform of cosine example signal
with fx > fs/2.
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Figure 2.4: Visualization of aliasing.
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2.2.3 Truncation (Finite Length Signals)

In Section 2.2.2 the DTFT was introduced as a possibility to calculate the Fourier trans-
form of a signal x(t), where only the discrete samples x(nTs) are available. Conditions
for which the FT can be obtained over the DTFT were discussed as well as errors (alias-
ing) that might occur if the sampling frequency is chosen inappropriately or the signal
is not band limited. But the DTFT requires an infinite long discrete sequence of x(t).
This is not possible in applications. Measurement records are restricted to a finite length.
This section shows that with the Discrete Fourier Transform (DFT) the values of the
Fourier Transform at discrete frequencies can be obtained for finite length, band limited,
sampled periodic signals if the measurement or observation time is chosen appropriately.
Furthermore, the modelling of finite length signals using so called windowing functions
is discussed. The resulting construct is used to gain insight into errors that occur if the
number of available samples of the signal x(t) is inappropriate. These effects are called
leakage.

2.2.3.1 Relation between DTFT and DFT

In Section 2.2.2 the DTFT was introduced by

XDTFT (f) =
∞∑

n=−∞
x[n]e−j2πf(nTs) (2.46)

with the discrete sequence x[n] = x(nTs) which is composed of the samples of x(t) at
sampling frequency fs = 1

Ts
. As introduced in Section 2.2.2, by Lemma C.0.1, the DTFT

corresponds to
XDTFT (f) = 1

Ts

∞∑
r=−∞

XFT (f − rfs) (2.47)

meaning that the FT of the continuous signal x(t) can be reconstructed by application
of the DTFT to the infinite discrete sequence x(nTs). Therefore, the signal needs to
be band limited such that no frequencies larger than the nyquist frequency fNy = fs

2
are contained in the signal. Otherwise, the aliasing effect will introduce errors to the
frequency spectrum. If the signal x(t) is periodic with period Tw = NTs, meaning

x(t) = x(t+mTw) (2.48)

with m ∈ Z, where Z is the set of integers, and where N is the number of measured
equidistant samples of x(t), and when the DTFT is evaluated at discrete frequencies

fk = kfH (2.49)
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which are integer multiples of the harmonic frequency fH = 1
Tw

, then by Lemma H.0.1,
the following relation holds

XDTFT (fk) = 1√
NTs

δ(0)XDFT [k] = 1
NTs

δ(0)
N−1∑
n=0

x[n]e−
j2πkn
N (2.50)

This relation holds under the condition that the signal x(t) is periodic with period Tw =
NTs and shows that XDFT (2.9), will equal XDTFT scaled with factor 1√

NTs
δ(0). This

means that for periodic signals with period Tw only a finite time sequence of x(t) of
Tw − Ts is necessary to exactly calculate the DTFT, which would otherwise require an
infinite time sequence of x(t). We have now arrived at a construct that is implementable on
a digital computer and that, as desired, exactly recovers the FT under certain conditions
as was shown in Section 2.2.2. Note, as it might be confusing, that it takes not Tw time
to collect the N samples of the data, but Tw − Ts. This is visualized in Figure 2.1.

2.2.3.2 Leakage

A finite time sequence can be modelled as a multiplication of the infinite sequence x(nTs)
with a rectangular window function w(t), see Figure 2.5. This window function equals one

Figure 2.5: Rectangular window function in time domain.

during the experiment and is zero outside the observation interval [0, Tw], where Tw = NTs

is the window length with the sampling time Ts and where N is the number of samples
of x(t). The rectangular window function is defined by

w(t) =

1 for 0 ≤ t < Tw

0 otherwise
(2.51)

Other window functions exist for different purposes. In most cases the window functions
are non-zero during the observation and zero outside the measurement interval. From
(2.45) we know that the DTFT of x(nTs), equals the Fourier transform of the continuous
signal x(t) multiplied with a dirac comb, which is often used as a model of the sampling
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process:
XDTFT (f) = F{IIITs(t)x(t)} = F{

∞∑
n=−∞

δ(t− nTs)x(t)} (2.52)

If we now additionally apply the rectangular window function to x(t), we obtain a con-
tinuous time mathematical model of the truncated sampled sequence of x(t):

x̃(t) = IIITs(t)x(t)w(t) (2.53)

By Lemma J.0.1, the FT of (2.53), equals the DFT, (2.9), of x(nTs) at the discrete
frequencies f = kfH , k ∈ Z and scaled with factor

√
N :

X̃FT (kfH) = F{IIITs(t)x(t)w(t)} =
√
NXDFT [k] (2.54)

Note, that the Fourier transform of x̃, by Lemma K.0.1, can also be expressed by

X̃FT (f) = F{IIITs(t)x(t)w(t)}
= F{IIITs(t)x(t)} ∗ F{w(t)}

=
∫ ∞
−∞

XDTFT (f̄)Twsinc(π(f − f̄)Tw)e−jπ(f−f̄)Twdf̄

(2.55)

At the discrete bin frequencies f = kfH , k ∈ Z, the Fourier transform (2.55) equals

X̃FT (kfH) =
∫ ∞
−∞

XDTFT (f̄)Twsinc(π(kfH − f̄)Tw)e−jπ(kfH−f̄)Twdf̄

= Tw

∫ ∞
−∞

XDTFT (f̄)g(f̄ , kfH)df̄
(2.56)

where
g(f̄ , kfH) = sinc(π(kfH − f̄)Tw)e−jπ(kfH−f̄)Tw (2.57)

This result provides insight into the occurring effects due to windowing or finite time
domain data samples. These are visualized and explained based on our example with the
cosine signal x(t) = Axcos(2πfx). In Section 2.2.2 the DTFT of this signal was depicted
for the cases: fx < fs

2 and fx > fs
2 in order to visualize the aliasing effect, which is

connected to the sampling process. Here we will focus on the case that fx < fs
2 , because

we aim to investigate the effects related to the finite observation length. Furthermore, we
will distinguish 2 cases:

• fx = mfH = m 1
Tw

= m 1
NTs

, m ∈ Z, meaning, the signal x(t) is periodic with period
Tw. Thus, fx is a multiple integer of the harmonic frequency fH = 1

Tw

• fx 6= mfH , meaning, the cosine frequency is not a multiple integer of fH .

The function g(f̄ , f = kfH), (2.57), is depicted in Figure 2.6 over f̄ , at the discrete bin
frequencies f = kfH for k = 0, k = 1 and k = 2. For each of these frequencies, the
absolute value, the real part and the imaginary part of (2.57) are shown. Note, that for
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f̄ = lfH , l ∈ Z, the real and imaginary parts and hence the absolute value of g(f̄ , f) are
zero, except for f̄ = f = kfH , where the absolute value and the real value equal 1. Note
also, how g(f̄ , kfH) is shifted with k.

Figure 2.7 depicts in blue, the FT of the cosine signal x(t) = Axcos(2πfx), where
fx = 2fH < fs

2 , and in green the respective DTFT. As already explained in Section
2.2.2 the DTFT of x(nTs) will recover the FT of x(t) with a scaling in the frequency in-
terval −fs

2 < f < fs
2 , as fx <

fs
2 . Figure 2.7 is separated into 3 subplots, showing XFT (f̄),

XDTFT (f̄) and
∣∣∣g(f̄ , kfH)

∣∣∣ and X̃FT (kfH) for k = 0, k = 1 and k = 2. The first subplot
shows

∣∣∣g(f̄ , kfH)
∣∣∣ and X̃FT (kfH) for k = 0. At the bin frequencies f̄ = lfH , l ∈ Z, g(f̄ , 0)

is zero except for l = k = 0, because of

sinc(π(0fH − lfH)Tw) = sin(−πlfHTw)
−πlfHTw

= sin(πl)
πl

=

1 for l = 0
0 l ∈ Z \ {0}

(2.58)

Consequently, as can be directly seen in the same subplot, the multiplication of XDTFT (f̄)
with g(f̄ , 0) will result in zero for all f̄ . Hence, the integral (2.56) and consequently
X̃FT (f = 0) are zero, too.

The second subplot in Figure 2.7 shows
∣∣∣g(f̄ , kfH)

∣∣∣ and X̃FT (f = kfH) for k = 1. Com-
pared to

∣∣∣g(f̄ , 0)
∣∣∣, ∣∣∣g(f̄ , fH)

∣∣∣ is shifted by fH to the right. Again it can be seen that
X̃FT (f = fH) will be zero as g(f̄ , fH) is zero for f̄ = lfH , except for l = k = 1, because

sinc(π(1fH − lfH)Tw) = sin(π(1− l)fHTw)
π(1− l)fHTw

= sin(π(1− l))
π(1− l) =

1 for l = 1
0 l ∈ Z \ {1}

(2.59)

The third subplot in Figure 2.7 shows
∣∣∣g(f̄ , kfH)

∣∣∣ and X̃FT (kfH) for k = 2, meaning at
frequency 2fH , which is the chosen cosine frequency fx. The resulting value of the Fourier
transform of x̃(t) at this frequency will equal

X̃FT (f = 2fH) = Tw

∫ ∞
−∞

XDTFT (f̄)g(f̄ , 2fH)df̄

= Tw

∫ ∞
−∞

1
Ts

∞∑
r=−∞

XFT (f̄ − rfs)g(f̄ , 2fH)df̄
(2.60)

where (2.47) was inserted for XDTFT . For our cosine example the FT is given by (2.36)
and fx is chosen as fx = 2fH . Hence,
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X̃FT (f = fx) = Tw
Ts

∫ ∞
−∞

∞∑
r=−∞

Ax
2 (δ(f̄ − rfs + fx) + δ(f̄ − rfs − fx))g(f̄ , 2fH)df̄

= N
∫ ∞
−∞

∞∑
r=−∞

Ax
2 (δ(f̄ − rfs + 2fH) + δ(f̄ − rfs − 2fH))g(f̄ , 2fH)df̄

(2.61)

The sampling frequency is a multiple integer of the harmonic frequency, fs = NfH ,
because fH = 1

NTs
= 1

N
fs. Hence, (2.61) can be written as

X̃FT (f = fx) = N
∫ ∞
−∞

∞∑
r=−∞

Ax
2
(
δ(f̄ − (rN − 2)fH) + δ(f̄ − (rN + 2)fH)

)
g(f̄ , 2fH)df̄

(2.62)

This shows that the dirac impulses will be only non-zero at frequencies f̄ = (rN − 2)fH
with r ∈ Z. These frequencies are multiple integers of fH . The term g(f̄ , 2fH) instead is
zero for all f̄ = lfH except for f̄ = 2fH , where it equals 1. Hence, (2.62) can be reduced
to

X̃FT (f = fx) = N
∫ ∞
−∞

Ax
2 (δ(f̄ + 2fH) + δ(f̄ − 2fH))df̄

= NAx

(2.63)

where the integral was found using the sifting property of the dirac impulse, Property
A.0.1, Equation (A.4). Next the case is considered that fx is not an multiple integer
of fH . Figure 2.8 shows the FT of the corresponding continuous time signal x(t), the
DTFT of the infinite long time sequence x(nTs) and

∣∣∣g(f̄ , 0)
∣∣∣. It can be seen that at

frequency f = 0fH the Fourier transform of x̃(t), X̃FT (0) will not be zero, because fx is
not a multiple integer of fH and the bins of XDTFT at the frequencies fx + nfs are now
consequently not multiplied with a zero value of g(f̄ , 0).

Thus, the integral in (2.56) will produce a non-zero value for X̃FT (0). This effect is
called leakage. The same holds for other frequencies. Due to the leakage, the DFT of
x(nTs), which equals X̃FT with some scaling (see (2.54)), will not allow to reproduce the
FT of x(t) or to identify the frequencies of the signal and the respective amplitudes.
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Figure 2.6: Absolute value, real part and imaginary part of g(f̄ , f) for f = 0, f = fH ,
f = 2fH .
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Figure 2.7: Fourier transform of x̃(t) at frequencies f = 0, f = fH , f = 2fH , for
fx = 2fH .
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Figure 2.8: Visualization of leakage on Fourier transform of x̃(t) at frequency f = 0,
for fx 6= mfH .
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2.2.3.3 Avoiding Leakage with Periodic Excitations whenMeasuring the ETFE

The ETFE was defined in Section 2.1.2 according to [Lju99] by

Ĝyu(jωk) = YDFT (jωk)
UDFT (jωk)

(2.64)

It estimates the frequency response function (FRF) from input signal u(t) to output signal
y(t). Though, different scaling exist for the DFT see (2.9) or (2.10) for example, they
have no influence on the FRF if the same scaling are used in the DFT´s of the input and
output. To avoid aliasing, the excitation signal u(t) and y(t) should be bandlimited such
that the frequency content is below the nyquist frequency which is half of the sampling
frequency fNy = fs/2. If the excitation signal is periodic with period Tw and the system
is linear such that y(t) is also periodic with same period, the spectrums U(jω) and Y (jω)
are non-zero only at the discrete frequencies 2πkfH = 2πk 1

Tw
, which are integer multiples

of the harmonic frequency fH or the inverse of the period length Tw. The respective
spectrums will be line spectrums consisting of bins at the respective harmonic frequencies.
Furthermore, if full periods of the periodic signals are observed, such that Tw = NTs,
where N is the number of measured samples, no leakage will occur in the DFT’s of u
and y and the FRF at the regular frequency grid of discrete frequencies ωk = 2πkfH ,
k ∈ 0. . . N−1. Therefore, it is recommended whenever possible to use periodic excitation
signals and to observe integer multiples of their periods to avoid leakage [PS12].

In this thesis multisine signals, as will be presented in Section 3.4 are used as excitation
signals u(t), where the frequencies of the sine signals are multiple integers of the harmonic
frequency fH

fm = mfH ,m ∈ S (2.65)

and S is the set of the integer numbers from 0...N − 1. Since the DFT might be affected
by leakage at frequencies that are not an integer of fH the ETFE shall only be calculated
at discrete frequencies, which are a multiple integer of fH . Furthermore, the ETFE is not
defined at frequencies, where the DFT of u is zero, meaning at frequencies that are not
excited by the input signal u. Therefore, the ETFE is only calculated at the frequencies
fm. Consequently, no information about the FRF at non- excited integer frequencies or
intermediate, non –integer frequencies can be obtained. In the next section the influence
of noise on the ETFE will be investigated.

2.2.4 Effect of Noise on ETFE for Open-loop Plant Estimates

In the previous sections the ETFE was introduced as a possibility to estimate the non-
parametric frequency response of a linear dynamic system using the DFTs of the logged
input and output time domain data of a realization of the linear dynamic system. It
was concluded that the logged data shall be band-limited to avoid aliasing and a periodic
excitation with period Tw = NTs shall be used to avoid spectral leakage, assuming that the
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transients have died out. This section describes how noise on the logged data influences the
ETFE. As described before, the frequency response function (FRF) at the kth harmonic
frequency ωk = 2πkfH is given by the ratio of the DFTs at the respective frequency of
the output and input time domain data:

G(jωk) = YDFT (jωk)
UDFT (jωk)

(2.66)

For dynamic systems, in general, noise can originate from different sources, and it can be
considered in different ways. The noise disturbs the logged data. As a consequence the
measured DFTs Um,DFT (jωk),Ym,DFT (jωk) will differ from the true ones UDFT (jωk),YDFT (jωk).
Thus, the ETFE

Ĝ(jωk) = Ym,DFT (jωk)
Um,DFT (jωk)

(2.67)

will differ from the true FRF G(jωk). The resulting effects on the ETFE are characterized
in terms of the bias and the variance [GPS92]. The bias of the ETFE is calculated as the
difference between the expected value of the estimate and the true FRF

b(Ĝ(jωk)) = E[Ĝ(jωk)]−G(jωk) (2.68)

The variance is determined as

var[Ĝ(jωk)] = var[<(Ĝ(jωk))] + var[=(Ĝ(jωk))]. (2.69)

The variance and expected value for a random complex variable are defined in the Ap-
pendix, Definition M.0.16 and Definition M.0.20. The literature, dealing with the calcu-
lation of the bias and variance and with different strategies attempting to reduce them, is
extensive as they depend on a variety of different factors. First it is important under which
conditions the variance and bias are considered, whether due to noise only, or including
other effects. One example for other effects could be transients caused by the initiation
of the maneuver. In this thesis it is assumed that in the data used for estimation these
transients have vanished, such that the transient errors are negligible.
Moreover, it is important to distinguish whether a periodic or non-periodic excitation
signal is considered. Due to the above mentioned reasons (avoidance of leakage), in this
thesis only periodic signals are considered. Furthermore, periodic excitations offer a va-
riety of other significant advantages in system identification compared to non- periodic
excitations as shown in [SPG94] with regard to multisine signals. As we use multisine
signals as excitation within this thesis, Section 3.4 will be dedicated to this topic. Besides
the multisine signal, which can be regarded as one of the most general representations for
periodic excitations according to [SPG94], many other periodic excitations are possible
such as periodic random signals, periodic chirp signals, etc.. In general these signals can
be classified into deterministic and random excitations. Both variants are broadly used
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in system identification. Depending on the class of the chosen excitation signal different
concepts for estimation of the FRF with different averaging techniques are investigated in
the literature, besides the ETFE, which is mainly used in the context of multisine signals.
A rough overview can be gained from these references [PA03], [Bra11], [SVBP09], [SGS18]
and [GPS92]. Figure 2.9 summarizes these classifications and highlights the focus within
this thesis.

Figure 2.9: Visualization of excitation signal classification.

Regarding the bias and variance resulting from noise, when considering the ETFE for a
multisine excitation signal , an important further factor is the noise characteristics (prob-
ability distribution) and how the noise acts on the measured signal. Within this thesis
the noise is considered as an additive perturbation on the sampled discrete time domain
signal y[n] generated by the transfer function G with input u:

ym[n] = y[n] + ny[n] (2.70)

where ny[n] represents the contribution of the noise. Another important criterion is
whether the noise acts on the measured output time domain signal only or if there is also
noise on the input signal. In cases where noise acts on both the input and output signals,
a distinction needs to be made whether the input and output noise are correlated or not,
see Figure 2.10.

Figure 2.10: Visualisation of noise classification.
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Figure 2.11: System response with noise.

The following sections deal with the bias and variance of the ETFE for a multisine
excitation, with noise acting on the output data. The next section starts with introducing
the characteristics of the DFT of a measured signal with additive noise with specific
properties. Section 2.2.4.2 calculates the bias and variance of the ETFE based on these
results. Finally, in Section 2.2.5 basic averaging techniques are summarized.

2.2.4.1 DFT of Measured Signal with Additive Noise

As explained in the previous section we consider the discrete time sequence of N samples
of the measured output signal to be perturbed by noise according to

ym[n] = y[n] + ny[n] (2.71)

as depicted in Figure 2.11. It is assumed that no noise is acting on the logged input data,
such that

um[n] = u[n]. (2.72)

The objective is to calculate the bias and variance of the resulting ETFE which is given
by the ratio of the DFTs of ym[n] and um[n]. Therefore, we first focus in this section on
the DFT of ym[n]. As no noise is acting on the measured input signal, the DFT of um[n]
equals the DFT of u[n]:

Um,DFT [k] = UDFT [k]. (2.73)

In Appendix M, some helpful definitions are given to assure a common understanding in
the theoretical basics used in the following derivations. The DFT at the discrete angular
frequency ωk = 2π k

NTs
, of the real valued discrete time sequence of the measured output

signal ym[n] with N samples is calculated according to (2.9) by

Ym,DFT [k] = 1√
N

N−1∑
n=0

ym[n]e−j 2πkn
N (2.74)
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With the noise acting as an additive disturbance on the undisturbed output signal y[n],
(2.71), the DFT of ym[n] will be composed of the DFT of y[n] and ny[n] according to

Ym,DFT [k] = 1√
N

N−1∑
n=0

(y[n] + ny[n])e−j 2πkn
N

= 1√
N

N−1∑
n=0

y[n]e−j 2πkn
N + 1√

N

N−1∑
n=0

ny[n]e−j 2πkn
N

= YDFT [k] +Ny,DFT [k]

(2.75)

Normally Distributed i.i.d. Noise Sequence: If the N discrete samples of the
sequence ny[n] are independent, identically distributed random variables (i.i.d.), see Defi-
nition M.0.12, with normal distribution, see Appendix M.0.10, with zero mean µ = 0 and
variance σ2, then by Lemma N.1.1, the real and imaginary part of the DFT of ny[n] at
frequency ωk = 2π

NTs
k will be also normally distributed as follows

<(Ny,DFT [k]) ∼ N (0, σ
2

2 )

=(Ny,DFT [k]) ∼ N (0, σ
2

2 )
(2.76)

Furthermore,

• Ny,DFT [k] is a circular symmetric complex random variable (see Definition M.0.24)
by Lemma N.2.1

• <(Ny,DFT [k]) and =(Ny,DFT [k]) are independent real-valued random variables by
Lemma N.3.1 and hence uncorrelated by Lemma M.0.5

• <(Ny,DFT [k]) and =(Ny,DFT [k]) are jointly normal by Lemma N.5.1

From Equation (2.75) and (2.76), because the expectation operator is linear, Property
M.0.1, and because for the variance Equation (M.11) holds, it follows that the real and
imaginary parts of the complex random variable Ym,DFT [k] are uncorrelated and normally
distributed according to

<(Ym,DFT [k]) ∼ N (YDFT [k], σ
2

2 )

=(Ym,DFT [k]) ∼ N (YDFT [k], σ
2

2 )
(2.77)

Filtered Normally Distributed i.i.d. Noise Sequence (Coloured Noise): As-
sume that the noise sequence ny is acting on the system response y as depicted in Figure
2.12, where nw is filtered by a stable and proper linear time invariant (LTI) system W .
The sequence nw[n] is an i.i.d. sequence, see Definition M.0.12, with normal distribution,
see Appendix M.0.10, with zero mean µ = 0 and variance σ2. Then as shown in [Bri81],
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Figure 2.12: System response with filtered noise.

[dv95] the DFT Ny,DFT of ny[n] converges for N →∞, where N is the number of samples,
in distribution to a normal distribution with zero mean and with variance and covariance
of the real and imaginary parts of Ny,DFT given by

E[<(Ny,DFT [k])<(Ny,DFT [k])] = E[=(Ny,DFT [k])=(Ny,DFT [k])] = σ2

2 |W (jωk)|2

E[<(Ny,DFT [k])=(Ny,DFT [k])] = 0
(2.78)

where the real and imaginary parts are asymptotically uncorrelated and jointly normally
distributed, hence asymptotically independent [dv95].

2.2.4.2 Bias and Variance of ETFE due to Noise

As introduced in the previous sections, the non-parametric frequency response of a linear
dynamic system is estimated as the ETFE, using the DFTs of the logged input and output
time domain data. It is assumed that no noise acts on the input data, but that noise acts
on the output data according to (2.71). The ETFE results in

Ĝ(jωk) = Ym,DFT [k]
Um,DFT [k] = YDFT [k] +Ny,DFT [k]

UDFT [k] = G(jωk) + Ny,DFT [k]
UDFT [k] (2.79)

where Equation (2.66), (2.73) and (2.75) were used and where G(jωk) is the true value of
the FRF, for periodic excitations and assuming that transients died out.

Normally Distributed i.i.d. Noise Sequence: First we consider the case, where the
N discrete samples of the noise sequence ny[n] are independent, identically distributed
random variables (i.i.d.) with normal distribution

ny[n] ∼ N (0, σ2) (2.80)
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The DFT, UDFT [k], is a complex number and can be expressed by its amplitude and phase
as

UDFT [k] = |UDFT [k]|ej∠UDFT [k] (2.81)

such that

Ĝ(jωk) = G(jωk) +Ny,DFT [k] · (|UDFT [k]|−1e−j∠UDFT [k])
= G(jωk) + |UDFT [k]|−1(Ny,DFT [k] · e−j∠UDFT [k])

(2.82)

Because the complex random variable Ny,DFT [k] is circularly symmetric, by Lemma N.2.1,
then the distribution of Ny,DFT [k]·e−j∠UDFT [k] equals the distribution of Ny,DFT [k], accord-
ing to Definition M.0.24, i.e. its real and imaginary part are uncorrelated and according
to Equation (2.76)

<(Ny,DFT [k] · e−j∠UDFT [k]) ∼ N (0, σ
2

2 )

=(Ny,DFT [k] · e−j∠UDFT [k]) ∼ N (0, σ
2

2 )
(2.83)

The input signal magnitude |UDFT [k]|−1 is a real valued constant for a fixed k. By
Property M.0.1 of the expected value operator and Property M.0.2, Equation (M.11), of
the variance, the second term in Equation (2.82):

Gn(jωk) = Ny,DFT [k] · e−j∠UDFT [k]

|UDFT [k]| (2.84)

is then distributed according to

<(Gn(jωk)) ∼ N (0, 1
2

σ2

|UDFT [k]|2 )

=(Gn(jωk)) ∼ N (0, 1
2

σ2

|UDFT [k]|2 )
(2.85)

Thus, Ĝ(jωk), is distributed according to

<(Ĝ(jωk)) ∼ N (<(G(jωk)),
1
2

σ2

|UDFT [k]|2 )

=(Ĝ(jωk)) ∼ N (=(G(jωk)),
1
2

σ2

|UDFT [k]|2 )
(2.86)

This result shows that for the case of an additive normally distributed i.i.d. noise sequence
with zero mean, on the output signal only, the ETFE provides an unbiased estimate, i.e.

b(Ĝ(jωk)) = E[Ĝ(jωk)]−G(jωk) = 0 (2.87)
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where the bias was defined in Equation (2.68). Furthermore, the real and imaginary parts
of the estimate Ĝ(jωk) are uncorrelated and normally distributed with equal variance of

var[<(Ĝ(jωk))] = var[=(Ĝ(jωk))] = 1
2

σ2

|UDFT [k]|2 (2.88)

The variance of the estimate can be thus reduced by

• increasing the signal-to-noise ratio, i.e.

|UDFT [k]|
σ

(2.89)

Note, that the variance of the noise signal σ2 is often given by the used sensors. The
amplitude of the input signal, |UDFT [k]|, cannot be increased arbitrarily, because with
higher excitation amplitudes the system might drift away from its operational point after
a shorter period of time. Furthermore, the amplitude needs to be carefully chosen with
regard to the chosen excitation frequencies in order to inhibit that the actuators hit their
limits and rate saturations, because this would introduce nonlinearities, such that the
estimate is not applicable. Also, other nonlinearities might affect the measured responses
in case the excitation amplitudes are chosen too high.

Filtered Normally Distributed i.i.d. Noise Sequence: Assume that the noise se-
quence ny[n] is acting on the system response y as depicted in Figure 2.12, where nw
is filtered by a stable and proper linear time invariant (LTI) system W . The sequence
nw[n] is an i.i.d. sequence, see Definition M.0.12, with normal distribution, see Appendix
M.0.10, with zero mean µ = 0 and variance σ2, such that ny[n] is stationary and nor-
mally distributed. First we calculate the expected value of the resulting estimate Ĝ(jωk),
Equation (2.79), i.e

E[Ĝ(jωk)] = E[G(jωk)] + E[Ny,DFT [k]
UDFT [k] ]. (2.90)

The expected value of V [k] = Ny,DFT [k]
UDFT [k] is

E[V [k]] = E
[
Ny,DFT [k]
UDFT [k]

]

= E
[
Ny,DFT [k]U∗DFT [k]
UDFT [k]U∗DFT [k]

]
= E

[
(Nr[k] + jNj[k])(ur[k]− juj[k])

|UDFT [k]|2

]

= E
[

(Nr[k]ur[k] +Nj[k]uj[k]) + j(Nj[k]ur[k]−Nr[k]uj[k])
|UDFT [k]|2

] (2.91)

To improve readability [k] is omitted in the following, whenever it is clear from the context.
The real random variables Nr and Nj are the real and imaginary part of Ny,DFT , which
is the DFT of the noise sequence ny[n], and ur and uj are the real and imaginary part
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of UDFT , which is the DFT of the input sequence u[n], which are constant for a fixed k.
According to Property M.0.7

E[V ] = E[<(V )] + jE[=(V )] = E
[

(Nrur +Njuj)
|UDFT |2

]
+ jE

[
(Njur −Nruj)
|UDFT |2

]
(2.92)

Because of the linearity property of the expected value operator, Equation (2.92) corre-
sponds to

E[V ] = ur
|UDFT |2

E[Nr] + uj
|UDFT |2

E[Nj] + j
ur

|UDFT |2
E[Nj]− j

uj
|UDFT |2

E[Nr]. (2.93)

Because ny[n] is a stationary and normally distributed sequence

E[Nr[k]] = µ√
N

N−1∑
n=0

cos(2πkn
N

) = 0

E[Nj[k]] = µ√
N

N−1∑
n=0

sin(2πkn
N

) = 0
(2.94)

holds according to Lemma O.1.1, for k 6= 0. Hence, using Equation (2.94) in Equation
(2.93) results in

E[V ] = E[Ny,DFT

UDFT
] = 0 (2.95)

such that Equation (2.90) becomes

E[Ĝ] = E[G] = G (2.96)

meaning that the ETFE (2.79) is unbiased.
Note, that the expected value of the DFT of the noise sequence ny[n], and thus E[V [k]]
is zero for k 6= 0, even if ny[n] has non-zero mean and for a finite number of samples N .

The covariance matrix ΣVrVj of V = Ny,DFT
UDFT

= Vr + jVj is according to Equation (M.62)

ΣVrVj =
 σ2

vr cov[Vr, Vj]
cov[Vj, Vr] σ2

vj

 (2.97)

Using that V has zero mean, Equation (2.95), the elements of this covariance matrix are
given by Lemma O.4.1 as
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var[Vr] = σ2
vr = 1

2<(KV V + CV V ) = 1
2
E
[
Ny,DFTN

∗
y,DFT

]
|UDFT |2

+ 1
2<

E[Ny,DFTNy,DFT ]
u2
r − u2

j + 2juruj


var[Vj] = σ2

vj
= 1

2<(KV V − CV V ) = 1
2
E
[
Ny,DFTN

∗
y,DFT

]
|UDFT |2

− 1
2<

E[Ny,DFTNy,DFT ]
u2
r − u2

j + 2juruj


cov[Vr, Vj] = 1

2=(−KV V + CV V ) = 1
2=

E[Ny,DFTNy,DFT ]
u2
r − u2

j + 2juruj


cov[Vj, Vr] = 1

2=(KV V + CV V ) = 1
2=

E[Ny,DFTNy,DFT ]
u2
r − u2

j + 2juruj


(2.98)

whereKV V and CV V are the variance and pseudo variance defined in Definition M.0.20 and
M.0.21, respectively. Note, that E[Ny,DFTN

∗
y,DFT ] and E[Ny,DFTNy,DFT ] depend on the

noise characteristics and properties. For the considered case, the variance and covariance
of the real and imaginary parts of Ny,DFT are given by Equation (2.78) for the asymptotic
case, i.e. N →∞. Further, the DFTNy,DFT of ny converges forN →∞, in distribution to
a normal distribution. Because the mean of Ny,DFT is zero, we identify E[Ny,DFTN

∗
y,DFT ]

as the variance ofNy,DFT , Definition M.0.20, and E[Ny,DFTNy,DFT ] as the pseudo variance,
Definition M.0.21. Hence, by LemmaM.0.11 and LemmaM.0.12 the asymptotic variance
and pseudo variance of Ny,DFT is given by

E
[
Ny,DFTN

∗
y,DFT

]
= var[<(Ny,DFT )] + var[=(Ny,DFT )]

= E[<(Ny,DFT )<(Ny,DFT )] + E[=(Ny,DFT )=(Ny,DFT )]
= σ2|W |2

E
[
Ny,DFTNy,DFT

]
= var[<(Ny,DFT )]− var[=(Ny,DFT )] + 2jcov[<(Ny,DFT ),=(Ny,DFT )]

= E[<(Ny,DFT )<(Ny,DFT )]− E[=(Ny,DFT )=(Ny,DFT )]
+ 2jE[<(Ny,DFT )=(Ny,DFT )] = 0

(2.99)

Note, that according to Lemma O.3.1, in case that ny[n] is a stationary sequence, Defini-
tion M.0.11, with uncorrelated samples and with a normal distribution N (µ, σ2)

E[Ny,DFTN
∗
y,DFT ] = σ2

E[Ny,DFTNy,DFT ] = 0
(2.100)

holds. Using Equation (2.99) and (2.98) we obtain
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var[Vr] = var[Vj] = 1
2 |W |

2 σ2

|UDFT |2

cov[Vr, Vj] = cov[Vj, Vr] = 0
(2.101)

Because, the real and imaginary parts of Ny,DFT are asymptotically uncorrelated and
jointly normally distributed, hence asymptotically independent [dv95], the real and imag-
inary parts of the estimate in (2.79) will be also asymptotically normally distributed
according to

<{Ĝ(jωk)} ∼ N (<{G(jωk)},
1
2 |W (jωk)|2

σ2

|UDFT [k]|2 )

={Ĝ(jωk)} ∼ N (={G(jωk)},
1
2 |W (jωk)|2

σ2

|UDFT [k]|2 )
(2.102)

with uncorrelated real and imaginary parts, i.e.

E[<{Ĝ(jωk)}={Ĝ(jωk)}] = 0 (2.103)

2.2.5 Averaging the ETFE

In Section 2.2.4.2 it was shown that the ETFE provides an unbiased FRF estimate if only
the output signal is perturbed by an additive normally distributed i.i.d. noise sequence
with zero mean. This section shows that the variance of the estimate can be reduced
by repeating the experiment and calculating the averaged ETFE. The averaged ETFE is
calculated according to

Ĝ(jωk) =
1
R

∑R−1
r=0 Y

[r]
m,DFT [k]

1
R

∑R−1
r=0 U

[r]
m,DFT [k]

(2.104)

where for each of the R repetitions of the maneuver, the respective DFTs Y [r]
m,DFT [k] and

U
[r]
m,DFT [k] are calculated, which are mutually independent for r = 0 . . . R− 1. Because it

is assumed that no noise acts on the logged input data

1
R

R−1∑
r=0

U
[r]
m,DFT [k] = 1

R

R−1∑
r=0

UDFT [k] = UDFT [k] (2.105)

holds and Equation (2.104) can be expressed by

Ĝ(jωk) = 1
R

R−1∑
r=0

Y
[r]
m,DFT [k]
UDFT [k] = 1

R

R−1∑
r=0

Ĝ[r](jωk) (2.106)
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For each repetition of the maneuver the real and imaginary parts of the ETFE, Ĝ[r](jωk),
are normally distributed and uncorrelated according to Equation (2.86). Since Ĝ[r](jωk)
are mutually independent for r = 0, . . . R − 1, because Y [r]

m,DFT [k] are mutually indepen-
dent for r = 0, . . . R − 1, the real and imaginary parts of Ĝ(jωk) will be also normally
distributed and uncorrelated by Lemma M.0.8, with the following expected value and
variance according to Property M.0.1, Equation (M.11) and Lemma M.0.2:

<(Ĝ(jωk)) ∼ N ( 1
R

R−1∑
r=0
<(G(jωk)),

1
R2

R−1∑
r=0

1
2

σ2

|UDFT [k]|2 )

∼ N (<(G(jωk)),
1

2R
σ2

|UDFT [k]|2 )

=(Ĝ(jωk)) ∼ N (=(G(jωk)),
1

2R
σ2

|UDFT [k]|2 )

(2.107)

Hence, by increasing the number of the repetitions of the maneuver the variance of the
estimate can be decreased. Note, that increasing the number of repetitions increases the
duration of the experiment and thus the costs of the test campaign. Furthermore, the
number of repetitions shall be chosen carefully, such that the drift from the operational
point stays within acceptable bounds.

Note, that for the case that noise is also acting on the logged input data, the bias of
the ratio of the averaged DFTs of the input and output data, (2.104), does not equal the
bias of the average of the ETFEs of each repetition, (2.106), as was shown in [GPS92]. The
case that both the input and output signal are additively perturbed by noise is often de-
noted as the open-loop error-in-variables case. The derivation of the bias and variance of
Ĝ(jωk) is in this case more involved and even more complex if the input and output noise
are correlated. For additive, complex normal distributed errors on the measured Fourier
coefficients of the input and output signals, obtained by a DFT for example, [GPS92]
derives analytical expressions for the bias of non-parametric frequency response estimates
using different averaging techniques, based on a Taylor’s series expansion. The case that
the input-output errors are mutually uncorrelated as well as the case that they are cor-
related is considered. In [GKP96a] approximations for the variance of non-parametric
estimate of the open-loop error-in-variables case are discussed. The input and output dis-
turbances are considered uncorrelated. The variance for this case is shown to be infinite
if the errors are complex normally distributed, even if the signal-to-noise ratio is large.
Further the effects of introducing a so-called exclusion zone on the variance are discussed.
In [Hea01b], it is emphasized that some low order approximations in the literature for the
variance of indirect estimates derived from closed-loop system estimates shall be treated
with some care and that statements in the literature that these estimates are unbiased
shall be interpreted as meaning asymptotically unbiased.
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2.2.6 Distributions of the Magnitude and Phase of the ETFE

We usually calculate the averaged ETFE according to (2.104) and investigate the ampli-
tude and phase of the resulting complex random variable. Note, that the averaging is not
performed on the amplitudes and phases, but over the complex numbers. The reason is
that, given a proper complex normal random variable Z = X+ jY , see Definition M.0.23,
where E[Z] is the mean of the complex random variable Z, the marginal distribution of
its magnitude |Z| =

√
X2 + Y 2 will be a Rician distribution, see Appendix M.0.22. The

mean of the Rician distributed magnitude

E[|Z|] = E[
√
X2 + Y 2] (2.108)

will not correspond to the magnitude of the expected value of the ETFE Z given by

|E[Z]| = |E[X] + jE[Y ]| =
√
E[X]2 + E[Y ]2. (2.109)

where E[Z] will give an unbiased estimate, as we derived in Section 2.2.4.2 and hence
|E[Z]| will give an unbiased estimate of the magnitude. The marginal distribution of the
phase Θ = Arg(Z) ∈ [0, 2π) is discussed in detail in Appendix M.0.23. An important
parameter in the context of the pdfs of the magnitude and phase, is κ,

κ = ν

σ
(2.110)

which is denoted in this context as the signal-to-noise ratio, but shall not be confused
with the signal-to-noise ratio introduced in (2.89). In (2.110), ν is the magnitude of the
expected value of the complex random variable Z = X + jY , i.e ν = |E[Z]|, and σ2 is the
variance of its real and imaginary part, i.e. var[X] = var[Y ] = σ2. If the SNR is high
then both the marginal distribution of the magnitude and the marginal distribution of
the phase can be approximated by a normal distribution, see Lemma M.0.16 and Lemma
M.0.17. Such that the magnitude |Z| constitutes a normally distributed random variable
with mean ν and variance σ2. The phase then constitutes a random variable with mean
Arg(E[Z]) = Arg(E[X]+jE[Y ]) and variance (σ/ν)2 = 1/κ2. In Appendix M.0.21, M.0.22
and M.0.23, the joint distribution of the Amplitude and Phase as well as the respective
marginal distributions are discussed in detail.
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2.3 Closed-loop Identification

In the previous section, the averaged ETFE was discussed as a technique to estimate the
non-parametric frequency response of a dynamical system. The focus was on the classical
identification framework meaning:

• the system, whose response is estimated, is operated in open-loop

• the excitation input is exactly known

• only the output observations are noisy

The framework is depicted in Figure 2.11. In this section we turn our attention from
the field of non-parametric techniques in open-loop system identification to the field of
closed-loop identification. Since decades the problem of identifying a plant model using
data from closed-loop experiments is in the focus of research. The following factors might
motivate or necessitate that the identification is performed under closed-loop conditions:

• unstable or poorly damped plant

• safety reasons

• operational reasons

• reduced costs (no additional test set up in code required, in order to perform open-
loop experiment)

• if identified plant shall be used in control design (In [HGd96] it was argued that
for model based control design, better results with regard to controller performance
can be obtained if the model was obtained from experiments under closed-loop
conditions instead of open-loop experiments. Thereby the controller performance
is measured by a specific performance metric which is the variance of the error
between the desired closed-loop time response and actual closed-loop response with
a controller derived from the identified model. [Gev93] and [VS95] support the idea
that for the purpose of control design, closed-loop identification shall be preferred
over open-loop identification.)

The field of identification under closed-loop conditions can be subdivided into model-
based and non-parametric methods. In the following we will focus on non-parametric
identification. This choice is motivated by the fact that in contrast to non-parametric
approaches, model-based approaches require prior assumptions on the model- order and
structure. Information that was contained in the measured data might consequently
get lost if these assumptions are wrong. Furthermore, it was argued in [FHK14] that
data-driven tuning achieves better results regarding the final control cost on the real
system than model-based solutions under some conditions. Of course, as also mentioned
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in [FHK14] a generalization of the statement that data-driven non-parametric concepts
outperform model-based concepts is not straight forward and shall be considered with
care.
Within the domain of non-parametric estimation, different approaches exist: for example
spectral methods or approaches using the DFT and ETFE as described in the previous
sections. We will focus on the ETFE using the DFT.
The considered framework under which the closed-loop experiments might be performed is
depicted in Figure 2.13. According to [Lju99] the approaches to closed-loop identification
can be separated into three main categories:

• Direct Approach

• Indirect Approach

• Joint Input-Output Approach

Direct Approach Here the plant is estimated directly, using the measured plant input u
and plant output y from a closed-loop experiment. The reference input r of the closed-loop
system, as well as the controller are hence, in general not necessary for the identification
of the plant. As this concept requires no knowledge about the controller, this approach
is advantageous in cases where the controller is complex or unknown. Some difficulties
in this approach arise from the influence of noise on the measured signals. Since the
measured output signal is fed back, the input signal u will be correlated with the output
signal y.

Indirect Approach The indirect approach can be divided into two steps and requires
that the controller is exactly known and of a linear form.

• First, the reference input r of the closed-loop system and the closed-loop response
y are used to identify the closed-loop system.

• In the second step the plant is calculated from the estimated closed-loop obtained
in the first step using the knowledge about the controller that was applied in the
closed-loop experiment.

For the identification of the closed-loop system in the first step, any identification method
that works in open-loop may be used since the reference input and the measured output
signal are uncorrelated.
This second approach is often disfavored, as any deviation from a linear controller due
to anti-windup schemes, delimiters, input saturations or other nonlinearities, directly
propagate to the estimated plant. As the applied controller in this thesis is linear and
exactly known, and the identification maneuvers are concepted in a way that limitations
or saturations are not hit, this approach is used.
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Joint Input-Output Approach The joint Input-Output Identification recovers the
system from a joint system, which considers y and u as outputs of a system which is
driven by r and noise.

In the following sections, we assume

• the reference input r(t) is a periodic excitation, e.g. a multisine signal

• the measurements to be synchronized

• the transients to be negligible

• the leakage to negligible

• i.i.d. normally distributed noise sequence nw with zero mean

In the following we will consider the closed–loop system depicted in Figure 2.13, which is
assumed to be closed-loop stable. For the measured output the following relation holds

Figure 2.13: Standard closed-loop framework.

Ym = GU +Nw (2.111)

where Ym, U,Nw are the Laplace transforms of the measured output ym(t), plant input
u(t) and random process nw(t). G is the linear transfer function of the plant, whose
frequency response we wish to identify. Note, that for better readability the dependency
on the Laplace variable (s) is omitted. In closed-loop the following relation holds for the
input u

U = R− CYm (2.112)

where C is the controller transfer function. The measured output ym can be expressed as

Ym = G(R− CYm) +Nw (2.113)
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where (2.112) was inserted into (2.111). Hence,

Ym = G

1 +GC
R + 1

1 +GC
Nw = GclR + ScNw = GclR +Ny (2.114)

can be obtained, which has the block diagram representation in Figure 2.14, and where

Gcl = G

1 +GC
(2.115)

is the closed-loop transfer function and

Sc = 1
1 +GC

(2.116)

is the sensitivity. Furthermore, by inserting Equation (2.111) into (2.112) the closed-loop
relation

U = R− CGU − CNw (2.117)

is obtained and hence

U = 1
1 +GC

R− C

1 +GC
Nw = ScR− CScNw = ScR +Nu (2.118)

can be obtained, which has the block diagram representation in Figure 2.15.

2.3.1 Direct Non-parametric Plant Estimate under Closed-loop
Conditions

In this section we are concerned with the non-parametric direct plant estimate obtained
from closed-loop experiments. The direct plant estimate is calculated as the ETFE ac-
cording to

Ĝ(jωk) = Ym,DFT (jωk)
Um,DFT (jωk)

(2.119)

where Ym,DFT and Um,DFT are the DFT spectra of the measured time domain data ym(t)
and um(t), at discrete time samples, obtained from the closed-loop experiment with ex-
citation r(t). The measured input and output DFT spectra can be expressed, [PS01], in
terms of

Ym,DFT (jωk) = YDFT (jωk) +Ny,DFT (jωk)
Um,DFT (jωk) = UDFT (jωk) +Nu,DFT (jωk)

(2.120)

The direct plant estimate (2.119), hence corresponds to

Ĝ(jωk) = YDFT (jωk) +Ny,DFT (jωk)
UDFT (jωk) +Nu,DFT (jωk)

(2.121)
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Figure 2.14: Closed-loop framework representation.

Figure 2.15: Alternative closed-loop framework representation.

This formulation corresponds to the errors-in-variables model formulation, [GKP96a],
with linearly correlated input and output noise, since

Ny = ScNw (2.122)

and
Nu = −CScNw (2.123)

according to Equation (2.114) and (2.118). Such a problem has been extensively studied in
the literature, see [PS01] or [PS12] or [GKP96a] for example. Statements in the literature
that such estimates are unbiased should be interpreted according to [Hea01b] as meaning
asymptotically unbiased only (i.e. for an infinite number of sub-records or repetitions:
Ĝ(jωk) = limR→∞

1
R

∑R−1
r=0 Y

[r]
m,DFT (jωk)

1
R

∑R−1
r=0 U

[r]
m,DFT (jωk)

) and therefore be treated with some care.
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Bias of Direct Non-parametric Estimate in Case of i.i.d. Normally Distributed
Noise Sequence with Zero Mean and Variance σ2

n: In [PS01] it is argued that an
exact expression for the relative bias of (2.121) is

b(k) = E[Ĝ(jωk)−G(jωk)
G(jωk)

] = − exp (−|UDFT (jωk)|2
σ2
U(jωk)

)

1− ρ(jωk)
|UDFT (jωk)|
σU (jωk)
|YDFT (jωk)|
σY (jωk)

 (2.124)

for k 6= 0, N2 , where N is the number of samples of the measured data and the finite
second-order moments are

σ2
U(jωk) = E[|Nu,DFT (jωk)|2]
σ2
Y (jωk) = E[|Ny,DFT (jωk)|2]

σ2
Y U(jωk) = E[Ny,DFT (jωk)N∗u,DFT (jωk)]

(2.125)

where N∗u,DFT is the conjugate complex of Nu,DFT . The correlation coefficient of the
normalized input and output errors Nu,DFT

UDFT
and Ny,DFT

YDFT
is

ρ(jωk)) = σ2
Y U(jωk)

σU(jωk)σY (jωk)
exp (−j∠G(jωk)) (2.126)

In the following the argument (jωk) is omitted to increase readability. The signal ny
results from filtering nw, which is a i.i.d. normally distributed noise sequence with zero
mean and variance σ2

n, by Sc, see Figure 2.14 and Equation (2.122). We then know
[Bri81],[dv95], that σ2

Y = E[|Ny,DFT |2] is asymptotically, i.e. for N →∞, where N are
the number of samples,

σ2
Y = E[|Ny,DFT |2] = |Sc|2σ2

n (2.127)

according to (2.99). Similarly, σ2
U is asymptotically

σ2
U = E[|Nu,DFT |2] = |CSc|2σ2

n (2.128)

see Figure 2.15 and Equation (2.123) and

σ2
Y U = E[Ny,DFTN

∗
u,DFT ] = −C∗|Sc|2σ2

n (2.129)

With the relations (2.127) to (2.129) the correlation coefficient (2.126) becomes

ρ(jωk) = −C∗(jωk)|Sc(jωk)|2σn(jωk)√
|C(jωk)|2|Sc(jωk)|2σ2

n(jωk)|Sc(jωk)|2σ2
n(jωk)

exp (−j∠G(jωk))

= −C
∗(jωk)
|C(jωk)|

exp (−j∠G(jωk))
(2.130)
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Defining
α = exp (−|UDFT |

2

σ2
U

) = exp (− |UDFT |2

|C|2|Sc|2σ2
n

) (2.131)

the relative bias in Equation (2.124) becomes

b = −α

1−
(
−C

∗

|C|

)
exp (−j∠G)

|UDFT |√
|C|2|Sc|2σ2

n

|YDFT |√
|Sc|2σ2

n


= −α

1−
(
− C∗

|C|2

)
exp (−j∠G) |UDFT |

|YDFT |


= −α

1−
(
− 1
C

)
exp (−j∠G) |UDFT |

|YDFT |


= −α

1−
(
− 1
C

)
1
G

 .

(2.132)

where |C|2 = CC∗ and |YDFT |/|UDFT | = |G| was used. Finally, using the relation

b(jωk) = E[Ĝ(jωk)−G(jωk)
G(jωk)

] = E[Ĝ(jωk)
G(jωk)

− 1] = E[Ĝ(jωk)
G(jωk)

]− 1 = 1
G(jωk)

E[Ĝ(jωk)]− 1

(2.133)
the expected value of Ĝ is obtained according to [PS01] by

E[Ĝ] = G(b+ 1) = G(−α
1−

(
− 1
C

)
1
G

+ 1) = G(1− α) + α

(
− 1
C

)
(2.134)

Because the excitation is assumed to be periodic and transients are assumed to have died
out, UDFT is given by

UDFT = DFT (ScR) = ScRDFT (2.135)

according to Equation (2.118), such that α, given in Equation (2.131), can be reduced to

α = exp (− |ScRDFT |2

|C|2|Sc|2σ2
n

) = exp (−|RDFT |2

|C|2σ2
n

) (2.136)

This result shows that if the signal-to-noise ratio: σn/|RDFT | is large, α becomes small
and E[Ĝ] approaches G, see Equation (2.134). As shown in [PS01], the bias of an errors-
in-variables estimator according to

Ĝ(jωk) =
1
R

∑R−1
r=0 Y

[r]
m,DFT (jωk)

1
R

∑R−1
r=0 U

[r]
m,DFT (jωk)

(2.137)
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where Y [r]
m,DFT (jωk) and U [r]

m,DFT (jωk) are the DFT spectra of R synchronized input /out-
put records of an integer multiple of the known excitation period, decreases exponentially
with R because in this case [PS01]

α = exp (−R |RDFT |2

|C|2σ2
n

) (2.138)

holds. Furthermore, the bias will be asymptotically (i.e. R→∞) zero as α goes to zero.

Variance of Direct Non-parametric Estimate: In [PS01] it is proposed that for the
estimator (2.137), under the given assumptions, the expression

σ2
G(jωk) = |G(jωk)|2

R

 σ2
Y (jωk)

|YDFT (jωk)|2
+ σ2

U(jωk)
|UDFT (jωk)|2

− 2<
(

σ2
Y U(jωk)

YDFT (jωk)U∗DFT (jωk)

)
(2.139)

could be used to calculate uncertainty regions, for “sufficiently large” number of records
R. The expression (2.139) is obtained as the variance of the taylor series expansion,
restricted to the first order terms, of Ĝ around the true value G, [PS01]. Note, that σ2

G

is not the variance of Ĝ obtained with the estimator (2.137). The variance of Ĝ of this
estimator is shown in [PS01] to be infinite.

2.3.2 Indirect Non-parametric Plant Estimate under Closed-
loop Conditions

In this section we are concerned with the non-parametric indirect plant estimate of the
closed-loop framework depicted in Figure 2.13. For such a closed-loop system, the closed-
loop transfer function is related to the plant and controller transfer function, G(jωk) and
C(jωk) according to (2.115), which is repeated here for convenience.

Gcl(jωk) = G(jωk)
1 +G(jωk)C(jωk)

(2.140)

Assuming that an closed-loop frequency response estimate Ĝcl(jωk) is available, a fre-
quency response estimate of the plant can be obtained by solving (2.140) for G

Ĝ(jωk) = Ĝcl(jωk)
1− Ĝcl(jωk)C(jωk)

(2.141)

Assume that

• The closed-loop estimate Ĝcl(jωk) is given by

Ĝcl(jωk) = Gcl(jωk) +GB,cl(jωk) + εk (2.142)
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where Gcl(jωk) is the true closed-loop frequency response and GB,cl(jωk) is a con-
stant bias.

• The complex random variable εk has normally distributed real and imaginary parts,
which might be correlated.

• Both the real and imaginary part of εk have zero mean.

For this case, [Hea01b] derived the expected value (in terms of an Cauchy Principle
Value) of the indirect non-parametric plant estimate in (2.141). It is given in Lemma
P.1.1. Similar results were found by [Dou80], [DB90].

Bias of Indirect Non-parametric Estimate in Case of i.i.d. Normally Dis-
tributed Noise Sequence with Zero Mean and Variance σ2

n: Assume that

• the noise sequence nw in the closed-loop system in Figure 2.13 is i.i.d. normally
distributed with zero mean and variance σ2

n

• the reference input r(t) is a periodic excitation, e.g. a multisine signal and is exactly
known

• leakage is negligible

• transients are negligible

We further assume that the closed-loop frequency response is estimated by the ETFE

Ĝcl(jωk) = Ym,DFT (jωk)
RDFT (jωk)

(2.143)

where Ym,DFT (jωk) and RDFT (jωk) are the DFTs of the signals r and ym depicted in
Figure 2.13. Because of the relation (2.114) for the measured output signal ym under the
given closed-loop structure, the closed-loop estimate will result in

Ĝcl(jωk) = YDFT (jωk)
RDFT (jωk)

+ Ny,DFT (jωk)
RDFT (jωk)

(2.144)

where Y (jω) = Gcl(jω)R(jω) and Ny(jω) results from filtering nw by the sensitivity Sc,
see Figure 2.14. Because R is periodic and transients are assumed to have died out,
YDFT (jωk)
RDFT (jωk) corresponds to the true closed-loop frequency response Gcl(jω):

Ĝcl(jωk) = Gcl(jω) + Ny,DFT (jωk)
RDFT (jωk)

= Gcl(jωk) + εk (2.145)

Because nw is a i.i.d. normally distributed noise sequence with zero mean and variance
σ2
n, the expected value of εk = Ny,DFT

RDFT
is according to (2.95):

E[εk] = 0 (2.146)
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The variance and correlation of the real and imaginary parts of εk are asymptotically, i.e.
for N → ∞, where N are the number of samples, according to [Bri81], [dv95], Equation
(2.145) and (2.122), given by

E[<(εk)<(εk)] = E[=(εk)=(εk)] = σ(jωk)2 = 1
2 |Sc(jωk)|

2 σ2
n

|RDFT (jωk)|2

E[<(εk)=(εk)] = 0
(2.147)

and asymptotically jointly normally distributed. The expected value of the indirect plant
estimate (2.141) will then be according to Lemma P.2.1

E[Ĝ(jωk)] = α(jωk)G(jωk) + (1− α(jωk))
(
− 1
C(jωk)

)
(2.148)

where α is
α = 1− exp(−1

2
1
σ2 |

Sc
C
|2) (2.149)

and using Equation (2.147)

α = 1− exp(−1
2

1
σ2 |

Sc
C
|2) = 1− exp(−1

2
1

1
2

σ2
n

|RDFT |2
|Sc|2

|Sc
C
|2)

= 1− exp(− 1
σ2
n

|RDFT

C
|2)

(2.150)

Note, that for better readability (jωk) was omitted in the last equations.

Variance of Indirect Non-parametric Plant Estimate: [Hea01b] shows that the
variance of the previously discussed indirect plant estimate is infinite. A similar result
(infinite variance) has been obtained by [GKP96b] in the context of errors-in-variables
estimates and in [PS01] for errors-in-variables estimates with correlated input and output
noise. As we have seen in Section 2.3.1 the direct estimate problem can be expressed in
terms of this latter case. For such cases, i.e. in the absence of a well- defined variance,
[GKP96b] has proposed an “exclusion zone” around the singularity to regularize the prob-
lem and render the variance of such estimates finite. In context of indirect identification
under closed-loop conditions this idea was investigated by [WG02]. Thereby they consider
the closed-loop set-up depicted in Figure 2.16. The respective indirect estimate, for this
set up, resulting from the inversion of the closed-loop relationship

Gcl(jωk) = G(jωk)C(jωk)
1 +G(jωk)C(jωk)

(2.151)

is
Ĝ(jωk) = Ĝcl(jωk)

C(jωk)(1− Ĝcl(jωk))
(2.152)
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Figure 2.16: Closed-loop framework.

From this expression it becomes clear that a singularity exists for Ĝcl = 1. Therefore,
the true closed-loop transfer function is required to be bounded away from one at the
considered frequencies. Consequently, an exclusion zone around the singularity can be
introduced, meaning that any value of Ĝcl in the vicinity of one, i.e

|Ĝcl(jωk)− 1| < ε (2.153)

can be discarded in order to regularize the distribution of Ĝ. Assuming that neither Ĝcl,
nor the true closed-loop Gcl, lies within some exclusion region in the complex plane, sur-
rounding the point one, [WG02] develop an expression for the resulting bias and variance.
[WG02] argue that under some conditions the bias is essentially unchanged from the re-
sult of [Hea01b], presented in the previous sections, and the effect of the chosen exclusion
zone is examined. [WG02] express the variance of the estimate with this exclusion zone
as an integral over an infinite series expansion and show that using this regularization
technique the resulting variance of the estimate is bounded. However, this approach for
the given controller structure, requires considering frequencies where neither Ĝcl, nor the
true closed-loop Gcl, lies within some exclusion region in the complex plane, surrounding
the point one. This is problematic, since in most control design problems one objective
is to maximize the frequency region where the closed-loop frequency response equals 1
in order to obtain a high bandwidth and steady-state accuracy. Hence, such a problem
formulation of the indirect plant estimate might be impractical, because the plant esti-
mate can be only obtained at higher frequencies. However, it is important to note that
the singularity depends on the problem formulation and controller structure. For exam-
ple, adding a constant feedforward gain H to the structure in Figure 2.16, as depicted in
Figure 2.17, results in the closed-loop relationship

Gcl(jωk) = G(jωk)(C(jωk) +H)
1 +G(jωk)C(jωk)

(2.154)

with indirect estimate

Ĝ(jωk) = Ĝcl(jωk)
(C(jωk) +H)− C(jωk)Ĝcl(jωk)

(2.155)
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Consequently, for such a controller structure the singularity for the indirect plant esti-

Figure 2.17: Closed-loop framework with feed forward.

mate occurs at Ĝcl(jωk) = (C(jωk) +H)/C(jωk) = 1 +H/C(jωk).

For a problem formulation as depicted in Figure 2.13, with closed-loop relationship

Gcl(jωk) = G(jωk)
1 +G(jωk)C(jωk)

(2.156)

and indirect estimate
Ĝ(jωk) = Ĝcl(jωk)

(1− C(jωk)Ĝcl(jωk))
(2.157)

[Hea03] also addresses the idea of introducing an exclusion zone around the singularity,
i.e. Ĝcl(jωk) = 1

C(jωk) . Hence, the data is discarded if the estimate Ĝcl(jωk) is sufficiently
close to 1

C(jωk) . Assuming that the real and imaginary part of the estimate Ĝcl(jωk)
are independently normally distributed with equal variance σ2, [Hea03] derives, from the
probability density function of the closed-loop estimate, an expression for the variance
of the indirect estimate, when such an exclusion zone is introduced. Furthermore, an
approximation of the variance (via asymptotic expansion) for an "appropriately" ranged
exclusion zone and for large values of the term

β = 1
2σ2 |Gcl −

1
C
|2 (2.158)

meaning, for cases where Gcl is sufficiently far from 1
C
or the variance of Ĝcl is sufficiently

small, is given.

In [Hea00] the probability density function of the indirect plant estimate Ĝ for a closed-
loop system as depicted in Figure 2.13 is derived, assuming that the real and imaginary
part of the estimate Ĝcl(jωk) are independently normally distributed with equal variance
σ2. It is shown, that this probability density function can be described as a horseshoe en-
circling the inverse of the controller. Another important result presented in [Hea00] is that
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2.3 Closed-loop Identification

this probability density function approximates a complex normal distribution, with mean
G and variance σ2|1 +GC|4, if the signal-to-noise-ratio is sufficiently high. Nevertheless,
the variance of Ĝ is in theory infinite.

78



Chapter 3

Test-Based Controller Retuning
Concept

This chapter presents the main contribution of this thesis - the Test-Based Gain Retuning
Concept (C1-C4). We will start with an introductory motivational scenario. Imagine you
designed a linear controller based on a linear nominal plant model of the considered
system, such that all addressed requirements are satisfied by the resulting closed-loop
system of the designed controller and nominal plant model, hence providing a desired
behavior. Now during tests, where the designed controller is applied to the real system
it turns out that the closed-loop system, of designed controller and true plant, does not
perform as desired. That means, that the measured response deviates from the desired
response such that for example some addressed performance requirements that were all
satisfied on the nominal plant model, are now on the real system not satisfied. This is a
situation, where the method that is presented in the following can be used. The method
allows to retune the controller gains or parameters in an automated and easy manner
based on closed-loop tests of the initial controller and true system, such that the true
closed-loop response with the retuned controller will be closer to the desired one.

First, how could that happen that the designed controller does not perform as desired
in reality? In many applications, the models provided for controller design are inaccurate,
and the uncertainties are not known exactly. The task is to design a controller based on
the given model - but often in the project there is no money or work-packages allocated
regarding extensive controller design and assessment or regarding system identification
campaigns to obtain an accurate model. The discrepancy between the assumed model
during controller design and the real dynamics and the lack of resources to improve the
model or apply more advanced controller design and assessment techniques, leads to a
degradation of the controller performance on the true system.

For the nominal model however, especially in the domain of flight control, it is in gen-
eral straight forward to obtain controller parameters that satisfy all relevant requirements,
by applying classical linear gain design techniques. This means that a nominal closed-loop
behavior can be obtained – when applying the so designed controller to the nominal plant
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Figure 3.1: Schematic of desired and real closed-loop behavior.

model – that satisfies all requirements. Hence, it provides a desired behavior for the true
system, see Figure 3.1 (magenta). If there are outer control loops like an autopilot for
example, this nominal inner-loop behavior could also serve as a basis for their respective
gain design.

As mentioned before it is very unlikely that the real plant will exactly behave like
the nominal plant model. In case the uncertainties of the plant model are known, the
information about the uncertainties could be used to perform one of the various robust
gain design concepts. These aim to make sure that for all possible plant variations,
according to the given uncertainties and assumed uncertainty structure, the closed-loop
performance and margins will be within some acceptable bounds, see Figure 3.1 (red-
dashed). This requires first the availability of the corresponding resources, since the
related work load is slightly higher than in the case of designing controller gains for one
plant model only, namely the nominal plant model. If outer control loops exist, their
respective gain design, too, needs consequently to account for a range of possible closed-
loop responses of the inner-loop. This also increases the workload, compared to the case
where only one closed-loop behavior is expected. Furthermore, such designs often lead to
a conservative performance and result in a compromise only. Meaning, depending on the
true plant parameters the response will deviate from the perfect, desired one, see Figure
3.1 (blue). It will be only adequate, i.e within the required boundaries - in case the
assumed uncertainties and uncertainty structure was correct. In case the uncertainties
were underestimated or some of the system dynamics were neglected, it could happen
that the closed-loop behavior of the true plant violates the boundaries such that some
requirements are not met. At the end the ideal situation is considered to be a controller,
fine tuned in such a way that the closed-loop behavior on the true plant is as close as
possible to the desired behavior. Especially if the outer-loops were designed based on this
desired closed-loop behavior, they would be expected to perform as desired on the true
system if the true inner-loop would behave as the design one.
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Chapter 3: Test-Based Controller Retuning Concept

Conventionally, the first idea would direct towards an attempt to further reduce the
uncertainties by trying to identify the plant parameters more accurately. This would re-
quire flight test campaigns which are expensive. Moreover, there are usually more plant
parameters than controller gains. It should be also mentioned, that a model-based control
design includes an intermediate approximation and optimization, namely the intermedi-
ate step of identifying a parametrized model, which requires an assumption for the model
structure and model-order. It is hence considered as beneficial if this intermediate ap-
proximation step could be skipped when fine-tuning the controller gains. Furthermore, it
is sought for a method that allows to fine tune the controller gains based on experiments
on the true system under the expected operational conditions such that it is made sure
that really the true closed-loop behavior is improved, and the true model order is taken
into account.

For these situations: namely where the real closed-loop response with an initial model-
based controller deviates from the desired response, a method is presented where the gains
are retuned in an automated manner based on test data such that the true closed-loop re-
sponse with these new gains approaches the desired one. At the same time the satisfaction
of the stability margins of this retuned controller on the true system is addressed.

3.1 Concept

This section gives an overview over the test-based controller retuning concept (C1). We
find it useful to introduce first of all the terminology summarized in Table 3.1 that will
be used throughout this thesis. The basic principle of the controller retuning procedure
is depicted in Figure 3.2.
First it is assumed that based on an available linear nominal plant model Gnom an

initial linear controller C0 = C0(p0) is designed. Using classical model-based controller
design techniques the respective initial controller gains or parameters, p0, can be obtained.
It is further assumed that the resulting closed-loop Gcl,des of nominal plant model and
initial controller satisfies all addressed requirements and hence provides a desired closed-
loop behavior. Tests on the true system with true plant G and initial controller C0

might reveal that the true closed-loop system Gcl,0 does not perform as desired, due to
differences between the nominal plant model and the true system, such that a retuning
of the controller is required. This constitutes a typical situation where the test-based
retuning method can be applied. The procedure is as follows:

1. First of all closed-loop tests on the true plant G with the initial controller C0 are
performed by injection of specially designed test maneuvers.

2. Based on the known applied reference input r and the logged measurement data
of the closed-loop output signal ym, a non-parametric frequency response estimate
Ĝcl,0(jωk) is obtained, at discrete frequencies ωk that will be defined later. Note,

81



3.1 Concept

Nomenclature Explanation

Gnom parametrized nominal plant model

p controller parameters

C0 = C(p0) initial controller with initial parameters p0, obtained from model-
based control design using Gnom

Gcl,des desired closed-loop, e.g. closed-loop of nominal plant model Gnom

and initial controller C0

G true plant

Gcl,0 true closed-loop of true plant G with initial controller C0

Ĝcl,0 estimated closed-loop based on measurement data from closed-loop
tests with true plant G and initial controller C0

Ĝ estimated plant based on Ĝcl,0

C̃ = C(p̃) retuned controller: parametrized with optimized controller parame-
ters p̃

G̃cl true closed-loop of true plant G with retuned controller C̃

ˆ̃Gcl estimate of tuned closed-loop G̃cl, based on Ĝcl,0, C0 and C̃, also
denoted as anticipated tuned closed-loop

Table 3.1: Nomenclature.
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Chapter 3: Test-Based Controller Retuning Concept

Figure 3.2: Schematic of test-based controller parameter retuning concept.
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3.2 Illustrative Example

that in the following the argument (jωk) is omitted whenever it is clear from the
context. The frequency response estimate Ĝcl,0 is a non-parametric representation
of the true closed-loop system Gcl,0, of the true plant G with the initial controller C0.
Note, that this estimate is independent of a specific model structure or model-order
assumptions.

3. Assuming that the initial parameters set and structure of the controller C0, that was
applied in the test is of a linear form and known exactly, an anticipated closed–loop
frequency response Ĝcl(C(p)) for an updated controller C = C(p) with arbitrary
parameter values p can be calculated as well as an anticipated open-loop frequency
response CĜ, which is used to calculate the anticipated margins. As we will see
in Section 3.6 and 3.7 these estimates (Ĝcl and CĜ) can be calculated based on
Ĝcl,0, C0 and C directly. These relations are used within an optimization, which
seeks to retune the controller parameters in an automated, systematic manner, such
that all relevant requirements will be met by the true retuned closed-loop system.
The proposed optimization problem and fitness function imposes the relevant design
criteria by minimizing the deviation between the desired closed-loop Gcl,des and the
anticipated tuned closed-loop Ĝcl(C(p)) in the frequency domain and with respect
to the controller parameters p. A regularization is incorporated into the cost func-
tion to retain the retuned gains within reasonable bounds around the initial gains.
The fulfillment of relevant stability criteria, calculated using the estimate C(p)Ĝ,
is enforced by constraints. The solution of the optimization process provides the
possibly optimal controller parameters p̃.

The following sections will address each of these steps in more detail, supported by a
simple illustrative example that is presented in the next section.

3.2 Illustrative Example

This section presents the example system that will demonstrate the theory presented in
the following sections.

3.2.1 System Structure

We consider the closed-loop system depicted in Figure 3.3. The considered plant dynamics
are the linearized short period dynamics of an fixed-wing aircraft given by .α.

q

 =
Zα 1 + Zq

Mα Mq

α
q

+
 0
Mη

 η (3.1)
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Chapter 3: Test-Based Controller Retuning Concept

Figure 3.3: Closed-loop block diagram.

Parameter Value
Zα -1.068
Zq -0.022
Mα -4.160
Mq -1.689
Mη -3.914

Table 3.2: Nominal Model parameters.

where α = α(t) is the angle of attack, q = q(t) is the pitch rate and the input u = η = η(t)
is the elevator deflection. Note, that for better readability, the argument (t) was omitted.
The measured output signal is the pitch rate, with an additive noise signal nw = nw(t)

ym = y + nw = q + nw =
[
0 1

] α
q

+ nw (3.2)

The parameter values of the nominal plant model that equals (3.1) are summarized in
Table 3.2. In the Laplace domain we can express the nominal plant dynamics by

Y (s) = Gnom(s)U(s) (3.3)

where Gnom(s) is given by

Gnom(s) =
[
0 1

]
(sI−

Zα 1 + Zq

Mα Mq

)−1

 0
Mη

 (3.4)

The considered controller is a simple pitch rate controller, where the reference input signal
r = qc, is a pitch rate command and the feedback signal ym = q is the measured pitch
rate. The control law obeys in the Laplace domain

U(s) = C(s)(R(s)− Ym(s)) +H(s)R(s)
= (C(s) +H(s))R(s)− C(s)Ym(s)
= T (s)R(s)− C(s)Ym(s)

(3.5)
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3.2 Illustrative Example

Parameter Value
k0 -0.31
kI,0 -0.18
h0 -1.48

Table 3.3: Initial controller parameters.

where C(s) is a PI controller:
C(s) = k + kI

s
(3.6)

with feedback gain k and integral gain kI , and where H(s) is a constant feed forward
gain h. The controller transfer behavior from the reference signal r to control signal u is
described by

T (s) = C(s) +H(s) (3.7)

We define the controller parameter vector as

p =
[
pc ph

]
(3.8)

with

pc =
[
k kI

]
ph = h

(3.9)

3.2.2 Initial Model-based Controller Parameters and Nominal
Closed-loop

Based on the nominal plant model the controller parameters are determined, such that
the short period poles of the resulting closed-loop system of nominal plant model and
controller are conjugate complex with desired natural frequency ω0 corresponding to a
CAP of 1, (providing Handling 1 qualities), and a damping ratio of ζ =

√
2

2 . The feed for-
ward gain introduces a zero to the closed-loop system transfer behavior from commanded
pitch rate qc to measured pitch rate. The value of the feed forward gain is determined
such that the resulting zero cancels the closed-loop pole, introduced by the controller
integrator. The reason for the cancellation of the integrator pole is, that it is undesired
that this additional pole can be anticipated by the pilot. The resulting gain margin of
nominal plant and controller is larger than 6dB and the resulting phase margin is larger
than 45 deg. The obtained initial model-based controller parameters are summarized in
Table 3.3. In closed-loop, see Figure 3.3, we have the relation

Ym = GC(R− Ym) +GHR +Nw (3.10)
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from which the relation

Ym = G(C +H)
1 +GC

R + 1
1 +GC

Nw = GclR + ScNw = GclR +Ny (3.11)

can be obtained, with sensitivity
Sc = 1

1 +GC
(3.12)

and closed-loop transfer function

Gcl = G(C +H)
1 +GC

(3.13)

The block diagram representation of Equation (3.11), is depicted in Figure 2.14. Note,
that the dependency on the Laplace operator (s) was omitted for better readability. The
frequency response of the nominal closed-loop system, i.e.

Gcl,des = Gnom(C0 +H0)
1 +GnomC0

(3.14)

is revealed in the bode-diagram in Figure 3.4. This frequency response specifies the desired
behavior, that we would like to achieve on the true plant by retuning the controller gains.

Figure 3.4: Desired closed-loop frequency response.
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3.3 Assumptions and Design Choices

3.3 Assumptions and Design Choices

This section summarizes the assumptions and design choices, resulting from the discus-
sions in Section 2.2. These are applicable for the considerations in the following sec-
tions. In the following sections we will be concerned with indirect frequency domain
non-parametric estimates of the open-loop for calculation of the stability margins and
closed-loop response - both for a new parameter set for the controller. These estimates
will have in common, that they are calculated based on an estimate of the closed-loop
frequency response from experimental data obtained under the closed-loop conditions as
depicted in Figure 3.3. We choose to calculate this closed-loop estimate by an averaged
ETFE as described in Section 2.2.5 according to

Ĝcl(jωk) =
1
R

∑R−1
r=0 Y

[r]
m,DFT [k]

1
R

∑R−1
r=0 R

[r]
DFT [k]

=
1
R

∑R−1
r=0 Y

[r]
m,DFT [k]

RDFT [k] (3.15)

where Y [r]
m,DFT is the DFT of the r′th record of the measured output signal ym and RDFT

is the DFT of the exactly known reference input r. The chosen estimation method is the
ETFE because of its simplicity and good properties, see Section 2.2, under the following
conditions: We assume the leakage errors to be negligible because the excitation signal is
chosen to be periodic. Specifically we chose it to be a multi-sine. The system is assumed
to be linear and full periods of the excitation signal are measured, i.e. the record time
length Tw and the multi-sine are chosen such, that Tw is a multiple integer of the periods
of the sines contained within the multi-sine. Each record contains a finite number of
discrete samples of the measured signals ym and r. The measured signals are assumed
to be synchronized. Furthermore, we assume leakage due to transients from maneuver
initiation to be negligible. This error can be reduced by discarding an appropriate number
of initial records. Since the reference signal is generated and logged by the FCC it is
assumed to be exactly known. The output signal is assumed to be disturbed by noise as
depicted in Figure 3.3. The noise sequence is assumed to be i.i.d. normally distributed
with zero mean. We summarize the made assumptions:

• linear system dynamics

• finite number of discrete samples are measured

• synchronized measurements

• transients due to maneuver initiation are negligible

• full periods of the periodic excitation signal are measured

• errors due to leakage are negligible

• chosen estimation method for initial closed-loop estimate is the averaged ETFE
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Chapter 3: Test-Based Controller Retuning Concept

• reference signal and initial controller, that is applied in the closed-loop experiment,
are exactly known

• output signal is additively perturbed by an i.i.d. normally distributed noise sequence
with zero mean and variance σ2

n.

3.4 Closed-loop Test-Maneuver

According to Section 3.1, see also Figure 3.2, the first step of the test-based controller
retuning is to perform closed-loop tests of the true plant G with the initial controller C0,
H0, see Figure 3.3. Carefully predesigned test maneuvers are injected over the reference
input r. According to Section 3.3 the finite, discrete, sampled measured output signal
sequence ym[n] is perturbed by noise as depicted in Figure 3.3.

The following section is extracted from my publication [GHSM21]: " [The closed-loop
system is excited over the reference input r using a periodic signal, in specific a multisine
signal. During execution of the maneuver, the closed-loop response ym is logged]. The
multisine input signal is calculated as proposed in [Mor12]. It is composed of the sum of
harmonic sinusoids with individual phase shifts Φk according to

rT (t) =
nω∑
k=1

Ak sin
(

2πlk
T

t+ Φk

)
, t ∈ [0, T ] (3.16)

where Ak is the amplitude of the k-th sinusoidal component, T is the window length, and
lk ∈ S,S ⊂ N with k = 1, . . . , nω. These values are selected as follows:

Time Length T of the Excitation and Selected Frequency Set: T is the time
length of the excitation, i.e. the maneuver, which defines the first harmonic frequency as
ωmin = 2π/T for the sinusoids in Equation (3.16).
The frequency set with nω selected frequencies is chosen as ωk = lk · ωmin, lk ∈ S,S ⊂ N
with k = 1, . . . , nω such that the frequencies of interest, where the dynamics to be es-
timated are expected to lie, are covered. Note, that the available frequencies for the
sinusoids in Equation (3.16) are harmonically related, i.e. integer multiples of ωmin. This
ensures that the excitation signal contains integer numbers of full periods to avoid leakage,
see Section 2.2.3.3. [The time length of the excitation together with the selected frequency
set, hence, determines the frequency spacing of the ETFE according to Section 2.2.3.3.
It shall be selected such that the frequency grid is fine enough to capture the dynamics
of the system to be estimated. The finer the grid, the longer is the required maneuver
duration. This increases the test time and costs on one hand, on the other hand with too
long maneuver lengths, one might risk an unacceptable drift away from the reference or
trim condition, resulting in bad estimates. Hence, the maneuver length shall be chosen as
a compromise of these contradicting factors. Furthermore, the selected frequencies shall
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3.4 Closed-loop Test-Maneuver

cover the dynamics of interest of the system to be estimated, which determines the consid-
ered frequency interval. Together with the required signal-to-noise ratio, which determines
the required amplitude of the excitation, it has to be made sure that actuator constraints,
such as limits and rate saturations are not violated, as this would introduce nonlinearities,
resulting in an erroneous estimate.]

Phase angles Φk: If the phase angles Φk were chosen randomly, then in general, the
selected harmonic sinusoids could add together at some points leading to an input with
relatively large amplitudes. This is undesired because it can cause a drift of the dynamic
system too far from the selected reference condition. Therefore, the phase angles Φk for
each of the selected harmonic components are chosen according to [Mor12]. The basic
idea of this approach is to minimize the relative peak factor (RPF) with respect to Φk.
The RPF is a measure of the efficiency of an input for dynamic modeling purposes in
terms of the amplitude range of the input divided by a measure of the input energy. [Low
relative peak factors are desirable and efficient for estimating dynamic model parameters
because the objective is to excite the dynamic system with good input energy over a variety
of frequencies while minimizing the input amplitudes in the time domain to avoid driving
the dynamic system too far away from the reference condition, [Mor12].]

Amplitudes Ak: To achieve a uniform power distribution according to [Mor12], all Ak
are selected identical as

Ak = A/
√
nω ∀k (3.17)

where nω is the number of sinusoidal components included in the summation (3.16). A
is the amplitude of the reference input r, to be chosen such that sufficient signal-to-noise
ratio on the measured system response is achieved. [Furthermore, it has to made sure that
these amplitudes are selected such that together with the selected frequencies the resulting
excitation does not lead to a violation of actuator constraints.]" [end of quotation from my
publication [GHSM21]]

The final maneuver will consist of R repetitions of the multisine signal rT (t), resulting in
a total maneuver length of RT . The R measurement records are used to calculate the
averaged ETFE, see Section 2.2.5. As shown in Section 2.2.5 the variance of the averaged
ETFE can be decreased by increasing the number of repetitions R. But on the other
hand the maneuver length is increased, such that again a compromise between costs, drift
away from the reference condition, variance reduction and maneuver length T , meaning
the frequency grid, needs to be found.
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3.5 Non-parametric Frequency Domain Estimate of
Closed-loop of True Plant with Initial Controller

In the second step of the proposed test-based controller retuning method, according to
Section 3.1 and Figure 3.2, the measurement data, obtained by the closed-loop experiment
described in Section 3.4, is used to calculate the closed-loop frequency response estimate
of the true plant G with initial controller C0, H0. This closed-loop estimate is obtained,
according to Section 3.3, as the averaged ETFE

Ĝcl,0(jωk) =
1
R

∑R−1
r=0 Y

[r]
m,DFT (jωk)

1
R

∑R−1
r=0 R

[r]
DFT (jωk)

(3.18)

where Y [r]
m,DFT and R

[r]
DFT are the DFT’s of the r′th record of the sampled time domain

data of the measured output signal ym[n] and reference input r[n]. According to Section
3.3, the reference input r is assumed to be exactly known. Hence, we obtain for the
averaged ETFE of the closed-loop frequency response

Ĝcl,0(jωk) =
1
R

∑R−1
r=0 Y

[r]
m,DFT (jωk)

RDFT (jωk)
(3.19)

Because of Equation (3.11) and because the excitation is periodic and transients are
assumed to have died out, the estimate (3.19) corresponds to

Ĝcl,0(jωk) = Gcl,0(jω) + εk (3.20)

where Gcl,0 is the true closed-loop and where

εk = 1
R

R−1∑
r=0

ε
[r]
k = 1

R

R−1∑
r=0

N
[r]
y,DFT (jωk)
RDFT (jωk)

(3.21)

According to Figure 2.14 and Equation (3.11), ny results from filtering the noise sequence
nw, which is i.i.d. normally distributed with zero mean, µn = 0 and variance σ2

n, by the
sensitivity Sc,0. Hence, as shown in the previous chapter, Equation (2.146), we know that

E[ε[r]k ] = E[
N

[r]
y,DFT (jωk)
RDFT (jωk)

] = 0 (3.22)

and because of the linearity property of the expected value operator and Property M.0.1:

E[εk] = E[
1
R

∑R−1
r=0 N

[r]
y,DFT (jωk)

RDFT (jωk)
] = 0 (3.23)
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Initial Controller

Further according to [Bri81],[dv95] and as was shown in Equation (2.147), the variance and
correlation of the real and imaginary parts of ε[r]k are asymptotically, i.e. for N → ∞,
where N are the number of samples, given by

E[<(ε[r]k )<(ε[r]k )] = E[=(ε[r]k )=(ε[r]k )] = 1
2 |Sc,0(jωk)|2

σ2
n

|RDFT (jωk)|2

E[<(ε[r]k )=(ε[r]k )] = 0
(3.24)

and asymptotically jointly normally distributed. Because of the property given in Equa-
tion (M.11) and Lemma M.0.2 the variance and covariance of the real and imaginary parts
of the sum in Equation (3.21) is given by

E[<(εk)<(εk)] = E[=(εk)=(εk)] = 1
2R |Sc,0(jωk)|2

σ2
n

|RDFT (jωk)|2

E[<(εk)=(εk)] = 0
(3.25)

The sensitivity Sc,0 is given in Equation (3.12) by

Sc,0(jωk) = 1
1 +G(jωk)C0(jωk)

(3.26)

where C0 is the exactly known initial controller, that was applied in the closed-loop exper-
iment, and whose parameters we would like together with H0 to retune. The closed-loop
estimate (3.19), is hence asymptotically complex normally distributed with uncorrelated
real and imaginary parts with equal variance and mean value corresponding to the true
closed-loop frequency response Gcl,0, i.e.:

E[Ĝcl,0(jωk)] = Gcl,0(jωk)

var[<(Ĝcl,0(jωk))] = var[=(Ĝcl,0(jωk))] = σ2 = 1
2R |Sc,0(jωk)|2

σ2
n

|RDFT (jωk)|2

cov[<(Ĝcl,0(jωk))),=(Ĝcl,0(jωk))] = 0

(3.27)

This result shows that by increasing the SNR or the number of the repetitions of the
maneuver, the variance of the estimate can be decreased. Note, that increasing the
number of repetitions increases the duration of the experiment and thus the costs of the
test campaign. Furthermore, the number of repetitions and hence maneuver duration
shall be chosen carefully such that the drift from the reference condition stays within
acceptable bounds.

Example 3.1. Sample Properties of Initial Closed-loop Estimate
In this example we are concerned with the closed-loop estimate Ĝcl,0 of the system, de-
scribed in Section 3.2. The closed-loop estimate is obtained with the averaged ETFE as
described in Section 3.5. The initial controller parameters that are applied in the exper-
iment are given in Table 3.3. The parameter values of the considered true plant G are
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Parameter Value
Zα -1.068
Zq -0.022
Mα -3.952
Mq -1.858
Mη -4.109

Table 3.4: True plant parameters.

given in Table 3.4. They correspond to an 5% decrease in Mα, an 10% increase in Mq and
an 5% increase in Mη, compared to the nominal plant model parameters given in Table
3.2. We consider two cases, that differ in the signal-to-noise ratio only:

1. |RDFT |
σn

= 1

2. |RDFT |
σn

= 10

where RDFT is the DFT of the reference input signal, which is the multi-sine signal de-
scribed in Section 3.4, and σ2

n is the variance of the noise sequence nw[n] for which the
assumptions given in Section 3.3 hold. The first maneuver is discarded to reduce leakage
errors from transients due to maneuver initiation. The number of used records is R = 1.
N = 6250 samples are considered for the simulation and DFT to emulate the asymptotic
condition required by Equation (3.27). The experiment is simulated M = 2000 times, such
that 2000 closed-loop estimates are obtained for each SNR. These are investigated in the
following. According to Equation (3.27), the expected value of Ĝcl,0 is the true value Gcl,0.
Figure 3.5 and 3.6 compare for a SNR of 1 and a SNR ratio of 10, the true value Gcl,0

with the sample mean
¯̂
Gcl,0(jωk) = 1

M

M∑
m=1

Ĝ
[m]
cl,0(jωk) (3.28)

where Ĝ[m]
cl,0(jωk) is the estimate of the respective m′th simulation. We see, that the sample

mean corresponds to the true value Gcl,0. Asymptotically (for N → ∞), according to
Equation (3.27), the variance of the real and imaginary parts are equal and given by:

σ2 = 1
2R |Sc,0(jωk)|2

σ2
n

|RDFT (jωk)|2
(3.29)

Figure 3.7 compares for a SNR of 1 and a SNR of 10, this theoretical value of the variance
with the sample variances

σ̄2
r = 1

M − 1

M∑
m=1

(
<(Ĝ[m]

cl,0(jωk))−<( ¯̂
Gcl,0(jωk))

)2

σ̄2
i = 1

M − 1

M∑
m=1

(
=(Ĝ[m]

cl,0(jωk))−=( ¯̂
Gcl,0(jωk))

)2
(3.30)
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Figure 3.5: Closed-loop estimate for SNR of 1.

We see, that the sample variance is centered around the theoretical value for both cases.
Further, the variance increases with frequency because of the increasing magnitude of the
sensitivity Sc,0(jωk), which is depicted in Figure 3.8. Figure 3.9 shows the probability
density function of the real values of all M estimates Ĝ[m]

cl,0(jωk) at frequency ωk corre-
sponding to the 5′th harmonic frequency. Figure 3.9 reveals that the distribution of the
samples approximates a normal distribution with mean (3.27) and variance (3.29), which
is depicted in green. Figure 3.10 shows the sample covariance between real and imaginary
parts of Ĝcl,0, i.e.

σ̄2
ri = 1

M − 1

M∑
m=1

(
<(Ĝ[m]

cl,0(jωk))−<( ¯̂
Gcl,0(jωk))

)(
=(Ĝ[m]

cl,0(jωk))−=( ¯̂
Gcl,0(jωk))

)
(3.31)

for a SNR of 1 and a SNR of 10. As expected they are almost zero.
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Figure 3.6: Closed-loop estimate for SNR of 10.

Figure 3.7: Sample variance of real parts and of imaginary parts, Left: SNR of 1; Right:
SNR of 10.
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Figure 3.8: True sensitivity Sc,0(jωk).

SNR of 1 SNR of 10
Figure 3.9: Probability density function of real values of closed-loop estimates at 5′th
harmonic frequency (M = 10000 simulations), Left: SNR of 1; Right: SNR of 10.
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Figure 3.10: Sample covariance of real and imaginary part of initial closed-loop esti-
mates, (M = 10000 simulations), Left: SNR of 1; Right: SNR of 10.
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3.6 Non-parametric Closed-loop Frequency Response
Estimate of True Plant with Updated Controller

In the previous section we were concerned with the closed-loop estimate Ĝcl,0 of the true
plant G with the initial controller C0, H0. This estimate was obtained based on closed-loop
experimental data of the true system with controller C0, H0. The following section presents
how based on this estimate, Ĝcl,0, an anticipated closed-loop frequency response ˆ̃Gcl, for
a new set of controller parameters p̃, can be obtained. This anticipated, new closed-loop
frequency response ˆ̃Gcl(jωk, p̃) is used in an optimization, as will be discussed in Section
3.8, to obtain the optimal controller parameters. Based on the difference of the anticipated
closed-loop frequency response ˆ̃Gcl(jωk, p̃), for controller parameters p̃, and the desired
frequency response, the optimal controller parameters are determined. The question that
instantaneously arises and will be addressed in this section, is how the anticipated closed-
loop frequency can be calculated (C3) and how close the anticipated closed-loop frequency
response ˆ̃Gcl(jωk, p̃) will be to the true closed-loop frequency response G̃cl(jωk, p̃) of true
plant G and controller with updated parameters (C4). Note, that the complete sections
3.6.1, 3.6.2, 3.6.3 and related appendices are extracted from my manuscript [SSH]. ["

3.6.1 Estimate of Anticipated Updated Closed-loop

For the system in Figure 3.3 we have in closed-loop the relation given in Equation (3.11)
by

Gcl,0(jωk) = G(jωk)(C0(jωk) +H0(jωk))
1 +G(jωk)C0(jωk)

= G(jωk)T0(jωk)
1 +G(jωk)C0(jωk)

(3.32)

where
T (jωk) , C(jωk) +H(jωk) (3.33)

is the controller transfer behavior from reference input r to control signal u, see Equation
(3.7) and Equation (3.5). In the following we will omit the argument (jωk) for better
readability. By solving relation (3.32) for G

Gcl,0(1 +GC0) = GT0

Gcl,0 = GT0 −GC0Gcl,0

Gcl,0 = G(T0 − C0Gcl,0)

G = Gcl,0

T0 − C0Gcl,0

(3.34)

a relation for G is obtained, which depends on the controller C(pc,0) = C0, H(ph,0) = H0

and the resulting closed-loop frequency response, Gcl,0, of G with this controller. Based
on relation (3.34) for the plant G, the closed-loop frequency response, G̃cl, for an updated
set of controller parameters, which we denote as C(p̃c) = C̃, H(p̃h) = H̃, can be obtained
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as follows:

G̃cl = GT̃

1 +GC̃

=
Gcl,0

T0−C0Gcl,0
T̃

1 + Gcl,0
T0−C0Gcl,0

C̃

= Gcl,0T̃

T0 − C0Gcl,0 +Gcl,0C̃

= Gcl,0T̃

T0 − (C0 − C̃)Gcl,0

= T̃

T0

Gcl,0

1− (C0−C̃)
T0

Gcl,0

(3.35)

Hence, based on an non-parametric estimate for the closed-loop frequency response Ĝcl,0,
obtained from closed-loop experiments of the true system G with initial controller C0, H0,
as described in Section 3.5, the closed-loop frequency response for an updated controller
parameter set, C̃, H̃ can be calculated by

ˆ̃Gcl = T̃

T0

Ĝcl,0

1− F0Ĝcl,0
(3.36)

where
F0 ,

C0 − C̃
T0

(3.37)

and where

T0 , C0 +H0

T̃ , C̃ + H̃
(3.38)

3.6.2 Bias of Anticipated Updated Closed-loop

Lemma 3.6.1. Suppose we have the closed-loop system depicted in Figure 3.3, with an
unknown plant G. The closed-loop behavior Gcl,0 from reference input r to system output
ym is described by Equation (3.32). Then, for an updated controller C̃, H̃, the closed-
loop behavior G̃cl from reference input r to system output ym is given by (3.35) with
(3.38). Suppose we have at specific frequencies an estimate Ĝcl,0(jωk) of Gcl,0, for example
obtained as described in Section 3.5, such that it is given by

Ĝcl,0(jωk) = Gcl,0(jωk) + εk (3.39)

The real and imaginary parts of εk are jointly normally distributed with zero mean

E[<(εk)] = E[=(εk)] = 0 (3.40)
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with equal variance

var[<(εk)] = var[=(εk)] = σ2 = 1
2R

σ2
n

|RDFT (jωk)|2
|Sc,0(jωk)|2 (3.41)

and uncorrelated
cov[<(εk),=(εk)] = 0. (3.42)

Then the expected value of ˆ̃Gcl, estimated by Equation (3.36), is given by

E[ ˆ̃Gcl] = αG̃cl + (1− α)(− 1
F̃

) (3.43)

where

α = 1− exp (− 1
2σ2 |

1− F0Gcl,0

F0
|2) (3.44)

and

F0 ,
C0 − C̃
T0

F̃ ,
C0 − C̃
T̃

(3.45)

where T0 and T̃ are the open-loop controller transfer behavior from reference input r to
control signal u, given by Equation (3.38). Note, that the dependency (jωk) is omitted for
readability.

Proof. The following proof has been structured to use the similarities with [Hea01b],
where the expected value of an non-parametric, indirect plant estimate Ĝ was calculated
for a closed-loop system structure as depicted in Figure 2.13.
The probability density function of Ĝcl,0, evaluated at z ∈ C is given by (see Lemma
M.0.14)

fĜcl,0(z) = 1
2π
√
det(Σ)

e

− 1
2

<(z − µz)
=(z − µz)

TΣ−1

<(z − µz)
=(z − µz)


(3.46)

where µz, is the expected value of the complex random variable Ĝcl,0, given by

µz = E[Ĝcl,0] = Gcl,0 (3.47)

as can be directly seen from Equation (3.39), incorporating that εk has zero mean. The
covariance matrix Σ is given by
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Σ =
 var[<(z)] cov[<(z),=(z)]
cov[=(z),<(z)] var[=(z)]


=
σ2 0

0 σ2

 (3.48)

as can be directly seen from Equation (3.41) and (3.42). The expected value of ˆ̃Gcl is
according to Definition M.0.17 and Equation (3.36)

E[ ˆ̃Gcl] = E[ T̃
T0

z

1− F0z
] = T̃

T0

∫
C

z

1− F0z
fĜcl,0(z)dz (3.49)

with the probability density function fĜcl,0(z) given in Equation (3.46) and where the
differential element dz is to be understood as dz = dx̄dȳ. Hence, (3.49) expresses not a
complex contour integral but a double integral over R2.
For F0 6= 0

E[ ˆ̃Gcl] = T̃

T0

∫
C

z

1− F0z

F0

F0
fĜcl,0(z)dz

= − T̃
T0

1
F0

∫
C

1− F0z − 1
1− F0z

fĜcl,0(z)dz

= − T̃
T0

1
F0

(
∫
C

1fĜcl,0(z)dz −
∫
C

1
1− F0z

fĜcl,0(z)dz)

= T̃

T0
(− 1
F0

+ 1
F0

∫
C

1
1− F0z

fĜcl,0(z)dz)

(3.50)

where ∫
C

1fĜcl,0(z)dz = 1 (3.51)

was used, and partial fraction decomposition was applied to factor out 1 from the second
to the third equal sign in (3.50).
Put

x ,
1
σ

(x̄−<(Gcl,0))

y ,
1
σ

(ȳ −=(Gcl,0))
(3.52)

such that

x̄ = <(z) = σx+ <(Gcl,0)
ȳ = =(z) = σy + =(Gcl,0)

(3.53)
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and

dx̄ = σdx

dȳ = σdy
(3.54)

Then

E[ ˆ̃Gcl] = T̃

T0
(− 1
F0

+ 1
F0

∫ ∞
−∞

∫ ∞
−∞

1
1− F0(x̄+ jȳ)fĜcl,0(x̄, ȳ)dx̄dȳ)

= T̃

T0
(− 1
F0

+ 1
F0

∫ ∞
−∞

∫ ∞
−∞

1
1− F0(σ(x+ jy) +Gcl,0)fĜcl,0(x, y)σ2dxdy)

(3.55)

The probability density function of Ĝcl,0, given by Equation (3.46), can be expressed using
(3.48),(3.47) and (3.53) by

fĜcl,0(x̄, ȳ) = 1
2πσ2 exp (−(x̄−<(Gcl,0))2 + (ȳ −=(Gcl,0))2

2σ2 ) (3.56)

and in terms of x, y by

fĜcl,0(x, y) = 1
2πσ2 exp (−x

2σ2 + y2σ2

2σ2 )

= 1
2πσ2 exp (−x

2 + y2

2 )
(3.57)

In polar coordinates given by

r2 = x2 + y2

θ = arg(x+ jy)
x = r cos θ
y = r sin θ

(3.58)

and with

dxdy = rdθdr (3.59)

the expected value given in Equation (3.55) can be expressed by

E[ ˆ̃Gcl] = T̃

T0
(− 1
F0

+ 1
F0

∞∫
0

π∫
−π

1
1− F0σr(cos θ + j sin θ)− F0Gcl,0

1
2πe

(− r
2
2 )rdθdr)

(3.60)

Put
P , 1− F0Gcl,0 (3.61)
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Then

E[ ˆ̃Gcl] = T̃

T0
(− 1
F0

+ 1
F0P

P

2π

∞∫
0

π∫
−π

1
P − F0σr(cos θ + j sin θ)e

(− r
2
2 )rdθdr)

= T̃

T0
(− 1
F0

+ 1
F0P

∞∫
0

I(r)e(− r
2
2 )rdr)

(3.62)

with

I(r) , P

2π

π∫
−π

dθ

P − F0σr(cos θ + j sin θ) (3.63)

Put
z̆ = cos θ + jsinθ = ejθ (3.64)

where z̆ runs along the unit circle in the complex plane, given by the curve C, and

dz̆

dθ
= jejθ = jz̆

dθ = dz̆

jz̆

(3.65)

Then

I(r) = P

2π

∮
C

1
P − F0σrz̆

1
jz̆
dz̆

= Pj

2πj2

∮
C

1
(P − F0σrz̆)z̆ dz̆

= Pj

2π

∮
C

1
(F0σrz̆ − P )z̆ dz̆

= Pj

2π

∮
C

1
F0σr

(z̆ − P
F0σr

)z̆
dz̆

= Pj

2π

∮
C

Ψ(r, z̆)dz̆

(3.66)

For a fixed r, Ψ(z̆) has two poles at

z̆1 = 0

z̆2 = P

F0σr

(3.67)

The contour integral in Equation (3.66), can be evaluated using Cauchy’s residue theorem
[Pou18, p. 833]. The residues of Ψ(z̆) are

Res1(Ψ) = lim
z̆→z̆1

(z̆ − z̆1) 1/(F0σr)
(z̆ − z̆1) (z̆ − z̆2) = − 1

P

Res2(Ψ) = lim
z̆→z̆2

(z̆ − z̆2) 1/(F0σr)
(z̆ − z̆1) (z̆ − z̆2) = 1

P

(3.68)
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The pole z̆1 lies within the unit circle, while the pole z̆2 is only inside the unit circle, i.e.
|z̆2| < 1, for r > r0, with

r0 = | P
F0
| 1
σ

(3.69)

which can be directly seen by inspecting the square of the magnitude of z2, which is given
by

|z̆2|2 = z̆2z̆
∗
2 =
| P
F0
|2 1
σ2

r2 (3.70)

Hence, for r > r0, I(r) is given by

I(r) = Pj

2π (2πj
2∑
s=1

Ress(Ψ)) = 0 (3.71)

For r < r0, I(r) is given by

I(r) = Pj

2π (2πjRes1(Ψ)) = 1 (3.72)

Because of (3.71), and (3.72), Equation (3.62) is reduced to

E[ ˆ̃Gcl] = T̃

T0
(− 1
F0

+ 1
F0P

∞∫
0

I(r)e(− r
2
2 )rdr)

= T̃

T0
(− 1
F0

+ 1
F0P

α)

(3.73)

with

α ,
r0∫

0

I(r)e(− r
2
2 )rdr +

∞∫
r0

I(r)e(− r
2
2 )rdr

=
r0∫

0

e(− r
2
2 )rdr

= 1− exp
(
−r0

2

2

)

= 1− exp
− 1

2σ2

∣∣∣∣∣ PF0

∣∣∣∣∣
2


= 1− exp
− 1

2σ2

∣∣∣∣∣1− F0Gcl,0

F0

∣∣∣∣∣
2
.

(3.74)

Using the definition of F0 and F̃ , given by Equation (3.50), the following relation is
obtained

T̃

T0

1
F0

= T̃

T0

T0

C0 − C̃
= 1
F̃

(3.75)
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Inserting this relation into Equation (3.73) results in

E[ ˆ̃Gcl] = T̃

T0
(− 1
F0

+ 1
F0P

α)

= (− 1
F̃

+ 1
F̃P

α)
(3.76)

Using P = 1− F0Gcl,0 as defined in (3.61) and

F0

F̃
=

C0−C̃
T0

C0−C̃
T̃

= T̃

T0
(3.77)

we obtain the relation

1
F̃P

= 1
F̃

1
1− F0Gcl,0

= 1
F̃

F0Gcl,0 + 1− F0Gcl,0

1− F0Gcl,0

= 1
F̃

( F0Gcl,0

1− F0Gcl,0
+ 1) = F0

F̃

Gcl,0

1− F0Gcl,0
+ 1
F̃

= T̃

T0

Gcl,0

1− F0Gcl,0
+ 1
F̃

= G̃cl + 1
F̃

(3.78)

with G̃cl given by Equation (3.35). Inserting relation (3.78) in Equation (3.76) results in

E[ ˆ̃Gcl] = − 1
F̃

+ (G̃cl + 1
F̃

)α

= αG̃cl + (1− α)(− 1
F̃

)
(3.79)

which completes the proof of (3.43) in Lemma 3.6.1.

It is seen that the resulting expected value of the anticipated updated closed-loop
resembles in structure the expected value of the non-parametric, indirect plant estimate
[Hea01b]. In (3.79) it can be seen that

1. The bias is reduced when the variance σ2 of εk is reduced, as α, given by (3.74),
tends to 1

2. The expected value E[ ˆ̃Gcl] tends to −1/F̃ when the variance σ2 of εk is increased,
as α, given by (3.74), tends to 0

3. The limit of the bias goes to zero when the initial feed-forward H0 goes to infinity,
see Lemma 3.6.2. This is not surprising, since increasing the feed-forward will turn
the estimate towards an open-loop problem.

4. The limit of the bias goes to zero when the controller change goes to zero, i.e. C̃
goes to C0, see Lemma 3.6.3
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Lemma 3.6.2. Given the expected value according to Lemma 3.6.1, the following limit
holds with H0 ∈ C:

lim
H0→∞

E[ ˆ̃Gcl] = G̃cl (3.80)

Proof. The expected value E[ ˆ̃Gcl] is given by (3.43). Since F̃ = C0−C̃
T̃

, (3.45), with T̃ =
H̃ + C̃, (3.38), is independent of H0 = rHe

jθH , the limit in (3.80) is shown by showing
that:

lim
H0→∞

α = lim
rH→∞

α = 1 (3.81)

where according to Equation (3.44),

α =1− exp
− 1

2σ2

∣∣∣∣∣1− F0Gcl,0

F0

∣∣∣∣∣
2


=1− exp(− 1
2σ2 |

1− C0−C̃
H0+C0

Gcl,0
C0−C̃
H0+C0

|2)

=1− exp

− 1
2σ2 |

H0

C0 − C̃
+
C0 −

(
C0 − C̃

)
Gcl,0

C0 − C̃
|2


=1− exp
(
− 1

2σ2 |H0k1 + k2|2
)

=1− exp
(
− 1

2σ2 |rHe
jθHrk1e

jθk1 + rk2e
jθk2 |2

)

=1− exp
(
− 1

2σ2 |rHrk1e
j(θH+θk1 ) + rk2e

jθk2 |2
)

(3.82)

with k1 = rk1e
jθk1 = 1

C0−C̃
and k2 = rk2e

jθk2 = C0−(C0−C̃)Gcl,0
C0−C̃

. Because

lim
rH→∞

|rHrk1e
j(θH+θk1 )ejθk1 + rk2e

jθk2 |2

= lim
rH→∞

|rHrk1

(
cos(θH + θk1) + j sin(θH + θk1)

)
+ rk2

(
cos(θk2) + j sin(θk2)

)
|2

= lim
rH→∞

[(rHrk1 cos(θH + θk1) + rk2 cos(θk2))2 + (rHrk1 sin(θH + θk1) + rk2 sin(θk2))2]

= lim
rH→∞

[(r2
Hr

2
k1(cos2(θH + θk1) + sin2(θH + θk1)) + r2

k2(cos2(θk2) + sin2(θk2))

+ 2rHrk1rk2

(
cos(θH + θk1) cos(θk2) + sin(θH + θk1) sin(θk2)

)
]

= lim
rH→∞

r2
Hr

2
k1 + r2

k2 + 2rHrk1rk2

(
cos(θH + θk1) cos(θk2) + sin(θH + θk1) sin(θk2)

)
=∞

(3.83)

then the limit in (3.81) is 1. Note, that the exponential function is continuous everywhere.
Therefore, the limit can be applied to the inner part of the exponential function.
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Lemma 3.6.3. Given the expected value according to Lemma 3.6.1, the following limit
holds:

lim
C̃→C0

E[ ˆ̃Gcl] = G̃cl (3.84)

Proof. The expected value E[ ˆ̃Gcl] is given by (3.43). Since α and F̃ = C0−C̃
H̃−C̃ , both depend

on ∆C = C0 − C̃, see Equation (3.44) and Equation (3.45), respectively, the limit in
Equation (3.84) is shown by showing that:

1.
lim
C̃→C0

α = 1 (3.85)

2.
lim
C̃→C0

(1− α)(− 1
F̃

) = 0 (3.86)

Proof. (1) Equation (3.84) can be shown similarly as Lemma 3.6.2. First α is reformulated
as follows

α =1− exp
− 1

2σ2

∣∣∣∣∣1− F0Gcl,0

F0

∣∣∣∣∣
2


=1− exp(− 1
2σ2 |

1− C0−C̃
H0+C0

Gcl,0
C0−C̃
H0+C0

|2)

=1− exp(− 1
2σ2 |

H0 + C0 −
(
C0 − C̃

)
Gcl,0

C0 − C̃
|2)

=1− exp(− 1
2σ2 |

H0 + C0

C0 − C̃
−Gcl,0|2)

=1− exp(− 1
2σ2 |

H0 + C0

∆C −Gcl,0|2)

=1− exp(− 1
2σ2 |

k3

∆C − k4|2)

=α∆C

(3.87)

where C̃ = C0 − ∆C was substituted in and where ∆C = C0 − C̃ = r∆Ce
jθ∆C , k3 =

H0 + C0 = rk3e
jθk3 and k4 = Gcl,0 = rk4e

jθk4 .
Now C̃ → C0 implies that ∆C → 0 or r∆C → 0 such that we need to show that

lim
∆C→0

α∆C = lim
r∆C→0

α∆C = 1 (3.88)

Because
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lim
r∆C→0

| 1
r∆C

e−jθ∆Crk3e
jθk3 − rk4e

jθk4 |2

= lim
r∆C→0

[( rk3

r∆C
cos(θk3 − θ∆C)− rk4 cos(θk4))2 + ( rk3

r∆C
sin(θk3 − θ∆C)− rk4 sin(θk4))2]

= lim
r∆C→0

[
r2
k3

r2
∆C

+ rk4
2 − 2 rk3

r∆C
rk4(cos(θk3 − θ∆C) cos(θk4) + sin(θk3 − θ∆C) sin(θk4))]

=∞
(3.89)

then the limit in (3.88) and hence the limit in (3.85) is 1. Note, that the exponential
function is continuous everywhere. Therefore, the limit can be applied to the inner part
of the exponential function. Hence, result (1).
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Proof. (2) The limit in Equation (3.86) can be shown as follows. First, using α∆C defined
by Equation (3.87) and F̃ defined by Equation (3.45), we reformulate:

(1− α)(− 1
F̃

) =
(

1− [1− exp(− 1
2σ2 |

k3

∆C − k4|2)]
)

(− H̃ + C̃

C0 − C̃
)

= exp(− 1
2σ2 |

k3

∆C − k4|2)(−
H̃ −

(
C0 − C̃

)
+ C0

C0 − C̃
)

= exp(− 1
2σ2 |

k3

C0 − C̃
− k4|2)(−H̃ + C0

C0 − C̃
+ 1)

= exp(− 1
2σ2 |

k3

∆C − k4|2)(− k5

∆C + 1)

= f∆C

(3.90)

with k3 = H0 + C0 = rk3e
jθk3 , k4 = Gcl,0 = rk4e

jθk4 , k5 = H̃ + C0 = rk5e
jθk5 and

∆C = C0 − C̃ = r∆Ce
jθ∆C . For the magnitude of f∆C we obtain:

f∆Cf∆C = | exp(− 1
2σ2 |

k3

∆C − k4|2)(− k5

∆C + 1)|2

= | exp(− 1
2σ2 |

k3

∆C − k4|2)|2|(− k5

∆C + 1)|2

= (exp(− 1
2σ2 |

k3

∆C − k4|2))2|(− k5

∆C + 1)|2

= exp(− 1
σ2 |

k3

∆C − k4|2)|(− k5

∆C − 1)|2

= exp(− 1
σ2 |

rk3

r∆C
ej(θk3−θ∆C) − rk4e

jθk4 |2)|(− rk5

r∆C
ej(θk5−θ∆C) − 1)|2

= exp(− 1
σ2 [rk3

2

r2
∆C

+ rk4
2 − 2 rk3

r∆C
rk4(cos(θk3 − θ∆C) cos(θk4) + sin(θk3 − θ∆C) sin(θk4))])

([− rk5

r∆C
cos(θk5 − θ∆C)− 1]2 + [− rk5

r∆C
sin(θk5 − θ∆C)]2)

= exp(− 1
σ2 [rk3

2

r2
∆C

+ rk4
2 − 2 rk3

r∆C
rk4(cos(θk3 − θ∆C) cos(θk4) + sin(θk3 − θ∆C) sin(θk4))])

(1 +
r2
k5

r2
∆C

+ 2 rk5

r∆C
cos(θk5 − θ∆C))

= exp(−( |a|
r2

∆C
+ |b|+ c

r∆C
))(1 + |d|

r2
∆C

+ e

r∆C
)

= fr∆Cfr∆C

(3.91)

where a, b, c, d, e ∈ R. Hence,

lim
∆C→0

f∆Cf∆C = lim
r∆C→0

fr∆Cfr∆C = 0 (3.92)
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Since the limit of the magnitude of the function f(∆C) is zero, also the limit of the
function is zero, i.e.

lim |f∆C |2 = 0⇒
lim |f∆C | = 0⇒
lim |f∆C |ej arg(f∆C) = lim f∆C = 0

(3.93)

Hence, result (2).

3.6.3 Variance of Anticipated Updated Closed-loop

Lemma 3.6.4. Under the same conditions as in Lemma 3.6.1:

1. We can express the second moment of ˆ̃Gcl about G̃cl as:

E[| ˆ̃Gcl − G̃cl|2] = | T̃
T0
|2E[| 1

P

εk
(P − εkF0) |

2] (3.94)

with P given by (3.61).

2. The expected value above is infinite.

Proof. (1) The absolute squared error between ˆ̃Gcl and G̃cl is given by

| ˆ̃Gcl − G̃cl|2 = | T̃
T0

Ĝcl,0

1− Ĝcl,0F0
− T̃

T0

Gcl,0

1−Gcl,0F0
|2

= | T̃
T0

Gcl,0 + εk

1−
(
Gcl,0 + εk

)
F0
− T̃

T0

Gcl,0

1−Gcl,0F0
|2

= | T̃
T0

Gcl,0 + εk
P − εkF0

− T̃

T0

Gcl,0

P
|2

= | T̃
T0

((Gcl,0 + εk)P
(P − εkF0)P −

Gcl,0(P − εkF0)
(P − εkF0)P )|2

= | T̃
T0

(εkP + εkF0Gcl,0

(P − εkF0)P )|2

= | T̃
T0

(εk(1−Gcl,0F0) + εkF0Gcl,0

(P − εkF0)P )|2

= | T̃
T0
|2| 1
P

εk
(P − εkF0) |

2

(3.95)

Hence, result (1).

Proof. (2) Since the probability density function fεk(z) of εk is radially symmetric, i.e.
it depends only on the magnitude |z|, [Hea01b], and additionally fεk(z) is non-zero for
all z ∈ C, then by using result (4) in [Hea01b] it follows that E[| 1

P
εk

(P−εkF0) |
2] is infinite.

Hence, result (2).
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This means, that such an estimate suffers the same drawbacks as a classical indirect
or direct plant estimate under closed-loop conditions [Hea01b], [GKP96b], as described
in Section 2.3.2 and 2.3.1.

Example 3.2. Sample Properties of Anticipated Updated Closed-loop
In this example we are concerned with the anticipated updated closed-loop ˆ̃Gcl, of the
system described in Section 3.2. The anticipated updated closed-loop frequency response
is obtained as described in Section 3.6, based on the initial closed-loop frequency response
estimates presented in Example 3.1 and assuming that the new controller parameters,
given in Table 3.5 were determined.

First we investigate the influence of the signal-to-noise ratio on the expected value
of the anticipated, updated closed-loop estimate, E[ ˆ̃Gcl]. We verify the derived analytical
expression for the expected value of ˆ̃Gcl given by Equation (3.43), by comparing it to the
sample mean of the estimates of G̃cl, since the sample mean is an estimator of the expected
value. The estimates ˆ̃Gcl are obtained by the proposed estimation, Equation (3.36), based
on Monte Carlo simulation data. Figure 3.11 to 3.13 compare the theoretical value for
the expected value of the anticipated updated closed-loop frequency response E[ ˆ̃Gcl], given
by Lemma 3.6.1, with the true updated closed-loop frequency response G̃cl, and with the
sample mean

¯̃̂
Gcl = 1

M

M∑
m=1

ˆ̃G[m]
cl (3.96)

for M = 10000 simulations. Thereby, Figure 3.11 to 3.13 reveal the results for a signal-
to-noise ratio

SNR =
∣∣∣∣∣RDFT

σn

∣∣∣∣∣ (3.97)

of 1, 0.1 and 0.03, respectively. For a high SNR of 1, Figure 3.11, almost no difference
between the true closed-loop frequency response with updated controller parameters G̃cl

and the expected value of its estimate is noticeable for this example system. For a medium
SNR of 0.1, Figure 3.12, there is a bias at low frequencies. At a low SNR of 0.03, Figure
3.13, the expected value of the estimate is biased for almost all the considered frequencies,

Parameter Value
k -0.27
kI -0.26
h -1.44

Table 3.5: Updated controller parameters.
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Figure 3.11: Closed-loop estimate for SNR=1.

Figure 3.12: Closed-loop estimate for SNR=0.1.
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Figure 3.13: Closed-loop estimate for SNR=0.03.

meaning that the expected value of the anticipated closed-loop estimate deviates from the
true closed-loop with updated controller parameters. Hence, as claimed, the deviation
between G̃cl and E[ ˆ̃Gcl] tends to 0 with increasing signal-to-noise ratio.

We see also that for all cases the derived theoretical expected value E[ ˆ̃Gcl] from Lemma
3.6.1, is centered around the sample mean, which verifies the derived analytical expression.

Next the influence of the initial feed-forward gain, H0, on the deviation between the theoret-
ical expected value given by Lemma 3.6.1, E[ ˆ̃Gcl], and the true value of the updated closed-
loop, G̃cl, is investigated. Figure 3.14 compares the theoretical expected value, E[ ˆ̃Gcl], with
the true value of the updated closed-loop, G̃cl, for a SNR of 0.03. Thereby, three different
initial closed-loop systems were assumed, differing in the value of the feed-forward gain,
H0, only. The expected values of the estimate ˆ̃Gcl were calculated, based on

1. an initial feed forward gain of zero

2. an initial feed forward gain with value given in Table 3.3

3. half of the initial feed forward gain in Table 3.3.
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Figure 3.14: Variation of feed-forward and controller parameters.

The feedback and integral gain were kept at their initial value given in Table 3.3 and were
not changed. As was shown in Lemma 3.6.2, E[ ˆ̃Gcl] converges towards G̃cl when the initial
feed forward, H0, goes to infinity. We see now in Figure 3.14, that indeed the difference
between the expected value of the anticipated closed-loop and its true value decreases with
increasing initial feed forward gain.

Another interesting point to note from Figure 3.14, is that for the considered very low
SNR of 0.03 in combination with a feed forward gain of zero (both have a decreasing effect
on α, Equation (3.44)), the expected value of the estimate E[ ˆ̃Gcl] corresponds to − 1

F̃
, as

expected for low values of α, see Equation (3.43).

Next, the influence of ∆C = C0 − C̃ on the deviation between E[ ˆ̃Gcl] and G̃cl is inves-
tigated. According to Lemma 3.6.3 the expected value of the estimate converges towards
the true value when ∆C, meaning the controller update, goes to zero. Figure 3.14 shows
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Figure 3.15: Influence of λ on controller frequency responses.

the difference between the expected value of the estimate E[ ˆ̃Gcl] and its true value G̃cl,
where the estimates were calculated based on the same initial closed-loop responses, but
for different updated feedback and integral gain values, which were varied linearly according
to

p̃λ = λ(p̃− p0) + p0 (3.98)

where p0 is the respective initial controller parameter and p̃ is the respective updated pa-
rameter, both given in Table 3.3 and 3.5. The updated feed forward gain was kept con-
stant at the value specified in Table 3.5. In Figure 3.15 the resulting frequency response
∆C(jωk) = C0(jωk) − C̃(jωk) is shown in terms of magnitude and phase as well as in
terms of real and imaginary part for different values of λ. We see that for smaller values
of λ, C̃ goes to C0 monotonically for a fixed frequency, both in terms of magnitude and
phase but also in terms of real and imaginary part. Meaning that with decreasing λ, the
resulting ∆C is also decreasing. Further we see in Figure 3.14 that for sufficiently small
λ the difference between E[ ˆ̃Gcl] and G̃cl becomes small as λ is decreased over all frequen-
cies. But we also see, that the bias is not linear with the difference between C0 and C̃,
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SNR of 0.1 SNR of 1 SNR of 10
Figure 3.16: Magnitude and phase of closed-loop estimate, Left: SNR of 0.1; Middle:
SNR of 1; Right: SNR of 10.

i.e. the bias is not necessarily monotonically decreasing with decreasing difference between
C0 and C̃. For low frequencies for example the bias in the real value is the largest for
λ = 0.5 and decreases with increasing values of λ, while for a value of λ = 0.2 the bias
is the smallest. Hence, from Lemma 3.6.3, it cannot be concluded that by reducing the
controller update (∆C) the bias is always reduced for all frequencies. This holds only for
a sufficient decrease of ∆C.

Finally, Figure 3.16 compares, for the considered example, the sample mean of the
magnitude and phase of the closed-loop estimate (3.36), i.e.

| ˆ̃Gcl| =
1
M

M∑
m=1
| ˆ̃G[m]

cl |

ˆ̃Φcl = 1
M

M∑
m=1

arg( ˆ̃G[m]
cl )

(3.99)

with its true values for SNR’s of 0.1, 1 and 10. We see, that the bias decreases with
increasing SNR."] [end of quotation from my manuscript [SSH]]
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In this section we derived an analytical expression for the bias of the anticipated,
updated closed-loop frequency response estimate and showed that it is similar in structure
to the indirect non-parametric plant estimate. Based on the derived theoretical expression
for the expected value of the updated anticipated closed-loop frequency response estimate,
E[ ˆ̃Gcl], the following relations were shown and verified via simulation:

1. The bias is reduced with increasing signal-to-noise ratio or by increasing the num-
ber of maneuver repetitions (with regard to the estimation of the initial closed-loop
frequency response). The reason is, that with increasing signal-to-noise ratio the
variance of the initial closed-loop estimate σ2 is reduced, which is used for calcu-
lation of the anticipated closed-loop estimate. As was shown this variance directly
influences the parameter α, Equation (3.44), such that α tends to 1 with decreasing
σ2, and the expected value, E[ ˆ̃Gcl], tends towards its true value G̃cl. The conclu-
sion for the test-based gain retuning is hence, that the experiments for estimating
the initial closed-loop frequency response shall be designed such that the SNR is
maximized. Because of nonlinearities (like actuator constraints for example) and
drift away from the trim point the amplitudes of the excitation and consequently
the SNR is however restricted.

2. The bias is reduced with increasing initial feed forward term, H0, as was shown via
simulation. In Lemma 3.6.2 it was shown that E[ ˆ̃Gcl] goes to G̃cl, when the initial
feed forward gain, H0, goes to infinity. The conclusion for the test-based retuning
procedure is that controller structures with a feed forward term lead to better results
than structures without feed forward, because the bias between E[ ˆ̃Gcl] and G̃cl is
lower.

3. The bias tends to zero when the controller update ∆C = C0 − C̃ is significantly
reduced. In Lemma 3.6.3 it was shown that E[ ˆ̃Gcl] goes to G̃cl, when ∆C goes to zero.
However, not any reduction of the controller update ∆C, might lead to a decrease
of the bias over all frequencies as simulation results showed. The conclusion for the
test-based retuning procedure is that very large changes in the controller parameters
shall be considered with caution as the anticipated closed-loop estimate based on
which these controller updates might be determined, might be biased.

4. At last, it was shown that the variance is theoretically infinite, which is similar to the
indirect and direct plant estimate under closed-loop conditions. This result is not
intuitive when inspecting the simulation results, as we will see in the next sections,
where the variance of the anticipated closed-loop estimates seems very small for high
SNRs. The conclusion for the test-based retuning procedure is, that the estimates of
the anticipated updated closed-loop shall be considered with caution and be checked
for outliers. Based on the similarities with the indirect plant estimate, there is future
basis for investigation of other variation measures and exclusion methods to better
characterize and improve the statistical properties of the estimate.
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Additional theoretical work is also to be undertaken to extend the results to multiple-
input-multiple-output systems.
The anticipated closed-loop frequency response for a controller parameter set that differs
from the initial gains used within the experiment, that was discussed in this section, will
be used in the context of the retuning procedure within an optimization. The objective
of the optimization is to determine a new gain set, such that the difference between
desired and anticipated closed-loop response is minimized under some constraints. The
optimization will be discussed in detail in Section 3.8. The considered constraints use an
estimate of the stability margins in terms of gain and phase margins. These are discussed
in the next section.

3.7 Anticipated Stability Margins for Updated Con-
troller

In the previous section we investigated the anticipated closed-loop estimate for an up-
dated set of controller parameters. This predicted closed-loop behavior is used as we will
see in Section 3.8 to determine new controller parameters. The optimization problem
that is formulated for this purpose incorporates constraints on the phase and gain mar-
gins to enforce the required stability criteria on the obtained new system with updated
controller parameters. This section addresses the calculation of the anticipated margins
for new controller parameters. Similar to the anticipated updated closed-loop frequency
response, the anticipated margins are calculated based on the non-parametric closed-loop
frequency response estimate obtained from experiments with initial controller parameters,
as presented in Section 3.5.

The anticipated stability margins are calculated in terms of gain and phase margin, Am
and Φm, for the open-loop estimate C̃(jωk)Ĝ(jωk), where C̃(jωk) is the updated controller
and Ĝ(jωk) is obtained as the indirect non-parametric plant estimate calculated by (3.34),
i.e.

Ĝ(jωk) = Ĝcl,0(jωk)
T0(jωk)− C0(jωk)Ĝcl,0(jωk)

(3.100)

with the initial controller C0(jωk), T0(jωk) given in (3.38), and the initial closed-loop
estimate Ĝcl,0(jωk) discussed in Section 3.5. The bias and variance of the anticipated
open-loop estimate can be calculated with the same approach as presented in Section 3.6
for the anticipated updated closed-loop and as presented in [Hea01b] for a indirect plant
estimate for a slightly different controller structure, noting that for high signal-to-noise
ratio the bias will be approximately zero.

However, for calculation of the margins, the magnitude and phase of C̃(jωk)Ĝ(jωk)
have to be calculated, for which an analytical closed-form of the bias and variance is not
known to the author. Monte Carlo simulations, presented in Example 3.3 show that for
a high signal-to-noise ratio the bias is almost zero for the considered system.
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Example 3.3. Sample Properties of Anticipated Gain and Phase Margins
In this example we are concerned with the anticipated gain and phase margins Am,Φm, of
the system described in Section 3.2. The anticipated margins are calculated as described
in Section 3.7, based on the initial closed-loop frequency response estimates presented in
Example 3.1.

We assume, that the new controller parameters, given in Table 3.5 were determined.
In the following we investigate the magnitude and phase of the resulting open-loop fre-
quency response C̃(jωk)G(jωk) and its estimates, as well as the resulting margins and the
corresponding estimates.

Figure 3.17 compares the magnitude and phase of the true updated open-loop frequency
response C̃(jωk)G(jωk) with magnitude and phase of the sample mean

C̃Ĝ = 1
M

M∑
m=1

C̃Ĝ[m] (3.101)

for M = 10000 simulations. Thereby, Figure 3.17 reveals the results for a signal-to-noise
ratio

SNR =
∣∣∣∣∣RDFT

σn

∣∣∣∣∣ (3.102)

of 1 and 10, respectively. We see that for a high signal-to-noise ratio the sample mean of
the magnitude and phase of the anticipated open-loop frequency response match the true
values. Since the phase is not crossing −180 degrees, we can only calculate the phase
margin. Figure 3.18 shows the histograms of the respective SNR cases for all M samples
of the calculated phase margins of C̃Ĝ[m]. We see that for a high SNR the phase margin
sample values are close to the real value, i.e. Φm = 106.68◦. The sample mean of the
estimated phase margins Φm for a SNR of 1 is ¯̂Φm = 105.25◦ and for a SNR of 10 it is
¯̂Φm = 106.71◦.

We saw in this section and the previous section how the anticipated closed-loop fre-
quency response for a new gain set and the corresponding anticipated margins can be
calculated. For high SNR we observed that for the considered system the estimated
phase margins are close to the true phase margin. We noted also that, at least for the
considered system, the magnitude and phase of the open-loop estimate with updated
controller parameters, need to be considered with caution for low SNR’s. However, for
a large SNR they accurately reflect the true values. The next section presents how the
derived estimates are incorporated into an optimization that determines a new set of
controller parameters. The objective is to minimize the difference between the desired
closed-loop frequency response and the closed-loop frequency response for an updated
controller parameter set.
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Figure 3.17: Open-loop estimate, Left: SNR of 1; Right: SNR of 10.

Figure 3.18: Phase margin of open-loop estimate, Left: SNR of 1; Right: SNR of 10.

120



Chapter 3: Test-Based Controller Retuning Concept

3.8 Optimization Problem Formulation

This section presents the optimization problem that is formulated in order to determine
new controller parameters (C2), such that the closed-loop frequency response with these
updated controller parameters will be closer to the desired response than the closed-loop
frequency response with the initial controller parameters. The following optimization
problem addresses SISO controller structures. In my publication [GHSM21] and in section
4.4.3.5 the same optimization method is presented for a SIMO system.

The quadratic cost function to be minimized with respect to the controller parameter
vector p is given by J(p) in Equation (3.103). The objective is to minimize the deviation
between the retuned closed-loop frequency response and the desired one. The deviation
is quantified by a metric considering a weighted squared error in magnitude and phase
of the respective frequency responses. The proposed deviation metric was already used
successfully in the context of low order equivalent system (LOES) identification by [RT06].
In that context the deviation between the measured frequency response and the frequency
response of a LOES is minimized with respect to the parameters of the LOES. The idea
in the context of this thesis is to use a similar cost function structure to minimize the
deviation between a desired closed-loop frequency response and an anticipated, updated
closed-loop frequency response, with respect to the controller parameters. Furthermore, a
regularization is proposed by adding a penalization term, keeping the tuned gains within
reasonable bounds around the initial controller parameters. Finally, stability criteria are
enforced by supplementary constraints. The cost function is given by:

J (p) = { 20
nω

nω∑
k=1

(wγ (ωk) [wA∆|Gcl|(jωk,p) + wφ∆∠Gcl(jωk,p)])}+ (p− p0)Q(p− p0)T

(3.103)

with

∆|Gcl|(jωk,p) = (
∣∣∣∣ ˆ̃Gcl (jωk,p)

∣∣∣∣− ∣∣∣Gcl,des (jωk)
∣∣∣ )2

∆∠Gcl(jωk,p) = (∠ ˆ̃Gcl (jωk,p)− ∠Gcl,des (jωk) )2
(3.104)

where

| · | is the magnitude in dB at each frequency
ωk, k = 1, . . . nω.

∠ is the phase in degrees at each frequency
ωk, k = 1, . . . nω.

ωk are the selected, harmonically related frequencies ωk = 2πlk
T
, lk ∈ S, S ⊂ N, k =

1, ...nω, see Section 3.4
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Q is a weighting matrix, penalizing the distance between the controller parameter
vector p and initial controller parameter vector p0.

wγ (ωk) is the frequency dependent relative weight.

wA, wφ are the relative weights for magnitude and phase squared-errors.

The anticipated closed-loop frequency response for the controller parameters p, i.e. ˆ̃Gcl(jωk,p),
is calculated as described in Section 3.6. In the case that initial controller parameters
were derived based on a model, the desired closed-loop frequency response Gcl,des could
be for example the nominal closed-loop response of plant model with initial controller as
described in Section 3.2.2. [RT06] recommends choosing the relative weights for magni-
tude and phase squared-errors to wA = 1 and wφ = 0.01745. This choice of weighting
sets a −1dB magnitude error comparable to 7.57◦ phase error and is equivalent to equal
weighting of the real and imaginary parts of the transfer function error [RT06]. The cost
function, Equation (3.103), is minimized with respect to p using the off-the-shelf solver
fmincon from MATLAB. Upper and lower bounds are given for the parameter vector p.
The optimization problem is given by:

min .
p

J (p)

st.

c1 (p) = Am − Âm (p) ≤ 0
c2 (p) = Φm − Φ̂m (p) ≤ 0

(3.105)

where

Am is the adequate gain margin.

Âm (p) is the anticipated gain margin for the controller parameter vector p.

Φm is the adequate phase margin.

Φ̂m (p) is the anticipated phase margin for the controller parameter vector p.

The anticipated margins are calculated as described in Section 3.7. The constraints ensure
that the resulting controller parameters lead to anticipated phase and gain margins larger
or equal to the adequate margins. The posed optimization problem is not convex. Further,
no formal proof yet was made to show that this optimization will converge or reveal the
global minimum. However, by inspecting the anticipated updated closed-loop frequency
response, it can be evaluated if the new solution is better that the initial guess. It is shown
by Monte Carlo simulation, that for sufficiently high signal-to-noise ratios, the problem
at hand converged to a solution which is better than the initial guess. Furthermore, the
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Parameter Value
Zα -1.147
Zq -0.022
Mα -4.536
Mq -2.049
Mη -1.569

Table 3.6: True plant parameters.

problem at hand is not computational complex and with an usual desktop pc it can be
solved within a few minutes. However, as the problem is solved off-line, there exist no
demanding time constraints.

Example 3.4. Evaluation of Controller Parameter Retuning - Comparison
of different Cost Function Formulations
In this example we are concerned with the controller parameter tuning for the system de-
scribed in Section 3.2. We will compare the tuning results for two different cost functions:
The proposed cost function given by (3.103), which is formulated in terms of squared er-
rors of magnitude and phase, and a cost function formulated in terms squared errors of
real and imaginary parts given by

J (p) = { 20
nω

nω∑
k=1

(wγ (ωk) [∆<(Gcl)(jωk,p) + ∆=(Gcl)(jωk,p)])}+ (p− p0)Q(p− p0)T

(3.106)

with

∆<(Gcl)(jωk,p) =
(
<
(

ˆ̃Gcl(jωk,p)−Gcl,des(jωk,p)
))2

∆=(Gcl)(jωk,p) =
(
=
(

ˆ̃Gcl(jωk,p)−Gcl,des(jωk,p)
))2 (3.107)

The tuning results for both cases will be compared for different SNR’s. The optimization
uses the anticipated closed-loop frequency response for the parameter vector p. It was
calculated as described in Section 3.6, based on the initial closed-loop estimate obtained
from closed-loop simulation data of the true plant with the initial controller as described
in Section 3.5. The parameters of the considered true plant are given in Table 3.6. The
considered uncertainties correspond to an 7% increase in Zα, an 9% increase in Mα, an
21% increase in Mq and a 60% decrease in Mη, compared to the nominal plant model pa-
rameters given in Table 3.2. The initial controller parameters are given in Table 3.3. The
desired closed-loop frequency response is described in Section 3.2.2 and given by Equation
(3.14). The tuning was performed for M = 500 simulations and in each simulation only
one repetition, i.e. R=1, of the maneuver with N = 6250 samples were used for the DFT.
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3.8 Optimization Problem Formulation

The quadratic cost functions are parametrized as follows. The weighting matrix Q is
chosen as unity matrix such that the penalty for changes is equal for all gains. The fre-
quency dependent weight wγ (ωk) is chosen such that the most important frequency range,
where the bounds from the outer-loop are most tight, is weighted stronger, in order to
achieve a good matching with the desired dynamics in this frequency range, see Table
3.7. The frequency range where the closed-loop dynamics are already well attenuated is
weighted very weakly. The remaining parameters are wA = 1, wφ = 0.01745 as de-
scribed in Section 3.8. The adequate values for the gain and Phase margin were given as
Am = 6dB, Φm = 45◦.

ωk[ rads ] < 0.05 0.05-4 4-10.5 > 10.5
wγ (ωk) 10 30 10 1

Table 3.7: Frequency dependent relative weight.

High SNR First we consider a SNR of 10. Figure 3.19 shows the tuning result for
the cost function given in Equation (3.103) in terms of magnitude and phase. We see
the magnitude and phase for the anticipated tuned closed-loop frequency response as well
as the true frequency responses of the untuned and tuned system. Furthermore, the error
between the desired frequency response and the tuned frequency response as well as the er-
ror between the untuned and desired response is revealed together with the MUAD bounds.
The MUAD bounds, which can serve for piloted flight control laws as an evaluation crite-
rion, are described in Section 3.9. Figure 3.20 reveals the true frequency responses of the
tuned and untuned closed-loop system for the case that cost function given in Equation
(3.106) was used. Additionally, for the latter case the imaginary and real values of the
anticipated tuned closed-loop response are shown in Figure 3.21. We see that for both
cost functions similar results are obtained, where the tuned response is centered around
the desired response accurately and is much closer to the desired response than the initial,
untuned response.
Figure 3.22 to 3.24 show the histogram of the controller parameters that were determined
for each simulation. Depending on the choice of the cost function the result converges
to different controller parameters. For both cases the phase margins of the true tuned
open-loop, C̃G are not violated as they are above 60 degrees as Figure 3.25 shows. Since
the Phase of C̃G did not cross −180 degrees only the phase margin is revealed.

Low SNR Here a SNR of 3 is considered. Figure 3.26 shows the results for the cost
function in Equation (3.103) and Figure 3.27 for the cost function in Equation (3.106).
Both variants reveal similar deficiencies. The tuned responses clearly deviate from the
desired response. However, the tuned responses are closer to the desired response than
the untuned response. For both cases the phase margin of the tuned system is above its
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Chapter 3: Test-Based Controller Retuning Concept

Figure 3.19: Tuning result for magnitude and phase formulation of cost function for
SNR=10.

Figure 3.20: Tuning result for real and imaginary part formulation of cost function for
SNR=10, visualization of magnitude and phase.
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Figure 3.21: Tuning result for real and imaginary part formulation of cost function for
SNR=10, visualization of real and imaginary part.

Figure 3.22: Tuned Feedforward Gain for SNR=10, comparison of cost function in terms
of magnitude and phase and cost function in terms of real and imaginary part.
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Figure 3.23: Tuned Integrator Gain for SNR=10, comparison of cost function in terms
of magnitude and phase and cost function in terms of real and imaginary part.

Figure 3.24: Tuned Feedback Gain for SNR=10, comparison of cost function in terms
of magnitude and phase and cost function in terms of real and imaginary part.
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Figure 3.25: Phase margin for SNR=10, comparison of cost function in terms of mag-
nitude and phase and cost function in terms of real and imaginary part.

adequate value as revealed in Figure 3.28. Since both methods, at least for the considered
example, give similar results the formulation of the cost function in Equation (3.103) is
further investigated in the following, because interpretations are more straight forward
in terms of a bode diagram rather than real and imaginary part of a transfer function.
In order to improve the tuning result, in the case of not sufficiently large signal-to-noise
ratio, more repetitions of the maneuver can be used in conjunction with an averaged ETFE
for estimation of the initial closed-loop response as discussed in Section 2.2.5. As Figure
3.29 shows, the results for a SNR of 3 are improved significantly for R = 10 repetitions,
compared to R = 1 .

Example 3.5. Evaluation of Controller Parameter Retuning - Monte Carlo
Simulations for Uncertain Plant Parameters
In this example Monte Carlo simulations are performed with varying uncertainties. The
respective tuning results are revealed. The settings are the same as in Example 3.4, except
if otherwise stated. A SNR of 10 was considered for all simulations. The maneuver was
repeated twice, but only the second sequence was used in the DFT, to allow transients to
die out, i.e. R = 1. The cost function given in Equation (3.103) was used in the opti-
mization. Uncertainties were only considered in the moment dynamics. The parameters
Mq and Mη were varied with a normal distribution with a variance of 25% on the nominal
values, given in Table 3.2. Due to the structure of the controller, i.e. a pure pitch rate
feedback, mainly the damping of the system and variations in the control effectiveness can
be adapted by the tuning. The damping is mainly influenced by the parameter Mq and the
control effectiveness by Mη. The parameter Mα, influences mainly the eigenfrequency of
the system and was varied with a normal distribution with variance of only 3%. Of course
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Figure 3.26: Tuning result for magnitude and phase formulation of cost function for
SNR=3.

Figure 3.27: Tuning result for real and imaginary part formulation of cost function for
SNR=3.
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Figure 3.28: Phase margin for SNR=3, comparison of cost function in terms of magni-
tude and phase and cost function in terms of real and imaginary part.

Figure 3.29: Influence of number of repetitions of maneuver on tuning result for mag-
nitude and phase formulation of cost function for SNR=3.
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Figure 3.30: Tuning results for Monte Carlo simulations with varying plant parameters.

the controller tuning for a fixed controller structure is restricted, in how close the tuned re-
sponse can approach the desired response depending on the uncertainties and required gain
and phase margins. Figure 3.30 shows the tuning results for M = 500 simulations, where
one outlier was removed resulting from an unfeasible Mη. It can be seen that significant
improvement can be achieved by the proposed retuning of the controller parameters. It is
revealed that in contrast to the untuned response, the error between the desired frequency
response and the tuned frequency response, is always within the MUAD bounds, described
in Section 3.9, which can serve for piloted flight control laws as an evaluation criterion.

The resulting margins were checked for satisfying their adequate values, which was
always the case.

Example 3.6. Evaluation of Controller Parameter Retuning - Monte Carlo
Simulations for Varying Initial Controller Parameters
In this example Monte Carlo simulations are performed with varying initial controller
parameters. The respective tuning results are revealed. The settings are the same as in
Example 3.4, except if otherwise stated. A SNR of 10 was considered for all simulations.
The maneuver was repeated twice, but only the second sequence was used in the DFT, to
allow transients to die out, i.e. R = 1. The cost function given in Equation (3.103) was
used in the optimization. The considered uncertainties correspond to an 11% increase in
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Figure 3.31: Tuning results for varying initial controller parameters.

Mq and a 15% decrease in Mη, compared to the nominal plant model parameters given in
Table 3.2. The initial controller parameters, were uniformly varied with a spread of 25%
around their nominal value given in Table 3.3. M = 500 simulations were performed.

Figure 3.31 shows the tuning results. It can be seen that significant improvement can
be achieved by the proposed retuning of the controller parameters. It is revealed that in
contrast to the untuned response, the error between the desired frequency response and the
tuned frequency response, is always within the MUAD bounds, described in Section 3.9,
which can serve for piloted flight control laws as an evaluation criterion. Figure 3.32 and
3.33 show the histograms of the tuned controller parameters. The margins were checked
for fulfilment of the adequate values.
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Figure 3.32: Proportional feedback and integral controller parameters.

Figure 3.33: Proportional feedforward controller parameters.
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3.9 Evaluation Criteria

Often the performance requirements imposed on a controller can be translated into a
desired closed-loop behavior in the frequency domain.
For example, for a baseline flight controller, that is part of a cascaded autopilot system,
requirements are specified in the AS94900, [SAE07], which is the SAE standard for flight
control system design. These requirements define for example limits on the bandwidth,
overshoot and stability margins. In case that the inner-loop is controlled by a human pi-
lot, requirements are for example specified by the handbook of flying qualities of piloted
aircraft, [US 97].
In both cases the requirements can be translated into a desired closed-loop behavior of
the inner-loop in the frequency domain and specific bounds in some frequency regions.
For example a model-based control design that ensures that all requirements are satisfied
by the nominal closed-loop, could provide a desired behavior. But the desired inner-loop
behavior could be also influenced by outer control loops like an autopilot for example.
The outer-loop, being it an autopilot or a human, also needs to satisfy several require-
ments. These could be translated into a desired closed-loop behavior of the inner-loop
and specific bounds in some frequency regions, such that it is ensured that the outer-loop
satisfies its requirements if the actual inner-loop response stays within these boundaries.
These boundaries can be used as an evaluation criterion to assess whether the tuned
closed-loop frequency response is "close enough" to the desired behavior, or as constraints
in the optimization problem.
In case of a human pilot, these bounds are the MUAD (Maximum Unnoticeable Added
Dynamics) bounds, from the handbook of flying qualities of piloted aircraft, [US 97].
The MUAD bounds can be interpreted as the boundaries of the Maximum Unnoticeable
Added Dynamics between two systems from the pilots point of view. If the difference
between two systems remains within these bounds the pilot will not be able to distinguish
between the dynamics of either system, i.e. the pilot will give it the same rating. The
MUAD bounds originate from a NT-33 landing approach simulation tackling the question
of mismatch, [Moo85]. In a simulator test campaign, pilots performed the same maneu-
vers on high-order systems and their low-order equivalents. By examining pilot rating
differences between these systems, frequency response envelopes were derived, which are
an approximate measure of maximum unnoticeable added dynamics. The original idea of
the MUAD bounds is hence the definition of mismatch envelopes to assess the quality or
fidelity of low order equivalent systems obtained by system identification methods com-
pared to the corresponding high order systems, e.g. frequency responses obtained within
flight test [RT06, p. 190]. The mismatch is defined in terms of magnitude and phase in
the frequency domain as

∆|G| = |GHOS| − |GLOES|
∆∠G = ∠GHOS − ∠GLOES

(3.108)

134



Chapter 3: Test-Based Controller Retuning Concept

Envelope Laplace function

Upper Gain Envelope GUGE(s) = 3.16s2+31.61s+22.79
s2+27.14s+1.84

Lower Gain Envelope GLGE(s) = 0.095s2+9.92s+2.15
s2+11.6s+4.95

Upper Phase Envelope GUPE(s) = 68.89s2+1100.12s+275.22
s2+39.94s+9.99 e0.006s

Lower Phase Envelope GLPE(s) = 475.32s2+184100.12s−29460
s2+11.66s+0.039 e−0.0072s

Table 3.8: MUAD bounds. [US 97]

where |G| is the magnitude in dB and ∠G is the phase in radians. The indices HOS and
LOES denote the high order system and low order equivalent system, respectively. ∆|G|
and ∆∠G are calculated at discrete frequencies and shall lie within the envelopes defined
by the MUAD bounds. These envelopes are defined as functions of the Laplace variable
s and given in Table 3.8. In the context of the proposed test-based controller parameter
retuning for a baseline flight controller, the idea is to use the MUAD bounds to asses the
mismatch between the desired and tuned closed-loop frequency response, i.e

|GLGE| ≤ (|G̃cl| − |Gcl,des|) ≤ |GUGE|
∠GLPE ≤ (∠G̃cl − ∠Gcl,des) ≤ ∠GUPE

(3.109)

In case of the autopilot, the designer could give similar bounds that ensure, for some
assumptions on the order and structure of the inner-loop closed-loop system, that all
requirements for the autopilot will be satisfied, if the inner-loop response stays within
these boundaries.
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3.10 Outlook on Further Applications and Adapta-
tions

The retuning procedure presented in the previous sections for SISO closed-loop systems
is to be understood as the core concept. As will be shown in Chapter 4, by the two
addressed applications, it can be adapted for retuning of SIMO and MIMO closed-loop
systems.

Via the constraints in the optimization problem further objectives, besides the antici-
pated margins, can be addressed. For example if a higher level of safety is desired, it can
be additionally incorporated into the constraints that the margins with the new controller
parameters shall be also satisfied on the nominal plant model that was used for the initial
controller design. Since showing that the initial controller parameters satisfy the adequate
margins based on the model gives enough confidence to test them in flight, showing that
the new parameters still satisfy the margins on the model eases their clearance. Of course
such a design might lead to a resulting tuned closed-loop frequency response that is not
as close to the desired response as it could otherwise be, due to the additional restriction.
Meaning that the resulting controller parameters are more conservative.

Usually controller parameters for high performance aircraft are scheduled over indi-
cated airspeed. In case of a failure of the airdata system, a low bandwidth emergency
controller with a fixed- gain set takes over. Another application of the retuning concept
could be to derive a fixed- gain set for varying plant dynamics due to varying operational
conditions, based on flight test at different indicated airspeeds for example.

Another scenario, where the retuning concept could be applied and adapted to is for
example to robustify initial controller parameters against variations in the plant dynamics
due to different load cases for example, by performing flight tests at the same operational
envelope point for the different load cases.

In both scenarios the optimization problem can be adapted similarly. Let ˆ̃Gcl,i(jωk,p)
describe the anticipated closed-loop frequency response, obtained as described in Section
3.6, based on an experiment i. These experiments could be for example

• at different velocities Vi

• at different load cases, but at the same envelope point

• or just repeated experiments under same conditions

Then the optimization problem in Section 3.8 can be adapted to

J (p) =
nE∑
i=1

Ji (p) + (p− p0)Q(p− p0)T (3.110)
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where nE is the number of experiments and where

Ji (p) = 20
nω

nω∑
k=1

(wγ,i (ωk) [wA∆|Gcl,i|(jωk,p) + wφ∆∠Gcl,i(jωk,p)]) (3.111)

with

∆|Gcl,i|(jωk,p) = (
∣∣∣∣ ˆ̃Gcl,i (jωk,p)

∣∣∣∣− ∣∣∣Gcl,des,i (jωk)
∣∣∣ )2

∆∠Gcl,i(jωk,p) = (∠ ˆ̃Gcl,i (jωk,p)− ∠Gcl,des,i (jωk) )2
(3.112)

The desired closed-loop frequency responses ˆ̃Gcl,des,i(jωk), can be either chosen to be the
same for all i (for example for different load cases or repeated experiments under same
conditions), or to vary with i (for example for experiments at different airspeeds, where
for a fixed-gain controller the desired dynamics will vary with airspeed). The optimization
problem is given by:

min .
p

J (p)

st.

c1,i (p) = Am − Âm,i (p) ≤ 0
c2,i (p) = Φm − Φ̂m,i (p) ≤ 0
for i = 1 . . . nE

(3.113)

where Âm,i (p) and Φ̂m,i (p) are the anticipated margins for the new parameter set p,
based on the experiment data i, as described in Section 3.7.

Example 3.7. Evaluation of Controller Parameter Retuning - For a fixed
Gain Controller based on Experiments at different Indicated Airspeeds We
consider the example system described in Section 3.2. Assume that the desired closed-
loop dynamics, ˆ̃Gcl,des,i(jωk), are given at low velocity, medium velocity and high velocity.
Here, these desired dynamics are obtained as the nominal closed-loop dynamics, Equation
(3.4), based on the nominal linear plant models at the respective envelope points, and an
initial fixed-gain controller with structure described in Section 3.2 and initial gains given
in Table 3.3. The considered uncertainties correspond to a 30% decrease in Mq, an 10%
increase in Mη and a 2% decrease in Mα, compared to the nominal plant parameters at
the respective envelope points. The experiment was simulated on the closed-loop systems,
composed of the true plant dynamics and initial controller at the respective velocities,
with a signal-to-noise ratio of SNR = 10. The maneuver was repeated twice, but only
the second sequence was used in the DFT, to allow transients to die out, i.e. R = 1.
N = 6250 samples were used in the DFT. The cost function given in Equation (3.110) to
(3.113) was used in the optimization, with parameters Q, wA, wΦ, Am and Φm, chosen
as described in Example 3.4. The frequency dependent weights wγ,i(ωk) were chosen to be
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Figure 3.34: Tuning result for high velocity.

equal for each velocity i and are given in Table 3.7. Figure 3.34 to 3.36 show the tuning
results for M = 100 simulations. We see that with the tuned fixed gain set, the closed-loop
dynamics at all three velocities, G̃[m]

cl,i , depicted in green, are closer to the respective desired
dynamics than the initial untuned closed-loop responses, depicted in light blue.
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Figure 3.35: Tuning result for medium velocity.

Figure 3.36: Tuning result for low velocity.
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Chapter 4

Application

The test-based controller retuning concept is applied to an inner-loop controller of a mod-
ular, cascaded flight guidance and control system for optionally piloted general aviation
(CS-23) aircraft and unmanned systems, that was developed at the institute of Flight
System Dynamics at TUM (C5). The modular flight control system (FCS) was success-
fully tested in several flight test campaigns, [KSB+16], [SSK+16], [SPS+16b], for different
platforms:

• DA42 M-NG flying test bed

• Dornier Do228 D-CODE

• Grob G-520T medium/high altitude long endurance (HALE/MALE) manned re-
connaissance aircraft

• a very-light all-electric OPV demonstrator platform ELIAS.

The inner-loop controller was designed and assessed based on models for all platforms. The
controller is divided into a longitudinal and lateral control law. The longitudinal inner-
loop is a single-input-multiple output (SIMO) control law. The lateral control law is a
multiple-input-multiple-output (MIMO) control law. As the most inner part of the flight
control system the inner-loop controller performance relies on the discrepancy between
the true aircraft dynamics and the model used during its gain design. These differences
might result in a closed-loop response with the true aircraft that does not correspond to
the desired behavior. Since the outer-loop control laws use the nominal inner-loop closed-
loop dynamics for their design, it is desired that the true inner-loop closed-loop dynamics
are as close as possible to the nominal inner-loop dynamics. This can be achieved with the
proposed test-based gain retuning procedure. In this chapter the test-based gain retuning
concept will be demonstrated for both, the lateral and the longitudinal inner-loop control
laws to show its applicability to different controller structures. Since the considered
controllers are a part of a complex flight control system, which is applied and tested on real
aircraft, the demonstration of the concept for this application shows its capabilities in an
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real application and not only on an academic simplified controller structure. Furthermore,
the test-based retuning procedure was tested in simulation for all four platforms (Da42,
Do228, G-520T, ELIAS), demonstrating its applicability also to different systems. The
very-light all-electric OPV demonstrator platform ELIAS, however, showed in simulation
a larger drift tendency away from the trim condition than the other platforms. Therefore,
the number of maneuver repetitions had to be reduced, making the retuning more sensitive
against the signal-to-noise ratio, compared to the other investigated aircraft. For the other
platforms, similar simulation results were obtained, demonstrating that the proposed
procedure is feasible. In the following, simulation results will be presented for the Do228
and flight test results for the G520.

First Section 4.1 briefly presents the demonstration platforms for which the FCS was
developed and demonstrated on. Section 4.2 briefly introduces the Controller environ-
ment, i.e the FCS and the simulation framework in Section 4.3. Section 4.4 and 4.5 focus
on the longitudinal and lateral inner-loop, respectively. Each of the both sections presents
the controller structure, the test-based retuning concept and simulation and flight test
results.

4.1 Demonstration Platforms

4.1.1 DA42 M-NG Flying Testbed

The Institute of Flight System Dynamics at Technical University of Munich (TUM-FSD)
owns the research aircraft OE-FSD, depicted in Figure 4.1. This flying test-bed is a
modified Diamond Aircraft Industries DA42 NG aircraft. It has been adapted with a
fly-by-wire system that is mechanically connected to the existing flight control system via
electrical and overload clutches, such that the platform can serve as an Optionally Piloted
Vehicle (OPV). A safety system, enables the pilot to disable the automatic flight control
system by either opening the clutches if a sufficiently large stick force is applied or by
pushing a disengage button. The test-bed allows TUM-FSD to test modern flight control
and flight management algorithms.

4.1.2 Dornier Do228 D-CODE

The Dornier Do228-101 D-CODE, shown in Figure 4.2, is an airborne research platform
used by the German Aerospace Center (DLR). The Dornier Do228 D-CODE is a twin-
engined turboprop CS-23 aircraft with 5.98t maximum take off weight (MTOW). In co-
operation between TUM-FSD, RUAG, Aircraft Electronics Engineering, and Wittenstein
A & S, a digital Automatic Flight Control System (AFCS) based on a modular avion-
ics platform was developed, including electromechanical actuators and actuator control
electronics, a flight control computer, data buses, data concentrator units etc.. Besides
a system concept, architecture and safety concept, functional algorithms for an experi-
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Figure 4.1: DA42 M-NG flying testbed. [KH18]

Figure 4.2: Dornier Do228-101 D-CODE. [Kra20]

mental autopilot were developed together with a generic mode control and monitoring
Human Machine Interface (HMI). The developed safety concept ensures a safe transition
between an active and passive autopilot system. The system integration was performed
under Supplemental Type Certificates (STC) and the operation of the autopilot under a
permit to fly. The experimental autopilot was developed by TUM-FSD as a part of the
institute’s modular flight guidance and control system.

4.1.3 Grob G-520T

The Grob G-520T, depicted in Figure 4.3, is a medium/high altitude long endurance
(HALE/MALE) manned reconnaissance aircraft with short runway capabilities, a recon-
figurable payload installation and a full approval for all-weather operations. The G-520T
is a CS-23 single engine turboprop aircraft with a wingspan of 33 m, a maximum take-off
weight (MTOW) of 4700 kg and a maximum altitude of 50000 ft. The aircraft was mod-
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Figure 4.3: Grob G-520T. © H3 Mission Systems

ified within several research projects in cooperation with Silver Atena and Grob Aircraft
to an OPV platform. The modifications include electromechanical actuators and actuator
control electronics with safety clutches for the ailerons, elevator and rudder, a flight con-
trol computer, data buses, data concentrator units, a safety relay box, sensors for air and
inertial reference data, etc.. TUM-FSD contributed with the development of a fail-passive
system architecture, the development of a mode control and monitoring display and the
development of functional algorithms for a full envelope mission autopilot as a part of the
institute’s modular flight guidance and control system.

4.1.4 Very-light all-electric OPV Demonstrator Platform ELIAS

ELIAS is based on the ultralight aircraft PC-Aero Electra-One. It was modified to a very-
light, electrically- powered OPV demonstrator platform and is depicted in Figure 4.4. The
adaptations include electromechanical, dual complex actuators with safety clutches for all
surfaces, split ailerons, an electrical duplex engine with a fixed pitch / constant speed
propeller and an electrically retractable landing gear. With an MTOW of 320 kg and a
wing span of 11 m, the range is around 150 km. It was developed in cooperation with
Acentiss, IABG, TUM-FSD, Silver Atena and others. TUM-FSD contributed in several
projects with automatic flight control functions, trajectory control and automatic take-off
and landing, which are parts of the institute’s modular flight guidance and control system.
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Figure 4.4: Very-light all-electric OPV demonstrator platform ELIAS. [Kra20]

4.2 Inner-loop Environment - Flight Control System

The addressed inner-loop controller was developed as a part of a modular cascaded flight
guidance and control system for optionally piloted general aviation (CS-23) aircraft and
unmanned systems. The developed flight control system is depicted in Figure 4.5. It is
capable of full automatic flight from take off to landing and provides the full range of
typical and beyond state-of-the art automated flight control functionalities as

• an automated waypoint navigation and flying, voice commanded flight management
and a trajectory generation system [SPS+16a], [Sch18b]

• an automatic trajectory controller [Sch18a], [SSK+16]

• a flight path controller, including an automatic thrust controller and autopilot
functions such as attitude control, speed control and flightpath control, [KSB+18],
[KSB+16], [KGSH16], [KBD+18]

• automatic take off [ZMW+17] and landing [MH17], [KMH+19]

• ground control for centerline tracking [MZS+17]

• a central system automation module which handles the operating modes and acti-
vates applicable flight control loops [KH18], [Kra20]

• a inner-loop baseline controller [DBAG+16], [SGGH18], [GGS20], [GSG18]

• a maneuver injection tool [KGH18]
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Modular Flight Guidance and Control System Architecture
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Figure 4.5: Modular flight guidance and control system architecture, adapted for G-520T.
[SSG+]

The system includes and accounts for most of the real-world requirements and was already
successfully parametrized, tested and applied in flight test experiments for the (CS-23)
platforms, introduced in Section 4.1. The modularity and configurability of the developed
generic architecture provides an easy adjustment and adaptation to new aircraft config-
urations and projects depending on their needs. For example in the G-520T project, as
indicated in Figure 4.5, the automatic take-off and landing module was deactivated, since
this component was not part of the project. Also, the thrust control functionality was
disengaged, because the required auto thrust actuation system has not yet been installed.

4.3 Simulation Environment and Tool Chain

The simulations were performed using a high fidelity 6 degrees of freedom (DoF) nonlinear
simulation model of the Do228 as example platform. The used modular model-in-the-Loop
Simulation framework is presented in detail in [ZSMH18] for the DA42. It includes as
core components the flight control computer model, actuation models, a flight dynamics
model, a Dryden Turbulence model compliant to the disturbance model accepted and
published by EASA in CS – AWO and sensor models. Additionally, structural modes
are included, modelled as low damped second order transfer functions, to represent the
effects on rate and specific force measurements. The simulation framework was set up in a
modular and generic way to allow adaptation to the different aircraft configurations such
that it could be used for simulation and assessment of all platforms introduced in Section
4.1. Additionally, a tool chain was build up that allows trimming and linearization, as
well as verification and analysis of the linear models. These linear models were used in
the initial model-based controller synthesis and analysis. The developed tool chain allows
the baseline controller design and assessment to be easily adjusted and adapted to new
aircraft configurations.
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Figure 4.6: Longitudinal inner-loop controller structure. [SSG+]

4.4 Longitudinal Inner-loop

The following section describes the longitudinal inner-loop controller, which controls the
aircraft’s longitudinal motion. In Section 4.4.1 the control law is presented and in Section
4.4.2 several closed-loop and open-loop relations are presented, that are used in the test
based gain retuning to estimate the margins, the amended plant and the anticipated
closed-loop. Note, that main parts of Section 4.4 are extracted from my publications
[GHSM21] and [SSG+]. Only minor changes have been made to parts of the notation to
adapt to this thesis and additional explanations or intermediate steps have been included
where necessary.

4.4.1 Control law and Controller Structure

The controller structure of the longitudinal inner-loop is depicted in Figure 4.6. It is
described in detail in [GHSM21]. It is composed of the control law and another component
denoted as controller supplement, which consists of structural filters and roll off filters,
turn compensation and a mapping from the control law output to actuator commands,
which is scheduled over indicated airspeed. The linear control law can be expressed by
continuous linear time-invariant (LTI) models in Laplace domain by, [GHSM21],

uc(s) =
[
Kr(s,p) Kyc(s,p)

]  r(s)
yc(s)

 (4.1)

where r(s), yc(s), uc(s) denote the Laplace-transforms of the following time-dependent
signals:

• r(s): is the reference input r(t) = ∆fz,B,cmd(t)/g. It is the normal specific force
command, normalized with respect to the gravitational acceleration g in the z-axis
direction of the body fixed frame. The delta refers to increments with respect to
the turn compensation value cos Θ

cos Φ
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• yc(s): is a vector with the feedback signals used within the control law, i.e. yc(t) =(
∆fz,B(t)/g ∆q(t)

)T
. It is an output of the controller supplement subsystem, with

the processed specific force measurement ∆fz,B(t)/g and pitch rate ∆q(t), where
the delta refers to increments with respect to the turn value qturn =

.
Ψ sin Φ cos Θ

with
.

Ψ = g/V tan Φ.

• uc(s): is the output of the control law and corresponds to a pitch rate acceleration
command, uc(t) = .

qcmd(t).

The plant input is the desired elevator drivetrain command ηdt,cmd, which is mapped
within the controller supplement component Fu from the pitch rate acceleration command
provided by the control law.

The control law corresponds to a classical linear PI-type controller with integral action
on the tracking error in normal specific force, feedback of normal specific force and pitch
rate and a feed forward of the specific force command, providing an additional degree of
freedom. The transfer function Kr(s,p) in Equation (4.1) describes the behavior from
the reference input to the control law output and is given by [GHSM21]

Kr(s,p) = p1 + p2/s. (4.2)

The Transfer function matrix (TFM) Kyc(s,p) defines the response from feedback signals
to the control law output. It is given by [GHSM21]

Kyc(s,p) =
(
p3 − p2/s p4

)
. (4.3)

The 4- dimensional parameter vector p comprises the feed-forward gain p1, the integrator
gain p2 and the feedback gains p3 and p4.

p = [p1, p2, p3, p4] (4.4)

In the following sections, the dependence of Laplace operator s and time t is omitted,
whenever the context is clear.

4.4.2 Closed-loop and Open-loop Relations

The Transfer function matrix (TFM) from the control law output uc to the feedback
signals yc in open-loop is denoted as the amended plant with representation in the Laplace
domain, given by

yc(s) = Gap(s)uc(s). (4.5)

where
Gap(s) = Fy(s)G(s)Fu(s) (4.6)
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The closed-loop LTI system is represented by the closed-loop TFM Gcl(s,p) from the
reference input r to the feedback signal vector yc

yc(s) = Gcl(s,p)r(s) (4.7)

where Gcl(s,p) is given by

Gcl(s,p) =
[
I −Gap(s)Kyc(s,p)

]−1
Gap(s)Kr(s,p) (4.8)

This relation can be deduced from the block diagram in Fig. 4.6, [GHSM21], as follows.
First, the control law uc given by (4.1) in (4.5) results in

yc(s) = Gap(s)
(
Kr(s,p)r(s) + Kyc(s,p)yc(s)

)
(4.9)

By solving Equation (4.9) for yc finally the relation in (4.8) and (4.7) is obtained:

yc(s) =
[
I −Gap(s)Kyc(s,p)

]−1
Gap(s)Kr(s,p)r(s) (4.10)

Hence, the result.

The amended plant TFM can be expressed as a function of the closed-loop TFM
and the controller according to, [GHSM21]

Gap(s) = Gcl(s,p)
[
Kr(s,p) +Kyc(s,p)Gcl(s,p)

]−1 (4.11)

This relation can be deduced by solving Equation (4.8) for Gap: First multiply (4.8) with[
I −Gap(s)Kyc(s,p)

]
from the left:

[
I −Gap(s)Kyc(s,p)

]
Gcl(s,p) = Gap(s)Kr(s,p)

Gcl(s,p)−Gap(s)Kyc(s,p)Gcl(s,p) = Gap(s)Kr(s,p)
(4.12)

Then add Gap(s)Kyc(s,p)Gcl(s,p):

Gcl(s,p) = Gap(s)Kr(s,p) + Gap(s)Kyc(s,p)Gcl(s,p)
Gcl(s,p) = Gap(s)

[
Kr(s,p) + Kyc(s,p)Gcl(s,p)

] (4.13)

Finally, multiplication from the right with the inverse of
[
Kr(s,p) + Kyc(s,p)Gcl(s,p)

]
results in Equation (4.11). Hence, the result.

The stability margins at the actuator position are calculated based on the open-loop
system

Gcut(s) = Fu(s)Kyc(s)Fy(s)G(s) (4.14)
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which represents the transfer function from actuator command to actuator command with
a loop cut at this position. Since Fu is scalar, Gcut(s) can be calculated by

Gcut(s) = Kyc(s)Fy(s)G(s)Fu(s) = Kyc(s)Gap(s) (4.15)

4.4.3 Testbased Gain Retuning for Longitudial Inner-loop

4.4.3.1 Desired Closed-loop

The linear nominal closed-loop system, denoted as Gcl,nom(s,p0), that is composed of
the initial longitudinal inner-loop controller, Kr(s,p0), Kyc(s,p0), and the nominal linear
longitudinal amended plant model Gap,nom(s), is used as design model for the synthesis of
the longitudinal autopilot control laws. Therefore, it is desired that the closed-loop fre-
quency response of retuned controller and true plant corresponds to Gcl,nom(s,p0). Hence,
the desired closed-loop frequency response is the frequency response of Gcl,nom(s,p0).

The initial controller was designed based on the linear longitudinal amended plant
model including phugoid and short period dynamics. The linear longitudinal amended
plant model was obtained based on the high fidelity 6DoF nonlinear model of the aircraft,
using the developed tool chain. First the nonlinear flight dynamics model was trimmed
for horizontal wings-level flight. Using these trim results the high fidelity 6DoF nonlinear
model was linearized from uc to yc, see Figure 4.6, including the following components

• phugoid and short period dynamics

• an actuator model, modelled as second order system according to

Gact(s) = ω2
act

s2 + 2ζactωacts+ ω2
act

(4.16)

where the parameters ωact and ζact were obtained from ground tests with the actu-
ation

• a mapping from elevator deflection commands to actuator position commands ob-
tained from ground tests with the actuation

• a mapping from actuator position to surface deflections, obtained from ground tests
with the actuation

• aeroelastic modes modelled as low damped second order filters according to

Gmode(s) = ω2
mode

s2 + 2ζmodeωmodes+ ω2
mode

(4.17)
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where ωmode and ζmode were obtained from flutter data provided by the air manu-
facturer for the first aeroelastic bending mode. The pitch rate and specific force of
the nonlinear flight dynamics model were filtered by Gmode(s) before they were fed
into the controller.

• roll-off filters for all measurement signals, modelled as second order system according
to

Gfil(s) =
ω2
fil

s2 + 2ζfilωfils+ ω2
fil

(4.18)

with ωfil and ζfil chosen to obtain sufficient noise attenuation.

• notch filters modelled according to

Gmode(s) = s2 + 2ζnumωnums+ ω2
num

s2 + 2ζdenωdens+ ω2
den

(4.19)

where the parameters were chosen to prevent excitation of the modes by the con-
troller and to realize sufficient attenuation of the open-loop frequency response at
frequencies around the first aeroelastic bending mode frequency

• a mapping from control law output uc to elevator deflection command, scheduled
over dynamic pressure.

The resulting longitudinal linear model, i.e the amended plant depicted in Figure 4.6, was
used for the synthesis of the longitudinal control law. Initial controller parameters were
obtained using LQR for output feedback [LW13] or the MATLAB gain design routine
systune from the Control Design Toolbox.

The resulting closed-loop response was assessed against requirements for the inner-
loop controller. The requirements were given by adequate and desired values for the
stability margins of the open-loop system as specified in the AS94900, [SAE07]. Other
requirements defined limits on the bandwidth and overshoot and were defined by the
outer-loops. Desired values were chosen to give better performance and robustness, while
the adequate values are given as the minimum that needs to be satisfied.

4.4.3.2 Initial Closed-loop ETFE

The initial closed-loop estimate is obtained as an averaged ETFE as described in Section
3.5, by injecting the multi-sinusoidal excitation signal, described in Section 3.4, and mea-
suring the feedback signals given in yc. The estimate of the non-parametric closed-loop
frequency response Ĝcl,0(jωk), is calculated by Equation (3.18) at the discrete frequencies
ωk, defined by the parametrization of the multi-sine signal.
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4.4.3.3 Amended Plant Estimate

Based on the estimated closed-loop frequency response Ĝcl,0(jωk), described above, the
frequency response of the indirect non-parametric frequency response estimate of the
amended plant Ĝap(jωk) can be calculated. This is possible because the controller pa-
rameters p0 that were applied in the flight tests for estimating Ĝcl,0(jωk), and thus the
controller frequency responses Kr(jω,p0) and Kyc(jω,p0) are exactly known and because
the control law is linear. The frequency response of the amended plant is estimated, using
relation 4.11, by

Ĝap(jωk) = Ĝcl,0(jωk)
[
Kr(jωk,p0) +Kyc(jωk,p0)Ĝcl,0(jωk)

]−1 (4.20)

4.4.3.4 Anticipated Closed-loop Estimate and Margins

The anticipated closed-loop estimate for a parameter set p is calculated based on the
amended plant estimate Ĝap(jωk), described above, and the controller frequency responses
Kr(jω,p) and Kyc(jω,p). Using the relation given by Equation (4.8), it is calculated by

Ĝcl(jωk,p) =
[
I − Ĝap(jωk)Kyc(jωk,p)

]−1
Ĝap(jωk)Kr(jωk,p) (4.21)

An estimate of the anticipated stability margins for a parameter set p is obtained by
calculating the gain and phase margins of the open-loop estimate Ĝcut(jωk,p). This
estimate is calculated, using relation (4.15), by

Ĝcut(jωk,p) = Kyc(jωk,p) Ĝap(jωk) (4.22)

4.4.3.5 Optimization Problem

The optimization problem is described in detail in Section 3.8 for a SISO closed-loop
system. Because the considered application is a SIMO system, with two outputs, ny = 2,
the cost function is adapted as follows [GHSM21]

J (p) =
2∑
i=1
{ 20
nω

nω∑
k=1

(wγ,i (ωk) [wA∆|Gcl,yi | + wφ∆∠Gcl,yi
])}+ (p− p0)Q (p− p0)T (4.23)

with

∆|Gcl,yi | = (
∣∣∣Ĝcl,yi (jωk,p)

∣∣∣− ∣∣∣Gcl,des,yi (jωk)
∣∣∣ )2

∆∠Gcl,yi
= (∠Ĝcl,yi (jωk,p)− ∠Gcl,des,yi (jωk) )2

(4.24)
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where Gcl,des,yi (jωk) in Equation (4.24) represents the desired closed-loop frequency re-
sponse at frequency ωk from the reference input r to each of the outputs yi, i = 1, 2 given
in yc. In Equation (4.24), Ĝcl,yi (jωk,p) represents the anticipated closed-loop response,
for the gain set p. It is represented by the rows of Ĝcl (jωk,p), which is computed ac-
cording to Equation (4.21) utilizing the estimate of the amended plant Ĝap (jωk) given by
Equation (4.20). Note, that though the overall objective is to improve the tracking, i.e.
the response from r to y1, the cost function also accounts for the response from r to y2.
With this strategy empirically better results could be obtained compared to using only
the response from r to y1 in the cost function. The remaining parameters and symbols
in (4.24) and (4.23) are as defined in Section 3.8. The optimization problem is given by
[GHSM21]:

min .
p

J (p)

st.

c1 (p) = Am − Âm (p) ≤ 0
c2 (p) = Φm − Φ̂m (p) ≤ 0

(4.25)

where

Am is the adequate gain margin

Âm (p) is the anticipated gain margin for the controller parameters p

Φm is the adequate phase margin

Φ̂m (p) is the anticipated phase margin for the controller parameters p.

The cost function J(p) is minimized with respect to the controller parameters p using the
off-the-shelf solver fmincon from MATLAB. Upper and lower bounds are given for the
parameter vector p. "The constraints ensure that the resulting gains lead to anticipated
phase and gain margins larger or equal to the adequate margins. The posed optimiza-
tion problem is not convex. Further, no formal proof yet was made to show that this
optimization will converge or reveal the global minimum. However, it can be verified by
comparing the resulting anticipated and the initial closed-loop response if the new pa-
rameters are better than the initial parameters. It is shown by Monte Carlo simulation
in the following sections that the problem at hand converged to a solution which is better
than the initial guess. Furthermore, the problem at hand is not computational complex
and with an usual desktop pc it can be solved within a few minutes. However, as the
problem is solved off-line, there exist no demanding time constraints."[GHSM21]
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Figure 4.7: Schematic of simulation setup and nomenclature. [GHSM21]

4.4.4 Simulation Results

"The following section presents the simulation results of the proposed controller retuning
based on a full 6DoF nonlinear simulation model. Figure 4.7 shows the setup and nomen-
clature of the simulations. First, we distinguish between the nonlinear (nl) and linear
(lin) systems. The expression nl refers to data from the high fidelity non-linear Model-
In-the-Loop Simulation framework, described in Section 4.3. The notation lin refers to
data obtained with linear state space models. Furthermore, we distinguish between nom-
inal and real systems. Based on the nominal lin amended plant, which is obtained via
linearization of the nominal nl amended plant, model-based gain design is performed a
priori the flight test. The resulting controller parameters are denoted as initial gains p0.
Application of these gains to the nominal lin amended plant, results in the nominal lin
closed-loop system, which constitutes the desired closed-loop response Gcl,des(jωk) for the
gain retuning process. The expression real denotes the systems, which are obtained based
on the plant subjected to aerodynamic uncertainties and/or a backlash element applied to
the elevator deflection after the actuator dynamics. The linearization of the real nl plant
results in the real lin plant and application of the initial gains leads to the untuned real
nl/lin closed-loop Gcl(jωk,p0). The expression tuned, in contrast, describes the closed-
loop system Gcl(jωk, p̃), obtained by application of the retuned gains, which are obtained
through the proposed gain retuning process."[GHSM21]

154



Chapter 4: Application

In the following simulation results are shown for the Do228, see Section 4.1.2. Similar
results were obtained in simulation for the other aircraft configurations presented in Sec-
tion 4.1. However, here we present the results only for Do228 which were also published
in [GHSM21]. It is worth to note, that for ELIAS and the G-520T, during the multi-sine
maneuver, an increased drift away from the trim point was encountered. To keep the
drift within acceptable bounds, only a decreased number of repetitions could be realized.
Because the sensitivity of the estimates, with regard to disturbances and noise, is reduced
with increasing number of repetitions by the averaged ETFE, in these cases instead of
reducing the maneuver length, an additional altitude hold control was introduced to keep
the aircraft at the operational point during the maneuver. This strategy will be explained
in Section 4.4.5, where the flight tests for the G-520T are discussed.

4.4.4.1 General Settings - Uncertainties

For the following analysis, the aerodynamic uncertainties were considered to be multi-
plicative on the following aerodynamic derivatives [GHSM21]:

Cmα Pitch moment coefficient due to angle of attack (α).

Cmq Pitch moment coefficient due to pitch rate (q).

Cmη Pitch moment coefficient due to elevator deflection (η).

CLα Lift coefficient slope wrt. angle of attack (α).

CLη Lift coefficient slope wrt. elevator deflection (η).

For simulations where one uncertainty set was considered, 10% uncertainty was applied
to all coefficients. For the Monte Carlo simulations with regard to aerodynamic uncer-
tainties, a uniform distribution with a spread of 20% on the same coefficients were used.
Additionally, the influence of a backlash element, that was applied at the elevator, was
investigated. The backlash was varied within simulations between 0− 1.2 degrees.

4.4.4.2 General Settings - Reference Excitation Input Signal

The applied multi-sinusoidal excitation signal, injected at the reference input r is given
by Equation (3.16). Its parametrization is summarized in Table 4.1. The considered
frequency range lies between ω1 ≈ 0.42 rad

s
and ωnω ≈ 20 rad

s
. The parametrization is cho-

sen such, that during the maneuver neither the actuator position limits nor the actuator
rate limits are exceeded. Furthermore, the acceptable maneuver length is determined by
simulations such that the drift from the test envelope point, given in terms of indicated
airspeed and static pressure, remains within acceptable boundaries. These objectives

155



4.4 Longitudinal Inner-loop

are determined as a compromise with ensuring an adequate signal-to-noise, by choosing
an adequate number of repetitions, an adequate excitation amplitude and an adequate
frequency resolution of the estimates.

Symbol Value

Amplitude A 0.2g
Window length T 15s
Frequency set
(excited harmonics) S 1,3,5,...,47

Number of periods
(repetitions of maneuver) N 10

Table 4.1: Maneuver injection input signal parameters.

4.4.4.3 General Settings - Optimization

The parametrization of the quadratic cost function in Equation (4.23) is chosen as follows
[GHSM21]. The weighting matrix Q is chosen as a diagonal matrix with values such that
the penalty for changes in the integral gain is of one order of magnitude higher than the
penalty for changes in the other gains. The frequency dependent weights for each output
yi, are chosen equal: wγ,1 (ωk) = wγ,2 (ωk) = wγ (ωk), with wγ (ωk) given in Table 4.2.
The frequency dependent weights are chosen to achieve a good matching with the desired
dynamics in the frequency range, where the bounds from the outer-loop are most tight.
Frequencies, where the closed-loop dynamics are already well attenuated are weighted
weakly. The remaining parameters are wA = 1, wφ = 0.01745 as described in Section 3.8
and Am = 6dB, Φm = 45◦.

ωk[ rads ] < 0.5 0.5-4 4-6 > 6
wγ (ωk) 10 20 10 1

Table 4.2: Frequency depending relative weight. [GHSM21]

4.4.4.4 Simulation Results for Calm Atmosphere

To quantify the influence of aerodynamic uncertainties on the retuning results, Monte
Carlo Simulations (100 simulations in total) in calm atmosphere were carried out. The
applied uncertainties on the aerodynamic parameters were described in Section 4.4.4.1.
The multi-sine was parametrized as specified in Section 4.4.4.2 and the optimization
parameters are given in Section 4.4.4.3.

Figure 4.8 shows the deviation between the desired closed-loop frequency response and
the tuned closed-loop frequency response, as well as the deviation between the desired and
the initial (untuned) response. The depicted tuned and untuned responses are obtained
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Figure 4.8: Closed-loop frequency response with initial gains, retuned gains, and desired
response, for varying uncertainties under calm air conditions. [GHSM21]

as an averaged ETFE, based on simulation results of the controlled nonlinear plant model
with the retuned and initial controller parameters, respectively. It can be seen that the
tuned closed-loop responses are significantly closer to the desired response. Though the
MUAD bounds, described in Section 3.9, are applicable to piloted cases and the considered
controller constitutes the inner-loop for an autopilot, Figure 4.8 additionally depicts the
MUAD bounds in dashed red lines in order to qualitatively quantify the improvement.
We see, that all tuned responses are within the MUAD bounds. Hence, the proposed
retuning procedure achieves an improvement.

Figure 4.9 additionally shows the anticipated tuned closed-loop response in orange. It
can be seen that the anticipated tuned response lies almost exactly on top of the closed-
loop response that is obtained from simulation with the tuned controller parameters. The
achieved margins with the tuned gains were checked for satisfaction of their adequate
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Figure 4.9: Anticipated tuned closed-loop frequency response, desired response, closed-
loop response with initial gains and with retuned gains for varying uncertainties under
calm air conditions.

values via interpolation of the corresponding frequency response Ĝcut(jωk,p)´, which was
calculated as described in Section 4.4.3.4.

Figure 4.10 compares the desired closed-loop response to a step input, in ∆fz,B,cmd(t)/g
with an amplitude of 0.5, with the step responses of the closed-loop systems with tuned
and initial (untuned) gains for one specific uncertainty set, which is described in Section
4.4.4.1. The desired step response with the optimized gains is reproduced much better.
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Figure 4.10: Step response of control law with initial gains, retuned gains, and desired
response. [GHSM21]
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4.4.4.5 Simulation Results for Light Turbulence

The following section investigates the effect of performing the tuning in light turbulence
based on simulated flight tests as presented in [GHSM21]. The turbulence will distort the
closed-loop frequency response estimate compared to an estimate from a calm air flight
test. This is revealed in Figure 4.11 by the dashed blue lines. The light blue line shows
the ETFE of the closed-loop frequency response obtained with data from simulation
in calm atmosphere with the initial (untuned) controller parameters. The dark blue
line is the same estimate obtained with data from simulation in light turbulence, and
is thus deteriorated. Consequently, the optimized controller parameters obtained from
this estimate will differ slightly from the parameters tuned based on flight in calm air.
Figure 4.11 shows how much the tuned closed-loop responses by using the parameters
obtained from turbulent or calm air flight test data, differ. This is revealed by the green
dashed lines, which compare the closed-loop frequency responses obtained as ETFE’s from
simulation with the two sets of tuned gains in calm air. The simulations were performed
based on one specific set of uncertainties, which is described in Section 4.4.4.1.

The following two observations can be made: First, the parameters tuned from a
flight in calm air or in light turbulent air, both result in a closed-loop frequency response
that is very close to the desired frequency response. Further quantification is made later
through Monte Carlo simulations. Second, the estimated frequency response in turbulent
conditions is more noisy. However, it seems to be more or the less centered around the
estimated response from calm air conditions, and provides controller parameters that
retrieve the desired frequency response. The variance of the estimated frequency response
in turbulence depends on the signal-to-noise ratio and hence also on the intensity of the
turbulence and the number of repetitions of the maneuver. It is a trade-off between the
maneuver length T of one repetition which determines the frequency resolution ωk of the
estimated frequency response, the drift away from the considered operational envelope
point and the amplitude of the excitation signal.

To quantify the influence of data collected in turbulent atmosphere on the tuning
results, Monte Carlo Simulations (30 simulations in total) in light turbulence were carried
out with one specific uncertainty set, which is described in Section 4.4.4.1. Figure 4.12
shows the deviation between the desired frequency response and the one obtained with the
tuned controller parameters computed as an ETFE obtained from a simulated experiment
in light turbulence, depicted as the light green dashed line. The deviation between the
desired response and the response from tuning in calm air is also shown as the dark
green line. Figure 4.12 reveals, that significant improvement can be achieved even in
turbulent conditions. However, the best match will occur when updating the gains based
on experiments in calm atmosphere. The achieved margins with the tuned controller
parameters were checked for satisfaction of their adequate values as described before.
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Figure 4.11: Estimates of untuned closed-loop frequency responses with uncertain plant
in calm air and turbulent conditions, compared to the respective tuned responses in calm
air. [GHSM21]
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Figure 4.12: Comparison of calm air frequency responses with gains tuned in calm air
or turbulent air by Monte Carlo simulations. [GHSM21]
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4.4.4.6 Simulation Results with Backlash

The following section investigates the effect of backlash in the elevator deflections on the
tuning results based on simulated flight tests. The simulations were performed based on
one specific set of uncertainties with a varying backlash element. The backlash was evenly
varied from 0 to 0.7 degrees. 7 simulations were performed in total in calm air with the
different values for the backlash. Figure 4.13 and 4.14 show in blue the ETFE’s of the
initial (untuned) closed-loop response for each simulation, where the nominal aerodynamic
coefficients were increased by 10% in Figure 4.13 and decreased by 10% in Figure 4.14.

Figure 4.13: Comparison of closed-loop frequency responses with varying backlash ele-
ment (0− 0.7 degrees) and aerodynamic coefficients increased by 10%.

163



4.4 Longitudinal Inner-loop

Figure 4.14: Comparison of closed-loop frequency responses with varying backlash ele-
ment (0− 0.7 degrees) and aerodynamic coefficients decreased by 10%.

Based on the respective initial closed-loop estimates the controller retuning was per-
formed, where the penalties in the matrix Q were increased by one order of magnitude
and two orders of magnitude for the integrator gain and specific force feedback gain,
respectively, compared to the values given in Section 4.4.4.3. The simulations were re-
peated with the new controller parameters. Based on the respective simulation data, the
ETFE’s of the tuned closed-loop response, depicted in green, was calculated. We see that
the tuned responses are closer to the desired response than the initial responses. Figure
4.15 shows the resulting step responses in specific force. The tuned closed-loop responses
reveal an increasing steady state error with increasing backlash. Hence, the tuning shall
be considered with care if large nonlinearities like backlash is expected. With increas-
ing backlash the tuned frequency responses will additionally deviate from the anticipated
closed-loop frequency responses, which are depicted in yellow in Figure 4.14. This effect
is even better visible in Figure 4.16 where the backlash was varied from 0.8 up to 1.2
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Figure 4.15: Comparison of closed-loop step responses with varying backlash element
(0− 0.7 degrees) and aerodynamic coefficients decreased by 10%.

degrees with aerodynamic coefficients decreased by 10%. In this case also the margins
for the tuned controller parameter obtained from simulation were not satisfied, while the
anticipated margins were satisfied.
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Figure 4.16: Comparison of closed-loop frequency responses with varying backlash ele-
ment (0.8− 1.2 degrees) and aerodynamic coefficients decreased by 10%.
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4.4.5 Flight Test Results

In the following sections, the data of two flights of the G-520T testbed are considered,
which took place near the airport EDMN close to Mindelheim, Germany. Note, that
the entire section 4.4.5 is extracted from my manuscript [SSG+] for AIAA Scitech 2022
Forum. ["All flight tests presented in the following were performed at an envelope point
defined by indicated airspeed and pressure altitude of

VA = 115± 5KIAS and h = 7500± 700 ft (4.26)

see Figure 4.20.
The considered flight test maneuvers were executed with retracted landing gear and

flaps in upright position. The flight tests were observed and instructed from a ground
control station. A datalink allowed for live monitoring of telemetry data from the aircraft
and to set flight test parameters from the ground control station. During the test flights,
sensor data and FCC internal controller data were recorded directly on the FCC with a
sample rate of 100Hz which equals the clock speed of the FCC.

Before each test maneuver, the aircraft was brought in steady state horizontal level
flight with autopilot active in altitude and heading hold mode. As no auto thrust system
was available yet, the pilot was instructed to maintain the trim airspeed by manually
adjusting the power lever. Flight test maneuvers for the FTMI module were selected
from ground control station based on a maneuver list index and confirmed via received
status data from the aircraft. The activation of the selected maneuver was either done
by the pilot via the mode control panel in the cockpit or from the ground control station
after receiving clearance from the pilot. After execution of an injected maneuver, the
autopilot modes roll and pitch angle hold were automatically activated.

During injection of ∆fz,B,cmd(t)/g maneuvers, a low bandwidth altitude hold control
loop was active to keep the aircraft close to the trim altitude, while not interfering with
the flight test maneuver. This altitude control loop is particularly relevant for the longer-
lasting multi-sine maneuvers during which the aircraft would otherwise drift away from the
trim point without control of the aircraft flight path such that the assumption of linearity
of the closed-loop dynamics would be no longer justified. Besides the ∆fz,B,cmd(t)/g
command, the maneuver sequences also include a bank angle command of Φcmd(t) = 0◦

and a lateral specific force command fy,B,cmd(t)/g = 0 to keep the wings level and maintain
coordinated flight.

4.4.5.1 General Settings - Reference Excitation Input Signal

The applied multi-sine signals are described in Section 3.4, Equation (3.16). Thereby,
two differently parametrized multi-sinusoidal excitation signals, injected at the reference
input r were tested within the flight tests.
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The respective parametrization is summarized in Table 4.3. The main difference of
the tested multi-sines is the window length T and consequently the frequency spacing of
the closed-loop estimates which is an integer multiple of ωmin = 2π/T . The considered
frequency range lies between ω1 ≈ 0.31 rad

s
and ωnω ≈ 8.17 rad

s
and between ω1 ≈ 0.42 rad

s

and ωnω ≈ 6.2 rad
s
, respectively. For both multi-sines, N = 10 repetitions of the maneuver

were observed, such that the total length of the maneuver was in one case 150s and
in the other case 200s. The latter one gives a finer frequency resolution, but it was
unclear in advance if the resulting drift from the trim point, due to the longer maneuver
duration, would be within acceptable bounds. It turned out that both multi-sines provided
acceptable and similar results as will be shown later.

Symbol Maneuver ID 166 Maneuver ID 168

Amplitude A 0.2g 0.2g
Window length T 15s 20s
Frequency set
(excited harmonics) S 1,2,3,...,26 1,2,3,...,15

Number of periods
(repetitions of maneuver) N 10 10

Table 4.3: Maneuver injection input signal parameters.

The multi-sines 166 and 168 were repeated each three times in calm air under closed-
loop conditions, with the initial and tuned controller parameters. In turbulent air condi-
tions, multi-sines 166 and 168 were repeated each three times with the initial controller
only.

4.4.5.2 General Settings - Initial Controller Parameters

The initial controller parameters p0 were calculated using classical gain design techniques
based on a linear model of the amended plant Gap,nom as described in Section 4.4.3.1. The
initial controller parameters that were tested in flight are given in Table 4.4.

Parameter Name Initial value Tuned value
p1 feedforward -0.16 -0.02
p2 integrator -1.19 -2.08
p3 ∆fz/g feedback -0.17 -0.48
p4 q feedback 1.07 4.43

Table 4.4: Controller parameter values.
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4.4.5.3 General Settings - Optimization

The quadratic cost in Equation (3.103) is parametrized as follows. The weighting ma-
trix Q is diagonal with values penalizing changes in the integral gain with one order of
magnitude higher than changes in the feedforward gain and with two order of magnitude
higher than the feedback gains. The weights wγ (ωk) specify in which frequency range
the difference between the desired and optimized response should be emphasized. It is
chosen to prioritize frequencies where the bounds from the outer-loop is most tight. The
respective values are given in Table 4.5. The frequency range where the closed-loop dy-
namics are already well attenuated is weighted very weakly. The weights for the relative
influence of errors in magnitude and phase are chosen to wA = 1 and wφ = 0.01745, as
recommended by [RT06]. The adequate margins used for the constraints are selected as
Am = 6dB, Φm = 45◦ according to [SAE07]. The initial controller parameter values are

ωk[ rads ] < 0.5 0.5-4 4-6 > 6
wγ (ωk) 50 50 10 1

Table 4.5: Frequency depending relative weight.

summarized in Table 4.4.

4.4.5.4 Initial Closed-loop ETFE: Transients and Steady State Assumption

It is known from [dv95] that for accurate estimation of the closed-loop frequency response,
the transients from the beginning of the experiment should have died out, otherwise
spectral leakage will occur in the Discrete Fourier Transform, and hence deteriorate the
ETFE estimate. To verify the assumption that discarding the first period is sufficient for
the transients to disappear, the first four periods of one experiment in calm air are shown
in Figure 4.17. It can be seen that the first period differs from the following three, which
are almost identical. Therefore, it is reasonable to assume that discarding the first period
suffices to overcome the adverse effects of the transients.

4.4.5.5 Initial Closed-loop ETFE: Calm Air versus Turbulent Air

It is known from [dv95] that the variance of the ETFE increases with the noise on the
data and reduces with the number of repetitions. In [GHSM21] simulation results showed
this effect. This effect is also shown by the following flight test results. In Figure 4.18
the closed-loop frequency response estimates of the initial untuned control law for six
experiments in calm air and six experiments in turbulent air are shown. The tests were
performed with three repetitions of the multi-sine maneuver 166 and three repetitions of
the multi-sine maneuver 168, defined in Table 4.3. It can be seen that the spread of the
estimates is significantly larger for the data collected in turbulence. In Figure 4.19 the
time domain data for the pitch rate and specific force per g for two particular experiments
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Figure 4.17: First four periods of the multi-sine signal - visualization of transient re-
sponse.

is shown. The data shows four periods of the multi-sine maneuver with initial, untuned
gains in calm air and turbulent air. In Figure 4.20 the corresponding values for lateral
specific force per g, bank angle, pressure altitude and indicated airspeed is shown. By
inspecting both figures the influence of the turbulence can be seen. It can be seen for
the data sequence obtained in turbulence that a large disturbance at time 134s in both
the and normal and lateral specific force per g causes deviations in normal specific force
per g and pitch rate compared to the calm air sequence. Additionally, it is revealed that
fluctuations in the airspeed at time 90s− 112s caused by disturbances also translates to
a deviation compared to the calm air data. It is these fluctuations that cause the greater
variance of the ETFE in turbulent flight as expected.
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Figure 4.18: Untuned closed-loop ETFE in calm and turbulent air.
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Figure 4.19: Longitudinal time domain closed-loop responses in calm and turbulent air.

172



Chapter 4: Application

Figure 4.20: Lateral time domain closed-loop responses, indicated airspeed and altitude
in calm and turbulent air.
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4.4.5.6 Retuning Result

After the retuning, where the optimization was set-up as described in Section 4.4.5.3, sev-
eral repeated flight test experiments were performed with the updated tuned controller
parameters to determine how the updated closed-loop response compares to the desired
design response and the anticipated, tuned closed-loop response. The tuned controller
parameters are shown in Table 4.4. Figure 4.21 compares the initial closed-loop response,
obtained from flight test with the initial gains, to the anticipated closed-loop response
with tuned gains, and the actual tuned closed-loop response, obtained from flight test
with the tuned controller parameters. Six flight test experiments (three with multi-sine
166 and three with multisine 168) were carried out providing six estimates of the initial
closed-loop. One closed-loop estimate was chosen to optimize the controller parameters.
The anticipated closed-loop estimates in Figure 4.21 were calculated based on the tuned
controller parameters and the six initial closed-loop estimates. The same flight test ex-
periments were carried out to estimate the closed-loop response with the updated, tuned
gains.

Figure 4.21 shows that the controller parameters are optimized such, that the antici-
pated tuned closed-loop response is placed on top of the desired response. More impor-
tantly, Figure 4.21 shows that the actual ETFE’s of the tuned closed-loop responses are
on top of both the anticipated and the desired one. This demonstrates the capabilities
of this flight test-based gain retuning approach."][end of quotation from my manuscript
[SSG+]]
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Figure 4.21: Untuned closed-loop ETFE versus tuned ETFE and anticipated tuned
closed-loop frequency response.
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Figure 4.22: Lateral inner-loop controller structure and closed-loop representations.

4.5 Lateral Inner-loop

The following section describes the lateral inner-loop controller, which controls the air-
craft’s lateral motion. In Section 4.5.1 the control law is presented and in Section 4.5.2
several closed-loop and open-loop relations are presented, that are used within the test
based gain retuning to estimate the anticipated margins, the amended plant and the
anticipated closed-loop response.

4.5.1 Control Law and Controller Structure

The controller structure of the lateral inner-loop is depicted in the left picture in Figure
4.22. The closed-loop representations in the pictures on the right-hand side in Figure
4.22, expressed in terms of amended plant with control law (upper picture) and plant with
amended controller (lower picture), will be explained in Section 4.5.2. The controller is
composed, as can be seen in the left picture in Figure 4.22, of the control law and another
component denoted as controller supplement, which consists of structural filters and roll
off filters, turn compensation and a mapping from the control law output to actuator
commands, which is scheduled over indicated airspeed. The linear control law can be
expressed by continuous linear time-invariant (LTI) models in Laplace domain by

uc(s) =
[
Kr(s,p) Kyc(s,p)

]  r(s)
yc(s)

 (4.27)
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where r(s), yc(s), uc(s) denote the Laplace-transforms of the following time-dependent
signals:

• r(s): is a vector with the reference inputs, i.e. a bank angle command and a
specific force command in the y-axis direction of the body fixed frame, normalized
with respect to the gravitational acceleration g: r(t) =

(
Φcmd(t) fy,B,cmd(t)/g

)T
.

• yc(s): is a vector with the feedback signals used within the control law, i.e. yc(t) =(
Φ(t) ∆p(t) ∆r(t) fy,B(t)/g

)T
. It is an output of the controller supplement

subsystem, with the processed bank angle Φ, roll and yaw rate ∆p and ∆r, and
processed specific force measurement fy,B/g. The delta in the rates refers to incre-
ments with respect to the turn values pturn = −

.
Ψ sin Θ and rturn =

.
Ψ cos Φ cos Θ

with
.

Ψ = g/V tan Φ.

• uc(s): is the output of the control law and corresponds to a roll and yaw rate ac-
celeration command, uc(t) =

( .
pcmd(t)

.
rcmd(t)

)T
.

The plant input is the desired aileron and rudder drivetrain commands
(
ξdt,cmd(t) ζdt,cmd(t)

)T
,

which is mapped within the controller supplement component Fu from the roll and yaw
rate acceleration commands provided by the control law.

The control law corresponds to a classical linear PI-type controller with integral action
on the tracking error in bank angle and lateral specific force, feedback of bank angle, roll
and yaw rate and lateral specific force and a feed forward of the specific force command
and bank angle command, providing additional degrees of freedom. The transfer function
Kr(s,p) in Equation (4.27) describes the behavior from the reference input to the control
law output and is given by

Kr(s,p) =

(p.pφc + p
I,
.
pφ

s
) p.pfy,c

p.rφc (p.rfy,c +
p
I,
.
rfy

s
)

 (4.28)

The Transfer function matrix (TFM) Kyc(s,p) defines the response from feedback signals
to the control law output. It is given by

Kyc(s,p) =

(p.pφ −
p
I,
.
pφ

s
) p.pp p.pr p.pfy

p.rφ p.rp p.rr (p.rfy −
p
I,
.
rfy

s
)

 . (4.29)

The parameter vector
p = [pH ,pI ,pK ] (4.30)

comprises the feed-forward gains

pH =
[
p.pφc p.pfy,c p.rφc p.rfy,c

]
, (4.31)
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the integrator gains
pI =

[
pI, .pφ pI, .rfy

]
(4.32)

and the feedback gains

pK =
[
p.pφ p.pp p.pr p.pfy p.rφ p.rp p.rr p.rfy

]
(4.33)

In the following sections, the dependence of Laplace operator s and time t is omitted,
whenever the context is clear.

4.5.2 Closed-loop and Open-loop Relations

The Transfer function matrix (TFM) from the control law output signals uc to the feed-
back signals yc in open-loop is denoted as the amended plant with representation in the
Laplace domain, given by

yc(s) = Gap(s)uc(s). (4.34)

where
Gap(s) = Fy(s)G(s)Fu(s) (4.35)

see Figure 4.22. The closed-loop LTI system is represented by the closed-loop TFM
Gcl(s,p) from the reference input signal vector r to the feedback signal vector yc

yc(s) = Gcl(s,p)r(s) (4.36)

where Gcl(s,p) is given by

Gcl(s,p) =
[
I −Gap(s)Kyc(s,p)

]−1
Gap(s)Kr(s,p) (4.37)

This relation can be deduced from the block diagram in Fig. 4.22, as follows. First, the
control law uc given by (4.27) in (4.34) results in

yc(s) = Gap(s)
(
Kr(s,p)r(s) + Kyc(s,p)yc(s)

)
(4.38)

By solving Equation (4.38) for yc finally the relation in (4.37) and (4.36), which we wanted
to show, is obtained:

yc(s) =
[
I −Gap(s)Kyc(s,p)

]−1
Gap(s)Kr(s,p)r(s) (4.39)

Hence, the result.
Alternatively, the closed-loop TFM Gcl(s,p) can be expressed by

Gcl(s,p) =
[
I −G(s) K̄yc(s,p)

]−1
G(s) K̄r(s,p) (4.40)
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where

K̄yc(s,p) = Fu(s)Kyc(s,p)Fy(s)
K̄r(s,p) = Fu(s)Kr(s,p)

(4.41)

see Figure 4.22.

The amended plant TFM can be expressed as a function of the closed-loop TFM
and the controller according to

Gap(s) = Gcl(s,p)
[
Kr(s,p) +Kyc(s,p)Gcl(s,p)

]−1 (4.42)

This relation can be deduced by solving Equation (4.37) for Gap: First multiply (4.37)
with

[
I −Gap(s)Kyc(s,p)

]
from the left:

[
I −Gap(s)Kyc(s,p)

]
Gcl(s,p) = Gap(s)Kr(s,p)

Gcl(s,p)−Gap(s)Kyc(s,p)Gcl(s,p) = Gap(s)Kr(s,p)
(4.43)

Then add Gap(s)Kyc(s,p)Gcl(s,p):

Gcl(s,p) = Gap(s)Kr(s,p) + Gap(s)Kyc(s,p)Gcl(s,p)
Gcl(s,p) = Gap(s)

[
Kr(s,p) + Kyc(s,p)Gcl(s,p)

] (4.44)

Finally, multiplication from the right with the inverse of
[
Kr(s,p) + Kyc(s,p)Gcl(s,p)

]
results in Equation (4.42). Hence the result.

Similarly, the plant TFM can be expressed as a function of the closed-loop TFM and
the amended controller, Equation (4.41), according to

G(s) = Gcl(s,p)
[
K̄r(s,p) +K̄yc(s,p)Gcl(s,p)

]−1 (4.45)

The stability margins are calculated at the actuator positions, as depicted in Figure
4.23, based on the loop-cut Gξ,cut at the aileron u1 and the loop cut Gζ,cut at the rudder
u2, respectively. These actuator cuts can be calculated by

Gξ,cut = L11(1− L22) + L12L21

(1− L22)

Gζ,cut = L22(1− L11) + L12L21

(1− L11)

(4.46)
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Figure 4.23: Actuator cuts for calculation of stability margins.

where

L =
L11 L12

L21 L22

 = K̄ycG (4.47)

Note, that the dependency on the Laplace operator and the parameter vector was omitted
here for better readability. These relations forGξ,cut andGζ,cut can be deduced from Figure
4.23 as follows. Based on the relationu1

u2

 = K̄ycG

u1

u2

 =
L11 L12

L21 L22

u1

u2

 (4.48)

the closed-loop relation for the rudder u2 is obtained by solving

u2 = L21u1 + L22u2 (4.49)

for u2, which results in
u2 = L21

(1− L22)u1 (4.50)

Relation (4.50) is substituted into

u1 = L11u1 + L12u2 = L11u1 + L12
L21

(1− L22)u1 = L11(1− L22) + L12L21

(1− L22) u1 (4.51)

Hence the result for the aileron cut Gξ,cut. The rudder cut Gζ,cut is obtained in similar
manner.

4.5.3 Testbased Gain Retuning for Lateral Inner-loop

4.5.3.1 Desired Closed-loop

The linear nominal closed-loop system, denoted as Gcl,nom(s,p0), that is composed of the
initial lateral inner-loop controller, Kr(s,p0), Kyc(s,p0), and the nominal linear lateral
amended plant model Gap,nom(s), is used as design model for the synthesis of the lateral
autopilot control laws. Therefore, it is desired that the closed-loop frequency response
of retuned controller and true plant corresponds to Gcl,nom(s,p0). Hence, the desired
closed-loop frequency response is the frequency response of Gcl,nom(s,p0).

180



Chapter 4: Application

The initial controller is designed using classical linear gain design methods, based on
the linear lateral amended plant model including roll, spiral and dutch roll dynamics.
This linear lateral amended plant model is obtained based on the high fidelity 6DoF
nonlinear model of the aircraft, using the developed tool chain. First, the nonlinear flight
dynamics model is trimmed for horizontal wings-level flight. Using these trim results the
high fidelity 6DoF nonlinear model is linearized from uc to yc, see Figure 4.22, including
the following components

• roll, spiral and dutch roll dynamics

• actuator models for aileron and rudder, modelled as second order systems according
to

Gact,k(s) =
ω2
act,k

s2 + 2ζact,kωact,ks+ ω2
act,k

(4.52)

for k = ξ, ζ, where the parameters ωact,k and ζact,k were obtained from ground tests
with the actuation

• a mapping from aileron and rudder deflection commands to the respective actuator
position commands obtained from ground tests with the actuation

• a mapping from actuator position to surface deflections, obtained from ground tests
with the actuation

• aeroelastic modes modelled as low damped second order filters according to

Gmode(s) = ω2
mode

s2 + 2ζmodeωmodes+ ω2
mode

(4.53)

where ωmode and ζmode were obtained from flutter data provided by the air manu-
facturer for the first aeroelastic bending mode. The rates and specific force of the
nonlinear flight dynamics model were filtered by Gmode(s) before they were fed into
the controller.

• roll-off filters for all measurement signals, modelled as second order system according
to

Gfil(s) =
ω2
fil

s2 + 2ζfilωfils+ ω2
fil

(4.54)

with ωfil and ζfil chosen to obtain sufficient noise attenuation.

• notch filters modelled according to

Gmode(s) = s2 + 2ζnumωnums+ ω2
num

s2 + 2ζdenωdens+ ω2
den

(4.55)
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where the parameters where chosen to prevent excitation of the modes by the con-
troller and to realize sufficient attenuation of the open-loop frequency response at
frequencies around the first aeroelastic bending mode frequency

• a mapping from control law output uc to aileron and rudder deflection commands,
scheduled over indicated airspeed.

The resulting lateral linear model, i.e the amended plant depicted in Figure 4.22, was used
for the synthesis of the lateral control law. Initial controller parameters were obtained
using Eigenstructure Assignement.

The resulting closed-loop response was assessed against requirements for the inner-
loop controller. The requirements were given by adequate and desired values for the
stability margins of the open-loop system with loop-cuts at the actuators as specified in
the AS94900, [SAE07], which is the SAE standard for flight control system design. Other
requirements defined limits on the bandwidth and overshoot and were defined by the
outer-loops. In addition, maximum lateral acceleration values were specified at steady
bank angles as well as during roll. Desired values were chosen to give better performance
and robustness, while the adequate values are given as the minimum that needs to be
satisfied.

4.5.3.2 Initial Closed-loop ETFE

The initial closed-loop TFM estimate is obtained by averaged ETFE’s as described in
Section 3.5, by two separate experiments. In the first experiment a multi-sinusoidal
excitation signal, described in Section 3.4, is injected for the bank angle command. In the
second experiment a multi- sinusoidal excitation signal is injected for the lateral specific
force command. For both experiments the feedback signals given in yc are measured and
the respective ETFE’s from each reference signal to each output signal are calculated
by Equation (3.18) at the discrete frequencies ωk, defined by the parametrization of the
multi-sine signal. The obtained ETFE’s are then composed to the closed-loop frequency
response TFM Ĝcl,0(jωk).

4.5.3.3 Amended Plant Estimate

Based on the estimated closed-loop frequency response Ĝcl,0(jωk), described above, the
indirect non-parametric frequency response estimate of the amended plant Ĝap(jωk) can
be calculated. This is possible, because the controller parameters p0 that were applied
in the flight tests for estimating Ĝcl,0(jωk), and thus the controller frequency responses
Kr(jω,p0) and Kyc(jω,p0) are exactly known and because the control law is linear. The
frequency response of the amended plant is estimated, using relation (4.42), by

Ĝap(jωk) = Ĝcl,0(jωk)
[
Kr(jωk,p0) +Kyc(jωk,p0)Ĝcl,0(jωk)

]−1 (4.56)
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4.5.3.4 Plant Estimate

Based on the estimated closed-loop frequency response Ĝcl,0(jωk), described in Section
4.5.3.2, the indirect non-parametric frequency response estimate of the plant, Ĝ(jωk), can
be calculated. This is possible because the controller parameters p0 that were applied
in the flight tests for estimating Ĝcl,0(jωk), and thus the controller frequency responses
Kr(jω,p0) and Kyc(jω,p0), as well as Fu(jω) and Fy(jω) are exactly known. The fre-
quency response of the plant is estimated, using relation (4.45), by

Ĝ(jωk) = Ĝcl,0(jωk)
[
K̄r(jωk,p0) +K̄yc(jωk,p0)Ĝcl,0(jωk)

]−1 (4.57)

with K̄yc and K̄r given by Equation (4.41).

4.5.3.5 Anticipated Closed-loop Estimate

The anticipated closed-loop estimate for a parameter set p is calculated based on the
amended plant estimate Ĝap(jωk), (4.56), and based on the controller frequency responses
Kr(jω,p) and Kyc(jω,p). It is calculated, using the relation given by Equation (4.37),
by

Ĝcl(jωk,p) =
[
I − Ĝap(jωk)Kyc(jωk,p)

]−1
Ĝap(jωk)Kr(jωk,p) (4.58)

4.5.3.6 Anticipated Margins

An estimate of the anticipated stability margins for a parameter set p is obtained by
calculating the gain and phase margins of the actuator cut frequency response estimates
Ĝξ,cut(jωk,p) and Ĝζ,cut(jωk,p). These estimates are calculated, using the relations given
in Equation (4.46), by

Ĝξ,cut(jωk,p) = L̂11(jωk,p)(1− L̂22(jωk,p)) + L̂12(jωk,p)L̂21(jωk,p)
(1− L̂22(jωk,p))

Ĝζ,cut(jωk,p) = L̂22(jωk,p)(1− L̂11(jωk,p)) + L̂12(jωk,p)L̂21(jωk,p)
(1− L̂11(jωk,p))

(4.59)

where L is estimated by

L̂(jωk,p) =
L̂11(jωk,p) L̂12(jωk,p)
L̂21(jωk,p) L̂22(jωk,p)

 = K̄yc(jωk,p)Ĝ(jωk) (4.60)

using the plant estimate, Equation (4.57), and the amended controller calculated by
Equation (4.41).
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4.5.3.7 Optimization Problem

The optimization problem is described in detail in Section 3.8 for a SISO closed-loop
system. The lateral controller is a MIMO system, with two inputs and four outputs.
The objective of the retuning is to improve the bank angle tracking. Therefore, the cost
function is adapted as follows

J (p) =
4∑
i=1
{ 20
nω

nω∑
k=1

(wγ,yi (ωk) [wA∆|Gcl,yiΦc | + wφ∆∠Gcl,yiΦc
])}+ (p− p0)Q (p− p0)T

(4.61)

with

∆|Gcl,yiΦc | = (
∣∣∣Ĝcl,yiΦc (jωk,p)

∣∣∣− ∣∣∣Gcl,des,yiΦc (jωk)
∣∣∣ )2

∆∠Gcl,yiΦc
= (∠Ĝcl,yiΦc (jωk,p)− ∠Gcl,des,yiΦc (jωk) )2

(4.62)

where Gcl,des,yiΦc (jωk) in Equation (4.62) represents the desired closed-loop frequency
response at frequency ωk from the reference input r1 = Φc to each of the outputs yi, i =
1, 2, 3, 4 given in yc. Ĝcl,yiΦc (jωk,p) represents the anticipated closed-loop response, for
the gain set p. It is represented by the elements of Ĝcl (jωk,p), which is computed
according to Equation (4.58) utilizing the estimate of the amended plant Ĝap (jωk) given
by Equation (4.56). Note, that though the overall objective is to improve the tracking,
i.e. the response from r1 to y1, the cost function also accounts for the responses from
r1 to the other feedback signals. With this strategy empirically better results could be
obtained compared to using only the response from r to y1 in the cost function. The
remaining parameters and symbols in (4.62) and (4.61) are as defined in Section 3.8. The
optimization problem is given by:

min .
p

J (p)

st.

c1,l (p) = Am − Âm,l (p) ≤ 0
c2,l (p) = Φm − Φ̂m,l (p) ≤ 0
for l = 1, 2

(4.63)

where Âm,l (p) and Φ̂m,l (p) are the anticipated margins for the aileron and rudder cut for
the new parameter set p, respectively, as described in Section 4.5.3.6, and Am and Φm

are the adequate margin values.

The cost function J(p) is minimized with respect to the controller parameters p using
the off-the-shelf solver fmincon from MATLAB. Upper and lower bounds are given for the
parameter vector p. The constraints ensure that the resulting gains lead to anticipated
phase and gain margins larger or equal to the adequate margins. The posed optimization
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problem is not convex. Further, no formal proof yet was made to show that this optimiza-
tion will converge or reveal the global minimum. However, it can be verified by inspecting
the resulting anticipated and the initial closed-loop response if the new parameters are
better than the initial parameters. It is shown by Monte Carlo simulation in the following
sections that the problem at hand converged to a solution which is better than the initial
guess. Furthermore, the problem at hand is not computational complex and with a usual
desktop pc it can be solved within a few minutes. However, as the problem is solved
off-line, there exist no demanding time constraints.

4.5.4 Simulation Results

The following section presents the simulation results of the proposed controller retuning
based on a full 6DoF nonlinear simulation model. Figure 4.7 shows the setup and nomen-
clature of the simulations, which are explained in detail in Section 4.4.4. In the following
simulation results are shown for the G-520T testbed, see Section 4.1.3.

4.5.4.1 General Settings - Uncertainties

For the following analysis, the aerodynamic uncertainties were considered to be multi-
plicative on the following aerodynamic derivatives:

Clp Roll moment coefficient due to roll rate (p).

Clr Roll moment coefficient due to yaw rate (r).

Clξ Roll moment coefficient due to aileron deflection (ξ).

Clζ Roll moment coefficient due to rudder deflection (ζ).

Cnr Yaw moment coefficient due to yaw rate (r).

Cnβ Yaw moment coefficient due to sideslip angle (β).

Cnξ Yaw moment coefficient due to aileron deflection (ξ).

Cnζ Yaw moment coefficient due to rudder deflection (ζ).

For simulations where one uncertainty set was considered, Table 4.6 summarizes the
values of the multiplicative factors that were applied to all coefficients. For the Monte
Carlo simulations with regard to aerodynamic uncertainties, the multiplicative factors
were uniformly distributed in the range given in Table 4.7. The uncertainty range is
chosen to be spread around the parameter value, as expected from initial flight tests,
and not around the nominal value used within the model and initial controller design.
Additionally, the influence of a backlash element, that was applied at the aileron and
rudder, was investigated. The backlash was varied within simulations between 0 − 1.2
degrees.
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Parameter Uncertainty factor
Clp 1.5
Clr 1.02
Clξ 1.05
Clζ 1.02
Cnr 1.02
Cnβ 0.98
Cnξ 0.98
Cnζ 1.0

Table 4.6: Multiplicative factors on aerodynamic coefficients.

Parameter Uncertainty factor range
Clp 1.6-2.4
Clr 1.0-1.1
Clξ 0.8-1.2
Clζ 1.0-1.3
Cnr 1.0-1.1
Cnβ 0.9-1.0
Cnξ 0.7-1.0
Cnζ 1.0

Table 4.7: Range of multiplicative factors on aerodynamic coefficients within Monte
Carlo simulations.
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4.5.4.2 General Settings - Reference Excitation Input Signal

The applied multi-sinusoidal excitation signal, injected at the reference input r is given
by Equation (3.16). Its parametrization is summarized in Table 4.8, for each reference
input (Φcmd and fy,B,cmd/g), respectively. During each maneuver the other reference input
was commanding a value of zero.

The considered frequency range is the same for both maneuvers and lies between
ω1 ≈ 0.21 rad

s
and ωnω ≈ 6.28 rad

s
. The parametrization is chosen such that during the

maneuver neither the actuator position limits nor the actuator rate limits are exceeded.
Furthermore, the maneuver length is determined by simulations such that the drift from
the test envelope point, given in terms of indicated airspeed and static pressure, remains
within acceptable boundaries. These objectives are determined as a compromise with
ensuring an adequate signal-to-noise by an adequate number of repetitions, an adequate
excitation amplitude and an adequate frequency resolution of the estimates.

Symbol Φcmd fy,cmd

Amplitude A 4 deg 0.01 g
Window length T 30s 30s
Frequency set
(excited harmonics) S 1,2,3,...,30 1,2,3,...,30

Number of periods
(repetitions of maneuver) N 7 5

Table 4.8: Maneuver injection input signal parameters.

4.5.4.3 General Settings - Optimization

The parametrization of the quadratic cost function in Equation (4.61) is chosen follows.
The weighting matrix Q is chosen as a diagonal matrix with penalty values set to one for
all controller parameters given in Equation (4.31), (4.32) and (4.33), except the weights
for the feed forward gain p.pΦc , and the integral gains pI, .pΦ and pI, .pfy which were all set to
100. The weight for the feed forward gain p.rfy was set to 1000.

For y1 = Φ and y2 = ∆p the same frequency dependent weights are chosen. They
are given in Table 4.9. For y3 = ∆r and y4 = fy/g the frequency dependent weights in
Table 4.10 are selected. The frequency dependent weights are chosen to achieve a good
matching with the desired dynamics in the frequency range, where the bounds from the
outer-loop are most tight. Frequencies, where the closed-loop dynamics are already well
attenuated are weighted weakly. The remaining parameters are wA = 1, wφ = 0.01745
as described in Section 3.8 and Am = 6dB, Φm = 45◦.

187



4.5 Lateral Inner-loop

ωk[ rads ] < 0.05 0.05− 1 1− 3 > 3
wγ,y1 (ωk) = wγ,y2 (ωk) 0 100 1 0.1

Table 4.9: Frequency dependent relative weights for frequency responses from bank angle
command to bank angle and roll rate.

ωk[ rads ] < 0.1 0.1− 0.5 0.5− 2 2− 6 > 6
wγ,y3 (ωk) = wγ,y4 (ωk) 10 20 30 20 0.1

Table 4.10: Frequency dependent relative weights for frequency responses from bank angle
command to lateral specific force and yaw rate.

4.5.4.4 Simulation Results for Calm Atmosphere

To quantify the influence of aerodynamic uncertainties on the retuning results, Monte
Carlo Simulations (100 simulations in total) in calm atmosphere were carried out. The
applied uncertainties on the aerodynamic parameters were described in Section 4.5.4.1.
Figure 4.24 shows the deviation between the desired closed-loop frequency response and
the tuned closed-loop frequency response, as well as the deviation between the desired and
the initial (untuned) response. The depicted tuned and untuned responses are obtained
as an averaged ETFE, based on simulation results of the controlled nonlinear plant model
with the retuned and initial controller parameters, respectively. It can be seen that
the tuned closed-loop responses are closer to the desired response. Hence, the proposed
retuning procedure achieves an improvement.

The achieved margins with the tuned gains were checked for satisfaction of their ad-
equate values via interpolation of the corresponding anticipated frequency response esti-
mates Ĝcut(jωk,p). It turned out that the anticipated margins, which were all satisfied
by the constraints of the optimization, give a poor estimate for the aileron actuator cut
phase margins, which were not satisfied and slightly below the required 45 degrees on the
true plant.

Figure 4.25 compares the desired response to a step input, in Φcmd with an amplitude
of 5 degrees, with the step responses of the closed-loop systems with tuned and initial
(untuned) gains. The desired step response with the optimized gains is reproduced much
better.
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Figure 4.24: Closed-loop frequency response with initial gains, retuned gains, and desired
response, for varying uncertainties under calm air conditions.
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Figure 4.25: Step response of closed-loop systems with initial gains, retuned gains, and
desired closed-loop step response.
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4.5.4.5 Simulation Results for Light Turbulence

The following section investigates the effect of performing the tuning in light turbulence
based on Monte Carlo simulations (30 simulations in total) in light turbulence. The tur-
bulence will distort the closed-loop frequency response estimate compared to an estimate
from a calm air flight test. This is revealed in Figure 4.26 by the light blue lines. The

Figure 4.26: Tuning results for initial closed-loop frequency responses obtained in tur-
bulent air by Monte Carlo simulations.

light blue lines are the closed-loop frequency response estimates obtained from simulation
in light turbulence with the initial controller parameters and one specific uncertainty set
as described in Section 4.5.4.1. This uncertainty set mainly considers uncertainties in the
roll motion. The penalties for the controller parameters given by the diagonal entries of
the matrix Q are adapted compared to Section 4.5.4.3 such that the controller parameters
related to the roll motion are penalized less and are mainly tuned by the optimization.
This is done by increasing the penalties to 1000 for all gains except the feed forward gain
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p.pΦc , the integral gain pI, .pΦ and the feedback gains p.pΦ and p.pp, which remain at the
same values as described in Section 4.5.4.3. Furthermore, more emphasis is given to the
bank angle tracking by decreasing the corresponding frequency dependent weights for the
specific force and yaw rate given in Table 4.10 by a factor of 10. The frequency responses
from bank angle command to lateral specific force are weighted that low also because the
signal-to-noise ratio of fy,B is low in turbulence. The reason is that in coordinated turns
the lateral specific force is regulated to zero. For the bank angle and roll rate the same
frequency dependent weights, as given by Table 4.9, are selected.

Figure 4.26 shows in green the resulting tuned closed-loop responses, obtained as av-
eraged ETFE from simulation in calm atmosphere with the tuned parameters set. The
parameters tuned from a flight in light turbulent air, result, in this example, in a closed-
loop frequency response that is close to the desired frequency response. Figure 4.27
compares the desired response to a step input, in Φcmd with an amplitude of 5 degrees,
with the step responses of the closed-loop systems with tuned and initial (untuned) gains.
As can be seen, the desired step response with the optimized gains is not reproduced
satisfactory in all cases. Especially, the tuned response of the lateral specific force is dete-
riorated compared to the untuned response, due to the low weighting of the corresponding
frequency response in the optimization in order to account for the respective low signal-
to-noise in turbulence. Hence, especially for this considered controller and objectives calm
air conditions are of immense importance for the retuning. Furthermore, a large variation
in the tuned controller parameters was observed between the simulations. Hence, flight
tests shall be performed under calm air conditions.

As we also saw for the longitudinal controller, the estimated initial frequency response
in turbulent conditions is more noisy than in calm air. As a consequence the anticipated
closed-loop response might differ from the actual tuned response. The variance of the
estimated frequency response in turbulence depends on the signal-to-noise ratio and hence
also on the intensity of the turbulence and the number of repetitions of the maneuver.
It is a trade-off between the maneuver length T of one repetition which determines the
frequency resolution ωk of the estimated frequency response, the drift away from the
considered operational envelope point and the amplitude of the excitation signal.

Due to the coupling effects of the MIMO control structure the optimization result
in turbulence seemed to be sensitive towards the uncertainties, the choice of parameter
penalties and frequency dependent weights.

The achieved margins with the tuned controller parameters were checked for satis-
faction of their adequate values as described before. Again the anticipated margins all
satisfied by the constraints of the optimization their adequate values while the aileron
actuator cut phase margin on the true system was slightly below the required 45 degrees.
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Figure 4.27: Tuning results for initial frequency responses obtained in turbulent air by
Monte Carlo Simulations.

4.5.4.6 Simulation Results with Backlash

The following section investigates the effect of backlash in the aileron deflections on the
tuning results based on simulated flight tests. The simulations were performed based on
one specific set of uncertainties described in Section 4.5.4.1, with an varying backlash
element on the aileron. Figure 4.28 shows the tuning results for a case where the backlash
was evenly varied from 0 to 0.6 degrees. 7 simulations were performed in total in calm
air with different values for the backlash. Based on the respective initial closed-loop
estimates the controller retuning was performed, where the same penalty Q as in Section
4.5.4.5 was used. The frequency dependent weights are selected as given by Table 4.9
and 4.10. The simulations were repeated with the new controller parameters. Based on
the respective simulation data the ETFE’s of the tuned closed-loop response, depicted in
green, was calculated. The anticipated tuned closed-loop response, which is not depicted
here, matched this tuned closed-loop response closely. We further see, that the tuned
responses are closer to the desired response than the initial responses. With increasing
backlash the tuning result though deteriorates, as can be seen in Figure 4.29, which depicts
the step responses to a bank angle command of 5 degrees. With increasing backlash the
steady state error increases.
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Again the anticipated margins all satisfied by the constraints of the optimization their
adequate values while the aileron actuator cut phase margin on the true system was
slightly below the required 45 degrees.

Figure 4.28: Comparison of closed-loop frequency responses with varying backlash ele-
ment (0− 0.6 degrees).
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Figure 4.29: Comparison of closed-loop step responses with varying backlash element
(0− 0.6 degrees).

Like for the longitudinal controller, the retuning shall be considered with care if large
nonlinearities like backlash are expected, because the tuned response will deviate from the
anticipated closed-loop response. This effect is visible in Figure 4.30 where the backlash
was varied from 0.7 up to 1.0 and where the anticipated closed-loop response is depicted
in orange. The resulting tuned step responses, depicted in Figure 4.31, are significantly
deteriorated in this case.

The retuning showed furthermore a high sensitivity towards the gain penalties and
frequency dependent weights. In Figure 4.32 the penalty matrix Q was changed to the
values described in Section 4.5.4.3. Additionally, the weights for the specific force and
yaw rate were decreased by a factor of 10 like in Section 4.5.4.5. While the anticipated
closed-loop frequency response is close to the desired, the actual tuned response differs
significantly.
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Figure 4.30: Comparison of closed-loop frequency responses with varying backlash ele-
ment (0.7− 1 degrees).

196



Chapter 4: Application

Figure 4.31: Comparison of closed-loop step responses with varying backlash element
(0.7− 1 degrees).

Figure 4.32: Comparison of closed-loop step responses with varying backlash element
(0− 0.4 degrees) for a different optimization setting.
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4.5.5 Flight Test Results

In the following sections the data of two flights of the G-520T testbed are considered,
which took place near the airport EDMN close to Mindelheim, Germany. All flight tests
presented in the following were performed at an envelope point defined by indicated
airspeed and pressure altitude of

VA = 115± 5KIAS and h = 9100± 200 ft (4.64)

see Figure 4.33.

The considered flight test maneuvers were executed with retracted landing gear and
flaps in upright position. The flight test procedure was the same as for the longitudinal
controller and is described in detail in Section 4.4.5. During the test flights, sensor data
and FCC internal controller data were recorded directly on the FCC with a sample rate
of 100Hz which equals the clock speed of the FCC.

For the retuning procedure for the lateral controller two multi-sine maneuvers have
been performed: A Φ multi-sine command, where the lateral specific force fy,B/g com-
mand was kept to zero and a fy,B/g multi-sine command, where the Φ command was kept
at zero. During the maneuvers the longitudinal controller was also active. To keep the
aircraft at the trim envelope point, the normal specific force command corresponded to
the trim value. In the next section the parametrization of the multi-sines is summarized.

4.5.5.1 General Settings - Reference Excitation Input Signal

The applied multi-sine signals are described in Section 3.4, Equation (3.16). Thereby, the
two differently parametrized multi-sinusoidal excitation signals, which were already intro-
duced in Section 4.5.4.2, Table 4.8, were injected within the flight tests at the reference
input r1 = Φcmd and r2 = fy,B,cmd/g, respectively.

The multi-sine maneuvers were repeated each three times under closed-loop conditions,
with the initial controller parameters. Unfortunately, no multi-sine flight tests with the
tuned controller parameters are yet available.

4.5.5.2 General Settings - Initial Controller Parameters

The initial controller parameters p0 are calculated using classical gain design techniques
based on a linear model of the amended plant Gap,nom as described in Section 4.5.3.1. The
initial controller parameters that were tested in flight are given in Table 4.11.
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Type Parameter Tuned value Initial value Tuned value
p.pΦc 5.52 6.07 -

feedforward p.pfy,c -12.73 -12.73 -
pH p.rΦc 0.64 0.98 -

p.rfy,c 7.31 7.31 -
pI, .pΦ 0.13 0.30 -

integrator pI, .pfy 0 0 -
pI pI, .rΦ - 0 0.61

pI, .rfy 1.88 3.20 -
p.pΦ 5.77 6.35 -
p.pp - 0 0.45
p.pr - -4.52 -4.57

feedback p.pfy 0 0 -
pK p.rΦ - 0.87 1.33

p.rp - 0 -0.44
p.rr 2.19 2.53 -
p.rfy - -0.04 -0.14

Table 4.11: Controller parameter values.

4.5.5.3 General Settings - Optimization

The parametrization of the quadratic cost function in Equation (4.61) is chosen as follows.
The weighting matrix Q is chosen as a diagonal matrix with penalty values chosen as 500
for all controller parameters given in Equation (4.31), (4.32) and (4.33), except the weights
for the integral gains pI, .pfy and pI, .rΦ, which were chosen as 10.000 and the feedforward
and feedback gains p.pΦc , p.pp and p.pΦ, which were set to 1.

For y1 = Φ and y2 = ∆p the same frequency dependent weights are chosen. They
are given in Table 4.12. For y3 = ∆r and y4 = fy/g the weights are selected constant
over all frequencies with a value of wγ,y3,Φc (ωk) = wγ,y3,Φc (ωk) = 0.1. The frequency
dependent weights are chosen to achieve a good matching with the desired dynamics in
the frequency range, where the bounds from the outer-loop are most tight. Frequencies,
where the closed-loop dynamics are already well attenuated are weighted weakly. The
remaining parameters are wA = 1, wφ = 0.01745 as described in Section 3.8 and Am =
6dB, Φm = 45◦.

ωk[ rads ] < 0.5 0.5− 0.7 0.7− 1.3 1.3− 3 > 3
wγ,y1,Φc (ωk) = wγ,y2,Φc (ωk) 0 1000 100 1 0.1

Table 4.12: Frequency dependent relative weights for frequency responses from bank angle
command to output signals.
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4.5.5.4 Evaluation of Multi-sine Maneuvers with Initial Closed-loop

The bank angle command multi-sine and specific force multi-sine tests described in Section
4.5.5.1 were repeated each three times. Figure 4.33 shows the indicated speed, pressure
altitude and normal specific force measurements during the bank angle maneuver. Figure

Figure 4.33: Bank angle command multi-sine measurements.

4.34 shows the respective measurements during the lateral specific force maneuver. It can
be seen in the velocity measurement in Figure 4.33, that the first bank angle test was
disturbed and in the normal specific force measurement in Figure 4.34 it can be seen that
the third test was disturbed. Therefore, only the second and third bank angle tests and
the first and second specific force tests are used for identification of the initial closed-loop
system and retuning.

Figure 4.35 and 4.36 show the measured output signals yc for the first four periods of
the multi-sine, for the selected bank angle maneuver and lateral specific force maneuver.
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Figure 4.34: Lateral specific force command multi-sine measurements.
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Figure 4.35: Measurements of first four periods of the bank angle command multi-sine.
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Figure 4.36: Measurements of first four periods of the lateral specific force command
multi-sine.
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4.5.5.5 Retuning Results

Based on the initial closed-loop estimates obtained from the selected multi-sine experi-
ments described in Section 4.5.5.4 the retuning of the controller parameters was performed.
The optimization was set up as described in Section 4.5.5.3. Unfortunately no multi-sine
data of repeated flight test experiments with the updated tuned controller parameters is
available yet for estimation of the updated closed-loop response. But instead doublets in
the bank angle command with the tuned controller parameters have been already per-
formed. Figure 4.37 shows first the desired closed-loop response, the estimate of the initial
closed-loop and the anticipated tuned closed-loop frequency response. It shows that the
initial untuned closed-loop response, depicted in blue, inherits magnitudes above 0dB at
low frequencies. As revealed by Figure 4.38, which compares doublets in the bank an-
gle with untuned and retuned controller parameters, the initial closed-loop is not steady
state accurate and overshoots the commanded bank angle. The anticipated closed-loop
frequency response is closer to the desired response (see Figure 4.37) and the tracking of
the doublets in bank angle command is improved compared to the untuned response.
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Figure 4.37: Untuned closed-loop ETFE versus anticipated tuned closed-loop frequency
response.
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Figure 4.38: Untuned closed-loop response versus tuned closed-loop response to a doublet
command in bank angle.
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Summary and Perspective

This section summarizes and reviews the contributions of this thesis. Based on the drawn
conclusions an overview of possible future research and perspectives is given.

5.1 Contribution 1: Novel Test-based Gain Retuning
Procedure for Linearizable Control laws

The main contribution of this thesis is a novel experiment based controller retuning
method, presented in Section 3.1. The method is capable of improving existing underper-
forming controllers by retuning the controller parameters based on closed-loop experiment
data.

Based on tests performed on the true system under closed-loop conditions with the ini-
tial controller parameters, the closed-loop and open-loop frequency response is estimated.
Using these estimates, the anticipated closed-loop frequency response and stability mar-
gins for an updated set of controller parameters is calculated. This relationship is utilized
within an optimization problem to adjust the controller parameters to obtain an improved
closed-loop response. By minimizing the deviation between the anticipated tuned closed-
loop response and a desired closed-loop frequency response sufficiently, the closed-loop
performance on the true system is enhanced.

A beneficial characteristic of the developed concept is that the proposed method is non-
parametric. The controller parameters are updated directly from closed-loop input–output
data, without the intermediate step of a parametric plant-model identification. Since, the
performance of model-based controllers is highly dependent on the model accuracy, one
drawback of an intermediate model identification is a possible plant-model mismatch due
to inaccuracy in identified model structure or parameters. This problem is mitigated in the
developed concept by the fact that the closed-loop test data is directly exploited without
resorting to a parametrized plant model. This allows to take into account the true order of
the system in contrast to approaches based on a parametrized plant model which typically
is a low order approximation of the system. Moreover, the demand for extensive, costly
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flight test campaigns (to identify a very accurate model by full estimation of aerodynamic
parameters, as performed in civil aviation) is mitigated. Hence, the method is suitable
for the currently rapidly emerging market of novel small to medium sized Manned and
Unmanned Aerial Vehicles as well as Optionally Piloted Vehicles and General aviation
aircraft, which are very cost-sensitive compared to large transport aircraft.

The proposed retuning procedure was presented as an offline strategy: First an exper-
iment is performed with the initial controller parameters. Based on the obtained data the
controller gains are retuned offline. Then another flight test is performed with the tuned
controller parameters to verify the result. Future work should focus on extending the con-
cept to an online procedure, in order to reduce the costs of the on ground data processing
tasks. Here the focus could be on measures like confidence regions and the theoretical
framework to assure the safety of operation with the retuned controller parameters.

Future work should also investigate if besides the control law gains other controller
parameters, for example notch filter characteristics, could be included into the retuning
procedure. Since the non-parametric frequency responses will contain high order dynamics
like structural modes, the notch filters might be optimized such that the resulting open-
loop frequency response remain below the required attenuation, such that an excitation
of the structural modes is prevented.

Another interesting aspect to be investigated is whether the retuning procedure, which
is formulated to optimize the tracking behavior, given by the desired closed-loop frequency
response, could be adapted to take desired disturbance rejection characteristics into ac-
count.

Future efforts could also direct towards investigating a retuning of more modern con-
troller structures, like incremental dynamic inversion (INDI) controller schemes.

5.2 Contribution 2: Optimization Problem for Test-
based Gain Retuning

In Section 3.8 an optimization problem is proposed for SISO systems, to retune the
controller parameters such that the deviation between the desired and the anticipated
closed-loop frequency response for the new controller parameter set is minimized. The
deviation is quantified by a metric considering a frequency weighted squared error in mag-
nitude and phase of the respective frequency responses. The proposed deviation metric
was already used successfully in the context of low order equivalent system (LOES) iden-
tification by [RT06]. In that context the deviation between measured frequency response
and LOES frequency response is minimized with respect to the plant parameters. In the
context of this thesis a similar structure was used to minimize the deviation between a
desired closed-loop frequency response and an anticipated closed-loop frequency response,
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with respect to the controller parameters. Additionally, a regularization was proposed by
adding a penalization term to keep the tuned gains within reasonable bounds around the
initial gains and stability criteria were enforced by supplementary constraints.

In Section 3.10 the optimization problem formulation was adapted to cover additional
retuning scenarios as for example

• a fixed gain controller at different operating points (e.g. different velocities)

• a fixed gain controller at different operating configurations (e.g load cases)

In Section 4.4.3.5 the optimization problem formulation was adapted for SIMO systems,
based on the application example of a longitudinal baseline controller for fixed- wing
aircraft and in Section 4.5.3.7 for a MIMO controller, based on the application example
of a lateral baseline controller. Simulation results revealed that under some conditions
the result of the retuning might be sensitive towards the choice of the penalization term
and the frequency dependent weights, especially in the MIMO case where an increased
number of controller parameters and cross couplings are expected. In future work further
efforts could be undertaken to find formulations for a deterministic choice of the weights.
For example metrics like MUAD bounds, discussed in Section 3.9, could be incorporated
into the weighting measures, where applicable.

For the MIMO application example the optimization problem was formulated based
on the condition that only the tracking of one reference signal was relevant (from bank
angle command to measured bank angle). But in general it is expected that for MIMO
controllers the tracking of all reference signals shall be improved at the same time. This
topic is another perspective for future work.

5.3 Contribution 3: Calculation of the Non-parametric,
Anticipated Closed-loop Frequency Response for
an Updated Controller Parameter Set

In Section 3.6 a method to calculate the non-parametric, anticipated tuned closed-loop
frequency response for an updated controller parameter set, based on closed-loop ex-
periments with an initial controller was proposed. First, based on experimental data
a non-parametric closed-loop frequency response estimate of the true plant with initial
controller is calculated. Based on this estimate, the anticipated closed-loop frequency
response for an updated set of controller parameters can be calculated, assuming that the
controller, that was applied during the experiment is linear and exactly known.

As the simulation results of the applications in Section 4.4 and 4.5 have shown, the
estimates and retuning results in turbulence are deteriorated compared to flight tests
performed in calm air conditions. In Section 3.8 it was shown that the estimates can be
improved under noisy conditions by increasing the number of repetitions of the maneuver.
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However, more repetitions mean a higher maneuver duration and hence increase the costs.
Future work could concentrate on developing other measures to improve the estimates in
the presence of disturbances and providing confidence regions.

Further simulation results in Section 4.4.4.6 and 4.5.4.6 revealed the restriction of the
retuning concept when nonlinearities, for example large backlash in the actuation, are
expected. The anticipated tuned closed-loop estimate might in these cases deviate from
the true tuned closed-loop frequency response. With regard to the estimation of frequency
response functions, concepts dealing with the presence of nonlinear distortions are covered
in the literature [SPRD01]. Future work could focus on how to deal with nonlinear
distortions in the context of the retuning procedure and estimation of the anticipated
tuned closed-loop frequency response.

5.4 Contribution 4: Analytic Expression for the Bias
of the Anticipated Closed-loop Estimate

For a single-input-single-output closed-loop system with a linear controller with error
feedback and feed-forward an analytical expression for the bias of the anticipated closed-
loop frequency response has been derived in Section 3.6.2. It was shown that the bias
is small for small changes in the feedback controller, large initial feed-forward or large
signal-to-noise ratios and verified by simulation results. Future work could calculate
similar expressions for the bias for a SIMO or MIMO case as considered in the application
examples.

Furthermore, it was shown in Section 3.6.3 that the variance of the anticipated, tuned
closed-loop frequency response estimate is theoretically infinite, similar to indirect non-
parametric plant estimates [Hea01b]. This result was not intuitive when inspecting the
simulation results, where the variance of the anticipated closed-loop estimates seemed
small for high SNRs. It was concluded for the test-based retuning procedure, that the
estimates of the anticipated updated closed-loop shall be considered with caution and be
checked for outliers.

Based on the similarities with the indirect plant estimate, similar strategies could in
future work be applied to the anticipated tuned closed-loop estimates to overcome this
problem. For example exclusion zones [WG04], [WG02], could be introduced, nonlinear
averaging techniques could be applied [GKP96b] or alternative measures for the variance
[Hea02], for example the first moment of the distance of the estimate from the true value
measured by the magnitude (MAD - mean absolute deviation), could be used.
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Chapter 5: Summary and Perspective

5.5 Contribution 5: Practical Demonstration on dif-
ferent Aircraft including Flight Tests

In Section 4.4 the controller parameter retuning was demonstrated for a longitudinal
baseline controller on different CS-23 aircraft. The longitudinal baseline controller is part
of a modular flight control system and was flight tested on the platforms presented in
Section 4.1. The controller entails all components that are necessary for real applications,
e.g. roll off filters to attenuate noise, notch filters, control allocation, trim compensation
etc.. The concept was analyzed for this application via Monte Carlo simulations on a
high fidelity 6 Degrees of Freedom simulation environment including real world effects
like noise, structural and aeroelastic modes, backlash and light turbulence. Finally, in
Section 4.4.5 the concept was successfully demonstrated with real flight tests on a real
flexible large fixed-wing aircraft.

In Section 4.5 the controller parameter retuning was demonstrated for a lateral base-
line controller with MIMO structure. Simulations revealed promising results. However,
with regard to coupling effects, disturbances and nonlinearities, MIMO structures could
be investigated more thoroughly in future work. The retuning procedure was partly
demonstrated by real flight tests. Multi-sine flight test results with the tuned parameters
for verification are unfortunately missing.

However, simulation results and flight tests have demonstrated that the proposed
concept is an interesting and promising, novel method in retuning controller parameters
of an existing underperforming controller.
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Appendix A

Dirac Impulse

Definition A.0.1. The dirac impulse is a complicated mathematical construct. However,
it can be used with the usual rules of calculus with the following definition [TZ95, p. 22]:

δ(t) =

0 for t 6= 0
∞ for t = 0

(A.1)

Property A.0.1. The sifting property of the dirac impulse is [TZ95, p. 22]

∫ t2

t1
x(t)δ(t− t0)dt =


x(t0) t1 < t0 < t2

0 otherwise
undefined for t0 = t1 or t2

(A.2)

which is of immense importance. For x(t) = 1 it follows that
∫ t2

t1
δ(t)dt = 1 (A.3)

with t1 < 0 < t2 and ∫ t2

t1
δ(t− t0)dt = 1 (A.4)

for t1 < t0 < t2.

Property A.0.2. The scaling property of the Dirac impulse is given by

δ(af) = δ(f)
|a|

(A.5)

with a ∈ R, see [Bri88, p. 33].
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Appendix B

Relation between Dirac Impulse and
Integral of Complex Exponential
Function

Lemma B.0.1. The infinite integral of the complex exponential function e±j2πft equals
the dirac impulse:

∞∫
−∞

e±j2πftdt = δ(f) (B.1)

Proof. The integral of e±j2πft is

a/2∫
−a/2

e±j2πftdt = 1
±j2πf e

±j2πft
∣∣∣∣a/2
−a/2

= 1
±j2πf [e±jπfa − e∓jπfa] (B.2)

The complex exponential is given in terms of cosine and sine by

e±jπfa = cos(πfa)± j sin(πfa) (B.3)

and
e∓jπfa = cos(πfa)∓ j sin(πfa) (B.4)

Inserting (B.3) and (B.4) into (B.2) results in

a/2∫
−a/2

e±j2πftdt = 1
±j2πf [cos(πfa)± j sin(πfa)− (cos(πfa)∓ j sin(πfa))]

= 1
±j2πf (±2j sin(πfa))

= sin(πfa)
πf

(B.5)
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In literature it is commonly known that

lim
ω→∞

sin(ωt)
πt

= lim
f→∞

sin(2πft)
πt

= δ(t) (B.6)

see [Pou18, p. 1-9] for example. The validity of this equality requires advanced math and
constitutes a complicated problem. Therefore, the proof is omitted here, and the reader
is referred to the corresponding literature. But using (B.6), (B.5) becomes

lim
a→∞

a/2∫
−a/2

e±j2πftdt = lim
a→∞

sin(πaf)
πf

= δ(f) (B.7)

Hence, the result.

IV



Appendix C

Relation between Discrete Time
Fourier Transform and Fourier
Transform

Lemma C.0.1. The DTFT (2.39) of a sampled signal, i.e. the discrete sequence x[n] =
x(nTs) equals the Fourier transform of the respective continuous signal x(t), scaled by the
sampling frequency fs = 1/Ts and periodically repeated with a distance of kfs (2.42). This
relation is given by:

XDTFT (f) =
∞∑

n=−∞
x[n]e−j2πf(nTs) = 1

Ts

∞∑
k=−∞

XFT (f − kfs) (C.1)

Proof. First of all q = f − kfs is substituted into the right side of (C.1).

1
Ts

∞∑
k=−∞

XFT (f − kfs) = 1
Ts

∞∑
k=−∞

XFT (q(k)) (C.2)

XFT (q) is the Fourier transform of the continuous signal x(t) and is calculated according
to (2.26). Equation (C.2) becomes

1
Ts

∞∑
k=−∞

XFT (q(k)) = 1
Ts

∞∑
k=−∞

∫ ∞
−∞

x(t)e−j2πq(k)tdt (C.3)

The position of the integral and sum can be exchanged and q = f − kfs is substituted
back in
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1
Ts

∞∑
k=−∞

∫ ∞
−∞

x(t)e−j2πq(k)tdt = 1
Ts

∫ ∞
−∞

∞∑
k=−∞

x(t)e−j2πq(k)tdt

= 1
Ts

∫ ∞
−∞

∞∑
k=−∞

x(t)e−j2π(f−kfs)tdt

= 1
Ts

∫ ∞
−∞

(
∞∑

k=−∞
ej2πkfst)x(t)e−j2πftdt

(C.4)

For the infinite sum of the complex exponential function in (C.4), according to Lemma
D.0.1, the following relation holds

1
Ts

∞∑
k=−∞

ej2πkfst =
∞∑

n=−∞
δ(t− nTs) (C.5)

Hence, (C.4) becomes

∫ ∞
−∞

(
∞∑

n=−∞
δ(t− nTs))x(t)e−j2πftdt (C.6)

Multiplication of the dirac comb IIITs = ∑∞
n=−∞ δ(t − nTs) with the continuous time

signal x(t) will result in non-zero values only at time instances t = nTs. Consequently,
the product ∑∞n=−∞ δ(t− nTs)x(t) in (C.6) can be formulated as

∞∑
n=−∞

δ(t− nTs)x(t) =
∞∑

n=−∞
δ(t− nTs)x(nTs) (C.7)

resulting in

∫ ∞
−∞

 ∞∑
n=−∞

δ(t− nTs)x(nTs)
 e−j2πftdt =

∞∑
n=−∞

(
x(nTs)

∫ ∞
−∞

δ(t− nTs)e−j2πftdt
)

=
∞∑

n=−∞
x(nTs)F{δ(t− nTs)}

(C.8)

where the integral
∫∞
−∞ δ(t − nTs)e−j2πftdt constitutes the Fourier transform of δ(t −

nTs), according to its definition given in (2.26). According to Lemma E.0.1, the Fourier
transform of δ(t− nTs) is

F{δ(t− nTs)} = e−j2πfnTs (C.9)

Hence, (C.8) becomes
∞∑

n=−∞
x(nTs)e−j2πfnTs (C.10)

Hence, the result.
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Appendix D

Relation between Dirac Comb and
sum of Complex Exponential
Functions

Lemma D.0.1. Let IIITs = ∑∞
n=−∞ δ(t − nTs) be a dirac comb or impulse train. Then

the relation of the dirac comb and the complex exponential function is given by

∞∑
n=−∞

δ(t− nTs) =
∞∑

k=−∞

1
Ts
ej2πkfst (D.1)

Proof. The dirac comb IIITs is periodic and therefore it can be expressed as a Fourier
series according to (2.30), resulting in

IIITs =
∞∑

n=−∞
δ(t− nTs) =

∞∑
k=−∞

Cke
jωskt (D.2)

with ωs = 2π
Ts

and with the constant coefficient Ck calculated according to (2.31) as

Ck = 1
Ts

∫ Ts/2

−Ts/2
IIITs(t)e−jωsktdt = 1

Ts

∫ Ts/2

−Ts/2
(
∞∑

n=−∞
δ(t− nTs))e−jωsktdt (D.3)

Since δ(t− nTs) is only non-zero for t = nTs, and the integral in (D.3) is from −Ts/2 to
Ts/2, only δ(t − 0Ts) for n = 0 from the sum ∑∞

n=−∞ δ(t − nTs) will contribute to the
integral. Hence, we can write (D.3) as

Ck = 1
Ts

∫ Ts/2

−Ts/2
δ(t)e−jωsktdt (D.4)
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The sifting property of the dirac impulse, Property A.0.1, is given by

∫ t2

t1
x(t)δ(t− t0)dt =


x(t0) t1 < t0 < t2

0 otherwise
undefined for t0 = t1 or t2

(D.5)

It allows to use the dirac function with its non-zero value shifted to t0 to "pick" or "sift"
out a functions value at t0. Using the sifting property of the dirac function with t0 = 0
and x(t) = e−jωskt, Equation (D.4) finally results in

Ck = 1
Ts
e−jωsk0 = 1

Ts
(D.6)

Substituting Ck (D.6), into (D.2) and using ωs = 2πfs finally gives the relation

∞∑
n=−∞

δ(t− nTs) =
∞∑

k=−∞

1
Ts
ej2πfskt (D.7)

Hence, the result.
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Appendix E

Fourier Transform of Shifted Dirac
Impulse

Lemma E.0.1. The Fourier transform of the shifted dirac impulse δ(t− nTs) is

F{δ(t− nTs)} = e−j2πfnTs (E.1)

Proof. The Fourier transform is calculated according to (2.26) by

F{δ(t− nTs)} =
∫ ∞
−∞

δ(t− nTs)e−j2πftdt (E.2)

Using the sifting property of the dirac function, Property A.0.1, given by

∫ t2

t1
x(t)δ(t− t0)dt =


x(t0) t1 < t0 < t2

0 otherwise
undefined for t0 = t1 or t2

(E.3)

with t0 = nTs and x(t) = e−j2πft in (E.2) results in∫ ∞
−∞

δ(t− nTs)e−j2πftdt = e−j2πfnTs (E.4)

Hence, the result.
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Appendix F

Relation between DTFT and FT for
the Product of Impulse Train with
Continuous Time Signal

Lemma F.0.1. Let IIITs(t) = ∑∞
n=−∞ δ(t − nTs) be a dirac comb or impulse train.

Then the Fourier transform of x(t)IIITs(t), equals the DTFT of the sequence x(nTs),
i.e. [OBS01]

F{x(t)IIITs(t)} = XDTFT (f) (F.1)

Note that the sampling of a continuous time signal is often modelled as a multiplication
with a dirac comb x(t) IIITs(t). A dirac comb is an impulse train IIITs(t) = ∑∞

n=−∞ δ(t−
nTs), where dirac impulses are periodically repeated with period Ts. It is important to
emphasize that this is strictly a mathematical construct to investigate the properties of the
DTFT/DFT, and it is not how the sampling operation would be implemented [OBS01].

Proof. According to Lemma C.0.1 the DTFT of a signal x(t) equals the FT of this signal,
scaled by 1/Ts and periodically repeated with a distance of kfs, i.e.

XDTFT (f) = 1
Ts

∞∑
k=−∞

XFT (f − kfs) (F.2)

In the following we will show that

F{x(t)IIITs(t)} = 1
Ts

∞∑
k=−∞

XFT (f − kfs) (F.3)

and consequently equals the DTFT. Since the Fourier transform is a special case of
the Laplace transform, the FT inherits the computational rules for transforms from the
Laplace transform. Consequently, the FT of the product of two signals equals the convo-
lution of their respective FTs.

F{x(t)IIITs(t)} = F{x(t)} ∗ F{IIITs(t)} = XFT (f) ∗ F{IIITs(t)} (F.4)
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According to Lemma G.0.1, the Fourier transform of IIITs(t) is given by

F{IIITs(t)} = 1
Ts

∞∑
k=−∞

δ(f − kfs) = 1
Ts

IIIfs(f) (F.5)

The convolution in (F.4), hence, results in

XFT (f) ∗ F{IIITs(t)} = 1
Ts
XFT (f) ∗ IIIfs(f)

= 1
Ts

∫ ∞
−∞

XFT (f̃)IIIfs(f − f̃)df̃

= 1
Ts

∫ ∞
−∞

XFT (f̃)
∞∑

k=−∞
δ(f − f̃ − kfs)df̃

= 1
Ts

∞∑
k=−∞

∫ ∞
−∞

XFT (f̃)δ(f − f̃ − kfs)df̃

= 1
Ts

∞∑
k=−∞

∫ ∞
−∞

XFT (f̃)δ(−(f̃ − f + kfs))df̃

(F.6)

Application of the scaling property of the dirac impulse, Property A.0.1, i.e.

δ(af) = δ(f)
|a|

(F.7)

to Equation (F.6) with a = −1 results in

1
Ts

∞∑
k=−∞

∫ ∞
−∞

XFT (f̃)δ(−(f̃ − f + kfs))df̃ = 1
Ts

∞∑
k=−∞

∫ ∞
−∞

XFT (f̃)δ(f̃ − f + kfs)df̃ (F.8)

Application of the sifting property of the dirac impulse, Property A.0.1, i.e.

∫ t2

t1
x(t)δ(t− t0)dt =


x(t0) t1 < t0 < t2

0 otherwise
undefined for t0 = t1 or t2

(F.9)

to Equation (F.8) with t = f̃ and t0 = f − kfs finally results in the relation

F{x(t)IIITs(t)} = 1
Ts

∞∑
k=−∞

∫ ∞
−∞

XFT (f̃)δ(f̃ − f + kfs)df̃

= 1
Ts

∞∑
k=−∞

XFT (f − kfs)
(F.10)

Hence, the result.
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Appendix G

Fourier Transform of Dirac Impulse
Train (Dirac Comb)

Lemma G.0.1. Let
IIITs(t) =

∞∑
n=−∞

δ(t− nTs) (G.1)

be a dirac comb or dirac impulse train with impulse spacing Ts. The Fourier transform of
IIITs(t) is again an impulse train, but with inverse impulse spacing, i.e. fs = 1/Ts, and a
scaling factor of 1/Ts, i.e.

F{IIITs(t)} = 1
Ts

∞∑
k=−∞

δ(f − kfs) = 1
Ts

IIIfs(f) (G.2)

Proof. The impulse train (G.1) is periodic. Therefore, it can be expressed as a Fourier
series according to (2.30) as

IIITs(t) =
∞∑

k=−∞
Cke

j2πfskt (G.3)

with the Fourier coefficients calculated according to (2.31) as

Ck = 1
Ts

∫ Ts/2

−Ts/2
IIITs(t)e−j2πktdt = 1

Ts

∫ Ts/2

−Ts/2

∞∑
n=−∞

δ(t− nTs)e−j2πktdt (G.4)

On the integration interval [−Ts/2, Ts/2] the impulse train ∑∞n=−∞ δ(t−nTs) will be only
non-zero for n=0. Therefore, (G.4) becomes (G.5). With the sifting property of the dirac
impulse, Property A.0.1, Ck is finally calculated to have the constant value

Ck = 1
Ts

∫ Ts/2

−Ts/2
δ(t)e−j2πktdt = 1

Ts
e−j2πk0 = 1

Ts
(G.5)

The dirac comb is hence given by
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IIITs(t) = 1
Ts

∞∑
k=−∞

ej2πfskt (G.6)

where the calculated value of Ck was inserted into (G.3). According to (2.26) the Fourier
transform of the dirac comb (G.6) is given by

F{ 1
Ts

∞∑
k=−∞

ej2πfskt} = 1
Ts

∫ ∞
−∞

∞∑
k=−∞

ej2πfskte−j2πftdt

= 1
Ts

∞∑
k=−∞

∫ ∞
−∞

ej2πfskte−j2πftdt

= 1
Ts

∞∑
k=−∞

∫ ∞
−∞

e−j2π(f−fsk)tdt

(G.7)

By Lemma B.0.1 the integral of e−j2πf̄t is given by
∫ ∞
−∞

e−j2πf̄tdt = δ(f̄) (G.8)

With f̄ = f − kfs the relation (G.8) is substituted into (G.7) results in

F{IIITs(t)} = 1
Ts

∞∑
k=−∞

∫ ∞
−∞

e−j2π(f−kfs)tdt

= 1
Ts

∞∑
k=−∞

δ(f − kfs)

= 1
Ts

IIIfs(f)

(G.9)

which is an impulse train with spacing fs, scaled with factor 1/Ts. Hence, the result.
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Appendix H

Relation between DTFT and DFT

Lemma H.0.1. Let x(t) be a periodic signal with period Tw = NTs. Then the following
relation holds:

XDTFT (fk) = 1√
NTs

δ(0)XDFT [k] (H.1)

with
XDFT [k] = 1√

N

N−1∑
n=0

x[n]e−
j2πkn
N (H.2)

Hence, for a periodic signal x(t) with period Tw = NTs, only a finite time sequence
of Tw − Ts, or N samples are necessary to exactly calculate the DTFT at the discrete
frequencies fk = k 1

Tw
= kfH with k = 0, . . . N − 1.

Proof. In Section 2.2.2 the DTFT was introduced by Equation (2.39) as

XDTFT (f) =
∞∑

n=−∞
x[n]e−j2πf(nTs) (H.3)

with the discrete sequence x[n] = x(nTs) which is composed of the samples of x(t) at
sampling frequency fs = 1

Ts
. The sum in (H.3) can be expressed as

XDTFT (f) =
−1∑

n=−∞
x[n]e−j2πf(nTs) +

N−1∑
n=0

x[n]e−j2πf(nTs)

+
2N−1∑
n=N

x[n]e−j2πf(nTs) +
3N−1∑
n=2N

x[n]e−j2πf(nTs)

+
∞∑

n=3N
x[n]e−j2πf(nTs)

=
−1∑

n=−∞
x[n]e−j2πf(nTs) +

N−1∑
n=0

x[n]e−j2πf(nTs)

+
N−1∑
n=0

x[n+N ]e−j2πf((n+N)Ts) +
N−1∑
n=0

x[n+ 2N ]e−j2πf((n+2N)Ts)

+
∞∑

n=3N
x[n]e−j2πf(nTs)

(H.4)
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If the signal is periodic with period Tw = NTs then

x(t) = x(t+mTw) = x(t+mNTs)
x(nTs) = x(nTs +mTw) = x((n+mN)Ts) (H.5)

x[n] = x[n+mN ]

with m ∈ Z holds, and the sum in (H.4) can be expressed as

XDTFT (f) =
−1∑

n=−∞
x[n]e−j2πf(nTs)

+
N−1∑
n=0

x[n](e−j2πf(nTs) + e−j2πf((n+N)Ts) + e−j2πf((n+2N)Ts))

+
∞∑

n=3N
x[n]e−j2πf(nTs)

(H.6)

This expression can be further simplified to

XDTFT (f) =
−1∑

n=−∞
x[n]e−j2πf(nTs)

+
N−1∑
n=0

x[n]e−j2πf(nTs)(e−j2πf(0·NTs) + e−j2πf(1·NTs) + e−j2πf(2·NTs))

+
∞∑

n=3N
x[n]e−j2πf(nTs)

=
−1∑

n=−∞
x[n]e−j2πf(nTs)

+ (
N−1∑
n=0

x[n]e−j2πf(nTs))(
2∑
l=0

e−j2πf(l·NTs))

+
∞∑

n=3N
x[n]e−j2πf(nTs)

(H.7)

The first and last summand in (H.7) can be expressed the same way as the term in the
middle, finally leading to

XDTFT (f) =
N−1∑
n=0

x[n]e−j2πf(nTs)(
∞∑

l=−∞
e−j2πf(l·NTs))

=
N−1∑
n=0

x[n]e−j2πf(nTs)(
∞∑

l=−∞
e−j2πf(l·Tw))

(H.8)

where Tw = NTs was inserted. By Lemma I.0.1, the second sum in (H.8) equals a dirac
impulse train with period fH = 1

Tw
and scaled with factor 1

Tw
, i.e.
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Appendix H: Relation between DTFT and DFT

∞∑
l=−∞

e−j2πf(l·Tw) = 1
Tw

∞∑
m=−∞

δ(f −mfH) (H.9)

Relation (H.9) is inserted into (H.8) resulting in

XDTFT (f) =
N−1∑
n=0

x[n]e−j2πf(nTs)

 1
Tw

∞∑
m=−∞

δ(f −mfH)
 (H.10)

Since the dirac train in (H.10) is only non-zero for f = mfH = m 1
NTs

,∑N−1
n=0 x[n]e−j2πf(nTs)

will be multiplied with zero except for these specific values of f . Hence, we can write,
using fH = 1

Tw
= 1

NTs
:

XDTFT (f) = 1
Tw

N−1∑
n=0

x[n]
∞∑

m=−∞
e−j2π(mfH)(nTs)δ(f −mfH)


= 1
Tw

N−1∑
n=0

x[n]
∞∑

m=−∞
e−j2π(m 1

NTs
)(nTs)δ(f −mfH)


= 1
Tw

N−1∑
n=0

x[n]
∞∑

m=−∞
e−j2π

mn
N δ(f −mfH)

(H.11)

If the DTFT is only considered at discrete frequencies

fk = kfH (H.12)

with k = 0, . . . , N − 1, meaning that fk is an integer multiple of the harmonic frequency
fH = 1

Tw
, where Tw was the period of the periodic signal x(t), the following relation is

obtained
XDTFT (f = kfH) = 1

Tw

N−1∑
n=0

x[n]
∞∑

m=−∞
e−j2π

mn
N δ(kfH −mfH) (H.13)

In (H.13), δ(kfH −mfH) is 0 except for m = k. Hence, we can write

XDTFT (kfH) = 1
Tw

N−1∑
n=0

x[n]e−j2π knN δ(0)

= 1
NTs

N−1∑
n=0

x[n]e−j2π knN δ(0)
(H.14)

Equation (H.14) gives the relation between the DTFT and DFT as

XDTFT (kfH) = 1√
NTs

δ(0)XDFT [k] (H.15)
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as can be directly seen by recalling that the DFT was defined in (2.9) by

XDFT [k] = 1√
N

N−1∑
n=0

x(nTs)e−
j2πkn
N , k = 0, ...N − 1 (H.16)

Hence, the result.
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Appendix I

Relation between the Sum of
Complex Exponential Functions and
a Dirac Comb

Lemma I.0.1. Let Tw = NTS and fH = 1
Tw

, then the following relation holds

∞∑
l=−∞

e−j2πf(l·Tw) = 1
Tw

∞∑
m=−∞

δ(f −mfH) (I.1)

Proof. By Lemma D.0.1 the relation between the dirac comb and complex exponential
function is given by

IIITs(t) =
∞∑

m=−∞
δ(t−mTs) = 1

Ts

∞∑
l=−∞

ej2π
1
Ts
lt (I.2)

with 1
Ts

= fs. Substitution of variables according to Ts = fH and t = f results in

IIIfH (f) =
∞∑

m=−∞
δ(f −mfH) = 1

fH

∞∑
l=−∞

e
j2π 1

fH
lf (I.3)

Multiplication with fH and substitution of fH = 1
Tw

finally leads to

1
Tw

∞∑
m=−∞

δ(f −mfH) =
∞∑

l=−∞
ej2πTwlf (I.4)

Hence, the result.

Relation I.1 can also be shown similarly as in the proof of Lemma G.0.1, and is given
in the following. The dirac comb IIIfH (f) is a periodic repetition of dirac impulses with
period fH and can be expressed as a Fourier Series (2.30) by

IIIfH (f) =
∞∑

m=−∞
δ(f −mfH) =

∞∑
p=−∞

Cpe
j2π 1

fH
pf (I.5)
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The coefficient Cp is calculated according to (2.31) by

Cp = 1
fH

∫ fH/2

−fH/2
(
∞∑

m=−∞
δ(f −mfH))e−j2π

1
fH

pf
df (I.6)

Since the limits of the integral are ±fH
2 the impulse train ∑∞m=−∞ δ(f −mfH) will only

contribute to the integral for m = 0. Hence, we can write

Cp = 1
fH

∫ fH/2

−fH/2
δ(f)e−j2π

1
fH

pf
df (I.7)

Application of the sifting property, Property A.0.1, i.e.

∫ t2

t1
x(t)δ(t− t0)dt =


x(t0) t1 < t0 < t2

0 otherwise
undefined for t0 = t1 or t2

(I.8)

to (I.7) with t = f and t0 = 0 leads to

Cp = 1
fH
e
−j2π 1

fH
p·0 = 1

fH
(I.9)

This result is inserted for Cp into (I.5), resulting in

∞∑
m=−∞

δ(f −mfH) = 1
fH

∞∑
p=−∞

e
j2π 1

fH
pf (I.10)

Multiplication of both sides with fH leads to

fH
∞∑

m=−∞
δ(f −mfH) =

∞∑
p=−∞

e
j2π 1

fH
pf (I.11)

With the following relation

∞∑
p=−∞

e
j2π 1

fH
pf =

∞∑
l=−∞

e
−j2π 1

fH
lf (I.12)

and with fH = 1
Tw

= 1
NTs

finally the relation

∞∑
l=−∞

e−j2πf(lTw) = 1
Tw

∞∑
m=−∞

δ(f −mfH) (I.13)

is derived. Hence, the result.
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Appendix J

Relation between FT of a
Continuous Time Mathematical
Model of a Truncated Sampled
Sequence of x(t) and the DFT

Lemma J.0.1. Let x(t) be a continuous time signal and

x̃(t) = IIITs(t)x(t)w(t) (J.1)

a mathematical model of the truncated sampled sequence of x(t), where w(t) is a rectangu-
lar window function as defined in (L.1), and IIITs(t) = ∑∞

n=−∞ δ(t−nTs) is a dirac comb.
Then the Fourier transform of x̃(t), will equal the DFT (2.9) of x(nTs), at the discrete
frequencies f = kfH , k ∈ Z and scaled with factor

√
N , i.e.

X̃FT (kfH) = F{IIITs(t)x(t)w(t)} =
√
NXDFT [k] (J.2)

with
XDFT [k] = 1√

N

N−1∑
n=0

x(nTs)e−
j2πkn
N (J.3)

Proof. The Fourier transform of (J.1) is according to (2.26)

X̃FT (f) = F{IIITs(t)x(t)w(t)}

=
∞∫
−∞

IIITs(t)x(t)w(t)e−j2πftdt
(J.4)

Since the rectangular window function w(t) is

w(t) =

1 for 0 ≤ t < Tw

0 otherwise
(J.5)
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(J.4) equals

X̃FT (f) =
t=Tw=NTs∫
t=0

IIITs(t)x(t)e−j2πftdt (J.6)

for the variable t the relation t = mTs, m ∈ R is substituted, with dt = Tsdm and m = t
Ts

resulting in

X̃FT (f) = Ts

m=N∫
m=0

IIITs(mTs)x(mTs)e−j2πfmTsdm

= Ts

N∫
m=0

∞∑
n=−∞

δ(mTs − nTs)x(mTs)e−j2πfmTsdm

(J.7)

Since δ(mTs− nTs) is zero for m 6= n, x(mTs) and e−j2πfmTs will be multiplied with zero
and only x(nTs) and e−j2πfnTs will contribute to the integral. Hence, (J.7) can be written
as

X̃FT (f) = Ts

N∫
m=0

∞∑
n=−∞

δ(mTs − nTs)x(nTs)e−j2πfnTsdm

= Ts
∞∑

n=−∞

N∫
m=0

δ(mTs − nTs)x(nTs)e−j2πfnTsdm

(J.8)

In some cases it is important to specify whether the integration interval
∫ b
a contains the

boundaries, i.e. [a, b], (a, b), [a, b) or (a, b], as this determines the integral when integrating
over a dirac function. In the case at hand the dirac function is integrated over the interval
[0, Tw) or rather [0, N).

X̃FT (f) = Ts
∞∑

n=−∞

∫
[0,N)

δ(mTs − nTs)x(nTs)e−j2πfnTsdm (J.9)
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Appendix J: Relation between FT of a Continuous Time Mathematical Model of a
Truncated Sampled Sequence of x(t) and the DFT

Since δ(mTs − nTs) is zero for m 6= n, all values of n outside the integration range [0, N)
will not contribute to the integral. Thus, the infinite sum in (J.8) can be replaced by the
finite sum from n = 0 to n = N − 1.

X̃FT (f) = Ts
N−1∑
n=0

∫
[0,N)

δ(mTs − nTs)x(nTs)e−j2πfnTsdm

= Ts
N−1∑
n=0

∫
[0,N)

δ(Ts(m− n))x(nTs)e−j2πfnTsdm

=
N−1∑
n=0

∫
[0,N)

δ(m− n)x(nTs)e−j2πfnTsdm

=
N−1∑
n=0

x(nTs)e−j2πfnTs
∫

[0,N)

δ(m− n)dm

=
N−1∑
n=0

x(nTs)e−j2πfnTs

(J.10)

In (J.10) the scaling property of the dirac impulse, Property A.0.2, i.e.

δ(af) = δ(f)
|a|

(J.11)

was applied with a = Ts and the property (A.4) with t = m and t0 = n. Finally, at the
discrete frequencies f = kfH = k 1

Tw
= k

NTs
the relation

X̃FT (kfH) =
N−1∑
n=0

x(nTs)e−
j2πkn
N

=
√
NXDTF [k]

(J.12)

is obtained with
XDFT [k] = 1√

N

N−1∑
n=0

x(nTs)e−
j2πkn
N (J.13)

Hence, the result.
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Appendix K

Relation between DTFT and FT for
the Product of a Continuous Time
Signal with a Dirac Comb and a
Rectangular Window Function

Lemma K.0.1. Let x(t) be a continuous signal, w(t) a rectangular window function
as defined in (L.1), and IIITs(t) = ∑∞

n=−∞ δ(t − nTs) a dirac comb. Then the Fourier
transform of the product of x(t) with IIITs(t) and w(t), is given by

X̃FT (f) = F{x̃(t) = IIITs(t)x(t)w(t)}

=
∫ ∞
−∞

XDTFT (f̄)Twsinc(π(f − f̄)Tw)e−jπ(f−f̄)Twdf̄
(K.1)

Proof. Since the FT of a product of two signals corresponds to the convolution of their
respective FT, F{IIITs(t)x(t)w(t)} can be rewritten as

F{IIITs(t)x(t)w(t)} = F{IIITs(t)x(t)} ∗ F{w(t)} = F{IIITs(t)x(t)} ∗WFT (f) (K.2)

By Lemma F.0.1 the FT of IIITs(t)x(t) corresponds to the DTFT:

F{IIITs(t)x(t)} = XDTFT (f) (K.3)

Consequently (K.2) corresponds to

F{IIITs(t)x(t)} ∗WFT (f) = XDTFT (f) ∗WFT (f) (K.4)
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By Lemma L.1.1, the FT of w(t) is given by

WFT (f) = Twsinc(πfTw)e−jπfTw (K.5)

The convolution in (K.4) then finally results in

XDTFT (f) ∗WFT (f) =
∫ ∞
−∞

XDTFT (f̄)WFT (f − f̄)df̄

=
∫ ∞
−∞

XDTFT (f̄)Twsinc(π(f − f̄)Tw)e−jπ(f−f̄)Twdf̄
(K.6)

Hence, the result.
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Appendix L

Fourier Transform and Rectangular
Window Function

L.1 Fourier Transform of Rectangular Window Func-
tion

Lemma L.1.1. The Fourier transform of the rectangular window function, given by

w(t) =

1 for 0 ≤ t < Tw

0 otherwise
(L.1)

is
F{w(t)} = WFT (f) = Twsinc(πfTw)e−jπfTw (L.2)

Proof. According to Equation (2.26) the FT of w(t) is calculated by

WFT (f) =
∫ ∞
−∞

w(t)e−j2πftdt (L.3)

Since w(t) is one for 0 ≤ t < Tw and zero otherwise, (L.3) can be written as

WFT (f) =
∫ Tw

0
e−j2πftdt

= − 1
j2πf [e−j2πfTw − e−j2πf0]

= − 1
j2πf [e−j2πfTw − 1]

(L.4)

According to Equation (2.17)

e−j2πfTw = cos(2πfTw)− j sin(2πfTw) (L.5)
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L.2 Fourier Transform of Centered Rectangular Window Function

holds. Inserting (L.5) into (L.4) leads to

WFT (f) = 1
2πf sin(2πfTw)− 1

j2πf [cos(2πfTw)− 1] (L.6)

For the first term the trigonometric identity

sin(2Θ) = 2 sin(Θ) cos(Θ) (L.7)

is used. For the second term the trigonometric identity

cos(2Θ) = 1− 2 sin2(Θ) (L.8)

is applied, finally resulting in

WFT (f) = 1
2πf 2 sin(πfTw) cos(πfTw)− 1

j2πf [−2sin2(πfTw)]

= 1
πf

sin(πfTw)[cos(πfTw) + 1
j

sin(πfTw)]

= 1
πf

sin(πfTw)[cos(πfTw)− j sin(πfTw)]

= 1
πf

sin(πfTw)e−jπfTw

= Tw
1

πfTw
sin(πfTw)e−jπfTw

= Twsinc(πfTw)e−jπfTw

(L.9)

where sinc(πfTw) is the sinc function defined by

sinc(at) = sin(at)
at

(L.10)

according to [Pou18, p. 7-15]. Hence, the result.

L.2 Fourier Transform of Centered Rectangular Win-
dow Function

Lemma L.2.1. The Fourier transform of the rectangular window function, given by

w(t) =

1 for − Tw
2 ≤ t < Tw

2

0 otherwise
(L.11)

is
F{w(t)} = WFT (f) = Twsinc(πTwf) (L.12)
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Appendix L: Fourier Transform and Rectangular Window Function

Proof. According to Equation (2.27) the FT of w(t) is calculated by

WFT (f) =
∫ ∞
−∞

w(t)e−j2πftdt (L.13)

Since w(t) is one for −Tw
2 ≤ t < Tw

2 and zero otherwise, (L.13) can be written as

WFT (f) =
∫ Tw

2

−Tw2
e−j2πftdt

= − 1
j2πf [e−j2πf

Tw
2 − ej2πf

Tw
2 ]

= 1
πf

[sin(2πf Tw2 )]

= Tw
sin(πfTw)
πfTw

= Twsinc(πTwf)

(L.14)

where sinc(πfTw) is the sinc function defined by

sinc(at) = sin(at)
at

(L.15)

according to [Pou18, p. 7-15]. Hence, the result.
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Appendix M

Statistics

M.0.1 Cumulative Distribution Function

Definition M.0.1. The cumulative distribution function of a real-valued random
variable X is defined as

FX(x) = P (X ≤ x) (M.1)

where P (X ≤ x) is the probability that X realizes a value less or equal to x, [PP18, p. 77].

Definition M.0.2. The joint cumulative distribution function of two real-valued
random variables X and Y is defined as

FX,Y (x, y) = P (X ≤ x, Y ≤ y) (M.2)

where P (X ≤ x, Y ≤ y) is the probability that X realizes a value less or equal to x and
Y realizes a value less or equal to y, [PP18, p. 89].

M.0.2 Probability Density Function

Definition M.0.3. The probability density function of a real-valued random variable
X is defined as [PP18, p. 85]

fX(x) = d

dx
FX(x) (M.3)

where FX(x) is the cumulative distribution function introduced in Definition M.0.1.

Definition M.0.4. The joint probability density function of two real-valued random
variables X and Y is defined as [PP18, p. 92]

fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y) (M.4)

where FX,Y (x, y) is the joint cumulative distribution function introduced in Definition
M.0.2.
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Definition M.0.5. The marginal probability density functions of two real-valued
random variables X and Y are defined as [PP18, p. 94]

fX(x) =
∫ ∞
−∞

fX,Y (x, y)dy

fY (y) =
∫ ∞
−∞

fX,Y (x, y)dx
(M.5)

where fX,Y (x, y) is the joint probability density function introduced in Definition M.0.4.

M.0.3 Expected Value Operator

Definition M.0.6. The expected value of a real-valued random variable X is defined as
[PP18, p. 110]

E[X] = µx =
∫ ∞
−∞

xfX(x)dx (M.6)

where fX(x) is the probability density function, introduced in Definition M.0.3, or the
marginal probability density function of X, introduced in Definition M.0.5, in case two real
valued random variables are considered with joint probability density function fX,Y (x, y),
see Definition M.0.4.

Property M.0.1. The expectation operator E[·] is linear. Hence, the following relations
hold [PP18, p. 113]

E[X1 +X2] = E[X1] + E[X2]
E[aX] = aE[X]

(M.7)

where X1, X2 and X are real-valued random variables and a ∈ R is a constant.

Lemma M.0.1. Let X1 and X2 be real-valued random variables then [PP18, p. 119]

E[X1X2] = E[X1]E[X2] + cov[X1, X2] (M.8)

where cov[X1, X2] is the covariance, see Definition M.0.8.

Note Lemma M.0.5, if X1 and X2 are independent.

M.0.4 Variance

Definition M.0.7. The variance of a real-valued random variable X is [PP18, p. 117]

var[X] = E[(X − µx)2] = cov[X,X] = E[X2]− E[X]2 (M.9)
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Appendix M: Statistics

where µx is the expected value of X, see Appendix M.0.3 and cov[X,X] is the covariance
of X with itself, see Definition M.0.8 and Property M.0.3.

For the variance operator the following basic properties exist [PP18, p. 121]:

Property M.0.2.

var[X] ≥ 0 (M.10)

var[a] = 0
var[X + a] = var[X]
var[aX] = a2var[X]

(M.11)

for all a ∈ R.

var[aX1 + bX2] = a2var[X1] + b2var[X2] + 2abcov[X1, X2]
var[aX1 − bX2] = a2var[X1] + b2var[X2]− 2abcov[X1, X2]

(M.12)

for all a, b ∈ R.

Lemma M.0.2. Let the real-valued random variables X1, X2, . . . , XN be uncorrelated,
meaning their covariance are zero, see Definition M.0.9, then the following relation holds
[PP18, p. 124]

var[
N∑
n=1

Xn] =
N∑
n=1

var[Xn] (M.13)

Lemma M.0.3. Let the two real-valued random variables X1 and X2 be independent,
then the variance of their product can be calculated by [Goo60]

var[X1X2] = E[X1]2var[X2] + E[X2]2var[X1] + var[X1]var[X2] (M.14)

M.0.5 Covariance

Definition M.0.8. For two real-valued random variables X1 and X2 with expected values
µx1 and µx2 and variance σ2

x1 and σ2
x2 the covariance is defined as [PP18, p. 119]

cov[X1, X2] = E[(X1 − µx1)(X2 − µx2)] (M.15)

Often the following property is used:

Property M.0.3. Let X1 and X2 be two real-valued random variables then [PP18, p. 119]

cov[X1, X2] = E[X1X2]− E[X1]E[X2] (M.16)
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Proof. The relation (M.16) is obtained from (M.15) using the fact that the expectation
operator is linear, see Property M.0.1

E[(X1 − µX1)(X2 − µx2)] = E[X1X2 − µx1X2 − µx2X1 + µx1µx2 ]
= E[X1X2]− E[µx1X2]− E[µx2X1] + E[µx1µx2 ]
= E[X1X2]− µx1E[X2]− µx2E[X1] + µx1µx2

(M.17)

As E[X1] = µx1 and E[X2] = µx2 Equation (M.17) results in

cov[X1, X2] = E[X1X2]− E[X1]E[X2], (M.18)

Property M.0.4. The covariance is symmetric such that

cov[X1, X2] = cov[X2, X1] (M.19)

Definition M.0.9. Two real-valued random variables X1 and X2 are said to be uncor-
related if cov[X1, X2] = 0, [PP18, p. 121] .

Lemma M.0.4. Let two real-valued random variables X1 and X2 be independent, see
Appendix M.0.13, then their covariance will be zero [PP18, p. 123] .

Proof. As X1 and X2 are independent, according to Lemma M.0.5

E[X1X2] = E[X1]E[X2] (M.20)

holds. Hence, the covariance is according to Equation (M.16) zero.

Note, that if the covariance of two random variables is zero this does not imply that
they are independent.

M.0.6 Correlation

Definition M.0.10. For two random variables X1 and X2 with expected values µx1 and
µx2 and variance σ2

x1 and σ2
x2 the correlation is defined as [PP18, p. 119]

ρx1,x2 = corr[X1, X2] = cov[X1, X2]
σxσy

(M.21)

where cov[X1, X2] is the covariance, see Definition M.0.8.

Property M.0.5. The correlation is symmetric such that

corr[X1, X2] = corr[X2, X1] (M.22)
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M.0.7 Stationarity of a Sequence of Random Variables

Definition M.0.11. A sequence of random variables

X[1], X[2], . . . X[N ] (M.23)

is denoted as stationary if and only if its joint distribution is equal to the joint distribution
of the shifted sequence

X[1 + τ ], X[2 + τ ], . . . X[N + τ ] (M.24)

for any τ ∈ N, [Sta02, p. 326].

Property M.0.6. All terms of a stationary sequence have the same distribution, i.e.
X[n] and X[n+ τ ] have the same distribution for any n and τ ∈ N. From this it follows,
that since they have the same distribution, all terms of the sequence also have the same
expected value and the same variance, [Sta02, p. 326].

M.0.8 Independent and Identically Distributed Random Vari-
ables (i.i.d.)

Definition M.0.12. A collection of random variables (for example a sequence of random
variables) is denoted as independent and identically distributed if each random
variable has the same probability distribution and if all random variables are mutually
independent, see Definition M.0.13, from each other, [MC04, p. 289].

M.0.9 Mutual Independence

Definition M.0.13. A collection of random variables (for example a sequence of random
variables) are denoted as mutually independent if the realization of each random variable
does not affect the probability distribution of any combination of the other random variables
in the collection.

Lemma M.0.5. Let two real-valued random variables X1 and X2 be independent, then
the expected value of their product equals the product of the expected value of each random
variable [PP18, p. 116]

E[X1X2] = E[X1]E[X2] (M.25)

and their covariance, see Definition M.0.8, is zero

cov[X1, X2] = 0 (M.26)

meaning that they are uncorrelated, see Definition M.0.9.

Note, that if two random variables are uncorrelated (covariance of zero) they might
not be independent.
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Lemma M.0.6. Let two real-valued random variables X1 and X2 be uncorrelated, see
Definition M.0.9, and jointly normal, see Definition M.0.16, then X1 and X2 are inde-
pendent, [PP18, p. 116].

M.0.10 Normal Distribution / Gaussian Distribution

The one- dimensional (univariate) normal distribution, often also called Gaussian distri-
bution, is characterized by the probability density function, [MC04, p. 72]

f(x) = 1
σ
√

2π
e−

1
2 (x−µ

σ
)2 (M.27)

for the real-valued random variable X. The parameter µ is the expected value of X.

E[X] = µ (M.28)

The parameter σ is the standard deviation of X. The variance of X is given by σ2.

var[X] = σ2 (M.29)

Lemma M.0.7. Let Y be a real-valued random variable with standard normal distribu-
tion, see Definition M.0.15, then [MC04, p. 73]

X = σY + µ (M.30)

will be normally distributed with expected value µ and standard deviation σ.

Definition M.0.14. A normally distributed real-valued random variable X with expected
value µ and variance σ2 is denoted as [MC04, p. 73]

X ∼ N (µ, σ2) (M.31)

M.0.11 Standard Normal Distribution

Definition M.0.15. The standard normal distribution is a special case of the normal
distribution, see Appendix M.0.10, where µ = 0 and σ = 1, [MC04, p. 73].

M.0.12 Joint Normality

Definition M.0.16. Two normally distributed random variables X1 and X2, see Appendix
M.0.10, are said to be jointly normal if for all a, b ∈ R, [MC04, p. 254]

Y = aX1 + bX2 (M.32)

has a normal distribution.
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Lemma M.0.8. Let two real-valued random variables X1 and X2 be independent and
normally distributed, then X1 and X2 are jointly normal, see Definition M.0.16, [MC04,
p. 256], meaning that

Y = aX1 + bX2 (M.33)

is normally distributed for all a, b ∈ R.

M.0.13 Joint Normal Distribution / Multivariate Normal Dis-
tribution / Multivariate Gaussian Distribution

The one-dimensional (univariate) normal distribution, see Appendix M.0.10, can be gen-
eralized to higher dimensions and is then denoted as multivariate normal distribu-
tion, where every linear combination of the elements of a real-valued random vector
X = [X1, X2, . . . Xn]T has a univariate normal distribution, meaning that they are jointly
normal, see Definition M.0.16. In case that two random variables are considered, it is
referred to as bivariate normal distribution.
The multivariate distribution of a n-dimensional random vector X = [X1, X2, . . . Xn]T is
denoted as

X ∼ N (µ,Σ) (M.34)

where µ is the n-dimensional expected value vector

µ =
[
µ1, µ2, . . . µn

]T
=
[
E[X1], E[X2], . . . E[Xn]

]T
(M.35)

and where Σ is the n× n dimensional covariance matrix

Σ =


cov[X1, X1] . . . cov[X1, Xn]

... . . . ...
cov[Xn, X1] . . . cov[Xn, Xn]

 (M.36)

with the respective covariances as elements. Note, that Σ is symmetric, because of Prop-
erty M.0.4. The probability density function is [MC04, p. 250]

fx(x) = 1√
(2π)ndet(Σ)

e−
1
2 (x−µ)TΣ−1(x−µ) (M.37)

where det(Σ) is the determinant of Σ.
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M.0.14 Complex Random Variable

The concept of a complex random variable is often a source of confusion [MC04]. A
complex random variable is defined by Z = X + jY where X and Y are real random
variables.

M.0.15 Distribution of a Complex Random Variable

The distribution of a complex random variable Z = X+jY is defined as the joint bivariate
distribution of the real random variables X and Y .

FZ(z)=̂P (X ≤ x, Y ≤ y) = FX,Y (x, y) (M.38)

The functions FZ(z) and FX,Y (x, y) are the cumulative distribution function of Z
and the joint distribution function of the random variables X and Y , see Definitions
M.0.1 and M.0.2. The probability density function is defined by

fZ(z)=̂fX,Y (x, y) = ∂2

∂x∂y
P (≤ x, Y ≤ y) (M.39)

and fZ(z) is a real-valued function f : C→ R.

M.0.16 Expected Value of a Complex Random Variable

Definition M.0.17. The expected value of a complex random variable Z = X +
jY is [MC04, p. 220]

E[Z] =
∫
C
zfZ(z)dz (M.40)

where the differential element dz is understood to be

dz = dxdy (M.41)

and the integral should be understood as
∫
C
dz =

∫ ∞
−∞

∫ ∞
−∞

dxdy (M.42)

Note, that this notation denotes a multidimensional integral and should not be con-
fused with a complex contour integral, where dz = dx+ jdy.

Property M.0.7. The expected value of a complex random variable Z = X + jY corre-
sponds to

E[Z] = E[X + jY ] = E[X] + jE[Y ] (M.43)

Proof. Let Z = X + jY be a complex random variable. The expected value E[Z] is
according to Definition M.0.17, and using the probability density function fZ(z) given by
Equation (M.39):
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E[Z] =
∫
C
zfZ(z)dz =

∫ ∞
−∞

∫ ∞
−∞

(x+ jy)fX,Y (x, y)dxdy

=
∫ ∞
−∞

∫ ∞
−∞

xfX,Y (x, y)dxdy + j
∫ ∞
−∞

∫ ∞
−∞

yfX,Y (x, y)dxdy
(M.44)

In Equation (M.44) we can substitute the marginal probability density functions fX(x)
and fY (y), which are introduced in Definition (M.0.5) by

fX(x) =
∫ ∞
−∞

fX,Y (x, y)dy

fY (y) =
∫ ∞
−∞

fX,Y (x, y)dx
(M.45)

such that we obtain

E[Z] =
∫ ∞
−∞

xfX(x)dx+ j
∫ ∞
−∞

yfY (y)dy

= E[X] + jE[Y ]
(M.46)

This corresponds to E[Z] = E[X] + jE[Y ] according to the definition of the expected
value, see Definition M.0.6.

M.0.17 Covariance, Pseudo Covariance and Variance of Com-
plex Random Variables

Definition M.0.18. The covariance can be extended to complex random variables. The
covariance of two complex random variables Z andW is defined as, [PP18, p. 119]

KZW = cov[Z,W ] = E[(Z − µz)(W − µw)] (M.47)

Lemma M.0.9. According to [PP18, p. 119]

KZW = E[ZW̄ ]− E[Z]E[W̄ ] (M.48)

Definition M.0.19. The pseudo covariance of two complex random variables
Z and W is defined as [MC04, p. 221]

CZW = cov[Z, W̄ ] = E[(Z − µz)(W − µw)] (M.49)

Lemma M.0.10. According to [PP18, p. 119]

CZW = E[ZW ]− E[Z]E[W ] (M.50)
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Definition M.0.20. The variance of a complex random variable Z = X + jY is

KZZ = var[Z] = cov[Z,Z] = E[(Z − µz)(Z − µz)] (M.51)

where the covariance for complex random variables was introduced in Definition M.0.18.

Lemma M.0.11. The variance is a non-negative real number. Let Z = X + jY be a
complex random variable then the variance of Z is, [MC04, p. 220],

KZZ = var[Z] = var[X] + var[Y ] = σ2
x + σ2

y (M.52)

Proof. The product of a complex number with its conjugate complex is according to
Lemma M.0.21 its absolute value squared. Hence,

var[Z] = E[(Z − µz)(Z − µz)] = E[|(Z − µz)|2] = E[(X − µx)2 + (Y − µy)2] (M.53)

Because of the linearity of the expected value operator, Property M.0.1,

var[Z] = E[(X − µx)2] + E[(Y − µy)2] (M.54)

where the real part X and imaginary part Y of Z are real-valued random variables.
According to the definition of the variance of real-valued random variables, see Definition
M.0.7, we thus obtain:

var[Z] = var[X] + var[Y ] (M.55)

Definition M.0.21. The pseudo variance of a complex random variable Z =
X + jY is [MC04, p. 221]

CZZ = cov[Z, Z̄] = E[(Z − µZ)2] (M.56)

Note, that the pseudo-covariance for complex random variables was introduced in Defini-
tion M.0.19.

Lemma M.0.12. Let Z = X + jY be a complex random variable, then the pseudo
variance, Definition M.0.21, can be related to the entries of the covariance matrix (M.69)
of the bivariate distribution of the real and imaginary part of the complex random variable
Z = X + jY via [MC04, p. 220]

CZZ = cov[Z, Z̄] = var[X]− var[Y ] + 2jcov[X, Y ] (M.57)

Proof. Let Z = X + jY be a complex random variable, then according to Definition
M.0.21

XL



Appendix M: Statistics

CZZ = cov[Z, z̄] = E[(Z − µZ)2] = E[((X + jY )− (µx + jµy))2]
= E[((X − µx) + j(Y − µy))2]
= E[(X − µx)2 + j2(Y − µy)2 + j(X − µx)(Y − µy) + j(Y − µy)(X − µx)]

(M.58)

where µz was replaced using Property M.0.7 of the expected value of a complex random
variable. Because of the linearity of the expected value, see Property M.0.1, we thus
obtain

CZZ = E[(X − µx)2] + E[j2(Y − µy)2] + E[j(X − µx)(Y − µy)] + E[j(Y − µy)(X − µx)]
= E[(X − µx)2]− E[(Y − µy)2] + jE[(X − µx)(Y − µy)] + jE[(Y − µy)(X − µx)]
= var[X]− var[Y ] + jcov[X, Y ] + jcov[Y,X]
= var[X]− var[Y ] + 2jcov[X, Y ]

(M.59)

where the Definitions of the variance and covariance of a real valued random variable
given in M.0.7 and M.0.8 were used, as well as the symmetry property of the covariance,
see Property M.0.4.

Lemma M.0.13. Let Z = X + jY be a complex random variable, then the variance of
its real and imaginary part, X and Y , and their covariance can be related to the variance
KZZ (Definition M.0.20) and pseudo variance CZZ (Definition M.0.21) of Z as follows.

σ2
x = var[X] = E[(X − E[X])(X − E[X])] = 1

2<(KZZ + CZZ)

σ2
y = var[Y ] = E[(Y − E[Y ])(Y − E[Y ])] = 1

2<(KZZ − CZZ)

cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] = 1
2=(−KZZ + CZZ)

cov[Y,X] = E[(Y − E[Y ])(X − E[X])] = 1
2=(KZZ + CZZ)

(M.60)

Proof. By inserting the relation given in Lemma M.0.11 and Lemma M.0.12 for KZZ and
CZZ into (M.60) the equalities can be directly seen.

Definition M.0.22. Let Z = X + jY be a complex random variable, then its covariance
matrix can be either expressed in terms of Z according to

ΣZZ =
KZZ CZZ

C̄ZZ K̄ZZ

 (M.61)

or in terms of its real and imaginary part, X and Y as follows
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ΣXY =
 σ2

x cov[X, Y ]
cov[Y,X] σ2

y

 (M.62)

where KZZ is the variance of Z, Definition M.0.20, CZZ is the pseudo variance of Z,
Definition M.0.21, σ2

x, σ2
y are the variances of X and Y , Definition M.0.7, and cov[X, Y ]

is the covariance of X and Y , Definition M.0.8. The elements of these matrices are
thereby related to each other according to Lemma M.0.11, Lemma M.0.12 and Lemma
M.0.13.

M.0.18 Proper Complex Random Variable

Definition M.0.23. A complex random variable Z = X + jY is called proper if its
pseudo-variance, Definition M.0.21, vanishes, i.e. CZZ = 0. Otherwise, Z is called
improper [SS10, p. 35].

According to Lemma M.0.12, the pseudo-variance carries information about the vari-
ance mismatch var[X]− var[Y ] in its real part and about the correlation between X and
Y i.e. cov[X, Y ] in its imaginary part. Hence, the pseudo-variance is zero if X and Y

have identical variances, i.e. var[X] − var[Y ] = 0, and are independent, because then
cov[X, Y ] = 0.

M.0.19 Complex Normal Distribution

The complex normal distribution of a complex random variable Z is defined as [SS10,
p. 39]

fz(z) = 1
π
√
JK

e

− 1
2

(z − µz)
(z − µz)

TΣ−1
ZZ

(z − µz)
(z − µz)


(M.63)

where (z − µz) denotes the conjugate complex of (z−µz) and ΣZZ is the covariance matrix
defined in Definition M.0.22 as [SS10, p. 34]

ΣZZ =
K C

C̄ K̄

 (M.64)

The variance and pseudo variance of Z are according to Lemma M.0.11 and Lemma
M.0.12

K = cov[Z,Z] = σ2
x + σ2

y

C = cov[Z, Z̄] = σ2
x − σ2

y + 2jcov[X, Y ]
(M.65)

Finally, J is defined as
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J = K̄ − C̄K−1C (M.66)

In order to improve readability in the following proofs the subindex (∗)ZZ was omitted.
The complex normal distribution is hence described by the three parameters µz, K, C and
the complex normal random variable Z is denoted as

Z ∼ NC(µz, K, C) (M.67)

Lemma M.0.14. A complex normal distribution characterizes a complex random variable
Z with bivariate normal distribution of its real and imaginary part. According to Appendix
M.0.13 the probability function of the bivariate normal distribution of the random variables
X, Y is of the form

fx,y(x, y) = 1
2π
√
det(ΣXY])

e

− 1
2

(x− µx)
(y − µy)

TΣ−1
XY

(x− µx)
(y − µy)


(M.68)

where the covariance matrix is

ΣXY =
 σ2

x cov[X, Y ]
cov[Y,X] σ2

y

 (M.69)

with the variances σ2
x and σ2

y, Appendix M.0.7. Note that ΣXY is symmetric as for the
covariances cov[X, Y ] = cov[Y,X] holds, see Property M.0.4. In terms of the complex
random variable Z we can thus write

fz(z) = 1
2π
√
det(ΣXY)

e

− 1
2

<(z − µz)
=(z − µz)

TΣ−1
XY

<(z − µz)
=(z − µz)


(M.70)

where µz is the expected value of the complex random variable defined in M.0.16, and

ΣXY =
 σ2

<(Z) cov[<(Z),=(Z)]
cov[=(Z),<(Z)] σ2

=(Z)

 (M.71)

Proof. Let the complex random variable Z be distributed according to (M.63). According
to Lemma M.0.11 and M.0.12 the variance and pseudo variance can be related to the
covariance matrix (M.69) of the bivariate distribution of the real and imaginary part of
the complex random variable Z = X + jY via

K = cov[Z,Z] = σ2
x + σ2

y

C = cov[Z, Z̄] = σ2
x − σ2

y + 2jcov[X, Y ]
(M.72)
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where σ2
x and σ2

y are the variances of the real and imaginary part. Using the relation
(M.65), J is calculated as

J = K̄ − C̄K−1C = σ2
x + σ2

y − (
(σ2

x − σ2
y − 2jcov[X, Y ])(σ2

x − σ2
y + 2jcov[X, Y ]))

σ2
x + σ2

y

= σ2
x + σ2

y −
(σ2

x − σ2
y)2 + 4cov[X, Y ]2

σ2
x + σ2

y

.

(M.73)

Multiplication with K results in

JK = σ2
x + σ2

y − (σ2
x − σ2

y)2 − 4cov[X, Y ]2

= σ4
x + σ4

y + 2σ2
yσ

2
x − (σ4

x + σ4
y − 2σ2

yσ
2
x)− 4cov[X, Y ]2

= 4σ2
yσ

2
x − 4cov[X, Y ]2.

(M.74)

Inserting this result in 1
π
√
JK

, results in

1
π
√
JK

= 1
2π
√
σ2
xσ

2
y − cov[X, Y ]2

. (M.75)

For the exponent in Equation (M.63):

− 1
2

(z − µz)
(z − µz)

T K C

C̄ K̄

−1 (z − µz)
(z − µz)

 (M.76)

we calculate

K C

C̄ K̄

−1

= 1
K̄K − C̄C

 K̄ −C
−C̄ K

 (M.77)

Hence,

−1
2

(z − µz)
(z − µz)

T K C

C̄ K̄

−1 (z − µz)
(z − µz)

 =

−1
2

(z − µz)
(z − µz)

T 1
K̄K − C̄C

 K̄ −C
−C̄ K

(z − µz)
(z − µz)

 =

1
2

(z − µz)(z − µz)K̄ − (z − µz)2C̄ − (z − µz)
2
C + (z − µz)(z − µz)K

K̄K − C̄C

(M.78)

Using the property ab = āb̄, see M.0.23, and ¯̄a = a we obtain for Equation (M.78) the
following expression
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1
2

(z − µz)(z − µz)K̄ − (z − µz)2C̄ − (z − µz)2C̄ + (z − µz)(z − µz)K
K̄K − C̄C

=

1
2

(z − µz)(z − µz)(K̄ +K)− ((z − µz)2C̄ + (z − µz)2C̄)
K̄K − C̄C

.

(M.79)

Using the relation given in Lemma M.0.21 for the product of a complex number and its
conjugate complex and the relation for the sum of a complex number and its conjugate,
see Lemma M.0.22, we derive at

1
2

[(x− µx)2 + (y + µy)2]2<(K)− 2<((z − µz)2C̄)
<(K)2 + =(K)2 −<(C)2 −=(C)2 . (M.80)

Using

(z− µz)2 = ((x− µx) + j(y− µy))2 = (x− µx)2− (y− µy)2 + 2j(x− µx)(y− µy) (M.81)

and

C̄ = σ2
x − σ2

y − 2jcov[X, Y ] (M.82)

the following term becomes

2<((z − µz)2C̄) =
2((σ2

x − σ2
y)[(x− µx)2 − (y − µy)2]− (−1)2(x− µx)(y − µy)2cov[X, Y ]) =

2(σ2
x − σ2

y)[(x− µx)2 − (y − µy)2] + 8(x− µx)(y − µy)cov[X, Y ].
(M.83)

With K and C from Equation (M.65) we calculate the following terms:

[(x− µx)2 + (y + µy)2]2<(K) = [(x− µx)2 + (y + µy)2]2(σ2
x + σ2

y) (M.84)

and

<(K)2 + =(K)2 −<(C)2 −=(C)2 = (σ2
x + σ2

y)2 − (σ2
x − σ2

y)2 − 4cov[X, Y ]2

= 4σ2
yσ

2
x − 4cov[X, Y ]2

(M.85)

where Equation (M.74) was additionally used. Inserting the results in Equation (M.83),(M.84)
and (M.85) into Equation (M.80) finally results in
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1
2

[(x− µx)2 + (y + µy)2]2<(K)− 2<((z − µz)2C̄)
<(K)2 + =(K)2 −<(C)2 −=(C)2 =

1
2

[(x− µx)2 + (y + µy)2]2(σ2
x + σ2

y)− 2(σ2
x − σ2

y)[(x− µx)2 − (y − µy)2]
4σ2

yσ
2
x − 4cov[X, Y ]2 −

−8(x− µx)(y − µy)cov[X, Y ]
4σ2

yσ
2
x − 4cov[X, Y ]2 =

1
2

4σ2
y(x− µx)2 + 4σ2

x(y + µy)2 − 8(x− µx)(y − µy)cov[X, Y ]
4σ2

yσ
2
x − 4cov[X, Y ]2 =

1
2
σ2
y(x− µx)2 + σ2

x(y + µy)2 − 2(x− µx)(y − µy)cov[X, Y ]
σ2
yσ

2
x − cov[X, Y ]2 .

(M.86)

Inserting result (M.86) and (M.75) into (M.63) provides

fz(z) = 1
π
√
JK

e

− 1
2

(z − µz)
(z − µz)

TK C

C̄ K̄

−1(z − µz)
(z − µz)



= 1
π
√
JK

= 1
2π
√
σ2
xσ

2
y − cov[X, Y ]2

e
1
2
σ2
y(x−µx)2+σ2

x(y+µy)2−2(x−µx)(y−µy)cov[x,y]
σ2
yσ

2
x−cov[X,Y ]2

(M.87)

This corresponds to the bivariate normal distribution of the real and imaginary part of
the complex random variable Z which is given in (M.68) as

fx,y(x, y) = 1
2π
√
det(Σ)

e

− 1
2

(x− µx)
(y − µy)

T 1
det(Σ)

 σ2
y −cov[X, Y ]

−cov[Y,X] σ2
x

(x− µx)
(y − µy)



= 1
2π
√
det(Σ)

e

− 1
2

1
det(Σ)

 (x− µx)σ2
y − cov[Y,X](y − µy)

−cov[Y,X](x− µx) + (y − µy)σ2
x

T(x− µx)
(y − µy)



= 1
2π
√
σ2
xσ

2
y − cov[X, Y ]2

e
1
2

(x−µx)2σ2
y−2cov[X,Y ](y−µy)(x−µx)+(y−µy)2σ2

x

σ2
xσ

2
y−cov[X,Y ]2 .

(M.88)
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M.0.20 Distribution of a Proper Complex Normal Random Vari-
able

Lemma M.0.15. Let Z = X + jY be a complex normal random variable and let Z be
proper, Definition M.0.23, then the probability density function of the complex normal
distribution simplifies to

fz(z) = 1
2πσ2 e

− |z−µz |
2

2σ2 (M.89)

Proof. The probability density function of the complex normal distribution, given in equa-
tion (M.63) is

fz(z) = 1
π
√
JK

e

− 1
2

(z − µz)
(z − µz)

TK C

C̄ K̄

−1(z − µz)
(z − µz)


(M.90)

By Definition M.0.23 a proper complex random variable has zero pseudo-variance, i.e.
C = 0 such that according to (M.66), J = K̄. Furthermore, C = 0 implies by Equa-
tion (M.0.13), that the real part X and imaginary part Y have identical variances, i.e.
var[X] = var[Y ] = σ2. The variance K of the proper complex normal random variable is
hence given according to Lemma M.0.11 by K = var[X] + var[Y ] = 2σ2. Consequently,
the distribution simplifies to

fz(z) = 1
π
√
K̄K

e

− 1
2

(z − µz)
(z − µz)

TK 0
0 K̄

−1(z − µz)
(z − µz)



= 1
π
√
K̄K

e

− 1
2KK

(z − µz)
(z − µz)

TK̄ 0
0 K

(z − µz)
(z − µz)



= 1
π2σ2 e

− 1
2(2σ2)2

(z − µz)2σ2

(z − µz)2σ2

T(z − µz)
(z − µz)



= 1
2πσ2 e

− (z−µz)2σ2(z−µz)+(z−µz)2σ2(z−µz)
2(2σ2)2 = 1

2πσ2 e
− 2(z−µz)(z−µz)

2(2σ2) = 1
2πσ2 e

− (z−µz)(z−µz)
2σ2

= 1
2πσ2 e

− |z−µz |
2

2σ2

(M.91)

where Lemma M.0.21 for the product of a complex number with its conjugate complex
was used.
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M.0.21 Distribution of Proper Complex Normal Random Vari-
able in Polar-coordinates

A proper complex normal random variable Z = X + jY , where X and Y are two inde-
pendent normal random variables with expected values E[X] = µx and E[Y ] = µy and
equal variances var[X] = var[Y ] = σ2, can be expressed in polar-coordinates as

Z = RejΘ = R cos Θ + jR sin Θ (M.92)

with amplitude R = |Z| =
√
X2 + Y 2 and phase Θ = Arg(Z) ∈ [0, 2π). The expected

value of Z is µz = µx + jµy = νejφ, where ν = |µz| =
√
µ2
x + µ2

y and φ = Arg(µz).
With dz = dxdy = rdrdθ it is possible to change the variables in the distribution of
the proper complex normal random variable Z, given in Lemma M.0.15, to obtain the
bivariate distribution in polar-coordinates, i.e. amplitude R and phase Θ as

fR,Θ(r, θ) = r

2πσ2 e
− |re

jθ−νejφ|2

2σ2 (M.93)

M.0.22 Marginal Distribution of the Amplitude of a Proper
Complex Normal Random Variable

The marginal distribution, see Definition M.0.5, of the amplitude of a proper complex
normal random variable Z = X + jY is calculated in [OM12]. It is derived by integrating
the bivariate distribution (M.93) which is given in polar-coordinates, i.e. amplitude R =
|Z| =

√
X2 + Y 2 and phase Θ = Arg(Z) ∈ [0, 2π), over the interval θ = [0, 2π], resulting

in
fR(r) = r

σ2 e
− r

2+ν2
2σ2 I0(λ) (M.94)

which is the so called Rician distribution [Sim07, p. 11] (often also called Rice or Ricean
distribution), with

λ = rν

σ2 (M.95)

where ν = |µz| =
√
µ2
x + µ2

y =
√
E[X]2 + E[Y ]2, and where σ2 = var[X] = var[Y ]. In

(M.94), I0(λ) is the modified Bessel function of the first kind, order 0 and argument λ.
The modified Bessel function of first kind and order zero is calculated as the series [AS65,
p. 375]

I0(λ) =
∞∑
k=0

(1
4λ

2)k

(k!)2 (M.96)

The expected value and variance of the Rician distribution are known to be [Yak19],[Par61]:

E[R] = σ

√
π

2L
(0)
1/2(− ν2

2σ2 )

var[R] = 2σ2 + ν2 − σ2π

2 (L(0)
1/2)2(− ν2

2σ2 )
(M.97)
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where L(0)
k (x), with degree k = 1/2 being a non-integer, represents a Laguerre function of

order 0 and shall be not confused with the Laguerre polynomial, which is defined only for
integer values of the degree k. The Laguerre function of order 0 and non-integer degree k
can be expressed in terms of the Kummer function according to [OMS10, p. 215] as

L
(0)
k (x) =1 F1(−k, 1, x) (M.98)

The Kummer function 1F1(−k, c, x), which together with the Tricomi function is known
as the confluent hypergeometric functions, is primarily defined over the Kummer’s series
by [OMS10, p. 486]

1F1(k, c, x) = 1 + kx

c1! + k(k + 1)x2

c(c+ 1)2! + k(k + 1)(k + 2)x3

c(c+ 1)(c+ 2)3! + . . . =
∞∑
j=0

(k)j
(c)j(1)j

xj (M.99)

The presence of the modified Bessel function in the Rician distribution, makes the math-
ematical treatment rather cumbersome. For example when calculating the sample mean
of R, no closed-form expression is available for the resulting distribution of the sum of
multiple Rician distributed variables [Lop09].

Note, that in case, that the real and imaginary values x and y are perturbed by
normally distributed noise N with zero mean, we obtain the normal random variables
X = x+N and Y = y+N . Note also that then the undisturbed, true magnitude

√
x2 + y2

will correspond to ν =
√
E[X]2 + E[Y ]2, because E[N ] = 0 (since N has zero mean). It

shall be noticed that in contrast the expected value of the amplitude E[R] = E[
√
X2 + Y 2],

which is a Rician distributed random variable, does not coincide with the true magnitude
ν according to (M.97). However, the Rician distribution is known to be connected with
two other distributions: the Normal distribution and Rayleigh distribution [Yak19]. The
Rician distribution is parametrized by the parameters ν and σ. The ratio of these Rician
parameters characterizes the signal-to-noise ratio [Yak19]:

κ = ν

σ
(M.100)

Depending on this signal-to-noise ratio, two limiting cases can be distinguished:

• In the first limiting case the signal-to-noise ratio is considered to be negligibly small,
i.e. ν

σ
→ 0 (i.e E[X] = E[Y ] = 0, such that ν = 0 ). Then the Rician distribution is

transformed into a Rayleigh distribution [Yak19].

• In the second limiting case the signal-to-noise ratio is considered to be very high,
i.e. ν

σ
→ ∞ (i.e σ2 = 0 or ν >> σ). Then the Rician distribution is transformed

into a normal distribution with mean ν and variance σ2 [Yak19].

Since the second limiting case is of more interest for our application, the focus will be on
large signal-to-noise ratios in the following.
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Lemma M.0.16. According to [GP95] the Rician distribution starts to approximate the
normal distribution already for signal-to-noise ratios of ν/σ = 3 and the pdf (M.94) can
be approximated by [Ric44, p. 299],[Lat98, p. 499]

pR(r) ≈ 1√
(2πσ2)

e−
(r−ν)2

2σ2 (M.101)

Hence, for high signal intensities the distribution of the magnitude R can be considered
as normally distributed with mean E[R] = ν and variance σ2.

Proof. According to [Lat98, p. 499] it can be shown that for large SNR (ν >> σ), [Ric44]

I0(rν
σ2 ) ≈

√
σ2

2πrν e
rν
σ2 (M.102)

such that the pdf (M.94) becomes

fR(r) ≈ r

σ2 e
− r

2+ν2
2σ2

√
σ2

2πrν e
rν
σ2 = r√

2πrνσ2
e−

r2+ν2−2rν
2σ2 =

√
r√

2πσ2√ν
e−

(r−ν)2

2σ2 (M.103)

Because large SNR is considered, i.e. (ν >> σ), r ≈ ν, such that

fR(r) ≈ 1√
2πσ2

e−
(r−ν)2

2σ2 (M.104)

M.0.23 Marginal Distribution of the Phase of a Proper Complex
Normal Random Variable

The marginal distribution, see Definition M.0.5, of the phase of a proper complex normal
random variable Z = X + jY is given in [Lat98, p. 499]. It is obtained by integrating the
bivariate pdf expressed in polar-coordinates, i.e. amplitude R = |Z| =

√
X2 + Y 2 and

phase Θ = Arg(Z) ∈ [0, 2π), given as fR,Θ(r, θ) in Equation (M.93), with respect to the
amplitude:

fΘ(θ) =
∫ ∞

0
fR,Θ(r, θ)dr (M.105)

The resulting marginal distribution for the phase is known to be [Lat98, p. 499],[HP08]

fΘ(θ) = 1
2πe

− ν2
2σ2 {1 + ν

σ

√
2π cos θe

ν2
2σ2 cos2 θ[1−Q(ν cos θ

σ
)]} (M.106)
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Appendix M: Statistics

where ν = |µz| =
√
µ2
x + µ2

y =
√
E[X]2 + E[Y ]2, and where σ2 = var[X] = var[Y ]. In

(M.106), Q(χ) is the Gaussian Q function or Gaussian probability function [AS65, p. 931]
or Gaussian probability integral [Sim07, p. 5], defined as

Q(χ) = 1√
2π

∫ ∞
χ

e−
y2
2 dy (M.107)

Lemma M.0.17. Let Z = X + jY be a proper complex normal random variable, Defini-
tion M.0.23, and (M.106) be the marginal distribution of its phase Θ = Arg(Z) ∈ [0, 2π).
Then, as stated in [GP95] and [HP08], for high SNR, defined by Equation (M.100), i.e
ν >> σ, the pdf of the deviation of the disturbed phase angle from the signal‘s phase can
be approximated by a zero mean normal distribution with variance var[Θ] = 1

κ2 = (σ
ν
)2:

f∆Θ(∆θ) ≈ 1√
2π(σ

ν
)2
e
− ∆θ2

2(σν )2 (M.108)

where ∆θ = θ − Arg(E[Z]).

Proof. Let Z = X+jY be a proper complex normal random variable, and (M.106) be the
marginal distribution of its phase Θ = Arg(Z) ∈ [0, 2π). Because, according to [AS65,
p. 931]

1√
2π

∫ ∞
−∞

e−
y2
2 dy = 1√

2π

∫ χ

−∞
e−

y2
2 dy + 1√

2π

∫ ∞
χ

e−
y2
2 dy

= 1√
2π

∫ χ

−∞
e−

y2
2 dy +Q(χ) = 1

(M.109)

The term 1−Q(χ) in (M.106) with χ = ν cos θ
σ

, is replaced by

1−Q(χ) = 1√
2π

∫ χ

−∞
e−

y2
2 dy (M.110)

For high SNR, i.e ν >> σ, κ = ν
σ
→∞ the integral in (M.110) becomes 1:

lim
κ→∞

χ(κ) = κ cos θ =∞

lim
χ→∞

1√
2π

∫ χ

−∞
e−

y2
2 dy = 1√

2π

∫ ∞
−∞

e−
y2
2 dy = 1

(M.111)

With these results the marginal distribution (M.106) can be approximated by

fΘ(Θ) ≈ 1
2πe

− ν2
2σ2 {1 + ν

σ

√
2π cos θe

ν2
2σ2 cos2 θ} = 1

2πe
−κ

2
2 {1 +κ

√
2π cos θeκ

2
2 cos2 θ} (M.112)
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For large SNR, i.e κ→∞ it is easy to see that the second term in the bracket in (M.112)
will dominate the first term, which is the constant 1. We can therefore reduce (M.112)
further to

fΘ(θ) ≈ 1
2πe

−κ
2
2 κ
√

2π cos θeκ
2
2 cos2 θ = κ

√
2π cos θ
2π e

κ2
2 (cos2 θ−1)

= κ cos θ√
2π

e−
κ2
2 sin2 θ

(M.113)

For very large SNR the deviation in the phase angle ∆Θ, will be very small [GP95].
Therefore, we can approximate:

sin ∆Θ = ∆Θ
cos ∆Θ = 1

(M.114)

Finally we obtain

f∆Θ(∆θ) = κ√
2π
e−

κ2
2 ∆θ2 = 1√

2π(σ
ν
)2
e
− ∆θ2

2(σν )2 (M.115)

which corresponds to the pdf of a normal distribution with zero mean E[∆Θ] = 0 and
variance (σ

ν
)2, see Appendix M.0.10.

M.0.24 Circular-symmetry of Complex Random Variables

Definition M.0.24. Let Z = X+jY be a complex random variable and let the distribution
of ejΦZ equal the distribution of Z for any Φ ∈ [−π, π], then the complex random variable
Z is denoted circularly symmetric, [SS10, p. 53].

Property M.0.8. A circular symmetric complex random variable satisfies by definition
[SS10, p. 53]

E[Z] = E[ejΦZ] = ejΦE[Z] (M.116)

and

E[ZZ] = E[ejΦZejΦZ] = e2jΦE[ZZ] (M.117)

Furthermore, the phase of Z is uniformly distributed over [−π, π] and independent of the
magnitude of Z.

Note, that from relation (M.116) it can be directly seen that the expected value of a
circularly symmetric complex random variable is zero, µz = E[Z] = 0. Due to relation
(M.117), E[ZZ] is zero: E[ZZ] = 0. Consequently, the pseudo-variance of a circularly
symmetric complex random variable is zero:
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C = cov[Z, Z̄] = E[(Z − µz)2] = E[Z2]− E[Z]2 = 0 (M.118)

where the pseudo variance of complex random variables was defined in Definition M.0.21.

M.0.25 Circular-symmetric Complex Normal Distribution

In Appendix M.0.19 the complex normal distribution was introduced. In most cases
we consider circular symmetric complex Gaussian random variables Z = X + jY which
correspond to the special case of zero mean and zero pseudo-covariance matrix, i.e. µz = 0
and C = 0, see Property M.0.8. The distribution is hence fully specified by the varianceK,
defined in Definition M.0.20. According to Equation (M.65): C = σ2

x − σ2
y + 2jcov[X, Y ],

C = 0 implies that the covariance of the real and imaginary part is zero and that the two
random variables X and Y have equal variance σ2

x = σ2
y = σ2.

Lemma M.0.18. A complex normal random variable Z is circularly symmetric if its
mean and pseudo variance are zero, i.e. if <(Z) and =(Z) are i.i.d. with zero mean
[SS10, p. 53].

Lemma M.0.19. Let Z = X + jY be a circularly symmetric complex Gaussian random
variable, then the probability density function of the complex normal distribution simplifies
to

fz(z) = 1
2πσ2 e

− |z|
2

2σ2 (M.119)

Proof. The probability density function of the complex normal distribution, given in Equa-
tion (M.63) is

fz(z) = 1
π
√
JK

e

− 1
2

(z̄ − µ̄z)
(z − µz)

TK C

C̄ K̄

−1(z − µz)
(z̄ − µ̄z)


(M.120)

For a circular symmetric normal distribution we insert µz = 0, C = 0 and J = K̄, see
(M.66) and obtain

fz(z) = 1
π
√
K̄K

e

− 1
2

z̄
z

TK 0
0 K̄

−1z
z̄



= 1
π
√
K̄K

e

− 1
2KK

z̄
z

TK̄ 0
0 K

z
z̄



= 1
π
√
K̄K

e

− 1
2KK

z̄K̄
zK

Tz
z̄



= 1
π
√
K̄K

e−
z̄K̄z+zKz̄

2KK

(M.121)
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Because by Property M.0.8, a circularly complex normal random variable is proper, Def-
inition M.0.23, i.e C = σ2

x − σ2
y + 2jcov[X, Y ] = 0, Equation (M.65), the real part X and

imaginary part Y have identical variances, i.e. var[X] = var[Y ] = σ2. The variance K of
the circularly complex normal random variable is hence given according to Lemma M.0.11
by K = var[X] + var[Y ] = 2σ2. Inserting this relation into (M.121) finally results in

fz(z) = 1
πK

e−
2z̄K̄z
2K2 = 1

πK
e−

z̄z
K = 1

2πσ2 e
− 1

2
z̄z
σ2 = 1

2πσ2 e
− 1

2
|z|2

σ2 (M.122)

where Lemma M.0.21 for the product of a complex number with its conjugate complex
was used to calculate z̄z.

Lemma M.0.20. Let Z = X + jY be a circularly symmetric complex Gaussian random
variable, then in terms of real and imaginary part the probability density function of the
complex normal distribution given in (M.68) simplifies to

fx,y(x, y) = 1
2πσ2 e

− 1
2

(x2+y2)
σ2 . (M.123)

Proof. The probability density function of the complex normal distribution in terms of
real and imaginary part is given in Equation (M.68) as

fx,y(x, y) = 1
2π
√
det(Σ)

e

− 1
2

(x− µx)
(y − µy)

TΣ−1

(x− µx)
(y − µy)


(M.124)

For a circular symmetric complex normal random variable we know that µx = µy = 0,
σx = σy = σ and cov[X, Y ] = cov[Y,X] = 0 by Lemma M.0.18. Hence, (M.124) becomes

fx,y(x, y) = 1
2π
√
σ4
e

− 1
2

x
y

Tσ2 0
0 σ2

−1x
y



= 1
2πσ2 e

− 1
2σ4

xσ2

yσ2

Tx
y



= 1
2πσ2 e

− 1
2σ4 (x2σ2+y2σ2) = 1

2πσ2 e
−x

2+y2

2σ2

(M.125)
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M.0.26 Product of Complex Number with its Conjugate Com-
plex

Lemma M.0.21. For a complex number z = x+ jy the following relation holds

zz̄ = |z|2 = x2 + y2 (M.126)

Proof.
zz̄ = (x+ jy)(x− jy) = x2 + y2 + jyx− jxy = x2 + y2 (M.127)

M.0.27 Sum of Complex Number with its Conjugate Complex

Lemma M.0.22. For a complex number z = x+ jy the following relation holds

z + z̄ = 2<(z) = 2x (M.128)

Proof.
z + z̄ = (x+ jy) + (x− jy) = 2x (M.129)

M.0.28 Conjugate Complex of the Product of two Complex
Numbers

Lemma M.0.23. For two complex numbers a = ar + jaj and b = br + jbj the following
relation holds

ab = āb̄ (M.130)

Proof.

ab = (ar + jaj)(br + jbj) = (arbr − ajbj) + j(braj + arbj)
= (arbr − ajbj)− j(braj + arbj)

(M.131)

which is the same as

āb̄ = (ar + jaj)(br + jbj) = (ar − jaj)(br − jbj)
= (arbr − ajbj)− j(braj + arbj)

(M.132)
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M.0.29 Conjugate Complex of the Ratio of two Complex Num-
bers

Lemma M.0.24. For two complex numbers a = ar + jaj and b = br + jbj the following
relation holds

(
a

b

)∗
= a∗

b∗
(M.133)

Proof. Using Lemma M.0.21 and M.0.23 it is shown that

(
a

b

)∗
=
(
ab∗

bb∗

)∗
=
(
ab∗

|b|2

)∗
=
(
a∗b

|b|2

)
(M.134)

is the same as (
a∗

b∗

)
=
(
a∗b

b∗b

)
=
(
a∗b

|b|2

)
(M.135)
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Appendix N

Characteristics of DFT of i.i.d.
Normally Distributed Noise
Sequence with Zero Mean

N.1 Mean and Variance

Lemma N.1.1. Let the N discrete samples ny[n] be i.i.d. random variables, see Definition
M.0.12, with normal distribution

ny[n] ∼ N (0, σ2) (N.1)

then the real and imaginary part of the DFT of ny[n] at frequency ωk = 2π
NTs

k will be also
normally distributed as follows

<(Ny,DFT [k]) ∼ N (0, σ
2

2 )

=(Ny,DFT [k]) ∼ N (0, σ
2

2 )
(N.2)

Proof. The DFT of the discrete real valued sequence ny[n] at frequency ωk = 2π
NTs

k is
according to (2.9)

Ny,DFT [k] = 1√
N

N−1∑
n=0

ny[n]e−j 2πkn
N

= 1√
N

N−1∑
n=0

ny[n] cos(2πkn
N

)− j 1√
N

N−1∑
n=0

ny[n] sin(2πkn
N

)

= <(Ny,DFT [k]) + j=(Ny,DFT [k])

(N.3)
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N.1 Mean and Variance

which is complex. We define

xn,k = ny[n]cn,k
1√
N

yn,k = ny[n]sn,k
1√
N

(N.4)

where

cn,k = cos(2πkn
N

)

sn,k = sin(2πkn
N

)
(N.5)

are constants for a fixed n and k. Hence, we can express (N.3) as

Ny,DFT [k] =
N−1∑
n=0

xn,k − j
N−1∑
n=0

yn,k (N.6)

Because the N discrete samples ny[n] are i.i.d. random variables with normal distribution

ny[n] ∼ N (0, σ2) (N.7)

then xn,k and yn,k are also normally distributed as follows

xn,k ∼ (0, σ2 c
2
n,k

N
)

yn,k ∼ (0, σ2 s
2
n,k

N
)

(N.8)

This follows directly from the linearity of the expectation and the second order homogene-
ity of the variance operator as stated in Property M.0.1 and Equation (M.11). Because
ny[n] are independent and normally distributed, then by Lemma M.0.8, they are jointly
normal. Consequently, the real and imaginary part of the DFT of ny[n], which are calcu-
lated as the sums of (N.4), are also normally distributed.

N−1∑
n=0

xn,k ∼ N

N−1∑
n=0

yn,k ∼ N
(N.9)

Furthermore, because ny[n] are independent, then by Lemma M.0.5, xn,k will be uncor-
related for all n = 0 . . . N − 1. The same holds for yn,k. Because xn,k are uncorrelated,
as well as yn,k, then by Lemma M.0.2, the variance of the real and imaginary part of the
DFT of ny[n], given as the sums in (N.6), equal σ2

x = ∑N
n=0

σ2

N
c2
n,k and σ2

y = ∑N
n=0

σ2

N
s2
n,k.

Because of the linearity of the expectation the respective mean values of the sums in (N.6)
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Appendix N: Characteristics of DFT of i.i.d. Normally Distributed Noise Sequence with
Zero Mean

remain zero. Hence,

<(Ny,DFT [k]) ∼ N (0, σ
2

N

N∑
n=0

c2
n,k)

=(Ny,DFT [k]) ∼ N (0, σ
2

N

N∑
n=0

s2
n,k)

(N.10)

Because k ∈ N, then by Lemma Q.1.1, ∑N
n=0 s

2
n,k = ∑N

n=0 c
2
n,k = N

2 . Hence,

<(Ny,DFT [k]) ∼ N (0, σ
2

2 )

=(Ny,DFT [k]) ∼ N (0, σ
2

2 )
(N.11)

N.2 Circular Symmetry of DFT of Noise Sequence

Lemma N.2.1. Let ny[n] be an i.i.d. normally distributed, discrete noise sequence with
N samples, zero mean and variance σ2, then the DFT of the sequence, Ny,DFT [k], is a
circular-symmetric, normally distributed complex random variable.

Proof. Circular symmetry of complex random variables is defined in Definition M.0.24
and a circular symmetric complex normal distribution is defined in Appendix M.0.25. A
circular-symmetric complex Gaussian random variable Z = X + jY satisfies according to
Property M.0.8:

E[X] = µx = 0 (N.12)

E[Y ] = µy = 0 (N.13)

C = 0 (N.14)

where C is the pseudo covariance defined in Definition M.0.19. According to Lemma
M.0.12

C = σ2
x − σ2

y + 2jcov[X, Y ]. (N.15)

In Equation (N.15) σ2
x and σ2

x are the variances of the real and imaginary part, respectively.
The covariance cov[X, Y ] is defined in Definition M.0.8, as

cov[X, Y ] = E[(X − µx)(Y − µy)] (N.16)
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N.3 Independence of Real and Imaginary part of DFT of i.i.d. Normally Distributed
Noise Sequence

As was shown in the proof of Lemma N.1.1, Equation (N.11), the expected values of the
real and imaginary part of Ny,DFT [k] are zero:

µx = E[<(Ny,DFT [k])] = 0
µy = E[=(Ny,DFT [k])] = 0

(N.17)

Furthermore, the variances of the real and imaginary part of Ny,DFT [k] are equal and
given in Equation (N.11) as

σ2
x = σ2

y = σ2

2 (N.18)

where σ2 is the variance of the noise sequence ny[n]. The covariance of the real and
imaginary part of Ny,DFT [k] is

cov[X, Y ] = E[XY ] (N.19)

since µx = µy = 0, see (N.17) and (N.16). By Lemma N.3.1 the real and imaginary part
of Ny,DFT [k] are independent. Hence, according to Lemma M.0.5, their covariance is zero
and

cov[X, Y ] = E[XY ] = E[X]E[Y ] = µxµy = 0. (N.20)

see definition of mutual independence of two random variables in Appendix M.0.13. Since,
as was shown, all conditions given by (N.12), (N.13) and (N.14) are satisfied, Ny,DFT [k]
is circular symmetric. Hence, Equation (N.15) is zero because of Equation (N.18) and
(N.20), such that Equation (N.14) is satisfied. As shown in Equation (N.17), (N.12)
and (N.13) are satisfied, too. Consequently, Ny,DFT [k] is circular symmetric. Hence, the
result.

N.3 Independence of Real and Imaginary part of DFT
of i.i.d. Normally Distributed Noise Sequence

Lemma N.3.1. Let ny[n] be an i.i.d. normally distributed, discrete noise sequence with
N samples, zero mean and variance σ2, then the real and imaginary part of the DFT of
the sequence, Ny,DFT [k], are independent.

Proof. According to Lemma M.0.6 two real-valued random variables X1 and X2 are inde-
pendent if they are uncorrelated, see Definition M.0.9, and jointly normal, see Definition
M.0.16. Let ny[n] be an i.i.d. normally distributed, discrete noise sequence with N sam-
ples, zero mean and variance σ2, then the real and imaginary part of the DFT of the
sequence, Ny,DFT [k], are uncorrelated, by Lemma N.4.1. Furthermore, they are jointly
normal, by Lemma N.5.1. Hence, it follows from Lemma M.0.6, that they are independent.
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Zero Mean

N.4 Correlation of Real and Imaginary part of DFT
of Noise Sequence

Lemma N.4.1. Let ny[n] be an i.i.d. normally distributed, discrete noise sequence with
N samples, zero mean and variance σ2, then the real and imaginary part of the DFT of
the sequence, Ny,DFT [k], are uncorrelated.

Proof. Let ny[n] be an i.i.d. normally distributed, discrete noise sequence with N samples,
zero mean and variance σ2, then according to Equation (N.3) the real and imaginary part
of the DFT, Ny,DFT [k], of the sequence ny[n], are calculated by

<(Ny,DFT [k]) = X[k] = 1√
N

N−1∑
n=0

ny[n]cn,k

=(Ny,DFT [k]) = Y [k] = − 1√
N

N−1∑
n=0

ny[n]sn,k
(N.21)

with cn,k and sn,k, given in Equation (N.5). X[k] and Y [k] are according to Lemma
N.1.1 equally normally distributed, with zero mean. Hence, the covariance of the real and
imaginary part, cov[X, Y ], Definition M.0.8, is calculated by Equation (M.15), using that
the mean of the real and imaginary part is zero

cov[X, Y ] = E[(X − µx)(Y − µy)] = E[XY ]

= E[− 1
N

(
N−1∑
n=0

ny[n]cn,k)(
N−1∑
n=0

ny[n]sn,k)]

= E[− 1
N

N−1∑
n=0

N−1∑
p=0

cn,kny[n]sp,kny[p]]

(N.22)

Because of the linearity of the expected value operator, see Property M.0.1

cov[X, Y ] = − 1
N

N−1∑
n=0

N−1∑
p=0

cn,ksp,kE[ny[n]ny[p]] (N.23)

Because ny[m] ∼ N (0, σ2), has zero mean, i.e. E[ny[m]] = 0 for m = 0, . . . , N − 1, and
ny[m] are mutually independent for m = 0, . . . , N − 1, then according to Lemma M.0.5

E[ny[n]ny[p]] = E[ny[n]]E[ny[p]] = 0 (N.24)

for n 6= p. Hence, Equation (N.23) simplifies to

cov[X, Y ] = − 1
N

N−1∑
n=0

cn,ksn,kE[ny[n]ny[n]] (N.25)
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N.5 Joint Normality of Real and Imaginary part of DFT of Noise Sequence

Because ny[n] have zero mean, E[ny[n]ny[n]] corresponds to the variance of ny[n], see
Definition M.0.7, which is σ2, i.e.

E[ny[n]ny[n]] = σ2 (N.26)

Hence, the covariance of X and Y , Equation (N.25), results in

cov[X, Y ] = − 1
N
σ2

N−1∑
n=0

cn,ksn,k. (N.27)

By Lemma Q.2.1 this sum equals zero, such that

cov[X, Y ] = 0 (N.28)

Hence, the result.

N.5 Joint Normality of Real and Imaginary part of
DFT of Noise Sequence

Lemma N.5.1. Let ny[n] be an i.i.d. normally distributed, discrete noise sequence with
N samples, zero mean and variance σ2, then the real and imaginary part of the DFT of
the sequence, Ny,DFT [k], are jointly normal.

Proof. Let ny[n] be an i.i.d. normally distributed, discrete noise sequence with N samples,
zero mean and variance σ2, then according to Equation (N.3) the real and imaginary part
of the DFT, Ny,DFT [k], of the sequence ny[n], are calculated by

<(Ny,DFT [k]) = X[k] = 1
N

N−1∑
n=0

ny[n]cn,k

=(Ny,DFT [k]) = Y [k] = − 1
N

N−1∑
n=0

ny[n]sn,k
(N.29)

with cn,k and sn,k, given in Equation (N.5). By Definition M.0.16 two normally distributed
random variables X1 and X2 are jointly normal, if for all a, b ∈ R,

Y = aX1 + bX2 (N.30)
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Zero Mean

is also normally distributed. X[k] and Y [k] are according to Lemma N.1.1 equally nor-
mally distributed. The sum of the normally distributed random variables X and Y with
a, b ∈ R equals

aX[k] + bY [k] = a
1
N

N−1∑
n=0

ny[n]cn,k − b
1
N

N−1∑
n=0

ny[n]sn,k

= 1
N

N−1∑
n=0

(acn,k − bsn,k)ny[n]

= 1
N

N−1∑
n=0

ln,kny[n]

(N.31)

Because the sequence ny[n] is i.i.d with normal distribution, then by Lemma M.0.8, the
samples ny[n] are jointly normal, meaning that 1

N

∑N−1
n=0 ln,kny[n] will be also normally

distributed. Hence, X[k] and Y [k] are jointly normal.

N.6 Characteristics of Product of Complex Valued
Constant with DFT of i.i.d. Normally Distributed
Noise Sequence with Zero Mean

Lemma N.6.1. Let ny[n] be an i.i.d. normally distributed, discrete noise sequence with
N samples, zero mean and variance σ2, then the product of a complex valued constant
S(jωk) with the DFT of ny[n]:

S(jωk)Ny,DFT (jωk) (N.32)

will have the following properties

• The real and imaginary parts are normally distributed with zero mean and variance
σ2
s = σ2

2 |S(jωk)|2, i.e.

<(S(jωk)Ny,DFT (jωk)) ∼ =(S(jωk)Ny,DFT (jωk)) ∼ N (0, σ
2

2 |S(jωk)|2) (N.33)

• The real and imaginary parts are uncorrelated

cov[<(S(jωk)Ny,DFT (jωk)),=(S(jωk)Ny,DFT (jωk))] = 0 (N.34)

• The real and imaginary parts are independent

• The real and imaginary parts are jointly normal

Proof. For the DFT Ny,DFT of the discrete real valued sequence ny[n] the following holds
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N.6 Characteristics of Product of Complex Valued Constant with DFT of i.i.d.
Normally Distributed Noise Sequence with Zero Mean

• Ny,DFT (jωk) is a circular symmetric normally distributed complex random variable,
according to Lemma N.2.1

• The real and imaginary parts of Ny,DFT (jωk) are independent, according to Lemma
N.3

• The real and imaginary parts ofNy,DFT (jωk) are jointly normal, according to Lemma
N.5.1

• The real and imaginary parts of Ny,DFT (jωk) are normally distributed with zero
mean and variance σ2

n = σ2

2 , according to Lemma N.1.1

<(Ny,DFT (jωk)) ∼ =(Ny,DFT (jωk)) ∼ N (0, σ
2

2 ) (N.35)

• The real and imaginary parts of Ny,DFT (jωk) are uncorrelated, according to Lemma
N.4.1

The complex valued constant S(jωk) can be expressed as

S(jωk) = |S(jωk)|ejΦS (N.36)

such that
S(jωk)Ny,DFT (jωk) = |S(jωk)|ejΦSNy,DFT (jωk) (N.37)

Because Ny,DFT (jωk) is circular symmetric, the distribution of ejΦSNy,DFT (jωk) will equal
the distribution of Ny,DFT (jωk), according to Definition M.0.24, i.e.

<(ejΦSNy,DFT (jωk)) ∼ =(ejΦSNy,DFT (jωk)) ∼ N (0, σ
2

2 )

cov[<(ejΦSNy,DFT (jωk)),=(ejΦSNy,DFT (jωk))] = 0
(N.38)

The real and imaginary part of ejΦSNy,DFT (jωk) will be jointly normal, according to
Definition M.0.16, because the real and imaginary part of Ny,DFT (jωk) are jointly normal
such that for all a, b ∈ R,

a<(ejΦSNy,DFT ) + b=(ejΦSNy,DFT ) =
a(cos ΦS<(Ny,DFT )− sin ΦS=(Ny,DFT ))
+ b(sin ΦS<(Ny,DFT ) + cos ΦS=(Ny,DFT ))

(N.39)

has a normal distribution. Because the real and imaginary part of ejΦSNy,DFT (jωk) are un-
correlated and jointly normal, according to Lemma M.0.6 they are independent. Because
of the linearity of the expected value operator and the second order homogenity of the vari-
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Zero Mean

ance operator, the real and imaginary part of S(jωk)Ny,DFT (jωk) = |S(jωk)|ejΦSNy,DFT (jωk)
will be normally distributed with zero mean and variance σ2

s = σ2

2 |S(jωk)|2 and be uncor-
related.
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Appendix O

Characteristics of DFT of a
Stationary, Normally Distributed
Noise Sequence

O.1 Expected Value

Lemma O.1.1. Let ny[n] be a stationary sequence, Definition M.0.11, with a normal
distribution N (µ, σ2) then

E[X(jωk)] = µx = 0
E[Y (jωk)] = µy = 0

(O.1)

where the real valued random variables X(jωk) and Y (jωk) are the real and imaginary
parts of the DFT of the noise sequence ny[n].

Proof. According to (N.3), the real and imaginary value of the DFT of a real valued
sequence ny[n] are calculated according to

X(jωk) =
N−1∑
n=0

1√
N
ny[n]cn,k

Y (jωk) =
N−1∑
n=0

1√
N
ny[n]sn,k

(O.2)

where cn,k and sn,k are abbreviations for the cosine and sine term given in (N.5). Because
cn,k is a constant for fixed n and k, the expected value of X(jωk) can be calculated using
the linearity property of the expected value operator (Property M.0.1) by

E[X(jωk)] =
N−1∑
n=0

1√
N
cn,kE[ny[n]] = µ√

N

N−1∑
n=0

cn,k (O.3)
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O.2 Second Order Moment Characteristics of Real and Imaginary Part for Uncorrelated
Samples

Because of Lemma Q.3.1, ∑N−1
n=0 cn,k = 0, thus

E[X(jωk)] = 0 (O.4)

Similarly we obtain

E[Y (jωk)] = µ√
N

N−1∑
n=0

sn,k = 0 (O.5)

Hence, the result.

O.2 Second Order Moment Characteristics of Real
and Imaginary Part for Uncorrelated Samples

Lemma O.2.1. Let ny[n] be a stationary sequence, Definition M.0.11, with a normal
distribution N (µ, σ2) and let the samples of ny[n] be uncorrelated, then for the real part
X(jωk) and imaginary part Y (jωk) of the DFT, Ny,DFT (jωk) = X(jωk)+ jY (jωk), of the
noise sequence ny[n] the following holds

var[X(jωk)] = σ2

2 − µ
2
x

var[Y (jωk)] = σ2

2 − µ
2
y

cov[X(jωk), Y (jωk)] = −µxµy

(O.6)

where µx and µy are the expected values of the real and imaginary part, respectively, which
are by Lemma O.1.1 zero.

Proof. The variance of a real random variable X is according to Definition M.0.7

var[X] = E[(X − µx)2] = E[X2]− E[X]2 (O.7)

The real part X(jωk) of the DFT of the noise sequence ny[n] is according to (N.3)

X(jωk) =
N−1∑
n=0

1√
N
ny[n]cn,k (O.8)

where cn,k is an abbreviation for the cosine term given in (N.5). For better readability
(jωk) is omitted in the following. Because cn,k is a constant for fixed n and k, and because
of the linearity property of the expected value operator, the following relation is obtained
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Appendix O: Characteristics of DFT of a Stationary, Normally Distributed Noise
Sequence

E[XX] = E

 1√
N

N−1∑
n=0

ny[n]cn,k

 1√
N

N−1∑
n=0

ny[n]cn,k




= 1
N
E

N−1∑
n=0

N−1∑
p=0

ny[n]cn,kny[p]cp,k


= 1
N

N−1∑
n=0

N−1∑
p=0

cn,kcp,kE
[
ny[n]ny[p]

]
(O.9)

Since the samples of ny[n] are uncorrelated, their covariance is according to Definition
M.0.9 zero. Consequently, according to Property M.0.3

E
[
ny[n]ny[p]

]
= E

[
ny[n]

]
E
[
ny[p]

]
= µ2 (O.10)

because cov[ny[n], ny[p]] = 0 for n 6= p. For n = p

E
[
ny[n]ny[n]

]
= var[ny[n]] + E

[
ny[n]

]2
= σ2 + µ2 (O.11)

according to Definition M.0.7. Hence, Equation (O.9) simplifies to

E[XX] = 1
N

N−1∑
n=0

N−1∑
p=0

cn,kcp,k(µ2)
+ 1

N

N−1∑
n=0

c2
n,kσ

2


= µ2

N

N−1∑
n=0

cn,k

N−1∑
p=0

cn,k

+ σ2

N

N−1∑
n=0

c2
n,k

 (O.12)

According to Lemma Q.3.1, ∑N−1
n=0 cn,k = 0, and according to Lemma Q.1.1, ∑N−1

n=0 c
2
n,k =

N
2 . Thus,

E[XX] = σ2

2 (O.13)

and with (O.7)

var[X] = σ2

2 − µ
2
x (O.14)

Similarly it can be shown that
var[Y ] = σ2

2 − µ
2
y (O.15)

Hence, the first result.

The covariance of X and Y is according to Property M.0.3

cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[XY ]− µxµy (O.16)
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O.3 Second Order Moment Characteristics of DFT for Uncorrelated Samples

With real part X and imaginary part Y given in (N.3)

E[XY ] = E


N−1∑
n=0

1√
N
ny[n]cn,k

N−1∑
n=0

1√
N
ny[n]sn,k




= E

 1
N

N−1∑
n=0

N−1∑
p=0

ny[n]cn,kny[p]sp,k


(O.17)

where cn,k and sn,k are an abbreviation for the cosine and sine term given in (N.5). Because
cn,k and sn,k are constant for fixed n and k, and because of the linearity property of the
expected value operator, the following relation is obtained

E[XY ] = 1
N

N−1∑
n=0

N−1∑
p=0

cn,ksp,kE
[
ny[n]ny[p]

]
(O.18)

With Equation (O.10) and (O.11)

E[XY ] = µ2

N

N−1∑
n=0

N−1∑
p=0

cn,ksp,k

+ σ2

N

N−1∑
n=0

cn,ksn,k


= µ2

N

N−1∑
n=0

cn,k

N−1∑
n=0

sn,k

+ σ2

N

N−1∑
n=0

cn,ksn,k

 (O.19)

According to Lemma Q.3.1, ∑N−1
n=0 cn,k = ∑N−1

n=0 sn,k = 0, and according to Lemma Q.2.1,∑N−1
n=0 cn,ksn,k = 0. Thus,

E[XY ] = 0 (O.20)

such that Equation (O.16) becomes

cov(X, Y ) = −µxµy (O.21)

Hence, the second result.

O.3 Second Order Moment Characteristics of DFT
for Uncorrelated Samples

Lemma O.3.1. Let ny[n] be a stationary sequence, Definition M.0.11, with a normal
distribution N (µ, σ2) and let the samples of ny[n] be uncorrelated. Let Ny,DFT (jωk) =
Z(jωk) = X(jωk) + jY (jωk) denote the DFT of the noise sequence ny[n]. Then the
following holds

E[Z(jωk)Z(jωk)∗] = σ2

E[Z(jωk)Z(jωk)] = 0
(O.22)

LXX



Appendix O: Characteristics of DFT of a Stationary, Normally Distributed Noise
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Proof. The variance of a complex random variable Z is according to Lemma M.0.9, and
Lemma M.0.11

KZZ = E[ZZ∗]− E[Z]E[Z∗] = var[X] + var[Y ] (O.23)

The variances of the real and imaginary part, X and Y , are given in Lemma O.2.1 by
var[X] = σ2

2 − µx and var[Y ] = σ2

2 − µy. Thus, a relation for E[ZZ∗] can be obtained as
follows,

E[ZZ∗] = var[X] + var[Y ] + E[Z]E[Z∗]

= σ2

2 − µ
2
x + σ2

2 − µ
2
y + µzµ

∗
z

= σ2

2 − µ
2
x + σ2

2 − µ
2
y + µ2

x + µ2
y

= σ2

(O.24)

Hence, the first result.

The pseudo-variance on the other hand is according to Lemma M.0.10 and Lemma
M.0.12

CZZ = E[ZZ]− E[Z]E[Z] = var[X]− var[Y ] + 2jcov[X, Y ] (O.25)

The variances of the real and imaginary part, X and Y , and their covariance is given in
Lemma O.2.1. Thus, a relation for E[ZZ] can be obtained as follows,

E[ZZ] = σ2

2 − µ
2
x − (σ

2

2 − µ
2
y) + 2j(−µxµy) + E[Z]E[Z]

= σ2

2 − µ
2
x − (σ

2

2 − µ
2
y) + 2j(−µxµy) + µ2

x − µ2
y + 2jµxµy

= 0

(O.26)

Hence, the second result.
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O.4 Second Order Moment Characteristics of Ratio with Complex Valued Constant

O.4 Second Order Moment Characteristics of Ratio
with Complex Valued Constant

Lemma O.4.1. Given V = N
u

= X + jY where N is a complex random variable with
zero mean µn = 0 and u is a complex valued constant, then the elements of the covariance
matrix ΣXY , given in Equation (M.62), are calculated by Equation (M.60) as follows

var[X] = 1
2<(KV V + CV V ) = 1

2
E [NN∗]
|u|2

+ 1
2<( E[NN ]

u2
r − u2

j + 2juruj
)

var[Y ] = 1
2<(KV V − CV V ) = 1

2
E [NN∗]
|u|2

− 1
2<( E[NN ]

u2
r − u2

j + 2juruj
)

cov[X, Y ] = 1
2=(−KV V + CV V ) = 1

2=( E[NN ]
u2
r − u2

j + 2juruj
)

cov[Y,X] = 1
2=(KV V + CV V ) = 1

2=( E[NN ]
u2
r − u2

j + 2juruj
)

(O.27)

Proof. The variance of the complex random variable V is calculated according to Defini-
tion M.0.20 as

KV V = var[V ] = E[(V − µv)(V − µv)∗] (O.28)

where ()∗ denotes the conjugate complex transpose. Since µv = 0, because µn = 0, KV V

reduces to

KV V = E[V V ∗] = E

N
u

(
N

u

)∗ (O.29)

By Lemma M.0.24,
(
N
u

)∗
= N∗

u∗
holds, and by Lemma M.0.21 uu∗ = |u|2, such that the

variance further simplifies to

KV V = E
[
NN∗

uu∗

]
= E

[
NN∗

|u|2

]
(O.30)

Since u is a complex valued constant, the variance results in

KV V = E [NN∗]
|u|2

(O.31)

where the linearity property (Property M.0.1) of the expected value operator was used.
The pseudo variance of the complex random variable V is calculated according to Defini-
tion M.0.21 as

CV V = E
[
(V − µv)2

]
(O.32)

Since µv = 0, CV V reduces to

CV V = E
[
V 2
]

= E
[
NN

uu

]
. (O.33)
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Since u is a complex valued constant, using that the expected value operator is linear, the
pseudo variance thus results in

CV V = E[NN ]
uu

= E[NN ]
u2
r − u2

j + 2juruj
(O.34)

where ur and uj are the real and imaginary parts of u. Finally, with the derived relations
in O.31 and O.34 the equalities in O.27 are obtained as can be directly seen.
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Appendix P

Closed-loop Identification

P.1 Bias of Indirect Estimate

Lemma P.1.1. Assume that the true plant Gcl(jωk) is related with the Controller C and
closed-loop G(jω) according to

G(jωk) = Gcl(jωk)
1−Gcl(jωk)C(jωk)

(P.1)

and the plant is estimated over

Ĝ(jωk) = Ĝcl(jωk)
1− Ĝcl(jωk)C(jωk)

(P.2)

where C is exactly known and the closed-loop estimate Ĝcl is given by

Ĝcl(jωk) = Gcl(jωk) +GB,cl(jωk) + ε(jωk) (P.3)

where Gcl(jωk) is the true closed-loop frequency response and GB,cl(jωk) is a constant
bias. The real and imaginary parts of ε(jωk), are normally distributed with zero mean
and

E[<(ε(jωk))2] = rxx(jωk)
E[=(ε(jωk))2] = ryy(jωk)

E[<(ε(jωk))=(ε(jωk))] = rxy(jωk)
(P.4)

Then the expected value of the plant estimate Ĝ is given by [Hea01b]

E[Ĝ(jωk)] = α(jωk)GB(jωk) + (1− α(jωk))
(
− 1
C(jωk)

)
(P.5)
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P.2 Bias of Indirect Estimate - Special Case

where
GB(jωk) = Gcl(jωk) +GB,cl(jωk)

1− C(jωk)(Gcl(jωk) +GB,cl(jωk))
(P.6)

and α results from the line integral

α =
∫ r0

0

r√
1− a2r2

e−
r2
2 dr (P.7)

with

tan 2Φ = 2rxy
ryy − rxx

σ2
x̄ = rxx cos2 Φ + ryy sin2 Φ− 2rxy cos Φ sin Φ
σ2
ȳ = rxx sin2 Φ + ryy cos2 Φ + 2rxy cos Φ sin Φ

r2
0(jωk) = 1

σ2
x̄

[<(ejΦSB
C

)]2 + 1
σ2
ȳ

[=(ejΦSB
C

)]2

a2 = (σ2
x̄ − σ2

ȳ)
(
C

SB

)2

e−2jΦ

SB(jωk) = 1
1 +GBC

(P.8)

Note, that for better readability the dependency on (jωk) was omitted in the last equations.

Proof. The proof is given in [Hea01b].

P.2 Bias of Indirect Estimate - Special Case

Lemma P.2.1. Assume that the true plant G(jωk) is related with the Controller C and
closed-loop G(jω) according to

G(jωk) = Gcl(jωk)
1−Gcl(jωk)C(jωk)

(P.9)

and the plant is estimated over

Ĝ(jωk) = Ĝcl(jωk)
1− Ĝcl(jωk)C(jωk)

(P.10)

where C is exactly known and the closed-loop estimate Ĝcl is given by

Ĝcl(jωk) = Gcl(jωk) + ε(jωk) (P.11)
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Appendix P: Closed-loop Identification

where Gcl(jωk) is the true closed-loop frequency response. The real and imaginary parts
of ε(jωk), are equally normally distributed and uncorrelated with zero mean and

E[<(ε(jωk))2] = σ(jωk)2

E[=(ε(jωk))2] = σ(jωk)2

E[<(ε(jωk))=(ε(jωk))] = 0
(P.12)

Then according to [Hea01b], the expected value of the plant estimate Ĝ is given by

E[Ĝ(jωk)] = α(jωk)G(jωk) + (1− α(jωk))
(
− 1
C(jωk)

)
(P.13)

where α is
α = 1− e−

1
2

1
σ(jωk)2

|Sc(jωk)
C(jωk) |

2

(P.14)

and
Sc(jωk) = 1

1 +G(jωk)C(jωk)
(P.15)

Proof. Using Lemma P.1.1 we calculate with the specified ε(jωk):

Φ = 0
σ2
x̄ = σ2

ȳ = σ2

r2
0(jωk) = 1

σ2 [<
(
Sc
C

)
]2 + 1

σ2 [=
(
Sc
C

)
]2 = 1

σ2 |
Sc
C
|2

a2 = 0

Sc = 1
1 +GC

(P.16)

and
α =

∫ r0

0
re−

r2
2 dr = [−e− r

2
2 ]r00 = 1− e−

r20
2 = 1− e−

1
2

1
σ2 |

Sc
C
|2 (P.17)

Note, that for better readability (jωk) was omitted.
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Appendix Q

Cosine and Sine Equalities

Q.1 Finite Sum of Cosine and Sine Squared

Lemma Q.1.1. Let k ∈ N, then

N−1∑
n=0

cos2(2π n
N
k) = N

2 (Q.1)

N−1∑
n=0

sin2(2π n
N
k) = N

2 (Q.2)

Proof. A cosine can be expressed in terms of exponentials according to Equation (2.18)
such that (Q.1) becomes

N−1∑
n=0

cos2(2π n
N
k) =

N−1∑
n=0

(e
j2π n

N
k + e−j2π

n
N
k

2 )2

=
N−1∑
n=0

e2j2π n
N
k + e−2j2π n

N
k + 2e0

4

= 1
4

N−1∑
n=0

ej2π
n
N

2k + 1
4

N−1∑
n=0

e−j2π
n
N

2k +
N−1∑
n=0

1
2

(Q.3)

where each of the first two summands is a geometric series with r = ej2π
n
N

2k and r =
e−j2π

n
N

2k, respectively. The geometric series is defined in Equation (2.21) and is repeated
here for convenience

N−1∑
n=0

rn = 1− rN
1− r (Q.4)
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Q.2 Finite Sum of Product of Cosine and Sine

The sum in Equation (Q.3) can be hence expressed as

1
4

1− (ej2π nN 2k)N

1− ej2π nN 2k + 1− (e−j2π nN 2k)N

1− e−j2π nN 2k

+ N

2 =

1
4

1− ej2π nN 2kN

1− ej2π nN 2k + 1− e−j2π nN 2kN

1− e−j2π nN 2k

+ N

2 =

1
4

 1− ej2πn2k

1− ej2π nN 2k + 1− e−j2πn2k

1− e−j2π nN 2k

+ N

2

(Q.5)

where ∑N−1
n=0

1
2 = N

2 was used. Since n ∈ N and k ∈ N the exponents will be multiple
integers of 2π. It holds that ejp2π = 1 with p ∈ Z. This can be easily seen by drawing
its phasor diagram and recognizing that if the phase is a multiple integer of 2π, the
imaginary part Im{ejp2π} will be zero and the real part will be Re{ejp2π} = 1 since
|ejp2π| = 1. Hence, we finally arrive at the relation

N−1∑
n=0

cos2(2π n
N
k) = 1

4( 1− 1
1− ej2π nN 2k + 1− 1

1− e−j2π nN 2k ) + N

2 = N

2 (Q.6)

which we wanted to show. In the same manner the relation given in (Q.2) can be proven.

Q.2 Finite Sum of Product of Cosine and Sine

Lemma Q.2.1. Let k ∈ N then

N−1∑
n=0

cos(2π k
N
n)sin(2π k

N
n) = 0 (Q.7)

Proof. Let k ∈ N then using the trigonometric identity, known as the double angle formula
sin(2Θ) = 2sin(Θ)cos(Θ), we obtain

N−1∑
n=0

cos(2π k
N
n)sin(2π k

N
n) = 1

2

N−1∑
n=0

2cos(2π k
N
n)sin(2π k

N
n)

= 1
2

N−1∑
n=0

sin(2π k
N
n · 2)

(Q.8)
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Appendix Q: Cosine and Sine Equalities

Using the relation sin(Θ) = ejΘ−e−jΘ
2j given in (2.19), results in

1
2

N−1∑
n=0

sin(2π k
N
n · 2) = 1

2

N−1∑
n=0

ej2π
k
N
n·2 − e−j2π k

N
n·2

2j

= 1
2

N−1∑
n=0

ej2π
k
N
n·2

2j − 1
2

N−1∑
n=0

e−j2π
k
N
n·2

2j

(Q.9)

where each summand is a geometric series:

N−1∑
n=0

rn = (1− rN)
1− r (Q.10)

with r = ej2π
k
N
·2 and r = ej2π

k
N
·2, respectively. Hence, we can write

1
2

N−1∑
n=0

ej2π
k
N
n·2

2j − 1
2

N−1∑
n=0

e−j2π
k
N
n·2

2j = 1
4j (1− ej2π k

N
N ·2

1− ej2π k
N
·2
− 1− e−j2π k

N
N ·2

1− e−j2π k
N
·2

)

= 1
4j ( 1− ej2πk·2

1− ej2π k
N
·2
− 1− e−j2πk·2

1− e−j2π k
N
·2

)

= 0

(Q.11)

since k ∈ N+ such that ej2πk·2 = e−j2πk·2 = 1. Hence, the result.

Q.3 Finite Sum of Sine and Cosine

Lemma Q.3.1. Let k ∈ N then

N−1∑
n=0

sin(j2π k
N
n) =

N−1∑
n=0

cos(j2π k
N
n) = 0 (Q.12)

Proof. The sine can be expressed in terms of complex exponentials as

sin(j2π k
N
n) = ej2π

k
N
n − e−j2π k

N
n

2j (Q.13)

such that

N−1∑
n=0

sin(j2π k
N
n) =

N−1∑
n=0

ej2π
k
N
n − e−j2π k

N
n

2j = 1
2j

N−1∑
n=0

ej2π
k
N
n − 1

2j

N−1∑
n=0

e−j2π
k
N
n (Q.14)

which is zero according to Lemma Q.4.1. Similarly, it can be shown that∑N−1
n=0 cos(j2π k

N
n) =

0, using the relation

cos(j2π k
N
n) = ej2π

k
N
n + e−j2π

k
N
n

2 (Q.15)
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Q.4 Finite Sum of Complex Exponential

Q.4 Finite Sum of Complex Exponential

Lemma Q.4.1. Let k ∈ N then

N−1∑
n=0

ej2π
k
N
n =

N−1∑
n=0

e−j2π
k
N
n = 0 (Q.16)

Proof. Equation (Q.16) constitutes a geometric series with r = ej2π
k
N
k or r = e−j2π

k
N ,

respectively. The geometric series is defined in Equation (2.21) and is repeated here for
convenience

N−1∑
n=0

rn = 1− rN
1− r (Q.17)

For r = ej2π
k
N this results in

N−1∑
n=0

e(j2π k
N

)n = 1− e(j2π k
N

)N

1− e(j2π k
N

)
= 1− e(j2πN

N
k)

1− e(j2π k
N

)
= 1− e(j2πk)

1− e(j2π k
N

)
= 0 (Q.18)

since k ∈ N, such that ej2πk = 1. Similarly, it can be shown that ∑N−1
n=0 e

−j2π k
N
n = 0, since

e−j2πk = 1. Hence, the result.
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Appendix R

Scientific Publications

During the employment at the Institute of Flight System Dynamics at TUM, this author
contributed to the following publications. Note, that in 2019 after marriage the surname
of the author of this thesis changed from GABRYS to STEINERT. Besides, the author
was involved in the notes for the lecture Advanced Flight Control [Adv22] and in the notes
for the lab courses Numerical Methods and Tools in Aerospace Engineering Lab [NMT22]
and Flight Control Systems Lab [FCL22].

• STEINERT, A. ; SPECKMAIER, M. ; GIERSZEWSKI, D. ; STEFFENSEN, R. ;
HOLZAPFEL, F.: Experimental Results of Flight Test-Based Gain Retuning. In:
Accepted for AIAA Scitech 2022 Forum

• STEINERT, A. ; STEFFENSEN, R. ; HOLZAPFEL, F.: Bias of Anticipated Non-
Parametric Closed-loop Frequency Response for Controller Gain Re-tuning. In:
Manuscript submitted for publication

• GABRYS, A. ; HOLZAPFEL, F. ; STEFFENSEN, R. ; MERKL, C.: Flight test
based gain tuning using non-parametric frequency domain methods. In: AIAA
Scitech 2021 Forum, 2021

• GOSSMANN, F.; GABRYS, A.; SVARICEK, F.: Longitudinal Short-Period Air-
craft Motion Control under Loadcase Variation. In: Proceedings of the American
Control Conference, 2020

• GABRYS, A.C. ; STEFFENSEN, R. ; DE ANGELIS CORDEIRO, R. ; MOUTINHO,
A. ; HOLZAPFEL, F.: Integration of phase plane flight envelope protections in cas-
caded incremental flight control. In: 21st IFAC Symposium on Automatic Control
in Aerospace ACA 2019, 2019

• STEFFENSEN, R. ; STEINERT, A. ; HOLZAPFEL, F.: Flight envelope protections
using phase plane limits and backstepping control. In: 5th CEAS Conf. Guid.
Navig. Control, 2019
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• GOSSMANN, F. ; SVARICEKY, F. ; GABRYS, A.: Control of longitudinal air-
craft motion with loadcase robustness using LPV-control with partly-measurable
parameters. In: AIAA Guidance, Navigation, and Control Conference, 2018

• SCHATZ, S.P. ; GABRYS, A.C. ; GIERSZEWSKI, D.M. ; HOLZAPFEL, F.: Inner
Loop Command Interface in a Modular Flight Control Architecture for Trajectory
Flights of General Aviation Aircraft. In: 5th International Conference on Control,
Decision and Information Technologies, CoDIT, 2018

• KARLSSON, E. ; SCHATZ, S. ; BAIER, T. ; DÖRHÖFER, C. ; GABRYS, A.
; HOCHSTRASSER, M. ; KRAUSE, C. ; LAUFFS, P. ; MUMM, C. ; NÜRN-
BERGER, K. ; PETER, L. ; SCHNEIDER, V. ; SPIEGEL, P. ; STEINERT, L. ;
ZOLLITSCH, A. ; HOLZAPFEL, F.: Development of an automatic flight path con-
troller for a DA42 general aviation aircraft. In: Advances in Aerospace Guidance,
Navigation and Control. (pp.121-139). Springer, 2018

• KARLSSON, E. ; BAIER, T. ; DÖRHÖFER, C. ; GABRYS, A. ; HOCHSTRASSER,
M. ; KRAUSE, C. ; LAUFFS, P. ; MUMM, C. ; NÜRNBERGER, K. ; PETER, L.
; SCHATZ, S. ; SCHNEIDER, V. ; SPIEGEL, P. ; STEINERT, L. ; ZOLLITSCH,
A. ; HOLZAPFEL, F.: Active control objective prioritization for high-bandwidth
automatic flight path control. In: Advances in Aerospace Guidance, Navigation and
Control. (pp.141-161). Springer, 2018

• KARLSSON, E. ; GABRYS, A. ; SCHATZ, S.P. ; HOLZAPFEL, F.: Dynamic flight
path control coupling for energy and maneuvering integrity. In: 14th International
Conference on Control, Automation, Robotics and Vision, ICARCV 2016, 2016

• SCHATZ, S.P. ; SCHNEIDER, V. ; KARLSSON, E. ; HOLZAPFEL,F. ; BAIER,
T. ; DÖRHÖFER, C. ; HOCHSTRASSER, M. ; GABRYS, A. ; KRAUSE, C. ;
LAUFFS, P. ; MUMM, C. ; NÜRNBERGER, K. ; PETER, L. ; SPIEGEL, P. ;
STEINERT, L. ; ZOLLITSCH, A.: Flightplan flight tests of an experimental DA42
general aviation aircraft. In: 14th International Conference on Control, Automa-
tion, Robotics and Vision, ICARCV 2016, 2016

• SCHNEIDER, V. ; PIPREK, P. ; SCHATZ, S.P. ; BAIER, T. ; DÖRHÖFER, C. ;
HOCHSTRASSER, M. ; GABRYS, A. ; KARLSSON, E. ; KRAUSE, C. ; LAUFFS,
P. ; MUMM, C. ; NÜRNBERGER, K. ; PETER, L. ; SPIEGEL, P. ; STEINERT, L.
; ZOLLITSCH, A. ; HOLZAPFEL,F.: Online trajectory generation using clothoid
segments. In: 14th International Conference on Control, Automation, Robotics and
Vision, ICARCV 2016, 2016
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• KARLSSON, E. ; SCHATZ, S. ; BAIER, T. ; DÖRHÖFER, C. ; GABRYS, A.
; HOCHSTRASSER, M. ; KRAUSE, C. ; LAUFFS, P. ; MUMM, C. ; NÜRN-
BERGER, K. ; PETER, L. ; SCHNEIDER, V. ; SPIEGEL, P. ; STEINERT, L.
; ZOLLITSCH, A. ; HOLZAPFEL, F.: Automatic flight path control of an ex-
perimental DA42 general aviation aircraft. In: 14th International Conference on
Control, Automation, Robotics and Vision, ICARCV 2016, 2016

• DIEPOLDER, J. ; Ben-Asher, J.Z. ; GABRYS, A. ; SCHATZ, S. ; BITTNER,
M. ; RIECK, M. ; GRÜTER, B. ; HOLZAPFEL, F.: Flight control law clearance
using worst-case inputs. In: 30th Congress of the International Council of the
Aeronautical Sciences, ICAS 2016, 2016
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