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Abstract
A numerical analysis is validated against a Swiss Federal Commission for Technology and Innovation (CTI)—frame impact
experiment conducted by the Swiss Company Geobrugg. The discrete element method is used to simulate the impacting
object, while the highly nonlinear structural response is analysed with the finite element method. Both methods are coupled
within an open-source multi-physics research code to exchange data and simulate the interaction. The successful practical
application of the coupling algorithm is demonstrated with this work, as the numerical results show good agreement with the
experimental results. Within this paper the main focus is the appropriate modelling of the impacting objects, which heavily
influences the simulation results, while a simplified structural model allows a correct assessment of the global deformation
behaviour and reaction forces.
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1 Introduction

Natural disasters, such as rockfall events, pose a serious threat
to people, especially in mountainous areas. Several works,
such as [1–4], already describe how to simulate these events
and discuss the appropriate modelling of protection struc-
tures. While [5,6] use the coupling of the DEM and the FEM
to analyse the interaction of rocks and the ground surface,
[7] discusses different design strategies for flexible rockfall
barriers.

Recently, the work of [8,9] explained how to realize a
multi-physics analysis of rock impact in anopen-source code.
The code that is used within this work is KRATOS [10–
13]. Since this is an open-source code, it allows for further
development by independent research groups and is pub-
licly accessible. The development and use of open-source
codes allows the reliable assessment of life threatening nat-
ural events for everyone and is of upmost importance for the
safety of the society.

To model the impact scenario two different numerical
methods are combined in a coupled simulation. Thefinite ele-
mentmethod (FEM) is used to analyse the structural response
to the impact, while the discrete element method (DEM)
models and simulates the impacting objects. While the DEM
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represents a particle method [14–16], the FEM is concerned
with the analysis of continuous, deformable bodies.

In contrast to continuum-based particle methods such as
the material point method (MPM) [17,18] or the particle
finite element method (PFEM) [19,20], the DEM describes
single discrete particles, instead of a continuum, which is
composed of particles. In the case of debris flows and
avalanches, a continuum-based particle method such as
MPM or PFEM would prove to be more useful. In the
case of the simulation of rockfalls, the modelling of the
impacting objects as discrete objects seems to make the most
sense.

The DEMmodels the dynamics of spherical particles tak-
ing into account external forces such as gravity and contact
with other particles or objects [14–16]. It can be used for
many different particle shapes such as rectangles, cones,
spheres and more; however, in this publication only spher-
ical particles are considered. To describe more complex
shapes, a set of spheres is connected within clusters. A clus-
ter consists of several particles, which are used for contact
detection and force evaluation. The mass and centre of grav-
ity are described within the cluster shape and independent
of the masses of the particles (for more information see
[14,15]).

Current state-of-the-art publications, such as [1,3], use the
FEM tomodel the geometry of the test objects. By using geo-
metric objects such as surfaces and lines, the use of FEM in
this case leads to complex and costly contact algorithms [16].
The use of spherical particles greatly simplifies contact detec-
tion and thus appears to be the more appropriate modelling
method. Additionally, the general restriction of simple FEM
geometries is alleviated since particle clusters can represent
arbitrarily shaped objects.

The objective of this work is to show the applicability of
the aforementioned coupling method and discuss the appro-
priate modelling of impacting objects. In contrast to standard
finite element discretization of the impacting objects as pro-
vided in previous works, e.g. [1–4], the DEM in KRATOS
uses clusters of single spheres to represent any desired, arbi-
trary shape.This allows a simple contact searchbut also raises
the question how these clusters have to be defined to achieve
adequate results. Since this work focuses on the appropriate
modelling of the impacting objects, the application of the
coupling algorithm and not on the exact analysis of detailed
structural components, the results of a test resulting in an
elastic structural response are used. Although large rockfall
events often result inmuch higher impact energies, often gen-
erating plastic and possibly destructive structural responses,
this behaviour is not considered for demonstrative simplicity.

From a formal point of view, the structure of the paper is
as follows:

– Section 2 briefly describes the underlying coupling the-
ory and the respective components in this multi-physics
simulation (see [8,9] for detailed information).

– Section 3 describes the experiment which will be used
for validation and calibration.

– Section 4 discusses the modelling of the numerical
simulation used to replicate the experiment. Both the
modelling of the structure itself and the modelling of
the impacting object are discussed.

– Section 5 presents the numerical results and explains each
of the results in detail.

– Section 6 finalizes this work with a conclusion and an
outlook for future research.

2 DEM–FEM coupling

The general coupling of the two participating methods
(DEM, FEM) was discussed in detail in recent publications
such as [5–7,15,21]. In particular, [5–7] describe the possibil-
ity to apply the aforementioned coupling to analyse rockfall
events modelling the interaction of the rock with the ground.
Recently [8,9] used the FEM to calculate the highly nonlin-
ear structural response of protection nets to the extreme load
cases of rockfall events (simulated by the DEM), allowing
for a deeper understanding of the interaction of impacting
objects with flexible tension structures.

Nevertheless, for the sake of completeness, a short intro-
duction is given in the proceeding subsections expressing
tensors with bold letters and scalar values with regular let-
ters. A list of appropriate, more detailed publications on the
respective topics is attached to the specific subsections.

2.1 DEM

As a particle method, the DEM is used to model single dis-
crete particles. The movement of discrete particles can be
effectively simulated,makingDEMan advantageousmethod
for modelling impacting objects. It offers the advantage that
rigid objects of any shape can also be modelled as particle
clusters, which greatly reduces the computational effort. This
feature is used in this work to model the impacting objects.

Various contact laws may be formulated which can be
applied to the case at hand. The contact of particles to arbi-
trary geometric objects such as points, lines and surfaces is
always modelled in the present implementation as the con-
tact of the geometric objects to a sphere. This sphere has a
radius Ri and a geometrical centre Ci .

For thepresentwork three variants are of particular interest
(described in [21]), where de is used to express the smallest
distance to the line element in contact. The geometric contact
conditions are stated in Table 1.
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Table 1 Geometric contact conditions

Two particles i, j ‖ Ci − C j ‖< Ri + R j

Particle i and vertex va ‖ Ci − va ‖< Ri

Particle i and line (Fig. 1) de < Ri

Fig. 1 Contact spherical particle—line [8,21]

ba

Fig. 2 DEM–DEM and DEM–FEM rheological models, adapted from
[15]. a DEM–DEM. b DEM–FEM

The corresponding contact forces are calculated with the
contact law [21], which is suitable for the respective applica-
tion, and thus, the equation of motion is integrated based on
Newton’s second law. In this study a Hertz–Mindlin spring-
dashpot contact model (abbreviated as HM+D in [15]) is
used. A sketch of the rheological contact model is shown
in Fig. 2. The respective normal, tangent spring stiffness kn ,
kt as well as the normal, and tangent damping coefficients
cn , ct are used to calculate the contact forces [9,15,21–23].
To restrict the maximum tangential force to the Coulomb’s
friction limit the coefficient of friction μ is applied.

A detailed description of the contact algorithms, force
evaluations, time integration, and other DEM-related topics
would lie beyond the scope of this work. For a more detailed
introduction to DEM see [14–16,21–24].

2.2 FEM

The FEM is used in the context of this work to discretize the
protective structure. As described in [25], the virtual work is
set up with the involvement of the d’Alembert forces and the
external virtual work δWext,

δW =
∫

Ω0

σ PK2 · δεGL dΩ0

+
∫

Ω0

ρu̇ · δu dΩ0 − δWext = 0.
(1)

As depicted in Eq. 1 the second Piola–Kirchhoff stress
σ PK2, the work equivalent Green–Lagrange strain εGL, the
density ρ as well as the degrees of freedom u (here the dis-
placements) and their second time derivative ü = ∂2u

∂t2
are

integrated over the reference domain Ω0.
By evaluating Eq. 1 the following equilibrium equation

results,

Mü + Cu̇ + Ku = fext, (2)

with the mass matrix M, the damping matrix C, the stiff-
ness matrix K, and the external forces (the DEM contact
forces in this context) fext. Because of the very short time
interval investigated in the field of rockfall simulation [4],
explicit time integration is suitable for solving this system of
equations, since small time steps are required to resolve the
impact process with sufficient accuracy. This method does
not require the complex solution of sometimes very large
systems of equations. A diagonal mass matrix is used (point
mass assumption) and Eq. 2 is solved with the help of New-
ton’s second law,

ü = M−1 (fext − fint − Cu̇) , (3)

using the internal forces fint and the discrete nodal velocities
u̇.

2.3 Coupling procedure

The coupling procedure is described in detail in [8,9]. The
basic idea is the exchange of data between two stand-alone
analyses. Figure 3 describes this idea. The respective steps
can be summarized in the following enumeration (numbers
relate to Fig. 4).

1. Solve DEM part, resulting in contact forces.
2. Transfer the forces with the help of a mapper [26] to the

FEM part.
3. Solve FEM part, resulting in displacements, velocities

and accelerations.
4. Transfer displacements, velocities and accelerations back

to the DEM part.
5. If necessary: Calculate interface residuals [9,27,28].
6. If necessary: Repeat steps 1–5 until the interface residual

reaches a given tolerance [9,27,28].
7. Advance in time.

As known from other coupled multi-physics problems,
such as fluid–structure interaction (FSI) [28], the direct
explicit transfer of the interface data (forces, velocities, dis-
placements) can lead to divergence problems in the staggered
simulation. This problem is caused by large contact forces
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FEM – structure, Ω
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Fig. 3 Coupling interface DEM–FEM [8,9]

Forces

Displacement &
Velocity

DEM

FEM

1. 1.6.

6.

6.

6.

7. 7.

.7.7 .3.3

.2.2

.4.4

Fig. 4 Strong coupling communication diagram [9]

due to differences in velocities, acceleration, and highly dif-
ferent masses on both sides. In contrast to the weak coupling
approach (direct exchange of data and subsequent proceeding
in time [9]), the strong coupling approach, which is presented
in [9] and depicted in Fig. 4, adds an additional iteration loop
in each time step, which solves for the equilibrium between
both numerical physics. This requires a Gauss–Seidel loop
between DEM and FEM, which might need to be solved
multiple times within one time step.

A more profound discussion of the aforementioned cou-
pling scheme can be found in [8,9].

3 Experiment

The experiment set-up is described below and depicted in
Fig. 5. In the course of this work, only the required compara-
tive data will be published, while the remaining data are not
publicly accessible as property of Geobrugg. A standardized
(SAEFL) concrete block was used, with a total weight of 180
kg (the concrete block weighs in itself 175 kg, the attached
wire rope strap weighs 5 kg bringing the total weight of the
block to 180 kg) and an edge length of 0.41 m impacts a
3.9×3.9m2 DELTAX® G80/2 [29] (see Fig. 6) net which is
spanned into a CTI frame with rigid boundaries (see [2] for
a detailed description). The rigid boundaries are in this case
5/8” shackles connecting the mesh to the steel frame.

The block is dropped from a height of 2.0m which results
in an impact velocity ofv = √

2.0 · 9.81 · 2.0 = 6.261484m
s .

The same test is repeated twice,whereas (due to different pre-

Fig. 5 Photograph from the testing site in Walenstadt, Switzerland,
showing the CTI frame

Fig. 6 Technical drawing of the DELTAX® G80/2 [29]

stresses) the initial sag, as a result of the dead load, varies
from 0.05 to 0.10m (labelled with exp_1, respectively, exp_2
hereafter). The tests are laid out to produce a rebound of the
block without failure of any mesh wire.

Three main parameters are obtained from these tests by
the means of a high-speed camera and an internal acceler-
ation measuring device. The high-speed camera records at
a resolution of 1280 × 1024 and a frame rate of 500 fps.
The acceleration sensor is composed of a built-in triaxial
accelerometer with a range up to 500 g and a sampling rate
of 20,000Hz and is incorporated in the test block. Deflec-
tion, i.e. the vertical displacement or sag of the mesh after
impact, is measured directly through the analysis of the
videos obtained from the high-speed camera. The block’s
velocity is calculated by following the block’s trajectory over
time in the high-speed video, based on the principle dx/dt.
The velocity before impact is compared between the com-
puted one, as explained above, and the result from the video
analysis, to ensure the plausibility of the video analysis. The
analysis of the accelerations obtained by the accelerometer
yields the force evolution over time.

The repeatability of the tests is deemed to be given. Five
tests were carried out in total. The test block and the drop
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Table 2 Numerical properties for the structure

Thickness 0.008 m

Pre-stress 0.01N/m2

Density ρ 81.25 kg/m3

Young’s Modulus 5 · 107 N/m2

Poisson’s ratio ν 0

height are the same for all tests, i.e. the input parameters
are kept constant. Three parameters are varying slightly, but
all considered to be in a negligible range. The dimensions
of the net panel itself is varying by +/− 5%. The tension-
ing force when installing the net panel in the test frame is not
directlymeasurable, this leads to a variation of the sag of +/−
5 cm. Finally, the tensile strength of the material is varying
between 1700N/mm2 and 2030N/mm2, with a mean value
of 1860N/mm2. This could be of importancewhen analysing
the breaking load, although this variation is also deemed to be
negligible in the practical application, since the lowest value
is always considered. The tensile strength is of minor impor-
tance for this work as no damage in the mesh is observed.

4 Numerical modelling

4.1 Structural modeling

Due to the set-up of the experiment and the fine mesh of the
used protection netting (see Fig. 6) a simplification of the
net to a closed, homogeneous surface suggests itself. This
assumption simplifies the structuralmodelling and allows the
use of two-dimensional finite elements. Publications such as
[1,3] suggest a shell element to be used. While the advan-
tages are clarified in the publication cited, this would mean
an overhead for the underlying experiment. Due to its sim-
plified set-up a membrane element [25] is used in this work.
Carrying only in-plane stresses and omitting rotational nodal
degrees of freedom an initially plane geometry possesses
zero stiffness. As a remedy a minor pre-stress is applied to
the structural model (see Table 2) to provide a non-singular
stiffness matrix at the beginning of the simulation.

TheYoung’sModulus is tuned to the given value inTable 2
in order to achieve an initial sag due to dead load of≈ 0.05m
(see Fig. 7), as described in the experimental set-up.

With respect to the technical data sheets available on [29]
the thickness of the membrane element is set to 0.008m,
whereas the density of the membrane is derived from the
provided weight of 0.65 kg

m2 DELTAX® mesh standard roll:

ρ = 0.65
kg

m2 /0.008 m = 81.25
kg

m3 . (4)

Fig. 7 Initial static analysis to obtain equilibrium position for dead load
(plot scaled by factor ×10)

As described in the experimental set-up in Sect. 3 the two
tests that are investigated in this work show a rebound of
the impacting sphere and no damage. Due to the observed
structural response a simple elastic material model [25] and
a Poisson’s ratio of ν = 0 is applied in this work. In the
course of this work it is shown that structural models with the
right simplifications allow a correct assessment of the global
behaviour. If a detailed analysis of the deformation behaviour
and failure behaviour of individual structural elements is to
be carried out, more attentionmust be paid to structural mod-
elling. Publications such as [3,30] a contain a very detailed
description of the modelling and the state of the art.

4.2 Impacting object

In contrast to preceding works, such as [1,2], this work pro-
poses to model arbitrary objects with the help of discrete
spherical element clusters. The advantage over standardfinite
element discretized objects is the simplified contact detection
between arbitrary boundary objects and single spheres con-
tained in the cluster [21].

As depicted in Fig. 8, the standardized experiment object
is modelled with seven levels of refinement. Ranging from
a representation as a single sphere to a detailed geometrical
description with up to 22,232 spheres. Special algorithms are
needed to create such refined cluster files. This work uses the
sphere-tree algorithm described in [31,32] as it is available
in an online toolkit [33].

The density of the respective cluster is fitted to obtain
a total cluster mass of 180kg (see Sect. 3). Important DEM
parameters, such as the coefficient of restitution ε [22] and the
Young’s Modulus of the particle Ep, are varied with respect
to Table 3 with their influence studied. The range in which
Ep is selected is based on experience gained from previous
simulations.

5 Validation

The experiment described in Sect. 3 produced results which
are used to validate the proposed coupling algorithm [8,9]
and to investigate the influence of discrete element cluster
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Fig. 8 Cluster refinement
(1,8,56,296,1280,5408,22,232) 1 2 3 4 5 6 7

Table 3 Cluster versions (visualized in Fig. 8)

# Nr. of spheres ε Ep [N/m2]
c1 1 0.5 105

c2 8

c3 56

c4 289

c5 1280

c5_a 1280 0.2 5 · 105
c6 5408 0.5 105

c7 22,232

refinement, time step, coefficient of restitution ε, and the
Young’s Modulus Ep on the final solution of displacement,
velocity, reaction forces FR and contact forces FC. Further-
more, it is shown that simplified structural modelling allows
an appropriate evaluation of the global structural behaviour.

Each of the aforementioned clusters, described in Table 3,
is used in the numerical impact simulations. If not mentioned
otherwise, a time step value of dt = 10−5 s is used. The
results with the label “small dt” follow from a simulation
with dt = 10−6 s.

Although the simulated system set-up is more similar to
exp_1, the experimental results for exp_2 are added to the
result plots as it represents an experiment with the same
impact velocity and the same ofmass of the impacting object.
The difference in the initial sag is a results of the test set-up
and can hardly be controlled; thus, it allows error zones to
be added in the result plots to show the variability of the
experimental results.

5.1 Displacement

The simulated displacement values of the impacting object
are compared to the experiment results. Figure 9 shows that
the simulation results lie between the two experiment results.

It is noticeable that the refinement of the cluster shows
a large influence as soon as the number of spheres is
larger than one (c1). To explain this behaviour the simula-
tion is visualized at the time of maximum displacement in
Figs. 11, 12, 13, 14, 15, 16 and 17 (see Fig. 10 for comparison
to the experiment). Due to the fact, that the contact forces in
DEM are calculated with the help of spring-dashpot models
[15,22,23] the single sphere with one large radius experi-
ences an indentation which is larger than it is for the clusters
with more (smaller spheres). This has additional effects too,
which become clear in Figs. 18 and 19. The single particle
has a larger indention (Fig. 11) and thus decelerates slower
(Fig. 18). This finally leads to lower contact/reaction forces
and a longer duration of load application, as visualized in
Fig. 19. The same behaviour is observed when decreasing
the time step (see Fig. 9, label “c1 small dt”) and thus can be
concluded to be a problem of the very rough representation
of the original geometry as a single sphere.

Regarding the remaining refinement levels, a good agree-
ment with the exp_1 is shown, as the initial sag of the
numerical model due to dead load matches with the initial
sag of the first experiment set-up exp_1 of 0.05 [m], while the
displacements of all simulation results are within the error
zone.

5.2 Velocity

Similar to the observations in Sect. 5.1 all cluster refine-
ment levels again show good agreement with the experiment
results in Fig. 18. The exception is again the single sphere
which decelerates more slowly due to its larger indention
(Fig. 11).

5.3 Forces

Lastly, the forces obtained from the numerical simulation
are compared to the experiment results. Figure 19 shows the
reaction forces in the structure as a sum over all boundary
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Fig. 9 Displacement of impacting objects

Fig. 10 Maximal deflection, experiment

Fig. 11 Maximal deflection, cluster 1

Fig. 12 Maximal deflection, cluster 2

Fig. 13 Maximal deflection, cluster 3

nodes. A good agreement for all cluster refinements >c_1
can be observed for both the force value as well as the con-
tact time. Similar to the observations in the previous sections
the roughest object representation performs poorly. Themax-
imum force is below the experimentally obtained value and
the time in which the object is in contact with the structure

Fig. 14 Maximal deflection, cluster 4

Fig. 15 Maximal deflection, cluster 5

Fig. 16 Maximal deflection, cluster 6

Fig. 17 Maximal deflection, cluster 7

is too large. c_1, as the roughest object representation, is a
single sphere, poorly representing the correct object shape.
With regard to the forces, it can also be said that a more pre-
cise modelling of the exact object geometry plays a major
role, even if the impact, as in this case, takes place without
rotations.

One more interesting behaviour that can be observed in
the simulations is the difference between reaction forces FR
(structural response, FEM) and contact forces FC (cluster
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Fig. 19 Reaction forces FR (t)

interaction with boundary, DEM). Figure 20 illustrates the
difference for a varying time step size, which is shown in
Table 4. For simplicity, cluster c1 is used. The theoretical
difference should be described by only the dead load of
the protection net. Nevertheless strongly oscillating contact
forces are observed for rather larger time steps, while the
reaction forces remained smooth.

As visualized in Fig. 20, the contact forces FC for the
largest time step (s1) strongly oscillate, while the respective
reaction forces FR develop smoothly and exactly in the mid-
dle of the oscillations. This behaviour can also be observed

for the next smaller time step (s2) as soon as the maximum
force is reached. For the smallest time step (s3) the described
behaviour is almost negligible.

Considerably large contact forces in combination with
large time steps that are too big to resolve the contact interac-
tion can lead to particles losing contact in one time step only
to regain contact again in the next. As a result of this fretting,
oscillating contact forces FC are generated. Since the contact
points are located locally in the centre of the structure and are
at some distance from the edge nodes at which the reaction
forces are calculated, the influence of the initial oscillations
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Table 4 Different time steps
used for the simulation shown in
Fig. 20

# dt (s)

s1 2 × 10−5

s2 6 × 10−6

s3 1 × 10−6

on the reaction forces is negligible if the time steps are suffi-
ciently small. With regard to the results in Fig. 20, it is clear
that the correct time step is chosen because the results of the
reaction forces for s2 and s3match. The strong oscillations of
the contact forces have only local influences due to the choice

of a small time step but make a comparison to experimentally
obtained results difficult. For this reason the reaction forces
FR are chosen for comparison.

5.4 Results

With respect to the relative computational time for each sim-
ulation, as shown in Fig. 21, the effect of additional particles
is negligible under ≈ 103 spheres. Additionally, considering
the results in Sect. 5, the cluster version c5 is recommended
for usage. It represents the best compromise between accu-
racy and computing effort, while also properly representing
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Fig. 21 Comparison of relative computational time
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the geometry (see Fig. 8). It is also expected that the fine rep-
resentation of the impacting object influences the simulation
results favourably if the rotation of the object plays a crucial
role (see also [8], where a simplified Attenuator is simulated
by using an arbitrary shaped rock object).

The computational time for the simulation of the cluster c5
is discussed as an example. A total time of 1108s ≈ 18.5min
with an increased time step of dt = 2 · 10−5 s for a total
simulation time of 0.3 s is required. With respect to Fig. 9,
the cluster leaves the reference axis of origin at≈ 0.25 s; thus,
the simulation time could be further reduced by ≈ 17%. The
CPU system settings for this simulation are an Intel(R)
Xeon(R) CPU E5-2623 v4 @ 2.60 GHz.

6 Conclusion

This contribution demonstrates that using the DEM for
modelling an impacting object as well as simulating the
interaction with the FEM structure is expedient. It allows
modelling of any desired shape without requiring complex
contact models between surfaces, lines and vertices. The
strategy of using clusters of single spheres simplifies these
contact models to a simple sphere contact detection. As
shown in this work, this feature can be used to simulate
standardized test objects, as illustrated in Fig. 8, as well as
arbitrary shapes (see Fig. 22).

In cases of real rockfall scenarios it can be beneficial
to simulate different, varying rock shapes to also capture
the influence of sharp edges, and progressive fragmentation
which result in a reduction of kinetic energy [6]. Additionally
smaller sizes of impacting objects can cause a bullet effect
[4]. The use of discrete element clusters in combination with
cohesive forces, as described by [15], allows the cluster to
break, reaching limit stresses, and ultimately allows mod-
elling of cluster fragmentation.

Additionally a detailed discussion of the comparison
between simulation results and test results highlights that
a coarse description of the impacting object renders poor
results (Figs. 9, 18, 19), while a reasonable representation
of the impacting object geometry can be achieved with-
out significantly increasing computational time (Fig. 21).
The simplification of the structure to a closed surface (see
Sect. 4.1) and the appropriate modelling of the impacting
object (see Sect. 4.2) are confirmed to strike a good compro-
mise between computational time and the approximation of
the physically correct structural response (see Figs. 9, 18, 19).
The relatively simplified modelling of the structure was
shown to predict reasonably accurate global deformation
behaviour and reaction forces. In combination with the high-
performance modelling of the impacting objects as spherical
clusters, this approach has advantages over current publi-
cations that use very complex structural models and thus

Fig. 22 Arbitrary rock shape modelled with discrete element cluster

require a lot of computing time. The contact forces and reac-
tion forces of the structure were also compared. It was shown
that relatively large time steps can lead to oscillating con-
tact forces, which can be counteracted with smaller time
steps restricting its influence on local parts of the structure.
Although the contact forces can oscillate strongly, the reac-
tion forces are relatively smooth. In addition to the elastic
tests considered in this paper, experiments that lead to plas-
tic deformations or even damage to themeshwere carried out
too. It is expected that the application of plasticity constitu-
tion laws and damage models in the FEM part will also allow
the reproduction of the results of the other experiments.

The accurate assessment of life threatening natural events
(such as rock slides, mud flow, and strong wind events) is
of great value to society, with the open-source KRATOS
[10,12,13] multi-physics software offering advanced anal-
ysis capabilities free of charge for all. The code is publicly
accessible via a GitHub repository [34] with an installation
guideline provided.KRATOS is designed inC++ and includes
a Python interface to facilitate the advanced development
and simulation. With easy access and a community where
participation is highly appreciated, there is a great poten-
tial to further advance these simulation technologies. Such
open-source projects are of upmost importance for the soci-
ety, especially in times of extremeweather and environmental
events.

Author contributions All authors prepared the manuscript. All authors
read and approved the final manuscript.

Funding Not applicable.

Availability of data andmaterials The comparative data in thiswork are
the results of several experiments conducted by Geobrugg. The exper-
iments were carried out in 2018 in Walenstadt, Switzerland, according
to the Swiss guideline (SAEFL). The data are the property of Geobrugg
and are partly published in the course of this work; the remaining data
are not publicly available.

Compliance with ethical standards

Competing interests The authors declare that they have no competing
interests.

123



Computational Particle Mechanics

Code availability The software used is [10,12,13]. The current devel-
opers’ version is available at [34] as a GitHub repository.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. MentaniA,Govoni L,GiacominiA,GottardiG,BuzziO (2018)An
equivalent continuum approach to efficiently model the response
of steel wire meshes to Rockfall impacts. Rock Mech Rock Eng
51:2825–2838

2. Volkwein A (2004) Numerische simulation von flexiblen Stein-
schlagschutzsystemen. PhD thesis

3. Tahmasbi S, Giacomini A, Wendeler C, Buzzi O (2019) On the
computational efficiency of the hybrid approach in numerical sim-
ulation of Rockall flexible chain-link mesh. Rock Mech Rock Eng
52:3849–3866

4. Buzzi O, Leonarduzzi E, Krummenacher B, Volkwein A, Giaco-
miniA (2014) Performance of high strength rock fallmeshes: effect
of block size and mesh geometry. Rock Mech Rock Eng 48:1221–
1231

5. Lisjak A, Spadari M, Giacomini A, Graselli G (2020) Rock fall
numerical modelling using a combined finite-discrete element
approach. In: 2010 symposium rock slope stability (RSS2010).
Proceedings of the 2010 symposium rock slope stability (Paris 24–
25 November, 2010)

6. Lisjak A, Grasselli G (2010) Rock impact modelling using
FEM/DEM. In: Discrete element methods: 5th Int. conference on
discrete element method

7. Yu Z, Zhao L, Liu YP, Zhao S, Xu H, Chan SL (2018) Studies on
flexible rockfall barriers for failure modes, mechanisms and design
strategies: a case study of Western China, Landslides

8. Wendeler C, Sautter KB, Bucher P, Bletzinger K-U, Wüchner
Roland: Modellierungsaspekte und gekoppelte DEM-FEM Sim-
ulationen zur Untersuchung hochflexibler Steinschlagschutznetze,
Baustatik – Baupraxis (2020)

9. Sautter KB, Teschemacher T, Celigueta MÁ, Bucher P, Bletzinger
K-U,Wüchner R (2020) Partitioned strong coupling of discrete ele-
ments with large deformation structural finite elements to model
impact on highly flexible tension structures. https://doi.org/10.
1155/2020/5135194

10. Dadvand P, Rossi R, Oñate E (2010) An object-oriented environ-
ment for developing finite element codes for multi-disciplinary
applications. Arch Computat Methods Eng 17:253–297. https://
doi.org/10.1007/s11831-010-9045-2

11. KRATOS. https://www.cimne.com/kratos/
12. Mataix FV, Bucher P, Rossi R, Cotela J, Carbonell JM, Zorrilla R,

Tosi R (2020, May 29) KratosMultiphysics (Version 8.0). Zenodo.
https://doi.org/10.5281/zenodo.3234644

13. Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E,
Idelsohn S, Oñate E (2013) Migration of a generic multi-physics

framework to HPC environments. Comput Fluids 80:301–309.
https://doi.org/10.1016/j.compfluid.2012.02.004

14. Cundall PA, Strack ODL (2020) A discrete numerical model for
granular assemblies. Géotechnique 29:47–65

15. Santasusana M (2016) Numerical techniques for non-linear anal-
ysis of structures combining discrete element and finite element
methods. PhD thesis

16. Matuttis H-G, Chen J (2014) Understanding the discrete element
method: simulation of non-spherical particles for granular and
multi-body systems

17. Zhang X, Chen Z, Liu Y (2016) The material point method: a
continuum-based particle method for extreme loading cases. Aca-
demic Press, Cambridge

18. Chandra B, Larese A, Bucher P, Wüchner R (2019) Coupled
soil–structure interactionmodeling and simulation of landslide pro-
tective structures

19. LareseA (2016)ALagrangian PFEMapproach for non-Newtonian
viscoplastic materials. Rev IntMétodos Numér para Cálculo y Dis-
eño en Ingeniería. https://doi.org/10.1016/j.rimni.2016.07.002

20. Salazar F, González I, Joaquín L, Antonia OE (2015) Numeri-
cal modelling of landslide-generated waves with the particle finite
element method (PFEM) and a non-Newtonian flow model. Int J
Numer AnalMethods Geomech. https://doi.org/10.1002/nag.2428

21. Santasusana M, Irazábal J, Oñate E, Carbonell JM (2016) The
double hierarchy method. A parallel 3D contact method for the
interaction of spherical particles with rigid FE boundaries using
the DEM. Comput Particle Mech 3:407–428

22. Schwager T, Pöschel T (2007) Coefficient of restitution and linear-
dashpot model revisited. Granular Matter 9:465–469

23. Cummins S, Thornton C, Cleary P (2012) Contact force models in
inelastic collisions. In: 9th international conference on CFD in the
minerals and process industries

24. Joaquín I, Fernando S, Miquel S, Oñate E (2019) Effect of the
integration scheme on the rotation of non-spherical particles with
the discrete element method. Comput Particle Mech 6:545–559

25. Belytschko T, Liu WK, Brian M (2000) Nonlinear finite elements
for continua and structures. Wiley, New Haven

26. Tianyang W (2016) Development of co-simulation environment
and mapping algorithms. Technical University of Munich

27. Küttler U, Wall W (2008) Fixed-point fluid–structure interaction
solvers with dynamic relaxation. Comput Mech 43:61–72

28. Winterstein A, Lerch C, Bletzinger K-U, Wüchner R (2018) Parti-
tioned simulation strategies for fluid–structure–control interaction
problems by Gauss–Seidel formulations. Adv Model Simul Eng
Sci 5:29

29. DELTAX®, Geobrugg website.https://www.geobrugg.com/de/
DELTAX-7806,7859.html

30. Escallón JP, von Boetticher A, Wendeler C, Chatzi E, Bartelt P
(2015) Mechanics of chain-link wire nets with loose connections.
Eng Struct. https://doi.org/10.1016/j.engstruct.2015.07.005

31. Bradshaw G, O’Sullivan C (2004) Adaptive medial-axis approxi-
mation for sphere-tree construction. ACM Trans Graph 23:1–26

32. Gareth B, Carol O (2002) Sphere-tree construction using dynamic
medial axis approximation. ACM Trans Graph 2002:33

33. Sphere-Tree Construction Toolkit: http://isg.cs.tcd.ie/spheretree/
34. KRATOS-Github repository. https://github.com/KratosMultiphysics/

Kratos

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5135194
https://doi.org/10.1155/2020/5135194
https://doi.org/10.1007/s11831-010-9045-2
https://doi.org/10.1007/s11831-010-9045-2
https://www.cimne.com/kratos/
https://doi.org/10.5281/zenodo.3234644
https://doi.org/10.1016/j.compfluid.2012.02.004
https://doi.org/10.1016/j.rimni.2016.07.002
https://doi.org/10.1002/nag.2428
https://www.geobrugg.com/de/DELTAX-7806,7859.html
https://www.geobrugg.com/de/DELTAX-7806,7859.html
https://doi.org/10.1016/j.engstruct.2015.07.005
http://isg.cs.tcd.ie/spheretree/
https://github.com/KratosMultiphysics/Kratos
https://github.com/KratosMultiphysics/Kratos

	Influence of DE-cluster refinement on numerical analysis of rockfall experiments
	Abstract
	1 Introduction
	2 DEM–FEM coupling
	2.1 DEM
	2.2 FEM
	2.3 Coupling procedure

	3 Experiment
	4 Numerical modelling
	4.1 Structural modeling
	4.2 Impacting object

	5 Validation
	5.1 Displacement
	5.2 Velocity
	5.3 Forces
	5.4 Results

	6 Conclusion
	References




