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Abstract
Finite element vibration analysis of complex structures can require a high effort for mod-
eling and computation. The simulation of structure-borne sound transmission in solid
timber buildings is a good example. In this case, not only the parts themselves, such
as cross-laminated timber (CLT) panels, but also their connections must be modeled
correctly. Volumetric finite elements are well suited to represent the three-dimensional
displacement field in such structures. However, the computational costs can be high, for
instance, due to excessive mesh refinement at joints. Creating an efficient mesh, on the
other hand, can be associated with a large amount of manual work. The modeling effort
becomes even more significant if the connections contain thin damping layers to reduce
the transmission of structure-borne sound.

This thesis, therefore, proposes a component-based modeling approach. Therein, each
structural part is discretized separately by high-order finite elements and weakly cou-
pled using a modified mortar formulation that can represent linear viscoelastic layers in
a dimensionally reduced form. This procedure makes it possible to better adapt the dis-
cretization of structures to the geometry of each component and to consider the effect
of thin damping layers without explicitly resolving them by finite elements. Thus, the
generation of computationally efficient volumetric models can be significantly simplified
and even automated. The accuracy and efficiency of the proposed approach are moreover
demonstrated by various examples, ranging from a two-component CLT assembly to a
complete solid timber building.

Additive manufacturing (AM) is investigated in addition to solid timber construction
as another application area for the modified mortar method. The use of AM in the
construction industry is currently being studied intensively because of its significant po-
tential. It allows building companies to automate the construction process and to produce
functionally graded structures with complex geometries. In this part of the present thesis,
first, the current state of AM in construction is reviewed with a particular focus on digital
planning methods. Based on these insights, a heterogeneous structure exhibiting extraor-
dinary stiffness and damping properties is finally analyzed and designed on multiple scales
using advanced numerical methods, including the proposed mortar approach.



Zusammenfassung
Schwingungsanalysen komplexer Strukturen unter Verwendung der Finite-Elemente-
Methode können einen hohen Modellierungs- und Rechenaufwand erfordern. Ein gutes
Beispiel hierfür ist die Simulation von Körperschallübertragung in Massivholzgebäuden. In
diesem Fall müssen nicht nur die Bauteile selbst, wie z. B. Brettsperrholzplatten, sondern
auch deren Verbindungen korrekt modelliert werden. Volumenelemente sind gut geeignet,
das dreidimensionale Verschiebungsfeld in solchen Strukturen abzubilden. Die Rechnun-
gen können jedoch aufwendig sein, beispielsweise aufgrund von übermäßigen Netzverfei-
nerungen an Stoßstellen. Wird hingegen ein effizientes Berechnungsnetz erstellt, kann dies
mit viel manueller Arbeit verbunden sein. Der Modellierungsaufwand steigt sogar noch
weiter an, wenn dünne Dämpfungsschichten zur Reduzierung der Körperschallübertragung
in den Bauteilverbindungen eingesetzt werden.

Diese Arbeit stellt deshalb einen bauteilorientierten Modellierungsansatz vor. Darin
werden die Bauteile getrennt voneinander mit finiten Elementen hoher Ordnung diskreti-
siert und in integraler Form miteinander gekoppelt. Hierzu wird eine modifizierte Mortar-
Formulierung verwendet, welche die dimensionsreduzierte Abbildung linear viskoelasti-
scher Zwischenschichten erlaubt. Diese Vorgehensweise ermöglicht es, die Diskretisierung
von Strukturen besser an die Bauteilgeometrien anzupassen und die Wirkung dünner
Dämpfungsschichten zu berücksichtigen, ohne dass diese explizit mit finiten Elementen
aufgelöst werden müssen. Die Erstellung effizienter Volumenmodelle kann somit deutlich
vereinfacht und sogar automatisiert werden. Darüber hinaus werden die Genauigkeit und
die Effizienz des vorgestellten Ansatzes anhand mehrerer Beispiele gezeigt, angefangen bei
einem Decken-Wandanschluss aus Brettsperrholz bis hin zu einem gesamten Massivholz-
gebäude.

Die additive Fertigung wird neben dem Massivholzbau als weiteres Anwendungsgebiet
für die modifizierte Mortar-Methode untersucht. Der Einsatz additiver Fertigungsverfah-
ren in der Bauindustrie wird derzeit wegen seines großen Potenzials intensiv erforscht.
Bauunternehmen können hierdurch den Bauprozess automatisieren und funktional gra-
dierte Strukturen mit komplexer Geometrie erzeugen. In diesem Teil der vorliegenden
Doktorarbeit wird zuerst der aktuelle Forschungsstand zur additiven Fertigung im Bauwe-
sen präsentiert, wobei ein besonderer Schwerpunkt auf digitale Planungsmethoden gelegt
wird. Auf der Grundlage dieser Erkenntnisse wird schließlich eine heterogene Struktur, die
über außergewöhnliche Steifigkeits- und Dämpfungseigenschaften verfügt, auf verschiede-
nen Skalenebenen unter Verwendung fortschrittlicher numerischer Methoden, inklusive
des vorgestellten Mortar-Ansatzes, analysiert und gestaltet.
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dimensional mesh generation, however, is yet a non-trivial task, and mesh refinements
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remedy is to mesh the components independently from each other and to couple them
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because relevant features such as complex geometries need to be represented on multiple
scales. The finite cell method (FCM) and numerical homogenization are potential
remedies for this problem. Moreover, if the microstructures are placed in between the
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possible to discretize the components separately and to integrate the viscoelastic behavior
of the composite damping layer into their weak coupling. The present paper provides a
multiscale computational material design framework for such layers, based on FCM and
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is demonstrated in numerical studies. Therein, computational homogenization is first
performed on various microstructures before the resulting effective material parameters
are used in larger-scale simulation models to investigate their effect and to verify the
employed methods.
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Chapter 1

Introduction

1.1 Motivation
The finite element method (FEM) allows the prediction of sound and vibrations in the
low frequency range. It is therefore a powerful design tool to improve the serviceability of
buildings, including sound insulation [1]. In order to obtain meaningful results, relevant
aspects of the mechanical problem need to be represented properly. A standard approach
in structural engineering is to model each building component with dimensionally reduced
elements such as beams, plates, or shells. Their main advantages are the relatively low
costs of modeling and computation. However, the range of application is limited due to
the underlying assumptions on the stresses, strains, and displacements. Volumetric finite
elements may be required if the components or their connections exhibit a complex three-
dimensional (3D) displacement field. This can be the case, for example, in cross-laminated
timber (CLT) assemblies or structures made by additive manufacturing (AM):

• CLT panels comprise layers of wooden boards, which are glued together crosswise.
Thus, biaxial load transfer is possible [2]. Besides the particular structure of CLT
components, their connections must be modeled correctly in order to calculate the
vibration behavior of CLT assemblies.

• AM parts are created by joining materials in layers. In this way, intricate geometries
and material distributions can be produced automatically, starting from a digital
model. Examples are functionally graded materials and cellular structures [3–5].
Complex structural behavior can arise from both the layerwise production process
and a heterogeneous object design.

The modeling and computational effort required for a volumetric finite element analysis
can be fortunately reduced by advanced discretization methods. In the p-version of the
finite element method (p-FEM), high-order elements are used to get accurate numerical
results [6]. Due to their better convergence properties, considerably greater computa-
tional efficiency can be achieved in comparison to linear or quadratic elements. However,
conforming hexahedral meshes can be created automatically just for specific geometries.
Furthermore, strong local refinement may occur at connections between structural com-
ponents and increase the computational costs significantly. Such modeling difficulties can
be overcome by fictitious domain and multidomain methods:



2 1. Introduction

• Fictitious domain methods such as the finite cell method (FCM) do not need a mesh
that conforms to the boundary of a domain. It is sufficient to employ a Cartesian
grid or an equally simple mesh. Hence, elements may be cut by the boundary. The
original domain is, however, restored in these methods during the integration of the
element matrices and load vectors [6–8].

• Multidomain approaches such as the mortar and the penalty method allow dividing
a structure into weakly coupled subdomains that are discretized separately. Since
the meshes are not required to match each other at the interfaces, mesh generation
can be simplified and better adapted to the geometry. Moreover, different numerical
approaches can be employed for the subdomains [9–11].

Based on numerical vibration analysis, effective design changes can be implemented. A
common measure to reduce the transfer of sound and vibrations is to embed thin elastomer
layers between the components. Compared to rigid connections, however, junctions in-
cluding damping layers are more difficult to model and can lead to higher computational
costs if conformingly refined meshes are used. Alternative approaches for flexible con-
nections can be found in [12–17]. In [14], for example, springs and dashpots serve as a
representation of an elastomer layer in a volumetric FE model of a timber assembly. This
method still does not allow for an independent mesh generation of the coupled parts.
In contrast, the mesh for each component and elastomer can be created separately by
applying the dynamic substructuring technique presented in [16], where interface reduc-
tions are performed. A rigid body constraint was chosen for the interface surfaces of the
elastomers. This means that the procedure is not necessarily appropriate for viscoelastic
layers with large interface surfaces, such as elastomer strips [16]. This limitation does not
hold for the mortar formulation developed by Horger et al. [17]. Therein, a Robin-type
condition is employed for coupling domains and representing elastic layers between them.
The good performance and the stability of the method in combination with the p-version
of FEM were also shown in [17]. However, this formulation neglects damping within the
intermediate layer because it was only developed for modal analysis. As the loss factor
of the layer material is in general much higher than that of other structural materials, it
can have a significant influence on the vibration behavior of the entire structure. Hence,
for a more realistic model, viscoelasticity needs to be taken into account.b

1.2 Objectives
The aim of this work is to develop an accurate and efficient procedure for vibration analysis
of structures containing thin damping layers. In the proposed approach, the components
are discretized independently from each other with high-order hexahedral finite elements.
The subdomains are then weakly coupled by employing a mortar formulation that is
able to consider viscoelastic layers in a dimensionally reduced form. Parts with complex
structural features and their connections can thus be represented with low modeling and
computational effort. After deriving the modified mortar formulation, the accuracy and
efficiency of the component-based approach are verified by several examples from two
application fields: solid timber construction and additive manufacturing.
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The contributions of this thesis are:

• Development and validation of a high-order FE model that efficiently computes the
vibrations of CLT assemblies with and without elastomer layers in the low frequency
range (Paper A).

• Modification and verification of a mortar formulation to reduce the modeling and
computational costs for vibration analysis of structures containing isotropic damping
layers – such as elastomer bedded CLT assemblies (Paper B).

• Structural dynamic analysis of a solid timber building that demonstrates the good
suitability of the mortar-based approach within the planning process of construction
projects (Paper C).

• Review of AM in construction with a particular focus on digital planning methods
(Paper D).

• Extension and verification of the modified mortar formulation to represent damp-
ing layers made of composite microstructures that can be additively manufactured
(Paper E).

• Multiscale analysis of high damping composites to demonstrate the potential of AM
and of the proposed mortar-based approach in combination with FCM (Paper E).

1.3 Structure
This thesis is structured as follows. Chapter 2 outlines the fundamentals of the finite
element method for linear elastic and viscoelastic problems. Furthermore, techniques to
reduce the costs of modeling and computation are described, namely p-FEM, FCM, and
the mortar method. In this context, the mortar formulation modified to represent thin
damping layers is introduced.

Chapters 3 to 5 summarize Papers A to E and discuss the results. The proposed
mortar-based approach is applied here and investigated with respect to its accuracy. In
Chapter 3, first, a high-order finite element model of a two-component CLT assembly
is validated by measurements using a conforming mesh. Then, mortar-based models of
different solid timber structures ranging from the aforementioned CLT assembly to a
complete multistory building are presented and studied. This is followed by a description
of the second application area: additive manufacturing. Chapter 4 reviews the current
state of AM in construction. 3D printing processes and digital planning methods are
explained. After that, high damping composites that can be produced by AM are analyzed
on multiple scales in Chapter 5 by employing p-FEM, FCM, and the modified mortar
method.

Chapter 6 finally provides a concluding discussion with an outlook on future work.
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Chapter 2

Numerical methods for vibration
analysis

This chapter presents numerical methods to predict structural vibrations. First, the finite
element method and its p-version are outlined for linear elastic and viscoelastic problems.
The p-version of FEM can yield significant computational savings and serves as a basis
for the subsequently described finite cell and mortar methods, which in turn provide a
greatly simplified modeling process. Finally, a modified mortar formulation is introduced
to further improve the modeling and computational efficiency of vibration analyses for
structures that contain thin damping layers.

2.1 The finite element method

2.1.1 Linear elasticity
The displacements u of a three-dimensional body described in the coordinate system
(x, y, z) can be calculated at each time t based on the principle of virtual work. This
principle says that, in the state of equilibrium, the total internal work resulting from any
compatible variation δu of the displacements is equal to the corresponding total external
work [18]:

δWi = δWe (2.1)

with:

δWi =
∫

Ω
δεT σ dΩ (2.2)

δWe =
∫

Ω
δuT

(
b − ρ

∂2u
∂t2

)
dΩ +

∫
Γt

δuT t dΓ. (2.3)

The virtual strains δε, which are associated with δu, and the stresses σ are given in
Voigt notation. Furthermore, ρ denotes the density, ∂2u/∂t2 the acceleration, b the body
force within the domain Ω, and t the traction on Γt, as depicted for two dimensions in Fig-
ure 2.1. Provided that the displacements u are small, the strains ε can be approximated
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Figure 2.1: Linear elastic body.

by the linear kinematic equation:

ε = Du (2.4)

where D is a matrix of first-order partial differential operators:

D =

 ∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0
0 0 ∂

∂z
0 ∂

∂y
∂

∂x

T

. (2.5)

Moreover, a linear relationship between the stresses σ and the strains ε is assumed:

σ = Cε. (2.6)

The constitutive matrix C neither depends on the levels of the stresses and strains nor
on their development over time. This means that there is no delay between σ and ε. The
entries of C for orthotropic, cubic, and isotropic materials:

C =


C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (2.7)

can be computed from a certain number of independent material parameters [19, 20]:

• Orthotropic materials, such as wood, have three orthogonal planes of symmetry.
They are characterized by nine parameters, namely three Young’s moduli E1, E2,
E3, three Poisson’s ratios ν12, ν23, ν31, and three shear moduli G12, G23, G31:

C11 = E1

D0

(
1 − ν2

23
E3

E2

)
, C12 = E1

D0

(
ν12

E2

E1
+ ν23ν31

)
, C44 = G12,

C22 = E2

D0

(
1 − ν2

31
E1

E3

)
, C13 = E1

D0

(
ν12ν23

E3

E1
+ ν31

)
, C55 = G23,

C33 = E3

D0

(
1 − ν2

12
E2

E1

)
, C23 = E2

D0

(
ν23

E3

E2
+ ν12ν31

)
, C66 = G31 (2.8)

with:

D0 = 1 − ν2
12

E2

E1
− ν2

23
E3

E2
− ν2

31
E1

E3
− 2ν12ν23ν31. (2.9)
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• Cubic materials exhibit not only three orthogonal planes of symmetry but also
90° rotation symmetry with respect to those planes. They are described by three
parameters – the Young’s modulus E, the Poisson’s ratio ν, and the shear modu-
lus G:

C11 = C22 = C33 = E (1 − ν)
(1 + ν) (1 − 2ν) (2.10)

C12 = C13 = C23 = Eν

(1 + ν) (1 − 2ν) (2.11)

C33 = C55 = C66 = G. (2.12)

• Isotropic materials, such as pure polymers or metals, have an infinite number of
symmetry planes. They are defined by two parameters – the Young’s modulus E
and the Poisson’s ratio ν:

C11 = C22 = C33 = E (1 − ν)
(1 + ν) (1 − 2ν) (2.13)

C12 = C13 = C23 = Eν

(1 + ν) (1 − 2ν) (2.14)

C44 = C55 = C66 =
E
(1

2 − ν
)

(1 + ν) (1 − 2ν) . (2.15)

Substituting Equations (2.4) and (2.6) into Equations (2.1) to (2.3) yields:∫
Ω
(Dδu)T C(Du) dΩ =

∫
Ω

δuT

(
b − ρ

∂2u
∂t2

)
dΩ +

∫
Γt

δuT t dΓ. (2.16)

Here, the only unknowns are the displacements u. A numerical approximation of the
solution can be obtained by the finite element method. To this end, Ω is divided into
finite element domains Ωe using a mesh. In each domain Ωe, the displacements ue are
expressed as a linear combination of known shape functions N e

i that are defined with
respect to the local coordinates ξ, η, and ζ:

ue ≈
n∑

i=1
N e

i (ξ, η, ζ)

de
ξ,i(t)

de
η,i(t)

de
ζ,i(t)

 = Nede (2.17)

where Ne is the matrix of the local shape functions:

Ne =

N e
1 0 0 ... N e

n 0 0
0 N e

1 0 ... 0 N e
n 0

0 0 N e
1 ... 0 0 N e

n

 (2.18)

and de the vector of local degrees of freedom:

de =
[
de

ξ,1 de
η,1 de

ζ,1 ... de
ξ,n de

η,n de
ζ,n

]T
. (2.19)

The local shape functions Ne vary only in space, whereas the local degrees of freedom
de depend only on time. Furthermore, global degrees of freedom d are introduced and
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related to the local ones in order to enforce the continuity of the displacements between
elements that share the same topological entities of the mesh such as nodes, edges, or
faces. They are associated with global shape functions N, which can be determined from
the combination of local ones. The virtual displacements δu are discretized in the same
way. Based on this approach, the contributions of the elements are first computed by
numerical integration and then assembled, leading to the following semi-discrete system
of equations:

M
∂2d
∂t2 + Kd = f (2.20)

where M is the mass matrix, and A is the element assembly operator:

M =
∫

Ω
ρNT N dΩ

=A
e

∫
Ωe

ρNeT Ne dΩ. (2.21)

K is the stiffness matrix:

K =
∫

Ω
(DN)T C(DN) dΩ

=A
e

∫
Ωe

(DNe)T C(DNe) dΩ, (2.22)

and f is the force vector:

f =
∫

Ω
NT b dΩ +

∫
Γt

NT t dΓ

=A
e

(∫
Ωe

NeT b dΩ +
∫

Γe
t

NeT t dΓ
)

. (2.23)

Displacement boundary conditions on Γd, as shown in Figure 2.1, can be imposed by
assigning the values of the known displacements to the respective degrees of freedom
and by rearranging the system of equations, which leads to an extended right-hand side.
Alternatively, the displacement constraints can be weakly enforced using the Lagrange
multiplier or the penalty method [11].

To solve Equation (2.20), a time-integration scheme such as the Newmark method
can be applied [18]. This technique is suitable to simulate transient responses and to
consider geometric and material nonlinearities. However, high computational costs can
arise, for example, if many time steps need to be evaluated. Instead of discretizing the
time domain, it can be therefore favorable in the case of periodically excited structures
to transfer Equation (2.20) to the frequency domain [21]:(

−ω2M + K
)

d̂ = f̂ (2.24)

where ω is the angular frequency, and d̂ and f̂ are the Fourier-transform of d and f :

d̂(ω) =
∫ ∞

−∞
d(t)e−iωt dt (2.25)

f̂(ω) =
∫ ∞

−∞
f(t)e−iωt dt. (2.26)
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Furthermore, solving the eigenproblem:(
−ω2

i M + K
)

di = 0 (2.27)

leads to the natural angular frequencies ωi and the mode shapes di of the system. They
provide important insights when analyzing resonances and are the basis for the mode
superposition method, which can enable significant computational savings, especially if
only a few modes contribute to the structural response.

2.1.2 Linear viscoelasticity
Viscoelastic material is characterized by strains that develop over time after applying a
load. Plus, the strains gradually return to their original state when the load is removed.
The material is moreover called linear if its rheological properties do not depend on the
strains [22].b In the case of periodic excitations, linear viscoelasticity causes a lag between
stresses and strains and thus the dissipation of mechanical energy [23].

To represent it, a time-dependent constitutive equation can be employed, for exam-
ple, derived from the Maxwell, the Kelvin-Voigt, or the Zenner model, which allow for
simulating relaxation and creep processes [24]. Furthermore, in the frequency domain,
the phase shifts between stresses and strains can be considered by a complex constitutive
equation [23]:

σ̂ = (C′ + iC′′) ε̂ (2.28)

where C′ and C′′ are the real and the imaginary part of the constitutive matrix. The vari-
ables σ̂ and ε̂ denote the complex amplitudes of the time-harmonic stresses and strains:

σ(t) = σ̂eiωt + σ̂∗e−iωt (2.29)
ε(t) = ε̂eiωt + ε̂∗e−iωt (2.30)

with (·)∗ being the complex conjugate of a variable. In fact, also the time-dependent
constitutive equations mentioned above can be expressed in a complex form by introducing
time-harmonic stresses and strains, as demonstrated in [24]. Based on this approach,
Equation (2.24) turns into a complex system of equations:(

−ω2M + K̂
)

d̂ = f̂ (2.31)

where K̂ is the complex stiffness matrix of the system:

K̂ =
∫

Ω
(DN)T (C′ + iC′′) (DN) dΩ. (2.32)

The relation between the constitutive equation, the phase shift, and the energy dis-
sipation is shown in the following for the one-dimensional case. Thus, Equation (2.28)
reduces to:

σ̂ = Êε̂ (2.33)
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where Ê is the complex Young’s modulus:

Ê = E ′ + iE ′′ =
∣∣∣Ê∣∣∣ eiδ (2.34)

with: ∣∣∣Ê∣∣∣ =
√

E ′2 + E ′′2 (2.35)

tan δ = E ′′

E ′ . (2.36)

The storage modulus E ′ represents the elastic response, whereas the loss modulus E ′′

induces a phase shift δ, as illustrated in Figure 2.2 for the subsequent example:

σ̂ = |σ̂| (2.37)

ε̂ = |σ̂|∣∣∣Ê∣∣∣ eiδ
= |ε̂| e−iδ. (2.38)

The energy loss Wloss per oscillation period, which is equal to the area of the hysteresis
loop depicted in Figure 2.3, can be calculated by integrating the strain energy over the
duration of a cycle T = 2π/ω [24]:

Wloss =
∮

σdε =
∫ T

0
σ

dε

dt
dt = π|ε̂|2E ′ tan δ. (2.39)

Therefore, the loss modulus E ′′ = E ′ tan δ and the loss factor η = tan δ are important
measures for the damping performance of materials.

Figure 2.2: Phase shift δ between the
stress σ̂ and the strain ε̂ [25].

Figure 2.3: Hysteresis loop [24].
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Now that the fundamentals of the finite element method have been described for linear
elastic and viscoelastic problems, the following sections present techniques to enhance the
efficiency of finite element modeling and simulation.

2.2 The p-version of the finite element method
The accuracy of the FE approximation is improved in the p-version by raising the poly-
nomial order p of the element shape functions. This approach can enable significantly
faster convergence than the h-version, where the size of low-order elements is reduced.
High-order elements moreover exhibit better robustness to mesh distortion and locking
effects. Close to singularities, however, the discretization error depends mainly on the
element size. Thus, the p-version should be combined with meshes that are gradually
refined towards singular points or lines. Furthermore, additional computational savings
can be achieved in this efficient discretization strategy by a graded distribution of p, that
is, a linear increase from the finest to the coarsest elements [6].

Especially for the p-version of FEM, a hierarchical basis is a well-suited alternative to
a standard nodal basis. It is defined by the characteristic that the set of shape functions
of order p is included in the set of shape functions of order p + 1. The one-dimensional
hierarchical basis according to [26] contains integrated Legendre polynomials along with
linear shape functions if p is 2 or higher, as depicted in Figure 2.4a. A considerable
advantage of this basis is that better conditioning of the stiffness matrix is obtained
compared to the standard nodal basis, illustrated in Figure 2.4b [6].a

Three-dimensional hierarchical shape functions can be determined from the tensor
products of one-dimensional ones and grouped into nodal, edge, face, and internal modes.
Nodal modes vanish at every node except for the one they are associated with. The
same holds for edge and face modes analogously, whereas internal modes are completely
local and vanish at every node, edge, and face. To increase the computational efficiency,
the trunk space can be used instead of the tensor product space. It is based on fewer
face and internal modes, as shown in [27]. Furthermore, the polynomial orders can be
set individually for each local coordinate direction and displacement component. Hexa-
hedral p-elements that exploit these possibilities can represent homogeneous thin-walled
structures with approximately the same number of degrees of freedom as dimensionally
reduced elements and attain a higher accuracy in addition, as demonstrated in [27].

(a) (b)

Figure 2.4: Sets of one-dimensional shape functions for p = 1, 2, 3: (a) hierarchical basis,
(b) standard nodal basis [6].
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2.3 The finite cell method
The creation of three-dimensional FE meshes for complex structures starting from CAD
models or digital images is generally a non-trivial task that can require significant manual
work. This is especially the case for the p-version of FEM, where the domain of compu-
tation needs to be represented by only a small number of elements. Apart from intricate
geometric features, flaws in CAD models such as gaps and overlaps can complicate mesh
generation [8]. As a fictitious domain approach, the finite cell method can bypass these
problems because it only relies on simple non-boundary-conforming meshes and point-
inclusion tests that can be performed directly on the original geometric representations,
such as Brep models [8], CSG models [28], CT scans [29], and point clouds [30]. The
FCM thus offers a substantially simplified modeling procedure. Moreover, it allows for
fast convergence rates by employing high-order shape functions [6].

In the FCM, the physical domain Ω is embedded in an extended domain Ωext, as
depicted for two dimensions in Figure 2.5. Hence, the original elastic problem given in
Equation (2.16) is replaced by the following auxiliary problem:∫

Ωext

(Dδu)T αC(Du) dΩ =
∫

Ωext

δuT

(
αb − αρ

∂2u
∂t2

)
dΩ +

∫
Γt

δuT t dΓ (2.40)

where the indicator function α depends on the position x. It is 1 inside of Ω and close to
0 outside of it:

α(x) = 1.0 ∀ x ∈ Ω (2.41)
0.0 < α(x) ≪ 1.0 ∀ x /∈ Ω. (2.42)

Therefore, the stiffness, density, and body force almost vanish in the fictitious domain
Ωfict = Ωext\Ω. The non-zero value of the indicator function α outside of Ω serves to
improve the conditioning of the system of equations resulting from the discretization of
Ωext. It is usually set between 10−6 and 10−12 such that the modeling error added to the
original problem is marginal [6].

The extended domain Ωext can be easily meshed without considering the boundary
of the physical domain ∂Ω. This is because α resolves the geometry of Ω when the
matrices of the finite elements, also called finite cells, are integrated. However, finite
cells cut by the boundary ∂Ω have a discontinuous integrand. As the Gauss quadrature
converges only slowly in this case, special integration schemes, for example based on
spacetrees [28–30], smart octrees [31, 32], or moment-fitting [32, 33], are employed to

Figure 2.5: The physical domain Ω is embedded in the extended domain Ωext and resolved
by the indicator function α during the integration of the element matrices [6].e
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reduce the integration error to a negligible level [34]. Particular treatment is also necessary
for boundary conditions that are not aligned to the finite cell mesh. For instance, traction
and weak displacement boundary conditions can be imposed using suitable surface meshes
for numerical integration [6].

2.4 The mortar finite element method b

The mortar method allows the components of a structure to be discretized independently.
In this way, numerical models can be created more easily. Also, both p-FEM and FCM can
be employed in the same model. The classical mortar approach imposes a rigid connection
between the components. It is first described in this section before the modified mortar
method is presented, which can additionally represent a thin damping layer between the
components in a dimensionally reduced way.

2.4.1 Mesh coupling
If the components of a structure are meshed independently, the numerical model does not
consist of a single domain Ω but of several subdomains Ωi. Further, the continuity of the
displacements between the subdomains Ωi is not imposed by shared element nodes, edges,
or faces. However, it can be enforced in a weak form by applying the mortar method.
For simplicity of notation, the case of two subdomains Ω1 and Ω2 with an interface ΓI is
considered in the following, as illustrated in Figure 2.6. The two adjacent subdomains of
ΓI are referred to as the mortar (M) and the non-mortar (S) side. Hence, uM and uS

denote the deformations u1 and u2 at ΓI :

uM = u1|ΓI

uS = u2|ΓI
.

In the mortar method, the virtual work δWI of the tractions tM and tS on ΓI is taken
into account as external work:

δWI =
∫

ΓI

(
δuT

S tS + δuT
MtM

)
dΓ. (2.43)

Figure 2.6: Two domains Ω1 and Ω2 coupled by the mortar method.
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Since tM and tS are unknown, Lagrange multipliers λ that are equal to tS and in balance
with tM are introduced [11, 17]:

λ = tS = −tM . (2.44)

The total virtual work is therefore:∫
Ω1

[
(Dδu1)T C1(Du1) − δuT

1

(
b1 − ρ

∂2u1

∂t2

)]
dΩ −

∫
Γ1

t

δuT
1 t1dΓ

+
∫

Ω2

[
(Dδu2)T C2(Du1) − δuT

2

(
b2 − ρ

∂2u2

∂t2

)]
dΩ −

∫
Γ2

t

δuT
2 t2dΓ

−
∫

ΓI

[
(δuS − δuM)T λ

]
dΓ = 0. (2.45)

Moreover, to weakly impose the continuity of the displacements across ΓI , Equation (2.45)
is supplemented by the constraint equation:∫

ΓI

δλT (uM − uS) dΓ = 0. (2.46)

Inserting the approximations:

u1 ≈ N1d1 δu1 ≈ N1δd1

u2 ≈ N2d2 δu2 ≈ N2δd2

λ ≈ Nλdλ δλ ≈ Nλδdλ (2.47)

into Equations (2.45) and (2.46) leads to the following system of equations [11]:M1 0 0
0 M2 0
0 0 0

 ∂2

∂t2

d1
d2
dλ

+

K1 0 G1
0 K2 G2

GT
1 GT

2 0

d1
d2
dλ

 =

f1
f2
0

 (2.48)

where:

M1 =
∫

Ω1

ρ1NT
1 N1 dΩ M2 =

∫
Ω2

ρ2NT
2 N2 dΩ

K1 =
∫

Ω1

(DN1)T C1(DN1) dΩ K2 =
∫

Ω2

(DN2)T C2(DN2) dΩ

G1 =
∫

ΓI

NT
1 Nλ dΓ G2 = −

∫
ΓI

NT
2 Nλ dΓ

f1 =
∫

Ω1

NT
1 b dΩ +

∫
Γ1

t

NT
1 t dΓ f2 =

∫
Ω2

NT
2 b dΩ +

∫
Γ2

t

NT
2 t dΓ. (2.49)

According to Equation (2.48), the domains Ω1 and Ω2 are coupled by the submatrices
G1 and G2 determined from the integrals over ΓI . The shape functions Nλ are equal to
those defined on the non-mortar boundary, which belongs in the considered case to the
domain Ω2 [35]:

Nλ,i = N2,i|ΓI
. (2.50)
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The vibration behavior of the complete structure, including material damping, can be
computed by transferring Equation (2.48) to the frequency domain and by introducing
complex constitutive relations:−ω2

M1 0 0
0 M2 0
0 0 0

+

K̂1 0 G1
0 K̂2 G2

GT
1 GT

2 0


d̂1

d̂2

d̂λ

 =

f̂1

f̂2
0

 (2.51)

with:

K̂1 =
∫

Ω1

(DN1)T (C′
1 + iC′′

1) (DN1) dΩ (2.52)

K̂2 =
∫

Ω2

(DN2)T (C′
2 + iC′′

2) (DN2) dΩ. (2.53)

Furthermore, the natural frequencies ωi and the mode shapes [d1,i d2,i]T can be deter-
mined by solving:−ω2

i

M1 0 0
0 M2 0
0 0 0

+

K1 0 G1
0 K2 G2

GT
1 GT

2 0

d1,i

d2,i

dλ,i

 = 0. (2.54)

However, damping effects are not considered here.

2.4.2 Mortar formulation including viscoelastic layers
The mortar method presented above was modified in [17] to model isotropic linear elastic
layers between separately discretized components in a dimensionally reduced way, as
illustrated in Figure 2.7. The mass of the layer is neglected therein, and damping effects
are not considered. Papers B and E further extended this approach to orthotropic linear
viscoelastic layers such that frequency response analyses can be performed accurately for
various materials, such as elastomers and high damping composites.

In the modified mortar formulation, the continuity constraint described in Equa-
tion (2.46) is replaced by a coupling condition that represents a solid layer with the
constant thickness bL between Ω1 and Ω2. To this end, first, a two-dimensional local
coordinate system (x∗, y∗) is introduced along the interface ΓI and extended by a third
basis vector which is perpendicular to ΓI , as depicted in Figure 2.8. Its corresponding
coordinate z∗ is zero on the non-mortar side and bL on the mortar side. Secondly, it is
assumed that the sum of the virtual work of λ on the non-mortar side is equal to that of
the tractions tL on the cut plane through the layer at z∗ = 0 [17]:∫

ΓI

δuT
S (tL − λ)dΓ = 0 (2.55)

where:

tL =

σL,x∗z∗(z∗ = 0)
σL,y∗z∗(z∗ = 0)
σL,z∗z∗(z∗ = 0)

 . (2.56)
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The variable σL denotes the stress state in the complete layer with respect to the local
coordinate system. Based on the linear ansatz for the displacements uL of the layer
according to [17]:

uL = uS + z∗

bL

(uM − uS), (2.57)

the stresses σL can be stated as a function of uS and uM by applying the constitutive
relations:

σL = CLεL (2.58)

and the kinematic relations:

εL = DLuL (2.59)

where DL is the local partial differential operator:

DT
L =

 ∂
∂x∗ 0 0 ∂

∂y∗ 0 ∂
∂z∗

0 ∂
∂y∗ 0 ∂

∂x∗
∂

∂z∗ 0
0 0 ∂

∂z∗ 0 ∂
∂y∗

∂
∂x∗

 . (2.60)

Combining Equations (2.55) to (2.59) leads to:
∫

ΓI

δuT
S

[CL,61
CL,51
CL,31

 ∂uSx∗

∂x∗ +

CL,62
CL,52
CL,32

 ∂uSy∗

∂y∗ +

CL,63
CL,53
CL,33

 uMz∗ − uSz∗

bL
+

CL,64
CL,54
CL,34

(
∂uSx∗

∂y∗ +
∂uSy∗

∂x∗

)

+

CL,65
CL,55
CL,35

(
∂uSz∗

∂y∗ +
uMy∗ − uSy∗

bL

)
+

CL,66
CL,56
CL,36

(
∂uSz∗

∂x∗ + uMx∗ − uSx∗

bL

)]
− δuT

S λ dΓ = 0.

(2.61)

(a)

(b)

Figure 2.7: FE models of a structure in-
cluding an elastic/viscoelastic layer based
on: (a) one conforming mesh, (b) two
non-matching meshes coupled by the
modified mortar method.b

Figure 2.8: Stresses at the interface ΓI .b
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In the case of an orthotropic stiffness matrix CL, Equation (2.61) can be simplified to:

∫
ΓI

δuT
S


CL,66

(
∂uSz∗

∂x∗ + uMx∗ −uSx∗
bL

)
CL,55

(
∂uSz∗

∂y∗ + uMy∗ −uSy∗

bL

)
CL,31

∂uSx∗
∂x∗ + CL,32

∂uSy∗

∂y∗ + CL,33
uMz∗ −uSz∗

bL

− δuT
S λ dΓ = 0. (2.62)

After the discretization, the following unsymmetric system of equations is obtained from
Equations (2.45) and (2.62):M1 0 0

0 M2 0
0 0 0

 ∂2

∂t2

d1
d2
dλ

+

K1 0 G1
0 K2 G2

P1 P2 Q

d1
d2
dλ

 =

f1
f2
0

 (2.63)

where the submatrices P1, P2, and Q are derived from the modified coupling condi-
tion (2.62):

P1 =
∫

ΓI

NT
2


CL,66

bL
0 0

0 CL,55
bL

0
0 0 CL,33

bL

N1 dΓ (2.64)

P2 =
∫

ΓI

−NT
2


CL,66

bL
0 0

0 CL,55
bL

0
0 0 CL,33

bL

N2 + NT
2


C66

∂Nz∗
2

∂x∗

C55
∂Nz∗

2
∂y∗

C31
∂Nx∗

2
∂x∗ + C32

∂Ny∗
2

∂y∗

 dΓ (2.65)

Q = −
∫

ΓI

NT
2 Nλ dΓ. (2.66)

The vectors Nx∗
2 , Ny∗

2 , and Nz∗
2 denote the global shape functions of Ω2 with respect to

the local coordinate system of the layer. For example, if the basis vectors of the global
coordinate system are equal to those of the local one, it holds that:

N2 =

Nx∗
2

Ny∗

2
Nz∗

2

 . (2.67)

Transferring Equation (2.63) to the frequency domain and using complex constitutive
relations:

σ̂L = (C′
L + iC′′

L) ε̂L (2.68)

enables vibration analyses that consider the effect of a linear viscoelastic layer between
the domains Ω1 and Ω2:−ω2

M1 0 0
0 M2 0
0 0 0

+

K̂1 0 G1
0 K̂2 G2

P̂1 P̂2 Q


d̂1

d̂2

d̂λ

 =

f̂1

f̂2
0

 . (2.69)
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Here, the damping properties of the layer are included in the imaginary parts of the
complex submatrices P̂1 and P̂2. The equation for modal analysis is moreover given by:−ω2

i

M1 0 0
0 M2 0
0 0 0

+

K1 0 G1
0 K2 G2

P1 P2 Q

d1,i

d2,i

dλ,i

 = 0. (2.70)

The following chapters summarize Papers A to E and discuss the results. In this context,
the accuracy and efficiency of the presented numerical methods are verified by various
examples.
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Chapter 3

Analysis of cross-laminated timber
assemblies

Production of CLT has grown rapidly since it started about twenty years ago [36]. This
development can be attributed to the increasing popularity of wood as sustainable raw
material and to the particular benefits of CLT products arising from their structure. They
comprise layers of wooden boards, which are glued together crosswise to each other. Thus,
in- and out-of-plane loads are transferred such that load-carrying walls and ceilings can be
made of connected CLT elements without additional structural components. Furthermore,
CLT constructions are characterized by less air permeability and higher heat storage
capacity than timber frame structures. Compared to reinforced concrete, a higher degree
of prefabrication and less structural weight can be achieved with CLT [2]. Alongside many
advantages, however, noise insulation should be considered carefully when planning a
building made of solid wood. In order to predict the vibration behavior of CLT assemblies,
the characteristics of the components such as orthotropy of the raw material, differently
directed layers, high shear deformations of transversely oriented layers, and biaxial load
transfer need to be taken into account [37]. Furthermore, the connections, which can
contain elastomers to reduce flanking transmission, must be modeled properly because
complex three-dimensional strain states can occur there.a

In Papers A, B, and C, high-order hexahedral finite element models for CLT assemblies
are presented. They allow for accurate and efficient vibration computations in the low
frequency range even if elastomer layers are placed in between the components. In these
models, the layers are represented either by conforming finite elements or by the modified
mortar coupling. The validation was carried out in two steps. First, the accuracy of
conforming FE models was evaluated in Paper A based on measurements. Secondly, non-
conforming FE models employing the modified mortar method were verified in Paper B
by comparing their results to those of the conforming ones. Moreover, the good suitability
of the mortar-based approach to analyze complete multistory buildings was demonstrated
in Paper C.
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3.1 Validation of conforming high-order FE models a

Paper A provides a modeling approach for CLT assemblies based on conforming high-
order FE elements. To validate it, experimental tests were performed in the laboratory for
sound measurements at Rosenheim University of Applied Sciences [38]. In the following,
the test structures and measurements are briefly described. Then, the modeling technique
is demonstrated on the given example before the results are finally discussed.

3.1.1 Test structures and measurements
The test structure depicted in Figure 3.1 consists of two building components, a ceiling
and a wall. Each of them is made of CLT panels linked by wooden top boards [39, 40].
The components are screwed together and have hinged supports, the wall at the bottom
and the ceiling at the edge opposite to the bolted connection. Moreover, two variants are
considered: In one case, there is a 12.5 mm thick elastomer layer between the components
(Figure 3.1b), and in the other case, the ceiling is placed directly on top of the wall
(Figure 3.1c).

A sine-sweep excitation was induced by an electrodynamic shaker successively at two
points. One was placed at the ceiling and the other at the wall, as shown in Figure 3.1a.
Furthermore, accelerometers were arranged in irregular grids across the surfaces of the
components and an impedance head was deployed at the respective excitation point to
determine the complex transfer accelerances for each load case. Based on the measured
frequency response functions, the natural frequencies and mode shapes were determined
by the peak amplitude method [41]. Therein, the peak values of the imaginary part of
the transfer accelerances serve as an approximation of the mode shapes. Although the
accuracy can be decreased by the influence of off-resonant modes, this technique is well
suited here since many well-separated modes occur in the considered frequency range from
20 Hz to 150 Hz.

(a)

(b)

(c) (d)

Figure 3.1: Test structure: (a) dimensions and excitation points [m], (b) connection with
elastomer, (c) connection without elastomer, (d) measurement setup [38].a
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After the measurements on the assembly, the wall was detached from the ceiling, hung
up such that it could deform freely, and tested in the same way to identify its natural
frequencies and mode shapes without the influence of the connection to the ceiling.

3.1.2 Finite element models

The test structures are represented by hexahedral finite elements with hierarchical shape
functions. The polynomial degrees p range from 2 to 4 such that the elements can have
large aspect ratios, as depicted in Figure 3.2. Therefore, the FE model of the assembly
comprises only 747 elements and that of the wall only 90 elements even though they resolve
each layer of the CLT panels individually. Furthermore, the hinged support conditions of
the assembly are enforced by fixing element edges, as shown in Figure 3.2b.

Different linear viscoelastic materials are assigned to the finite elements, depending on
which structural part is modeled:

(a) the CLT layers,
(b) the connections of the CLT panels by the wooden top boards,
(c) the connection of the wall to the ceiling.

Orthotropic constitutive relations are employed for (a) and (b). The values of the material
parameters for (a) are taken from technical standards [42, 43] and measurements [44, 38].
In addition, missing narrow face bonding is considered by reducing the in-plane Young’s
modulus perpendicular to the board direction ECLT

2 and the in-plane shear modulus GCLT
12 .

To this end, they are multiplied by the factors κ1 and κ2, respectively. The parameters
for (b) are calculated from a beam analogy that adapts the material properties of the top
boards, given in [40], to the corresponding FE representation. To model (c), whether with
or without elastomer, isotropic material with the Young’s modulus EL and the Poisson’s
ratio νL is assigned to a 12.5 mm thick layer of finite elements between the components.

(a) (b)

Figure 3.2: Conforming FE mesh of the test structure: (a) total view, (b) details and
boundary conditions.a
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3.1.3 Modal analysis
The FE models were validated and suitable values for κ1 and κ2 as well as for EL and
νL were determined by comparing simulations with measurements. For this purpose, the
natural frequencies of the test structures were computed under variation of the aforemen-
tioned parameters, and their root mean square error εf with respect to the measurement
results was calculated in each case. The correct assignment of the modes was enabled by
the modal assurance criterion (MAC) [45].

If κ1 = κ2 = 1, meaning that ECLT
2 and GCLT

12 are not reduced, a rather high εf

of 8.73 % occurs in the case of the free-hanging wall. Therefore, missing narrow face
bonding should be taken into account. Best correspondence between computation and
measurement is achieved with κ1 = 0.85 and κ2 = 0.70. Here, the error εf is only 2.5 %.
In the subsequent FE calculations of the assembled test structure, κ1 and κ2 are fixed at
the optimal values, while EL and νL are varied:

• Without elastomer, there is only a little dependency of εf on the Poisson’s ratio νL.
The flattest minimum of εf is reached at νL = 0. In this case, εf is less than
5 % if EL is in the range between 5.0 N/mm2 and 148.0 N/mm2. With 2.9 %, the
lowest εf occurs at EL = 19 N/mm2. Thus, the material assigned to the elements
representing the screwed connection without elastomer needs to be significantly less
stiff than timber.

• To model the junction with elastomer, the Young’s modulus EL must be chosen
even lower, and the dependency of the results on the Poisson’s ratio νL is higher.
The smallest εf is 1.7 %. It occurs at EL = 2.1 N/mm2 and νL = 0.48. Apart from

(a) (b) (c) (d)

Figure 3.3: Examples of measured natural frequencies and related mode shapes of the
test structure with elastomer: (a) 29.0 Hz, (b) 54.0 Hz, (c) 74.8 Hz, (d) 130.0 Hz.a

(a) (b) (c) (d)

Figure 3.4: Examples of calculated natural frequencies and related mode shapes of the
test structure with elastomer: (a) 28.6 Hz, (b) 50.6 Hz, (c) 73.9 Hz, (d) 130.0 Hz.a
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this, the isotropic material parameters of the elastomer can be derived from the
manufacturer’s data sheet [46] using the method presented by Negreira et al. [22].
A unique solution for the Young’s modulus and the Poisson’s ratio was found since
the static shear modulus of the elastomer is known from experimental tests according
to [47]. Employing these values to represent the screw connection with elastomer,
that is, EL = 2.28 N/mm2 and νL = 0.386 leads to a low error εf of 2.8 %. Without
additional measurements, multiple solutions are obtained by the approach given
in [22]. In this case, εf is less than 5 % if the Poisson’s ratio is selected in the range
between 0.29 and 0.44. This shows that the material parameters of the elastomer
are well suited for the representation of this connection.

The effect of hierarchical high-order shape functions on the computational effi-
ciency is investigated using the example of the assembly containing the elastomer layer
(EL = 2.28 N/mm2, νL = 0.386). To this end, two different discretization approaches are
compared in a convergence study: Refinement of the mesh, as shown in Figure 3.5, without
changing the polynomial order p (h-refinement) or increase of p in the in-plane directions
from 2 to 8 while the mesh, depicted in Figure 3.2a, remains coarse (p-refinement). For
each case, Figure 3.6 shows the relation between the number of unknowns and the root
mean square error εf of the natural frequencies with respect to an overkill FE solution.
It can be seen that the most efficient way is p-refinement. By applying this strategy, an
εf of less than 1 % down to 0.24 % is reached with about 2.5 to 5 times fewer degrees of
freedom than by using just quadratic elements. For example, if p is chosen between 2 and
4, an accurate solution with an error εf of 0.7 % is attained with only 1.7 × 104 degrees of
freedom. The results demonstrate that the computational efficiency can be significantly
increased by using high-order elements – in combination with an appropriate coarse mesh
– instead of only linear or quadratic elements.

(a) (b)

(c) (d)

Figure 3.5: Meshes used for h-refinement:
(a) mesh A, (b) mesh B, (c) mesh C,
(d) mesh D, not illustrated: mesh E.a

Figure 3.6: Relation between εf and the
number of unknowns for different dis-
cretization approaches.a
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3.1.4 Harmonic analysis
Apart from the natural modes, the frequency response functions served to validate the
high-order FE model of the CLT assembly. To this end, a harmonic analysis was performed
from 20 Hz to 150 Hz for each connection type and load case by solving Equation (2.31).
For modeling the junction without elastomer, the Young’s modulus EL is set to 19 N/mm2

and the Poisson’s ratio νL to 0, whereas the junction with elastomer is considered by
setting EL to 2.28 N/mm2 and νL to 0.386. A uniform loss factor of 2.2 % is applied,
which was obtained from measurements [38]. Only to the finite elements representing
the connection with elastomer, a different loss factor is assigned. It is based on the data
sheet of the elastomer and rises in the considered frequency range from 10 % to nearly
21 % [46].

The simulations and the experimental tests were compared by means of the transfer
accelerance, in the same way as described in [14]. For this purpose, the computed and
measured absolute values of the transfer accelerance in out-of-plane direction were av-
eraged over the measurement points of each component. The resulting mean absolute
accelerances Y wall and Y ceiling for the case with elastomer under excitation of the wall are
exemplarily shown in Figure 3.7. Computed and measured peak frequencies match well,
which indicates that the density and stiffness parameters of the materials as well as the
geometry and boundary conditions of the FE model are suitable. Since the peak values
and width of the calculated mean absolute accelerance are mostly close to the measured
ones, it can be concluded that also the loss factors are appropriate. In the frequency range
over about 80 Hz, however, the measured and simulated mean absolute accelerances at

(a)

(b)

Figure 3.7: Mean absolute accelerances in out-of-plane direction for the case with elas-
tomer under excitation of the ceiling at the measurement points of: (a) the wall, (b) the
ceiling.a
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the indirectly excited component partly differ. Accepting small differences between sim-
ulations and measurements, it follows that the presented model is suitable to predict the
vibration behavior of the directly excited component up to about 150 Hz and of the in-
directly excited component up to about 80 Hz. As shown in the following section, this
model was used in Paper B to verify the mortar-based approach for representing elastomer
layers.

3.2 Verification of the modified mortar formulation
for elastomers b

Paper B introduces the modified mortar formulation, described in Section 2.4.2, for the
case of isotropic viscoelastic layers. Moreover, the approach was verified and its accuracy
was demonstrated therein based on two numerical examples. Both of them represent
typical solid timber structures. One is an assembly of two components and the other a
larger building part.

3.2.1 Wall and ceiling assembly
The first investigated structure consists of a single wall and a ceiling made of CLT and
contains an elastomer layer between its components. It is identical to the test structure
studied in Paper A. In this context, however, the validated conforming model is compared
to a mortar-based one whose non-conforming mesh is shown in Figure 3.8. A time-
harmonic excitation is applied on the ceiling, as depicted in Figure 3.9. The conforming
model has 4.9 × 104 unknowns, whereas the mortar-based one exhibits only 2.5 × 104

unknowns.1 In both models, the represented elastomer layer is 12.5 mm thick. The
Young’s modulus EL is 2.28 N/mm2, the Poisson’s ratio νL is 0.386, and the loss factor ηL

is frequency-dependent, starting from 10.0 % at 20 Hz and rising to 23.2 % at 200 Hz [46].

(a) (b)

Figure 3.8: Non-conforming mesh of the wall and
ceiling assembly: (a) total view, (b) detail.b

Figure 3.9: Excitation point of the
wall and ceiling assembly [m].b

1In the harmonic analysis, the conforming model has more unknowns than in the modal analysis
presented in Paper A (1.7 × 104 unknowns) because the problem is complex-valued and the associated
mesh was adapted to capture the boundaries of the load surface by element edges.
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Moreover, two additional cases are considered in order to investigate the influence of the
elastomer layer and the robustness of the modified mortar method. In one case, the
thickness of the elastomer is increased to 25 mm, and in the other case, ηL is reduced to
2.2 %, which is equal to the value assigned to the CLT components.

Figure 3.10 depicts the mean transfer accelerances Y dir and Y ind of the directly and the
indirectly excited components computed by the conforming and the mortar-based model.
To this end, 100×100 evaluation points were placed across the surface of each component.
In addition, Y dir and Y ind were averaged over frequency bands with the upper limits of
50 Hz, 100 Hz, 150 Hz, and 200 Hz. The relative error δY,dir and δY,ind of the frequency-
averaged transfer accelerances obtained from the mortar-based discretization with respect
to the results of the conforming model are given in Table 3.1.

As can be seen in Figure 3.10, the loss factor of the elastomer ηL has a significant
influence on the transfer accelerances. In each case, nevertheless, there is a good agree-
ment between the results of the conforming and the mortar-based models. Not only
the peak frequencies but also the maximum values and the width of the transfer accel-
erances computed with the mortar method are close to the ones determined with the
conforming discretization. This is observed in the directly excited ceiling (Figure 3.10a)
as well as in the indirectly excited wall (Figure 3.10b). The largest difference between
the two models occurs at 79 Hz to 81 Hz, as shown in Figure 3.10b. A reason for the
greater deviation might be that the respective resonant mode exhibits large deformations
in the intermediate layer varying non-linearly in the thickness direction. These deforma-
tions cannot be represented exactly by the linear approach introduced in Equation (2.57).
Nevertheless, relatively small deviations δY,dir and δY,ind being not greater than 6.17 % for
ηL ∈ [10 %, 23.2 %] and 7.30 % for ηL = 2.2 % are obtained in all frequency bands in

(a)

(b)

Figure 3.10: Mean absolute accelerances in the case of a 12.5 mm thick elastomer layer:
(a) ceiling, (b) wall.b
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Table 3.1: Relative deviations (single wall and ceiling assembly).b

bL = 12.5 mm bL = 12.5 mm bL = 25.0 mm

ηL ∈ [10.0%, 23.2%] ηL = 2.2% ηL ∈ [10.0%, 23.2%]
frequency band δY,dir δY,ind δY,dir δY,ind δY,dir δY,ind

[Hz] [%] [%] [%] [%] [%] [%]
20 Hz to 50 Hz 0.05 0.35 0.40 0.53 2.57 2.07
50 Hz to 100 Hz 3.34 6.17 2.21 7.30 10.05 10.41

100 Hz to 150 Hz 1.04 0.15 1.97 1.44 2.12 9.71
150 Hz to 200 Hz 1.38 1.97 2.34 2.18 3.54 2.21

the case of an elastomer thickness bL of 12.5 mm (Table 3.1). Even if bL is increased to
25 mm, the results of the mortar-based model match well with those of the conforming
model. Here, the relative deviations are slightly higher with up to 10.41 %.

3.2.2 Building part
The second example is a more complex structure made of multiple cross-laminated timber
components, which form a building part. The five walls are clamped at the bottom, and
the ceiling is excited by a time-harmonic load. Between each wall and the ceiling, there is
a 12.5 mm thick elastomer layer. In one model, the layers are represented by conforming
hexahedral elements (Figure 3.11a) and, in the other, by the proposed mortar coupling
(Figure 3.11b). The Young’s modulus EL is 3.37 N/mm2, the Poisson’s ratio νL is 0.42,
and the loss factor ηL is 11.5 % at 20 Hz and increases to 27.6 % at 200 Hz [48]. As
depicted in Figure 3.11, the layers of the cross-laminated timber components are not
resolved individually by finite elements. Hence, the material parameters from Paper A
were homogenized over the thickness of the components with the method presented in [49].
The polynomial orders of the elements are 4 and 5, leading to 2.0 × 105 unknowns in the
conforming model and 1.3 × 105 unknowns in the mortar-based one.

The comparison is carried out in the same way as in the first example. Also in this

(a) (b)

Figure 3.11: FE meshes of the building part: (a) conforming, (b) non-conforming.b
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more complex case, the results of the conforming and the mortar-based model agree well.
The peak frequencies as well as the maximum values and width of the mean absolute
accelerances obtained from these models are close to each other in each component. The
relative error δY,dir determined for the directly excited ceiling is not greater than 3.6 % in
all frequency bands, and the relative errors δY,ind 1-5 calculated for the indirectly excited
walls are below 7.9 %. This shows that the vibration behavior of a complex elastomer
bedded CLT structure can be accurately predicted with the modified mortar method.

3.3 Analysis of a multistory building c

Paper C integrates the mortar method into the digital planning process of solid timber
buildings and demonstrates its significant advantages. In the presented approach, the
structural components defined by a building information model are discretized separately
such that mesh generation can be simplified and better adapted to the geometry. As the
resulting meshes are non-matching, the mortar method is used to connect the components.
In combination with higher-order finite elements, computationally efficient volumetric FE
models for complete buildings can be automatically created in this way. To validate this
modeling technique, it was applied to a test building, as shown in the following.

3.3.1 Test building and measurements

Figure 3.12: Test building.c

The investigated eight-story building is depicted in Fig-
ure 3.12. It is 23.9 m tall, and its base area is 10 × 20.4 m2.
The solid timber walls are partly made of vertical wooden
blocks and partly of CLT panels, both of which are supple-
mented by gypsum fiberboards. The ceilings consist of CLT
panels and additional layers. Their exact structure varies
depending on the floor. The connections between the solid
timber elements do not contain elastomers. Furthermore,
there is a staircase core of 25 cm thick reinforced concrete
walls, to which the solid wood elements are connected by
angle joints.

The lowest natural frequencies of the building were de-
termined in two independent measurements [50, 51]. In
both investigations, a bending mode with displacements in
the direction of the smaller building dimension (x-direction)
was identified at 2.34 Hz [50] and 2.29 Hz [51], respectively.
Moreover, vibrations in the x-direction and in the direction of the larger building dimen-
sion (y-direction) were detected in the range between 3.0 Hz and 3.4 Hz. In accordance
with [51], it is assumed that the second natural frequency is 3.05 Hz and that the associ-
ated mode shape exhibits displacements in the x- and y-directions.
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Figure 3.13: Non-conforming
hexahedral FE mesh of the
test building.c

(a) (b)

Figure 3.14: Calculated mode shapes of the test building:
(a) 2.16 Hz, (b) 3.11 Hz.c

3.3.2 Finite element model
The FE model of the test building, shown in Figure 3.13, comprises only 9286 hexahedral
p-elements of order 3 and therefore has not more than 4.6×105 unknowns. This is achieved
by discretizing the relevant structural components independently and by coupling them
through the mortar method. Moreover, the layered structures of the solid timber walls
and ceilings are homogenized based on the approaches described in [49] and [52]. It is
assumed that the dynamic bedding module of the ground is 100 MN/m3, as specified
for pebbly coarse sand in [53], and that the connections of the components are rigid.
Furthermore, the strength class of the timber is presumed to be C24 and the one of the
concrete C30/37.

3.3.3 Results and discussion
The first and the second computed natural frequency of the building are 2.16 Hz and
3.11 Hz. This leads to a relative error with respect to the measurements of less than 6 %.
Figure 3.14 shows the associated mode shapes. As observed in the experimental tests, the
second mode shape exhibits displacements in both the x- and the y-direction due to the
eccentrically located staircase core. Therefore, it can be concluded that the computations
agree well with the measurements. Furthermore, the modeling costs are vastly reduced by
the mortar-based approach, and high computational efficiency is obtained by the higher-
order elements in combination with a relatively coarse mesh. The assumptions described
above nevertheless need to be validated, particularly because a parameter study showed
that the dynamic bedding module and the coupling rigidity between the components
significantly influence the computational results.

The p-version of FEM and the modified mortar method have been successfully applied
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to the analysis of solid timber structures. Numerical models of a representative CLT
assembly were validated and verified in Papers A and B. Furthermore, Paper C demon-
strates the increased modeling and simulation efficiency enabled by these discretization
approaches. In the following chapters, which summarize Papers D and E, additive man-
ufacturing is introduced as a further field of application. To this end, the current state of
AM in construction with a focus on digital planning methods is first reviewed before the
suitability of the modified mortar method – in combination with p-FEM and FCM – is
investigated for AM structures.



31

Chapter 4

Additive Manufacturing in
Construction d

AM techniques are used in various industries to create physical prototypes as well as
end-use parts. In the construction sector, architectural models have been created with
these methods for more than a decade. Furthermore, recent years have seen a vast in-
crease in research on printing building components, and first construction projects have
been implemented by large AM systems based on robotic arms or gantry robots [54–57].
This development can be attributed to the opportunities AM offers. AM allows building
companies to produce geometrically complex structures, to vary materials within a com-
ponent according to its functions, and to automate the construction process starting from
a digital model. These advantages can be exploited if the building components and AM
processes are modeled appropriately in the planning phase. To this end, several digital
methods for designing printable parts and for planning AM processes have been developed.
In addition, file formats to store and exchange the resulting data have emerged.

Paper D provides an overview of the current state of AM in construction. Processes,
systems, and their applications are presented. Moreover, digital planning methods for
3D-printed building parts and AM processes are described.

4.1 Processes and applications
In AM processes, structures are made by joining materials, mostly layer by layer [58].
With regard to the printing of building parts, the research focus has been on concrete,
metals, and polymers.

4.1.1 Concrete
The most important additive construction techniques for concrete are material extrusion
and particle-bed processes:

• Concrete extrusion. After mixing, the fresh cementitious material is deposited
through a nozzle along a defined path to create each layer. In order to ensure a
good quality of the printed components, material and process parameters such as
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the mix proportions and the addition of admixtures as well as the path and speed
of the printing head need to be chosen properly and matched to each other [59–61].
Well-printed concrete can have similar strength and density in the hardened state as
cast concrete [60]. In the last years, various extrusion processes were developed. An
example is 3D Concrete Printing (3DCP) at Eindhoven University of Technology [62,
63], which is characterized by medium-fine filaments with cross-sectional dimensions
up to several cm. By applying 3DCP, a bicycle bridge with a span of 6.5 m and a
width of 3.5 m was constructed in the Netherlands. The superstructure of the bridge
consists of elements that were printed within 48 h and assembled by post-tension
tendons. In addition, reinforcement cables were embedded in some layers during
their deposition [64].

• Particle-bed processes. In contrast to concrete extrusion processes, the raw
materials are only brought together on the build platform. First, a layer of dry
particles is created. Then, a fluid is deposited selectively to bond particles together
in certain areas. This procedure is repeated until all layers are completed, each
on top of one another. As the construction space needs to be completely filled
with particles, it is more limited than in the case of concrete extrusion. However,
particle-bed processes allow for more freedom of design due to the support from the
non-bonded particles. Also, layer thicknesses down to 0.1 mm are possible such that
small details can be printed with high accuracy. Furthermore, compressive strengths
of over 70 MPa after 7 days were achieved in recent studies. An established particle
bed system for large-scale applications is D-Shape, developed by Enrico Dini. It
served, for example, to print a 12 m long and 1.75 m wide pedestrian bridge that
was installed in Madrid [65, 66].

Concrete has in general a relatively low tensile strength and is quite brittle. Therefore,
solutions for the integration of reinforcement have also been developed in the context
of AM. They are reviewed in [67, 68] and can be categorized according to whether the
reinforcement is external or internal and whether it is installed before, during, or after
printing.

4.1.2 Metals
Steel and aluminum alloys can be printed using directed energy deposition and powder
bed fusion processes:

• Directed energy deposition. A heat source such as a laser or an electron beam
creates a melt pool on the surface of the workpiece. At the same time, metal powder
or wire is added to the melt pool in order to generate an additional layer [69].
Directed energy deposition processes such as laser metal deposition (LMD) and
wire arc additive manufacturing (WAAM) are relatively fast and well-suited for
the production of large structures [70]. For instance, a 10 m long and 2.5 m wide
stainless steel footbridge was printed by MX3D in the Netherlands [71].

• Powder bed fusion. In laser beam melting (LBM), electron beam melting (EBM),
and direct metal laser sintering (DMLS), metal powder is spread across a work
area and selectively fused by a laser or an electron beam to create a layer of the



4.2. Digital planning methods 33

final structure [69]. Powder bed fusion systems typically allow for high geometric
accuracy and good mechanical properties, but they have a relatively low deposition
rate and are mainly used to produce parts with small dimensions [72]. An example
is a topologically optimized stainless steel node of a tensegrity structure that was
designed and produced by Arup employing DMLS [73].

Very low porosity is needed for mechanical properties similar to those resulting from
conventional production methods [69]. Therefore, the feedstock and the applied volume
energy must be selected correctly. Furthermore, post-manufacturing treatments such as
hot isostatic pressing, polishing, or chemical etching can reduce porosity and improve the
surface quality [72].

4.1.3 Polymers
Applied methods to print polymer parts for buildings are material extrusion and powder
bed fusion:

• Polymer extrusion. Several different 3D printers have been developed to create
large-scale structures by extruding polymers [56, 74]. Among them are the C-
Fab printer by Branch Technology [75], the KamerMaker by DUS Architects [76],
and the Big Area Additive Manufacturing (BAAM) system by Oak Ridge National
Laboratory [77]. In the BAAM system, a single screw extruder heats up a pelletized
thermoplastic feedstock and deposits the melted material along the tool path. By
using pellets instead of filaments, the deposition rate was significantly increased
while reducing the feedstock costs [77]. For showcasing, the envelope of a cylindrical
single-floored building with a ground area of 19.5 m2 and a height of 2.8 m was
printed by BAAM [78].

• Powder bed fusion. In selective laser sintering (SLS), layers of polymer powder
are successively applied on top of each other. Between each step, a laser heats up
the polymer particles in certain areas of the respective layer such that they are fused
together. Benefits of SLS are the high resolution and quality which can be achieved,
but it is more expensive and slower than material extrusion processes [72]. SLS
was applied by Skanska and 3D Systems to produce geometrically complex polymer
cladding for welded steel nodes of a roof structure in London. The 3D-printed
covering does not have a structural function, but it was added for aesthetics and is
resistant to rain, sunlight, and heat [79, 80].

Most pure polymers have only low stiffness and strength. However, polymer composites
with improved mechanical properties, such as carbon fiber reinforced acrylonitrile butadi-
ene styrene (CF-ABS), have been developed and used for AM [57, 72, 81, 77]. Moreover,
polymer parts can be combined with steel or concrete components for load-bearing pur-
poses.

4.2 Digital planning methods
The digital workflow to generate the instructions for 3D printers starts off by creating a
computer-aided design (CAD) model of the object. In this step, numerical methods can
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support form-finding and dimensioning. For example, topology optimization allows gen-
erating lightweight structures with great performance by exploiting the increased design
freedom AM offers [82, 73]. Aspects related to AM such as support structures, minimum
length scales, material anisotropy, and multiple scales can also be considered during the
optimization [83]. After the design phase, the CAD model is converted into a form suitable
for planning the AM process. At present, the stereolithography (STL) file format, which
only requires a surface triangulation, is most widely used [84]. In the process planning
phase, the converted geometric model of the part is positioned and oriented in the build
space, supplemented by support structures (if necessary), and sliced. Then, the tool path
is generated and the process parameters are selected before they are finally translated to
a machine language such as G-Code in order to numerically control the printer [85].

STL files describe AM parts by their surface using planar triangular facets. Because of
their simple structure, the files can be easily created and read. However, they are only able
to include geometry information and to represent an approximation of the CAD model.
Furthermore, they are prone to flaws, including gaps and overlaps. Alternative formats
such as AMF, 3MF, STEP, and IFC offer a more detailed and reliable data exchange
than STL [86]. The Industry Foundation Classes (IFC) is standardized in ISO 16739
and provides a vendor-neutral exchange of BIM data [87]. It is generally considered the
most promising format in this context because it has the potential to fully integrate the
planning workflow for AM into the BIM method.

4.2.1 Building Information Modeling
A Building Information Model is a comprehensive digital representation of a building
that contains geometric and semantic data, such as building element types and material
properties. Since this data is interlinked, many planning processes can be automated
to a high degree. Examples are quantity assessments, collision checks, as well as the
generation of simulation models or construction plans [88]. Thus, BIM can significantly
improve the planning quality and efficiency, not only for conventionally but also for ad-
ditively manufactured building components. However, the integration of AM parts into
Building Information Models without design restrictions imposes high demands on the
geometric and material representation. Fortunately, various techniques have been devel-
oped that allow modeling almost any printable part, such as a cellular structure or an
FGM object [89–92, 5]. The geometry of a solid body can be described in the following
ways:

• Boundary representation (B-rep). In B-rep approaches, the surface is explicitly
modeled, for example, by polygonal meshes or bivariate NURBS patches [89].

• Volume representation (V-rep). In V-rep techniques, the volume is explic-
itly represented using, for example, voxels, polyhedral meshes, trivariate NURBS
patches [93, 94], Constructive Solid Geometry (CSG), or extensions of CSG [28, 89].

Furthermore, material distributions can be defined based on the respective geometric
model or on geometry-independent functions that refer to specific coordinate systems or
control features. Each of these methods has specific advantages and disadvantages such
that they are suitable for different use cases [5].
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With IFC, several geometry descriptions, such as a CSG model and a B-rep model
consisting of NURBS surfaces, can be related to a building element. It is also possible
to define a triangulated model based on a list of points. Moreover, building elements
composed of multiple materials can be described as well [88]. However, in the present
standardized version, an explicit description of volumetric information in the form of voxel
models, polyhedral meshes, or trivariate NURBS patches cannot be directly made with
IFC objects. Also, the possibility of representing graded material in IFC files by various
types of material distribution functions needs to be developed and implemented. Apart
from that, IFC should provide data for process planning to further integrate AM and
BIM. For example, in the context of concrete extrusion, Davtalab et al. [95] suggested to
extend Building Information Models by additional parameters for the print material and
the construction robot.

4.2.2 Structural verification
The planning procedure and thus the quality of AM parts can be significantly enhanced
by structural verifications based on numerical simulations of the printing process and of
the final state:

• Verification of AM processes. Failures and large deformations can be prevented
by better adapting the part orientation, support structures, and process parameters
to the specific conditions of each printing process. Furthermore, distortions can be
compensated by the input geometry. To this end, methods to simulate AM processes
for concrete [96, 97], metal [98–103], and polymers [104–109] are being developed.
Additionally, researchers strive to predict product properties such as strength and
fatigue resistance [110]. The aim is to provide data for the verification of built-in
AM parts and to optimize AM processes with regard to the part performance. A
major challenge is, however, the development of a comprehensive understanding
of the multiscale and multiphysics mechanisms in AM processes. Moreover, the
computational costs of detailed simulations are very large, there is a multitude of
interacting factors, and it is difficult to carry out validations, especially at small
scales [110, 98].

• Verification of built-in AM parts. If a building part has a load-transferring
function, its stability and serviceability, including the limitation of deformations,
need to be ensured. Therefore, the respective material and failure behavior in
the final state must be known. Experimental data has been used to develop the
design and verification procedures for conventionally produced components defined
in technical codes. For AM parts, such procedures still have to be developed. The
structural behavior of additively manufactured specimens, which depends on the
raw material and the printing process, was experimentally studied and reviewed for
concrete printing in [60, 111–116], for metal AM in [117, 118, 69], and for polymer
extrusion-based AM in [77, 81]. Moreover, FE models of 3D-printed parts were
analyzed and compared to measurements in [119–124]. For example, metal AM
lattice structures were investigated in [120–122]. The simulations of the lattice
structures showed a satisfactory to excellent agreement with the measurements, but
only if the process-induced defects were considered. Despite these studies, there is



36 4. Additive Manufacturing in Construction

a significant lack of experimental data and validated models for printed building
components [62, 117, 125]. This is a major obstacle for establishing computation-
based proofs of stability and serviceability.

Challenges for numerical simulations also arise from the design freedom AM offers because
parts can be printed that exhibit complex geometries and small features down to 0.1 mm
or even less. Therefore, the following chapter presents an efficient multiscale simulation
approach based on FCM and the modified mortar method.
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Chapter 5

Multiscale analysis of periodic
microstructures e

Polymers such as polyurethane elastomers are often used for vibration reduction due to
their high loss factors. As shown in Chapter 3, they can be placed in the form of damping
layers in between structural parts for this purpose. However, their relatively small stiffness
can lead to even larger vibrations in directly excited components [126]. Alternatively, stiff
materials with relatively high loss factors can be employed. Examples are high damping
metals [127, 128] and aluminum metal matrix composites [129, 130]. Moreover, designs for
AM microstructures have been developed in recent years [3, 131]. For instance, Andreasen
et al. [3] identified two-phase microstructures with high stiffness and optimized damping
properties. They can be produced by additively manufacturing stiff lattice structures and
injecting damping material into the cavities. Predicting the mechanical behavior of parts
made from such microstructures can, however, require high modeling and computational
effort because of their multiscale nature and potentially complex geometry.

Paper E presents a simulation framework to investigate the vibration behavior of com-
plex multiscale structures. Therein, the effective material parameters of the respective
microstructure are obtained from computational homogenization and employed in large-
scale simulation models based on the modified mortar method. The main contributions
of Paper E are: (a) The use of an embedded domain method (FCM) to numerically ho-
mogenize viscoelastic composite microstructures. (b) The application and verification of
the modified mortar method to represent damping layers made of such structures. (c)
Numerical studies on high-performance composites demonstrating the efficiency of the
proposed multiscale approach.

5.1 Computational homogenization study

5.1.1 Unit cell design
The investigated composite microstructures consist of the unit cells shown in Figures 5.1
and 5.2, which are inspired by the topology optimization results of Andreasen et al. [3].
They are referred to as octahedral and cubic microstructure. Two geometric parameters
are defined: the thickness of the struts connecting the stiff inclusions astrut and the size
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of the gaps filled with damping material agap, both of which are normalized to the unit
cell size and set to 0.2 unless otherwise stated.

The constituents are considered isotropic and linear viscoelastic with a complex
Young’s modulus and a real Poisson’s ratio. The parameter values of the stiff mate-
rial are based on measurements of steel specimens [132–137] and those of the damping
material on studies of polymethyl methacrylate (PMMA) [138, 139]. The storage Young’s
modulus of the stiff material E ′

s is 180 GPa, and its loss factor ηs is 0.0025. The damping
material parameters, in contrast, depend on the frequency: E ′

d increases from 3.5 GPa to
5 GPa and ηd decreases from 0.08 to 0.05 with rising frequency from 1 Hz to 1000 Hz.
Thus, PMMA offers a combination of a relatively high storage Young’s modulus and loss
factor compared to other pure polymers.

5.1.2 Homogenization and discretization approaches
The composite microstructures can be represented on the macroscale by a homogeneous
linear viscoelastic material if the respective unit cells are much smaller than the overall
structure. To obtain the associated effective constitutive matrices, computational homog-
enization is applied [3, 140]. Furthermore, as the microstructures are cubic symmetric,
three complex effective material parameters are determined from each constitutive ma-
trix [20]:

Ec = E ′
c(1 + iηEc) (5.1)

νc = ν ′(1 + iηνc) (5.2)
Gc = G′

c(1 + iηGc) (5.3)

where E ′
c, ν ′

c, and G′
c are the effective storage Young’s modulus, Poisson’s ratio, and shear

modulus, while ηEc , ηνc , and ηGc are the corresponding loss factors.
Numerical models of the unit cells were created to perform the computational homoge-

nization study. The unit cell domain of the octahedral microstructure is described with a
parametric CSG model and discretized on that basis using FCM [28]. For each material of
the octahedral microstructure, a non-boundary-fitting FCM mesh is generated, as shown
in Figure 5.3. The meshes are weakly coupled at the material interface by means of the
penalty method [29]. This approach allows for an automated modeling procedure despite

(a) (b)

Figure 5.1: Unit cell of the octahedral mi-
crostructure: (a) stiff material, (b) damp-
ing material.e

(a) (b)

Figure 5.2: Unit cell of the cubic mi-
crostructure: (a) stiff material, (b) damp-
ing material.e
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the geometric complexity of the microstructure. By contrast, the cubic microstructure
is discretized with a conforming FE mesh, depicted in Figure 5.4, due to the simplicity
of its geometry. The polynomial degree p of the shape functions is chosen based on a
convergence study. It is set to 3 in the case of the octahedral microstructure and to 4 in
the case of the cubic microstructure, leading to a relative error of the effective material
parameters of less than 3.2 % with respect to an overkill solution.

5.1.3 Results and discussion
The octahedral and the cubic microstructure exhibit large stiffness and good damping
properties in the frequency band from 1 Hz to 1000 Hz. The storage Young’s modulus E ′

c

ranges from 27 GPa to 39 GPa, which is more than 15 % of the stiff material parameter E ′
s,

and the loss factor ηEc ranges from 0.035 to 0.024, which is more than 40 % of the
damping material parameter ηEd

. A significant difference between the octahedral and the
cubic microstructure is found with respect to the shear modulus. Namely, the octahedral
microstructure has a considerably higher G′

c and lower ηGc than the cubic microstructure.
The parameters defining the geometry and material of the octahedral microstructures

were, moreover, individually varied from their original values in order to investigate their
influence on the effective material properties. The geometric parameters astrut and agap
were varied between 0.1 and 0.3. The results show that the storage Young’s modulus E ′

c

can be increased by two measures: raising the strut thickness astrut or lowering the gap
size agap. In contrast to the latter measure, a larger strut thickness astrut unfortunately
results in a significantly lower loss factor ηEc as well. The impact of the stiff and the
damping material parameters is shown in Figure 5.5. To this end, a parameter study was
conducted where the material parameters were multiplied one at a time by a variation
factor ranging from 0.025 to 2. The graphs specify the factors by which E ′

c and ηEc change
in each case. E ′

c rises with increasing storage Young’s moduli of both constituents and
ηEc rises with increasing loss factors. Unlike the loss factor of the damping material ηd,
however, the one of the stiff material ηs has almost no effect. Furthermore, the storage
Young’s moduli Es and Ed considerably influence the effective loss factor ηEc . Particular
attention should be given to the drastic decline of ηEc if Ed falls below a certain value.
Therefore, polymers with very low stiffness should be avoided here, even if they exhibit
high loss factors. Instead, it can be beneficial – not only for the stiffness but also for
the damping properties of the composite – to select a polymer with a storage Young’s
modulus greater than 1 GPa within the relevant frequency and temperature range.

(a) (b)

Figure 5.3: FCM meshes for the octahedral mi-
crostructure: (a) stiff, (b) damping material.e

Figure 5.4: Boundary-conforming FE
mesh for the cubic microstructure.e
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(a) (b)

Figure 5.5: Change of the effective material parameters E ′
c and ηEc of the octahedral

microstructure due to a variation of the stiff and the damping material parameters from
their original values at 10 Hz: Es = 180 GPa, ηs = 0.0025, Ed = 4 GPa, ηd = 0.07.e

5.2 Verification of the modified mortar formulation
for periodic microstructures

After introducing the modified mortar method in Paper B for isotropic elastomer layers, it
was extended in Paper E to layers made of cubic symmetric microstructures and applied
to the following example for verification.

5.2.1 Test structure
The assembly depicted in Figure 5.6 consists of a vertical and a horizontal steel bar whose
dimensions are 36 × 9 × 2000 mm3 and 1600 × 9 × 72 mm3. They have the same material
parameters as the stiff constituent of the composite microstructures described above. The
connection between the bars contains a damping layer made of one of the microstructures.
Unless otherwise stated, it has a thickness bL of 18 mm. Also, the case of a rigid connection
without a damping layer is considered. It is used as a reference to evaluate the impact
of the layer. The vertical beam is clamped to the ground, whereas the horizontal one is
directly excited by a time-harmonic load oriented in z-direction. Two symmetry boundary
conditions are applied such that the structure is actually a frame comprised of components
whose dimensions in the y-direction are twice as large as indicated.

5.2.2 Numerical models
Based on the effective material parameters calculated in Section 5.1, the heterogeneous
damping layer of the test structure is represented in two different ways. In the conforming
FE model (Figure 5.7a), it is explicitly resolved by a high-order finite element and, in the
mortar-based FE model (Figure 5.7b), it is taken into account by the modified mortar
coupling. Both the conforming and the mortar-based models use hexahedral p-elements
of order 9 with large aspect ratios [6]. Compared to an overkill solution, the root mean
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square error of the natural frequencies up to 900 Hz is less than 0.1 % in the case of the
conforming model and less than 0.2 % in the case of the mortar-based model.

Moreover, numerical models of the assembly fully resolving the octahedral and the cubic
microstructure of the damping layer are analyzed (Figure 5.8). They serve as a reference
to verify the homogenization approach. In these models, the damping layer consists of
4 × 1 × 2 unit cells, each discretized in the same way as described in Section 5.1.2. This
leads to 5.0 × 106 unknowns in the case of the octahedral microstructure and 1.5 × 106 in
the case of the cubic microstructure. By contrast, the conforming model employing the
effective material parameters has only 10 432 unknowns and the mortar-based one 8 968.

5.2.3 Results and discussion
The vibration behavior of the test structure subjected to the given time-harmonic load
was studied in a frequency response analysis. Therein, the mean accelerances Y dir and
Y ind were calculated by averaging the transfer accelerance over 100 evenly distributed
evaluation points along the longitudinal axis of the directly and the indirectly excited bar,
respectively. Figure 5.9 shows Y dir and Y ind from 140 Hz to 150 Hz for the cases with and
without a damping layer. The layer is made of the standard octahedral microstructure
described in Section 5.1.1 and represented in different ways using the numerical models
presented above. It can be seen in Figure 5.9 that the damping layer has a significant effect
on the vibration behavior of the test structure. Compared to the case of a rigid connection
without a damping layer, the peak value of the mean accelerance Y dir is reduced by 20.6 %
and that of Y ind by 39.2 %. Furthermore, the fully resolved and the homogenized damping
layers lead to matching results. The peak accelerances differ by less than 6.9 % and the

Figure 5.6: Dimensions and boundary conditions of the test
structure.e

(a)

(b)

Figure 5.7: FE meshes
of the test structure:
(a) conforming,
(b) non-conforming.e
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peak frequencies only by at most 1.05 %. A similar outcome is obtained for the cubic
microstructure. This indicates that the effective material parameters and the modified
mortar coupling are well suited for the considered use case.

These findings are consistent with a more extensive investigation in which several differ-
ent conforming and mortar-based models were compared in a wider frequency range from
0.1 Hz to 900 Hz. The results show that the damping layer reduces the peak accelerances
on average by around 27.2 % if astrut is 0.2 and by around 36.8 % if astrut is 0.1, regardless
of whether the octahedral or the cubic microstructure is used. Furthermore, the vibra-
tions of the directly and the indirectly excited component are reduced to a similar extent,
which can be most likely attributed to the high stiffness of the microstructures impeding
considerable elastic insulation. The relative error of the peak accelerances obtained from
the mortar-based model with respect to those of the conforming one is on average less
than 7.2 % in the directly excited component and not greater than 5.8 % in the indirectly
excited one. This confirms not only the accuracy but also the robustness of the modi-
fied mortar method because the analysis was performed for multiple microstructures and
different layer thicknesses.

(a)

(b)

(c)

Figure 5.8: Non-boundary-fitting
FCM meshes of the fully re-
solved octahedral microstructure:
(a) stiff constituent, (b) damping
constituent, (c) combined meshes.e

(a)

(b)

Figure 5.9: Mean accelerances Y dir and Y ind

for various representations of the octahedral mi-
crostructure: (a) directly excited component, (b)
indirectly excited component.e
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Chapter 6

Conclusion

The research presented in this thesis focuses on vibration analysis of complex structures
assembled from multiple components. In the proposed approach, the structural parts
are discretized separately using high-order finite elements. The non-matching meshes
are then weakly coupled by the mortar method. This allows for a simplified modeling
procedure as well as for computationally efficient simulations. For example, the meshes
can be better adapted to the part geometries, and hexahedral mesh generation can be
automated for complete buildings. Moreover, different discretization approaches, such as
p-FEM and FCM, can be combined by applying the mortar method. In order to further
increase the efficiency of the modeling and simulation process, the mortar method was
modified in this work to represent linear viscoelastic layers between the weakly coupled
components in a dimensionally reduced way. By this means, thin damping layers, which
can have a significant effect on the vibrations of the entire structure, do not need to be
discretized explicitly with finite elements. Instead, they can be easily taken into account
by a weak coupling condition. This approach was verified for two challenging application
fields, namely, cross-laminated timber construction and additive manufacturing:

• Cross-laminated timber offers great benefits, such as biaxial load transfer, higher
heat storage capacity than timber frame modules, and less weight than reinforced
concrete. However, to predict the vibrations of CLT assemblies, the components
and connections need to be modeled appropriately. Motivated by that, a high-order
FE model for CLT assemblies based on a conforming mesh was developed and val-
idated by measurements for the cases with and without elastomer layers between
the components. In this context, it was demonstrated that the high-order approach
significantly increases the numerical efficiency. Furthermore, it was shown that the
material values of the elastomer determined by the technique of Negreira et al. [22]
are suitable to represent the screw connection with elastomer layer. On this basis,
the modified mortar method was verified by numerical examples of CLT assemblies.
The comparisons between the conforming and the mortar-based models show good
accordance for different material values and thicknesses of the elastomer layer. Fi-
nally, the advantages and suitability of integrating the mortar-based approach into
the planning process of construction projects were demonstrated using the example
of an existing multistory building made of solid timber components. Computations
and measurements of the two lowest natural frequencies and associated mode shapes
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agreed well, while the modeling and computational costs were small.
In the scope of this thesis, the representation of a connection between a CLT wall
and ceiling with and without an elastomer layer was thoroughly studied and val-
idated in the range from 20 Hz to 150 Hz. Future investigations could include
further types of connections in a wider frequency range because the quality of their
representation can significantly influence the computed natural frequencies of solid
timber assemblies and buildings.

• Additive manufacturing is being investigated intensively by research institutes
and companies for use in the construction industry and has even been applied to
first building projects in recent years. For this purpose, large AM systems based
on robotic arms or gantry robots as well as printing processes for concrete, metals,
and polymers have been developed. In comparison to many conventional construc-
tion methods, AM offers considerable benefits. For example, it can automate the
complete production process and provide building parts that exhibit complex ge-
ometries and material distributions. However, suitable digital planning methods
and their integration into the BIM method are needed to fully exploit these advan-
tages in the construction sector. To this end, the vendor-neutral file format IFC
should be extended by different V-rep models, material distribution functions, and
process planning information. Apart from a comprehensive file format to exchange
relevant data for AM, structural verification procedures based on numerical simu-
lations of the printing process and of the final state should be further improved in
order to prevent failures and large deformations. Despite significant progress in this
field, validated models for final AM parts as well as an in-depth understanding of the
multiscale and multiphysics mechanisms in AM processes still need to be developed.
Additionally, the large design freedom of AM, which allows for complex geometries
and small features, can lead to considerable difficulties for numerical modeling and
simulation.
Heterogeneous composites producible by AM can be designed in a way such that
they exhibit high stiffness and good damping properties. Therefore, a mortar-based
simulation framework to investigate the vibration behavior of assemblies contain-
ing these structures as damping layers was developed in the scope of this work. It
starts by homogenizing the composite microstructures with FCM, followed by the
assignment of the effective material parameters to mortar interfaces that represent
the respective damping layers in large-scale simulation models. The efficiency of
this approach was demonstrated in numerical studies on exemplary high damping
composites, each consisting of a stiff and a damping constituent. The studies also
revealed that a higher Young’s modulus of the damping material significantly in-
creases both the stiffness and the damping capacity of the composites. Furthermore,
large-scale simulations in which the effective material parameters were employed for
a damping layer showed a good agreement between conforming and mortar-based
models for various composite designs and layer thicknesses. In addition, the ho-
mogenization approach was verified by simulation models that fully resolve the
microstructure of the damping layer.
The computational results should be validated by measurements on 3D-printed spec-
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imens in future work. In this context, the presented framework could also be used
to analyze the as-built structures instead of the original designs by performing the
simulations on CT images. Also other aspects such as strength and fatigue life
should be investigated, both numerically and experimentally. Moreover, other parts
than damping layers can be made of the investigated composites, potentially in the
form of functionally graded materials.

In this thesis, the modified mortar method was developed and successfully used to rep-
resent damping layers made of elastomers and heterogeneous composite materials in fre-
quency response analyses. Further applications can be covered in future work. For ex-
ample, the formulation can be adapted to nonlinear transient problems by employing a
time-dependent constitutive equation. Moreover, the accuracy of the method could be
further increased by introducing a higher-order approach for the displacements along the
thickness direction of the layer.
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