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Abstract

Ageing of populations is an alarming phenomenon that already has been encountered
in many countries in the last decade and will hit even more countries in the upcoming
decades. This would require a signi�cant expansion in the social and health sectors to
deal with higher capacities. However, investing in developing Ambient Assisted Living
environments would be a cost e�ective way out to reduce the pressure on the social and
health sectors.

Ambient Assisted Living (AAL) aims to exploit the advancement in information and
communication technologies to help the older adults to age healthy, stay active, remain
socially connected and live independently at their preferred place of residence. The key
component of AAL environments is monitoring the activities of the resident. Monitoring
of activities would enable implementing more AAL services to detect early signs of health
deterioration, provide assistance when needed and help the residents to perform their
daily activities or routine autonomously. In order to address the privacy and acceptability
concerns of most older adults about monitoring, installing non-intrusive ambient sensors
in AAL environments is required. Most of the research works that are concerned with
developing AAL services assume that the sensors are fault-free. However, in practice most
of the non-intrusive ambient sensors are low-cost binary sensors that are prone to failures,
and thus can threaten the reliability of the AAL services. Sensor failures detection in
AAL is challenging, especially in the presence of the non-deterministic human behaviour.

This thesis proposes a sensor failure detection and isolation system for AAL environ-
ments equipped with event-driven, ambient, binary sensors. First, an extensive literature
review of research works was conducted, where research works were analyzed and cate-
gorized. Then, the feasibility of extracting sensor correlations using the association rule
mining technique was studied. Finally, a sensor failure detection and isolation system
was developed based on the extracted correlations. Guidelines for selecting the values of
the parameters of the system were also presented. The proposed approach was evaluated
on two publicly available datasets. In the experimental work, the datasets were injected
with fail-stop, obstructed-view and moved-location failures. The results show that the
proposed approach is capable of detecting and isolating failures in the event-driven, am-
bient, binary sensors of the AAL environments. Detecting and isolating failures would
enhance the dependability of the AAL environments in practice.
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Zusammenfassung

Die Alterung der Bevölkerung ist ein alarmierendes Phänomen, das in den letzten Jahrzehn-
ten bereits in vielen Ländern zu beobachten war und in den kommenden Jahrzehnten
noch mehr Länder tre�en wird. Dies würde eine erhebliche Expansion des Sozial- und
Gesundheitssektors erfordern, um die dadurch notwendigen höheren Kapazitäten zu er-
möglichen. Investitionen in die Entwicklung von Umgebungsunterstütztem Leben (Am-
bient Assisted Living) wären jedoch ein kostene�ektiver Ausweg, um den Druck auf den
Sozial- und Gesundheitssektor zu verringern.

Ambient Assisted Living (AAL) zielt darauf ab, die Fortschritte der Informations-
und Kommunikationstechnologien zu nutzen, um älteren Menschen zu helfen, gesund
und aktiv zu bleiben, soziale Kontakte zu p�egen und unabhängig an ihrem bevorzugten
Wohnort zu leben. Die Schlüsselkomponente von AAL-Umgebungen ist die Überwachung
der Aktivitäten der Bewohner. Diese würde es ermöglichen, mehr AAL-Dienste zu imple-
mentieren, um frühzeitige Anzeichen für Gesundheitsverschlechterungen zu erkennen, bei
Bedarf Hilfe zu leisten und den Bewohnern zu helfen, ihre täglichen Aktivitäten oder Rou-
tinen selbstständig durchzuführen. Um die Bedenken der meisten älteren Menschen in
Bezug auf Privatsphäre auszuräumen und die Akzeptanz der Überwachung zu erhöhen,
ist die Installation von nicht-intrusiven Umgebungssensoren im AAL-System erforder-
lich. Die meisten Forschungsarbeiten, die sich mit der Entwicklung von AAL-Diensten
befassen, gehen davon aus, dass die Sensoren fehlerfrei sind. In der Praxis handelt es sich
bei den meisten nicht-intrusiven Umgebungssensoren jedoch um kostengünstige binäre
Sensoren, die anfällig für Ausfälle sind und somit die Zuverlässigkeit der AAL-Dienste
gefährden können. Die Erkennung von Sensorausfällen im AAL-System ist � vor allem
in Verbindung mit dem nicht-deterministischen menschlichen Verhalten � eine Heraus-
forderung.

Diese Arbeit entwickelt ein System zur Erkennung und Isolierung von Sensoraus-
fällen in AAL-Umgebungen, das mit ereignisgesteuerten, umgebungsabhängigen, binären
Sensoren ausgestattet ist. Zuerst wird ein detaillierter Überblick über die Literatur
durchgeführt, bei dem die Forschungsarbeiten analysiert und kategorisiert werden. An-
schlieÿend wird die Machbarkeit der Extraktion von Sensorkorrelationen mit Hilfe der
Assoziationsregeln-Technik untersucht. Schlieÿlich wird auf Basis der extrahierten Kor-
relationen ein System zur Erkennung und Isolierung von Sensorausfällen entwickelt. Es
werden auch Richtlinien für die Auswahl der Parameterwerte des Systems vorgestellt.
Der vorgeschlagene Ansatz wird an zwei ö�entlich zugänglichen Datensätzen evaluiert.
In den Experimenten werden die Datensätze mit Fail-Stop, Sichtbehinderung und ver-
schobener Position injiziert. Die Ergebnisse zeigen, dass der vorgeschlagene Ansatz in
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Zusammenfassung

der Lage ist, Fehler in den ereignisgesteuerten, umgebenden, binären Sensoren der AAL-
Umgebungen zu erkennen und zu isolieren. Die Erkennung und Isolierung von Fehlern
würde die Zuverlässigkeit der AAL-Umgebungen in der Praxis verbessern.
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1 Introduction

1.1 Addressed Problem and Scope of this Thesis

Ageing of populations is an alarming phenomenon that already has been encountered
in many countries in the last decade and will hit even more countries in the upcoming
decades. The global number of older adults aged 60 years and older is expected to
exceed the number of young people aged between 15 and 24 years by 2050 [1]. Therefore,
a signi�cant expansion in the social and health sectors to deal with higher capacities
is needed. The impact of the ageing population phenomenon can be transformed from
being negative to positive by maintaining the older adult's health, social participation
and independency. This could be achieved by investing in developing Ambient Assisted
Living environments which would be the cost e�ective way out to reduce the pressure on
the social and health sectors.

Ambient Assisted Living (AAL) aims to exploit the advancement in information and
communication technologies to help the older adults to age healthy, stay active, remain
socially connected and live independently at their preferred place of residence. The key
component of AAL environments is monitoring the activities of the resident. Monitoring
of activities would enable implementing more AAL services to detect early signs of health
deterioration, provide assistance when needed and help the residents to perform their
daily activities or routine autonomously. In order to address the privacy and acceptability
concerns of most older adults about monitoring, installing non-intrusive ambient sensors
(e.g., motion detectors) in AAL environments is required. Most of the research works
that are concerned with developing AAL services assume that the sensors are fault-free.
However, in practice most of the non-intrusive ambient sensors are low-cost binary sensors
that are prone to failures, and thus can threaten the reliability of the AAL services.

Sensor failures detection in AAL is challenging, especially in the presence of the non-
deterministic human behaviour. Two types of sensor failures can be encountered; fail-stop
failures, where the sensor completely stop responding, and non-fail-stop failures, where
the sensor is still reporting but it gives false information about their environment [2]. The
traditional fault detection techniques for wireless sensor networks were mainly developed
to deal with homogeneous, time-driven and continuous-valued sensors. However, the
sensors installed in the non-intrusive AAL environments are mostly heterogeneous, event-
driven and binary sensors. This thesis proposes a sensor failure detection and isolation
system for AAL environments equipped with event-driven, ambient, binary sensors.
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1 Introduction

1.2 Thesis Outline

� Chapter 2: provides background knowledge for the presented research and an
overview of the related literature.

� Chapter 3: presents an overview of the research methodology.

� Chapter 4: presents an extensive literature review of sensor failure detection and
fault tolerance in AAL environments, it discusses the pros and cons of the ap-
proaches found in literature and highlights the research gaps.

� Chapter 5: introduces the use of association rule mining to �nd correlations between
sensors, discusses the evaluation metrics of the rules and experiment the rules
extraction using two sets of metrics.

� Chapter 6: proposes sensor failure detection and isolation system based on ex-
ploiting the rules extracted from the association rule mining. The approach was
evaluated in a case study.

� Chapter 7: presents the e�ect of adding time features as well as modifying the data
processing of contact sensors on the performance of failure detection. In addition, a
second case study to verify the feasibility of the proposed approach was presented.

� Chapter 8: discusses the results of the thesis, and provides conclusion and directions
for future work.
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2 Background and Current State of

Research

2.1 Ageing Population

The world is experiencing a distressful change in its population structure. The number
of persons aged 60 years and older was 382 million in 1980, 900 million in 2015, and
is expected to rise in fast pace to reach 2 billion in 2050 [3]. The percentage of people
aged over 60 to the global population is expected to rise from 12% in 2015 to 22% in
2050 [4]. This demographic shift is known as Ageing population. This shift varies in its
intensity from one region to another, some regions will be a�ected the most, e.g., China,
Germany and Canada. Figures 2.1a and 2.1b show the percentage of ageing population of
each country in 2015 and 2050, respectively. The decreased fertility rates along with the
increased longevity of persons are the most in�uential factors that has lead to population
ageing.

Figure 2.1: Percentage aged 60 years and older in each country in (a) 2015. (b) 2050 [5].

The global life expectancy at birth has increased by 7.7 years (12%) from 1990-1995 to
2015-2020, and is expected to further increase by 4.5 years (6%) from 2015-2020 to 2045-
2050. The life expectancy at the age of 65 years, i.e., the average number of years that
is expected to be lived beyond 65, globally was 17 years in 2015-2020. It was the highest
in Australia and New Zealand (21 years) followed by Europe and Northen America (19
years). An increase in life expectancy is foreseeable in all regions between 2015-2020 and
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2 Background and Current State of Research

2045-2050. Total fertility rate (TFR) is the average number of live births that a woman
would give over a lifetime [6]. The global TFR has dropped from 3.2 in 1990 to 2.5 in
2019, and is expected to further drop to 2.2 in 2050. A TFR threshold of 2.1 has to be
met in order to replace the population of a speci�c region. The TFR varies greatly from
one region to another, the lowest TFR in 2019 was in Europe and North America with
a value of 1.7, while the highest TFR in 2019 was in Sub-saharan Africa with a value
of 4.6 [7]. In 2018, the people over 65 years old has outnumbered the children under 5
years old for the �rst time in history [8].

Although, population ageing has initially started in high-income countries, by 2050
the low- and middle-income countries are expected to have 80% of the older people of
the world [4], which will make it even harder for those countries to deal with the ageing
population phenomenon. The e�ects of the ageing population will be re�ected on the
dependency ratio, which is the ratio between the older and the working age. Globally
the ratio of the persons having 65 years or above, per 100 persons aged 20 to 64 years
is expected to rise from 20 in 2019 to 33 in 2050 [9]. Regionally in 2019, the highest
dependency ratio was in Europe and North America with a ratio of 30 per 100, and the
second highest was in Australia with a ratio of 27 per 100. Those numbers are expected
to rise steeply by 2050 to reach 49 per 100 in Europe and North America, and 42 per
100 in Australia. Moreover, more Asian countries and other areas are expected to be on
the top ten dependency ratio list by 2050 [6]. Europe's projected dependency ratio of
2050 implies that there would be 2 working-age persons for each person over 65 years old,
meanwhile in 2010 there were 4 working-age persons for each person aged over 65 [10].
The population pyramid worldwide has been changing greatly, with the most alarming
and signi�cant pyramid change is in Europe as can be seen in Figure 2.2.

Figure 2.2: EU27 population pyramid for the years 2010 and 2060 [10].

Living independently, i.e., person living alone or with a spouse or partner only, is
preferred by most older adults as it o�ers them more privacy and control over their

4



2.2 Healthy Ageing

household. Figure 2.3 shows that high proportion of older adults lived independently
between 2006 and 2015, the percentage is higher in the more developed regions, and
globally females were twice as likely to be living alone than men [11]. Unfortunately,
ageing is often accompanied with physical and cognitive decline. The most signi�cant
challenges induced on governments by the ageing population are expanding the health
care system as well as the social system to deal with the higher capacities. Moreover,
the economic growth of countries will be a�ected due to the decreased work force and
the increased �nancial expenditure on health and social systems to support the older
adults. However, the impacts of the ageing population can be mitigated by promoting
healthy ageing. When healthy and active, the older people can de�nitely have signi�cant
participation economically and socially [12].

Figure 2.3: Regional percentages of males and females over 65 years old living alone or with
spouse between 2006 and 2015 [11].

2.2 Healthy Ageing

Healthy ageing is �the process of developing and maintaining the functional ability that
enables well-being in older age� [13]. The functional ability refers to the physical and
mental abilities (i.e., intrinsic capacity) of a person, the surrounding environment and
his interaction with it. The ability of a person to do the things that they value can be
enhanced by providing an enabling environment, despite the weakening of his intrinsic
capacities. The most crucial �ve domains of functional ability to the older adults are
mobility, autonomy (i.e., independence in meeting their own basic needs), building and
maintaining relationships, contributing to the community and personal growth [14].
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2 Background and Current State of Research

The United nations (UN) has declared the upcoming decade from 2021 to 2030 as the
�Decade of Healthy Ageing�. This initiative is a wake-up action call to bring together the
governments, organisations, researchers, private sector and communities to collaborate
together to transform the ageing population from being a challenge to an opportunity
through improving the lives of older adults. Delaying or even preventing many of the
non-communicable diseases that hit the older people is possible by encouraging healthy
life style, and creating supportive environments that can stimulate their functional ability
and enable them to continue doing what they value [12].

Possible strategies for promoting Healthy Ageing across the life time of an individual
is shown in Figure 2.4. The suggested strategies at the stage of high intrinsic capacity
focuses on building and maintaining the capacity for the longest time possible through
early detection of diseases and early intervention, as well as through promoting healthy
behaviour of individuals and healthy environments. The strategies mainly focus on long-
term care for the older adults whether they are at high risk or already su�er from signif-
icant decline in capacity. The long-term care aims to maintain an optimal trajectory for
the intrinsic capacity and to enable the older adults to meet their needs as independently
as possible [14].

A change of the place of residence of older adults who have decline in their internal
capacity is often needed to provide them with a more supportive environment. However,
most older adults are reluctant to relocate as they have a sense of connection to their
homes, and relocating makes them feel of a loss of identity, autonomy and security.
Therefore, the ageing in place policy is recommended, which refers to the ability of older
adult to continue living in their homes safely, independently and comfortably regardless of
their internal capacity. Ageing in place would have a positive impact on the well-being of
older adults and will eventually decrease the health care costs on governments. Ageing in
place would be more achievable in the future via implementing Ambient Assisted Living
environments [14].

Figure 2.4: A public-health action framework for Healthy Ageing along the life course of an
individual [14].

6



2.3 Ambient Assisted Living

2.3 Ambient Assisted Living

The emergence of the ageing population phenomenon, along with the vast development in
information and communication technology (ICT) over the past decades, has encouraged
the researchers to develop Ambient Assisted Living environments (AAL) [15]. The AAL is
based on the ambient intelligence (AmI) concept. AmI is about surrounding people with
embedded intelligent devices that unobtrusively perceive their status, predict and respond
to their needs [16]. Ambient Assisted Living can be de�ned as �the use of information and
communication technologies (ICT) in a person's daily living and working environment to
enable them to stay active longer, remain socially connected and live independently into
old age� [17]. It is a multidisciplinary �eld that integrates information and communication
technology, sociological sciences and medical research [15].

Assistive technology refers to the technology used to increase, maintain or improve
functional capabilities of a person [18]. The assistive technology that support the in-
dependent living of older adults has evolved over three generations until it progressed
into AAL [19]. The �rst generation included low-tech devices that respond to the older
adult in emergency, like wearing pendant which the older adult would press its button
in case of a fall to generate an alarm that would alert the informal or formal caregivers.
Such technology has been bene�cial in emergency situations, however, it required that
the older adult is capable of initiating requesting assistance at the �rst place. The second
generation included the instalment of sensors at the older adult's place of residence to
automatically detect and respond to emergency situations, and also to detect potential
hazards, e.g., gas leakage, and producing alerts. The third generation is about devel-
oping AAL systems that embeds technology in the surroundings of the older adults to
unobtrusively monitor and provide support in all aspects of their daily living.

AAL is built on the top of the smart home services, providing advanced monitoring
and assistive services to support the older adults [20]. Examples of the AAL functional
services are health monitoring, wandering prevention, activities of daily living (ADL)
assistance, fall detection and cognitive orthotics [21]. Health monitoring refers to the
unobtrusive monitoring of the older adult health. The wandering prevention tools aims
to prevent the wandering behaviour of the dementia patients. Assistance of the older
adults to perform their daily activities is another crucial service. As older adults are
more vulnerable to falls, it is critical to detect such falls, ensure their safety and provide
the needed assistance. Cognitive orthotics tools are useful to help the older adults that
have cognitive decline. The services could be categorized into assistance, autonomy
enhancement and comfort services. Figure 2.5 shows an overview of the concept of AAL
systems. The early research projects for building AAL environments have focused on
safety and assistance in case of emergency situations, e.g., producing an alarm when a fall
is detected [22]. Later, the focus expanded to be on providing sophisticated services for
their daily living. AAL tools are supported by algorithms and computational techniques,
e.g., activity recognition, context modeling and location identi�cation, which act as the
components of the AAL system [23]. The aim of AAL is to enable the older adults to live
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independently in their preferred environment safer and for longer, improve their quality
of lives, and hence decrease the costs on the social and health sectors [24].

In order to ful�l this aim, most AAL applications need to �rst detect and classify the
activities being performed by the resident. The activities of daily living (ADL) is �a term
used to collectively describe fundamental skills that are required to independently care
for oneself such as eating, bathing, and mobility� [25]. The ADL re�ect the behavioural
routine of older adults. It may be classi�ed into basic activities of daily living (BADL)
and instrumental activities of daily living (IADL). The BADL refers to the necessary
self-care activities, e.g., eating, toileting and dressing, while the IADL refers to the more
advanced or leisure activities, e.g., housekeeping, watching television and preparing meals
[26]. The ADL of the older adults can be monitored to track their health status and an-
ticipate any forthcoming risks [27]. The ability to complete ADL, how and with which
pace they are being performed, can give an indication about the functional health status
of a person. Assessment of ADL by healthcare providers helps in spotting deterioration
of the health status of a person and deciding on the type of further diagnosis, assis-
tance and/or medications needed. Examples of the conventional assessment methods are
Barthel Index (BI) [28], Katz Index [29] and Activities of Daily Living Questionnaire
(ADLQ) [30]. Hence in AAL environments, detection of ADL performed by older adults
via his interaction with the surrounding environment would enable automatic analysing
of his health status. In the last decade, the main focus of research in ADL has been
on activities discovery (AD), activities recognition (AR), detection of deviations (DD)
and activities prediction (AP) [31]. Activities discovery means building a model of ac-
tivities for the monitored person, while activity recognition is the process of detecting
which activity is performed by the inhabitant in real-time. Detection of deviation refers
to analysing the behaviour of resident and identifying the deviations in his behaviour,
meanwhile activities prediction refers to predicting the upcoming activity based on his
previous ones. Additionally, indoor location tracking has been the focus of many research
works to help in detecting activities, as many activities are location dependant [32].

The essential requirements of AAL systems that need to be met are adaptability,
acceptability, usability, low-cost and dependability [15, 24, 33]. Adaptability refers to the
ability of the system to adapt to various situations and person capabilities. Acceptability
is the extent to which the persons are willing to integrate it into their life [34]. The AAL
systems should be unobtrusive, i.e., do not interfer with the person daily living or cause
inconvenience, in order to reach high acceptability. Usability refers to the ease of use. In
order to improve the usability of systems, the services should be easily accessible. As AAL
systems are primarily implemented for older adults who are mostly retired, providing a
low-cost system that is a�ordable should be taken into consideration. Dependability
refers to the reliability, maintainability, safety and privacy of the system [34]. Reliability
is achieved when the system continues to provide its services correctly. Dependability of
AAL systems is crucial to gain the trust of the older adults. Yet, it has received little
attention in research and need to be tackled more [32].
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Figure 2.5: Overview of the Ambient Assisted Living (AAL) systems [35].

2.4 Sensors in AAL

AAL relies on continuous and mostly real-time monitoring of the older adult's behaviour,
health and surrounding environment, to trigger assistance via an event based system
[22]. In order to provide AAL services, contextual information about the activities of
the older adult need to be gathered in real time via sensor network. Sensors deployed
in AAL environments can be categorised into intrusive sensors and non-intrusive sensors
[31]. The intrusive sensors are those based on audio and visual sensing, e.g., cameras and
microphones. Those sensors provide high level information that makes it easier to deduce
the activities of the monitored person, detect falls or any crucial events. Cameras can be
used to produce images or videos from which the activities can be extracted precisely but
at a computational expense. Microphones can be used to detect voice and other sounds
in the environment, e.g., sound of dishes, water or hits, that would ease the recognition
of activities. Research works in the �eld of AAL commonly focus on the environments
equipped with audio and visual sensors. However, in practice such intrusive sensors
face privacy issues and are not widely accepted by older adults as most of the people
have the feeling of being watched [36]. The non-intrusive sensors are either ambient
(environmental) or wearable sensors. Most of the ambient sensors in AAL are binary that
have two states, e.g., motion sensors and contact switches, or even continuous that can be
perceived as binary using a threshold, e.g., water �ow sensors and pressure pad sensors
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[31]. To be able to e�ciently monitor the activities of the older adult, various types
of ambient sensors are deployed in the AAL environment [37]. Table 2.1 lists the most
common non-intrusive sensors installed in the AAL environments. Passive infrared (PIR)
motion sensors detect changes in the infrared emission that occurred due to a movement
in its �eld of view. They are typically installed on ceilings and walls. The data collected
from motion sensors can be used to interpret various features, e.g., presence, degree of
activity, falls, location, sleeping patterns and gait velocity [38]. Contact switches are
installed on objects, e.g., door, drawer and cabinet, to deduce interactions. Magnetic
contact switches consist of a magnet mounted to the moveable object and a reed switch
mounted to the frame. The electric circuit is completed by getting the magnet in contact
with the reed switch, changing the state of the sensor. Pressure sensors are installed on
�at surfaces, e.g., chairs, beds and door mats, to detect interaction between the resident
and the contact surface. Tactile pressure sensors are often used in AAL and the outputted
force or pressure distribution is compared to a threshold to detect the interaction [39].

The non-intrusive ambient sensors have low cost and are easy to install. Usually the
wearable sensors are used to monitor the physiological signals of the person, e.g., heart
rate and blood pressure, while the ambient sensors are used to monitor his activities. The
main drawback of the wearable sensors are that wearing them for extended periods at
home often bring discomfort to users, thus the non-intrusive ambient sensors are preferred
and can even be used in the future to monitor some physiological signals like heart rate
[38]. However, the reliability of the non-intrusive ambient sensors must be assured.

In AAL environments, the deployment of non-intrusive ambient sensors reduces the
costs and acquires only low level information from the resident's surrounding environ-
ment. Sharing this low level information is usually more acceptable by older adults than
the high level information gathered by the intrusive sensors. On the other hand, infer-
ring the activities and behaviour of the monitored older adult from low level data would
require advanced techniques. In addition, such sensors are more prone to errors. Flöck
has reported some of the observed sensors malfunctions that a�ected activity monitoring
in AAL environments, e.g., spurious signals and faulty activation of motion sensors by
sunlight [40]. Moreover, the researchers in the university of Virginia have investigated
in practice the challenges of the sensing systems deployed in 20 homes over several years
for monitoring the activities of daily living [41]. They have found that high failure rates
of sensors occur, around one sensor failure per day. In addition to the power loss and
poor network connectivity, it was reported that the human interference is an alarming
source of failure. The sensors installed on objects, e.g., mircowaves and faucets, are dis-
lodged during normal use by residents, guests and cleaning services, and hereafter get
remounted wrongly. Moreover, moving the furniture that has sensors installed on it leads
to reporting incorrect data. Also, the sensors sometimes get hidden behind objects or
furniture causing its view obstruction. Sensor failures in non-intrusive AAL environments
can be classi�ed as fail-stop and non-fail-stop failures [2]. When the sensor completely
stops responding, it is denoted as fail-stop failure. While non-fail-stop failure is when the
sensor continues to report but the reported data is not representative of what is really
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Table 2.1: Typical non-intrusive sensors in AAL environments [38].

Sensor Type Function Signal
PIR motion
sensor

Ambient Detect motion or
movement

Binary

Magnetic
contact switch

Ambient Detect opening
and closing of
doors, cabinets,
drawers, etc.

Binary

Pressure sensor
pad

Ambient Measure applied
pressure on
beds, chairs,
door mat, etc.

Continuous

Water �ow
sensor

Ambient Measure water
�ow in faucets

Continuous

Smoke sensor Ambient Detect smoke or
�re

Binary

Biosensor Wearable Monitor human
vital signs

Continuous

Home electric
appliances

Ambient Detect switching
of appliances

Binary

Float sensor Ambient Detect toilet
�ush

Binary

occurring in the monitored environment. Examples of the non-fail-stop failures are the
moved-location and obstructed-view failures.

2.5 Fault Detection

2.5.1 Background

The dependability of systems can be improved via enhancing the reliability and quality
of its individual components, e.g., sensors, actuators, etc., yet a fault-free operation
still can not be guaranteed [42]. Accordingly, fault diagnosis became an essential part
of any system design. The main goals of fault diagnosis are fault detection, isolation
and identi�cation. Fault detection refers to determining that a fault has occured in the
system, fault isolation is about �nding out the location of fault, i.e., the faulty component,
and fault identi�cation refers to determining the type of the fault [43]. The fault diagnosis
system can be referred to as fault detection (FD) system, fault detection and isolation
(FDI) system and Fault detection, isolation and identi�cation (FDII) system, according
to its functionality.
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A classi�cation of fault diagnosis techniques was presented in [42], where the tech-
niques have been divided into hardware redundancy, signal processing, plausibility test
and software/analytical redundancy based techniques. Hardware redundancy is about
installing extra redundant hardware for each component, and comparing the output of
each component with its redundant one to detect a fault occurrence. Despite having
the advantage of direct fault isolation, this technique su�ers from high implementation
costs. Signal processing based techniques rely on detecting signi�cant changes or devia-
tion in the signals (readings) that is considered as a symptom of the fault using suitable
signal processing, e.g., limit values, mean values and trends. Plausibility test is based
on checking that some physical laws that governs the component and will be a�ected by
the fault remain valid. Software/analytical redundancy is about constructing a model of
the system, and comparing the output signals with its estimated value from model, i.e.,
residual generation.

As wireless sensor networks (WSN) became widely used in many applications, e.g.,
industrial monitoring, surveillance and health monitoring, developing fault detection
techniques for wireless sensor networks has received the attention of many researchers.
Wireless sensor networks are �interconnected sensor nodes that communicate wirelessly
to collect data about the surrounding environment� [44]. The sensor nodes may fail due
to various reasons, e.g., poor connection, hardware faults, low battery, weather or en-
vironmental conditions [45]. In wireless sensor networks, the fault detection techniques
can be classi�ed as centralized and distributed approaches [46, 47]. In the centralized
approach, a base station constantly sends queries to the sensors to check on their status.
The distributed approach is mainly implemented via node self-detection, neighbour co-
ordination and clustering approach. The node self-detection is based on comparing the
output of the sensor nodes to prede�ned fault models. The neighbour coordination where
the sensor nodes coordinate with their neighbouring nodes to identify the failure, where
a node is suspected to be faulty when sensor readings di�ers greatly from its neighbours.
The clustering approach �rst group the sensor nodes into clusters and then apply the
most suitable fault detection technique to each cluster.

The traditional fault detection techniques are mainly used to tackle wireless sensor
networks that have homogeneous, time-driven and continuous-valued sensors. However,
the non-intrusive ambient sensors installed in the AAL environments are mostly hetero-
geneous, event-driven and binary sensors. Detecting faults in such environments is a
challenge especially in the presence of the non-deterministic human behaviour.

2.5.2 Related Work

In the last decade, developing sensor failure detection systems for AAL environments
equipped with non-intrusive ambient sensors has gained the interest of researchers. A
comprehensive literature review has been proposed in Chapter 4, where the approaches
of the reviewed sensor failure detection systems were classi�ed into model-based and
correlation-based. An overview of the related work is presented in this section.
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The model-based approaches rely on checking if the deduced location of the resident
using a model [48, 49] or localization hardware [50, 51] is consistent with the location
estimated based on the triggered binary sensor, and if not then the binary sensors are
expected to be faulty. The surveyed model-based sensor failure detection techniques
either su�er from using a non-realistic generic mobility model of the resident, e.g., random
walk model, that does not take into account the previous locations and speed of the
person, or depend on installing extra localization hardware that would subsequently
increase the faults likelihood and the cost of implementation. Modeling the human
behavior or mobility is very challenging as humans are characterized by having a non-
deterministic nature. Also, since the AAL systems are targeting older adults who are
mostly retired, the cost of the system is one of the important aspects that need to be
considered. Fault detection frameworks have been proposed that are based on modelling
either the physical e�ects that are expected to occur due to the activation of actuators
[52, 53] or the causal relationships in prede�ned assistance user scenarios [54] to deduce
the expected sensors readings and comparing it with the actual readings. However, those
methods can only detect failures in the sensors that are involved in tasks that have
sensor-actuator feedback. Therefore, in this thesis adopting a model-based approach was
avoided as it seems less promising for our application compared to the correlation-based
(data-driven) approaches.

The correlation-based sensor failure detection approaches found in literature rely on
using historical data to deduce correlations that form the basis for the detection of sen-
sor failures. The correlation-based approaches can be classi�ed as works that exploit the
sensor-appliance [55], sensor-activity [56] and sensor-sensor [57, 58, 59, 2, 60] correla-
tions. In [55], a motion sensor is �agged as faulty when the monitored interval between
triggering a motion sensor after and/or before turning on/o� an electrical appliance de-
viates from the regular interval patterns learnt from the training data. The distribution
of each of the after and before interval of every sensor-appliance pair is represented using
Gaussian mixture model, where the model is composed of one or more normally dis-
tributed components re�ecting all the regular interval(s) of the sensor-appliance pair.
The Gaussian mixture model is parametrized by the mixture component weights, means
and covariances, which are estimated using the Expectation maximization algorithm [61]
that is based on initially assigning random values for the parameters, and then iterating
and updating the parameters until convergence occurs. This approach is based on the
assumption that the person has to be physically around the electrical appliance to turn
it on/o� and accordingly the motion sensors covered by that area will be triggered. The
sensor-appliance correlation-based approach has the drawback that its hypothesis may
not always hold especially with the spread of using advanced remote controlled tech-
nology, e.g., voice controlled electrical devices. Kodeswaran et al. [56] have proposed
detecting sensor failures via exploiting the functional redundancy of sensors per activity,
where the sensors that are typically triggered with each activity are extracted using an
activity labeled training dataset. At run-time, failure alerts are generated according to
the recognition of a performed activity along with the absence of one of its sensors. The
limitation of this approach is that it needs activity labeled training data, which are costly
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and hard to obtain. Moreover, it assumes that the performed activity has been correctly
identi�ed by the activity recognition system. Hence, basing our failure detection system
on sensor-appliance and sensor-activity correlations has been avoided.

Exploiting the sensor-sensor correlations to detect sensor failures in AAL environments
has been tackled by researchers. Ye et al. [57] aimed to detect missing sensor events using
the temporal correlations and time-series analysis. The temporal correlations between
sensors are generated using the mutual information technique, while the non-linear time-
series analysis is used to represent the �ring pattern of each sensor. A missing sensor
event is reported when a sensor does not trigger although it was supposed to be triggered
according to temporal correlations and/or the non-linear time-series. The authors have
stated that their proposed approach could not be evaluated properly in the experiments
due to using a dataset with a small number of sensors and short duration. Same authors
have proposed using a clustering based outlier detection technique to detect non-fail-
stop sensor failures [58, 59]. The sensor events are clustered according to their time
stamp, object to which the sensor is attached to, its location and the user triggering that
event. A clustering based local outlier factor (CBLOF) is assigned to each event which is
function in the size of the cluster to which it belongs, the distance from the closest large
cluster and the historic abnormal behavior of the triggered sensor. The drawback of this
approach is that sensor events must be collected �rst and then the approach is applied
o�ine to detect abnormal binary sensor events. Kapitanova et al. have proposed sensor
failure detection system based on using the classi�cation technique [2]. Mutliple classi�er
instances are trained for each sensor failure by excluding this sensor out of training set
to mimic the failure. At run-time, sensor failure is �agged via assessing the relative
performance between the classi�ers which did not have that sensor in their training set
and the classi�ers which had it. This approach requires excessive training e�ort, which
proportionally increases as the number of deployed sensors increases. Choi et al. [60]
extract the correlations between sensors represented as sensor state sets (groups), and
�nd the transitional probabilities across the sensor groups as well as between the sensor
groups and the actuators. At run-time, a failure is detected either when there is one
sensor state di�erence between the incoming events and the correlation, or when a group
of sensors �res despite having a zero transitional probability with the previous group of
triggered sensors or actuators and vice versa. In this approach, any group of triggered
sensors is considered as a correlation that the system can use for failure detection, even if
it has occurred once in the precomputation phase. As a result, there is a high possibility of
including correlations that may be unreliable for failure detection, and the computational
e�ort would be high especially when more sensors are deployed in the environment.

2.6 Motivation

Most of the research works that focus on developing services for AAL environments
equipped with non-intrusive ambient sensors, assume that the sensors are fault-free.
Nevertheless, those sensors are likely to fail in practice. In AAL environments, a failure
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in one of the sensors may induce misleading result in the activity recognition, location
tracking, or in any of the subsystems and services of AAL. Sensor failure has been
acknowledged as one of the signi�cant challenges that a�ects inferring the activities
of daily living in AAL [62]. Location tracking was signi�cantly impacted when sensor
failures were imposed in a case study [49]. Detecting failures in the event-driven binary
sensors of the AAL environments is challenging especially in the presence of the non-
deterministic human behaviour.

This thesis aims to propose a sensor failure detection and isolation system in the AAL
environments equipped with event-driven, ambient, binary sensors. The approach also
aims to overcome the previously mentioned shortcomings of the related works, e.g., high
cost, need of labelled datasets and lack of scalability.

In order to reach our aim, the following reasearch questions have been formulated:

RQ1 What are the existing failure detection solutions of event-driven, binary, ambient
sensors installed in AAL environments?

RQ2 What are the limitations of the existing solutions?

RQ3 Is using association rule mining (ARM) to �nd sensors correlations in AAL envi-
ronments feasible?

RQ4 Which data preprocessing and metrics are suitable to �nd sensors correlations using
association rule mining?

RQ5 How to exploit the sensors correlations to detect and isolate sensor failure?

RQ6 How to choose the values of the set parameters of the proposed sensor failure
detection and isolation system?

RQ7 Is the proposed solution e�ective in detecting and isolating sensor failures?
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This chapter gives an overview of the thesis methodology. Figure 3.1 provides an il-
lustration of the steps performed in order to answer the previously mentioned research
questions of Section 2.6.

Figure 3.1: Methodology overview

3.1 Step I: Literature Review

As illustrated in Figure 3.1, to answer RQ1 and RQ2 an extensive literature review was
conducted and presented in Chapter 4 to explore the state-of-the-art for the sensor failure
detection systems and fault tolerance methods in the presence of sensor failures in AAL
systems equipped with non-intrusive, binary, event-driven, ambient sensors.

In order to conduct the literature survey, the title, abstract and keywords �elds were
searched in Scopus, IEEExplore, Web of knowledge and ACM databases for the follow-
ing combination of terms; (�fault detection� OR �sensor failure�) AND (�smart home�
OR �ambient assisted living�). Scopus and Web of knowledge databases produced the
largest number of relevant articles. The search was then extended on Scopus and Web
of knowledge to include more combinations of the keywords shown in Table 3.1, so that
the combination is as follows; ((Group A AND Group C) OR Group D) AND Group B.
The years �eld was not constrained, yet it was observed that the papers found were all
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published between 2008 and 2017. Only the papers concerned with non-intrusive ambient
binary sensors were included in the survey.

Table 3.1: Search keywords.1

Group A Group B Group C Group D

"sensor*" "smart home" "fault detection" "sensor* error"
"ambient assisted living" "failure detection" "sensor* failure*"

"AAL" "fault toleran*" "sensor* fault*"
"location tracking" "fault identi�cation" "sensor reliab*"
"actvity recognition" "failure identi�cation" "faulty sensor*"
"activity monitoring" "fault diagnosis" "*reliable sensor"
"activity detection" "FDI" "uncertain sensor"
"home* based care" "fault isolation" "sensor diagnos*"
"indoor localization" "fault prevention" "sensor node fail*"

"fault prediction" "fail* sensor*"
"fault recover*" "anomal*" AND "binary sensor*"
"self-check*"
"self-heal*"
"dependable"

"failure management"

The research works were categorized into �ve categories according to the function of
the proposed systems and the approach that their methods are based on. The cate-
gories were correlation-based fault detection, model-based fault detection, fault-tolerant
location tracking, fault-tolerant activity recognition, and fault detection and diagnosis
framework for AAL. An overview of the method, algorithm, experiments conducted,
datasets used and performance metrics of each of the research works was given. The
limitations of the works were also discussed.

The model-based fault detection techniques found in literature rely on deducing the
location of the resident using the triggered sensors due to his movement or his performed
activities. Then, this deduced location is compared with the location predicted either
by his model of mobility or by a localisation system. The proposed model-based sensor
failure detection approaches are not promising as they either use unrealistic models of
resident motion that do not take into consideration previous locations and speed or
install extra hardware that increases the cost as well as the chances of errors. Moreover,
the fault detection and diagnosis frameworks that rely on modelling the sensors' and
actuators' activation due to various user scenarios can only detect failures in sensors
that are involved in tasks that have sensor-actuator feedback. Thus this thesis favoured
adopting a correlation-based approach over a model-based approach.

Correlation refers to the relation or dependency between variables. If a correlation
that has already been applicable during nominal operation, has been de�ed then this may
indicate the presence of a fault. The surveyed correlation-based (data-driven) techniques

1* replaces any number of characters, i.e., sensor* will search for sensor, sensors, sensory, etc.
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can be classi�ed as methods based on exploiting sensor-appliance correlations, sensor-
activity correlations and sensor-sensor correlations. The sensor-appliance approaches
rely on assuming that there will be correlations between the activation of the electrical
appliance and the triggering of the motion sensors in the areas leading to it, which is
becoming less common in smart homes as most appliances can be switched on remotely.
Meanwhile, failure detection using sensor-activity correlations found in literature requires
obtaining labelled data of performed activities to correlate the activities to the sensors
during the training phase and relies on the accuracy of the activity recognition system
at run-time to detect sensor failures. The proposed sensor failure detection and isolation
system approach that will be presented in the next chapters focuses on sensor-sensor
correlations rather than sensor-appliance and sensor-activity correlations.

3.2 Step II: Correlations Extraction using ARM

Finding the strong correlations between the employed sensors could form the base for
developing a sensor failure detection system. In step II, the use of association rule
mining to �nd the highly correlated sensors from an unlabelled recorded dataset was
investigated. The obtained rules could then be used for sensor failure detection in such a
way that if the sensor(s) of the antecedent part of rule got triggered while the sensor(s)
of the consequent part of rule did not within a speci�c time, then the sensor(s) can be
suspected to be faulty.

Association rule mining [63] is a data mining technique that was primarily developed
to �nd correlations between items in large transactional databases. It aims to �nd the
frequently occurring correlations in categorical data, the outputted correlations takes the
form of a set of rules. Each rule consists of antescedent and consequent, it implies that
if the item(s) of the antescedent is (are) found in a transaction, then it is likely that
the item(s) of the consequent will be found. Its most famous application is the market
basket analysis, where the association rule mining is applied to �nd which Y product(s)
is (are) likely to be bought when X product(s) is (are) purchased.

A formal representation of the association rule mining problem is as follows. Let
I = {I1, I2, .., Im} be a set of binary features denoted as items. Let the dataset T consist
of a set of transactions T = {T1, T2, .., Tn}, where each transaction is a binary vector of
items, e.g., if transaction T1 contains only two items I1 and I3, then T1 will have T1[1] = 1,
T1[3] = 1 and the rest of T1 vector are zeros. An association rule has the form of X → Y ,
where the antecedent X ⊂ I, the consequent Y ⊂ I and X∩Y = φ. The most commonly
used evaluation metrics (interest measures) of a rule are its support and con�dence. The
support of a rule is de�ned as �the fraction of transactions in T that satisfy the union
of items in the consequent and antecedent of the rule�, while the con�dence of a rule
is de�ned as �the fraction of transactions that satisfy the antecedent X also satisfy the
consequent Y � [63]. The support re�ects the statistical signi�cance while the con�dence
re�ects the strength of a rule. A rule's support and con�dence must exceed a minimum
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threshold value so that a rule is considered interesting and worth consideration. One
of the widely used algorithms for association rule mining is the Apriori algorithm, in
which the dataset is �rst scanned to �nd 1-itemsets (itemsets of length 1) that satisfy
the minimum support, then from those frequent 1-itemsets, 2-itemsets will be generated
and checked against the minimum support value, and so on [64].

In order to answer RQ3 and RQ4, a case study was conducted in Chapter 5, where
using association rule mining to �nd correlations between the event-driven binary sensors
installed in AAL environments was examined. In a market basket analysis, transactional
datasets are analysed to discover which products are likely to be bought together. How-
ever in AAL, we would like to know which sensors are likely to be ON simultaneously
in addition to knowing which sensors are usually triggered within a few seconds from
each other, i.e., temporal correlations, due to performing various activities by resident.
Therefore, a sliding window is used in the data preprocessing stage described in the next
paragraphs to account for the temporal correlations.

The log obtained from AAL environments equipped with non-intrusive sensors consists
of a series of sensor events. Each event has a time stamp, sensor ID and the corresponding
sensor event trigger. In order to extract correlations using association rule mining, the
transformation of the time-stamped sensor event triggers dataset into the set of transac-
tions of our interest takes place over a couple of steps. The �rst step consists of creating
a multivariate time-series, where the value of each sensor is logged at every time stamp
of the dataset in a separate sensor signal variable. Formally, let si,t ∈ {0, 1} be the value
of the i-th sensor at timestamp t ∈ T . The set T is the set of timestamps of the log. For
n sensors, concatenation produces the multivariate time-series S.

S = {(s1,t, s2,t, ..., sn,t)}t∈T (3.1)

Next, removal of all-zero rows is done. Formally, it corresponds to removing all-zero
row vectors from the time-series S.

V := S \ {(01,t, 02,t, ..., 0n,t)}t∈T (3.2)

Figure 3.2a shows an example for a multivariate time-series created from an AAL log.
At each row, a sliding window is used to group the sensors that have a signal value of
1 within the size w seconds of the sliding window via logical ORing. The output of the
window will be a single transaction that has the time stamp of the start of the window.
Formally, the value of the i-th sensor in the transaction computes to:

di,t = sgn(
∑

j∈[t,t+w]

vi,j) (3.3)

The sliding window is run over the multivariate time-series data to output a transac-
tional database as illustrated in Figure 3.2, where each transaction presents the sensors
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3.2 Step II: Correlations Extraction using ARM

that appear to be ON within w seconds from each other. The obtained sensors transac-
tional database will be used in the upcoming correlations extraction step.

Figure 3.2: (a) Sliding window of size w = 5 s, is run over the multivariate time-series data.
(b) Transactional database.

In our AAL application there may be uneven usage of the di�erent areas of an apart-
ment. A living room may be used by an older adult resident more often than the o�ce
room, leading to scarcity of the triggers of the o�ce's sensors in the dataset. In such
cases, the support of the rule that has the less often triggered sensors may not exceed
the minimum support value that was preset in the Apriori algorithm, and thus will not
appear in the extracted set of rules. To overcome this limitation, a metric was de�ned
as relative support to be used in the Apriori algorithm instead of the support for rules
extraction. Support compares the number of transactions containing all items of X &
items of Y to the total number of transactions present in the database as shown in
Equation (3.4). While relative support is de�ned by Equation (3.6), it compares the
number of transactions containing all items of X & items of Y to the minimum number
of transactions that contain any of the individual items of X or Y.

Sup(X → Y ) =
|Transactions containing X&Y|

|Transactions|
= P (X ∩ Y ) (3.4)

Conf(X → Y ) =
|Transactions containing X&Y|
|Transactions containing X|

= P (Y |X) (3.5)

Rel. Sup(X → Y ) =
|Transactions containing X&Y|

Min(|Transactions for each item in X or Y|)
(3.6)

In an attempt to �nd the interesting correlations between sensors, the use of associ-
ation rule mining was investigated in a case study in Chapter 5 where two techniques
were considered; the �rst used support and con�dence as the interest measures, while
the second used relative support and con�dence. The two techniques were applied on a
publicly available dataset collected from a single resident apartment. A systematic varia-
tion of the parameters of each was conducted. The number of association rules obtained
from each experiment, the number of the sensors present in the consequent part of those
rules (consequent sensors) and the ratio of sensors present in the consequent part to the
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3 Methodology

number of extracted rules were plotted. The experiments analysed which parameters
and values extract the most meaningful association rules. It is meant by meaningful
association rules that the rules represent useful and interesting relations, that have as
many sensors as possible in the consequent part of rules while avoiding redundancy. The
sensors that do not appear as consequent to the activation of other sensor(s) in the apart-
ment cannot be checked for failure because the obtained rules would then be used for
sensor failure detection in such a way that if the sensor(s) of the antecedent part of rule
got triggered while the sensor(s) of the consequent part of rule did not within a speci�c
time (sliding window size), then the sensor(s) can ben suspected to be faulty. The ratio
of consequent sensors to the number of rules indicates the redundancy of the extracted
rules using the chosen values for the set parameters, i.e., whether the increase in the
number of association rules is useful in extracting new interesting rules that covers more
sensors in its consequent part.

It was observed that the relative support experiment permits to extract more con-
sequent sensors within less number of functionally redundant rules than the standard
support experiment. This shows that using the relevant support of rule is more ben-
e�cial for our application. This can be explained by the fact that the AAL datasets
are usually unbalanced: some sensors are triggered much more often than others; yet,
infrequent triggered sensors may be highly correlated.

By checking the extracted association rules and the apartment layout, logically correct
correlations could be obtained between the di�erent sensors. It was concluded that it is
promising to design a sensor failure detection for Ambient Assisted Living that relies on
those rules to �ag a sensor failure.

3.3 Step III: Sensor Failure Detection

3.3.1 Sensor failure detection and isolation system

Attempting to answer RQ5, a sensor failure detection and isolation system was proposed
in Chapter 6 that is based on exploiting the rules extracted from the ARM. The proposed
sensor failure detection and isolation system consists of two stages: an o�ine stage and
an online stage. During the o�ine stage, the fault-free sensor correlations are extracted
from previously collected sensor dataset at the resident's home during nominal behaviour.
Meanwhile online, the ful�lment of correlations are checked as sensor events are triggered
by the resident and accordingly failure of sensors is determined. An overview of the
proposed system is shown in Figure 3.3.
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3.3 Step III: Sensor Failure Detection

Figure 3.3: An overview of the proposed system.

3.3.1.1 O�ine Stage

First, preprocessing of training data is done, followed by rules extraction using associa-
tion rule mining as described in the previous section. In order to exploit the extracted
association rules to detect and isolate sensor failures, the mined set of rules that have
already exceeded the minimum values for the relative support and con�dence still needs
further post-pruning to eliminate the redundant and/or less useful rules. Thus, the
extracted rules undergoes post-pruning as follows; Since our proposed sensor failure de-
tection method relies on the following hypothesis; if a rule has all of its antecedent sensors
active during run-time, while its consequent sensors(s) did not become active within the
speci�ed sliding window size, then the sensors can be suspected to be faulty. Accordingly,
we aim to have most of the sensors installed in the resident's home appear in consequent
part of rules so that they could be checked for being faulty in the monitoring stage.
Hence, the rules are grouped for each sensor in consequent, i.e., if there are 20 sensors
that appear in the consequent parts of rules, then we will have 20 groups. From each
group, the rule with highest con�dence, the rule with highest support and the two top
trade-o� rules between con�dence and support, are selected. In our opinion, the former
would be the most interesting rules to our application. To obtain the trade-o� rules,
con�dence and support of the rules within each group are normalised, then are summed
with weights 1:1, and the rules with the top two highest sums, i.e., trade-o� scores, are
selected.
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3 Methodology

3.3.1.2 Online Stage

The pruned set of rules are the most interesting correlations that will be monitored
online; they are stored using bitmap arrays [65]. The health status of each sensor, which
is the probability that a sensor is healthy, will be computed according to the ful�lment
of these correlations.

Every time a sensor trigger event occurs, the data is processed and the corresponding
sliding window is prepared similar to Section 3.2, where the sensor signal value is updated
and the sliding window logically OR the sensors' signals within the sliding window size
of w seconds. A UML (Uni�ed Modeling Language) diagram that describes the main
work�ow for the health status update is shown in Figure 3.4. The pseudocode in Algo-
rithm A1 illustrates in details the health status update of sensors due to monitoring the
pruned set of rules. Two satisfaction states of rules are possible: satisfaction and un-
satisfaction. If the sliding window contains active sensors that satisfy a rule antecedent
as well as its consequent, then this correlation is fully satis�ed and the health status
of these sensors are updated according to the satisfaction set of equations in Algorithm
A2. It is assumed that only one sensor failure can occur at a time (single-sensor failure).
Hence, if the sliding window contains active sensors that satisfy a rule antecedent but
it ful�ls the rule consequent except for one sensor, then this rule is unsatis�ed. If this
unsatis�ed rule has already been satis�ed in the previous sliding window or if it will be
satis�ed in the upcoming sliding window, then the health status will not be updated.
In addition, if this rule has been unsatis�ed in the previous sliding window then health
will not be updated. Otherwise, the health status of this rule's sensors are going to be
updated according to the unsatisfaction set of equations in Algorithm A3. The joint
probabilities between sensors that are included in the equations can already be obtained
from the intermediate calculations of the Apriori algorithm while scanning the training
data for �nding the frequent itemsets, hence no extra computation is needed. Whenever
the health status of a sensor falls below the preset health threshold, failure of this sensor
will then be �agged. Figure 3.5 shows a UML analysis object model of the online stage
of our system.
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3.3 Step III: Sensor Failure Detection

Figure 3.4: UML activity diagram of the health status update.

Figure 3.5: UML analysis object model of the online stage of the failure detection system.
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3.3.2 Setting Parameters

To achieve high performance for the sensor failure detection and isolation system, opti-
mum values for four parameters need to be selected. Those parameters are the sliding
window size, minimum relative support, minimum con�dence and health threshold. To
better understand the e�ect of each parameter independently on the extracted rules and
the performance of the system, changing the value of a parameter while keeping the rest
at the same values was studied using a publicly available dataset.

In order to select the best combination of values for the sliding window size, minimum
relative support, minimum con�dence and health threshold, which would enable failure
detection and isolation of as many sensors as possible with high precision and recall, a set
of guidelines that aids in the parameters selection process was formulated and presented
in Chapter 6 tackling RQ6.

3.3.3 Evaluation

The proposed approach for sensor failure detection and isolation was evaluated in Chap-
ters 6 and 7 using two publicly available datasets (Aruba and HH122 datasets) in attempt
to answer RQ7. To obtain the training and testing data, a split ratio of 50/50 was used.
The training data was used for extracting the o�ine correlations, while the testing data
was processed sequentially to simulate the run-time online processing using MATLAB
2019b software. Three types of failures were injected in the testing dataset; fail-stop,
obstructed-view and moved-location failures. The following metrics are used for evaluat-
ing the sensor failure detection and isolation system: precision, recall and F1-measure.
Precision is the percentage of true positives from the total number of sliding windows
reported as positive, while recall is the percentage of true positives from the actual pos-
itive sliding windows. Receiver Operating Characteristic (ROC) curve [66] and the area
under its curve (AUC) were also used to evaluate the performance of failure detection.
The ROC curve shows the trade-o� between the true positive rate (TPR) and the false
positive rate (FPR) as the health threshold value is varied from 0 to 1. An overview of
the evaluation metrics are presented in the Background section of Chapter 4. Moreover,
in Chapter 7 two modi�cations in the approach were investigated on the Aruba dataset,
which are adding time features in the correlations and modifying the data preprocessing
of the contact sensors.
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A Systematic Survey on Sensor Failure Detection and
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Tolerance in Ambient Assisted Living. Sensors 2018, 18, 1991.
https://doi.org/10.3390/s18071991

Summary

Ambient assisted living environments equipped with non-intrusive ambient sensors is
the key to gain acceptability by older adults. However, reliability should be ensured
to provide a dependable system and gain the users trust. As failures of sensors are
inevitable, sensor failure detection and fault tolerance in AAL systems are crucial. This
research paper reviews the work done in sensor failure detection and fault tolerance in
the presence of sensor failures in AAL environments equipped with non-intrusive binary
sensors. The di�erent types of failures found in the sensors of the AAL environments
were discussed, and an overview of the publicly available datasets that were used in
works concerned with fault detection or tolerance in AAL were presented. The surveyed
works were classi�ed into correlation-based fault detection, model-based fault detection,
fault tolerant location tracking, fault tolerant activity recognition and fault diagnosis
frameworks. The methodology, experimental work, results and evaluation criteria of
each of the works were highlighted. A discussion of the surveyed works was presented,
along with highlighting their pros and cons. Research gaps in the �eld were identi�ed
and discussed.
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co-author has contributed to the conceptualization, supervision, and manuscript editing and revision.
All authors have read and agreed to the published version of the manuscript.
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Abstract: Ambient Assisted Living (AAL) systems aim to enable the elderly people to stay active
and live independently into older age by monitoring their behaviour, provide the needed assistance
and detect early signs of health status deterioration. Non-intrusive sensors are preferred by the
elderly to be used for the monitoring purposes. However, false positive or negative triggers of those
sensors could lead to a misleading interpretation of the status of the elderlies. This paper presents a
systematic literature review of the sensor failure detection and fault tolerance in AAL equipped with
non-intrusive, event-driven, binary sensors. The existing works are discussed, and the limitations and
research gaps are highlighted.

Keywords: ambient assisted living; sensor failure; fault detection; fault tolerance; smart home

1. Introduction

According to the World Health Organization, the world’s population percentage of people aged
over 60 is expected to double in the next decades to increase from 12% in 2015 to 22% in 2050.
This phenomenon, known as Ageing Population, can be already witnessed in high-income countries.
This demographic shift will induce new challenges to the countries, e.g., preparing the health care and
social systems to deal with higher capacities [1]. Focusing on healthy ageing is an essential investment
for facing that shift. Taking care of the elderlies would decrease the chance of further complications to
their health status. This can be achieved by providing care in nursing homes or hospitals. However, it is
costly and the costs increase greatly if the person needs specialized care due to immobilization or
other health problems. A cost-effective alternative is using technology for independent living of the
elderlies [2].

Ambient assisted living (AAL) is defined as “the use of information and communication
technologies (ICT) in a person’s daily living and working environment to enable them to stay active
longer, remain socially connected and live independently into old age” [3]. AAL technologies can
monitor the behavior of elderly people at home and provide support whenever required, and hence,
improve the quality of life [4]. This would cast some burden away from the family members of the
elderlies, decrease the need for qualified caregivers and have a positive impact on the psychological
status of the elderlies, as they would live independently at their homes longer and safer [5].

Smart homes and ambient assisted living (AAL) terms were found to be interchangeably used in
scientific articles, however, AAL is a special form of a smart home. AAL tools range between health and
activity monitoring tools, wandering prevention tools, and cognitive orthotics tools [6]. The technology
of those tools are based on ambient intelligence, a paradigm that integrates technology in people’s
environment to help them in their everyday lives by learning and adaptively responding to their
behaviour [7]. Researchers are interested in investigating approaches to track the location and the
activities of the residents, prompting the residents, discovering the abnormal behavior, and predicting
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the future activities [8]. Integrating sensors in an unobtrusive intelligent way in the residents’ homes,
allow monitoring their activities of daily living (ADL) to track their health status, and to detect early
signs of diseases [9].

The sensors used to monitor and locate the resident can be classified into intrusive sensors
(e.g., camera, microphone) and non-intrusive sensors (e.g., motion detectors, pressure sensors).
In practice, the sensors installed in the inhabitant’s place of residence may produce wrong output,
e.g., false positives or negatives. A failure in one of the sensors of the AAL could lead to misleading
result in activity recognition, or in location tracking. This can have dramatic consequences to the health
of the inhabitant [10].

This survey paper aims to review the research work done in the sensor failure detection and fault
tolerance in the presence of sensor failures in AAL systems equipped with non-intrusive binary sensors.
The paper is organized as follows; Section 2 provides an overview of sensor failures, Section 3 presents
an overview of the typical publicly available datasets used in the reviewed works, Section 4 outlines
the methodology used to conduct the literature survey, Section 5 presents the research work found in
the survey, Section 6 discusses the reviewed works and Section 7 discusses the status of research and
highlights the gaps.

2. Background on Sensors Failures in Smart homes and AAL

A fault can be defined as an abnormal event that can cause an element or an item to fail, while a
failure is the termination of the ability of an element to perform a function as required [11]. A fault may
or may not lead to failure.

For sensor networks in general, two perspectives for fault type classification in sensor networks
was proposed by [12]:

1. Data-centric viewpoint, which is based on the characteristics of sensor readings, e.g., stuck-at
and spike.

2. System-centric viewpoint, which describes faults causing the malfunction of sensor,
e.g., low battery and calibration.

The authors in [13] have presented another three perspectives for classification:

1. Fault-tolerant distributed system viewpoint, that is based on the behaviour of the failed sensor,
e.g., crash and omission.

2. Duration viewpoint that classifies faults based on their duration e.g., permanent and intermittent.
3. Components viewpoint, e.g., functional and informational faults.

Several fault detection techniques have been developed for sensor networks. However,
the techniques were mainly designed for time-driven, continuous-valued and homogeneous sensors,
e.g., temperature sensors. Thus, those techniques are not suitable for the event-driven, binary and
heterogeneous nature of sensors that are needed for the ambient assisted living, e.g., motion detectors,
contact sensors, etc. [14].

In an AAL system, a sensor failure is considered to be a fault from the perspective of the whole
AAL system. There are two main categories of sensor failures in the AAL terminology:

• A fail-stop failure means that the sensor has stopped responding.
• A non-fail-stop failure indicates that the sensor is still responding, however, the reported values are

no longer representative of the measured variable, nor the occurring events in the surrounding
environment that are intended to be detected.

Sensor failures can also be classified as single-sensor failures and mutliple-sensor failures.
In research works considering single-sensor failures, it is assumed that only one sensor can fail
at a time [14].

In the field of AAL, Flöck has presented an overview of the binary sensors malfunctions
that were observed during practical AAL implementation, e.g., faulty activation of motion
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detectors by sunlight, bouncing of contact sensors, and switch-off delays of motion sensors [15].
Also, Rahal et al. have reasoned the false information sent by binary sensors to be either due to an
intrinsic error, e.g., the sensor’s error rate, or due to an external error, e.g., an air draft or a pet may
close the door triggering false events [16]. Different types of non-fail-stop failures have been stated in
the research papers. Examples of the non-fail-stop failures are:

• Moved-location failure, which occurs due to moving furniture that have sensors installed on it to a
different area or re-mounting in the wrong location.

• Obstructed-view failure that occurs due to covering the sensors or its dislodgement that may result
from regular use, cleaning, other non-residents, etc. [17,18].

A set of guidelines and principles for the deployment of large-scale residential sensing systems
was proposed in [19], summarizing the experience gained from installing over 1200 sensors in over
20 homes to monitor human activity. The main failure modes were examined to identify the longest
acceptable time interval of inactivity for each sensor. For each periodic sensor, the interval is set
to 5 times the sampling period, while for event-driven sensors, it is set to 36 h. The root cause of
failure is identified based on the set of simultaneous sensor failures, where the considered causes of
failure are wireless link loss, dead battery, disconnected plug, sensor sub-system down, internet-down,
power outage, and gateway down. The described failure detection and classification approach was
applied on four deployments for seven months. The analysis of the results showed that sensors are
2.3 times more likely to fail due to being unplugged than to dead battery and that wireless link loss is a
less cause of failure than the other sources of sensor down time. Failure of an entire sensor sub-system
appeared to be the most common cause of failure. This performed failure analysis enabled the authors
to present guidelines that could avoid some of the pitfalls and failures observed in the deployments.
However, a fault detection and diagnosis system still needs to be implemented to deal efficiently with
sensor failures.

The following is the most common terminology found in the surveyed literature for the evaluation
of various systems;

• true positives (TP) are the data points reported as positive when they actually are positive
• false positives (FP) are the data points reported as positive while they are actually negative
• false negatives (FN) are the data points reported as negative while they are actually positive
• true negatives (TN) are the data points are reported as negative while they are negative
• precision measures the percentage of true positives from the total points reported as positive

(TP/(TP + FP))
• recall measures the percentage of true positives from the actual positive points (TP/(TP + FN))
• accuracy measures the percentage of true positives and negatives from the data

((TP + TN)/(TP + TN + FP + FN))
• failure detection latency is the amount of time taken to detect a sensor failure after its occurrence.

Figure 1 elaborates the terminology with respect to sensor failure detection systems, where the
accuracy, precision and recall values are 85%, 72% and 88%, respectively. The accuracy would still be
relatively high if the system does not report as many sensor failures as before (lower TP and higher FN),
however, the precision and recall would significantly drop. Thus, only using the accuracy for evaluating
the system performance is insufficient. The precision indicates the ratio of the correctly reported sensor
failures to all the positively reported sensor failures, while the recall indicates the ratio of correctly
reported sensor failures to the positive sensor failures ground truth.
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Figure 1. Evaluation metrics terminology for sensor failure detection system.

3. Datasets

This section presents an overview of the publicly available datasets that were used in a number
of the reviewed research works. Other publicly available datasets exist for ambient assisted living,
but they have not been used in research papers that focus on fault detection nor fault tolerance. It is
worth noting that to the best of our knowledge, all the public datasets do not include any labels of the
faulty sensors data.

3.1. Kasteren Datasets

Tim van Kasteren has collected benchmark datasets (called house A, B and C) [20] from three
single-resident apartments which were collected over 14, 23 and 19 days, respectively. Wireless sensors
that gives binary output were installed; reed switches for the doors and cupboards, pressure mats for
couches and beds, mercury contacts for drawers, passive infrared (PIR) sensors to detect motion
of resident in different areas of the apartments and float sensors for toilet flushing detection.
The number of sensors installed in the three apartments (A, B and C) are 14, 23 and 21, respectively.
During the collection of data, the resident performed his daily routine freely in an unscripted manner
(i.e., the resident was not told what to do or which activity to perform). Annotation of the start and end
of activities was performed by the resident using handwritten activity diary or a bluetooth headset [21].
The following data is recorded in the dataset files; start and end date/time of sensor activation, sensor
ID, start and end date/time of activity and activity label.

3.2. CASAS Datasets

The CASAS research group in Washington State University (WSU) has made 64 datasets publicly
available [22]. The recorded datasets were either collected from the WSU smart apartment equipped
with around 90 sensors, residential apartments that has a number of sensors that ranges between 30 to
50 sensors or SHib partner lab equipped with 25 sensors, for a duration ranging from hours to years,
for single- or two-resident apartments. Some of the experiments were scripted, e.g., adlnormal data and
adlinterweave data, and others were unscripted, e.g., aruba data and kyoto data. Examples of sensors
installed in the apartments are motion sensors, magnetic sensors, water flow sensors, item presence
sensor, stove burner sensor and temperature sensors. The following data is recorded in the datasets
files; data/time, sensor ID, sensor value/status. Some of the datasets have labels for the start and end
of the performed activities.

3.3. Placelab Datasets

Three datasets (PLIA1, PLIA2 and PLCouple1) were collected from Placelab living lab [23] (note
that the Placelab dataset website has been down for months). The living lab is an apartment where
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volunteers live during the data collection process. Two datasets were collected from single residents
for 4 h who were asked to perform a set of activities, and the third one was collected from a couple
who lived freely there performing their own daily routines for 10 weeks. The datasets were annotated
with the performed activities using video recordings. The apartment is equipped with around 400
sensors that range between reed switches, light sensors, motion detection sensors, water flow sensors,
temperature sensors, humidity sensors, electrical current flow sensors, gas sensors, etc. [24].

3.4. Tapia Datasets

Emmanuel Munguia Tapia has conducted experiments for two weeks in two single-resident
apartments (subject 1 and subject 2) equipped with 77 and 84 sensors, respectively. The sensors
are reed switches attached to the everyday objects, e.g., drawers, doors, containers, refrigerator, etc.
The residents carried out their daily activities without any scripts [25]. The following data is recorded
in the datasets; activity label, start and end date/time of activity, sensor ID, start and end date/time of
sensor activation.

4. Literature Survey Methodology

In order to conduct the literature survey, the title, abstract and keywords fields were searched in
Scopus, IEEExplore, Web of knowledge and ACM databases for the following combination of terms;
("fault detection" OR "sensor failure") AND ("smart home" OR "ambient assisted living"). Scopus and
Web of knowledge databases produced the largest number of relevant articles. The search was then
extended on Scopus and Web of knowledge to include more combinations of the keywords shown in
Table 1, so that the combination is as follows; ((Group A AND Group C) OR Group D) AND Group B.
Only the papers concerned with non-intrusive ambient binary sensors were included in the survey.
The obtained articles were cross-referenced, and a total of 30 papers were selected for the review.
It was observed that these 30 papers were all published between 2008 and 2017.

Table 1. Search keywords.

Group A 1 Group B Group C Group D

"sensor*" "smart home" "fault detection" "sensor* error"
"ambient assisted living" "failure detection" "sensor* failure*"

"AAL" "fault toleran*" "sensor* fault*"
"location tracking" "fault identification" "sensor reliab*"

"actvity recognition" "failure identification" "faulty sensor*"
"activity monitoring" "fault diagnosis" "*reliable sensor"
"activity detection" "FDI" "uncertain sensor"
"home* based care" "fault isolation" "sensor diagnos*"

"indoor localization" "fault prevention" "sensor node fail*"
"fault prediction" "fail* sensor*"
"fault recover*" "anomal*" AND "binary sensor*"

"self-check*"
"self-heal*"

"dependable"
"failure management"

1 * replaces any number of characters, i.e., sensor* will search for sensor, sensors, sensory, etc.

The main focus of the research works can be mainly categorized as works concerned with:

• sensor failure detection in AAL
• fault-tolerant ADL recognition
• fault-tolerant abnormal behavior detection
• fault-tolerant indoor localization system/location tracking
• maintenance scheduling/management
• fault detection and diagnosis framework for AAL
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The reviewed papers classification is shown in Table 2. These papers are presented and analyzed
in detail in the next section.

Table 2. Main focus of the research works.

Focus Research Work

Sensor failure detection [10,14,17,18,26–36]
Maintenance scheduling/management [14,27,30]
Fault-tolerant ADL recognition [14,27,30,37–45]
Fault-tolerant abnormal behavior detection [37]
Fault-tolerant indoor localization system/location tracking [16,46,47]

5. Literature Survey Results

This section provides a state-of-the-art review for the sensor failure detection systems and fault
tolerance methods in the presence of sensor failures in AAL systems equipped with non-intrusive, binary,
event-driven sensors. The research works are categorized according to the function of the proposed
systems as well as the approach that their methods are based on: correlation-based fault detection,
model-based fault detection, fault-tolerant location tracking, fault-tolerant activity recognition or fault
detection and diagnosis framework for AAL, respectively. A glossary of the technical terms can be
found at the end of this paper.

5.1. Correlation-Based Fault Detection

The following research papers proposed sensor failure detection systems based on either
sensor-appliance, sensor-sensor or sensor-activity correlations.

FailureSense [17] was presented by Munir and Stankovic to detect fail-stop and non-fail stop
mutliple-sensor failures. It is based on exploiting the correlation between the trigger of motion
sensors and the activation/deactivation of electrical appliances. The correlation is represented by the
smallest interval of sensor firing after and before a turn on/off event within 5 min, denoted by
IA and IB, respectively. The distribution of IA and IB is modelled by Gaussian mixture model
(GMM), whose parameters are estimated from the training data using the expectation maximization
(EM) algorithm. Online failure detection takes place by monitoring the sensor appliance behaviour
represented by IA and IB. A failure is reported when a deviation occurs in the distribution beyond
predefined thresholds for each sensor-appliance pair. The thresholds are computed using the training
dataset. Evaluation was performed on three real-home datasets with around two thirds of the dataset
used for training and one third for testing. Fail-stop failure was simulated by removing all the readings
of a sensor after its randomly assumed day of failure. For the obstructed-view failure, simulation took
place for two of the homes by randomly removing a 10-day period during which sensor view is
considered to be obstructed, and for the third home, physical obstruction of the view of 5 motion
sensors was done during the data collection phase. Simulation of the moved-location failure was
done by replacing the readings of failed sensor with the readings recorded by the sensor at the
newly moved location. The evaluation metrics used are the precision and recall of failure detection,
where they represent the percentage of the true failure alerts from the total observed failure alerts,
and the percentage of the true failure alerts from the sensor failures, respectively. Experiments of the
fail-stop, obstructed-view and moved-location failures produced approximately 82.8%, 90.5% and
86.8% average precision, with an average recall of 92.86%, 84.4% and 89%, respectively. The effect of
increasing the number of sensors that experience fail-stop failures on the percentage of failure detection
has been also examined, showing an average of 86.6% sensor failure detection. On the other hand,
a limitation of the proposed approach is that the average median failure detection latency is 22.08 h.

Ye, Stevenson and Dobson presented a technique to detect missing data in event-driven sensors
based on temporal correlation and time-series analysis [26]. Temporal correlation relationship is
defined to indicate if two sensors fire within a preset time interval. A missing data is reported when
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one of two highly correlated sensors fires without the other. For each sensor, the next firing time is
predicted using non-linear time analysis technique, and if it does not fire at the predicted time, then it is
considered as missing data. Evaluation is carried on Kasteren dataset [20] (house A), in which randomly
chosen sensors events were removed from the testing data, using precision and recall metrics for each
of the temporal correlation and time series approaches independently, then combined. The effect of
changing predefined parameters of the algorithm on the performance was also examined. Moreover,
the relation of increasing the error rate percentage (percentage of data removed) in the testing set on
precision and recall was plotted along with increasing the percentage of training set. The results on the
examined dataset have shown that the performance of using the temporal correlations for detecting
missing events is better than using the time-series analysis. Also, it was observed from the results that
using both temporal correlation and time-series analysis simultaneously for failure detection had a
very low impact on the performance improvement. Using temporal correlation with data split by half
for training and testing sets, the precision was nearly 70% and the recall decreased from around 80%
to 40% with increasing the error rate from 10% to 90%. Increasing the training data to 90%, has made
the precision to be around 78% and the recall to decrease from 85% to 75%. The authors stated that the
proposed approaches could not be sufficiently evaluated on the chosen dataset, as it has few sensors
and is collected over a short duration.

Kodeswaran et al. aimed to propose a system called Idea, for monitoring the activities of daily
living while preserving a reduced maintenance overhead [27]. It is based on the assumption that there
are redundant heterogeneous sensors installed for detecting each activity. Maintenance is scheduled
according to the impact of a sensor failure on the performance of the system to detect ADL. The main
components of Idea are; ADL signature Extraction, ADL detection, Impact estimation, Sensor Failure
detection and Maintenance scheduling. Frequent itemset mining algorithm is used to form a rule-base
containing the frequently occurring subsets of sensors for each ADL, and then the most probable time
of day of occurrence and duration of activity are calculated from the training dataset. The critical
sensors are identified based on their impact on detecting the ADL, which depends on the redundancy
level per ADL using the training dataset. For critical event-driven sensors, a failure alert is flagged
if the time elapsed since the last detection of ADL exceeded a threshold. For non-critical sensors, a
rarity score is computed as the probability that a sensor has not been triggered while certain ADL, that
should involve this sensor, has occurred. Experiments were conducted on Kasteren [20] (house A, B
and C) and CASAS [22] datasets (aruba, twor9-10, twor2009, tworsmr and adlnormal) using 80% of
the dataset for training. The accuracy of ADL detection was investigated in the presence of fail-stop
sensor failures, emulated by discarding all the events of the failed sensor, and compared to Naive
Bayes classifier (NB) and Hidden Markov model (HMM) algorithms. The maintenance efficiency was
also evaluated in terms of the number of maintenance visits and per-home maintenance inter-arrival
times. Across all the datasets, the ADL detection accuracy is reduced in average by approximately
0.5%, 1% and 3% in the presence of 1, 3 and 7 failed sensors.

Dealing with sensor faults in smart homes using data-driven approach was proposed by
Monekosso and Remagnnino [28]. The proposed method aimed to detect sensor faults, mask it,
and differentiate between anomalous activities and sensor deviation by combining reconciliation
with failure detection techniques. The approach has two components; one component deals with
random measurement fluctuations using data reconciliation, while the other component deals with
systematic deviations due to sensor failures or anomalous activities. Models of sensors correlations are
built using historical data via principle component analysis (PCA) and canonical correlation analysis
(CCA). The models are refined continuously and can deal with heterogeneous sensors types to be
used for detecting sensor faults. Experiments were carried out using Kasteren dataset [20] (house A).
Two case studies were implemented by injecting intermittent and permanent faults into the dataset.
A permanent fault was simulated on a sensor by removing its readings from the testing dataset after
the assumed failure point of time. A transient sensor fault was injected by corrupting random instances
of sensor readings with wrong values.
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An approach for data-driven failure detection based on clustering was proposed by Ye, Stevenson
and Dobson. They address non-fail-stop sensor failures as a clustering-based outlier detection
problem [18,29]. DBSCAN clustering based outlier detection algorithm is used. The similarity between
binary sensor events is calculated using least common subsumer (LCS) based on their semantic features;
time stamp, the object to which a sensor is attached, location and user. Data points are clustered
into groups and then the groups are sorted by their size in descending order. Shoulder-location
method is used to select the threshold below which a cluster is considered small. To each data point,
a cluster-based local outlier factor (CBLOF) is assigned which is a function in the size of the cluster
to which this point belongs, the similarity between the point and the closest large cluster, and the
historic faulty sensor behaviour. A point is considered as an outlier if its CBLOF is below a threshold
defined by the shoulder location method. The technique was evaluated on Placelab [23] (PLCouple1),
Kasteren [20] (house A and B) and CASAS [22] (adlinterweave) datasets with injecting random and
systematic anomalies. Random abnormal events were injected into the datasets by randomly creating
new sensors events within randomly selected time slots. While systematic abnormal events are injected
by selecting random sensors and creating an event for each of the selected sensors within each time
slot of the testing data. Plots of the precision and recall against the injection rate of abnormal events
were presented.

In another attempt, detection of sensor failures was tackled using classification. Kapitanova et
al. proposed simultaneous multi-classifier activity recognition technique (SMART) [14,30], which
uses top-down application level semantics to detect non-fail-stop single-sensor failures. Furthermore,
the research work addresses schedule maintenance according to failure severity and improvement
of activity recognition accuracy in the presence of failures. Multiple classifier instances are trained
offline by excluding each time a sensor out of the training set resembling a sensor failure, and one
time with all sensors present in the set. Online detection of a fault is achieved by assessing the relative
performance of the classifiers that has a missing sensor versus the one trained with all sensors, thus a
fault is detected and identified. Severity analysis is performed to evaluate the impact of sensor failure
on the accuracy of activity detection. As the level of sensor redundancy increases per activity, the
urgency of repairing a faulty sensor decreases. Fault-tolerance of the activity recognition is achieved
by updating the classifier ensemble with the classifiers that were previously trained to deal with a
particular sensor failure. The system was evaluated using CASAS [22] and Kasteren [20] (house A and
B) datasets considering only prepare breakfast, lunch and dinner activities. NB and HMM classifiers
were used. Stuck-at failures and misplacement failures were introduced manually to the datasets.
To simulate stuck-at failure, the value of the failed sensor is set to 1. For simulating misplacement
failure, the data of failed sensor is replaced with the sensor in its new location. The results showed
that this approach could decrease the number of maintenance dispatches by 55%, identifies non-fail
stop failures by 85% accuracy, and improve activity recognition accuracy in presence of sensor failures
by 15%.

5.2. Model-Based Fault Detection

The following researchers have used model-based fault detection based on localization systems.
An indoor human localization (IHL) system with fault detection focusing on hardware as well as
human-made single faults was presented by Veronese et al. [31]. The IHL system consists of three main
components; an RF-based localization subsystem, an off-the-shelf modular wireless home automation
subsystem and a fault detection subsystem. The types of sensors chosen for home automation were
contact sensors and passive infrared (PIR) sensors. A model-based fault detection approach was
applied based on the concept proposed by Isermann [48] which states that a fault can be detected
using the dependencies between different measured signals. The activation of the home automation
sensors and its features were used to estimate the resident’s location. Also, the position of the resident
is estimated independently with the localization subsystem. The fault detection subsystem compares
the two estimated location areas, and flag a fault whenever there is no intersection between the two
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areas. Experimental work was done, where 19 fixed LAURA anchors and 7 Z-wave devices were fixed
across the rooms of the university building. Two fault scenarios were considered; forgotten worn
device and blinded PIR motion detector. The results showed that the faults could be detected using the
proposed approach. As a continuation of the work, multi-user simulation was conducted using three
virtual users trajectories, the faults could be detected in the presence of multiple users with specificity
and sensitivity above 90% [32].

Danancher proposed model-based location tracking of single as well as multiple inhabitants
in smart homes [10]. He treated the location tracking of inhabitants as a problem of discrete event
system modeling. Finite automata was used to model the observable motion of inhabitant, where each
state represents a zone in the apartment, each event represents the rising or falling edge of binary
sensor, and each transition is the observable location change. A case study was presented for an
apartment equipped with motion detectors and door barrier sensors. The impact of sensor faults on the
performance of location tracking was discussed. The applicability of three model-based fault detection
and isolation (FDI) approaches; diagnoser, template and residual approaches, were investigated for
fault-tolerant location tracking. An adaptation to the residual-based approach was applied to a case
study of tracking a single inhabitant. Three fault scenarios were considered; spurious activation of a
motion sensor, failure of power supply of door barrier sensor and a failure of motion detector sensor.
The approach could not detect nor isolate faulty sensors in the proposed faulty scenarios. The author
concluded that the industrial FDI approaches are not suitable for sensor faults in smart home and that
a new FDI approach designed specifically for smart homes should be developed.

Another discrete event system approach for location tracking was proposed by Wu et al. [49].
The motion of the resident is modeled using an automaton model and the observations of motion
events from sensor signals are described using the state tree of Graph theory. An Observer is then
used to estimate the location of the inhabitant. Dealing with transient sensor faults is performed
by adding a reset procedure to the state tree and the observer so that they return to the initial state
whenever blocking occurs due to missing or disordering of a sensor event. This ensures that the
location tracking returns to output correct estimation results after deviating due to the transient sensor
fault. However, false location estimation still occurs. A scenario of the motion of inhabitant in the
presence of a missing sensor event was presented.

Amri et al. have proposed fault detection approach for indoor localization based on
set-membership fault detection using the q-relaxed intersection method [36]. The random walk
model is used as the mobility model of the resident. The PIR sensor activation leads to the activation
of a box representing its coverage area. At one second time step, the measurement boxes are observed
and the predicted boxes are deduced using the mobility model. The q-intersection method deduces
the location zone of the resident using these boxes. Outlier detection takes place by comparing the
solution set obtained and the measurements. Experiments were conducted in a living lab equipped
with PIR sensors.

5.3. Fault-Tolerant Location Tracking

A fault-tolerant location tracking system was presented by Rahal, Pigot and Mabilleau, which aims
to localize single inhabitant using the already installed sensors in smart home [16]. The authors aimed
to provide a reliable location tracking system that can estimate the location of inhabitant accurately
despite the false trigger of sensors that may occur due to various factors. The adopted approach is
based on sensor fusion, in which particle filters approach is used to estimate the new inhabitant’s
location using the last known position and the last sensor event. To evaluate the system, experiments
were conducted in the DOMUS apartment, where non-intrusive unobtrusive sensors (infrared (IR)
presence sensors, tactile carpets, smart light switches, contact sensors and pressure detectors) are
installed. A daily routine scenario was performed by 14 subjects, one subject each time, and the results
showed an accuracy in location tracking above 85%. The system performance was also investigated
with respect to the inhabitant’s profile, sensor configuration, inhabitant’s dynamics and in the presence
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of noise. The results showed that the accuracy of the system is profile-independent. The accuracy
of localization when using only infrared sensors is similar to using all the sensors. However, the IR
sensors are more prone to false triggers, thus, the authors recommended the usage of at least one other
type with IR sensors. The system accuracy remained at 84% when 2.5% and 5% noise were applied to
the collected data.

A similar system was proposed by Ballardini et al. that is based on estimating the resident location
in the presence of false positive or false negative sensor readings via Bayes filtering [46]. The system
uses a probabilistic model of the sensors and a motion model of the inhabitant. The proposed approach
was tested on two noisy datasets that use PIR sensors (observed frequent false triggering of a motion
sensor when no person is moving, and trigger of atrium’s motion sensor when motion occurs in the
dining room), producing 5% and 9% error rates in localization.

A fuzzy set-based approach for localization tolerating sensor failures was proposed by
Ahvar et al. [47]. The approach relies on using several functionally redundant sensors at specific
nodes. The system is composed of sensor nodes and context broker based on the fuzzy set theory.
The apartment is divided into zones and equipped with various types of ambient sensors. The sensors
send context information, then the membership values for each zone is computed. The highest value
indicates the user location. A case study was presented and simulated using the DPWsim simulator
with different sensor error rates. However, the system was not verified using a real dataset.

5.4. Fault-Tolerant Activity Recognition

In addition to the fault-tolerant activity recognition implemented by SMART system [14,30]
and Idea system [27], a framework of fault-tolerant activity recognition was addressed by
Hong et al. [38–40]. First, the effect of sensor failures on the accuracy of activity recognition was
investigated. Only binary sensors were considered for monitoring the ADL in smart homes. Sensor
evidence reasoning network was designed based on activity hierarchy of ontology for activity
recognition while tolerating uncertainty in the sensors’ measurements. The discounting values depend
on the manufacturer statics on the sensors. To validate the proposed approach, a case scenario was
presented. In addition, sensors data recordings were collected from smart laboratory environment
of a kitchen area for four weeks, and then, offline analysis was performed to verify the sensor data
with video recordings. The sensor data was fed to the evidential reasoning network that is based on
the Dempster-Shafer theory. The performance of activity recognition was assessed with respect to
the number and combinations of sensor failures. Mckeever et al. [41] have extended the evidence
of theory to incorporate temporal features and evaluated their proposed framework on Kasteren
dataset [20] (house A). A limitation of the approach is that expert knowledge is needed for the sensor
mass functions and sensor quality. Also, knowledge from users is used to get information about the
temporal features of activities.

Liao et al. [42–44] have proposed an activity recognition framework that deals with uncertainty
in sensor measurements based on Dempster-Shafer theory of evidence while considering the effect of
historical information and activity patterns. This is implemented through a framework with a lattice
structure, which has a context layer that includes combinations of sensors derived from the historical
data of inhabitant. Two types of uncertainty sources were considered; sensor hardware and context
uncertainty due to the variability in human activities. A case study was presented in addition to
applying the proposed approach to a publicly available dataset (Tapia dataset, subject 1) [25] collected
from an apartment equipped with binary sensors. The performance was evaluated using precision,
recall and F-measure metrics for activity recognition.

A Weighted Dempster-Shafer theory was presented by Javadi, Moshiri and Yazdi [45], where a
weight for each sensor is assigned based on the historical data and activity patterns of the resident.
In the training phase, 10 models are built for each sensor, and then in the testing phase, a weight for
each sensor is calculated based on the membership degree of each sensor signal to the sensor’s models.
The proposed method is applied to a dataset (Tapia dataset, subject 1) [25] and evaluated through the
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accuracy detection rate of toileting activity. A drawback in the experiments is that, sensor faults were
not injected to the dataset.

Abnormal behaviour recognition in the presence of sensor failures/uncertainties was addressed
by Marhic et al., it is based on the evidential approach using transferable belief model (TBM) [37].
It is assumed that there are three or more heterogeneous redundant sensors per each monitored activity.
The system consists of Sensor FDI and the Abnormal behaviour detection modules. The Sensor FDI
analyses the conflict between the heterogeneous redundant sensors using sensor fusion calculated by
the Smet’s operator and two experts. Abnormal behaviour is then detected by comparing the normal
behaviour of inhabitant represented by the Markov chain model (MCM) and the detected/predicted
behaviour within the TBM framework. Experiments were conducted on datasets collected from
performing sitting, lying and standing activities with various single sensor failures, during which
pressure sensor, omni-directional vision sensor and an accelerometer were used. The authors showed
the ability of the system to detect abnormal behaviour in presence of sensor failures (unplugging
sensor for a period of time) and highlighted some limitations that could be addressed in the future.

Methods for fault tolerance in Ambient Assisted Living were suggested by Ahvar et al. [50].
Data from binary sensors, e.g., movement sensors, may be corrected using a model of the inhabitant
behaviour. While fault tolerance for analog data from sensors, e.g., temperature sensors, may be
implemented using sensor fusion. However, the system was not verified against faults in a case study.

5.5. Fault Detection and Diagnosis Framework for AAL

A fault detection and diagnosis framework for Ambient Intelligent systems was presented by
Mohamed, Jacquet and Bellik [33,34], however, it is concerned only with the tasks performed by the
systems through the actuators. The approach is based on modeling the physical phenomena that are
supposed to occur in the environment due to the activation of a particular actuator. The system then
automatically creates links between actuators and sensors at run-time using the models. It predicts the
expected sensor reading due to the activation of an actuator and compares it with the actual sensor
reading to detect if a fault has occurred. Simulations were performed to illustrate the operation of the
system and show the ability of the system to discover new components at run-time. The basic idea of
the diagnoser model was presented without details.

A self-diagnosis framework was proposed by Oliveira et al. [35], where a Bayesian network
construction algorithm is used to create a Bayesian network for each scenario that is supposed to
be fulfilled by the AAL system to assist the user. The algorithm takes as inputs the rules file that
specifies the causal relations between variables, and the scenario description file that specifies the
required assistance and the home description. Conditional probability distribution is calculated for
each child node. The real values are then compared with the predicted ones and a fault is flagged if
the readings are different. Using the causality relations and conditional rules, a diagnostic is reached.
A case study was investigated to show the ability of the proposed framework to detect and diagnose
faults. However, like the previous system [34], the framework would only work fine for the tasks that
involve a sensor-actuator feedback.

6. Discussion

6.1. Correlation-Based Fault Detection Systems

Next, we discuss the pros and cons of the correlation-based fault detection approaches.
FailureSense [17] has good average precision and recall for the examined fail-stop, obstructed-view

and moved-location failures. Also, the experiments show consistent performance for failure detection
with increasing the number of sensors that had fail-stop failures. However, the method does not work
well if the failed sensor is not associated with any electrical appliance. In addition, its average failure
detection latency is not suitable for emergency situations. Another limitation of the system is that, it
is based on the assumption that the resident has to be physically beside the appliance to turn it on.
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In addition, the system performance depends on the behaviour of residents (i.e., the residents turn
on/off electrical appliances remotely or their behaviour pattern in using electrical appliances).

Using temporal correlations and/or time-series analysis in [26] only relies on sensors firing to
detect missing sensor events. The temporal correlation method achieves better results than using
time-series analysis. However, the average precision and recall on the examined dataset with random
non-fail-stop failures are not as good when increasing the error rate percentage, except when the
training data percentage was increased to 90% . This makes the performance of the proposed method
still questionable and needs to be evaluated on other larger datasets.

The approach of the Idea system [27] is designed to suit homes equipped with functionally
redundant sensors per activity of daily living. Otherwise, it will not work as expected. In this work,
only fail-stop failures were considered. The reduction in the ADL detection accuracy in the presence
of sensor failures is relatively low. Thus, an efficient fault tolerant activity recognition seems to be
promising using the proposed approach. However, the effect of monitoring multiple ADLs to detect
sensor failures on the failure latency detection, and the effect of rarity threshold on the false positive
alerts were the only assessments used for the sensor failure detection subsystem. Those assessments
are not enough to be able to see the efficiency of the sensor failure detection. Also, non-fail-stop failures
need to be considered in the experiments. In our opinion, detecting failures using time elapsed is not
an efficient solution and using the rarity score assumes that the system has not misclassified the activity.
Similarly, the detection of sensor failures using the proposed approach in [28] was not thoroughly
evaluated. The experiments were only concerned with the ability of the system to detect and isolate a
faulty sensor, without any quantitative evaluation of the performance. Another drawback is that the
injected faults in the experiments were applied on only a single sensor.

The advantage of using clustering approach as in [18,29], is that no training phase is required.
However, the proposed method aims to detect false sensor triggers, but it can not detect missing
sensor data. Another limitation is that the failure detection takes place in a post-processing step
on the collected data. Also, the false positive trigger is less likely to be detected if it is associated
with a sensor that has similar features to other correctly working sensors. Using multiple classifier
instances [14,30] produced promising results for sensor failure detection and fault-tolerant activity
recognition. However, the disadvantage of this approach is that the training effort is large and it
increases proportionally with the number of installed sensors, thus the system is non-scalable.

6.2. Model-Based Fault Detection Systems

The reviewed model-based fault detection systems do not seem to provide better results than
the correlation-based fault detection systems. The approaches mainly rely on checking if the sensor
trigger is consistent with the predicted location of the resident. The method proposed in [31] that
uses RF-based localization system in addition to the environmental binary sensors installed at home,
can not identify if the fault source is the localization system or the installed sensors. In another research
work [10], applying residual-based fault detection to the location tracking finite automata model of an
inhabitant could not detect nor isolate the faulty sensors. Only preventing the transient sensor faults
from blocking the discrete event location tracking model was proposed in [49]; however, it was not
even capable of tolerating those faults. In [36], comparing the motion sensors triggers with the random
walk mobility model is not reliable, since this mobility model can produce unrealistic patterns as it
does not keep track of the past locations and speed.

6.3. Fault-Tolerant Location Tracking Systems

The fault-tolerant location tracking systems reviewed are based on attempting to estimate the
location of the resident under uncertainty of sensors whether through sensor fusion [16,46] or fuzzy
theory [47]. The results seem promising, however, the systems need to be investigated more thoroughly
in real-time experiments.



Sensors 2018, 18, 1991 13 of 19

6.4. Fault-Tolerant Activity Recognition Systems

In addition to the SMART [14,30] and Idea [27] systems discussed before for proposing sensor
failure detection and fault-tolerant activity recognition, fault-tolerant activity recognition based on
recognizing activities under sensors uncertainty were reviewed. The works that used the evidence
theory [37–45] have the disadvantage of requiring lots of expert knowledge.

6.5. Fault Detection and Diagnosis Framework

The reviewed fault detection and diagnosis frameworks [33–35] were designed to only suit AAL
systems involved with sensor-actuator feedback.

7. Conclusions

In the last 10 years, an increasing interest in tackling sensor failures/faults in AAL has been
observed. However, there is still much to be done in this area to offer a dependable system for the users.

Tables 3 and 4 summarize the work reviewed in Section 5. For each research work; the contributed
system, its method, algorithm(s), experiments conducted and performance metrics used are listed in
this table.

The overall general limitations of the existing works can be categorized as follows:
Limitations regarding the approaches:

• Most of the existing works have developed their approaches considering only single failures.
However, it may happen that more than one sensor fail simultaneously.

• The majority of the developed algorithms use parameters or thresholds that need to be chosen by
an expert rather than being deduced automatically.

• Differentiating between failed sensors and anomalies in human behaviour is still a challenge that
needs to be addressed.

Limitations regarding the datasets:

• The public datasets used for the training and testing phases are limited to short duration,
low sensor node redundancy and single resident apartments.

• Also, the data in the publicly available datasets was originally collected for activity detection
with labelled activities, thus, failures or anomalies were not labelled. Instead, sensor failures
were manually injected and simulated by the researchers, which may not be representative of
real-home sensor failures rate and percentage.

Limitations regarding the experimental methodology:

• It is difficult to compare between the efficiency of the presented approaches because not all
the authors use the same evaluation criteria and same testing data. Thus, there is a need for
standardized evaluation criteria.

• Beside the accuracy, precision and recall, the sensor failure detection latency is an important
criterion to be considered.

• Real-time online evaluation of the algorithms was not carried out, instead the data collected from
previous experiments or datasets were fed to the algorithms.

• The proposed approaches should additionally be evaluated on data collected from elderlies with
physical and/or cognitive deficiencies.
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Table 3. Summary of the reviewed work in Sections 5.1 and 5.2.

Source Contribution Method Algorithm
Experiments

Performance Metrics
Data Failure Type

[17] sensor fault detection sensor-appliance
correlations GMM & EM custom datasets

injecting fail-stop and non-fail-stop
(obstructed-view and moved-location)
failures

precision, recall &
failure detection
latency

[26] sensor fault detection sensors correlations mutual information and non-linear
time series analysis techniques

publicly available dataset
(Kasteren, house A)

injecting non-fail-stop failures
(removing random sensors events) precision & recall

[27]

sensor fault detection,
fault-tolerant activity
recognition &
maintenance scheduling

sensor-activity
correlations

frequent itemset mining algorithm
& rarity score calculation

publicly available datasets
(Kasteren; house A, B & C, and
CASAS; aruba, twor9-10,
twor2009, tworsmr &
adlnormal)

injecting fail-stop failures

sensor failure false
alert rate, failure
latency detection
& reduction in ADL
detection accuracy in
presence of failures

[28] sensor fault detection
and masking sensors correlations PCA & CCA publicly available dataset

(Kasteren, house A)
injecting permanent and intermittent
faults (i.e., fail-stop and non-fail-stop) ability to detect faults

[18,29] sensor fault detection clustering-based outlier
detection DBSCAN clustering algorithm

publicly available datasets
(Placelab, PLCouple1, and
Kasteren; house A and B, and
CASAS, adlinterweave)

injecting random and systematic false
positive sensor triggers (non-fail-stop) precision & recall

[14,30]

sensor fault detection,
fault-tolerant activity
recognition &
maintenance scheduling

simultaneous use of
multiple classifiers

NB, HMM, hidden semi-Markov
model (HSMM) & decision trees

publicly available datasets
(Kasteren, house A and B, and
CASAS (not specified))

injecting non-fail-stop failures
(stuck-at and moved-location)

failure detection
accuracy & failure
latency detection

[31,32]
indoor localization
system with fault
detection

model-based fault
detection using RF-based
localization & home
automation subsystems

estimating the location using the
activation of home automation
sensors and the RF-based
localization subsystem

custom dataset collected with blinded PIR sensor and
forgotten worn device

sensitivity &
specificity

[10] location tracking with
sensor fault detection

model-based fault
detection using a model
of the observed motion
of the inhabitant

finite automata & residual
calculation scenario of motion of inhabitant in the presence of fail-stop and

non-fail-stop failures ability to detect faults

[49] location tracking dealing
with transient faults

state estimation with
reset procedure

automaton model & state tree of
graph theory scenario of motion of inhabitant scenario of the presence of missing

sensor event (non-fail-stop)

location estimation in
presence of transient
sensor faults
(non-fail-stop)

[36] localization system with
sensor fault detection

model-based fault
detection using the
random walk model of
inhabitant

set-membership fault detection
using the q-relaxed intersection
method

custom data collected from
Living lab not specified ability to detect faults

(outliers)
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Table 4. Summary of the reviewed work in Sections 5.3–5.5.

Source Contribution Method Algorithm
Experiments

Performance Metrics
Data Failure Type

[16] fault-tolerant
localization system

state estimation based on
sensor fusion particle filters approach custom data collected injecting random sensor noise

(non-fail-stop)
localization accuracy &
mean belief

[46] fault-tolerant
localization system state estimation bayes filtering custom dataset data collected in presence of noise localization error rate

[47] fault-tolerant
localization system

fuzzy-based approach using
various types of ambient
binary sensors

fuzzy-set theory
scenario and simulation of
motion of inhabitant on
DPWsim simulator

in the presence of sensor node
failure fail-stop and non-fail-stop localization accuracy

[38–40]
fault-tolerant activity
recognition
framework

evidential approach for
reasoning under uncertainty

sensor evidence reasoning
network & dempster-shafer
theory

scenario and custom data
collected

injecting different combinations of
sensor failures belief in activity inference

[41]
fault-tolerant activity
recognition
framework

evidential approach for
reasoning under uncertainty

temporal evidence theory
& dempster-shafer theory

publicly available dataset
(Kasteren, house A) no faults injected activity recognition

precision, recall & F-measure

[42–44]
fault-tolerant activity
recognition
framework

evidential approach for
reasoning under uncertainty

evidential lattice structure
considering historical
information and activity
patterns & dempster-shafer
theory

scenario and publicly
available dataset (Tapia,
subject 1)

no faults injected

activity recognition
precision, recall and
F-measure of activity
recognition

[45]
fault-tolerant activity
recognition
framework

evidential approach for
reasoning under uncertainty

weighted dempster-shafer
theory & fast fourier
transform

publicly available dataset
(Tapia, subject 1) no faults injected activity recognition accuracy

[37]
fault-tolerant
abnormal behaviour
detection

evidential approach for
reasoning under uncertainty in
the presence of heterogeneous
redundancy per activity

sensor fusion based on
Smet’s operator, experts,
TBM & MCM

custom data collected with inducing
non-fail-stop sensor failure

ability to detect abnormal
behaviour and/or failed
sensor

[33,34]
fault detection and
diagnosis framework
for AAL

modeling the physical
phenomena that are supposed
to be detected by sensor due to
the activation of an actuator

not applicable simulating a scenario in
presence of sensor failure not specified ability to detect system fault

[35] self-diagnosis
framework for AAL

Bayesian network for each
scenario that is supposed to be
fulfilled by the AAL system to
assist the user

bayesian network
construction algorithm

scenario of inhabitant in the
presence of sensor failure fail-stop ability to detect system fault
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As illustrated by the number and importance of the limitations of the existing works,
fault-tolerance in AAL is still in its early phase. Thus, intensive research work is still needed
to tackle them. The research topics to be addressed can be grouped in the three following
research questions:

• Can novel machine learning techniques tackle the problem of sensor failure detection in AAL
without the need for expert knowledge?

• Should the research priority be directed towards enhancing the accuracy of binary sensors or
instead towards dealing with the faulty sensors data through fault-tolerant systems?

• Would differentiating between behaviour anomalies of residents and sensor anomalies
be possible?

As a conclusion, as highlighted by this systematic literature review, methods for fault-tolerant
Ambient Assisted Living are still in their infancy stage. Also, intensive research works would be
needed to ensure the development and implementation of a robust sensor fault detection and diagnosis
system for Ambient Assisted Living in a near future.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AAL Ambient assisted living
ICT Information and communication technologies
ADL Activities of daily living
GMM Gaussian mixture model
EM Expectation maximization
NB Naive Bayes
HMM Hidden Markov model
PCA Principle component analysis
CCA Canonical correlation analysis
DBSCAN Density-based spatial clustering of applications with noise
LCS Least common subsumer
CBLOF Cluster-based local outlier factor
SMART Simultaneous multi-classifier activity recognition technique
IHL Indoor human localization
PIR Passive infrared
FDI Fault detection and isolation
IR Infrared
TBM Transferable belief model
MCM Markov chain model
HSMM Hidden semi-Markov model
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Summary

Sensor failures can have signi�cant e�ect on the ability to provide reliable AAL services.
The model-based fault detection techniques for AAL found in literature were not promis-
ing due to the non-deterministic human behaviour. Finding fault-free sensor correlations
can be the �rst step towards a data-driven fault detection approach. This paper proposed
extracting correlations between event-driven binary sensors from unlabelled dataset using
the association rule mining technique. Data preprocessing steps were described, which
included the use of a time-based sliding window to take into account temporal correla-
tions between the sensors and form a set of transactions. Evaluation metrics are used to
measure the strength of a rule, and only those rules that exceed minimum values of the
metrics would be on the list of the extracted rules that perceive the sensors correlations.
In addition to using the typical evaluation metrics, support and con�dence, a re�ned
metric denoted as relative support is examined to better suit our application. The two
techniques, one using support and the other using relative support, were applied on a
publicly available dataset collected from a single resident apartment. The experiments
aimed to check which parameters and values would extract the most meaningful associ-
ation rules that have as many sensors as possible in the consequent part of rules. The
existence of the sensor as a consequent in a rule, would make it possible later to detect

1The author of this thesis contributed to the conceptualization, methodology, investigation, software,
validation and wrote and edited the original draft of the manuscript. The co-author has contributed
to the conceptualization, methodology, supervision, and manuscript editing and revision. All authors
have read and agreed to the published version of the manuscript.
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its failure. The e�ect of varying the parameters; sliding window size, minimum support,
minimum con�dence and minimum relative support, on the number of extracted asso-
ciation rules, the number of consequent sensors and the ratio of consequent sensors to
the number of rules, was studied. The results have shown that using the relative sup-
port allows extracting more consequent sensors within less number of redundant rules.
Moreover, the extracted rules were logically correct when compared to the sensor layout
within the apartment. It was concluded that the extracted rules are promising to form
the basis of failure detection in event-driven binary sensors.
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Towards Sensor Failure Detection in Ambient Assisted Living: Sensors
Correlations

Nancy E. ElHady and Julien Provost

Abstract— Ambient Assisted Living promotes healthy inde-
pendent ageing of the elderly at their homes by monitoring their
behaviour, and support medical assistance whenever needed.
For privacy and acceptance issues, non-intrusive sensors are
preferably used. However, such sensors are more prone to
produce false positive or negative data. Faulty sensor data could
be automatically detected if correlations between sensors can be
identified. This paper aims to propose the use of association rule
mining to find correlations between binary event-driven sensors
installed for monitoring purposes in an apartment. A case study
was carried out to validate the approach and investigate the
effect of different data mining parameters on the quality of
obtained association rules. The results show that correlations
could be successfully deduced from unlabelled datasets with no
prior expert knowledge on the sensors topology.

I. INTRODUCTION

The Ageing population phenomenon is affecting countries
all over the world, with an expectancy of multiplying by two
the number of people aged over 60 years by 2050. Several
countries will have more than 30% of its population over 60
years old, like Germany, France, China, Canada and others
[1]. To be able to face this demographic shift, an increasing
numbers of research works are investigating the development
of approaches and tools for Ambient Assisted Living (AAL).
Ambient Assisted Living promotes healthy ageing in the
elderly’s place of residence by using information and com-
munication technologies to monitor their Activities of Daily
living (ADL), detect deviation of their behaviour, predict
their future activities, and provide help whenever needed.

Sensors used to monitor the behaviour of elderly people
at their homes are either intrusive sensors, e.g., cameras and
microphones, or non-intrusive sensors, e.g., motion sensors
and contact sensors. The systems equipped with intrusive
sensors are not highly accepted by the population due to
privacy and security concerns. Consequently, in the last
decade, a stronger focus in research was directed towards the
use of non-intrusive sensors in AAL. However, such sensors
often suffer from false positive or negative triggers that can
affect the performance of the system.

Two types of sensor failures could be encountered; fail-
stop failures, where the sensors completely stop responding,
and non-fail-stop failures, where the sensors are still working
but give false information about their environment. The
typical non-fail-stop sensors malfunctions that were reported
by Flöck [2] during practical implementation of AAL include

Nancy E. ElHady and Julien Provost are with with Assis-
tant Professorship of Safe Embedded Systems, Technical Univer-
sity of Munich, Garching, Germany nancy.elhady@tum.de;
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spurious signals of motion sensors at night, faulty activation
of motions sensors by sunlight, bouncing of door contact
sensors for several minutes, and switch-off delays of motion
sensors after the last observed activity. Other sources for
non-stop-failures could be moved-location failure when the
sensor gets remounted by the resident to another location,
and obstructed-view failure where the sensor gets blocked
by furniture [3].

Various fault detection techniques have been developed for
wireless sensor networks that consist of homogeneous, time-
driven and continuous-valued sensors, e.g., majority voting
scheme and time-series analysis. However, the non-intrusive
sensors used in AAL are heterogeneous, event-driven and
binary sensors.

Sensor failure detection in Ambient Assisted Living
equipped with non-intrusive ambient sensors has been ap-
proached previously in a few works.
SMART [3] used classification technique in which the clas-
sifier instances are trained with one sensor left out of the
training dataset to replicate a sensor failure. This approach
deals only with single sensor failure and lacks scalability due
to the significantly increasing training effort required.
FailureSense [4] exploited the correlation between the turn
on/off of electrical appliances and the sensors trigger events
based on Gaussian mixture model. However, it assumes that
the person has to be physically beside the electrical appliance
to turn it on/off and the average failure detection latency is
approximately 22 hours. A clustering based outlier detection
was proposed in [5], that can only deal with false positives
sensor triggers but not false negatives.
Amri et al. [6] used q-relaxed intersection technique to detect
faulty sensors via comparing the estimated location of the
resident from the activation of motion sensors with the loca-
tion estimated from the random walk model. Nevertheless,
the random walk model is not accurate enough to model the
resident behaviour.
Idea’s [7] approach to detect failures is based on the as-
sumption that there are functional redundant sensors for
ADL recognition. A sensor failure is flagged when the
probability that a certain activity has been detected while
the sensor was not triggered exceeds a certain threshold. This
approach relies on accurate ADL recognition which can not
be guaranteed in presence of sensor failures, in addition it
needs labelled dataset for the training phase.
Ye et al. [8] have attempted to detect missing sensor data
by finding correlations between sensors using mutual in-
formation technique along with predicting the trigger time
using non-liner time series analysis techniques. However, the
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authors could not prove the effectiveness of their approach
due to the limited duration of the testing dataset and the low
number of used sensors beside its biased distribution across
the flat under test.

As highlighted in the previous paragraph, sensor failures
detection in AAL is still challenging, especially in the pres-
ence of the non-deterministic human behaviour that made
model-based fault detection unable to guarantee good results.
This paper aims to find correlations between non-intrusive
binary sensors using a data-driven approach, specifically
association rule mining. A refinement to the association
rule mining method is proposed and a comparison of the
results obtained for different parameters is done in order
to evaluate the feasibility of extraction correlations. Those
sensors correlations could be utilized in the future for the
detection of fail-stop and non-fail-stop sensor failures in
AAL.

II. BACKGROUND

In order to detect sensor failures in AAL, large sensors
datasets have, first, to be thoroughly analysed to detect the
fault-free sensors correlations during the nominal behavior
of the resident. Association rule mining is a data mining
technique that was introduced by Agrawal et al. [9] to find
associations between items in large datasets. Association rule
mining was successfully used in various fields, with its most
common application is the market basket analysis [10].

The items in the datasets are the set of binary features
denoted as I = {I1,I2,..,Im}. The dataset consists of a number
of transactions T = {T1,T2,..,Tn}, where each transaction
contains a subset of the items I; T ⊆ I. The association rule
is in the form of X → Y, where X ⊂ I, Y ⊂ I and X ∩
Y = φ. X and Y are the itemsets called the antecedent and
consequent of a rule, respectively. An association rule X →
Y means that “IF the item(s) X occured THEN the item(s) Y
occured as well”. There are two important evaluation metrics
for each rule, which are the support and confidence of this
rule, defined as follows:

Support(X → Y ) =
|Transactions containing X&Y|

|Transactions|
(1)

Confidence(X → Y ) =
|Transactions containing X&Y|
|Trasactions containing X|

(2)
To find the association rules of interest from a dataset,

minimum support and confidence are predefined by the user
for the association rule mining. The support reflects how
likely it is to find the items of X and Y together in the
transactions of a dataset, while the confidence reflects how
frequent the items of Y in the transactions that contains items
of X.

One of the widely used algorithms for association rule
mining is the Apriori algorithm, in which the dataset is first
scanned to find 1-itemsets (itemsets of length 1) that satisfy
the minimum support, then from those frequent 1-itemsets, 2-
itemsets will be generated and checked against the minimum
support value, and so on [11]. Only the association rules

Fig. 1. Sample of the sensors dataset

that satisfy the minimum support and minimum confidence
will be extracted. Another evaluation metric for association
rules is the lift, which confirms the correlation between the
antecedent and consequent items of rules if its value is
greater than 1. The lift of an association rule is defined as
follows:

Lift(X → Y ) =

|Transactions containing X&Y|
|Transactions containing X| ∗ |Transactions containing Y|

(3)

III. APPROACH

An essential step towards developing a sensor failure
detection system is to find strong correlations between the
employed sensors. In this paper, we investigate the use of
association rule mining to find the highly correlated sensors
from an unlabelled recorded dataset. The obtained rules
could then be used for sensor failure detection in such a
way that if the sensor(s) of the antecedent part of rule got
triggered while the sensor(s) of the consequent part of rule
did not within a specific time, then the sensor(s) can be
suspected to be faulty. The higher the correlation, the higher
the confidence in the sensor failure detection and the shorter
the time to detection.

A. Data Preprocessing

As the association rule mining was primarily designed
for transactional databases, some modifications had to be
done so that this method would better suit our application
whose dataset consists of timestamped sensor event triggers
as depicted in Fig. 1, e.g., On 2010-11-4 at 19:48:25.951116,
the sensor M015 got switched ON. The first step is to
reformat the data in a more usable form. First, the dataset
is converted to a set of binary time series, a series for each
sensor. At each time stamp of the dataset, the signal value
(0/1) of each sensor is calculated, based on its previous value
and the current event. Thus, the dataset is converted from an
event-based to a signal-based dataset. Then, all-zeros rows
were deleted as we are interested in the relation between
positively triggered sensors. The resulted transformation can
be seen on Fig. 2(a).

In a market basket analysis, transactional datasets are anal-
ysed to discover which items are likely to be bought together.
Similarly, in AAL, we would like to know which sensors
are likely to be ON simultaneously. Even in single-resident
homes, simultaneously ON sensors in different locations can
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(a) (b)

Fig. 2. Data aggregation using sliding window of size 3 seconds

be observed due to the switch-off delay time of motion
sensors or due to the overlapping detection areas of those
sensors. We are also interested to know which sensors are
usually triggered within a few seconds from each other. To
take into account the temporal correlations, we consider that
if a sensor is ON within t seconds from another sensor
then they are considered as happening simultaneously. Thus,
a time-based sliding window is then used to aggregate the
sensor data into a set of transactions as in Fig. 2(b).

B. Association Rules Mining

In an attempt to find the strong association rules that
reflects the correlations between sensors, the use of rule
mining with different measures were investigated. The first
technique uses the typical measures for association rule
mining which are the support and confidence of a rule. The
minimum support and minimum confidence values should
be determined by the designer to control the quality of
the obtained association rules. The support calculates the
probability of finding two or more simultaneous positively
triggered sensors.

As the use of different areas in the apartment may not
be equally distributed, some sensors may be triggered much
less often than others, consequently their support will be
relatively low in comparison to others, and thus, they will not
appear in the extracted rules as they did not exceed the min-
imum support value. Consequently, a new measure termed
relative support is calculated as defined in equation 4. The
second technique investigate the use of the relative support
and confidence as evaluation metrics for the association rules
mining.

Rel. Support(X → Y ) =

|Transactions containing X&Y|
Min(|Transactions for each item in X or Y|)

(4)

For example, the relative support of the rule M4,M5 →
M7, is calculated as follows:

Rel. Support(M4,M5→M7) =

Trans4,5&7

Min(Trans4,Trans5,Trans7)
(5)

where Trans4,5&7 is the number of transactions in which the
sensors M4, M5 and M7 appear together, and Trans4, Trans5
and Trans7 are the number of transactions containing M4,
M5 and M7, respectively.

IV. CASE STUDY

A. Dataset

The proposed approach has been evaluated on the publicly
available Aruba CASAS dataset [12], which was collected
from a single-resident apartment for 6 months. The apartment
is equipped with 31 motion sensors, 4 contact door sensors
and 5 temperature sensors. However, only the motion and
contact sensors were included in our experiments. Also, there
is one door contact sensor that never triggered any event in
the recorded dataset. Thus, in total we have used the data
from 31 motion sensors and 3 contact sensors which results
in a dataset of 1316981 sensor triggers. The training data
used for finding the correlations is 50% of the dataset. The
other 50% of the data is left to be used for the validation
of a sensor failure detection system based on the extracted
correlations; however, this is not addressed in this paper.
Also, it is assumed that the recorded dataset does not have
faulty sensors triggers.

B. Experiments

In order to evaluate the techniques proposed in the
previous section, two experiments were conducted using
MATLAB 2017b software. Standard support experiment (
Experiment A) uses the first technique which implements
association rule mining with minimum support values of
0.5%, 1% and 1.5%, minimum confidence values of 60%,

Fig. 3. Aruba CASAS floor plan [12]
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80%, 90% and 100%, and sliding window sizes of 3, 5,
8, 10, 15, 30 and 45 seconds. Relative support experiment
(Experiment B) uses the second technique which depends
on the minimum relative support instead of the minimum
support and experimented with the values of 15%, 20%, 25%,
35% and 45%, and the same minimum confidence and sliding
window parameters.

The objective of these experiments is to extract meaningful
association rules that have as many as possible of the
employed sensors appearing in at least one of the consequent
parts of the extracted rules so that most sensors could be
checked for faulty behaviour. An example of the outputted
association rules is as follows: M6, M8 → M20 (Support:
4.5942%, Confidence: 92.9159%). This rule means that,
according to the given dataset, 92.9159% of the times the
sensors M6 and M8 were active, the sensor M20 was also
active. From a fault detection perspective, it would also
means that, if during a real-time monitoring, the sensors M6
and M8 are active and the sensor M20 is not activated within
the size of sliding window used in the data preprocessing,
then it is highly probable that any of these sensors is faulty.

In the next subsection, several combinations of the above-
mentioned parameters will be evaluated and compared with
respect to the number of extracted rules, the number of
sensors present in the consequent part and the ratio of sensors
present in the consequent part to the number of extracted
rules.

C. Results

The number of association rules obtained from each exper-
iment, the number of the sensors present in the consequent
part of those rules and the ratio of sensors present in the

consequent part to the number of extracted rules were plotted
on Fig. 4, Fig. 5 and Fig. 6, respectively.

First, as shown in Fig. 4, in all experiments the number
of obtained rules increases roughly linearly as the sliding
window size is increased from 3 to 10 seconds included, then
afterwards the number increases exponentially even more
drastically. On the other hand, as shown in Fig. 5, after 10
seconds the number of sensors in the consequent part of rules
does not increase in the same rate of increase of number of
rules. However, as shown in Fig. 6, for a sliding window
larger than 10 seconds, a dramatic drop occurs in the ratio of
the number of sensors to the number of rules. As a first result,
it can be concluded that for a sliding window larger than 10
seconds, the drastic increase in the number of association
rules is not useful as it does not permit to extract more new
rules that covers the sensors that have been missing in the
consequent parts.

In the standard support experiment, the graphs plotted in
Fig. 4 clearly show that the trend is almost consistent within
the sub-experiments; at each specific minimum support, the
number of rules and consequent sensors increase for each
value of minimum confidence as the sliding window size
increase. The trend is also consistent on the global view of
the sub-experiments; as the minimum support decreases, the
number of association rules increase (see Fig. 4) as well
as the number of sensors in consequent part (see Fig. 5).
However, the latter one is increasing less rapidly, as depicted
in Fig. 6, where the ratio of sensors to rules decreases as the
minimum support decreases.

Similarly to the standard support experiment, in the rela-
tive support experiment as the minimum support decreases
the number of association rules and consequent sensors

Fig. 4. Number of association rules w.r.t. minimum support/relative support, minimum confidence and sliding window size
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Fig. 5. Number of sensors in the consequent part of association rules

Fig. 6. Ratio of the number of sensors in the consequent part of association rules to the number of rules

increase. However, the plots of the relative support exper-
iment show that the trend within the sub-experiments is
inconsistent, for example, at minimum relative support of
20% the number of consequent sensors at a sliding window
size of 10 seconds that have a confidence of 100% is greater
than that at 8 seconds, while at minimum relative support of
15% the same parameter is less at 10 seconds than that at 8
seconds (see Fig. 5). This could be due to the fact that each
of the numerator and denominator of the relative support
equation increases in different rates according to the switch-
off delays of motion sensors and the resident’s behaviour,
changing the relative support of each itemset.

As observed in Fig. 6, the ratio of consequent sensors
to the number of rules that have a confidence of 90% or
more is always the highest in all sub-experiments compared
to the other minimum confidence values. By setting the
minimum relative support to 35%, sliding window size to
3 seconds and minimum confidence to 90%, the resulted
ratio of consequent sensors to rules is 0.615. However, the
number of consequent sensors is only 8. Therefore, such rules
are not sufficient to discover faulty sensors in an apartment
that deploys 34 sensors. As illustrated, judging the best
parameters for achieving good results in association rules
from investigating either one or two of Fig. 4, 5 and 6 is not
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Fig. 7. Sample of the obtained rules at 25% min. relative support, 60%
min. confidence and sliding window size of 3 seconds

sufficient, the three figures should be considered together to
determine the best trade-off among the parameters, as will
be discussed in the next section.

D. Discussion

Overall, the relative support experiment permits to extract
more consequent sensors within less number of functionally
redundant rules than the standard support experiment. This
shows that using the relevant support of rule is more bene-
ficial for our application. This can be explained by the fact
that the AAL datasets are usually unbalanced: some sensors
are triggered much more often than others; yet, infrequent
triggered sensors may be highly correlated.

Pursuing a trade-off between the number of meaningful
association rules and consequent sensors, a minimum relative
support of 25%, combined with a sliding window size of 3
seconds and a minimum confidence of 60% appear to be the
best values for extracting strong correlations between sensors
that could be used to detect sensor failures. Those parameters
produce 104 rules that contains 26 different sensors in the
consequent part of the association rules. 32 out of the 104
rules have a confidence of 90% or more; 12 sensors out of the
26 consequent sensors are included in those 90% confidence
rules. In general, this means that for some sensors it would
be easy to extract relations with a few rules, but others may
require many more rules or are even impossible to correlate
for a given configuration of these sensors positioning in an
apartment. A sample of the obtained rules is shown in Fig.
7, the lift value for all the rules is always greater than 1.

By checking the extracted association rules and the apart-
ment layout, logically correct correlations could be obtained
between the different sensors. As a consequence, a sensor
failure detection for Ambient Assisted Living could rely on
those rules to flag a fail-stop or non-fail-stop sensor failure.
Those rules could be exploited to build a probabilistic model
for sensors’ triggers which can be used for fault detection. As
the number of rules with 100% confidence is relatively small,
it is not possible, after a positive/negative trigger observation
of a sensor, to guarantee with certitude whether the sensor
is faulty or not. Yet, after a sequence of highly probable
unexpected events (confidence >80%), the confidence in the
diagnostic can be increased.

V. CONCLUSION AND FUTURE WORK

This paper proposed the use of association rule mining to
find the correlations between binary event-triggered sensors
deployed in Ambient Assisted living environment. Two tech-
niques were implemented, one using support and the other
using relative support, and compared on a case study. The
criteria for obtaining the association rules of interest were
discussed. The proposed approach, using the relative support
of a rule, permits to obtain interesting correlations between
sensors from an unlabelled dataset, with no need for prior
expert knowledge.

As future work, those correlations could be used for the
detection of fail-stop and non-fail-stop sensor failures and/or
fault tolerance in Ambient Assisted Living. A limitation
for the proposed system is that some of the deployed
sensors do not have rules that enable us to check on their
faulty behaviour. This point will be considered in the future
work, especially in relation to existing works on automatic
placement of sensors for ADL recognition [13]. Also, a
sensor failure detection system will be developed based
on the obtained rules and real-time experiments will be
conducted with injecting various types of failures to evaluate
the performance of detecting failures.
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Summary

Sensors failures in AAL environments are either fail-stop or non-fail-stop failures. Fail-
stop failures may occur due to hardware breakdown and power loss, while non-fail-stop
failures may exist due to remounting the sensor in a wrong place after its dislodgment and
obstructing its view by furniture. Sensors installed in non-intrusive AAL environments
are mostly event-driven, heterogeneous and binary sensors, which made it challenging to
detect its failure. Several fault detection techniques were developed for wireless sensor
networks, however, they mainly tackle the networks that have homogeneous, time-driven
and continuous sensors. This paper proposed a sensor failure detection and isolation
system for AAL environments equipped with event-driven, ambient binary sensors. The
system consists of an o�ine stage and an online stage. In the o�ine stage, the fault-
free correlations between sensors are extracted via association rule mining using relative
support and con�dence as the evaluation metrics. The extracted rules undergo further
post-pruning to obtain the most interesting correlations for our failure detection system.
At run-time, every time a resident triggers a sensor, the set of correlations are checked for
satisfaction/unsatisfaction and accordingly the health status variables of the sensors are
computed. Whenever the health status of a sensor drops below a prede�ned threshold,
the sensor will be �agged as faulty. The e�ect of the system's parameters; sliding win-
dow size, minimum relative support, minimum con�dence and health threshold, on the

1The author of this thesis contributed to the conceptualization, methodology, investigation, software,
validation and wrote and edited the original draft of the manuscript. Prof. Stephan Jonas has
contributed to the conceptualization, supervision, and manuscript editing and revision. Prof. Julien
Provost has contributed to the conceptualization and manuscript revision. Prof. Veit Senner has
contributed to the conceptualization and supervision. All authors have read and agreed to the
published version of the manuscript.
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performance of the system was experimented. Guidelines for selecting the values of the
parameters were proposed. Moreover, our approach was evaluated on a publicly available
dataset injected with fail-stop, obstructed-view and moved-location failures. The results
show that our system was able to detect and isolate failures.
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Abstract: Ambient Assisted Living (AAL) is becoming crucial to help governments face the
consequences of the emerging ageing population. It aims to motivate independent living of
older adults at their place of residence by monitoring their activities in an unobtrusive way.
However, challenges are still faced to develop a practical AAL system. One of those challenges is
detecting failures in non-intrusive sensors in the presence of the non-deterministic human behaviour.
This paper proposes sensor failure detection and isolation system in the AAL environments equipped
with event-driven, ambient binary sensors. Association Rule mining is used to extract fault-free
correlations between sensors during the nominal behaviour of the resident. Pruning is then applied
to obtain a non-redundant set of rules that captures the strongest correlations between sensors.
The pruned rules are then monitored in real-time to update the health status of each sensor according
to the satisfaction and/or unsatisfaction of rules. A sensor is flagged as faulty when its health status
falls below a certain threshold. The results show that detection and isolation of sensors using the
proposed method could be achieved using unlabelled datasets and without prior knowledge of the
sensors’ topology.

Keywords: ambient assisted living; enhanced living environments; sensor failure; fault detection;
fault isolation; smart home; non-intrusive sensors; binary sensors; event-driven sensors

1. Introduction

The ageing population phenomenon is one of the toughest challenges of this century. In 2019, 1 in
11 people around the globe was over 65 years old. This number of aged people is expected to rise to 1
in 6 people by 2050. The old-age dependency ratio is the ratio of the people over 65 to people between
20 and 64 years old. Some regions will witness this demographic shift the most, e.g., Europe and
North America, will have an old-age dependency ratio of 49 per 100 by 2050 [1]. This demographic
shift will induce challenges to governments as well as individuals [2]. The increasing ratio of retired
persons to workers requires increasing the capacity of the social system. Moreover, as people grow into
older age the chances of having age-related impairments and diseases increase, which if not monitored
closely could lead to much worse health complications. Thus, the health-care costs are expected to
increase as the population ages as well as the need for more care-givers. Stress would also be imposed
on informal caregivers, e.g., family members. In order to decrease the burden on governments and
individuals, promoting healthy ageing and independent living is becoming a priority. Exploiting the
vast development of the information and communication technologies (ICT) and the emergence of
ambient intelligence (AmI) is the key to providing such independence to older adults.

As a result, there has been an increasing interest in establishing Ambient Assisted Living
(AAL) environments [2]. One of the definitions proposed for Ambient Assisted Living is “the use of
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information and communication technologies (ICT) in a person’s daily living and working environment
to enable them to stay active longer, remain socially connected and live independently into old
age” [3]. It is a multidisciplinary field that involves information and communication technologies,
sociological sciences and medical research [4]. The AAL tools could be mainly categorised into health
and activity monitoring tools, wandering prevention tools and cognitive orthotics tools [2]. The health
and activity monitoring tools aim to monitor the activities of daily living (ADL) in an unobtrusive way,
either to ensure the safety of the monitored person, or the completion of his activities, or to detect
the deterioration in his cognitive and physical abilities. Wandering prevention tools were developed
mainly to aid people suffering from dementia, while cognitive orthotics tools are used to aid people
with cognitive decline. The AAL tools would cast some burden away from the family members of the
older adults, decrease the need for qualified caregivers and have a positive impact on the psychological
status of older adults as they would live independently at their homes for longer and more safely.
To achieve the goals of the AAL systems, the following requirements need to be fulfilled; adaptability,
interoperability, acceptability, usability and dependability [4].

Health or mobility related sensors are widely used for the monitoring purposes and represent the
heart of the AAL environments [4]. Most of the sensors that are used for monitoring are event-driven
binary sensors, for example the PIR sensor produces high output when motion is detected, otherwise it
produces low output. Such sensors provide low level information, unlike the sophisticated information
from cameras or microphones, and thus is more difficult to interpret and more prone to errors [5].
The failures that are encountered in such sensors are either fail-stop failures, where the sensor stops
reporting values, or non-fail-stop failures, where the sensor reports values that do not reflect the
occurring events that were supposed to be captured by it. Examples of the reported non-fail-stop
failures that occur in AAL environments include sensors that get blocked by furniture, get remounted
by the user in wrong locations, get stuck at a value or get spurious signals due to air drafts, sunlight rays
or pets [6,7]. The traditional fault diagnosis methods for wireless sensor networks [8–10] are designed
to deal with homogeneous, time-driven and continuous-valued sensors. However, such methods
do not suit the nature of sensors installed in non-intrusive AAL environments, which are often
heterogeneous, event-driven and binary sensors. This work aims to propose a sensor failure detection
and isolation system for AAL environments equipped with event-driven, ambient binary sensors.

2. Related Work

A comprehensive literature review was presented by the authors of this article in [11],
which focuses on the works concerned with detecting sensor failures, as well as tolerating its resulted
faults, in AAL environments equipped with binary, event-driven sensors. The surveyed fault-tolerant
systems focus mainly on location tracking [7,12,13] and activity recognition [6,14,15]. The sensor
failure detection systems found in literature may be classified as model-based and correlation-based
approaches [11]. The model-based techniques rely on deducing the location of the resident using the
triggered sensors due to his movement or his performed activities. Then, this deduced location is
compared with the location predicted either by his model of mobility, e.g., in [16,17] or by a localisation
system, e.g., in [18,19]. The proposed model-based sensor failure detection approaches are not
promising as they either use unrealistic models of resident motion that do not take into consideration
previous locations and speed or install extra hardware that increases cost as well as the chances of
errors. Fault detection and diagnosis frameworks that rely on modelling the sensors’ and actuators’
activation due to various user scenarios were presented in [20–22]. However, it can only detect failures
in sensors that are involved in tasks that have sensor-actuator feedback.

The surveyed correlation-based techniques can be classified as methods based on exploiting
sensor-appliance correlations, sensor-activity correlations and sensor-sensor correlations [11].
FailureSense [23] monitors the interval between motion sensor triggers and electrical appliances.
Sensor failure is flagged during run-time when the monitored interval deviates from the previously
learnt patterns from training datasets. The drawback of this method is that the assumption that the
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resident has to be physically beside the appliance to turn it on does not always hold. Idea system [24]
first extracts the sensors that are triggered with each activity of daily living using an activity labelled
dataset. In order to detect sensor failures, activity recognition is done, and whenever an activity is
recognised while one of its sensors did not trigger, a rarity score is computed. Sensor failure alert is
raised when the rarity score falls below a set threshold. The limitation of this approach is that it assumes
that the activity has been correctly recognised in the first place. In addition, it requires labelled datasets
for training. Following are the works based on the sensor-sensor correlations techniques. An approach
based on temporal correlation and nonlinear time series analysis was investigated by Ye, Stevenson
and Dobson; however, the experimental data was not enough to prove the effectiveness of this
approach [25]. Same authors have proposed the use of density based clustering to detect outlier sensor
triggers [26,27]. However, clustering occurs as a postprocess step on the collected data. SMART system
uses simultaneous multiple classifiers, a classifier for each sensor failure. It detects a sensor failure
by analysing the relative performance of these classifiers [6,28]. This approach lacks scalability and
needs excessive training effort. DICE [29] extracts correlations and transitional probabilities among
sensors and actuators offline. Failure is detected either when a sensor is missing from a predefined
correlation or when a group of sensors fires despite having a zero transitional probability with the
previous group of triggered sensors. The drawback of this approach is considering any group of
triggered sensors as a correlation, even if it has only appeared once, thus questioning the reliability of
correlations and making the approach more computationally complex especially when the number of
installed sensors increases.

Our research work favoured adopting a correlation-based approach over a model-based approach,
to avoid the disadvantages of relying on generic human mobility models, like in [16], that may not be
accurate nor personalised to reflect the behaviour of the monitored person. In addition, adding extra
hardware, as in [18,19], was avoided in order not to increase the implementation cost. Our proposed
sensor failure detection and isolation system approach focused on sensor-sensor correlations rather
than sensor-appliance and sensor-activity correlations. Sensor-appliance approaches [23] rely on
assuming that there will be correlations between the activation of the electrical appliance and the
triggering of the motion sensors in the areas leading to it, which is becoming less common in
smart homes as most appliances can be switched on remotely. Meanwhile, failure detection using
sensor-activity correlations [24] requires obtaining labelled data of performed activities to correlate the
activities to the sensors during the training phase and relies on the accuracy of the activity recognition
system at run-time to detect sensor failures. Our method does not need labelled datasets of sensor
failures nor performed activities. It is based on extracting the nominal correlations between the
installed sensors with no prior knowledge on the topology using unlabelled datasets. The association
rule mining [30] technique is used to extract correlations. Unlike the approach presented in [29]
that considers any proceeding triggers between sensors as a correlation, association rule mining
extracts strong correlations that meet minimum relative support and confidence, which would ensure
more reliability for failure detection. Association rule mining is characterised by its simplicity and
good interpretability of results. There are works that have based their fault detection system on
association rule mining; however, they were used to detect faults in time-series, continuous-valued
data, e.g., [31,32]. Association rule mining has also been used for fault diagnosis using datasets that
are already labelled with various system faults to associate which sensor signal values are responsible
for corresponding system faults, e.g., [33]. In this paper, we propose a failure detection and isolation
system for binary, event-driven sensors that is based on association rule mining. Association rule
mining is refined to better suit our application. Postpruning is applied to get the most interesting
correlations that the sensor failure detection and isolation system can rely on. The extracted correlations
appear as a set of IF-THEN rules that indicate the sensors that trigger within a few seconds from
each other. At run-time the set of rules are monitored and then the health status of each sensor is
updated according to the satisfaction/unsatisfaction of the correlations. A sensor is flagged as faulty
when its health status falls below a predefined threshold. Guidelines for the selection of the values of
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the parameters of association rule mining algorithm and the health status threshold are presented in
Section 4.3.2. Failure detection and isolation take place at run-time; this is contrary to the approach
in [26,27] that detects failure in precollected data. The approach presented in this paper is scalable;
therefore, it overcomes this shortcoming found in the SMART system [6,28] which needs a large
training effort to train a classifier for each sensor failure.

3. Sensor Failure Detection and Isolation System

Our sensor failure detection and isolation system consists of two stages: an offline stage and an
online stage. During the offline stage, the fault-free sensor correlations are extracted from previously
collected sensor dataset at the resident’s home during his nominal behaviour. Meanwhile online,
the fulfilment of correlations are checked as sensor events are triggered by the resident and accordingly
failure of sensors is determined. An overview of the proposed system is shown in Figure 1.

Figure 1. An overview of the proposed system.

3.1. Sensor Correlations Extraction

First, preprocessing of training data is done, followed by rules extraction using association
rule mining. Afterwards, the extracted rules are further pruned to obtain the most interesting
sensor correlations.

3.1.1. Data Preprocessing

The log obtained from AAL environments equipped with non-intrusive sensors consists of
a series of events. Each event has a time stamp, sensor ID and the corresponding sensor event trigger.
An example of a sensor event is 13 January 2011 10:28:14.65 M030 ON, which implies that sensor
M030 has been positively triggered at the given time stamp. In order to extract correlations using
association rule mining, the transformation of the time-stamped sensor event triggers dataset into a set
of transactions takes place over a couple of steps. The first step consists of creating a multivariate
time-series, where the value of each sensor is logged at every time stamp of the dataset in a separate
sensor signal variable. Formally, let si,t ∈ {0, 1} be the value of the i-th sensor at timestamp t ∈ T.
The set T is the set of timestamps of the log. For n sensors, concatenation produces the multivariate
time-series S.

S = {(s1,t, s2,t, ..., sn,t)}t∈T (1)
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Next, removal of all-zero rows is done. Formally, it corresponds to removing all-zero row vectors
from the time-series S.

V := S \ {(01,t, 02,t, ..., 0n,t)}t∈T (2)

Figure 2a shows an example for a multivariate time-series created from an AAL log. At each row,
a sliding window is used to group the sensors that have a signal value of 1 within the size w seconds
of the sliding window via logical ORing. The output of the window will be a single transaction that
has the time stamp of the start of the window. Formally, the value of the i-th sensor in the transaction
computes to:

di,t = sgn( ∑
j∈[t,t+w]

vi,j) (3)

The sliding window is run over the multivariate time-series data to output a transactional database
as illustrated in Figure 2, where each transaction presents the sensors that appear to be ON within w
seconds from each other. The obtained sensors transactional database will be used in the upcoming
correlations extraction step.

Figure 2. (a) Sliding window of size w = 5 s, is run over the multivariate time-series data.
(b) Transactional database.

3.1.2. Extracting Correlations

Correlations between fault-free sensors are extracted using the association rule mining technique.
It is a data mining technique that was introduced by Agrawal et al. [30] and is commonly used on
large transactional databases to find correlations between its items. Its most famous application is the
market basket analysis, where the transactions of a supermarket are analysed to find which items are
usually bought together by customers. Similarly, we aim to detect which sensors are most likely to be
simultaneously active implying strong correlations.

A formal representation of the association rule mining problem is as follows. Let I = {I1, I2, .., Im}
be a set of binary features denoted as items. Let the dataset T consist of a set of
transactions T = {T1, T2, .., Tn}, where each transaction is a binary vector of items, e.g., if transaction
T1 contains only two items I1 and I3, then T1 will have T1[1] = 1, T1[3] = 1 and the rest of T1 vector are
zeros. An association rule has the form of X → Y, where the antecedent X ⊂ I, the consequent Y ⊂ I
and X ∩ Y = φ. The confidence of a rule denotes how likely it is to find item(s) of Y when item(s)
of X occur(s), while the support of a rule is how frequent items of X and Y appear together in the
dataset. Support and confidence, defined by Equations (4) and (5) respectively, are the most commonly
used evaluation metrics that assess how strong the association rule is. The Apriori algorithm [34] is
used to extract the association rules from transactional datasets. Minimum values for support and
confidence have to be satisfied to avoid extracting meaningless rules. These minimum values need to
be set by the designer. Lift is a metric used to confirm the dependency between the rule’s antecedent
and consequent as shown in Equation (6), a value of 1 indicates independency, while greater than 1
indicates dependency. The higher the lift value, the greater is the dependency.

Sup(X → Y) =
|Transactions containing X&Y|

|Transactions|
= P(X ∩Y) (4)
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Conf(X → Y) =
|Transactions containing X&Y|

|Transactions containing X|
= P(Y|X) (5)

Lift(X → Y) =
|Transactions containing X&Y|

|Transactions containing X| ∗ |Transactions containing Y|
=

P(X ∩Y)
P(X)P(Y)

(6)

In the market basket analysis application, the items are the supermarket products, e.g., butter,
bread, and a transaction contains the items that have been simultaneously bought by a customer in this
transaction. In our AAL application, the items of the transactional database are the sensors installed in
the AAL environment. However, a transaction contains the sensors that are ON simultaneously in an
instant of time, as well as those sensors that are ON within its sliding window of size w seconds. This is
because we are concerned to capture the temporal correlations between sensors within few seconds
due to performing various activities by resident. The transactional database has been prepared in the
preprocessing stage. Another concern in the AAL application is the uneven usage of the different areas
of an apartment. A living room may be used by an older adult resident more often than the office
room, leading to scarcity of the triggers of the office’s sensors in the dataset. In such cases, the support
of the rule that has the less often triggered sensors may not exceed the minimum support value that
was preset in the Apriori algorithm, and thus will not appear in the extracted set of rules. To overcome
this limitation, we define a metric as relative support to be used in the Apriori algorithm instead of
the support for rules extraction. Support compares the number of transactions containing all items of
X & items of Y to the total number of transactions present in the database as shown in Equation (4).
While relative support is defined by Equation (7), it compares the number of transactions containing
all items of X & items of Y to the minimum number of transactions that contain any of the individual
items of X or Y.

Rel. Sup(X → Y) =
|Transactions containing X&Y|

Min(|Transactions for each item in X or Y|)
(7)

3.1.3. Post-Pruning of Correlations

The mined set of rules that have already exceeded the minimum values for the relative support
and confidence still needs further post-pruning to eliminate the redundant and/or less useful rules.
Our proposed sensor failure detection method relies on the following hypothesis; if a rule has all of its
antecedent sensors active during run-time, while its consequent sensors(s) did not become active within
the specified sliding window size, then the sensors can be suspected to be faulty. Accordingly, we aim
to have most of the sensors installed in the resident’s home appear in consequent part of rules so
that they could be checked for being faulty in the monitoring stage. Hence, the rules are grouped
for each sensor in consequent, i.e., if there are 20 sensors that appear in the consequent parts of
rules, then we will have 20 groups. From each group, the rule with highest confidence, the rule with
highest support and the two top trade-off rules between confidence and support, are selected. In our
opinion, the former would be the most interesting rules to our application. To obtain the trade-off
rules, confidence and support of the rules within each group are normalised, then are summed with
weights 1:1, and the rules with the top two highest sums, i.e., trade-off scores, are selected. For example,
to prune the rules of sensor M012, the rules that have M012 as a consequent are grouped, and then
those rules which have the highest confidence, highest support and the two top trade-off scores are
selected to be on the final set of rules that will be used in the monitoring stage, while the rest of the
rules that have M012 as a consequent are eliminated.

3.2. Sensor Correlations Monitoring

The pruned set of rules are the most interesting correlations that will be monitored online; they are
stored using bitmap arrays [35]. The health status of each sensor, which is the probability that a sensor
is healthy, will be computed according to the fulfilment of these correlations.
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Every time a sensor trigger event occurs, the data is processed and the corresponding sliding
window is prepared similar to Section 3.1.1, where the sensor signal value is updated and the sliding
window logically OR the sensors’ signals within the sliding window size of w seconds. A UML
(Unified Modeling Language) diagram that describes the main workflow for the health status update
is shown in Figure 3. The pseudocode in Algorithm A1 illustrates in details the health status update
of sensors due to monitoring the pruned set of rules. Two satisfaction states of rules are possible:
satisfaction and unsatisfaction. If the sliding window contains active sensors that satisfy a rule
antecedent as well as its consequent, then this correlation is fully satisfied and the health status of
these sensors are updated according to the satisfaction set of equations in Algorithm A2. It is assumed
that only one sensor failure can occur at a time (single-sensor failure). Hence, if the sliding window
contains active sensors that satisfy a rule antecedent but it fulfils the rule consequent except for one
sensor, then this rule is unsatisfied. If this unsatisfied rule has already been satisfied in the previous
sliding window or if it will be satisfied in the upcoming sliding window, then the health status will
not be updated. In addition, if this rule has been unsatisfied in the previous sliding window then
health will not be updated. Otherwise, the health status of this rule’s sensors are going to be updated
according to the unsatisfaction set of equations in Algorithm A3. The joint probabilities between
sensors that are included in the equations can already be obtained from the intermediate calculations
of the Apriori algorithm while scanning the training data for finding the frequent itemsets, hence no
extra computation is needed. Whenever the health status of a sensor falls below the preset health
threshold, failure of this sensor will then be flagged. Figure 4 shows a UML analysis object model of
the online stage of our system.

Figure 3. UML activity diagram of the health status update.
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Figure 4. UML analysis object model of the online stage of the failure detection system.

4. Experimental Work and Results

Our proposed approach for sensor failure detection and isolation was evaluated using a publicly
available dataset. In this section, the methodology of the experimental work and the results will
be presented.

4.1. Dataset

The publicly available Aruba CASAS dataset [36] was used to evaluate the proposed approach
for failure detection and isolation of non-intrusive sensors installed in AAL. The dataset was collected
over a duration of 6 months from a single-resident elderly’s home equipped with 31 motion sensors,
4 door contact sensors and 4 temperature sensors. As our approach is concerned with finding failure
in event-driven binary sensors, temperature sensors were not included in the evaluation. In addition,
the contact sensor D003, installed on a door located within the apartment as shown in Figure 5, does not
have any triggers in the dataset. Thus in total, we have 34 sensors under investigation. The dataset
was found to have some instances at which all of the sensors of the apartment get triggered at fractions
of a second and all remain active for some time, thus filtering was done to remove such instances.
To obtain the training and testing data, a split ratio of 50/50 was used. The training data was used for
extracting the offline correlations, while the testing data was processed sequentially to simulate the
run-time online processing using MATLAB 2019b software.

4.2. Evaluation Method

The following metrics are used for evaluating the sensor failure detection and isolation system:
precision, recall and F1-measure. Precision is the percentage of true positives from the total number of
sliding windows reported as positive, while recall is the percentage of true positives from the actual
positive sliding windows. The testing dataset was divided into 6 segments, where the segment is
approximately 2 weeks in length. Precision, recall and F1-measure are averaged over the segments.

In order to compute the true positives (TP) and false negatives (FN), the segments were duplicated
and injected with failure. Failure is injected in each segment on each of the sensors that appear in
the consequent parts of the extracted rules. Whenever a sliding window is reported to have a failure
from our algorithm, the ground truth is compared with the report to determine whether it is a true
positive or not. The start of sensor failure is chosen to be the first timestamp at which the sensor gets
triggered in the segment. The faultless segments were used to count the false positives (FP) and true
negatives (TN). Receiver Operating Characteristic (ROC) curve and the area under its curve (AUC)
were also used to evaluate the performance of failure detection. The ROC curve shows the tradeoff
between the true positive rate (TPR) and the false positive rate (FPR) as the health threshold value is
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varied from 0 to 1. The closer the curve to the left top corner of the plot, the better the performance of
failure detection is, implying higher quality of rules that govern the failure detection. A diagonal ROC
indicates that it is sort of random classification of failures.

Figure 5. Aruba CASAS floor plan.

4.3. Parameters of the Correlations Extraction

To achieve high performance for the sensor failure detection and isolation system, optimum
values for four parameters need to be selected. These parameters are the sliding window size,
minimum relative support, minimum confidence and health threshold. The optimum parameters
would output the best set of correlations and thus the best failure detection and isolation performance.
During the selection of parameters, thresholds setting dataset is used. The thresholds setting dataset
contains 4-week data (2 segments) of the testing dataset.

4.3.1. Parameter Effect

Before the selection phase, we wanted to study the effect of each parameter independently on the
extracted rules and the performance of the system. Using the training dataset, we set the parameters
and extract the correlations as described in Section 3.1. Then, the effect of the extracted rules on the
performance of the failure detection system is evaluated on the threshold setting dataset that was
injected with fail-stop failures. Fail-stop failure was injected for each of the sensors found in the
consequent part of the extracted rules.

Increasing the size of the sliding window from 0 to 60 s, while keeping the minimum relative
support at 45%, minimum confidence at 60% and health threshold at 0.4, was studied. It was observed
that increasing the size of the sliding window increases the total number of sensors in the consequent
parts of rules and increases the complexity of rules as well, i.e., more items/sensors per rule. Figure 6a,b
plot the precision and recall of failure detection with the parameters set to the former values when
the sensor ID of the x-axis is injected with fail-stop failure. For example, in Figure 6a the columns at
sensor M007 show the values of precision and recall of failure detection when M007 was injected with
fail-stop failure. High failure detection precision and recall can be observed in most of the cases of
failed sensors. Note that the sensors with nonempty bar data in the figures are the consequent sensors
of the extracted rules at the indicated values of parameters. Failure detection of only the consequent
sensors were evaluated, i.e., in Figure 6a there are only 5 sensors that have bar data, denoting that only
those sensors were present in the consequent parts of the rules extracted using 0 s sliding window,
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minimum support of 45% and minimum confidence of 60%, and failure was injected in each of those
sensors and failure detection was evaluated then.

Figure 6. Precision and recall of failure detection when a sensor has fail-stop failure, at health
threshold 0.4, (a) sliding window 0 s, minimum relative support 45%, and minimum confidence 60%.
(b) sliding window 60 s, minimum relative support 45%, and minimum confidence 60%. (c) sliding
window 0 s, minimum relative support 2%, and minimum confidence 60%. (d) sliding window 0 s,
minimum relative support 45%, and minimum confidence 10%.

Figures 6a,c show the precision and recall of detecting failures with setting the minimum relative
support at 45% and 2%, respectively, while maintaining the size of the sliding window at 0 s,
minimum confidence at 60% and health threshold at 0.4. Observing the effect of decreasing the
minimum relative support, it was found that the number of sensors in consequent part of rules
increases but nearly half of them have low failure detection precision and recall. The low precision
and recall are due to the low relative support of the rules that govern those sensors. Such sensors
are the source of false positives, their governing rules seems to be spatially unrealistic, e.g., M001,
M023→M010, that was obtained using a sliding window of 0 s, implying that they are supposed to
be ON simultaneously which cannot happen from a single resident even with the switch-off delays
of motion sensors. The performance of the other sensors was also affected; the high false positives
of the system have reduced their failure detection precision while maintaining their high recall.
The complexity of the extracted rules has increased due to lowering the minimum relative support.
Some sensors appeared in the consequent of rules when the sliding window has been increased but
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not when the relative support has been decreased, and vice versa. From Figure 6a–c, it is observed that
D001, M001 and M002 have appeared in the consequent of rules, when relative support decreased from
45% to 2% and thus can be checked for being faulty, but they were not part of any rule’s consequent
when the sliding window was increased from 0 to 60 s.

Lowering the minimum confidence from 60% to 10%, while keeping the sliding window at
0 s and the minimum relative support at 45%, is presented in Figure 6a,d. More sensors appeared
in the consequent part of rules, and the complexity of rules did not change when the minimum
confidence was lowered. The low confidence rules imposed high number of false positives for its
sensors, which has deteriorated the performance of the system. The false positives induced when
the minimum confidence was decreased to 10% (average false positives of 84,178) are much greater
than those induced when the minimum relative support was lowered to 2% (average false positives
of 29,493). This is because some of the extracted low confidence rules have high support, thus their
sensors will be triggered a lot by the user.

4.3.2. Setting Parameters

We aim to select the best combination of values for the sliding window size, minimum relative
support, minimum confidence and health threshold, which would enable failure detection and isolation
of as many sensors as possible with high precision and recall. The thresholds setting dataset is used to
validate the selection. A set of guidelines that aids in the parameters selection process was formulated
and is presented as follows:

1. First, extract the association rules for various combinations of values from wide range of sliding
window size, minimum relative support and confidence > = 50%, while maintaining a single
preliminary threshold value, using the training dataset.

2. Then, sort the combinations of parameters according to the total number of sensors in consequent
part of their extracted rules in descending order.

3. Select the top-most set of parameters, which produces rules with the highest number of consequent
sensors, then prune this set of rules as illustrated in Section 3.1.3.

4. Use the pruned rules to detect failure when each of the consequent sensors is injected with
fail-stop failure in the thresholds setting dataset. Afterwards, plot the all-in-one ROC curve of
failure detection, that is plotted with aggregating all the sensor failure cases. Furthermore, plot the
individual ROC curves of failure detection when each sensor has failed to have more insights
about the performance.

5. Find the optimal operating point and the AUC of the all-in-one ROC curve.
6. If the all-in-one ROC curve shows poor performance, i.e., optimal TPR is low (<0.8), optimal FPR

is high (>0.02) and AUC is low (<0.9), then delete this set of parameters entry from the
sorted combinations and repeat Steps 3–6 with the next highest number of consequent sensors.
Otherwise, the selection process of parameters is done successfully, recording the corresponding
sliding window size, minimum relative support and minimum confidence.

7. Record the health threshold value that corresponds to the optimal operating point of the all-in-one
ROC curve.

The exclusion of the values of confidence that are below 50% in Step 1 is necessary, as when we
experimented with below 50% confidence, its ROC curves had always showed poor performance with
optimal TPR below 0.8 and/or optimal FPR above 0.02 and/or AUC below 0.9. In addition, the logic
in Algorithm A2 which our calculations for failure detection rely upon in the case of rule satisfaction is
sustained while using > = 50% confidence. If we used a low confidence rule, e.g., 10%, and it is satisfied
then the probability that the sensors of the satisfied rule are faulty would be 90%, which would make
rule satisfaction useless to confirm that its sensors are nonfaulty due to fulfilling the correlation.

To select the parameters for our case study, the proposed guidelines were followed. In Step 1,
the set of values we used for the sliding window size was [0, 3, 5, 8, 10, 15, 20, 25, 30, 45, 60] s,
the minimum relative support set was [2, 5, 10, 15, 20, 25, 30, 35, 45] %, and the minimum confidence
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set was [50, 60, 70, 80, 90, 100] %. Note that the number of sensor events of the dataset can be divided
by its collection duration to get an estimate about the rate of sensors triggering and accordingly
choose the range of set values of the sliding window size. The preliminary health threshold value
was chosen to be 0.4. The highest number of consequent sensors that could be obtained using the
various combinations of the sets was 31 sensors. However, the values of the parameters that yield
31 consequent sensors produce bad failure detection performance that is reflected on its ROC curves.
Figure 7 shows the ROC curves that were plotted from setting the sliding window size to 60 s, minimum
relative support to 5% and minimum confidence to 50%, this setting yields rules with 31 consequent
sensors. The all-in-one ROC curve has an optimal TPR of 0.7169, optimal FPR of 0.06104 and AUC of
0.8903. Iterating back between Steps 3–6, until good ROC curves in Figure 8 are reached from setting
the sliding window size to 30 s, minimum relative support to 15% and minimum confidence to 60%.
These finally selected values of parameters could detect failures for 28 sensors. Its all-in-one ROC
curve has an optimal TPR of 0.8773, optimal FPR of 0.01593 and AUC of 0.9419. The health threshold
value that corresponds to the optimal operating point is 0.3591. Note that it may happen that multiple
combinations of parameters for the same number of consequent sensors would produce similar overall
performance but with one sensor performing better than the other, and vice versa. In our case study,
the previously mentioned selected values for parameters produced close performance to that of using
sliding window of 45 s, minimum relative support of 20% and minimum confidence of 60%. However,
we favoured our selection because less computational effort during the monitoring stage is needed for
the smaller sliding window size.

4.4. Experiments

Three types of failures were injected in the testing dataset; fail-stop, obstructed-view and
moved-location failures. Each consequent sensor was injected with failure, and the failure detection
as well as isolation was evaluated. The initial values of all health status of sensors were set to 1.
The sliding window size, minimum relative support, minimum confidence and health threshold were
set to 30 s, 15%, 60% and 0.3591, respectively, according to the selection of parameters conducted in
Section 4.3.2. The following sensors, D001, D002, M002, M004, M025 and M031, were not checked for
failure, as they did not appear in the consequent part of any rule.

Figure 7. Using sliding window size of 60 s, minimum relative support 5% and minimum confidence
of 50%: (a) ROC curves of failure detection when each consequent sensor has fail-stop failure.
(b) All-in-one ROC curve.
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Figure 8. Using sliding window size of 30 s, minimum relative support 15% and minimum confidence
of 60%: (a) ROC curves of failure detection when each consequent sensor has fail-stop failure.
(b) All-in-one ROC curve.

4.4.1. Fail-Stop Failure

Fail-stop failure was injected by replacing the readings of the sensor under test by zeros after
its point of failure. Fail-stop failure was injected individually on each of the sensors that appeared
in the consequent part of rules. The precision and recall of detecting fail-stop failure when failure
is injected in each of those sensors is shown in Figure 9a. Meanwhile, the precision and recall for
isolating the faulty sensor is shown in Figure 9b. The precision and recall metrics were computed
as described in Section 4.2. On the x-axis of Figure 9 lie the IDs of all the event-driven sensors of
the apartment shown in Figure 5. The figures are interpreted as follows, the bar columns at sensor
D004 in Figure 9a are the precision and recall values of detecting that a failure has occurred when
D004 was injected with fail-stop failure. While in Figure 9b, the columns at D004 show the precision
and recall of identifying that D004 has failed. No columns were plotted at D001, D002, M002, M004,
M025 and M031, as those sensors were not injected with failure nor evaluated as they did not appear
as a consequent in the rules. Most of the consequent sensors have high precision and recall for its
detection and isolation. There are 26 sensors that when injected with fail-stop failure cause failure
detection precision ≥ 0.95, and 24 sensors that cause a recall ≥ 0.87. Isolation precision is ≥ 0.97 for
26 sensors, while the isolation recall is ≥ 0.87 for 24 sensors. The isolation latency was plotted in
Figure 9c. The isolation latency is between 2 and 7 h in 13 sensors, 12 and 24 h in 6 sensors and 24
and 48 h in 5 sensors. There are 4 sensors (M001, M011, M016 and M017) that reported very high
isolation latency ≥ 120 h. The higher the rate at which the sensor is triggered by the user, i.e., higher
support, the shorter the time needed for isolation. It is observed that the sensors which have high
isolation precision but along with low isolation recall and high latency, e.g., M001 and M011, are those
governed by rules of low support. D002 appears as an antecedent in all the governing rules of M016
and M017, e.g., D002, M019 -> M016. In the first two segments of the testing data, D002 did not have
any triggers. Thus, the rules that have M016 and M017 as consequent were never initiated in the first
two segments. As a result, M016 and M017 have undefined isolation precision in Figure 9b because of
the zero true positives of those two segments. Those segments that have undefined isolation precision
were excluded when calculating the average isolation latency for each sensor plotted in Figure 9c.
M016 and M017 have high trigger rates but their rules have low support, because one of its antecedent
sensors, D002, has a low trigger rate. To calculate the average precision and recall of failure detection
and isolation among the examined sensors of the experiment, the two segments of M016 and M017 that
had undefined isolation precision were excluded. The average precision and recall of failure detection
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are 0.9493 and 0.9018, respectively, while the average failure isolation precision and recall are 0.9987
and 0.9116, respectively.

Figure 9. Fail-Stop Failure: (a) Precision and recall of failure detection. (b) Precision and recall of failure
isolation. (c) Failure isolation latency.

4.4.2. Obstructed-View Failure

Obstructed-view failure is the failure at which the sensor view is obstructed, e.g., its view gets
blocked by furniture. It was simulated by replacing the sensor readings by zeros along the duration
at which the sensor view was obstructed. The obstruction duration was set to 5 days. Figure 10a
shows the precision and recall of detecting 5 days of obstructed-view failure. The precision and
recall for isolating the faulty sensor and its isolation latency are shown in Figure 10b,c, respectively.
Similar to the fail-stop failures, detecting and isolating most consequent sensors show high detection
and isolation performance except for M001, M011, M016 and M017. There are 20 sensors that when
injected with obstructed-view failure cause failure detection precision ≥ 0.9, and 4 sensors between 0.8
and 0.9. Meanwhile, 24 sensors can be isolated with precision ≥ 0.92, and 19 sensors can be isolated
with recall ≥ 0.87. The average failure detection precision and recall among examined sensors are
0.8563 and 0.8089, respectively. The average failure isolation precision and recall are 0.9954 and 0.8285,
respectively. The isolation latency for the sensors injected with obstructed-view failure is almost the
same as when injected with fail-stop failure.
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Figure 10. Obstructed-View (5 days) Failure: (a) Precision and recall of failure detection. (b) Precision
and recall of failure isolation. (c) Failure isolation latency.

4.4.3. Moved-Location Failure

Moved-location failure means that a sensor’s location has changed, this may happen when
a sensor gets remounted by the user in the wrong location or when it is mounted on a piece of
furniture that has been moved to another location. This type of failure was simulated by changing
the readings of the sensor after its point of failure by readings of its newly moved location. Figure 11
shows the performance of detecting and isolating the moved-location of some of the consequent
sensors. The x-axis of Figure 11 describes the moved-location case, e.g., D004 -> D002, means that the
sensor D004 has moved to the location of sensor D002. Figure 11a plots the precision and recall of
detecting failure, and Figure 11b shows the precision and recall of identifying that the moved sensor
has failed, i.e., the failed sensor is D004 in our previous example. The precision of failure detection in
the presented 13 moved-location cases are ≥0.9, and the precision of the failure isolation is ≥0.99 in
the presented cases except for M010 -> M013 is 0.83. On the other hand, the recall of failure detection is
≥0.82 for 6 cases, between 0.7 and 0.8 for 5 cases, and ≤ 0.6 for 2 cases. Meanwhile, the recall of failure
isolation is ≥0.8 for 5 cases, between 0.68 and 0.8 for 5 cases, and ≤0.6 for 3 cases. The average failure
detection precision and recall among the presented cases are 0.9580 and 0.74, respectively, while the
average failure isolation precision and recall are 0.9863 and 0.6839, respectively. The isolation latency
is ≤7 h in 8 cases, between 16 and 19 h in 2 cases, and ≥42 h in 3 cases. The distance of the new
location from the old one is not what dominates the precision or recall of detecting the moved-location
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failure. Moving a sensor within the same room could be detected with higher recall when M005 was
moved to the location of M001 within the bedroom than that of moving M010 to M013 within the living
room. Similarly, moving a sensor to another room could be detected with higher recall when D004 was
moved from the garage door to replace the D002 at the kitchen back door than that of moving M005
from the bedroom to M009 in living room.

Figure 11. Moved-Location Failure: (a) Precision and recall of failure detection. (b) Precision and recall
of failure isolation. (c) Failure isolation latency.

5. Discussion

Our proposed failure detection and isolation system is distinguished by its low computational
effort and high interpretability, in addition to its use of unlabelled datasets. The results show that the
consequent sensors that were injected with fail-stop and obstructed-view failures could be detected and
isolated with high precision and recall. The isolation latency is highly dependable on the behaviour of
the resident as well as the start time of failure with respect to his behaviour. The more frequent the
usage of the area of an apartment that has the failed sensor is, the shorter the time to isolate this sensor
failure. In addition, the start time of the failure affects the isolation latency, i.e., if the sensor failure has
occurred just before the resident goes to bed at night, then the failure will not be isolated before the
next morning by any means. Detecting moving a sensor to another place can be achieved with high
precision and recall only when this newly moved location has minimal correlation to the old location.
This is on contrary to the fail-stop and obstructed-view failures, where the sensor failure detection
performance is proportional to its correlation to other sensors.
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A summary table of the related work was presented in our survey paper [11]. Although the
results are not directly comparable due to the use of different datasets, design of experiments and
evaluation methodology, the benefits of our proposed system over the other relevant state of the art
was presented in Section 2. The limitation of our approach is that the sensors that do not appear as
consequent to the activation of other sensor(s) in the apartment cannot be checked for failure. However,
our approach can be used to determine these sensors, and thus can help to highlight the needed
reconfiguration of sensors’ positioning in the apartment to obtain a fully functional sensor failure
detection and isolation system.

As for future work, the use of variable size sliding window for detecting failures may further
improve the system performance, especially for the moved-location failures. Rules will be extracted
for the consequent sensors that have strong rules using shorter duration sliding window during the
correlations extraction stage, and only those sensors that did not appear will be extracted over a longer
duration sliding window. However, this should be weighed against its computational complexity during
the real-time correlations monitoring stage. Furthermore, the use of an auxiliary system to detect failure
for those sensors that did not appear as consequent could be investigated. This auxiliary system may
exploit the following features for those sensors; its trigger day, trigger time and duration of activation.

6. Conclusions

This paper proposed a failure detection and isolation system for binary event-driven sensors
deployed in the AAL environment. Correlations between sensors were extracted with no prior
knowledge of the sensor placement on the floor plan and using unlabelled datasets. Guidelines for the
selection of the user defined parameters for correlations extraction were presented. The correlations
are monitored during run-time to detect sensor failures. The proposed approach was evaluated
using publicly available dataset injected with fail-stop, obstructed-view and moved-location failures.
The system was able to detect and isolate the various types of failures. The results show that fail-stop
failures could be detected with an average precision and recall of 0.9493 and 0.9018, and isolated with
average precision and recall of 0.9987 and 0.9116, respectively. Obstructed-view failures were detected
with average precision of 0.8563 and recall of 0.8089, and isolated with average precision of 0.9954 and
recall of 0.8285. Meanwhile, the moved-location failures were detected at 0.9580 average precision and
at 0.74 average recall and isolated at 0.9863 average precision and 0.6839 average recall.
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Abbreviations

The following abbreviations are used in this manuscript:

AAL Ambient assisted living
ICT Information and communication technologies
AmI Ambient intelligence
ADL Activities of daily living
PIR Passive infrared sensor
TP True positives
FN False negatives
FP False positives
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TN True negatives
ROC Receiver operating characteristic
AUC Area under curve
TPR True positive rate
FPR False positive rate

Appendix A

Algorithm A1 Failure detection.

Input:

DataStream: the stream of the AAL sensors events

Sen: the set of sensors represented by tuples {(id, Health, FailFlag)}, where id is the sensor’s id

number, Health is the health status of sensor, and FailFlag is the failure flag of sensor

R: the set of rules represented by tuples {(Ant, Conseq, Sup, Con f )}, where Ant contains the sensors

in the rule antescedent, Conseq contains the sensors in the rule consequent, Sup is the support of

rule, and Con f is the rule’s confidence

SatRulHist: the set of rules that were satisfied in the previous sliding window SwNum− 1, where

SwNum is the sliding window’s running number

UnSatRulHist: the set of rules that were unsatisfied, i.e., has one missing sensor in the rule

consequent, in the previous sliding window SwNum− 1

FutSw: the set of sensors that are active in the next sliding window SwNum + 1

HealthThresh: the threshold value for the health status of sensors
Output:

Sen: updated Health and FailFlag of the set of sensors
1: while CurrSW = ProcessSW(DataStream) do

2: // CurrSw is the set of active sensors in the current sliding window SwNum
3: for each Rul ∈ R ∧ Rul.Ant ⊆ CurrSw do

4: if Rul.Conseq ⊂ CurrSw then

5: Sen.Health← SatisfHealthUpdate(Rul, CurrSw, Sen)
6: SatRulHist← Rul
7: else if |Rul.Conseq− CurrSw| = 1 then

8: if Rul /∈ SatRulHist ∧ |(Rul.Ant ∪ Rul.Conseq)− FutSw| 6= φ then

9: if Rul /∈ UnSatRulHist then

10: Sen.Health← UnSatisfHealthUpdate(Rul,CurrSw,Sen)
11: end if
12: UnSatRulHist← Rul
13: end if
14: end if
15: end for
16: for each s ∈ Sen do

17: if s.Health < HealthThresh then

18: s.FailFlag← 1
19: else

20: s.FailFlag← 0
21: end if
22: end for
23: end while
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Algorithm A2 Health Status Update due to Rule Satisfaction.

1: SatisfHealthUpdate {Rul, CurrSw, Sen}
2: for each s ∈ Sen, s.id ∈ (Rul.Ant ∪ Rul.Conseq) do

3: PrF ← 1− Rul.Con f // PrF is the probability that the sensor is faulty
4: s.Health← 0.1× (1− PrF) + 0.9× s.Health
5: end for
6: return Sen.Health

Algorithm A3 Health Status Update due to Rule UnSatisfaction.

1: UnSatisfHealthUpdate {Rul,CurrSw,Sen}
2: for each s ∈ Sen, s.id ∈ Rul.Ant do

3: if |Rul.Conseq| = 1∧ |Rul.Ant| = 1 then

4: PrF ← 1− P(s)
5: else

6: PrF ← 1−
P(

⋂
{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq)} x)

P(
⋂
{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq))|x 6=s} x)

7: end if
8: s.Health← 0.1× (1− PrF) + 0.9× s.Health
9: end for

10: for each s ∈ Sen, s.id ∈ Rul.Conseq do

11: if s.id ∈ CurrSW then

12: PrF ← 1 +
Rul.Sup− P(

⋂
{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq))} x)

P(
⋂
{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq))|x 6=s} x)− P(

⋂
{x∈(Rul.Ant∪Rul.Conseq)|x 6=s} x)

13: else

14: PrF ← Rul.Sup
P(

⋂
{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq))} x)

15: end if
16: s.Health← 0.1× (1− PrF) + 0.9× s.Health
17: end for
18: return Sen.Health
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7 Supplementary Work

In this chapter, further enhancement of the proposed approach for sensor failure detection
and isolation was considered. Two modi�cations in the approach were investigated on
the Aruba dataset, which are adding time features in the correlations and modifying the
data processing of contact sensors. Moreover in this chapter, the proposed approach was
evaluated in a second case study on the HH122 dataset.

7.1 Further work on the Aruba dataset

7.1.1 Time features

Sensors may be correlated to one another as well to time. Association rule mining can
be used to discover the sensor-sensor correlations and sensor correlation with respect
to time by incorporating categorical time features in its items. Following is an exper-
iment conducted on the Aruba CASAS dataset [70] incorporating time features. In
the data preprocessing, the items of the transactional database has been extended by
adding 11 time features representing the hours range of the timestamp of the start of
sliding window. The categorical time features are EarlyMorning, Morning, LateMorn-
ing, EarlyAfternoon, Afternoon, LateAfternoon, EarlyEvening, Evening, LateEvening,
EarlyNight and LateNight. For example, EarlyMorning is given a value of 1 if the time
stamp of the start of sliding window is between 6 am and 8 am, otherwise 0. Next, the
association rules were re-extracted using the values of the parameters that have been
previously set according to the selection of parameters conducted in Chapter 6; sliding
window size 30 s, minimum relative support 15% and minimum con�dence 60%.

The extracted rules have been found to contain some rules that have a time feature in
its antecedent part. Such rules are often present also without time feature in the extracted
set of rules, however the rules that have time item in its antescedent have lower support
and sometimes higher con�dence, than the same rule without the time feature as can be
seen in Table7.1. Compared to the rules previously extracted without incorporating time
features using the same dataset and set parameters, an additional sensor has appeared as
consequent, which is M004. Post-pruning of the extracted rules has been performed, and
then the detection of fail-stop failures of each consequent sensor has been experimented
using the thresholds setting dataset. Figure 7.1 shows the obtained ROC curves as a result
of incorporating the time features while using the former values for the set parameters.
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The all-in-one ROC curve has an optimal TPR of 0.8608, optimal FPR of 0.009308 and
AUC of 0.9391.

Table 7.1: Sample of the rules that appeared with extra time feature item.

Rule Support, Con�dence, Lift
M002,EarlyNight → M003 0.36455%, 91.3793%, 12.1931
M002,LateNight → M003 0.19181%, 83.5616%, 11.1499
M002 → M003 1.3352%, 73.2823%, 9.7783
M025,M026,LateAfternoon → M027 0.29439%, 96.2725%, 25.459
M025,M026 → M027 1.3733%, 94.1906%, 24.9084
M025,M026,EarlyAfternoon → M027 0.23504%, 92.2128%, 24.3854
M004,M005,LateNight → M007 0.17392%, 100%, 4.8615
M004,M005,LateMorning → M007 1.4839%, 99.9868%, 4.8608
M004,M005 → M007 6.5426%, 99.985%, 4.8607
M018,M020,EarlyEvening → M014 2.3974%, 77.8345%, 3.0862
M018,M020 → M014 11.1265%, 66.6341%, 2.6421

(a) (b)

Figure 7.1: Incorporating time features while using sliding window of 30 seconds, minimum
relative support 15% and minimum con�dence of 60% (a) ROC curve for fail-stop
failure detection of each consequent sensor (b) All-in-one ROC curve

7.1.2 Contact Sensors

As illustrated in Chapter 6, the data preprocessing includes converting the sensors events
to signals. Thus, the correlations are extracted between the sensors that are ON within
the size of the sliding window regardless the type of the sensor. In this section, treating
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7.1 Further work on the Aruba dataset

the contact sensors somewhat di�erently is considered. Contact sensors have di�erent
nature than the motion sensors. When an ON event of a motion sensor is encountered,
it indicates that a movement has triggered this sensor. The sensors remains triggered
as long as the movement continues in its �eld of view. When the movement stops, an
OFF event of the motion sensor is perceived. On the other hand, when an ON event of a
contact sensor occurs, it indicates that the sensor has been triggered by an interaction on
an object and this interaction has stopped, however no event has been perceived because
of the contact sensor's latching nature. The next OFF event of that contact sensor would
indicate another interaction. Thus, extracting rules based on the edge triggers of contact
sensors might be more e�ective.

(a) (b)

Figure 7.2: Processing contact sensors based on edge trigger and motion sensors based on latch
trigger while using sliding window of 30 seconds, minimum relative support 15%
and minimum con�dence of 60% (a) ROC curve for fail-stop failure detection of
each consequent sensor (b) All-in-one ROC curve

Accordingly, modifying data preprocessing for the Aruba CASAS dataset has been
performed, where the values of the variables of contact sensors have been set to 1 only
when an ON/OFF event of those sensors is perceived and 0 otherwise. The association
rules were re-extracted using sliding window size 30 s, minimum relative support 15%
and minimum con�dence 60%. Each of the consequent sensors was injected with fail-
stop failure in the thresholds setting dataset and the ROC curves of failure detection
were plotted in Figure 7.2. A signi�cant improvement in the ROC curve of detecting
failure when M011 was injected with fail-stop failure has been observed compared to the
corresponding ROC curve plotted in Chapter 6 for the same parameters setting. This
is due to the increase of the con�dence of the rule D001 → M011 from 74.1 % to 99.8
%. Investigating the training data, it has been found that there are instances that M011
gets triggered then D001 is opened, M011 stops triggering and D001 remains opened for
some time before being closed again, and then M011 triggers again. This explains the
lower con�dence when D001 has been treated similar to motion sensors, i.e. setting its
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variable value to 1 during the elapsed time between its ON and OFF events. The plotted
all-in-one ROC curve in Figure 7.2b has an optimal TPR of 0.8781, optimal FPR of
0.009578 and AUC of 0.9434.

7.2 Case study on the HH122 dataset

In this section, the failure detection and isolation approach presented in Chapter 6 is
being evaluated on a second publicly available dataset, HH122 CASAS dataset [70].
The dataset was collected from a single-resident home that is equipped with 24 infrared
motion/light sensors, 4 contact sensors and 5 temperature sensors [71]. The available
activity-annotated data was collected over a duration of one month and do not have
any triggers from the contact sensors. The ambient light and temperature readings
were excluded from our experiments as the proposed approach is concerned with �nding
failure in event-driven binary sensors. As a result, only the 24 motion sensors were under
investigation. A split ratio of 50/50 was used to obtain the training and testing data.

Figure 7.3: HH122 CASAS �oor plan [70].

The data was preprocessed and the guidelines for setting the values of the parameters
were followed. The association rules were extracted using the training data, while the

82



7.2 Case study on the HH122 dataset

thresholds setting dataset that contains 1-week data of the testing data was used to
validate the selection of parameters. Accordingly, the values of the parameters were
selected to be 60 s sliding window size, 25% minimum relative support and 60% minimum
con�dence. Those values enable failure detection and isolation of the 21 sensors that
appear as consequent in the rules, where MA013, M020 and M024 did not appear as
consequent. The ROC curves using the former values of parameters are plotted in Figure
7.4. The all-in-one ROC curve has an optimal TPR of 0.9288, optimal FPR of 0.008148
and AUC of 0.9739. The health threshold value that corresponds to the optimal operating
point is 0.4497.

(a) (b)

Figure 7.4: HH122: Using sliding window of 60 seconds, minimum relative support 25% and
minimum con�dence of 60% (a) ROC curve for fail-stop failure detection of each
consequent sensor (b) All-in-one ROC curve

Evaluation of failure detection and isolation was conducted when each of the conse-
quent sensors was injected with fail-stop, obstructed-view and moved-location failure.
Fail-stop failure was injected individually on each of the consequent sensors, then failure
detection and isolation was evaluated. The precision and recall of detecting failure and
isolating the faulty sensor are shown in Figures 7.5a and 7.5b, respectively. All of the
21 consequent sensors when injected with fail-stop failure cause failure detection preci-
sion ≥ 0.9, 16 sensors cause a recall ≥ 0.95 and 5 sensors result in a recall between 0.8
and 0.9. Isolation precision ≥ 0.99 for 18 sensors, while isolation recall is ≥ 0.96 for 16
sensors. MA013, M020 and M024 were not injected with failure nor evaluated as they
were missing from the consequent of all rules, and thus empty columns appear at their
labels in all plots. The isolation latency plotted in Figure 7.5c, shows that the latency
is ≤ 2.2 h for 13 sensors, between 8 and 14 h for 4 sensors, and between 28 and 55 h
for 4 sensors. The average precision and recall of failure detection are 0.926 and 0.962
respectively, while the average failure isolation precision and recall are 0.995 and 0.961,
respectively.
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(a) (b)

(c)

Figure 7.5: HH122 injected with fail-Stop failure: (a) Precision and recall of failure detection
(b) Precision and recall of failure isolation (c) Failure isolation latency

Obstructed-view failure was injected in each of the consequent sensors for 5 days.
Figure 7.6a shows the precision and recall of detecting the failure, while Figures 7.6b and
7.6c the precision and recall for isolating the faulty sensor, and the corresponding isolation
latency, respectively. There are 19 sensors that when injected with the obstructed-view
failure cause detection precision ≥ 0.8, and 16 sensors lead to a recall ≥ 0.92. Meanwhile,
all of the 21 consequent sensors can be isolated with precision ≥ 0.9 and 16 sensors can be
isolated recall ≥ 0.9. The isolation latency for the sensors injected with obstructed-view
failure is similar to as when injected with fail-stop failure. The average failure detection
precision and recall among the examined sensors are 0.836 and 0.916, respectively, while
the average failure isolation precision and recall are 0.990 and 0.913, respectively.
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(a) (b)

(c)

Figure 7.6: HH122 injected with Obstructed-View (5 days) failure: (a) Precision and recall of
failure detection (b) Precision and recall of failure isolation (c) Failure isolation
latency

Moved-location failure was simulated on some of the consequent sensors, and the de-
tection and isolation of the moved sensors were evaluated. The 11 moved-location cases
are described with an arrow relation, where the left part of the arrow is the original
sensor location, and the right part of the arrow is the new location to where the sensor
has been moved. Figure 7.7a shows the precision and recall of detecting failure, while
Figure 7.7b shows the precision and recall of identifying that the moved sensor has failed.
The precision of failure detection is ≥ 0.88 for all cases except for the M004 → M009
it is equal to 0.66, while the precision of the failure isolation is ≥ 0.99 for all the 11
presented cases. On the other hand, the recall of failure detection is ≥ 0.81 for 6 cases,
between 0.7 and 0.8 for 3 cases and < 0.6 for 2 cases. The recall of failure isolation is
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≥ 0.82 for 4 cases, between 0.7 and 0.8 for 3 cases and ≤ 0.69 for 4 cases. The average
failure detection precision and recall are 0.8880 and 0.7374, respectively. Meanwhile,
the average failure isolation precision and recall are 0.9994 and 0.6841, respectively. As
observed in Figure7.7c, the isolation latency is < 1 h for 7 cases, between 1 and 2 h for
3 cases and equals to 5.55 h in 1 case.

(a) (b)

(c)

Figure 7.7: HH122 injected with Moved-location failure: (a) Precision and recall of failure
detection (b) Precision and recall of failure isolation (c) Failure isolation latency
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8 Discussion, Conclusion and Future

Work

Ambient Assisted Living environments are the way to transform the challenges imposed
by the ageing population phenomenon into opportunities. Monitoring the older adults
at their place of residence, spotting early signs of health deterioration and providing
assistance when needed, would help in providing them with independence, safety, early
intervention, and sustained activity. Acceptability and dependability are two of the most
essential requirements to make the older adults willing to live in an AAL environment.
The use of non-intrusive ambient sensors would help in gaining more acceptability. How-
ever, failure in non-intrusive ambient sensors is an obstacle that can hinder the success
of the AAL environments. Enhancing the reliability of the AAL systems would increase
the dependability and strengthen the trust of the older adults in the systems. This the-
sis explored the works done to deal with sensor failures in AAL environments equipped
with non-intrusive ambient sensors, and presented a sensor failure detection and isolation
system for the non-intrusive, event-driven, binary sensors.

8.1 Discussion

A comprehensive literature review was presented in Chapter 4, which gives an overview of
the sensor failures in AAL and the publicly used datasets in the conducted case studies,
in addition to reviewing the works concerned with detecting sensor failures as well as
providing fault-tolerant services in AAL environments equipped with event-driven binary
sensors.

Chapter 5 has investigated extracting correlations between event-driven binary sensors
using association rule mining. For extracting the correlations, the use of the relative sup-
port metric instead of the support metric was proposed in order to overcome the problem
of the scarcity of some sensors' triggering imposed by the uneven usage of the apartment
areas by the resident. The experiments conducted on the Aruba dataset showed that
using the relative support metric allows extracting more consequent sensors within less
number of functionally redundant rules than using the support metric. The e�ect of
varying the values of the parameters of the correlations extraction; sliding window size,
minimum relative support and minimum con�dence, on the number of extracted associa-
tion rules, the number of sensors present in the consequent part of the rules and the ratio
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of consequent sensors to number of extracted rules were plotted and investigated. It was
concluded that setting the values of those parameters to obtain meaningful rules that
have large number of consequent sensors, may be possible via investigating the three
former plots in order to choose the values that would achieve a trade-o� between the
number of association rules and consequent sensors. The rules obtained were found to be
logically correct when compared to the sensors topology in the apartment layout which
made it promising to pursue in the direction of using it to detect sensor failures. The
extracted rules can later serve as a foundation for sensor failure detection using the fol-
lowing hypothesis; if the sensor(s) of the antecedent part of rule got triggered while the
sensor(s) of the consequent part of rule did not within window size time, then the sen-
sors can be suspected to be faulty. However, as only few portion of the rules have 100%
con�dence, i.e., every single time the antecedent occurs the consequent occurs as well,
thus using the rules to decide on the sensor failure still have some uncertainty. Hence,
the probability that a sensor has failed due to ful�lling/unful�lling the rules should be
deduced.

A sensor failure detection and isolation system that exploits the extracted rules was
presented in Chapter 6. Fault-free correlations between sensors are extracted o�ine
using data collected from the resident's home. Then, post-pruning is applied to further
reduce the number of the redundant rules that can have negative impact (increasing
the processing time) on the performance of the failure detection system. Storing the
rules as bitmap arrays has decreased the processing time in pruning as well as during
the correlations monitoring. The pruned set of rules represents the most interesting
correlations that are monitored online to detect sensor failure. During the correlations
monitoring stage, the health status of a sensor, which is the probability that a sensor is
healthy, is updated according to the satisfaction or unsatisfaction (missing one consequent
sensor) of any of its correlations. Moreover in Chapter 6, the e�ect of changing the values
of the parameters of the correlation extraction stage has been extended to include the
e�ect on the number of consequent sensors, the complexity of the pruned rules, and the
precision and recall of failure detection and was investigated with the aid of the Aruba
dataset. Guidelines for setting the values of the correlation extraction parameters along
with the health threshold value were presented. The guidelines aim to aid in selecting
the values that enables failure detection and isolation of as many sensors as possible with
high precision and recall. If more than one set of values show similar overall performance,
the set of values having the smaller size of sliding window is preferred to be selected in
order to decrease the computational e�ort during the monitoring stage.

As the presence of fault-free data during the training stage is important, the matlab
code in [72] has been adapted to implement a graphical user interface for visualizing the
daily sensors triggers in the dataset of our Aruba case study. By inspecting the visualized
data, it has been found that there are a couple of days that have instances at which
nearly all the sensors of the apartment got triggered simultaneously and remained active
for some time1, e.g., on 16 Nov. 2010 all the motion sensors got triggered at around 1:09
1One possible explanation for those instances, according to the CASAS research group, is that there
might have been several power outages during that period due to a storm and that when the sensors
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and remained active until 2:23, such behaviour has been repeated multiple times until
around 8:09. Such instances were excluded from the training data in the experiments
conducted in Chapter 6. However, in Chapter 5 the presence of those instances in the
data was not discovered yet, and it has lead to extracting more correlations for the same
values of the set parameters during the extracting correlations stage.

In the proposed Aruba case study of Chapter 6, the chosen values for the parameters
yields rules having 28 sensors present in the consequent part of the rules out of the 34
sensors of the apartment. However, those missing sensors from the consequent appeared
as antecedents which means that when one of those sensors get triggered, other sensor(s)
will consequently appear within its sliding window, but not vice versa. Injecting fail-stop,
obstructed-view and moved-location failures in each of the 28 consequent sensors was
simulated, and the failure detection and isolation were assessed. The performance of the
proposed system was evaluated by computing the precision and recall of failure detection
as well as failure isolation of each consequent sensor in addition to the failure isolation
latency. High precision and recall for detecting and isolating fail-stop and obstructed-
view failures were observed. The isolation latency decreases as the resident's usage of
the areas that have the failed sensor and its correlated sensors increases. Moreover, the
time of the day at which the failure has started a�ects the isolation latency, e.g., a failure
that occurs just before the resident leaves the apartment can not be detected before he
gets back. Thus, the isolation latency depends greatly on the behaviour of the resident
and the start time of failure with respect to his behaviour. The performance of detection
and isolation of fail-stop and obstructed-view failures increases as the correlation of the
failed sensor to the other sensors increases. On contrary, the performance of the detection
and isolation of moved-location failures increases when the sensor at the newly moved
location has minimal direct or indirect correlation to its old location. On the other hand,
the distance between the old and newly-moved location do not a�ect the performance.
To further examine the approach proposed in Chapter 6, an additional case study was
presented in Chapter 7 using another dataset (HH122 dataset). The results of the case
study was found to be aligned with the above conclusions drawn from the Aruba case
study.

A limitation of the approach proposed in this thesis for sensor failure detection and
isolation is that the sensors that do not appear as consequent to the activation of other
sensor(s) cannot be checked for failure. This is because the antecedent of a rule must be
satis�ed in order to update the health status of the sensors of the rule. If a sensor is not
present as a consequent in our set of rules it means that there is no strong correlation
that indicate that this sensor should have been active as a consequence to the activation
of other sensors. Hence, in practice if a sensor that does not appear in the consequent
part in the set of rules failed, then we will not be able detect its failure by relying on
its correlation with other sensor(s). However, the proposed approach can be used to
help in identifying the needed modi�cation in the sensors layout to overcome the former

(electricity-powered) �rst turn ON after each power outage they are stuck at 1 during warming up,
and the next power outage occurs before they �nish warming up and thus no OFF event has been
sent to the server that is still running on battery.
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limitation and obtain a fully functional sensor failure detection and isolation system,
where all the sensors in the apartment appear as consequent and hence can be checked
for failure. Seeking another way to overcome the limitation by correlating the sensors to
time in addition to correlating it to the other sensors has also been considered. The Aruba
case study was extended in Chapter 7, where 11 time features for the timestamp of the
start of sliding window were added in the data preprocessing stage. Only one consequent
that was previously missing from the consequent part of rules has appeared when time
features were added. However, when fail-stop failure detection experiment was carried
on using the pruned set of rules that includes the time items, a sort of similar overall
performance to the previously conducted experiment without the time features in Chapter
6 was observed. Even detecting and isolating that newly appearing consequent sensor
has shown poor performance. Thus, adding time features in the association rule mining
to enrich the sensors correlations was not helpful in improving the system's performance.
Nevertheless, it is useful in getting knowledge about whether a correlation usually occurs
in speci�c range of time along the day or not. Additionally in Chapter 7, modifying the
data preprocessing for the contact sensors to be based on its edge trigger rather than
its latch values was considered, and has shown a positive impact on the results. Basing
the data processing of the contact sensors on its edge trigger means that the values of
the variables of contact sensors have been set to 1 only when an ON/OFF event of those
sensors is perceived and 0 otherwise. This is on contrary to basing the data processing
on its latch values, where the values of the variables of contact sensors have been set to 1
when an ON event of those sensors is perceived and stay at 1 until the next OFF event is
perceived it would be then set to 0. The positive impact on the results that was observed
when the data processing of contact sensors was based on the edge trigger was due to the
increase of the con�dence of the rules that has the contact sensor as antecedent and the
motion sensor as consequent, i.e., how frequent the motion sensor is in the transactions
that contains the contact sensor, as the contact sensor are installed on doors/windows
that may be left open for some time while no motion is being detected.

8.2 Conclusion

In this thesis, a failure detection and isolation system for event-driven, binary, ambient
sensors deployed in the AAL environments was proposed. Sensors correlations were
extracted based on the association rule mining technique. At run-time, the correlations
are monitored and accordingly failure is detected. Guidelines to set the values of the
parameters of the proposed approach were presented. Experiments were conducted on
two datasets injected with fail-stop, obstructed-view and moved-location failures. The
results show that detection and isolation of the sensor failures using the proposed method
could be achieved.

The proposed sensor failure detection and isolation system is of low cost, as it does not
need installing extra hardware, on contrary to [50, 51], nor deploying redundant sensors.
The system is data-driven and thus is tailored to capture the sensors correlations triggered
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by the resident, instead of relying on generic human behavioural model, as in [48, 49], or
prede�ned user case scenarios or tasks, like in [54, 52, 53]. Moreover, it is characterized
by its good interpretability of results because of the interpretable association rules. No
prior knowledge on the topology of the installed sensors, unlike [58, 59], nor labelled
data with activities, as in [56], or failures is needed. On contrary to [2, 60], the proposed
approach is scalable, i.e., increasing the number of deployed sensors will not have a
drastic e�ect on the training e�ort nor on the number of monitored correlations used for
failure detection. Moreover, unlike the approach presented in [60], the used correlations
must meet minimum evaluation metrics that indicate its strength, thus this ensures its
reliability to be used for detecting sensor failures.

Living in AAL environments equipped with non-intrusive sensors is usually more ac-
ceptable by the older adults yet non-intrusive sensors are more prone to failures than
intrusive sensors. Detecting and isolating failures in non-intrusive, binary, event-driven,
ambient sensors, as proposed in this thesis, would ensure that the AAL subsystems or
services do not produce spurious results due to sensor failure. Therefore, the acceptability
and dependability of AAL environments would be improved encouraging the older adults
to live in such environments that would enable them to live independently in their place
of residence, maintain their functional abilities and well-being in addition to decreasing
the burden on governments.

8.3 Future Work

There are several directions to expand this research to further improve and investigate
the proposed approach for sensor failure detection and isolation. In the following, future
work directions are highlighted in respect to methodology and experimental work.

The �rst direction for future work would be working on overcoming the limitation
that was previously discussed, which is that it is not possible to check failure for the
sensors that did not appear as a consequent to the activation other sensor(s) in the set
of correlations. Investigations should be done on the use of our approach to identify
those sensors, and to accordingly modify the sensors layout to ensure that all of the
sensors in the apartment can be checked for failure. Alternatively, an auxiliary system
to detect failures for those missing consequent sensors that rely on features other than
sensor-sensor correlations, e.g., trigger frequency, time and duration of activation, might
be considered.

Additionally, the approach might be extended to correlate the binary sensors to the
continuous valued sensors as well. The continuous valued sensors, e.g., temperature
sensors and light sensors, could be discretized or thresholded for speci�c signi�cant values
or changes in their values. This would increase the chance that the sensors that was
previously missing from being a consequent to the binary sensors may then appear as a
consequent to the continuous valued sensors.
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To further enhance the performance of the proposed approach for failure detection
and isolation, the use of variable size time-based sliding window might be considered.
The correlations for the consequent sensors that can have strong rules within a shorter
duration sliding window will be �rst extracted, and then a longer duration sliding window
can be used to extract correlations for the remaining sensors. This could be bene�cial
for improving the system performance especially in detecting and isolating the moved-
location failures. However, the impact of dealing with multiple sliding window sizes on
the computational complexity during the real-time correlations monitoring should be
then inspected.

Investigating the performance of the proposed approach in various settings could be
performed to ensure its adaptability. The sensors of the datasets used in the experi-
mental work of this research were mostly motion sensors along with few contact sensors.
Case studies on datasets that have more diverse sensors installed in the apartment, e.g.,
�oat sensors and pressure sensors, could be considered. Also in the experimental work,
datasets collected from two-resident apartments could be used as it is common that the
older adult would be living with spouse at older age. Moreover, datasets collected from
an apartment inhabited by an older adult with physical and/or cognitive de�ciencies
might be considered.

Future research might investigate how often it is that two or more sensors would fail
simultaneously in AAL environments, and then further expand the proposed approach
to deal with multiple failures. Furthermore, experimental studies should be carried on
to further examine in-depth the non-fail-stop failures that occur in AAL environments.
Investigating the performance of our approach while injecting other forms of non-fail-stop
failures, e.g., stuck-at failures, in the datasets may be explored.

In future work, investigating the e�ect of seasons on the extracted correlations, i.e.,
whether speci�c sensors stop correlating to each other due to seasonal variations or new
correlations appear, might prove important to check if re-extracting the sensors correla-
tions o�ine need to be carried on when seasons change. Similarly, investigations should
be done to identify whether the behavioural deviation of the resident due to an emerging
physical or cognitive decline would require re-extracting the sensors correlations.

Future research might consider implementing and evaluating the proposed sensor fail-
ure detection and isolation system in an older adult's apartment to validate the system
in real world setting. Moreover, it will be interesting to explore in the future how a fault-
tolerance framework for AAL services could be built based on exploiting the proposed
failure detection system.
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A Appendix

Algorithm A1 Failure detection.

Input:

DataStream: the stream of the AAL sensors events

Sen: the set of sensors represented by tuples {(id, Health, FailF lag)}, where id is

the sensor's id number, Health is the health status of sensor, and FailF lag is the

failure �ag of sensor

R: the set of rules represented by tuples {(Ant, Conseq, Sup, Conf)}, where Ant

contains the sensors in the rule antescedent, Conseq contains the sensors in the rule

consequent, Sup is the support of rule, and Conf is the rule's con�dence

SatRulHist: the set of rules that were satis�ed in the previous sliding window

SwNum− 1, where SwNum is the sliding window's running number

UnSatRulHist: the set of rules that were unsatis�ed, i.e., has one missing sensor in

the rule consequent, in the previous sliding window SwNum− 1

FutSw: the set of sensors that are active in the next sliding window SwNum+ 1

HealthThresh: the threshold value for the health status of sensors

Output:

Sen: updated Health and FailF lag of the set of sensors

1: while CurrSW = ProcessSW(DataStream) do

2: // CurrSw is the set of active sensors in the current sliding window SwNum

3: for each Rul ∈ R ∧Rul.Ant ⊆ CurrSw do

4: if Rul.Conseq ⊂ CurrSw then

5: Sen.Health← SatisfHealthUpdate(Rul, CurrSw, Sen)

6: SatRulHist← Rul

7: else if |Rul.Conseq − CurrSw| = 1 then

8: if Rul /∈ SatRulHist ∧ |(Rul.Ant ∪Rul.Conseq)− FutSw| 6= φ then

9: if Rul /∈ UnSatRulHist then
10: Sen.Health← UnSatisfHealthUpdate(Rul,CurrSw,Sen)

11: end if

12: UnSatRulHist← Rul

13: end if

14: end if

15: end for

16: for each s ∈ Sen do

17: if s.Health < HealthThresh then

18: s.FailF lag ← 1

19: else

20: s.FailF lag ← 0

21: end if

22: end for

23: end while

101



A Appendix

Algorithm A2 Health Status Update due to Rule Satisfaction.

1: SatisfHealthUpdate {Rul, CurrSw, Sen}

2: for each s ∈ Sen, s.id ∈ (Rul.Ant ∪Rul.Conseq) do
3: PrF ← 1−Rul.Conf // PrF is the probability that the sensor is faulty

4: s.Health← 0.1× (1− PrF ) + 0.9× s.Health
5: end for

6: return Sen.Health

Algorithm A3 Health Status Update due to Rule UnSatisfaction.

1: UnSatisfHealthUpdate {Rul,CurrSw,Sen}

2: for each s ∈ Sen, s.id ∈ Rul.Ant do
3: if |Rul.Conseq| = 1 ∧ |Rul.Ant| = 1 then

4: PrF ← 1− P (s)
5: else

6: PrF ← 1−
P (

⋂
{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq)} x)

P (
⋂

{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq))|x 6=s} x)

7: end if

8: s.Health← 0.1× (1− PrF ) + 0.9× s.Health
9: end for

10: for each s ∈ Sen, s.id ∈ Rul.Conseq do
11: if s.id ∈ CurrSW then

12: PrF ← 1+
Rul.Sup− P (⋂{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq))} x)

P (
⋂

{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq))|x 6=s} x)− P (
⋂

{x∈(Rul.Ant∪Rul.Conseq)|x 6=s} x)

13: else

14: PrF ← Rul.Sup

P (
⋂

{x∈(CurrSW∩(Rul.Ant∪Rul.Conseq))} x)

15: end if

16: s.Health← 0.1× (1− PrF ) + 0.9× s.Health
17: end for

18: return Sen.Health
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