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Abstract

Physically consistent modeling for wireless communication systems takes mutual coupling between
the antenna elements into account at the transmitter and receiver, in contrast to conventionally
modeled systems. In this work, the reciprocity of the channel is analyzed with mutual coupling
taken into account, and a fair comparison with the performance when mutual coupling is neglected
is presented. Furthermore, the mutual reactance of hypothetical isotropic radiators is derived and
its impact on the performance is analyzed. The analysis is extended to antenna arrays with a small
mutual reactance. Then the transmit and receive antenna array gain of uniform linear, circular and
rectangular arrays is studied for various antenna separations and numbers of antennas. Thereby
guidelines on how to shape antenna arrays optimally are derived.
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1. Introduction

Antenna arrays at the base station and at the mobiles are an integral feature of the current cellular
wireless standard, which is the so-called fifth generation (5G). 5G new radio (NR) was first released
in 2018 (Release 15) [1]. The second release, Release 16, was published in 2020 and further
development of 5G is ongoing [2]. In addition, research for the future sixth generation (6G) cellular
wireless standard has already started, see e.g. [3]. A first release of 6G is expected towards the end
of the 2020s or beginning of the 2030s.

One of the key features of 5G NR is the support for a larger number of antennas at the base
stations and mobiles, and a better support for exploiting these antennas. Multiple antennas allow
for beamforming at the transmitter and at the receiver of as many different signals as there are
antennas. Beamforming of narrowband signals works by adjusting their phase and amplitude such
that there is constructive and destructive interference in the desired directions of the electromagnetic
field radiated and received by the individual antennas. This concept is also called multiple-input
multiple-output (MIMO). A larger number of antennas can increase the achievable gain, i.e., it
allows for a larger signal-to-noise ratio (SNR) at the same transmit power, a lower bit error ratio
by exploiting diversity, or to serve more mobiles or streams to each mobile at the same time using
spatial multiplexing.

Massive MIMO, i.e., a large number of antennas, is an important building block of future wireless
systems. Indeed, the seminal paper [4] that introduced massive MIMO is based on the assumption
that there is an unlimited number of base station antennas. In industry and academia, there are
different notions of how many antennas a multi-antenna base station needs to have to be considered
Massive MIMO: In the 3rd Generation Partnership Project (3GPP), the standardization body behind
GSM (Global System for Mobile Communications), UMTS (Universal Mobile Telecommunications
System), LTE (Long Term Evolution) and 5G, a Massive MIMO base station is considered to have
more than 8 adjustable antennas [5, Ch. 1], whereas in academia, typically hundreds of antennas are
assumed.

With the ongoing evolution of 5G and the introduction of 6G, a further increase in the number
of antennas is expected. Increasing the number of antennas at the base station and at the mobiles is
challenging, because the available area is limited. It is especially challenging at lower frequencies
(below 1GHz), because the dimensions of the area normalized by the wavelength are important.
Typical antenna separations are λ/2 to 0.7λ [5, Ch. 6], which correspond to about 15 cm to 21 cm at
1GHz for example, but smaller antenna separations are needed to increase the number of antennas
even further. As the distance decreases, mutual coupling between the antennas increases. Mutual
coupling means that if an antenna in the array is excited by a current, a voltage is induced in the other
antennas. Typically, mutual coupling refers to the mutual coupling between the antennas in the same
array, which is not considered in conventionally modeled systems. There is also inter-array mutual
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coupling, which is what enables wireless communications and is considered to be the channel in
conventionally modeled systems.

Mutual coupling influences the radiated power when transmitting and the noise correlations
between the antennas when receiving. For a large number of antennas and a small distance between
them, it is important to model this correctly using physically consistent modeling. Note that mutual
coupling can lead to a superior performance when it is taken into account correctly using physi-
cally consistent modeling. Physically consistent modeling based on circuit theory was introduced
independently by Wallace and Jensen [6] and by Waldschmidt, Schulteis and Wiesbeck [7] in 2004.
This modeling has been developed further in the following years. This development includes the
multiport communication theory model [8, 9], which this thesis is based on.

Circuit theory is well suited, because the quantities of the antenna arrays that are important for
wireless communications, namely impedance parameters (or equivalently scattering patterns, or any
other equivalent description) and radiation patterns, can be computed using an electromagnetic field
solver or can be measured. In addition, circuit theory is well suited, because it allows to correctly
compute transmit power based on voltages and currents, and because it is attractive for modeling the
noise from various noise sources [8]. The communication system can be analyzed based on these
parameters. In particular, the physical channel can be represented by an impedance matrix.

In much of the information theory and MIMO wireless communications literature, a higher level
of abstraction is used, where transmit and receive signals are normalized and unit-less quantities,
whose squared norms are assumed to be proportional to transmit or receive power. Multiport
communication theory [8, 9] introduces a systematic mapping to the information-theoretic domain
that ensures the proportionality and assigns a unit to the transmit and receive signals. This is
explained in more detail in Chapter 2, where the background on physically consistent modeling
based on Multiport Communication Theory is reviewed.

An essential aspect in the implementation of communication systems with antenna arrays, where
mutual coupling is non-negligible, are decoupling and impedance matching networks (DMNs).
DMNs are used to connect power amplifiers and antennas when transmitting and low noise amplifiers
and antennas when receiving. They present uncoupled ports to the amplifiers, which are matched to
their impedance. However, in massive MIMO systems, they could be almost impossible to implement.
In this thesis, we use a simple physically consistent model based on Multiport Communication
Theory, where simple means that we omit the theoretically lossless DMNs and directly connect the
amplifiers to the antennas. We assume that we have a flat fading channel by assuming that the fading
is flat within a narrowband (group of) subcarrier(s) of a multicarrier system, which is the standard
assumption in most of the MIMO literature. On each subcarrier in a system with N transmit and M
receive antennas, the antennas and the physical channel can be represented by a linear N +M port.
The simple physically consistent circuit model is presented in Chapter 2, as well as the properties of
infinitely thin but perfectly conducting λ/2-dipoles. In addition, the mutual impedance between them
is derived when they are oriented arbitrarily, which is used to compute the impedance matrices of
uniform rectangular arrays with dual-polarized crossed λ/2-dipoles. In many numerical simulations,
we use infinitely thin but perfectly conducting λ/2-dipoles, because there are analytic expressions
for their self-impedance and the mutual impedance between them, as well as for its radiation pattern,
and because they are more realistic than hypothetical isotropic radiators.

So far, only a one-way link between a transmitter and a receiver has been studied, but for a
practical communication system, the relation between uplink and downlink is important, especially
in Time Division Duplex (TDD) systems, which transmit and receive at the same frequency, but
not at the same time. In Chapter 3, we study the reciprocity of the information-theoretic uplink
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and downlink channel and establish that they are linked to each other by a physically consistent
reciprocity relation, even if the transmit and receive chains are reciprocal. Then, we make a fair
comparison of capacity and achievable rates when mutual coupling is neglected and when multiport
communication theory is used naively. We consider independent and identically distributed (i.i.d.)
channels and more realistic channels based on a 3D channel model from QuaDRiGa [10, 11], which
implements the 3GPP technical specification (TS) 38.901 channel model [12], which is also used in
standardization. Numerical results for various scenarios with a single and with several users having
one or more antennas are presented. Uniform circular arrays are used, because they simplify the
analysis, as their gain is independent of the azimuth angle for an odd number of antennas. The
approach presented however, is not limited to these types of channels, antennas or antennas arrays.

In Chapter 4, we consider the essential question: what is the mutual reactance of hypothetical
isotropic radiators? Hypothetical isotropic radiators are a common type of antenna element in the
signal processing and wireless communications literature, because an isotropic radiation pattern
simplifies the analysis, albeit isotropic radiators do not exist. Their mutual resistance is well known,
but their mutual reactance was an open question. We derive their mutual reactance based on passivity.
Furthermore, we analyze the impact of ignoring the mutual reactance in uniform linear and circular
arrays (ULAs and UCAs) on achievable rates, when the mutual resistance in the arrays is zero.
ULAs are a common kind of antenna array in the signal processing and wireless communications
literature. In ULAs with hypothetical isotropic radiators, the mutual resistance vanishes for an
antenna separation of λ/2. We further extend this analysis to antenna arrays with more realistic
antenna elements, λ/2-dipoles, which have a small mutual resistance at λ/2 antenna separation, in
addition to their mutual reactance.

In Chapter 5, we consider how the transmit and receive (antenna) array gains behave as the
number of antennas is increased to an extremely large number for varying antenna separations and
array sizes. Array gain is defined as the ratio of SNRs between a system with many antennas and a
system with a single antenna. This chapter extends the analysis of [13], which considers the transmit
array gain in a UCA with fixed radius and shows that the minimum energy per bit saturates when
the number of antennas in increased. Considering receive array gain is important, because the noise
coupling at the receiver caused by mutual coupling leads to different results than for the transmit
array gain. Conventional modeling assumes that the array gain grows linearly with the number of
antennas regardless of the number of antennas, but this is unreasonable, because the achievable
array gain within a certain array size is limited, when then antennas are lossy. To obtain reasonable
results, we introduce small losses in the antennas by adding a resistance in series with the antennas,
which model the losses that are caused by the finite conductance of the conductors the antennas are
made of, among others. Losses in the antennas limit super-gain in the antenna array, even if they are
small [14]. Super-gain here means that an array gain is larger than the number of antennas in the
array, whereas in conventional modeling, the array gain is bounded by the number of antennas. It
can lead to a superior system performance and occurs when a wave with a wavenumber larger than
2π/λ is excited, but this means that the wavenumber becomes complex. A complex wavenumber
means that the wave has an evanescent part, and this evanescent part stores energy similar to a
reactance [15, Sec. IV-B], [16]. The analysis is extended to uniform rectangular arrays (URAs)
with dual-polarized antennas, which is the most common array type at the base station in today’s
cellular systems. To obtain more realistic results, arrays consisting of dual-polarized infinitely thin
λ/2-dipoles are considered. As the radiation patterns of the antennas in such an array vary between
the antennas, gain instead of array gain needs to be considered.
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One of the contributions of this thesis is also to make some ideas that might be known in the
antennas and propagation community accessible to the communications and signal processing
community.
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2. Physically Consistent Modeling

Physically consistent modeling deals with how to model a wireless communication system with
multiple antennas in a physically consistent way. Consider a transmitter with N antennas and a
receiver with M antennas that communicate with each other over a frequency-flat channel with
additive noise. The typical conventional model is [17, Ch. 1]

y = Hx+ ϑ, (2.1)

where y ∈ CM is related to the signal at the output of the analog-to-digital converters (ADCs),
H ∈ CM×N is the channel matrix, x ∈ CN is related to the signal at the input of the digital-to-
analog converters (DACs) and ϑ ∈ CM is additive noise. It is assumed that the transmit power
PT is E[∥x∥22]. In order to compute the physical power however, a conjugated pair of vectors is
needed [18], e.g., voltage and current.

The physically consistent modeling used in this dissertation is based on circuit theory. In particular
the so-called Multiport Communication Theory [8, 9] is employed, which shows how to encode
voltages and currents into x,H and y such that the transmit power PT is really E[∥x∥22], and such
that the noise ϑ is modeled in a physically consistent way. Circuit theory is attractive for modeling the
noise from various noise sources [8]. This theory is in turn based on a circuit-theoretical description
using impedance matrices and provides a way to model the system consistently with physics. The
circuit model can equivalently be described using scattering matrices, similar to the models [6, 7],
which to the authors’ best knowledge were the first to take into account that mutual coupling changes
the transmit power. The model in [6] was later extended by a detailed amplifier noise model [19].
Two similar noise models that contain both antenna and amplifier noise are introduced in [8, 9],
and [20]. The key contributions of [8] and [9] are that they merge the circuit model and the noise
model, and that they introduce a systematic mapping from the circuit-based models to the usual
information-theoretic model.

Fig. 2.1 shows a circuit diagram of the communication system. Going from left to right, it shows
the signal generation, the transmit impedance matching, the antennas and their interaction through
mutual coupling, the extrinsic noise sources, the receive impedance matching, and the noisy receive
chains/amplifiers [8].

This chapter is organized as follows: the following section goes into various matching strategies
for the matching networks and Section 2.2 gives an overview of a simple model without DMNs
using Multiport Communication theory. Section 2.3 gives an overview of the common uniform
arrays considered in this thesis, and Section 2.4 gives an overview on infinitely thin but perfectly
conducting λ/2-dipoles. Section 2.5 shows how to compute the mutual impedance of infinitely thin
but perfectly conducting dipoles with arbitrary rotation, Section 2.6 discusses the infinitely thin but



6 2. Physically Consistent Modeling

i4
,1

Z
G

u
G
,1

u
4
,1

i1
,1

u
1
,1

i2
,1

u
A
,1

u
2
,1

i3
,1

u
N
,1

Z
L

u
L
,1

iN
,1

u
3
,1

i4
,N

Z
G

u
G
,N

u
4
,N

i1
,N

u
1
,N

i2
,M

u
A
,M

u
2
,M

i3
,M

u
N
,M

Z
L

u
L
,M

iN
,M

u
3
,M

Z
Z

M
R

Z
M
T

B
ase

Station
M

obiles

Fig.2.1.
Circuitm

odelw
ith

D
M

N
s.



2.1 Matching Strategies 7

perfectly conducting dipoles that are parallel to a reflector, Section 2.7 presents an antenna array
simulated in CST Studio Suite and Section 2.8 provides a conclusion. A large part of Section 2.2 has
been published in [21] (©IEEE 2019), and part of Section 2.4 was presented at the 21st International
ITG Workshop on Smart Antennas (WSA 2017) [22]. Furthermore, a large part of Section 2.5 was
presented at the 24th International ITG Workshop on Smart Antennas (WSA 2020) [23].

2.1 Matching Strategies

The DMNs at the transmitter and at the receiver can be described by the linear multi-ports ZMT and
ZMR using the impedance matrix description, or equivalently the S-parameter description, or any
other. Commonly, it is assumed that the DMN is lossless and reciprocal, because an ideal DMN
does not dissipate any power. Reciprocity is desirable, as any lossless reciprocal multi-port can be
realized as a Π-network with only inductances and capacitances, see [24]. This means that no active
elements are needed. For a given impedance matrix, there are various possibilities to realize them:
Π-networks or T-networks can be used for example.

There are various matching strategies for wireless transmitters and receivers. The well-known
power matching strategy maximizes the real power flowing from a source with given internal
impedance into a load whose input impedance is optimized. Noise matching, which has been known
at least since [25], maximizes the SNR. In this dissertation we consider front-ends that are uncoupled,
uncorrelated and identical. Noise matching was extended to multi-ports by Warnick and Jensen [26],
where it was shown that the DMN that maximizes SNR for arbitrary signals decouples the antenna
array and applies noise matching at each output port. Domizioli and Hughes [27] have further shown
that such a DMN also maximizes capacity in various point-to-point MIMO additive white Gaussian
noise (AWGN) channels.

In general, the number of elements needed to realize a DMN with a generalized Π-network for an
N element array is at least N2 +N , see [24]. This is not feasible to implement for large N , because
the losses increase with the number of elements and because of the rapidly increasing number of
connections between the elements needed.

A two-port matching at the receiver that optimizes the average noise temperature has been
studied in [28], and one that maximizes the sum-rates of a MU-SIMO system when there is only
noise from the LNAs has been studied in [29, 30]. The optimization of two-port matching at the
transmitter, when the available power at the generators is fixed for example, is still an open problem
to the author’s best knowledge.

A suboptimal broadband transmitter without matching is considered in [31, 32], and compared
to a system with DMNs for power matching at the transmitter and noise matching at the receiver.
The DMNs are designed at the center frequency. The frequency is swept and the ergodic capacities
in an i.i.d. channel for a single frequency are compared. It is shown that depending on how far away
the frequency is from the center frequency, capacity can be larger in the system without matching
for the same available power, because the DMNs have a limited bandwidth. In [32], it is shown how
the DMNs are designed, the comparison is extended to multiple users, and various quality factors of
the elements comprising the DMNs are considered. In addition, results are shown for the capacity
of the entire channel for various bandwidths.

The practical realization of DMNs has been considered for a long time. In [33, Ch. 3], [34], the
synthesis and realization of DMNs for symmetric three ports is considered, in particular for a 3
element UCA consisting of monopoles on a ground plane.
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2.2 Multiport Communication Theory
This section provides on overview of Multiport Communication Theory. It introduces a simple circuit
model, and then details a mapping from the circuit-theoretic model to the information-theoretic
model.

2.2.1 Circuit-Theoretic Model
We focus on a simple circuit model (Fig. 2.2) for the fading channel by assuming that the fading
is flat within a narrowband (group of) subcarrier(s) of a multicarrier system1, similar to the ones
in [8], [9, Fig. 9] and [13, 35], where simple means that as in [13, 35], we omit the lossless DMNs,
because in massive MIMO systems, they could be almost impossible to implement. But as in [8, 9]
and [13], we also consider the thermal noise of the antennas.

The signal generation at the transmitter is modeled as a linear voltage source uG,n with internal
impedance ZG per antenna. The antennas are assumed to be lossless [9] and their coupling and the
physical channel are modeled jointly by an impedance matrix Z. At the receivers, each hardware
chain is modeled by an impedance ZL and several noise sources, which we will come back to later.

Let there be in total N antennas at the transmitter(s) and M at the receiver(s). As anten-
nas and the physical channel are reciprocal [36], the system described by the impedance matrix
Z ∈ C(N+M)×(N+M) · Ω is symmetric, i.e.,

Z = ZT . (2.2)

It is partitioned into four blocks [8]: the transmit and receive impedance matrices Z11 ∈ CN×N · Ω
and Z22 ∈ CM×M · Ω, and the mutual impedance matrices Z21 ∈ CM×N · Ω and Z12 ∈ CN×M · Ω
such that [

u1

u2

]
=

[
Z11 Z12

Z21 Z22

]
  

Z

[
i1
i2

]
, (2.3)

where u1 ∈ CN · V, i1 ∈ CN · A,u2 ∈ CM · V, i2 ∈ CM · A are the port voltages and currents at
the transmitter and receiver side [8] (see Fig. 2.2). All voltages and currents in this paper are rms
values of complex envelopes.

Let us consider the relation between the generator and load voltages uG ∈ CN · V and
uL ∈ CM · V. Compared to [8], the relation between voltages and currents at the generator side
simplifies to

uG = u1 + ZGi1. (2.4)
Using the unilateral approximation ∥Z12∥F ≪ ∥Z11∥F [8], whereby we assume that the attenuation
of the channel is so high that the currents in the antennas at the receivers do not influence the
transmitter, we have [8]

u1 = Z11i1. (2.5)
According to the superposition theorem,

uL = uL|nf  
noise-free

+ uL|sf
signal-free

= uL|nf +
√

RLη, RL := Re(ZL), (2.6)

where η describes the noise, see also (2.14). The excitation in the noise-free case is caused by uG,
1This is the standard assumption in most of the MIMO literature.
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uN,m

iN,m

ZLNA

LNA

ZRF

ZL

Fig. 2.3. Equivalent circuit of the LNA.

and in the signal-free case by the noise sources. We use the same noise model as in [9], which
distinguishes between the extrinsic noise uA ∈ CM · V produced by the antennas in thermal
equilibrium, and the intrinsic noise, which stems mainly from the LNAs (but also from other
components) [8], which can be jointly modeled as noisy two-ports. There is an equivalent model [25]
for each of the noisy two-ports consisting of a noiseless two-port with a voltage and a current noise
source, uN,m, iN,m, at its input, which model the intrinsic noise. Its output port is connected to the
next component in the radio frequency (RF) chain, whose input impedance is modeled by a load
ZRF, see Fig. 2.3. The SNR at the input and the output of the noiseless two-port is the same and
thus it is sufficient to only consider the input port in the model [9]. Based on this model,

ZL = ZLNA,11 −
ZLNA,12ZLNA,21

ZLNA,22 + ZRF

. (2.7)

The noise distributions are modeled as [8]

uA ∼ NC(0V,RA), RA = 4kBTA∆f Re(Z22), (2.8)
uN ∼ NC(0V, σ

2
uI), iN ∼ NC(0A, σ

2
i I)

for some σu > 0V, σi > 0A, where kB is the Boltzmann constant, ∆f is the noise bandwidth and
TA is the noise temperature of the antennas. In the noise-free case,

uL|nf = u2|nf = Z21i1 +Z22i2|nf = −ZLi2|nf . (2.9)
Combining (2.4), (2.5) and (2.9) leads to

uL|nf = DuG, D = ZL(Z22 + ZLI)
−1Z21(Z11 + ZGI)

−1. (2.10)

In the signal-free case, the intrinsic noise sources uN and iN are assumed to be uncorrelated with
the extrinsic noise uA. uN,m and iN,m are correlated with the correlation coefficient [8]

ρ =
E[uN,mi

∗
N,m]

σuσi

∀m. (2.11)

Consider the following two equations that follow from Kirchhoff’s voltage and current law:

−uA + uN + uL|sf = Z22i2|sf , (2.12)
i2|sf = iN − Z−1

L uL|sf . (2.13)

Eliminating i2|sf and solving for uL|sf gives the relation between η and the noise sources

η =
uL|sf√
RL

=
ZL√
RL

(Z22 + ZLI)
−1(uA − uN +Z22iN). (2.14)
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x
√
RGB−H/2 D +

√
RLη

σϑ√
RL

R
−1/2
η y

uG uL

Physical
Model

H
ϑ

Fig. 2.4. System model showing the relation between the physical and the information-theoretic model [21].
(©IEEE 2020)

Together with (2.8) and (2.11), the noise covariance matrix can be computed as

Rη = E[ηηH ] =
|ZL|2
RL

(Z22 + ZLI)
−1Q(Z22 + ZLI)

−H ,

Q = σ2
uI + σ2

iZ22Z
∗
22 − 2σuσi Re(ρ

∗Z22) +RA.

(2.15)

The transmit power in the physical model can be computed as

PT = E[Re(iH1 u1)] =
E[uH

GBuG]

RG

, RG := Re(ZG),

B = RG(Z11 + ZGI)
−H Re(Z11)(Z11 + ZGI)

−1,

(2.16)

where we have used (2.4) and where B is the so-called power-coupling matrix [8]. Then the complete
physical model is

uL = DuG +
√

RLη, η ∼ NC(0
√
W,Rη), PT =

E[uH
GBuG]

RG

. (2.17)

2.2.2 Information-Theoretic Model

Consider the typical information-theoretic model (e.g., [17, Ch. 1])

y = Hx+ ϑ, ϑ ∼ NC(0
√
W, σ2

ϑI), σϑ > 0
√
W, PT = E[xHx], (2.18)

which allows existing techniques and results for capacity and achievable rates to be easily drawn
on. In order to get a physically consistent information-theoretic model, we need to ensure that the
transmit power PT and the noise covariance are consistent with the physical model (2.17). This can
be achieved by a linear mapping from uG and uL to x and y,

x =
1√
RG

BH/2uG, s.t. B = B1/2BH/2, (2.19)

y =
σϑ√
RL

R−1/2
η uL, s.t. Rη = R1/2

η RH/2
η , (2.20)

as shown in [8,9] and leads to the system model shown in Fig. 2.4. Throughout the paper, we assume
that matrix square roots in general fulfill a condition similar to (2.19). The expressions are not
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d

Fig. 2.5. ULA with N = 5.

exactly the same as in [8, 9], because B1/2 is not unique and in these two papers, only B1/2 that are
Hermitian are considered. We choose

B1/2 =
√

RG(Z11 + ZGI)
−H Re(Z11)

1/2 s.t. Re(Z11) = Re(Z11)
1/2Re(Z11)

1/2, (2.21)

R1/2
η =

ZL√
RL

(Z22 + ZLI)
−1Q1/2. (2.22)

This leads to the information-theoretic channel

H = σϑ

√
RG√
RL

R−1/2
η DB−H/2 = σϑQ

−1/2Z21Re(Z11)
−1/2, (2.23)

which captures the physical context [8,9]. σϑ is an arbitrary scaling, but to ensure that the sum noise
powers in the physical and information-theoretic models are the same, i.e.,

E[ϑHϑ] = E[ηHη] (2.24)

holds, let
σ2
ϑ =

tr(Rη)

M
. (2.25)

2.2.3 Neglecting the Mutual Coupling
There are three matrices that characterize the information-theoretic channel H , namely B, D and
Rη. The matrix D can be estimated with the help of pilot symbols. Independent of whether the
mutual coupling is neglected or not, the estimate related to perfect CSI knowledge is always the
same D. It is the only matrix of the three that is time-variant due to user mobility. The other two are
time-invariant. B is a function of ZG and Z11 – or equivalently the scattering parameters – which
can be determined by off-line modeling, simulation or measurement of the antenna arrays, including
the front/back end of the RF chains. In many publications, mutual coupling is ignored, meaning that
B and Rη are assumed to be diagonal or scaled identity matrices (see Section 3.3). Acquiring Rη is
further discussed in the following section.

2.3 Common Uniform Antenna Arrays
In this thesis, ULAs, UCAs and URAs are considered. ULAs are very common in the signal
processing and wireless communications literature. A ULA consists of antennas spaced uniformly
on a line, i.e., the position of the n-th antenna is

xn = nd, yn = 0, (2.26)

where d is the antenna separation. For a UCA with N antennas, the antennas are located at

xn = r cos

(
2π

N
n

)
, yn = r sin

(
2π

N
n

)
, n = 0, . . . , N − 1. (2.27)
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d
r

r

Fig. 2.6. UCA with N = 5.

dx
dy

Fig. 2.7. URA with Nx = 6, Ny = 2.

i1

u1

λ/2 = 2l

I0
θ

Fig. 2.8. Infinitely thin but perfectly conducting λ/2-dipole with a sinusoidal current distribution.

The antenna separation d and its radius r are related by

π

N
= sin

(
d

2r

)
. (2.28)

For a URA with Nx antennas in the x-direction and Ny antennas in the y-direction, the position of
the n-th antenna is given by

xn = nxdx, nx = 0, . . . , Nx − 1, (2.29a)
yn = nydy, ny = 0, . . . , Ny − 1. (2.29b)

2.4 Infinitely Thin but Perfectly Conducting λ/2-dipoles
The self-impedance of an infinitely thin but perfectly conducting λ/2-dipole is given by [36, Ch.
13], as well as the mutual impedance between two of these dipoles that are parallel. For this kind of
dipole, the current distribution is commonly approximated to be sinusoidal on the dipole, see Fig. 2.8.
As they are canonical minimum scattering antennas [37, 38], the entries of the impedance matrix Z
of an array of parallel λ/2-dipoles can be computed independently, because they do not influence
each other when they are terminated by an open circuit. This is similar to arrays of λ/4-monopoles
as shown in [13] (which is based on [36, Ch. 13]). The mutual impedance between antennas i and j
situated di,j apart is

Zi,j =
Z0

4π

(
2Ci(2πdi,j/λ)− Ci(ζi,j + π)− Ci(ζi,j − π)

+ j
(
Si(ζi,j + π) + Si(ζi,j − π)− 2 Si(2πdi,j/λ)

))
,
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Fig. 2.9. Radiation pattern of an infinitely thin λ/2-dipole with a radiated power of Prad = 1/2W.

ζi,j = π
√
1 + 4d2i,j/λ

2, Z0 =

√
µ0

ε0
≈ 120πΩ (2.30)

and the impedance of each dipole is

Zλ/2 =
Z0

4π

(
Cin(2π) + j Si(2π)

)
, (2.31)

where Z0 is the impedance of free space, Si,Ci and Cin are the sine and cosine integrals [36, (6-
52)] [39, Ch. 6]

Si(x) =

x∫
0

sin(t)

t
dt, Cin(x) =

x∫
0

1− cos(t)

t
dt,

Ci(x) = γ + ln(x)− Cin(x) = −
∞∫
x

cos(t)

t
dt

(2.32)

and γ is the Euler-Mascheroni constant.
An infinitely thin but perfectly conducting λ/2-dipole that is excited by the current I0 generates

the (field) radiation pattern on a sphere with radius r0 around it given by [36, Section 11.2] (in the
far-field)

Eθ(θ)r0e
jkr0 = jI0

Z0

2π

cos(kl cos(θ))− cos(kl)

sin(θ)
, l = λ/4, (2.33)

where 2l is the length of the dipole, see Figs. 2.8 and 2.9, and k is the angular wavenumber. The
corresponding radiated power is given by

Prad = |I0|2Re(Zλ/2). (2.34)

2.5 Mutual Impedance of Infinitely Thin but Perfectly Conducting Dipoles
with Arbitrary Orientation

As infinitely thin but perfectly conducting dipoles are canonical minimum scattering antennas [37,38],
the mutual impedance matrix can be computed by considering two dipoles at a time.
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r2

r0

0

(x, y, z)

z

Fig. 2.10. Illustration of the integration path to obtain the electric field of the current filament.

Consider a straight sinusoidal current filament on the z-axis extending from z = z1 to z = z2,
with current distribution i(z), which corresponds to the current density

Jf = ezδ(x)δ(y)i(z), (2.35)

where δ(x) is the Dirac delta distribution. The magnetic vector potential Af at the point with position
vector r0 produced by this current density is given by [40, Ch. 4.7]

Af =
Z0

c

z2∫
z1

i(z′)Ψdz′ez, Ψ =
e−jkr

4πr
, r = ∥r∥, r = r0 − z′ez, (2.36)

where ez is the unit vector in z-direction and c is the speed of light. The corresponding electric field
in z-direction, Ef,z, at r0 is given by [36, Ch. 12.7]

Ef,z =
jZ0

4πk

[
i′(z2)

e−jkr2

r2
− i′(z1)

e−jkr1

r1
+ i(z2)

∂e−jkr2

∂zr2
− i(z1)

∂e−jkr1

∂zr1

]
,

r1 = r0 − z1ez, r1 = ∥r1∥2,
r2 = r0 − z2ez, r2 = ∥r2∥2,

(2.37)

where i′(z) is the derivative of i(z). The derivation ofEf,x, Ef,y follows similar steps as the derivation
of Ef,z in [36, Ch. 12.6, 12.7] and [40, Ch. 4.7]. Based on [40, Ch. 4.7], the electric field generated
by Af is

Ef = −jckAf −
jc

k
grad(div(Af)). (2.38)

This means, the x-component Ef,x for a straight current filament on the z-axis is given by

Ef,x =
Z0

jk

z2∫
z1

i(z′)
∂2Ψ

∂x∂z
dz′ =

jZ0

k

z2∫
z1

i(z′)
∂2Ψ

∂x∂z′
dz′, x = r · ex, (2.39)

where the second equality holds because

∂2Ψ

∂x∂z
= − ∂2Ψ

∂x∂z′
. (2.40)
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The integration path is illustrated in Fig. 2.10. Ef,x can be simplified by partial integration,

Ef,x =
jZ0

k

z2∫
z1

i(z′)
∂2Ψ

∂x∂z′
dz′ =

jZ0

k

[
i(z′)

∂Ψ

∂x

]z2
z1

− jZ0

k

z2∫
z1

i′(z′)
∂Ψ

∂x
dz′, (2.41)

where
∂Ψ

∂x
= −Ψx

r2
(1 + jkr). (2.42)

and similarly for Ef,y.
For a dipole of length 2l with a center gap of length 2lg, there is one current filament on the

z-axis for each of both arms, i.e., Ex of such a dipole can be obtained by superposition of the fields
of both arms, i.e.,

Ex = Ef,x|z2=l
z1=lg

+ Ef,x|z2=−lg
z1=−l (2.43)

and similarly for Ey and Ez. Consider the sinusoidal current distribution on the dipole and its
derivative given by

i(z) =

{
I0 sin(k(l − |z|)) lg ≤ |z| ≤ l,

0 else,
(2.44)

i′(z) =
di(z)

dz
=

⎧⎪⎨⎪⎩
−kI0 cos(k(l − |z|)) lg ≤ z ≤ l,

kI0 cos(k(l − |z|)) −l ≤ z ≤ −lg,

0 else,

(2.45)

similar to the distribution on a dipole without center gap [36, Ch. 13.2], because the current is
distributed sinusoidally on infinitely thin conductors and is zero at the open ends of the dipole.

For Ex, Ey, the first summand in (2.41) contributes

jZ0

k

(
i(l)

∂Ψ

∂x
(l)− i(lg)

∂Ψ

∂x
(lg) + i(−lg)

∂Ψ

∂x
(−lg)− i(−l)

∂Ψ

∂x
(−l)

)
= 0, (2.46)

as i(l) = i(−l) = 0, i(lg) = i(−lg) and ∂Ψ
∂x
(lg) =

∂Ψ
∂x
(−lg). When we plug the remaining second

summand of (2.41) into (2.43), as well as (2.42) and (2.45),

Ex =− jZ0

4π
I0

l∫
lg

cos(k(l − z′))
e−jkrx

r3
(1 + jkr)dz′

+
jZ0

4π
I0

−lg∫
−l

cos(k(l + z′))
e−jkrx

r3
(1 + jkr)dz′.

(2.47)

Ey can be obtained in a similar way. Ez can be obtained in a similar way as in [36, Ch. 12.7].

Ez =
jZ0

4πk

[
i′(l)

e−jkr2

r2
− i′(lg)

e−jkr2g

r2g
− i(lg)

∂

∂z

e−jkr2g

r2g

+ i′(−lg)
e−jkr1g

r1g
− i′(−l)

e−jkr1

r1
+ i(−lg)

∂

∂z

e−jkr1g

r1g

] (2.48)
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as i(l) = i(−l) = 0. After plugging in (2.44) and (2.45), we obtain

Ez =
jZ0

4π
I0

[
− e−jkr2

r2
− e−jkr1

r1
+ cos(k(l − lg))

(
e−jkr2g

r2g
+

e−jkr1g

r1g

)
+ sin(k(l − lg))

(
e−jkr2g

r32g

1 + jkr2g
k

(z + lg)−
e−jkr1g

r31g

1 + jkr1g
k

(z − lg)

)]
.

(2.49)

For a dipole with infinitely small center gap, i.e., lg = 0, (2.49) can be simplified to [36, Ch. 13.2]

Ez =
jZ0

4π
I0

[
2 cos(kl)

(
e−jkr2g

r2g

)
− e−jkr2

r2
− e−jkr1

r1

]
, r2g = r1g for lg = 0. (2.50)

Consider the mutual impedance between a dipole and another dipole centered around p0. It can
be computed as [36, Ch. 12.4]

Z21 = −

−lg∫
−l

E1(s) · t2 i2(s)ds+
l∫

lg

E1(s) · t2 i2(s)ds

I0,1I0,2 sin
2(k(l − lg))

(2.51)

due to reciprocity, where E1 is the electric field produced by the first dipole when it is excited by
I0,1 sin(k(l − lg)), i2(s) = i(s)|I0=I0,2 is the current distribution on the second dipole when it is
excited by I0,2 sin(k(l− lg)) and t2 is a tangent vector of the second dipole with unit length. For the
integration, r0 and x need to be parameterized by s:

r0 = p0 + st2, x = p0,x + st2,x. (2.52)

In order to compute Z21 as shown, for the tangent vector of the dipole excited, t1 = ez has to hold.
For scenarios, where this is not the case, t1, t2 and r0 can be rotated. Consider the unit vector

u =
t1 × ez

∥t1 × ez∥2
=

1√
t21,x + t21,y

(t1,yex − t1,xey). (2.53)

t1 is mapped to ez by a rotation around u by α ∈ [0, π], where

cos(α) = t1 · ez = t1,z, sin(α) =
√

1− t21,z. (2.54)

The rotation matrix for this rotation is given by [41, 42]

R =

⎡⎢⎢⎢⎢⎢⎣
t1,zt

2
1,x + t21,y

t21,x + t21,y

t1,xt1,y(t1,z − 1)

t21,x + t21,y
−t1,x

t1,xt1,y(t1,z − 1)

t21,x + t21,y

t21,x + t1,zt
2
1,y

t21,x + t21,y
−t1,y

t1,x t1,y t1,z

⎤⎥⎥⎥⎥⎥⎦ . (2.55)

Then Z21 can be computed using Rt1,Rt2 and Rr0 in place of t1, t2 and r0.
If both dipoles lie in the xz-plane (Fig. 2.11) – possibly after a rotation – t2 can be written as

t2 =

⎡⎣− sin(θ1 + θ2)
0

− cos(θ1 + θ2)

⎤⎦ . (2.56)
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z = l
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t1 = ez
0

p0

θ1

t2θ2x

z

Fig. 2.11. Two dipoles in the xz-plane (based on [23]).

2.6 Dipole in Front of a Reflector
Consider a dipole that is in front of a perfect reflector, and parallel to it. We analyze the scenario by
replacing the reflector with an image dipole on the other side of the reflector, which is excited by
the same current but with opposite sign. Let Eθ,1 be the electric field component of the dipole in
θ-direction and Eθ,2 that of the image dipole. Let

Eθ = Eθ,1 + Eθ,2. (2.57)

The electric field for each dipole is given according to (2.33). The total (field) radiation pattern is
given by

Eθ =
jZ0I0

2π sin(θ)

[(
cos(kl cos(θ))− cos(kl)

)e−jkr0

r0

−
(
cos(kl cos(θ))− cos(kl)

)e−jkr02

r02

]
,

(2.58)

where θ, φ are the zenith and azimuth angles in the usual spherical coordinate system and I0 is the
current amplitude of the sine describing the current distribution on the dipole, see (2.44).

In the far-field, we assume that r0 ≈ r02 and r0− r02 ≈ 2d sin(θ) cos(φ), where d is the distance
between the dipole and the reflector. Using these assumptions, we can simplify

Eθ =
jZ0I0

2πr0 sin(θ)

(
cos(kl cos(θ))− cos(kl)

)
e−jkr0

(
1− e2jkd sin(θ) cos(φ)

)
. (2.59)

The corresponding radiation density is

Φ =
|Eθr0|2
Z0

=
Z0I

2
0

4π2 sin2(θ)

(
cos(kl cos(θ))− cos(kl)

)2|1− e2jkd sin(θ) cos(φ)|2

=
Z0I

2
0

4π2 sin2(θ)

(
cos(kl cos(θ))− cos(kl)

)2
2
(
1− cos(2kd sin(θ) cos(φ))

)
.

(2.60)

The impedance matrix consisting of N dipoles in front of a reflector Z can be obtained from the
impedance matrix of the antenna array consisting of the dipoles and the image dipoles Ztot, which
can be partitioned into 4 blocks of dimension N ×N ,

Ztot =

[
Zorig Zmutual

ZT
mutual Zorig

]
, (2.61)
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Fig. 2.12. Numbering of the antennas of the URA simulated in CST Studio Suite.

where Zorig corresponds to the impedance matrix of the original dipoles and that of the image
dipoles, and Zmutual corresponds to the mutual impedance matrix between the original and the
image dipoles. According to [36, Section 13.5], Z = Zorig −Zmutual.

2.7 Antenna Array in CST Studio Suite

In order to evaluate how well our results with infinitely thin dipoles predict how a system with an
antenna array consisting of dipoles with a finite thickness behaves, Prof. Thomas Eibert from the
Department of Electrical and Computer Engineering, Technical University of Munich conducted a
simulation of a 10×10 URA with dual-polarized crossed flat dipoles in CST Studio Suite 2021 using
the integral equation solver that provided us with a scattering matrix and the radiation patterns of
the antennas at a single frequency, i.e., Ny = 10, Nz = 10. Table 2.1 gives the important parameters
of the array.

Dipoles with a finite thickness are not canonical minimum scattering antennas. Their isolated
radiation patterns are different from their embedded radiation patterns, i.e., their radiation patterns
when they are part of the array. Furthermore the embedded radiation pattern can vary depending
on the position of the antenna element in the array. The radiation patterns with terminated ports
were obtained in CST Studio Suite and the radiation patterns with open ports were calculated based
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Fig. 2.13. Radiation pattern of a λ/2-dipole in front of a reflector with distance of about 0.4667λ and an
excitation of P0 = 1/2W.
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Fig. 2.14. Radiation pattern with open ports of dipole 101 in the CST Studio Suite array at 2.9GHz in the
polarization orthogonal to the dipole with an excitation of P0 = 1/2W.

on them according to [43]. Figs. 2.14 and 2.15 show the radiation pattern with open ports in ±45◦

polarization for dipole number 101 at 2.9GHz, see Fig. 2.12 for the numbering of the antenna
elements. At this frequency, the dipoles are on average 48.25mm ≈ 0.4667λ in front of a reflector
and a corresponding infinitely thin but perfectly conducting λ/2-dipole’s radiation pattern in −45◦

polarization is shown in Fig. 2.13, and its pattern in +45◦ polarization is zero, i.e., r0|E+45◦| = 0V.
There are similarities between these radiation patterns and those of the CST Studio Suite dipole
number 101, but there are also differences: the −45◦ polarization radiation pattern is not exactly
zero, and there is some radiation into the area behind the reflector in CST Studio Suite.

Regarding the impedance matrices, consider their distance using the metric between their real
parts normalized to their self-impedance. We consider only the real part, because the channel H in
(2.23) is independent of its imaginary part. We further normalize to their self-impedance, because
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Fig. 2.15. Radiation pattern with open ports of dipole 101 in the CST Studio Suite array at 2.9GHz in the
polarization parallel to the dipole with an excitation of P0 = 1/2W.

Table 2.1. Important parameters of the CST Studio Suite array
Parameter Value
Center frequency 2.9GHz

Element spacing 6 cm

Dipole length 5 cm

Distance to reflector 4.8 cm for one polarization and
4.85 cm for the other one

Flat dipole width 0.6738mm

Reflector dimensions 65 cm× 65 cm

Grid for the radiation pattern φ = 0,
π

60
,
2π

60
, . . . , 2π, θ = 0,

π

60
,
2π

60
, . . . , π

the antenna elements in the CST Studio Suite array and the infinitely thin but perfectly conducting
λ/2-dipoles have different self-impedances, i.e., we compare

ACST = diag

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
√
Re(ZCST,1,1)

−1√
Re(ZCST,2,2)

−1

...√
Re(ZCST,M,M)

−1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠Re(ZCST) diag

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
√
Re(ZCST,1,1)

−1√
Re(ZCST,2,2)

−1

...√
Re(ZCST,M,M)

−1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ (2.62)

with the matrix corresponding to the array with infinitely thin but perfectly conducting dipoles A. In
the latter array, the distance to the reflector is 4.825 cm for all dipoles, and the reflector is infinitely
large.
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Table 2.2. Geodesic distances between the normalized real parts of the impedance matrices of the antenna
array simulated in CST Studio Suite and of the antenna array with infinitely thin but perfectly conducting
dipoles, and to the identity matrix

Frequency δ2(ACST + γI,A+ γI) δ2(ACST+γI, (1+γ)I) δ2(A+ γI, (1 + γ)I)

2.9GHz 22.6 19.2 17.0

Table 2.3. Distances based on the Frobenius norm between the normalized real parts of the impedance
matrices of the antenna array simulated in CST Studio Suite and of the antenna array with infinitely thin but
perfectly conducting dipoles, and to the identity matrix

Frequency dF(ACST,A) dF(ACST, I) dF(A, I)

2.9GHz 20.9 14.7 13.8

Table 2.4. Distances based on the spectral norm between the normalized real parts of the impedance matrices
of the antenna array simulated in CST Studio Suite and of the antenna array with infinitely thin but perfectly
conducting dipoles, and to the identity matrix

Frequency d2(ACST,A) d2(ACST, I) d2(A, I)

2.9GHz 4.24 3.30 3.35

For positive definite matrices A,B, we can use the geodesic distance [44]

δ2(A,B) =

√ N∑
n=1

ln2(λn(A−1B)), (2.63)

where λn(A
−1B) denotes the n-th eigenvalue of A−1B. A is positive definite, but ACST is only

positive semidefinite. For a comparison using the geodesic distance, we introduce losses in the
antennas by adding a series resistance at each port, which is given by γ Re(ZCST,m,m) at the m-th
port, see also Section 5.2. This corresponds to ACST + γI and A+ γI , which are positive definite.
In addition, we consider the metric induced by the Frobenius norm dF(A,B) = ∥A−B∥F, and
that induced by the spectral norm d2(A,B) = ∥A−B∥2.

The distances between ACST and A, as well as the distance to the identity matrix I , which is
also a positive definite matrix, and corresponds to an antenna array without mutual coupling, are
given in Tables 2.2, 2.3 and 2.4, where γ = 10−3 was chosen. If the results with infinitely thin
dipoles predict the behavior of a system with dipoles of finite thickness well, the distance between
ACST and A should be much smaller than that between ACST and I . Unfortunately, the distances
between ACST and A are larger than the corresponding distances to I . Although the simulation
gave results that are slightly inconsistent with a passive system due to numerical inaccuracies, as
discussed in Section A1, it seems that the impact of the small differences in the geometry of the
array as well as the difference between the infinitely thin and the flat dipoles have such an impact.

2.8 Conclusion
In this chapter, we have given an overview of physically consistent modeling based on circuit theory.
We have discussed DMNs and introduced a simple model without DMNs. Then, we have provided
details on infinitely thin but perfectly conducting dipoles, ULAs, UCAs and URAs. Furthermore, we
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discussed the influence of the generators’ impedance and the load impedance. In addition, we have
derived the mutual impedance between infinitely thin but perfectly conducting dipoles with arbitrary
orientation. Moreover, we have presented a comparison between an antenna array consisting of
dual-polarized crossed dipoles with finite thickness simulated in CST Studio Suite and one with
infinitely thin dipoles.
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3. Reciprocity in a TDD System

In this chapter, we consider the reciprocity of the information-theoretic channel of TDD Multi-User-
MIMO (MU-MIMO) systems in the up- and downlink. Specifically, we assume that the transmit and
receive chains are reciprocal. We take the mutual coupling between the antenna elements at the base
station and at the mobiles into account. Mutual coupling influences how to calculate transmit power
and noise covariance. The analysis is based on Multiport Communication Theory, which ensures
that the information-theoretic model is consistent with physics. It also includes a detailed noise
model. We show that due to the coupling, the information-theoretic up- and downlink channels do
not fulfill the ordinary reciprocity relation, even if the input-output relation of the transmit voltage
sources and the receive load voltages, i.e., the channel which is estimated with the help of pilot
signals in the uplink, is reciprocal. This is a fundamental effect that is not considered otherwise. We
show via Monte Carlo simulations that both, using the ordinary reciprocity relation, and not taking
the coupling into account, significantly decreases the ergodic rates in single-user and the ergodic
sum rates in multi-user systems.

3.1 Introduction

Currently deployed wireless standards such as LTE only employ a small number of antennas at the
mobiles and at the base station. It is expected that to accommodate further growth of the amount of
transferred data, a significantly larger number of antennas needs to be employed at the base station.
In order to exploit the degrees of freedom provided by the antennas, the base station requires channel
state information (CSI). The amount of CSI increases with the number of antennas. In frequency
division duplex (FDD) mode, the base station can usually acquire downlink CSI by sending pilot
signals, letting the mobiles estimate the CSI and feed back the estimate. The advantage of TDD
mode is that the base station can reuse CSI from the uplink, as the physical channel is reciprocal [45].
The uplink CSI can be acquired with less pilot overhead than the downlink CSI if there are in total
fewer antennas at the mobiles than at the base station.

In practical systems, the transmit (Tx) and receive (Rx) RF chains are usually not identical,
i.e., up- and downlink channels are not reciprocal. Reciprocity calibration is used to take this into
account [46–51]. In some of these papers, the mutual coupling between the antenna elements of the
same array is leveraged for the calibration process. But they do not take into account that mutual
coupling itself has an impact on the reciprocity relation of the up- and downlink channel matrices in
the information-theoretic model. Here we assume that one of the methods for calibrating the RF
chains is applied such that those in the uplink and those in the downlink are made equal in the DSP
part of the system.
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We will show that there is another fundamental source changing the reciprocity relation, namely
mutual coupling, using the so-called Multiport Communication Theory [8, 9]. All of these models
only consider a one-way link, so it is applied to both up- and downlink in analyzing reciprocity. In
conventionally modeled systems, the information-theoretic ordinary (pseudo-physical) reciprocity
relation H = HT

UL is employed, but due to mutual coupling, this relation does not hold, but rather a
new physically consistent reciprocity relation. This is because mutual coupling influences how to
calculate transmit power and noise covariance.

The rest of this chapter is organized as follows: first we consider the reciprocity of the information-
theoretic channel based on the simple circuit-theoretic model in Section 2.2, and show how to take
the reciprocity into account in Section 3.2. Then we analyze the effect on the radiated power and on
the (sum) rates in the single user multiple input single output (SU-MISO), single user MIMO (SU-
MIMO), multi user MISO (MU-MISO) and MU-MIMO downlink, first theoretically, see Section 3.3,
and second in simulation in i.i.d. channels and in QuaDRiGa [10, 11] channels, see Sections 3.4
and 3.5. Conclusions follow in Section 3.6.

The SU-MISO case was presented in part at the 21st International ITG Workshop on Smart
Antennas (WSA 2017) [22]. A large part of this chapter has been published in [21] (©IEEE 2019),
and part of Section 3.5 was presented at the 22nd International ITG Workshop on Smart Antennas
(WSA 2018) [52].

3.2 Reciprocity of the Information-Theoretic Channel
In this chapter, we relate the models presented in Section 2.2 to the downlink (Fig. 2.2). The uplink
uses a similar model, but with the impedance matrix ZT and with the noise sources at the base station.
Z11 describes the antennas at the base station and Z22 those at the mobiles. In the following sections,
we will assume that ZG = ZL, as ZG ̸= ZL will be compensated due to reciprocity calibration. Then,
due to the symmetry between “1” and “2” in (2.10) and as Z21 = ZT

12 (see (2.2)), the noiseless
relation between generator and load voltage, D, is reciprocal, i.e.,

DT
UL = D = ZL(Z22 + ZLI)

−1Z21(Z11 + ZGI)
−1. (3.1)

However, there is no such symmetry in (2.23), but

H = σϑR
−1/2
η DB−H/2 = σϑQ

−1/2Z21Re(Z11)
−1/2 (3.2)

and
HUL = σϑ,ULR

−1/2
η,ULDULB

−H/2
UL = σϑ,ULQ

−1/2
UL Z12Re(Z22)

−1/2 (3.3)

hold, so the information-theoretic downlink and uplink channels are not reciprocal in the ordinary
way, i.e., HT

UL ̸= H . Although D is reciprocal, in general, a different reciprocity relation is
introduced by whitening the noise coupling between the antennas and by maintaining the physical
consistency of the transmit power, see (2.19) and (2.20). This physically consistent reciprocity
relation

H =
σϑ

σϑ,UL

R−1/2
η B

∗/2
ULH

T
ULR

T/2
η,ULB

−H/2 (3.4)

is obtained by comparing (3.2) and (3.3). If the base station wants to reuse the CSI estimated in
the uplink for the downlink, it needs to use this physically consistent reciprocity relation for the
information-theoretic channel.
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Consider that the base station acquires CSI in the uplink by estimating DUL – instead of HUL –
from the mobile(s)’ pilot symbols. To make the downlink physically consistent at the base station,
i.e., to apply (2.19), it needs to know B−H/2 anyway, so that it can compute DT

ULB
−H/2 without

any further information, although compared to (3.2), there remains the unknown factor σϑR
−1/2
η .

Let us simplify the model for the MU-MISO downlink and uplink, i.e., when each mobile has a
single antenna. We assume that the distance between different mobiles is large with respect to the
wavelength. For large distances, the coupling reduces inversely with the distance [9], so it goes to
zero and Z22 becomes diagonal. Furthermore, we assume identical antenna impedances ZA at the
mobiles, i.e.,

Z22 = ZAI. (3.5)

Then the downlink information-theoretic channel simplifies to

Rη = σ2
ηI, σ2

η =
|ZL|2

RL|ZA + ZL|2
σ2
q , Q = σ2

qI, H = DT
ULB

−H/2, (3.6)

i.e., due to (2.25), there is no unknown factor σϑR
−1/2
η in this scenario. The uplink information-

theoretic channel simplifies to

HUL = σϑ,ULR
−1/2
η,ULDUL

ZA + ZG√
RG Re(ZA)

. (3.7)

Also in this case, H and HUL are not reciprocal in the ordinary way.
Note that if the mobiles have more than one antenna, i.e., in MU-MIMO systems, Z22,Q,Rη

and BUL are block diagonal, since we assume that there is no coupling between different mobiles.
The noise covariance of multi-antenna mobiles is also a matrix instead of a scalar. Therefore, even
if (2.25) is taken into account, DT

ULB
−H/2 ̸= H in general. One solution in practice might be to

create a database of noise covariance matrices corresponding to different models of mobiles for
the base station. As in conventionally modeled systems, the base station needs feedback from the
mobiles about their SNR and needs to deal with Rη, which is not known perfectly.

3.3 Capacities and Rates not Taking the Physical Reciprocity or the Mutual
Coupling into Account

In this section, we will compute the ergodic (sum) capacity in the downlink Cerg and the ergodic
(sum) rates when using the ordinary reciprocity relation, instead of the physically consistent one
(Rerg,recip) and when the base station ignores the coupling at the base station and at the mobiles
(Rerg,hyp). In particular, we compute the (sum) capacity and rate for a given channel and the ergodic
ones are obtained by taking the expectation w.r.t. the channel, i.e., for the (sum) capacity

Cerg(P ) = EH [C(P )], (3.8)

and in a similar way for the (sum) rates. An overview of the different transmit strategies is given in
Table 3.1. We assume that the base station obtains an error-free estimate of DUL via pilot symbols
and that x ∼ NC(0

√
W,Rx) with some covariance matrix Rx.
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3.3.1 SU-MISO
For a single user, the channel matrices become vectors. Let

h = HT , hUL = HUL, dUL = DUL. (3.9)

The capacity of the downlink with power P is

C(P ) = log2

(
1 +

P

σ2
ϑ

∥h∥22
)

for PT = P. (3.10)

Let
x = fs, s ∼ NC(0

√
W, P ). (3.11)

Capacity can be achieved by applying the linear precoder

f =
h∗

∥h∥2
. (3.12)

As f can be computed from h, which in turn is computed from dUL via (3.6), estimating dUL in the
uplink and using the physically consistent reciprocity relation (3.4) achieves capacity.

Now consider what happens if the base station uses the information-theoretic model in the up-
and downlink, but assumes that the ordinary reciprocity relation H = HT

UL holds, corresponding to
h = hUL for SU-MISO. This means it determines the information-theoretic uplink channel hUL via
(3.3), and then chooses the optimal precoder based on h∗

UL,

frecip =
h∗

UL

∥hUL∥2
(3.13)

leading to the rate

Rrecip(P ) = log2

(
1 +

P

σ2
ϑ

|hHh∗
UL|2

∥hUL∥22

)
for PT = P. (3.14)

Note that this rate is different from (3.10) and there will be some rate loss compared to capacity.
For comparison, let us also consider what happens if the base station ignores the coupling. This

means that it does not use Multiport Communication Theory, but rather conventional modeling. To
predict how much power the base station radiates, it needs to know the power-coupling matrix B̂
that ignores the mutual coupling and uses the mapping

x̂ =
1√
RG

B̂H/2uG. (3.15)

B̂ is diagonal and its diagonal entries can be obtained by connecting a linear generator to only one
antenna in the array at a time, terminating the other antennas with open circuits and measuring the
power PT,p,n flowing into the antenna. This means that when the nth antenna is excited with the
voltage uG,n corresponding to some x̂n, i1,n′ = 0A ∀n′ ̸= n and the relevant part of the circuit
reduces to a simple voltage divider (Fig. 3.1). The base station predicts that it radiates

PT,p,n = |uG,n|2
Re
(
[Z11]n,n

)
|[Z11]n,n + ZG|2

. (3.16)
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i1,n

ZG

uG,n [Z11]n,n
u1,n

Fig. 3.1. Simplified circuit for measuring PT,n [21]. (©IEEE 2020)

Similar to (2.17), we also have

PT,p,n = |uG,n|2
[
B̂
]
n,n

RG

. (3.17)

Thus analogously to (2.16), B̂ is given by

B̂ = RG(diag(Z11) + ZGI)
−H Re(diag(Z11))(diag(Z11) + ZGI)

−1 (3.18)
and

B̂1/2 =
√

RG(diag(Z11) + ZGI)
−H Re(diag(Z11))

1/2. (3.19)

If the impedance of all base station antennas is the same, i.e., diag(Z11) is a scaled identity matrix,
then B̂ is also a scaled identity matrix. For an arbitrary excitation of the antenna array, the base
station predicts the radiated power as

PT,p = E
[
∥x̂∥22

]
=

E
[
uH

GB̂uG

]
RG

. (3.20)

As x is a zero-mean Gaussian random variable and as

x̂ = B−H/2B̂H/2x, (3.21)

x̂ ∼ NC(0
√
W,Rx̂). Due to the mapping (3.15), the base station does not transmit over the

information-theoretic channelH , but over another information-theoretic channel Ĥ , the one ignoring
the coupling, as given by

Ĥ = σϑR
−1/2
η DB̂−H/2. (3.22)

For SU-MISO, let d = DT so that we can define the column vector

ĥT = Ĥ
(2.25)
= dT B̂−H/2. (3.23)

When the base station uses a precoder similar to (3.12),

fhyp =
ĥ∗

∥ĥ∥2
, (3.24)

it can achieve the (hypothetical) rate

Rhyp(P ) = log2

(
1 +

P

σ2
ϑ

∥ĥ∥22
)

for PT,p = P. (3.25)
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Fig. 3.2. Probability density of α for a uniform circular array (UCA) for four scenarios in a SU-MISO i.i.d.
channel [21]. (©IEEE 2020)

We call the rate hypothetical because it is what the base station assumes to achieve. However when
base station predicts that it radiates the power PT,p = P and uses fhyp, its (true) radiated power
PT ̸= P in general. Consider the ratio α that follows from (2.17), (3.20), (3.21) and (3.24),

α =
PT

PT,p

=
ĥ∗

∥ĥ∥2
B̂−1/2BB̂−H/2 ĥT

∥ĥ∥2
. (3.26)

α is a function of the channel and for some of its realizations,

α < 1 ⇔ PT,p > PT or α > 1 ⇔ PT,p < PT, (3.27)

see Figs. 3.2 and 3.16, but PT,p < PT is extremely rare for d = 0.35λ and d = 0.4λ, but less so for
d = 0.5λ. Therefore, depending on the channel realization, there will be rate curves that actually
require more or less transmit power than predicted. On the one hand, if α > 1 and if PT,p is as large
as the power available linearly from the power amplifiers, there will be non-linear distortions due to
PT > PT,p, which may cause transmission failure. On the other hand, if α < 1, i.e., PT < PT,p, the
transmission will be successful but the power budget is not fully utilized.

The probability densities in this paper are estimated on a grid of 128 points in a Monte Carlo
simulation (see Sections 3.4 and 3.5) using the MATLAB implementation [53] based on the theory
in [54] with a Gaussian kernel. Note that α does not need to be estimated in the communication
system; it is only introduced to explain the simulation results.

3.3.2 SU-MIMO
For SU-MIMO, the capacity in the downlink with power P is given by [55]

C(P ) = log2
⏐⏐I + σ−2

ϑ HHHRx

⏐⏐ for PT = P, Rx = V ΨV H , tr(Ψ) = P, (3.28)

where V is obtained from the eigenvalue decomposition (EVD)

HHH = V ΦV H (3.29)

and Ψ is a diagonal matrix whose entries are determined via waterfilling. This can be achieved by
transmitting s ∼ NC(0

√
W,Ψ) over the precoder V , i.e., x = V s.
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If the base station ignores the mutual coupling at the base station and at the mobiles, it uses
(3.15) to transform from x̂ to uG as in SU-MISO, assumes that mobile uses the mapping

ŷ =
σϑ√
RL

R̂−1/2
η uL, R̂η = diag(Rη) (3.30)

instead of (2.20), and assumes that

ϑ̂ ∼ NC(0
√
W, σ2

ϑI) (3.31)

holds. Similar to (3.28), the optimal transmit strategy is to choose the precoder V̂ ′ from the singular
value decomposition (SVD) of the channel

Ĥ ′ = σϑR̂
−1/2
η DB̂−H/2 = Û ′Φ̂′,1/2V̂ ′,H (3.32)

and the corresponding diagonal power allocation matrix Ψ̂′ obtained by waterfilling.
However, the noise distribution at the mobile in the information-theoretic model is

ϑ̂ ∼ NC

(
0
√
W, R̂ϑ

)
, R̂ϑ = σ2

ϑR̂
−1/2
η RηR̂

−H/2
η , (3.33)

contrary to what the base station expects, see (3.31). Only diag
(
R̂ϑ

)
= σ2

ϑI holds. This leads to
the (hypothetical) rate

Rhyp(P ) = log2

⏐⏐⏐I + σ−2
ϑ ĤHĤRx̂

⏐⏐⏐ for PT,p = P, Rx̂ = V̂ ′Ψ̂′V̂ ′,H , tr(Ψ̂′) = P. (3.34)

Similar to (3.25), this is only a hypothetical rate, since the true radiated power may be different from
the predicted one. By generalization of (3.26), we consider the ratio

α(P ) :=
PT

PT,p

=
tr
(
B̂−1/2BB̂−H/2Rx̂

)
P

= tr(A(P )),

A(P ) = B̂−1/2BB̂−H/2V̂ ′ Ψ̂

P
V̂ ′,H .

(3.35)

Contrary to SU-MISO, for SU-MIMO α also depends on the power allocation.
When the base station uses the ordinary reciprocity relation instead of the physically consistent

one, the optimal transmit strategy is to use the precoder Vrecip from the EVD

H∗
ULH

T
UL = VrecipΦrecipV

H
recip, (3.36)

and Ψrecip determined via waterfilling. The rate of this scheme is

Rrecip(P ) = log2
⏐⏐I + σ−2

ϑ RxH
HH

⏐⏐ for PT = P, Rx = VrecipΨrecipV
H
recip, tr(Ψrecip) = P.

(3.37)

3.3.3 MU-MISO and MU-MIMO
The sum capacity of the MU-MISO/MIMO Broadcast channel (BC) is given by [56, 57]

C(P ) = max
Ξ⪰0W
tr(Ξ)≤P

log2
⏐⏐I + σ−2

ϑ HHΞH
⏐⏐ for PT = P, (3.38)
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where Ξ is the (block-)diagonal covariance matrix in the dual Multiple Access Channel (MAC), i.e.,
it is based on the rate duality between the BC and the dual MAC with the channel HH . For MU-
MIMO, we use the duality from [58], which ensures that streams allocated to the same mobile are
orthogonal. Equation (3.38) describes a convex optimization problem that can be solved efficiently
by various optimization algorithms, e.g., a projected gradient algorithm [59] with a step-size control
as in [60, eq. (14)].

For MU-MISO, if the base station ignores the mutual coupling at the base station, it will perform
an optimization as in (3.38), namely

Rhyp(P ) = max
Ξ̂⪰0W

tr(Ξ̂)≤P

log2

⏐⏐⏐I + σ−2
ϑ ĤHΞ̂Ĥ

⏐⏐⏐ for PT,p = P. (3.39)

Note that this only holds as mutual coupling at the base station does not introduce interference,
no matter whether taken into account or not – as long as the base station has got perfect channel
knowledge.

For MU-MIMO, when the base station ignores the mutual coupling at the base station and at
the mobiles, or when it uses the ordinary reciprocity relation in the information-theoretic model,
the analysis is more involved, since the channel the base station expects and the true channel are
different. This is similar to a channel estimation error and this leads to interference. The capacity
achieving transmission scheme for perfect channel knowledge is Dirty Paper Coding (DPC). When
this scheme is used with a channel estimation error, the achievable rate may even be lower than with
linear precoding. This is shown for a lattice-based scheme in a two-user MU-MISO BC in [61].

When computing the achievable sum rate with linear precoding, a global optimization is required
as this problem is non-convex, see e.g., [62,63], which optimizes over the transmit covariance in the
dual MAC globally. This is only feasible for a small number of users and their antennas. Instead,
we use a linear zero forcing (ZF) approach for the comparison that is only guaranteed to find a
local optimum. Among several algorithms in the literature [64, 65], we have chosen LISA [64],
which is an elegant greedy weighted sum rate maximization algorithm with low complexity and
very good performance. For the comparison we are considering, the choice of the weighted sum rate
maximization algorithm is not substantial. LISA finds the ZF precoder and power allocation, where
we use the variant that does not avoid the matrix inversion to optimize the receive filters. Applying
it to H , Ĥ ′ and HT

UL for PT = P, PT,p = P and PT = P and transmitting over H , Ĥ and H
respectively, leads to Rlin, Rhyp,lin and Rrecip,lin. When computing the rates, we do not consider the
equalizers at the mobiles, in other words, we assume that they employ an optimum equalization.

3.4 Simulations for the I.I.D. Channels
In the simulations, we assume a base station with a UCA of N parallel infinitely thin, but perfectly
conducting λ/2-dipoles with antenna spacing d, and one or more mobiles with a UCA consisting
also of parallel λ/2-dipoles. Their impedance matrices can be obtained according to Section 2.4. Let
ZA be the self-impedance of the λ/2-dipoles. We assume the heuristic match ZG = ZL = Re(ZA),
which matches the real part of the antenna impedance to the purely resistive source and load
impedance. Q1/2 is obtained by the (lower triangular) Cholesky decomposition of Q.

For the noise parameters, we use the measured ones from [66, Tables IV & VI] with a noise
bandwidth of 740 kHz, except that we assume Re(ZA) as the input impedance of the LNA, so it fits
our model. In this section we also assume that the entries of Z21 are i.i.d. according to NC(0Ω, σ

2
z).
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In order to obtain reasonable transmit powers, σz ≈ 0.019 085Ω is chosen, which corresponds to
the absolute value of the mutual impedance between two λ/2-dipoles separated by 1000λ, which is
about 85.7m at 3.5GHz.

The ergodic (sum) capacity and rates, the average number of active streams and the empirical
probability density of α were computed by a Monte Carlo simulation with 1000 channel realizations.

3.4.1 SU-MISO

Consider one single antenna receiver in four scenarios: a base station with N = 9 antennas and
d = 0.35λ or d = 0.4λ antenna spacing and one with N = 33 and d = 0.4λ or d = 0.5λ. Fig. 3.2
shows the probability density for α in these scenarios. The largest variation in α is obtained for
a small antenna spacing of 0.35λ, where for some channel realizations only about 36.2% of the
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predicted power is radiated and for some as much as 94.0%. The variations for 0.4λ antenna spacing
are less pronounced, but there is still a considerable variation in α. For d = 0.5λ there is even less
variation. Furthermore, there is a trend that the larger d is, the further the mass of the distribution
of α moves to larger values of α. We conclude that the base station radiates on average less power
than predicted when it uses conventional modeling. The loss in power is significantly larger for
d = 0.35λ than for d = 0.4λ, and in turn than for d = 0.5λ.

Figs. 3.3 and 3.4 show the ergodic capacities and rates for these scenarios. Comparing them, we
can see that for the same P , Cerg and Rerg,recip are larger for N = 33 than for N = 9, and larger for
smaller d than for larger d. Therefore, a smaller d is advantageous. Rerg,hyp only changes very little
from d = 0.35λ to 0.4λ, and increases slightly from d = 0.4λ to 0.5λ. We can also see that using the
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ordinary reciprocity relation in the information-theoretic model leads to a loss in rate that is small
for larger antenna spacings and a small number of antennas, but increases considerably for smaller
antenna spacings and a large number of antennas. This loss is caused by the precoder frecip, leading
to the beamforming vector

√
RGB

−H/2frecip. Both are optimal for the ordinary reciprocity relation,
but not for the physically consistent one. Still, using the ordinary reciprocity relation is considerably
better than using conventional modeling. Rerg,hyp shows the same tendency as Rerg,recip, but the
gap to Cerg is significantly larger than for Rerg,recip. This gap is not only caused by a suboptimal
precoder, but also by the base station not being able to accurately predict the radiated power PT with
conventional modeling. Note that mutual coupling is present independent of the antenna separation
and does not decrease monotonically with increasing d, but rather follows a more complicated
relation. It decreases monotonically approximately between d = 0 and λ/2, though. If we increase
the number of base station antennas further, e.g., to N = 65, we see that the trends going from
N = 9 to 33 continue.

3.4.2 SU-MIMO

Consider a base station with a UCA consisting of N = 33 λ/2-dipoles and a mobile with a UCA
with M = 9 λ/2-dipoles, both with 0.4λ antenna spacing. Compared to SU-MISO (see Fig. 3.4), the
difference between Rerg,hyp and Cerg is significantly larger, as shown in Fig. 3.5, although the antenna
spacing at the base station is the same. As in SU-MISO, Rerg,recip achieves a better performance
than Rerg,hyp.

Looking at the average number of active streams (Fig. 3.6), all schemes perform similarly. This
means the rate difference comes mainly from radiating a different amount of power than predicted
and from the suboptimal precoders, instead of a suboptimal number of active streams.

Regarding the predicted radiated power PT,p when ignoring the coupling, consider the probability
density of α in Fig. 3.7. For P = −100 dBW, the average number of active streams is 1, and the
distribution is similar to Fig. 3.2. However for P = −55 dBW, the average number of active streams
is close to 9, and the distribution is much more narrow around α ≈ 0.79. This means that when
more streams are active, there is an averaging effect between streams belonging to directions with
large α and to those with small α. Note that the ratio of the predicted to the radiated power of the
individual streams may still experience a distribution similar to when only one stream is active.
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3.4.3 MU-MISO

Let us compare the ergodic sum rates in Fig. 3.8 for a base station with N = 33 λ/2-dipoles in
a UCA communicating to two mobiles with one λ/2-dipole each. The performance of linear ZF
precoding is very close to DPC for both, the sum capacity and the hypothetical sum rate, although
fewer streams are active with linear precoding up to around P = −75 dBW, see Fig. 3.9. The loss
when ignoring the coupling (Rerg,hyp) is qualitatively similar to the loss for SU-MIMO in Fig. 3.5.
For Rerg,recip,lin, the loss is smaller than for Rerg,hyp,lin for small transmit powers – and as shown in
Fig. 3.9, there is only a bit more than one stream active on average. This means that in this region,
the system behaves similarly to a SU-MISO system and is mainly noise limited. For larger transmit
powers, however, the loss starts to increase significantly when 2 streams are active on average,
because using the ordinary reciprocity relation leads to wrong CSI in the downlink and causes
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interference. The larger this interference is compared to the noise power, the more important it is.
For large interference, the system becomes interference limited and Rerg,recip,lin saturates. This is
why starting from P ≈ −63 dBW, Rerg,recip,lin is even worse than Rerg,hyp,lin.

Consider also the rate region for one channel realization. The weighted sum and per-user rates
for DPC can be obtained in a similar way to (3.38) and (3.39) using, e.g., a projected gradient algo-
rithm [59], and for linear precoding using similarly the weighted sum rate maximization algorithm
from [64]. When we have a look at the rate region for one channel realization in the same setting
as for the sum rates, we can see a similar behavior as for the sum rate, see Fig. 3.10. The curves
corresponding to the sum capacity and its corresponding sum rate with linear ZF precoding are
called “cap” and “cap,lin” in the figure, and accordingly “hyp” and “hyp,lin” for the hypothetical
sum rate and “recip,lin’ for the one for the ordinary reciprocity relation. The performance using
linear ZF precoding is very close to DPC.

3.4.4 MU-MIMO

For MU-MIMO, let us also consider a UCA with N = 33 antennas at the base station and two
mobiles with a UCA of 9 antennas, all three with 0.4λ antenna spacing. For smaller transmit
powers, the performance of linear ZF precoding is very close to DPC for the sum capacity and the
hypothetical sum rate. But as the transmit power increases, the gap also increases, see Fig. 3.11.
Similar to MU-MISO, for small P , Rerg,recip,lin performs well, around P = −70 dBW the gap to
Rerg,hyp,lin starts to decrease considerably, at P ≈ −61 dBW they intersect and for even larger P ,
Rerg,recip,lin starts to saturate. Compared to MU-MISO, the sum rate loss compared to Cerg increases
for all ergodic rates, i.e., the loss increases with an increasing number of mobile antennas.

The average numbers of active streams in Fig. 3.12 show that for small transmit powers, they are
very similar for DPC and linear ZF, but as the SNR increases, those for DPC increase much faster,
i.e., the larger sum capacity and hypothetical rate in Fig. 3.11 can be explained by DPC supporting
more active streams.
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3.5 Simulations with the QuaDRiGa Channel Generator
QuaDRiGa [10, 11] is a channel generator written in MATLAB, which allows channels to be
generated that are more realistic than i.i.d. channels. It is compatible with the current 3GPP channel
model, 3GPP TS 38.901 [12], valid from 500MHz to 100GHz. As in [52], we consider a single
non-sectored base station site in the urban macrocell (UMa) model, but without mobility. The model
assumes a hexagonal grid of cells with base station sites at certain corners of the hexagons. When
the base station serves all mobiles closest to it, it serves a hexagon with edge length (500/

√
3)m

and is located at its center, see Fig. 3.13. The λ/2-dipoles at the base station and at the mobiles
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(500/
√
3)m

Fig. 3.13. A base station serving a mobile in a hexagonal cell [52].

are all oriented vertically, and the arrays are centered around the position of the respective base
station or mobile. The mobiles are distributed uniformly in the hexagon outside of a circle with
radius 35m around the base station. The altitude of the base station is 25m and that of the mobiles
is determined according to [12]. The continuous time channels obtained by QuaDRiGa need to be
scaled by Re(ZA) so that they fit the circuit-theoretical model and the receive power matches. Let
us denote the scaled continuous time channels as

Z21(t) =

Npath∑
npath=1

δ(t− tnpath
)Z21,npath

, (3.40)

consisting of Npath paths described by a Delta distribution δ, with a delay tnpath
and coefficients

Z21,npath
. Additionally, they need to be filtered by a transmit and a receive filter and sampled,

since the QuaDRiGa continuous time channels are impulse trains for each individual channel
between a transmit and a receive antenna. We use root-raised cosine transmit and receive filters with
∆f = 15 kHz and roll-off factor 1 at the center frequency 3.5GHz, because it does not introduce
any noise correlations in time-domain after sampling. The bandwidth is similar to an LTE subcarrier.
Regarding the noise parameters, the same parameters as for the i.i.d. channels are used, but the noise
(co-)variances are scaled by 15/740, so they match the smaller bandwidth, maintaining the same
noise power per bandwidth. We assume that we can approximate the system to be frequency flat at
the center frequency 3.5GHz, as the relative bandwidth is only about 0.000 43%. The channel in
discrete time then is

Z21[l] =
1

∆f
(hRC ∗Z21)

(
l

∆f

)
=

1

∆f

Npath∑
npath=1

hRC

(
l

∆f
− tnpath

)
Z21,npath

, l ∈ Z, (3.41)

where hRC(t) is the impulse response of a raised cosine filter with symbol rate ∆f and roll-off factor
1. Note that the factor 1/∆f is needed such that the units match when Z21[l] is convolved with
u1[l], and to fulfill the Nyquist criterion when Z21(t) is a unit impulse. We also assume Z21[l] to be
frequency flat, so it is sufficient to consider the channel at the base band frequency ν = 0Hz. To
evaluate it there, we compute the discrete-time Fourier transform of Z21[l], which can be simplified
using the Poisson summation formula

∞∑
l=−∞

hRC

(
l

∆f
− tnpath

)
e−j2πνl/∆f = ∆f

∞∑
k=−∞

e−j2π(k∆f+ν)tnpathHRC(k∆f + ν), (3.42)



3.5 Simulations with the QuaDRiGa Channel Generator 41

−65 −60 −55 −50 −45 −40 −35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P in dBW

C
,R

in
bi

ts
/c

ha
nn

el
us

e

Cerg, d = 0.35λ

Rerg,recip, d = 0.35λ

Rerg,hyp, d = 0.35λ

Cerg, d = 0.4λ

Rerg,recip, d = 0.4λ

Rerg,hyp, d = 0.4λ

Fig. 3.14. Ergodic downlink rates for a UCA with 9 λ/2-dipoles, and 0.35λ and 0.4λ antenna spacing in a
SU-MISO QuaDRiGa channel [21]. (©IEEE 2020)

−65 −60 −55 −50 −45 −40 −35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

P in dBW

C
,R

in
bi

ts
/c

ha
nn

el
us

e

Cerg, d = 0.4λ

Rerg,recip, d = 0.4λ

Rerg,hyp, d = 0.4λ

Cerg, d = 0.5λ

Rerg,recip, d = 0.5λ

Rerg,hyp, d = 0.5λ

Fig. 3.15. Ergodic downlink rates for a UCA with 33 λ/2-dipoles and 0.4λ and 0.5λ antenna spacing in a
SU-MISO QuaDRiGa channel [21]. (©IEEE 2020)

as inspired by [67], where HRC(f) is the Fourier transform of hRC(t). As the raised cosine pulse
is sufficiently frequency-limited, for ν = 0Hz only the summand with k = 0 is non-zero, and the
discrete-time Fourier transform evaluated at this ν is

Z21 =
∞∑

l=−∞
Z21[l]e

−j2πνl/∆f |ν=0Hz =

Npath∑
npath=1

HRC (0∆f)Z21,npath
=

Npath∑
npath=1

Z21,npath
. (3.43)

Let us now compare the simulation results for the SU-MISO and MU-MIMO scenarios in the
i.i.d. channel with those in the QuaDRiGa scenario. The attenuation of the channels generated by
QuaDRiGa is larger than for the i.i.d. channel, so the ergodic (sum) rates are plotted for a larger P
such that similar ergodic (sum) rates are achievable, see Figs. 3.14, 3.15 and 3.17. For SU-MISO
in the range plotted, the slope of the ergodic rates is smaller than in the i.i.d. channel at a similar
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Fig. 3.17. Ergodic downlink sum rates for a UCA with 33 λ/2-dipoles at the base station and two users with
a 9 λ/2-dipole UCA, all three with 0.4λ antenna spacing, in a MU-MIMO QuaDRiGa channel [21]. (©IEEE
2020)

ergodic rate. This means that for many channel realizations, the channel attenuation is large and the
slope of log2(1 + SNR) is smaller than 1 in logarithmic scale. There is a similar rate loss if the base
station uses the ordinary reciprocity relation as in the i.i.d. channel. Similarly, Cerg and Rerg,recip are
larger for N = 33 than for N = 9, and larger for smaller d than for larger d. Therefore, a smaller
d is also advantageous and desirable here. Also similarly, on average less power is radiated than
predicted if the base station uses conventional modeling. For d = 0.35λ and 0.4λ, the loss due to
this and due to the suboptimal beamforming is smaller for the channels generated by QuaDRiGa,
but for d = 0.5λ, they are about the same. This smaller loss for d = 0.35λ and 0.4λ corresponds to
the distribution of α being shifted a bit closer to 1, see Fig. 3.16. Furthermore, the variation of α
also gets slightly smaller for d = 0.35λ and 0.4λ, but larger for d = 0.5λ. As in the i.i.d. channel,
using the ordinary reciprocity relation leads to higher ergodic rates than conventional modeling.



3.6 Conclusion 43

−70 −65 −60 −55 −50 −45 −40 −35 −30 −25

2

4

6

8

10

12

14

16

18

1

P in dBW

A
ve

ra
ge

nu
m

be
r

of
ac

tiv
e

st
re

am
s for Cerg

for Rerg,lin

for Rerg,recip,lin

for Rerg,hyp,lin
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In the MU-MIMO scenario, the ergodic sum rates look similar as in the i.i.d. channels, see
Figs. 3.11 and 3.17, but the losses due to using the ordinary reciprocity relation or ignoring the
coupling are smaller and linear ZF is closer to DPC. Regarding the average number of active streams,
see Figs. 3.12 and 3.18, fewer are active for the same sum rate in the QuaDRiGa channels than
in the i.i.d. channels. This can be explained by the larger correlation of the QuaDRiGa per-user
channels. Furthermore, the difference between the numbers of active streams for linear ZF and for
DPC is smaller for the QuaDRiGa channels. As the linear ZF exploits cooperation between the
antennas belonging to the same users using the SVD, the advantage of DPC is that it can remove
inter-user interference. Due to the random placing of the users in the QuaDRiGa model, the channels
to different users are almost orthogonal, so DPC is less beneficial than for the i.i.d. channel model.

3.6 Conclusion

We have analyzed the reciprocity of a MU-MIMO TDD system based on Multiport Communication
Theory. We have seen that by incorporating the physical noise model and the power consistency, the
ordinary (pseudo-physical) reciprocity relation between the information-theoretic up- and downlink
channel does not hold in general – even if the noiseless relation between the transmit voltage sources
and the receive load voltages is reciprocal. Instead, a physically consistent reciprocity relation holds.
We have shown how the base station can achieve capacity using this relation when it computes the
downlink channel from the uplink channel: namely, by using the power-coupling matrix it needs to
know anyway to obtain the information-theoretic channel and by using a database of noise covariance
matrices of the mobiles.

We have shown that when the base station uses the ordinary reciprocity relation, it will use
suboptimal beamforming vectors and suboptimal power allocations that can significantly decrease
the (sum) rate of the downlink, depending on the array geometry and on the type of antennas used.
When the base station uses conventional modeling, i.e., if it ignores the coupling, there can also be
a significant rate loss. Furthermore it cannot even predict the power it radiates accurately and the
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radiated power can vary greatly. In multi-user systems, using the ordinary reciprocity relation is
similar to having a channel estimation error, which leads to intra-cell interference between different
users. The loss in achievable rate when ignoring mutual coupling is larger for a reduced antenna
spacing, but capacity increases at the same time. Compactness is therefore advantageous for better
performance.

These conclusions hold both for i.i.d. channels and for channels based on the 3GPP TS 38.901
UMa model generated by QuaDRiGa. This highlights the importance of taking the mutual coupling
into account, and its effects on the reciprocity in the information-theoretic channel. It is sensible to
take it into account by using two matrix multiplications with matrices that can be determined offline
at the design stage.

Although our numerical results are based on canonical minimum scattering antennas to enable
an analytic calculation of the impedance matrices of the arrays, the analysis is not limited to these
types of antenna elements. For other antenna elements, the impedance matrices must be computed
numerically with an appropriate electromagnetic solver or must be measured. Similarly, although
we have only provided numerical results for i.i.d. channels and 3GPP TS 38.901 UMa channels, the
approach presented is not limited to these types of channels.
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4. On the Impact of the Mutual Impedance on Power and
Achievable Rate

In this chapter, we consider the mutual reactance of hypothetical isotropic radiators and the influence
of the mutual reactance on antenna arrays with zero mutual resistance. We compute the mutual
reactance of hypothetical isotropic radiators using passivity, which has not been considered in
wireless communications literature. We show that when an antenna array with zero mutual resistance
is excited by ideal current sources, the mutual reactance does not have any influence on the radiated
power. However, practical radio frequency amplifiers are not ideal current sources, but can often be
modeled as linear sources. Then the radiated power depends on the mutual reactance. Furthermore in
receive mode, the mutual reactance introduces noise correlations between the antennas. Numerical
results show the impact of neglecting the mutual reactance on the radiated power and on the ergodic
up- and downlink rates in an i.i.d. channel for a base station using a ULA consisting of hypothetical
isotropic radiators spaced by λ/2, or a UCA consisting of 3 λ/2-dipoles. The analysis is extended
to ULAs that consist of λ/2-dipoles, which are more realistic than isotropic radiators, and have a
small mutual reactance. Numerical results are given in an i.i.d. channel, as well as in more realistic
channels generated by QuaDRiGa.

Parts of this chapter have been published in [68] (©IEEE 2018) and presented at the 22nd
International ITG Workshop on Smart Antennas (WSA 2018) [52].

4.1 Mutual Impedance of Isotropic Radiators
Antenna arrays are becoming more and more important in wireless communications, especially with
Massive MIMO. The wireless communications literature typically considers ULAs consisting of
(hypothetical) isotropic radiators spaced by λ/2, where λ is the wavelength of the carrier.

Hypothetical isotropic radiators are a special kind of antenna element: they radiate power
uniformly into all directions (e.g. [36, Section 1.13]). They are hypothetical, since there are neither
isotropic sources of coherent electromagnetic radiation nor of uniform spherical electromagnetic
waves, but they are useful for theory [36, Sections 1.13 & 4.4]. Our intention is to find the mutual
impedance between two hypothetical isotropic radiators.

According to literature [69], the mutual resistance between two hypothetical isotropic radiators
is

Rhir(jω) = Rr
sin(ωτ)

ωτ
= Rr

sin(kd)

kd
= Rhir(jkc) (4.1)

where Rr is the radiation resistance, ω is the angular frequency, τ is the time an electromagnetic wave
needs to propagate the distance d between the radiators at the speed of light c and k = 2π/λ = ω/c
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is the angular wavenumber. Equation (4.1) has been derived by integration over a sphere enclosing
the radiators while assuming that they are lossless, i.e., the entire power flowing into the radiators
from some source is radiated.

In signal processing and wireless communications literature, the mutual impedance is usually
assumed to be zero. For a ULA consisting of hypothetical isotropic radiators with an antenna
separation d that is an integer multiple of λ/2, this is reasonable, since

Rhir = 0Ω for d = mλ/2,m ∈ N. (4.2)

But the imaginary part of the mutual impedance, i.e., the mutual reactance still has to be determined.
The mutual impedance between two hypothetical isotropic radiators, which are assumed to be

canonical minimum scattering antennas [37], is [9]

Zhir(jω) = Zhir(jkc) = −Rre
−jkd

jkd
= −Rre

−jωτ

jωτ
(4.3)

for large distances d. Its real part

Re (Zhir) ≡ Rhir, (4.4)

c.f. (4.1), not only in the far-field, but also for arbitrary close distances, while in general, the near-
and far-field of antennas is different. If (4.3) is also valid for arbitrary distances, the mutual reactance

Xhir(jω) = Im (Zhir(jω)) = Rr
cos(ωτ)

ωτ
= Rr

cos(kd)

kd
(4.5)

should form a Hilbert transform pair together with Rhir(jω) [70, Ch. 8], as the transmission from
one hypothetical isotropic radiator to another is passive, and thus Zhir(jω) is the transfer function
of a passive system. A similar relation holds for the radiation resistance Rr(jω) and the reactance
Xr(jω) [70], which is used e.g. in [71]. In physics, these relations between the real and imaginary
part of such a transfer function are called dispersion relations [72]:

Rhir(jω) = H{Xhir} (jω) =
1

π
PV

∫ ∞ s−1

−∞ s−1

Xhir(jζ)

ω − ζ
dζ, (4.6)

Xhir(jω) = −H{Rhir} (jω) = − 1

π
PV

∫ ∞ s−1

−∞ s−1

Rhir(jζ)

ω − ζ
dζ, (4.7)

where H{Xhir} (jω) denotes the Hilbert transform of Xhir(jω) and PV stands for the Cauchy
principal value. Technically, these relations are valid only if Zhir(jω) does not have a pole at
ω = 0 s−1 [72], but Zhir(jω) does have such a pole. For a Zhir(jω) that fulfills certain conditions,
an additional summand on the right side of (4.7) is needed [72]. These conditions are1

1) lim
ω→∞

Zhir(jω) = 0.
2) Zhir(σ + jω) needs to be holomorphic in the right half-plane, i.e., where σ > 0.

1In [72], a generalized susceptibility α(ω) = α′(ω) + jα′′(ω) is considered, which fulfills condition 1, and
α(ω′ + jω′′) is holomorphic in the upper half-plane (ω′′ > 0). In the transfer function described by the generalized
susceptibility, the losses are caused by its imaginary part, whereas in an impedance, the losses are caused by its real part.
Condition 2 results from an adaptation of the proof in [72] to an impedance, taking into account this different behavior
and the changed variables in the argument.
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The first condition holds. The second condition also holds, because Zhir(jω) is the transfer function
of a passive system [70, Section 8.1].

As Zhir(jω) fulfills the required conditions, the dispersion relations for a transfer function with
a pole at ω = 0 hold [72]:

Rhir(jω) = −H{Xhir} (jω) =
1

π
PV

∫ ∞ s−1

−∞ s−1

Xhir(jζ)

ω − ζ
dζ, (4.8)

Xhir(jω) = H{Rhir} (jω) +
A

ω
= − 1

π
PV

∫ ∞ s−1

−∞ s−1

Rhir(jζ)

ω − ζ
dζ +

A

ω
, (4.9)

with A = Rr/τ as Zhir(jω) behaves like jRr/(ωτ) near ω = 0. These relations are derived in [72] by
solving a contour integral in two different ways, and comparing the result: i) evaluating the integral
directly, and ii) using the Cauchy integral theorem. The contour includes the entire imaginary axis,
indented right at the poles of the integrand, and an infinite semicircle that closes the contour. When
there is a pole at ω = 0 s−1, an additional infinitesimal semicircle is needed, which contributes the
extra summand. The relations were used in [73] to compute the mutual reactance from the mutual
resistance.

Using Hilbert transform tables [74, Ch. 13.7], we get

H{Rhir} (jω) +
A

ω
= Rr

cos(ωτ)− 1

ωτ
+

Rr

ωτ
=

cos(ωτ)

ωτ
≡ Xhir(jω), (4.10)

i.e., this is identical to Xhir(jω). Therefore Zhir(jω) is a valid function for the mutual impedance
of hypothetical isotropic radiators for any distance d. For the considered case of electromagnetic
radiation, the isotropic radiators are hypothetical, but they are of course realisitc in acoustics. With
the corresponding free-space Green’s function of the scalar Helmholtz equation, it can easily be
verified that the mutual impendance derived by the dispersion relations is correct.

In [68], the difficulty with the pole was worked around by extending Zhir(jω) to the complex
variable s = σ + jω, σ > 0 s−1 and evaluating the real part of Zhir(s) as σ → 0 s−1. This yielded
the same result as the procedure described in [70, Section 8.2] that consists in moving the pole of
Zhir from ω = 0 s−1 to some s = β and evaluating the real part in the limit of moving the pole
back, where β < 0 s−1 to maintain stability. This workaround introduced an additional summand
−Rrπ/τ δ(ω) in Zhir(jω). Note however that Zhir(jω) and Zhir(jω)−Rrπ/τ δ(ω) coincide for any
ω ̸= 0 s−1, i.e., there is no difference between them for a typical wireless communications scenario.

To the authors’ best knowledge, this verification that Zhir is a valid transfer function of a passive
system for any distance d, has not been considered in literature yet.

Coming back to the ULA with antenna separation d = mλ/2, when we evaluate the mutual
reactance, Xhir ̸= 0Ω, i.e., the assumption that the mutual impedance is zero is not valid. We will
assess the impact of still having this assumption in the next section.

4.2 Impact on Arrays with Zero Mutual Resistance
We consider a narrowband flat fading system with a base station having an antenna array consisting of
N identical antenna elements with resistance Rr and reactance Xr, whose mutual resistance is zero,
and assess the impact of the mutual reactance based on Multiport Communications Theory [8,9]. In
particular, we use the simplified model from Section 2.2 that does not consider a matching network.
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The impedance matrix ZBS ∈ CN×N · Ω of such an array fulfills

ZBS = RrI + jXBS, diag(XBS) = XrI. (4.11)

The impedance of infinitely thin λ/2-dipoles and the mutual impedance between them can be found
in Section 2.4. For the isotropic radiators, we assume that their impedance is Rr = Re(Zλ/2), i.e.,
that their reactance Xr = 0Ω.

4.2.1 Downlink
If we excite the antennas in the array with ideal current sources creating the current vector i, the
(instantaneous) radiated power is [9]

PT,i = Re
(
iHu

)
= iH Re (ZBS) i = Rr∥i∥22, (4.12)

which matches the notion that PT,i is proportional to ∥i∥22. Note that here, PT,i is independent of
XBS, i.e., PT,i is predicted correctly also when the mutual reactance XBS is ignored.

However in a real system, each antenna is excited by a power amplifier, which can be modeled
as a linear voltage source with open load voltage uG and inner resistance R = RI , similar to
Section 2.2. The (instantaneous) radiated power is [9]

PT,i =
uH

GBuG

R
, B = R (ZBS +R)−H Rr (ZBS +R)−1 , (4.13)

similar to (2.17), where Z11 = ZBS and RG = R. This expression does depend on XBS, i.e., if we
neglect XBS and predict the (instantaneous) radiated power similarly to (3.18) and (3.20), we have

PT,p,i =
uH

GB̂uG

R
, B̂ = R

Rr

(Rr +R)2 +X2
r

I, (4.14)

and obtain some PT,p,i ̸= PT,i. Note that in contrast to PT,i, PT,p,i does not depend on the direction
of uG [22].

Section 2.2 shows how Multiport Communications Theory introduces a transform from the
random transmit vectors x and x̂ to the information theoretic domain and to the information theoretic
domain neglecting the mutual reactance, such that

PT = E[PT,i] = E[∥x∥22], (4.15)
PT,p = E[PT,p,i] = E[∥x̂∥22]. (4.16)

At the receiver side, the received signal y in the information theoretic domain is obtained by a noise
whitening of the load voltage uL, which is measured across the input impedance ZL = R of the
LNA in each RF chain [9], see Section 2.2.2. We choose R = Rr in the simulations, such that there
is power matching at the receiver and at the transmitter for hypothetical isotropic radiators, and a
matching of the resistance for λ/2-dipoles, which is heuristic. In the simulations, we will use the
noise parameters from [66], but with input impedance R of the LNA.

We consider the (hypothetical) predicted radiated power PT,p when neglecting the mutual
reactance and the ergodic rates in the downlink transmitting to a mobile with a single hypothetical
isotropic radiator as an antenna.

Let us assume the i.i.d. channel similar to Section 3.4, where Z21 = zT ,
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Fig. 4.1. Ergodic ratio of true and predicted power for a ULA consisting of hypothetical isotropic radiators
spaced by λ/2 [68]. (©IEEE 2018)
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neglecting XBS [68]. (©IEEE 2018)

z ∼ NC(0Ω, σ
2
zI), D =

R

Rr + jXr +R
zT (ZBS +R)−1. (4.17)

We assume that the base station obtains perfect channel knowledge of d, e.g. through channel state
feedback or through exploiting reciprocity and estimating the channel in the uplink.

The ergodic capacity Cerg and the hypothetical rate when neglecting the mutual reactance
Rerg,hyp, for a given power P , can be computed in the same way as when taking and not taking
the mutual coupling into account, as shown in Section 3.3. Note that when the mutual reactance
is neglected, there are two kinds of losses: the suboptimal beamforming vector fhyp, see (3.24), is
chosen to obtain Rerg,hyp, and the base station does not know how to compute PT, and computes
Rerg,hyp based on PT,p instead. To separate both losses, we consider the ratio (3.26) and compute
the power corrected ergodic rate

Rerg,pc(P ) = E [Rhyp(P/α)] , (4.18)

where power corrected means that PT = P holds, but fhyp is used. This way, Rerg,pc(P ) ≈
Rerg,hyp(P/αerg) for high SNR, where

αerg = exp(ln(2) E[log2 α]), (4.19)

i.e., for high SNR, Rerg,pc is Rerg,hyp shifted by −10 log10(αerg) dB in a semi-log plot.
The capacities, rates and α are computed by a Monte Carlo simulation of 1000 channel re-

alizations with σz ≈ 0.019 085Ω. αerg then becomes the geometric mean of α over all channel
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Table 4.1. Ergodic ratio of true and predicted power for a UCA consisting of 3 λ/2-dipoles spaced by d1 [68].
(©IEEE 2018)

Taking XBS into account Not taking XBS into account
αerg 1 (by design) 0.912 (≈ −0.40 dB)
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Fig. 4.3. Ergodic downlink rates of a 3 antenna UCA consisting of λ/2-dipoles spaced d1 with and without
neglecting XBS [68]. (©IEEE 2018)

realizations. Firstly, let us consider a ULA consisting of hypothetical isotropic radiators spaced by
λ/2 at the base station. Fig. 4.1 shows αerg. It decreases as the number of antennas increases and
saturates around 95.5% ≈ −0.2 dB, i.e., on average 0.2 dB less power is radiated than predicted
when the mutual reactance is neglected. For one stream, this translates to a loss of about 0.066 bpcu
(bits per channel use), but Rerg,hyp at high SNR is even 0.081 bpcu smaller than Cerg (Fig. 4.2) due
to the suboptimal beamforming vector.

Secondly, let us consider a UCA consisting of 3 λ/2-dipoles spaced by d1 ≈ 0.42967λ, the first
zero of the mutual resistance of lossless and infinitely thin λ/2-dipoles. As the distance between all
dipoles is identical, the mutual resistance between every pair of them is zero. For more antennas,
it is not possible to find a planar array with zero mutual resistance in general, since the zeros of
the mutual resistance are not equidistant, in contrast to hypothetical isotropic radiators. Here, the
impact of neglecting the mutual reactance is even larger, as Rerg,hyp at high SNR is 0.14 bpcu smaller
than Cerg, and the smaller than predicted radiated power accounts for about 0.40 dB ≈ 0.13 bpcu
(c.f Table 4.1), i.e., it dominates over the impact of the suboptimal beamforming vector fhyp here
(Fig. 4.3), just as for the ULA (Fig 4.2).

4.2.2 Uplink
Consider receiving from a single antenna mobile with a hypothetical isotropic radiator using the
same model as in the downlink, (2.18), but with the transposed channel z, i.e., x is a scalar x,
h = H and ĥ = Ĥ . The receiver will use the matched filter

g = h/∥h∥2, x̃ = gHy, (4.20)

which achieves the capacity CUL,erg. Namely for a given PT,

CUL,erg(PT) = E
[
log2

(
1 + ∥h∥22PT/σ

2
ϑ

)]
. (4.21)
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The mutual reactance makes the noise between the antennas correlated according to the model for
Rη from Section 2.2.1, while it is uncorrelated with zero mutual reactance, as the mutual resistance
of the arrays we consider is zero as well. Let R̂η be the covariance matrix of η the base station
assumes when it does not take the mutual reactance into account, i.e., the entries of η are uncorrelated
and R̂η is diagonal. Let us assume that the base station estimates this matrix without any error.
According to (2.19) and with the mapping

ŷ = σϑ/
√
RR̂−1/2

η uL, R̂η = diag(Rη), (4.22)

the information theoretic model when not taking the mutual reactance into account is

ŷ = ĥx+ ϑ̂, ĥ = σϑR̂
−1/2
η DB−H/2,

ϑ̂ ∼ NC(0
√
W,Rϑ̂), Rϑ̂ = R̂−1/2

η RηR̂
−H/2
η ,

(4.23)

although ϑ̂ is expected to be white noise. After applying the matched filter

ĝ = ĥ/∥ĥ∥2, ˜̂x = ĝH ŷ, (4.24)
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the rate when not taking the mutual reactance into account is

RUL,erg(PT) = E
[
log2

(
1 + PT∥ĥ∥42/(ĥHRϑ̂ĥ)

)]
. (4.25)

Let us consider the impact of ignoring the mutual reactance on the rates in the uplink for the same
base station antenna arrays as in Section 4.2.1. As in the downlink, the ergodic rates CUL,erg and
RUL,erg are computed by a Monte Carlo simulation over 1000 channel realizations, c.f. Fig. 4.4
for the ULA and Fig. 4.5 for the UCA. Compared to the downlink, there is a smaller gap between
ergodic capacity and rate when the mutual reactance is neglected, since there is only a loss due to
the suboptimal equalizer ĝ, but no difference in the radiated power, i.e., PT,p = PT as the mobile
only has a single antenna.

4.3 Impact on Arrays with a Small Mutual Resistance
In the previous section, we have considered lossless antenna arrays with identical antenna elements
at the base station, where the mutual resistance between the elements is zero. As isotropic radiators
are hypothetical, other types of antennas need to be used in practice, but in general arrays consisting
of these antennas do not have zero mutual resistance, but some (small) mutual resistance since the
zeros of the mutual resistance are not equidistant in general. Thus in this section, we want to consider
more practical antenna arrays with small mutual resistance. The following analysis also applies if it
is not small, but that would lead to different simulation results. The impedance matrix of the array
can be written

ZBS = RBS + jXBS, (4.26)
where RBS is the mutual resistance matrix, which is symmetric positive semidefinite.

In this case, the (instantaneous) radiated power is

PT,i = iH Re (ZBS) i = iHRBSi, (4.27)

when the antennas in the array are excited by ideal current sources i. Note that due to the mutual
resistance, PT,i is still directly proportional to ∥i∥22, but contrary to (4.12), the proportionality factor
is not constant and different from Rr in general.

If more realistic linear power amplifiers are used to excite the antenna array, similarly to (4.13),
the (instantaneous) radiated power can be computed as

PT,i =
uH

GBuG

R
, B = R (ZBS +R)−H RBS (ZBS +R)−1 , (4.28)

similarly to (4.13), and PT according to (4.15), but with this updated definition of PT,i, similarly to
(2.16). If the base station neglects the mutual impedance, i.e., it assumes that ZBS is diagonal, it
predicts the (hypothetical instantaneous) radiated power via (4.14) and (4.16), similarly as when the
mutual reactance is neglected for an array with zero mutual resistance.

We will compare the results for the ULA consisting of hypothetical isotropic radiators spaced by
λ/2 with one consisting of λ/2-dipoles. For the latter,

max
k,l
k ̸=l

|[RBS]k,l| ≈ 0.171 [RBS]k,k (4.29)

holds for N = 2, . . . , 64, and the maximum is attained for |k − l| = 1, i.e., the mutual resistance is
indeed small.
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Fig. 4.6. Ergodic ratio αerg of true and predicted power for a ULA consisting of λ/2-dipoles spaced by λ/2
in an i.i.d. channel [52].
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neglecting the mutual impedance in an i.i.d. channel [52].

4.3.1 Downlink

In the downlink, we consider the transmission of the base station to a mobile with a single λ/2-dipole
as an antenna, similarly as in Section 4.2.1. Firstly, consider the ergodic ratio of true and predicted
radiated power αerg. Let us compare Figs. 4.1 and 4.6. Note that not taking XBS into account and
not taking the mutual impedance into account is the same for the ULA consisting of hypothetical
isotropic radiators, since its mutual resistance is zero. We see that for this type of array, αerg saturates
around 95.5% already at about N = 7, but with λ/2-dipoles, it saturates for larger N and reaches
about 102.3%. That means, for larger N , on average a slightly different amount of power than
predicted is radiated by the arrays – about 0.2 dB less for the former (see Section 4.2.1) and about
0.099 dB more for the latter.

Secondly, consider the ergodic capacity Cerg, the hypothetical rate Rerg,hyp and the power cor-
rected ergodic rate Rerg,pc for a given power P . Consider the ULAs with N = 64 antennas. Fig. 4.2
corresponds to that consisting of hypothetical isotropic radiators and shows that Rhyp is 0.081 bpcu,
smaller than Cerg at high SNR, where using PT,p results in a smaller average radiated power that
accounts for 0.066 bpcu, which is exactly the gap between Rerg,hyp and Rerg,pc at high SNR, see
Section 4.2.1. That means, here the influence of the smaller average radiated power dominates over
the suboptimal beamforming vector. Let us compare that to the ULA consisting of λ/2-dipoles, see
Fig. 4.7. Here Rerg,hyp is slightly larger than Cerg – 0.0061 bpcu at high SNR – due to the larger
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average radiated power. The gap between Rerg,pc and Cerg is 0.025 bpcu, i.e., the effect of the larger
radiated power and that of the suboptimal beamforming vector are about the same scale.

The gap between Cerg and Rerg,pc and between Rerg,pc and Rerg,hyp is a bit larger for the ULA
consisting of λ/2-dipoles than for that consisting of isotropic radiators, but still on the same order of
magnitude. However, neglecting the mutual impedance leads to a larger instead of a smaller radiated
power and Rerg,hyp for the former.

4.3.2 Uplink
In the uplink, the mobile transmits over the transposed channel, similarly to Section 4.2.2. When we
compare the results for ergodic capacity and rate neglecting the mutual impedance for both arrays
(see Figs. 4.4 and 4.8), the rates are almost the same. In both cases, RUL,erg is a little bit smaller than
CUL,erg, about 0.0058 bpcu with the isotropic radiators and 0.010 bpcu with the λ/2-dipoles at high
SNR. The gap between them only results from a suboptimal equalizer that does not take into account
the noise correlations between the antennas, introduced by the mutual impedance. The predicted
and (true) radiated power are the same, as the mobile only has a single antenna. That means, also in
the uplink, the gap for the ULA consisting of hypothetical isotropic radiators and that for the ULA
consisting of λ/2-dipoles are on the same order of magnitude.

So far, we have only considered an i.i.d. channel. In the next section, we consider a more realistic
channel model.

4.4 Simulation Results with QuaDRiGa
In this section, we consider the QuaDRiGa channel model, see Section 3.5. QuaDRiGa assumes
that isotropic radiators are vertically polarized. The orientation of the ULA at the base station is
such that it is parallel to the ground, centered and perpendicular to one of the long diagonals of
the hexagon. In this section, we compare the two ULAs we already compared for the i.i.d. channel:
one consisting of isotropic radiators and one consisting of λ/2-dipoles. All antenna elements are
oriented vertically.

In Figs. 4.9 and 4.10, we can see that compared to Figs. 4.1 and 4.6, αerg saturates at lower
values, 91% ≈ −0.41 dB and 93% ≈ −0.32 dB. That means for more realistic channels it may
be more important not to neglect the mutual impedance than in an i.i.d. channel. Interestingly for
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Fig. 4.9. Ergodic ratio αerg of true and predicted power for a ULA consisting of isotropic radiators spaced by
λ/2 in a UMa channel [52].
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Fig. 4.10. Ergodic ratio αerg of true and predicted power for a ULA consisting of λ/2-dipoles spaced by λ/2
in a UMa channel [52].

the ULA of λ/2-dipoles, αerg < 1 in the UMa channel model, but αerg > 1 for N ≥ 4 in the i.i.d.
channel model, see Figs. 4.6 and 4.10.

Let us assume that the base station radiates 10W in a channel bandwidth of 20MHz. If the power
is equally spread among this bandwidth, 7.5mW ≈ −21 dBW are radiated on one subcarrier with
15 kHz bandwidth. Similarly a transmit power of the mobile of 100mW corresponds to 75 µW ≈
−41 dBW.

Compared to the i.i.d. channel, significantly more power is needed to achieve the same ergodic
capacity or rate, as σz for the i.i.d. channel (see (4.17)) at 3.5GHz center frequency corresponds to
a line-of-sight (LOS) channel in free space between two parallel λ/2-dipoles spaced roughly 85.7m.
In the UMa model however, there is additional attenuation since mobiles can be indoor or have
non-LOS reception. Also, the mobiles can be further away from the base station, between 35m and
about 289m. This leads to a large variation in the rates, see Fig. 4.15 for the cumulative distribution
function of the downlink capacity and rates for N = 64. Note that this distribution is only for one
narrowband subcarrier and as the channel is frequency selective due to multi-path propagation, for
one channel realization, other subcarriers may support a significantly higher or smaller rate, so a
good resource allocation is needed.
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Fig. 4.11. Ergodic downlink rates of a ULA consisting of 64 isotropic radiators spaced by λ/2 with and
without neglecting the mutual impedance in a UMa channel (modified from [52]).
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neglecting the mutual impedance in a UMa channel (modified from [52]).

When we compare Figs. 4.11 and 4.12, and 4.13 and 4.14, we can see that the ergodic rates and
capacities are higher with the λ/2-dipoles at the base station, which means that the directivity of the
λ/2-dipoles is beneficial in the UMa channel model.

In the downlink the gap between Cerg and Rerg,hyp at high SNR is significantly larger than in
the i.i.d. channel model – 0.16 bpcu for the isotropic radiators and 0.17 bpcu for the λ/2-dipoles
compared to 0.081 bpcu and 0.0015 bpcu respectively. In power, at P = 7.5mW, this translates to
a loss of 0.43 dB and 0.37 dB, which is not negligible.

In the uplink, the gap between CUL,erg and RUL,erg at high SNR is larger as well, 0.0095 bpcu for
the isotropic radiators and 0.014 bpcu for the λ/2-dipoles compared to 0.0058 bpcu and 0.010 bpcu
respectively. At PT = 75 µW, this translates to a loss of 0.017 dB and 0.030 dB respectively, which
might be negligible in practice.

4.5 Conclusion
In this chapter, we have computed the mutual reactance of hypothetical isotropic radiators based on
passivity and the dispersion relations, and we have investigated the influence of the mutual impedance
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on antenna arrays with zero mutual resistance, and on arrays with a small mutual resistance. We have
found that in receive mode, the mutual impedance makes the noise correlated between the antennas,
and in transmit mode it changes the amount of radiated power when they are driven by linear radio
frequency amplifiers instead of ideal current sources. We have also compared the achievable rates
when neglecting the mutual impedance and the capacities numerically in an i.i.d. channel. The
impact of neglecting the mutual impedance on the radiated power and on the rates in the scenarios
considered is relatively small. The impact for the ULAs consisting of λ/2-dipoles on the ergodic
rates is a bit larger compared to that consisting of hypothetical isotropic radiators, but still on the
same order of magnitude.

Furthermore, simulation results for a more realistic channel model without mobility, based
on the TS 38.901 UMa channel model in QuaDRiGa, show that the effect of neglecting the mu-
tual impedance is larger there, than in an i.i.d. channel, and that the losses in the downlink are
non-negligible. Also in with these channels, the losses with the λ/2-dipoles are larger than with
hypothetical isotropic radiators.

The impact of neglecting the mutual impedance on the radiated power and on the rates should be
taken into account. The power-coupling matrix and the noise correlations it creates can be determined
offline at the design stage, as they do not depend on the time-variance of the mobile communication
channel.
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5. Limits of Array Gain

5.1 Introduction

In this chapter, we consider the transmit and receive antenna array gain of massive MIMO systems.
In particular, we look at their dependence on the number of antennas in the array, and the antenna
spacing for uniform linear and uniform circular arrays. It is known that the transmit array gain
saturates at a certain antenna spacing, but the receive array gain had not been considered. With our
physically consistent analysis based on the Multiport Communication Theory, we show that the
receive array gain does not saturate, but that there is a peak at a certain antenna spacing when there
is no decoupling network at the receiver. As implementing a decoupling network for massive MIMO
would be almost impossible, this is a reasonable assumption. Furthermore, we analyze how the array
gain changes depending on the antenna spacing and the size of the antenna array and derive design
recommendations.

Massive MIMO is an important building block of future wireless systems, as, depending on the
scenario, a larger number of base station antennas is believed to increase the achievable transmit and
receive array gain, i.e., it allows for a larger SNR at the same transmit power, a lower bit error ratio
by exploiting diversity, or to serve more mobiles at the same time. Indeed, the seminal paper [4] that
introduced massive MIMO is based on the assumption that there is an unlimited number of base
station antennas. However for realistic systems, does increasing the number of base station antennas
always improve performance?

In [13], it has been shown for a UCA at the base station transmitting to a mobile over an LOS
channel (without reflections) that in general the minimum energy per bit Eb,min, which is inversely
proportional to the transmit array gain, decreases as the number of antennas at the base station
increases, but at a certain number of base station antennas, Eb,min saturates. The analysis is based
on Multiport Communication Theory [8, 9], which is in turn based on circuit theory and ensures
that the analysis is physically consistent.

One contribution of this chapter is to extend the analysis to the receive array gain. We also
want to extend the analysis to antenna arrays, where the antenna separation is fixed rather than the
array size. Note that transmit and receive array gain are different, unless the noise at the receiver
fulfills certain properties [8], as we define array gain as the ratio of SNRs instead of powers. Another
contribution of this chapter is to look at how the array gain changes if both antenna spacing and
array size vary and derive design recommendations. The influence of mutual coupling on transmit
array gain has already been investigated early [75]. Experimental results were provided in [76], but
only for small arrays and without investigating the difference between transmit and receive array
gain.
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URAs are the most common antenna array type employed in today’s cellular mobile systems at
the base station site. They consist of several rows and columns. Typically the antenna elements are
realized as dual-polarized elements with ±45◦ polarization. A novel dual-polarized antenna element
on a substrate for this application can be found, e.g., in [77]. In the first part of this chapter, we
analyze the transmit array gain for ULAs and UCAs in the far field, where all antennas are polarized
vertically. In the second part, we want to extend the analysis to URAs, and to dual-polarized crossed
λ/2-dipoles with ±45◦ polarization.

The analysis of vertically polarized ULAs and UCAs has been presented at the 2020 IEEE
Wireless Communications and Networking Conference (WCNC) [78] (©IEEE 2020) and that of
ULAs and URAs with dual-polarized dipoles at the 24th International ITG Workshop on Smart
Antennas (WSA 2020) [23].

5.2 Theory
Similarly to [13], we consider a multi-antenna transmitter and a single antenna receiver, and do
not use the unilateral approximation, because the currents in the receive antennas do influence the
transmit antennas, so that the near field is important to the analysis. See [8, 9], for more details on
the unilateral approximation. In addition, we also consider the reverse link with a single antenna
transmitter and a multi-antenna receiver.

Consider the circuit model for a setup with N transmit and M receive antennas, see Fig. 5.1,
which additionally models losses in the antennas compared to Fig. 2.2. Power matching is employed
at the transmitter, i.e.,

ZG = Z∗
A. (5.1)

Let
Z11,r = Z11 + γRrI, Z22,r = Z22 + γRrI, (5.2)

where the dissipation resistance γRr, which is connected in series, is used to model the losses in the
antennas, see Fig. 5.1. The impedance matrices seen at the input and the output are

Zin =Z11,r −Z12(ZLI +Z22,r)
−1Z21, (5.3)

Zout =Z22,r −Z21(ZGI +Z11,r)
−1Z12. (5.4)

The communication system in Fig. 5.1 can then be described using the physical model, which is
based on [13] and (2.17), but where the following matrices are redefined compared to Section 2.2.1
to take into account the losses:

Rη =
|ZL|2
RL

(Zout + ZLI)
−1Q(Zout + ZLI)

−H (5.5)

B = RG(Zin + ZGI)
−H Re(Zin)(Zin + ZGI)

−1, (5.6)
D = ZL(Z22 + ZLI)

−1Z21(Zin + ZGI)
−1, (5.7)

Q = σ2
uI + σ2

iZoutZ
H
out − 2σuσi Re(ρ

∗Zout) +RA, (5.8)
RA = 4kBTA∆f Re(Zout). (5.9)

The corresponding information-theoretic model is the same as in (2.18), but the specific B1/2 and
R

1/2
η to transform between the physical model (2.17) and the model (2.18) analogously to (2.21)
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and (2.22), need to be redefined as well,

B1/2 =
√
RG(Zin + ZGI)

−H Re(Zin)
1/2 s.t. Re(Zin) = Re(Zin)

1/2Re(Zin)
1/2, (5.10)

R1/2
η =

ZL√
RL

(Zout + ZLI)
−1Q1/2. (5.11)

This gives the information theoretic channel

H = σϑQ
−1/2Z21,eff Re(Zin)

−1/2, (5.12)
Z21,eff = Z21 −Z21(ZGI +Z11,r)

−1Z12(ZLI +Z22,r)
−1Z21, (5.13)

where Z21,eff is the effective mutual impedance matrix between transmitter and receiver.

5.2.1 Receive Array Gain

For the receive array gain, we consider an uplink scenario with a mobile with one antenna transmitting
to a base station with NBS antennas, i.e., N = 1,M = NBS. This implies that H becomes a vector
h := H and similarly z21,eff := Z21,eff and Zin := Zin. The receive array gain is defined as [8]

ARx :=
max SNR

SNR|M=1,γ=0

⏐⏐⏐⏐
PT=const.

, (5.14)

where

maxSNR =
∥h∥22
σ2
ϑ

PT =
zH
21,effQ

−1z21,eff

Re(Zin)
PT (5.15)

is obtained by use of a matched filter at the receiver and the SNR for M = 1 lossless receive antennas
is obtained in a similar way. Then

ARx =
Re(Zin,0)

Re(Zin)

zH
21,effQ

−1z21,effσ
2
q,0

|z21,eff,0|2
, (5.16)

where

Zin,0 := Zin|M=1,γ=0, σ2
q,0 := Q|M=1,γ=0, z21,eff,0 := z21,eff |M=1,γ=0. (5.17)

5.2.2 Transmit Array Gain

For the transmit array gain, we consider a downlink scenario with a base station with NBS antennas
transmitting to a mobile with one antenna, i.e., N = NBS,M = 1. Here, h := HT and z21,eff :=
ZT

21,eff to make them column vectors and Q becomes a scalar σ2
q . The transmit array gain is defined

as [8]

ATx :=
max SNR

SNR|N=1,γ=0

⏐⏐⏐⏐
PT=const.

, (5.18)

where

maxSNR =
∥h∥22
σ2
ϑ

PT =
zH
21,eff Re(Zin)

−1z21,eff

σ2
q

PT (5.19)
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is obtained by using a matched filter at the transmitter and the SNR for N = 1 lossless transmit
antennas is obtained in a similar way. Then,

ATx =
Re(Zin,0)

σ2
q

zH
21,eff Re(Zin)

−1z21,effσ
2
q,0

|z21,eff,0|2
, (5.20)

where Zin,0, σ
2
q,0 and z21,eff,0 are defined as in (5.17), but for N = 1, γ = 0.

Considering the transmit array gain is equivalent to considering the minimum transmitted energy
per bit Eb,min as in [13]. This can be shown as follows: by adding the losses in the antennas to the
model in [13] and for the more general noise distribution assumed in this paper,

Eb,min =
σ2
q ln 2

∆fzH
21,eff Re(Zin)−1z21,eff

. (5.21)

This means
ATx ∝ E−1

b,min. (5.22)
Note that transmitting with Eb,min leads to the well-known minimum received energy per bit
σ2
ϑ ln(2)/(∆f), see [79].

5.2.3 Channel for a Single Polarization
In Sections 5.3 and 5.4, we assume that all antennas at the base station and the mobile are parallel
infinitely thin but lossless λ/2-dipoles in series with the dissipation resistance γRr. Then for an LOS
channel, the entries of Z can be computed according to the analytical formulas using the sinusoidal
current approximation, see Section 2.4, including z21.

However, for a receiver located in the far field in direction (θ, φ), where θ and φ are the zenith
and azimuth angles of the usual spherical coordinate system, see Fig. 5.2,

z21 = Rra(θ, φ), (5.23)

where a(θ, φ) is the steering vector pointing into direction (θ, φ), i.e.,

an(θ, φ) = e−j 2π
λ
rT
n r, r =

⎡⎣cos(φ) sin(θ)sin(φ) sin(θ)
cos(θ)

⎤⎦ , (5.24)

and rn is the position vector of the n-th antenna, see e.g., [80]. We choose the coordinate system
such that the origin coincides with the center of the array. The λ/2-dipoles are oriented parallel to
θ = 0, the ULAs are oriented such that they lie in φ = π/2 and the UCAs are oriented such that one
antenna lies in φ = 0.

Extending the consideration to the far field,

Zin,0 → ZA, z21,eff → z21, Zin → Z11,r,

σ2
q → σ2

q,0, z21,eff,0 → z21,0, Zout → Z22,r,
(5.25)

where z21 and z21,0 are defined analogously to z21,eff and z21,eff,0. That means, ATx in the far field
is [8]

ATx = Rr
zH
21Re(Z11,r)

−1z21

|z21,0|2
. (5.26)

Different arrays vary in Re(Z11,r) and in a(θ, φ). The former is Toeplitz for ULAs and circulant for
UCAs.
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Fig. 5.2. URA lying in the yz-plane in the coordinate system [23].

5.2.4 Extension to Dual-Polarized Arrays

For arrays with dual-polarized antennas, consider the transmit gain for vertically and horizontally
polarized receivers, GV,Tx and GH,Tx, with the corresponding zV,21 and zH,21. They are defined as

GV/H,Tx :=
max SNR

SNR|N=1,γ=0,iso

⏐⏐⏐⏐
PT=const.

= Rr

zH
V/H,21Re(Z11,r)

−1zV/H,21

|ziso,21,0|2
, (5.27)

which can be derived using the same steps as for (5.26), but with SNR|N=1,γ=0,iso being the SNR for
a transmitter with a single lossless isotropic radiator matching the receiver’s polarization and having
the same radiation resistance Rr as the dual-polarized antennas. ziso,21,0 is the corresponding channel.
Furthermore, we need to consider polarization in the steering vectors for a receiver with horizontal
and vertical polarization, aH(θ, φ) and aV(θ, φ). They are related to zV,21 and zH,21 similarly as in
(5.23). In our coordinate system, the horizontal and vertical polarization at the transmitter can be
described using the unit vectors ey and ez respectively. Similarly, at the receiver, they are described
by eφ and −eθ.

Let tn be the tangent vector describing transmit antenna n’s polarization and fn(θ, φ) its radiation
pattern. The radiation pattern of λ/2-dipoles is given in Section 2.4. The steering vectors’ entries are

aH,n(θ, φ) = e−j 2π
λ
rT
n rfn(θ, φ)t

T
neφ(θ, φ), (5.28)

aV,n(θ, φ) = −e−j 2π
λ
rT
n rfn(θ, φ)t

T
neθ(θ, φ). (5.29)

In Section 5.5, we assume that the antennas at the base station areNBS dual-polarized crossed λ/2-
dipoles, where N = 2NBS. Z11 can be computed according to the sinusoidal current approximation:
the off-diagonal elements using the formulas in Section 2.5, and the elements on the diagonal are
the self-impedance of λ/2-dipoles, see Section 2.4.

5.3 Numerical Results with Parallel λ/2-dipoles
Consider the distance dbm between the base station and the mobile, see Fig. 5.3. In the following
section,

dbm ∈ {10i/2λ | i = 4, . . . , 8}. (5.30)

Table 5.1 shows the value of these distances for the following frequency bands:
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array size
dbm

mobile

(b) ULA transmitting into frontfire direction.
Fig. 5.3. Scenarios [78]. (©IEEE 2020)

Table 5.1. Overview of the distances between the base station and the mobile at the different frequen-
cies [78]. (©IEEE 2020)

dbm @ fc = 680.5MHz
(n71 uplink)

@ fc = 3.55GHz
(n78)

@ fc = 27.925GHz
(n261)

102λ 44.1m 8.44m 1.07m

102.5λ 139m 26.7m 3.39m

103λ 441m 84.4m 10.7m

103.5λ 1.39 km 267m 33.9m

104λ 4.41 km 844m 107m

Table 5.2. Overview of 3GPP 38.901 channel model parameters [78]. (©IEEE 2020)

RMa UMa UMi
Base station altitude 35m 25m 10m

Mobile altitude 1.5m between
1.5m
and 22.5m

Minimum horizontal distance 35m 10m

Inter site distance 5000m 500m 200m

⇒ Minimum distance 48.4m 35.1m 10.0m

⇒ Maximum distance 2.89 km 290m 116m

• The uplink in LTE (5G NR) band 71 (n71), which spans 663MHz to 698MHz [81, 82], i.e.,
fc = 680.5MHz, which is one of the lowest frequency bands currently supported for mobile
broadband.

• Band n78, from 3.3GHz to 3.8GHz [82], i.e., fc = 3.55GHz.
• 5G NR mmWave band n261, which spans 27.5GHz to 28.35GHz [83], i.e. fc = 27.925GHz.
All three bands are among the first for 5G NR deployment.
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Let us compare these distances to the ones in the 3GPP 38.901 channel model [12]. For band n71,
consider the rural macro (RMa), for band n78 the UMa and for band n261 the urban micro (UMi)
scenario. The base station altitude, mobile height, minimum 2D distance and inter site distance
are as shown in Table 5.2. According to these parameters, a dbm between 100λ and 10000λ almost
entirely covers the various scenarios. In the remainder of this section, the various frequency bands
will be analyzed jointly with all distances normalized to λ.

In this section, we consider ARx and ATx according to (5.16) and (5.20) for reception and
transmission from and to frontfire direction (θ = π/2, φ = 0). We use the measured noise parameters
from [66, Tables IV & VI], i.e., in particular ZL = (186− 31.6j) Ω, and assume that the loss factor
γ = 10−3.

5.3.1 Fixed Distance
Consider a ULA with a fixed antenna separation d = λ/2 and between NBS = 1 and NBS = 10000
base station antennas transmitting into the frontfire direction, see Fig. 5.3b. ARx and ATx for this
scenario are shown in Figs. 5.4 and 5.5. They are almost identical here. According to conventionally
modeled systems, which neglect mutual coupling, we expect

ARx = NBS, ATx = NBS. (5.31)

However, when NBS increases from 1, the array gain becomes slightly larger than NBS. Furthermore
for a larger NBS, the array gain starts to saturate, with saturation occurring at a lower NBS the smaller
the dbm. For dbm = 100λ, the onset of saturation starts at values as low as NBS = 100 to 300,
corresponding to an array size between 49.5λ and 149.5λ, whereas for dbm = 103.5λ only the very
start of the saturation near NBS = 104 can be seen and for dbm = 104, the array gain only saturates
for an even larger value of NBS. When we compare the array size at which saturation starts to dbm,
we can see that the array size there is on the same order of magnitude as dbm. This indicates that
saturation occurs as the additional antennas’ path-loss increases so they contribute less. For typical
cellular systems, whose array size is significantly smaller than the distance between the base station
and the mobile, this is not a practical limitation.
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5.3.2 Fixed Radius

Consider a ULA with array size 40λ and a UCA with radius r = 20λ, see Fig. 5.3. As NBS

increases, the antenna separation d decreases. ARx and ATx are shown in Figs. 5.6 to 5.9 for different
distances between the base station and the mobile. The curves for the ULA show that even for values
slightly greater than NBS = 10 antennas, ARx and ATx deviate from the linear increase expected
from conventionally modeled systems, see (5.31). For the UCA, for d > 1.26λ (corresponding to
NBS ≤ 100), (5.31) holds approximately. Technically there is a small gap to NBS in the array gain
when the receiver is close to the base station, see the curve for dbm = 100λ.

However for smaller distances between the antennas, the trend for ARx and ATx is different.
Considering the former, for the ULA there is a maximum at about 71 antennas (d ≈ 0.571λ) and
for the UCA at about 275 antennas (d ≈ 0.457λ), and if the number of base station antennas is
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increased further, ARx decreases. Considering ATx, it (almost) saturates at about 68 antennas for the
ULA and 275 antennas for the UCA. If the number of base station antennas is increased further, ATx

only increases slightly. Notably, the number of antennas for which the maximum ARx is obtained,
and for which ATx starts to saturate, is (almost) independent of the distance to the mobile. There is
a saturation, as the achievable array gain for a certain array size is bounded. The sharp increase in
array gain for the ULA at about d = λ can be explained by an increasing number of antennas, and a
decreasing antenna separation at the same time, compared to [8].

In Fig. 5.10, the receive array gain for the UCA is shown for the case when there is only the
noise of the antennas, i.e., σu = 0V, σi = 0A. In this case, the curves for ARx are (almost) the
same as the curves for ATx in Fig. 5.9, i.e., the coupling of the noise of the LNA and other analog
components between the receive chain causes the decrease in ARx.
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5.4 Numerical Results for the Array Gain in the Far Field

In this section, we consider the transmit array gain in the far field for θ = π/2, see (5.26), for ULAs
and UCAs with various sizes and numbers of antennas NBS. Firstly, consider the ULA in three
scenarios: beamforming into the endfire (φ = 90◦), into the φ = 60◦ and into the frontfire direction
(φ = 0◦), see Figs. 5.11 to 5.13. The cut for frontfire direction with an array size of 40λ corresponds
to Fig. 5.7 with dbm → ∞λ. We can see that ATx depends on which directions the beamforming
vector points to. Consider a fixed antenna array size. Then for the frontfire direction, saturation
starts slightly below d = λ, but for the 60◦ direction, saturation only starts slightly below d = 0.54λ
and for the endfire direction saturation starts slightly below d = λ/2. Further, we can observe that
the larger the NBS, the closer the saturation starts to d = λ, d ≈ 0.54λ and d = λ/2 respectively.



70 5. Limits of Array Gain

20
40

60
80

100
120

10
20

30
40

50
60

70
80

2

130

1

80

0

100

200

300

400

500

600 0.4λ

0.46λ

1λ

1.5λ

2λ
2.5λ

NBSarray size in λ

A
T
x

Fig. 5.11. ATx for a ULA transmitting into endfire direction (φ = 90◦), where the lines for d = 0.4λ to
0.46λ are in 0.01λ increments [78]. (©IEEE 2020)

To maximize ATx the array should be positioned so that its endfire direction points to the angle of
interest. If this is not possible, to optimize ATx for angles −φ0 ≤ φ ≤ φ0, where φ0 is the maximum
angle of interest that the array is transmitting to, NBS should be chosen such that d is at a peak for
φ = φ0. The maximum peak is slightly below d = λ/2 to d = λ depending on φ0 – unless the loss
factor γ is too large. On the one hand, if NBS is chosen to be slightly smaller, ATx falls into a valley
for |φ| close to φ0. On the other hand, NBS is chosen to be slightly larger, either ATx only increases
slightly for d < λ/2 and ATx becomes more sensitive to tolerances in the position of the antennas
in the array, or ATx decreases again (d > λ/2).

Secondly, consider a UCA with beamforming into a direction that lies on the line between an
antenna and the center of the array (w.l.o.g. φ = 0), see Fig. 5.14. Here, similarly the cut for an array
size of 40λ corresponds to Fig. 5.9 with dbm → ∞λ. Similarly to the ULA transmitting into the
endfire direction, ATx starts to saturate close to d = λ/2. The UCA behaves differently to the ULA.
For transmission into the plane of the UCA, ATx is independent of φ for an odd NBS, while for an
even NBS it only oscillates slightly with φ. Therefore, for maximum ATx, NBS should be chosen
such that ATx is at the largest peak, i.e., the peak near d = λ/2, unless γ is too large; then the peak
of ATx near d = λ is the largest.

According to the expectation from conventionally modeled systems, (5.31) should hold, but for
the ULA there are significantly larger maximum transmit array gains for front- and especially endfire
(ATx ≈ 219 and 533 for NBS = 130), but also smaller maximum transmit array gains as seen for
φ = 60◦ (ATx ≈ 99 for NBS = 130). For the UCA, there is not such a large direction-dependent
variation, but the maximum is ATx ≈ 152 for NBS = 130.
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These figures could be used for further evaluations, e.g., whether using a single UCA for a
base station deployment rather than non-cooperating ULAs in the typical 3 sectors leads to higher
performance, with the same number of antennas in both scenarios.

Consider for example a ULA that should transmit into all azimuth directions, i.e., φ0 is at its
maximum value, φ0 = 90◦, as the directions with 90◦ < φ ≤ 180◦ are covered by symmetry. Based
on (5.26), the average transmit array gain over all azimuth directions is

ĀTx =
1

2π

2π∫
φ=0

ATxdφ =
Rr

2π|z21,0|2
tr
(
ARe(Z11,r)

−1
)
, A =

2π∫
φ=0

z21z
H
21dφ. (5.32)

For the ULA, the entries of A are given by

Aki =

2π∫
φ=0

exp

(
−j

2π

λ
|k − i|d sin(φ)

)
dφ = 2πJ0

(
2π

λ
|k − i|d

)
, (5.33)

where J0(x) is the Bessel function of the first kind with order 0.
Fig 5.15 shows ĀTx for a ULA transmitting into all azimuth directions with uniform probability.

According to the analysis for transmission into a fixed directionφ, the maximum array gain is expected
slightly below d < λ/2. For NBS = 130, the peak in endfire direction is at about d = 0.46λ, see
Fig. 5.11, whereas for ĀTx the maximum is at about d = 0.49λ. This means that the practical
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design recommendation based on looking into the array gain for a single direction provides a good
approximation for the average array gain over all azimuth directions. Note that the maximum ĀTx is
larger than NBS (ĀTx ≈ 133.9 at NBS = 130), although there is a range of azimuth angles for which
ATx is smaller than NBS, for example at φ = 60◦, see Fig. 5.12. This is overcompensated by those
ranges of φ, where ATx is larger and significantly larger than NBS, such that the maximum ĀTx is
larger than NBS.

5.5 Numerical Results with Dual-Polarized λ/2-dipoles
In this section, we look at a ULA and a URA with ±45◦ dual-polarized crossed λ/2-dipoles. It
is assumed that the URA’s center coincides with the origin of the coordinate system and that the
URA is oriented such that it lies in the yz-plane, and that its columns are parallel to the z-axis. This
means that tn = (ey ± ez)/

√
2. The ULA can also be considered a URA with only a single row.

The URA is assumed to be square with identical column and row antenna spacing d. The ULA’s
array size is d(NBS − 1), and the square URA’s is the length of its diagonal,

√
2d(

√
NBS − 1). Only

d > λ/(2
√
2) + λ/100 is considered to ensure a minimum distance of λ/100 between the tips of

the crossed dipoles, so they do not overlap.

5.5.1 ULA
First, consider the transmit gain for a ULA with dual-polarized dipoles. Fig. 5.16 shows the transmit
gain in frontfire direction with a vertically polarized receiver. The maximum GV,Tx is achieved for d
a bit smaller than λ, or smaller. GV,Tx is roughly Gλ/2ATx, where ATx is computed for the ULA
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with parallel λ/2-dipoles in Fig. 5.13, and Gλ/2 is the gain of a single λ/2-dipole (Gλ/2 ≈ 1.64,
see [36, Ch. 11.5]). When we compare the figures in this section with those in Section 5.4, a pair of
dual-polarized λ/2-dipoles corresponds to one λ/2-dipole. We can draw the same conclusion here
as in Section 5.4 that it is optimal to use an antenna spacing a bit smaller than d = λ or smaller for
the frontfire direction.

For endfire direction, see Fig. 5.20, there is a peak in GV,Tx at d a bit smaller than λ/2: GV,Tx ≈
422 for NBS = 130. This optimum antenna separation is similar as in Section 5.4 with the parallel
λ/2-dipoles. For a horizontally polarized receiver, the transmit gain is zero in endfire direction, as
the polarizations are orthogonal in this direction due to the geometry.

5.5.2 URA with a Fixed Number of Antennas

Second, consider the transmit gain of a 5 x 5 URA with d = λ/
√
2 over (θ, φ), see Fig. 5.18. For

frontfire direction (θ = π/2, φ = 0), GV,Tx = GH,Tx ≈ 72. This direction is at the maximum of the
dipoles’ radiation patterns, so if the mutual coupling is ignored,

GV/H,Tx = Gλ/2NBS (5.34)

is expected, which is about 41 for NBS = 25, but mutual coupling leads to a larger GV,Tx and GH,Tx.
For other directions GTx mostly decreases, as the direction is not at the maximum of at least half of
the dipoles’ radiation patterns. Furthermore, as the transmitter’s dipoles lie in the yz-plane, they
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are orthogonal to the vertically polarized receiver for θ ∈ {0, π}, and to the horizontally polarized
receiver for φ = π/2, so GV,Tx = 0 and GH,Tx = 0 at these angles, respectively. That implies,
GH,Tx = 0 in endfire direction.

5.5.3 URA in Fixed Directions

Third, consider the array gain for the URA with different antenna spacing d and array size. Fig. 5.19
shows GV,Tx in frontfire direction, which is the same for vertically and horizontally polarized
receivers due to symmetry. There is a large peak at about d = 0.7λ for a small number of antennas
that moves closer to d = λ as the number of antennas increases. If we ignore mutual coupling, we
would expect that (5.34) holds, which is about 236 for NBS = 144, but here GV,Tx ≈ 662, which
is even larger compared to the ULA, see Fig. 5.16. For larger antenna separations, GV,Tx quickly
decreases and then increases again, but not to the same level as the large peak.

For a receiver in φ = 60◦ direction and vertical polarization, see Fig. 5.21a, there are two peaks
with almost the same height, one close to d = λ (GV,Tx ≈ 157 for NBS = 144) and the other one
close to d = 1.5λ (GV,Tx ≈ 159 for NBS = 144). Both of them are not nearly as high as the one
in frontfire direction. It is expected that it is not as large, as this direction is not at the maximum
of the dipoles’ radiation patterns. Between the peaks, there is a large variation in transmit gain,
e.g., between d = λ and d = 1.5λ it can be as low as about 102 for NBS = 144. For a horizontally
oriented receiver, see Fig. 5.21b, the largest peak is a bit below d = λ/2, and only about half as high
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Fig. 5.18. Transmit gain for a URA with 5 × 5 dual-polarized λ/2-dipoles with d = λ/
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ing [23].

as those for vertical polarization (GH,Tx ≈ 76 for NBS = 144). There are further peaks for larger d,
but GH,Tx decreases rather quickly to around 35 at d ≈ 2.5λ and NBS = 144.

For a receiver in endfire direction, GH,Tx = 0 as expected as the transmitter’s and receiver’s
polarization(s) are orthogonal. In vertical polarization, see Fig. 5.20, there are large peaks for d
a bit smaller than λ/2, λ, and 1.5λ, but the largest peaks are at d a bit smaller than 2λ and 2.5λ
(GV,Tx ≈ 108 and GV,Tx ≈ 104 for NBS = 144 respectively).

Therefore, for maximum gain, the URA should be oriented such that the direction of interest is
close to the frontfire direction. In particular there should not be any direction of interest close to
the endfire direction with a horizontally polarized receiver. If there is only interest in the frontfire
direction, the optimum d is a bit smaller than λ, which may be as small as 0.7λ for small NBS. This
choice is also a good compromise for other directions of interest.
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Fig. 5.20. Transmit gain for a square URA with dual-polarized λ/2-dipoles transmitting into endfire direction
(θ = π/2, φ = π/2) with a vertically polarized receiver, where the curves for d = 0.4λ to λ are in 0.05λ
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(a) Vertically polarized receiver.
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(b) Horizontally polarized receiver.
Fig. 5.21. Transmit gain for a square URA with dual-polarized λ/2-dipoles transmitting into φ = 60◦

direction (θ = π/2), where the curves for d = 0.4λ to λ are in 0.05λ increments [23].
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5.6 Conclusion
Firstly, we have shown for two different massive MIMO scenarios, one with a fixed distance between
the antennas and one with a fixed size of the array, that the transmit array gain saturates above a
certain number of antennas – contrary to the expectation of a linear increase with the number of
antennas when mutual coupling is neglected. Similarly, the receive array gain saturates when there
is only thermal noise from the antennas at the receiver. However, if there is noise from the LNA and
other components in the receive chains and no decoupling network, as it would be almost impossible
to implement for massive MIMO, the coupling of this noise between the receive chains leads to a
maximum of the receive gain for a certain number of antennas, and a decreasing receive gain for a
larger number of antennas. Therefore it is essential to take mutual coupling into account in the design
of large scale massive MIMO systems because otherwise, large array gains, which are unphysical,
may be predicted. Secondly, we have derived practical design recommendations for ULAs and
UCAs: ULAs should be oriented such that their endfire direction points in the direction of interest,
and for both ULAs and UCAs, the optimum antenna spacing is slightly below λ/2. Future work
includes the analysis of the array gain in a rich scattering environment. We have further investigated
the transmit gain for ULAs and square URAs with ±45◦ dual-polarized λ/2-dipoles and compared
it to the transmit array gain of ULAs consisting of vertical λ/2-dipoles. The maximum transmit
gain for the URA is achieved in frontfire direction with an antenna spacing that grows from 0.7λ to
below λ with an increasing number of antennas.
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6. Conclusion

We have investigated several aspects of physically consistent modeling of multi-antenna systems.
In Chapter 2, we have reviewed the Multiport Communication Theory. First, we have reviewed the
circuit model of the communication system, as well as matching strategies. Second, we have presented
a simple circuit model without DMNs. Next, we reviewed the physically consistent mapping from
the circuit model to the typical wireless communication model. Furthermore, we have discussed
which matrices change when the mutual coupling is neglected. Moreover, we have reviewed the
properties of infinitely thin, but perfectly conducting λ/2-dipoles, as well as those of UCAs, ULAs
and URAs. In addition, we have derived the self and mutual impedance of infinitely thin dipoles
with arbitrary rotation. Lastly, we have presented a more realistic array consisting of 200 antenna
elements that was simulated in CST Studio Suite.

In Chapter 3, we have investigated the reciprocity of the information theoretic channel in a TDD
system, and have found that by incorporating the physical noise model and the power consistency,
the ordinary (pseudo-physical) reciprocity relation between the uplink and the downlink channel
does not hold. Instead, a physically consistent reciprocity relation holds. Then we have presented a
fair comparison between a system with physically consistent modeling and one with conventional
modeling for i.i.d. channels and for channels generated by QuaDRiGa. The simulations results
show that with conventional modeling, there can be a significant rate loss, and the base station
cannot predict the power it radiates accurately. For multi-user transmission, it also leads to intra-cell
interference between different users. The results also show that compact antenna arrays can lead to a
better performance. We have proposed to take the mutual coupling into account by using two matrix
multiplications that can be determined offline.

In Chapter 4, we have first derived the mutual reactance of hypothetical isotropic radiators
based on passivity and the dispersion relations. Secondly, we have investigated the impact on the
mutual impedance for ULAs with zero mutual resistance and a UCA with zero mutual resistance, all
consisting of hypothetical isotropic radiators. Thirdly, we have investigated the impact for ULAs with
the same antenna spacing, but with λ/2-dipoles, which are more realistic. These ULAs have a small
mutual resistance. The numerical results for i.i.d. channels and channels generated by QuaDRiGa
have shown the impact of neglecting the mutual impedance. This impact should be taken into
account.

In Chapter 5, we have investigated the limits of transmit and receive array gain. Firstly, we have
considered two massive MIMO scenarios, one with a fixed distance between the antennas and one
with a fixed size of the array, and shown that the transmit array gain starts to saturate above a certain
number of antennas, whereas a linear increase with the number of antennas is expected when mutual
coupling is neglected. Furthermore, we have shown that there is a maximum in the receive array
gain due to the noise from the LNA and other components in the receive chains in a system without
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DMNs. Secondly, we have derived design recommendations for ULAs and UCAs with parallel
λ/2-dipoles, and for URAs consisting of dual-polarized λ/2-dipoles.

In conclusion, we have highlighted the importance of physically consistent modeling for wireless
communication systems employing antenna arrays with a large number of antennas and a small
antenna separation at the transmitter and receiver. It allows to exploit the full performance of
the arrays with only a small increase in computational complexity for a given linear multi-port
description of the antenna array. Furthermore, we have shown that compact antenna arrays can lead
to a better performance. Although the numerical results are based on canonical minimum scattering
antennas for an analytic calculation of the impedance matrices of the arrays, the analysis is not
limited to these types of antenna elements.
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Appendix

A1 Consistency Check

Before using the S-parameters and the radiation patterns CST Studio Suite 2021 provides using the
integral equation solver, we have conducted a consistency check of the data, because the numerical
results depend on parameters like the mesh.

Consider an antenna array with N antennas at a certain frequency f that is excited at port n
with an incident wave and terminated at all other ports with R = 50Ω, see Fig. A1. All scattering
parameters are assumed to be w.r.t. a reference impedance of 50Ω. That means the reflection
coefficient of all terminations is zero.

The realized antenna efficiency is defined as

ηr,ant =
Prad

P0

, (A1)

where Prad is the radiated power (in the far field), P0 is the available input power and Pin is the
accepted power. Prad can be computed based on the Poynting vector component in r-direction Sr:

Prad =

θ=π∫
θ=0

2π∫
φ=0

Re(Sr)r
2 sin(θ) dφ dθ =

θ=π∫
θ=0

2π∫
φ=0

|Eθ(r, θ, φ)|2 + |Eφ(r, θ, φ)|2
Z0

r2 sin(θ) dφ dθ

=

θ=π∫
θ=0

2π∫
φ=0

|rEθ(r, θ, φ)|2 + |rEφ(r, θ, φ)|2
Z0

sin(θ) dφ dθ. (A2)

Note that |rEθ(r, θ, φ)| and |rEφ(r, θ, φ)| are independent of r in the far-field. Then the realized
antenna efficiency is

ηr,ant =
1

Z0P0

θ=π∫
θ=0

2π∫
φ=0

(
|rEθ(r, θ, φ)|2 + |rEφ(r, θ, φ)|2

)
sin(θ) dφ dθ. (A3)

With the radiation patterns CST Studio Suite provides, ηr,ant is computed for a regular grid of M +1
samples of θ and L+ 1 samples of φ by numerical integration of the samples of rEθ, rEφ using the
trapezoidal rule. This means that ηr,ant based on the radiation patterns is computed in the following
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Fig. A1. Circuit model of the transmitter for the consistency check at port n of the antenna array.

way:

θm = m
π

M
, m = 0, . . . ,M, φl = l

2π

L
, l = 0, . . . , L, (A4)

ηr,ant =
1

Z0P0

M∑
m=1

θm − θm−1

2
[f(θm) sin(θm) + f(θm−1) sin(θm−1)] , (A5)

f(θ) =
L∑
l=1

φl − φl−1

2

(
|rEθ(r, θ, φl)|2 + |rEφ(r, θ, φl)|2

+ |rEθ(r, θ, φl−1)|2 + |rEφ(r, θ, φl−1)|2
)
.

(A6)

Let us now compute an upper bound on ηr,ant based on the S-parameter matrix S of the antenna
array. To upper bound Prad based on S, we compute Pin in the following way:

Pin = P0 −
N∑
k=1

Pohm,k =

(
1−

N∑
k=1

|Skn|2
)
P0, (A7)

where Pohm,k is the power dissipated in the termination at port k. Note that this equation holds as
the reflection coefficient of the terminations is zero. Then the inequality

Pin = Prad + Ploss ≥ Prad (A8)

holds, where Ploss is the power loss in the antenna structure. In other words, the power accepted
by the multi-port based on the S-parameters consists of the radiated power plus the losses in the
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antenna structure, and therefore the accepted power is larger or equal than the radiated power. Divide
(A8) by P0 on both sides. Then

ηr,in :=
Pin

P0

= 1−
N∑
k=1

|Skn|2 ≥
Prad

P0

= ηr,ant. (A9)

In the numerical results, ηr,in ≥ ηr,ant should hold, but ηr,in/ηr,ant lies between 98.4% and 99.3%
due to numerical inaccuracies. Note that ηr,in < ηr,ant is inconsistent with a passive system. Since
the antenna array obviously is a passive multiport, this means that the computation of the field com-
ponents Eθ, Eφ and the S-matrix elements Skn is slightly inconsistent due to numerical inaccuracies,
but this should be good enough for our purposes. We have also replaced all singular values of S that
were slightly larger than 1 due to numerical inaccuracies with 1 to ensure passivity, and ensured that
S is symmetric by taking (S + ST )/2, as the antenna array is reciprocal.

A2 Efficient Computation of Impedance Matrices
For a ULA consisting of parallel canonical minimum scattering dipoles, its impedance matrix Z can
be computed efficiently by computing the first row of Z, zT

1 , and then exploiting that Z is a Toeplitz
matrix. Note that the first column of Z is the same as z1, as Z is symmetric. This means that

Z = toeplitz(z1, z
T
1 ), (A10)

where toeplitz(zc, zr) constructs a Toeplitz matrix based on the first column zc and first row zT
r of

the matrix to be constructed, see also [84].
For a UCA consisting of N parallel dipoles that are oriented such that they are perpendicular

to the circle connecting their centers, the impedance matrix Z can be computed efficiently by
computing the first ⌈(N +1)/2⌉ entries of z1, and then exploiting that Z is circulant. The remaining
entries of z1 can be obtained using symmetry, i.e., z1,N−n = z1,n+2. Due to this symmetry, Z is a
symmetric Toeplitz matrix as well, and (A10) applies.

Consider a URA consisting of NxNy parallel dipoles. Let us partition Z into NyNy Nx ×Nx

matrices

Z =

⎡⎢⎣ Z1,1 · · · Z1,Ny

... . . . ...
ZNy ,1 · · · ZNy ,Ny

⎤⎥⎦ . (A11)

Then Zm,n represents the (mutual) impedance matrix between the m-th and n-th row of the URA.
Due to symmetry, it is sufficient to compute the upper triangular part of Z. Furthermore, due to the
regular structure of the URA, it is sufficient to compute the first row of Z, because it is block-Toeplitz.
For the computation of Z1,1, which corresponds to the impedance matrix of the first row of the
URA, one can exploit its symmetric Toeplitz structure, similarly to the ULA. For the computation
of Z1,n with n > 1, which corresponds to the mutual impedance matrix between the first and the
n-th row, we have a Toeplitz structure again. It is symmetric as well, if the dipoles are perpendicular
to the plane of the URA or if the dipoles lie in the plane and are parallel to the x- or y-direction, see
Section 2.3. Then the mutual impedance between the k-th dipole in the first row and the l-th dipole
in the n-th row is the same as that between the l-th dipole in the first row and the k-th dipole in the
n-th row.
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To extend this consideration to a URA consisting of NxNy dual-polarized dipoles that lie in the
URA’s plane, see Fig. 2.12, we split each row into two virtual rows, where each virtual row consists
of antenna elements with identical polarization. We then partition Z into Nx ×Nx matrices Zm,n

that correspond to the (mutual) impedance matrices between virtual rows

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z1,1 · · · Z1,Ny Z1,Ny+1 · · · Z1,2Ny

... . . . ... ... . . . ...
ZNy ,1 · · · ZNy ,Ny ZNy ,Ny+1 · · · ZNy ,2Ny

ZNy+1,1 · · · ZNy+1,Ny ZNy+1,Ny+1 · · · ZNy+1,2Ny

... . . . ... ... . . . ...
Z2Ny ,1 · · · Z2Ny ,Ny Z2Ny ,Ny+1 · · · Z2Ny ,2Ny

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A12)

where the antenna elements 1 to Ny have the same polarization, and the antenna elements Ny to
2Ny polarized orthogonally. The matrices⎡⎢⎣ Z1,1 · · · Z1,Ny

... . . . ...
ZNy ,1 · · · ZNy ,Ny

⎤⎥⎦ and

⎡⎢⎣ZNy+1,Ny+1 · · · ZNy+1,2Ny

... . . . ...
Z2Ny ,Ny+1 · · · Z2Ny ,2Ny

⎤⎥⎦ (A13)

can be computed similarly to the URA consisting of parallel dipoles. This means that it is sufficient
to compute the matrices in the first row, and then the complete matrices can be obtained based
on the block-Toeplitz structure and the symmetry of Z. The matrices Z1,n for n = 1, . . . , Ny and
ZNy+1,n for n = Ny + 1, . . . , 2Ny, fulfill again a Toeplitz structure, but they are only symmetric for
n ∈ {1, Ny + 1}, because the dipoles are not oriented such that they fulfill the criterion described
in the previous paragraph. Therefore the first row and column of each of these matrices need to be
computed separately. Similarly, the matrix⎡⎢⎣ Z1,Ny+1 · · · Z1,2Ny

... . . . ...
ZNy ,Ny+1 · · · ZNy ,2Ny

⎤⎥⎦ (A14)

is block-Toeplitz, and the block matrices Z1,Ny+1 to Z1,2Ny , and Z1,Ny+1 to ZNy ,Ny+1 are Toeplitz,
but neither the large matrix nor the small matrices are symmetric in general.

For the further extension to a scenario where the URA is parallel to a reflector, see (2.61), Zorig

can be computed as just described, and Zmutual can be computed in a similarly to Zorig, where the
difference is that there is an extra distance between the original and the reflector antennas.

A3 Influence of the Generators’ Internal Impedance and that of the Load
Impedance

Consider the influence of the generators’ internal impedance ZG and that of the load impedance ZL

on capacity. C is independent of ZG. C depends on H . H in turn depends on D, B−H/2 and
√
RG,

which depend on ZG, but the product
√
RGDB−H/2 is independent of ZG, see (2.10), (2.21) and

(2.23). Even if one chooses a different B−H/2
1 = B−H/2U , which leads to some H1 and where U

is a unitary matrix, H1 = HU is independent of ZG, unless U is a function of ZG. As the noise
covariance Rη is independent of ZG as well, capacity is independent of ZG.
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C is also independent of ZL, because uL only depends on ZL through ZL(Z22 +ZLI)
−1, which

is part of D and Rη, see (2.10), (2.15) and (2.17). 1 As this is an invertible transform that is applied
to both the received signal and the noise, capacity before and after the transform is the same. This
was already noted in [27]. This implies that capacity is independent of ZL. This result also matches
that the noise figure is independent of ZL. Note that this also holds for multi-user scenarios, because
the matrix ZL(Z22+ZLI)

−1 is block-diagonal, so that each user can invert that part of the transform
that affects its channel individually.

Rhyp does depend on ZG. Consider

Ĥ = σϑ

√
RG√
RL

R−1/2
η DB̂−H/2, (A15)

Ĥ ′ = σϑ

√
RG√
RL

R̂−1/2
η DB̂−H/2, (A16)

which is different from (3.22) and (3.32), because we do not assume ZL = ZG here. There is a
dependence on ZG, because the factor (Z11 + ZGI)

−1 inside of
√
RGDB̂−H/2 is not canceled out,

see (2.10) and (3.19). Ĥ is independent of ZL similarly to H , but Ĥ ′ does depend on ZL, because
transform with ZL(Z22 + ZLI)

−1 is not inverted. This means that in general, Rhyp also depends
on ZL. Note that in the SU-MISO and MU-MISO scenarios, ZL(Z22 + ZLI)

−1 is a scaled identity
matrix and Rη = R̂η, which makes Rhyp independent of ZL, because a scaling both signal and
noise with the same factor does not change the rate, and the noise distribution at the mobiles is what
the base station expects.

Similarly to C, Rrecip is independent of ZG and ZL, because H and HUL are independent of
them. H is independent as discussed above for C, and HUL is independent with the same arguments.

Regarding the influence of two-port matching on capacity, see Section 2.1.

1Technically, uL also depends on
√
RL, because η is scaled by this factor, but it cancels with RL in the denominator

inside of Rη .
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