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Abstract— We propose an online learning framework to
reduce the effect of model inaccuracies and improve the
robustness of the Divergent Component of Motion (DCM)-based
walking algorithm. This framework uses the iterative learning
control (ILC) theory for learning an adjusted Virtual Repellent
Point (VRP) reference trajectory based on the current VRP er-
ror. The learned VRP reference waypoints are saved in a mem-
ory buffer and used in the subsequent walking iteration. Based
on the availability of force-torque (FT) sensors, we propose
two different implementations using different VRP error signals
for learning: measurement-error-based and commanded-error-
based framework. Both implementations reduce the average
VRP errors and demonstrate improved walking robustness.
The measurement-error-based framework has better reference
trajectory tracking performance for the measured VRP.

I. INTRODUCTION

Bipedal locomotion is a complex problem because the
robots have nonlinear and hybrid system dynamics, and the
contact stability constraints need to be fulfilled. Many studies
used a mass concentrated model to reduce the complexity,
focusing on the center of mass (CoM) dynamics. One of the
most popular mass concentrated models is the linear inverted
pendulum model (LIPM) [1]. Based on LIPM, the concept
of the zero-moment point (ZMP) [2] was widely used in
many early locomotion research for the bipedal robots [1],
[3], [4]. However, the swing leg motion during walking and
the model inaccuracies due to the inconsistency between the
model and the real robot lead to an imperfect tracking of
the reference trajectories. These tracking errors can cause
the robot to fall if the ZMP reaches the edge of the support
polygon. To prevent falling, feedback stabilization is widely
used in many locomotion research [5], [6]. However, these
balance methods may produce a persistent ZMP deviation
from the reference trajectory.

Humans can learn a new skill or improve their motion
performance by practicing repetitively and gaining experi-
ence from previous attempts. Inspired by human capabilities,
Kawamura et al. [7] proposed a learning control algorithm
for precise tracking of each joint reference trajectory. Yet,
this method does not guarantee the robot walking stability as
it does not use the concept of ZMP. In [8], a compensative
trunk motion, which reduces the ZMP error, was learned
iteratively from the ZMP error in the previous trial. However,

S. Wang and D. Lee are with the Department of Electrical and Computer
Engineering, Technical University of Munich, Munich, Germany. Corre-
sponding Author: S. Wang, email: shengzhi.wang@tum.de

All other authors are with the Institute of Robotics and Mechatronics,
German Aerospace Center (DLR), Wessling, Germany.

D. Lee is also with Institute of Robotics and Mechatronics, German
Aerospace Center (DLR).

this method is an offline learning framework for a complete
walking trial. Contrary, Kajita et al. [4] proposed an online
learning method: dynamic filter (DF), which adjusts the
ZMP reference trajectory according to the current ZMP
error prediction. Nevertheless, the DF method requires cal-
culating the robot’s multibody model and uses the preview
control [9] to generate the CoM reference trajectory, which
means it is model-based and computationally heavy. Hu
et al. [10] proposed an Online Iterative Learning Control
approach (ZMP-OILC) to learn a compensative ZMP tra-
jectory (CZMP) based on the concept of iterative learning
control (ILC). Compared with DF, ZMP-OILC is model-
free, computationally lighter, and has better adaptation to
constant external disturbances. Both DF and ZMP-OILC use
the preview control to generate the CoM reference trajectory.

More recently, Englsberger et al. [11] presented the con-
cepts of three dimensional Divergent Component of Motion
(DCM) and Virtual Repellent Point (VRP) that decompose
the second-order CoM dynamics into a first-order stable dy-
namics (CoM converges to DCM) and a first-order unstable
dynamics (DCM diverges from VRP). Unlike ZMP, a 2-D
point restricted to the surface of the ground, VRP is a 3-D
point that is equivalent to the ZMP horizontally if its height
above ground corresponds with the CoM average height ∆z.
This DCM-based algorithm generates a closed-form DCM
and CoM reference trajectory based on the interpolation of a
VRP waypoints sequence [12], which reduces the calculation
load of the reference trajectory generation. Moreover, it has
been shown that the DCM framework, combined with ro-
bust passivity based whole-body control algorithms, enables
walking on uneven and compliant terrains [13].

Inspired by [10], [11], we aim to develop an online
iterative learning control framework to reduce the VRP
deviation caused by model inaccuracies for the DCM-based
walking and call our framework VRP-OILC. We present two
different implementations for the VRP-OILC depending on
the availability of force-torque (FT) sensors in the feet: if the
FT sensors are available, a measurement-error-based VRP-
OILC will be used; otherwise, a commanded-error-based
VRP-OILC will be applied. We demonstrate by simulations
and experiments that both implementations yield improved
walking robustness. Furthermore, the stability condition of
VRP-OILC is analyzed. Compared with ZMP-OILC, our
VRP-OILC uses the DCM-based algorithm, which is fully
compatible with force-controlled robots and does not need
any simplifying model assumptions as of the LIPM.

The paper is organized as follows. Section II introduces
the DCM-based walking algorithm and the ILC theory. The



framework design and the stability analysis are shown in
Section III. In Section IV, the simulation and experimental
results are evaluated. Finally, we conclude the paper in
Section V.

II. TECHNICAL BACKGROUND

A. Divergent Component of Motion Tracking Control

The concept of Divergent Component of Motion (DCM)
and Virtual Repellent Point (VRP) can be found in [11].
Here, the DCM ξ ∈ R3 is defined as:

ξ = x+ b ẋ, (1)

where x ∈ R3 is the CoM position, ẋ ∈ R3 is the CoM
velocity, b =

√
∆z/g is the time constant of the DCM

dynamics calculated by the CoM average height ∆z and
gravitational constant g.

According to [11], the total force F ∈ R3 acting on the
CoM of the robot can be encoded by the VRP v ∈ R3 as:

F =
m

b2
(x− v), (2)

where m is the robot’s total mass. Differentiating (1), and
inserting Newton’s 2nd law ẍ = F /m with (2), the unstable
DCM dynamics is obtained as:

ξ̇ =
1

b
(ξ − v), (3)

where the DCM ξ diverges away from the VRP.
A DCM-controller was introduced in [11], starting with

the desired closed-loop dynamics:

ξ̇ − ξ̇d︸ ︷︷ ︸
ėξ

= −kξ (ξ − ξd)︸ ︷︷ ︸
eξ

, (4)

where ξ̇d is the reference DCM velocity and ξd denotes the
reference DCM position. Considering the dynamics in (3)
the reference DCM trajectory implies a reference VRP vd =
ξd − b ξ̇d. For DCM controller gains kξ > 0, ξ converges
to ξd (asymptotically stable). The DCM control law can be
expressed by inserting (3) and the DCM reference velocity
into (4):

v = vd + (1 + kξb) (ξ − ξd), (5)

where v is designed as a commanded VRP to realize the
desired tracking behavior [11], i.e., v = vc. The commanded
VRP can be used to calculate a corresponding commanded
force according to (2), to serve as an input to our passivity-
based whole-body controller [13].

B. Reference Trajectory Generation

We split the total robot walking motion into a sequence of
nϕ transition phases1. The reference trajectory calculation of
VRP and DCM during a single transition phase ϕ is reported
in this section. More details can be found in [14].

1Transition phase is a general term for single support (SS) and double
support (DS).

VRP Trajectory: The VRP trajectory vϕ(t) for a transi-
tion phase local time t can be linearly interpolated between
the start and end VRP waypoint (vϕ(0) and vϕ(Tϕ)) as:

vϕ(t) =

(
1− t

Tϕ

)
vϕ(0) +

t

Tϕ
vϕ(Tϕ), t ∈ [0, Tϕ] (6)

where Tϕ is a transition phase duration.
DCM Trajectory: The DCM trajectory is obtained by in-

serting (6) into (3) and then solving its differential equation:

ξϕ(t) =

(
1− t

Tϕ
− b

Tϕ
+ e

t−Tϕ
b

b

Tϕ

)
︸ ︷︷ ︸

αϕ,ξ(t)

vϕ(0)

+

(
t

Tϕ
+

b

Tϕ
− e

t−Tϕ
b (1 +

b

Tϕ
)

)
︸ ︷︷ ︸

βϕ,ξ(t)

vϕ(Tϕ)

+ e
t−Tϕ
b︸ ︷︷ ︸

γϕ,ξ(t)

ξϕ(Tϕ).

(7)

The entire DCM trajectory terminates at the same position
as the final VRP waypoint. From this terminal constraint,
the whole DCM trajectory can be calculated backward re-
cursively.

C. Measurement of Virtual Repellent Point

Based on Force-Torque (FT) Sensors: This method is
suitable for robots with FT sensors in the feet. We assume
no external forces act on the robot except for the gravity
and contact force with the ground. Then, the measured total
force F acting on the robot’s CoM is expressed as:

F =
∑
p=L,R

Rp
CoMFp −mg, (8)

where Rp
CoM is the rotation matrix from the CoM’s co-

ordinate frame to the FT sensor frame in the left or right
foot, FL ∈ R3 or FR ∈ R3 denote the measured force
from the left or right FT sensor, and g = [0, 0,−g]

T is
the gravitational acceleration vector. Using (2) and (8), the
measured VRP vm is obtained as:

vm = x− b2

m

∑
p=L,R

Rp
CoMFp − b

2g. (9)

The disadvantage of this measurement approach is that it
is only applicable when there are no external forces except
gravity and ground reaction force.

Based on DCM Dynamics Model: The measured VRP
trajectory vm can be obtained from the DCM dynamics (3)
as:

vm = ξ − b ξ̇, (10)

where ξ is the measured DCM and ξ̇ is the measured DCM
velocity. Equation (1) shows that the measured CoM position
and velocity x and ẋ can be used to compute the measured
DCM ξ.



D. Iterative Learning Control

We assume there is an output tracking task with a control
input u and output error e = yd−y. According to [15], [16],
the typical P-type ILC updating law can be expressed as:

u(t, k) = kfu(t, k − 1) + kle(t, k − 1), t ∈ [0, Titer] (11)

where t is the local time moment which is reset to 0 at the
beginning of a new iteration, k is the iteration index and Titer
is the iteration duration. The learning gain kl and forgetting
factor kf have the following properties: kl ∈ [0,+∞] and
kf ∈ [0, 1].

III. ONLINE ITERATIVE LEARNING CONTROL OF VRP

As bipedal walking is a repetitive locomotion behavior, we
can use ILC to improve the DCM-based walking algorithm.
Our proposed VRP-OILC framework defines one iteration as
one walking cycle, which starts with the first foot, goes to
the second foot, and ends back on the first foot. It means that
2 SS phases and 2 DS phases are included in one iteration.
Specifically, the learning iteration number starts from the 0th

iteration. Fig. 1 shows a bipedal walking in (i − 1)th and
ith iteration, where (i − 1)th iteration is considered as the
current iteration. Here, G0 is the global coordinate frame,
Gi−1 and Gi are the local coordinate frames of (i − 1)th

and ith iteration respectively, and the angle ∆α represents
the rotation from frame Gi−1 to frame Gi along the z-axis.
The rotation matrix R∆ from Gi−1 to Gi can be expressed
as:

R∆ = RZ(∆α) =

cos ∆α − sin ∆α 0
sin ∆α cos ∆α 0

0 0 1

 . (12)

Note that the stepping behavior is only repetitive in the
local coordinate frame of each iteration. Therefore, the
rotation matrix R∆ will be used in our ILC framework
design to transform the learned information between the local
frames.

The rest of this section will propose two different ver-
sions for the learning framework design: learning based on
the VRP measurement and commanded error. For robots
in which the FT sensors are available, the measurement-
error-based framework should be chosen. In general, the
framework based on the VRP measured error is preferable
because the goal of using ILC is to enhance the walking
robustness by bringing the measured VRP closer to the
desired trajectory. When the FT sensors are not available
and the VRP measurement based on the DCM model is not
applicable due to signal noise, the commanded-error-based
framework can be used as an alternative solution.

A. Framework Design Based on Measurement Error

Our VRP-OILC is a framework using ILC to learn the
future VRP reference trajectory based on the current VRP
error. The learned trajectory will be saved in a waypoint
list and reused in the next iteration. This method guarantees
the continuity of the adjusted reference VRP and DCM
trajectory, stabilizing the whole robot system during walking.

Fig. 1: An example of two walking iterations.

Definition 1 - 3 are essential for the elaboration of the
framework:

Definition 1: (VRP Measurement Error) A VRP measure-
ment error is defined as the difference between the desired
and measured VRP, i.e., vd − vm.

Definition 2: (Learned VRP Waypoint) A learned VRP
waypoint is a discrete reference VRP point adjusted using
the ILC updating law.

Definition 3: (ILC Update Interval) An ILC update interval
∆tILC is a time interval between two ILC update cycles. For
example, our VRP-OILC framework uses ∆tILC = 0.01 s.
Note that the ILC update interval cannot be smaller than the
system sampling time.

We use a learned VRP waypoint list as a buffer to save
the learned VRP waypoints and then calculate the adjusted
VRP and DCM reference trajectory. Algorithm 1 shows the
details of the framework, where the whole process shown
in this algorithm will be executed at each sample time step
from the start of the initial iteration to the termination of the
program:
• Lines 1 - 2: Calculation of the iteration index i and the

iteration local time t. Here, tg is the global time elapsed
after the beginning of the initial iteration. The floor operator
b·c and remainder operator rem are used to calculate the
iteration index and the local time.
• Lines 3 - 6: Initialization of the learned VRP waypoint

list Vl (i.e., when i = 0 and t = 0) by sampling the 0th

iteration’s VRP original reference trajectory with a sample
time ∆tILC . The first waypoint of the Vl (i.e., vd,0(0)) is
selected as the current adjusted VRP reference point vl,i(0)
and the original DCM reference point ξd,0(0) is treated as
the current adjusted DCM reference point ξl,i(0). In short,
the adjusted VRP and DCM reference trajectory are the same
as their original reference trajectory at t = 0 and i = 0.
• Lines 7 - 26: These lines describe the trajectory adapta-

tion case. The learned waypoint index k and the elapsed local
time tin w ∈ [0,∆tILC) are calculated in lines 8 - 9. Given
the ILC updating interval ∆tILC and the system sampling
time ∆ts, the waypoint index k and k + 1 determine the
corresponding two learned waypoints for the current position,
and tin w denotes the time elapsed since the last ILC update
(or the local time between the current and next waypoint).
For example, if i = 1, t = 0.034 s, ∆tILC = 0.01 s and



Algorithm 1: Pseudocode of VRP-OILC
Input: Step Information.
Output: Adjusted VRP and DCM Trajectory (vl,i(t)

and ξl,i(t)).
1 i← btg/Titerc
2 t← tg rem Titer
3 if i = 0 and t = 0 then
4 Initialize Vl: Vl ←

[vd,0(0), vd,0(∆tILC), . . . , vd,0(Titer −∆tILC)]
5 vl,i(t)← Vl(1)
6 ξl,i(t)← ξd,0(0)

7 else
8 k ← bt/∆tILCc
9 tin w ← t rem k∆tILC

10 if tin w = 0 then
11 if ϕc + 4 ≤ nϕ then
12 vl,i(t)← Vl(2)
13 vl,i+1(t)←

vd,i+1(t) + kfR∆ (vl,i(t)− vd,i(t)) +
klR∆ (vd,i(t)− vm,i(t))

14 V ′l ← [Vl(2 : end), vl,i+1(t)]

15 else
16 V ′l ← [Vl(2 : end), Vl(end)]

17 Vl ← V ′l

18 vl,i(t)←
(1− fILC(tin w))Vl(1) + fILC(tin w)Vl(2)

19 if ϕc + 4 ≤ nϕ then
20 ξf ← ξd,i+1(k∆tILC)

21 else
22 ξf ← Vl(end)

23 ξmid ← ξf
24 for j ← Titer

∆tILC
: −1 : 3 do

25 ξmid ← αILC,ξ(0)Vl(j − 1) +
βILC,ξ(0)Vl(j) + γILC,ξ(0)ξmid

26 ξl,i(t)← αILC,ξ(tin w)Vl(1) +
βILC,ξ(tin w)Vl(2) + γILC,ξ(tin w)ξmid

27 tg ← tg + ∆ts

∆ts = 0.001 s, then k = 3 and tin w = 0.004 s, which
means that the current adjusted VRP reference point is on
the interpolation between the 3rd VRP learned waypoint
vl,i(3∆tILC) and the 4th waypoint vl,i(4∆tILC), and 0.004
s have elapsed after the VRP passed the 3rd waypoint (i.e.,
the last ILC update).

Lines 10 - 17 describe the update process of the learned
VRP waypoint list, i.e., at tin w = 0 s. Specifically, lines 11
- 14 show the learning process of the waypoint list when the
robot does not stop walking in the next iteration (i.e., within
the next 4 transition phases, which can be represented as
ϕc + 4 ≤ nϕ, with ϕc is the current transition phase index
and nϕ is the total transition phase’s amount). In line 13,
the ILC updating law of VRP-OILC is applied to adjust the

next iteration’s reference VRP trajectory waypoint vl,i+1(t).
As shown in line 14, this learned VRP future reference
waypoint is placed at the end of the waypoint list, and the
first waypoint of the waypoint list is deleted so that the
learned VRP waypoint list contains a fixed number of learned
waypoints and acts like a sliding window. This ensures that
the learned future waypoint would be used again for the
adjusted reference trajectories calculation at the same local
time in the next iteration and the adjusted VRP reference
trajectory is continuous. When the robot stops walking within
the next four transition phases, the ILC updating law is
not applied, and the last waypoint of the waypoint list is
duplicated, as shown in line 16.

After the waypoint list update, the current adjusted VRP
reference trajectory vl,i(t) is obtained by the linear interpo-
lation between Vl(1) and Vl(2) in line 18, where ∆tILC is
the time duration for the polynomial fILC(·). Lines 19 - 26
show the calculation of the current adjusted DCM reference
trajectory ξl,i(t). Particularly, the terminal DCM point is
determined in lines 19 - 22 depending on whether the robot
stops walking within the next four transition phases, while
lines 23 - 26 use all the learned VRP waypoints in Vl and the
DCM trajectory calculation (7) to calculate the ξl,i(t) from
the terminal DCM backward recursively. Similar to fILC(·),
the αILC,ξ(·), βILC,ξ(·) and γILC,ξ(·) in lines 25 - 26 use
the ∆tILC as time duration. Finally, the VRP-OILC outputs
the vl,i(t) and ξl,i(t) as the adjusted reference trajectories to
the DCM-controller. Line 27 implies that the system enters
the next sample time step.

B. Framework Design Based on Commanded Error

Similar to the definition of VRP measured error, the
commanded error is defined as:

Definition 4: (VRP Commanded Error) A VRP com-
manded error is the difference between the desired and
commanded VRP, i.e., vd − vc.

In the commanded-error-based VRP-OILC, the ILC up-
dating law in line 13 of Algorithm 1 becomes:

vl,i+1(t−∆ts) = vd,i+1(t−∆ts)

+ kfR∆ (vl,i(t−∆ts)− vd,i(t−∆ts))

+ klR∆ (vd,i(t−∆ts)− vc,i(t−∆ts)) .
(13)

Note that (13) uses VRP quantities from the last time
step (i.e., from t − ∆ts) because the current time step’s
commanded VRP is only obtained by the DCM-controller
after the adjusted VRP and DCM reference trajectory are
calculated. Moreover, the learned future waypoint vl,i+1(t)
in line 14 of Algorithm 1 is replaced by vl,i+1(t − ∆ts)
correspondingly. These are the only differences between the
commanded-error-based and measurement-error-based VRP-
OILC.

C. Convergence Condition

Since the goal of VRP-OILC is to improve the walking
robustness by reducing the VRP deviation while tracking
the reference trajectory, the framework’s performance can be
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represented by evaluating the convergence of the VRP trajec-
tory. Inspired by [10], the VRP trajectory convergence can
be further evaluated by the average VRP error during each
iteration. Here, we define two average VRP errors: average
measured and commanded error. The average measured error
em,i during the ith iteration is denoted as:

em,i =
1

Titer

∫ Titer

0

|vd,i(t)− vm,i(t)| dt. (14)

The average commanded VRP error ec,i is expressed as:

ec,i =
1

Titer

∫ Titer

0

|vd,i(t)− vc,i(t)| dt. (15)

The measurement-error-based framework uses the average
measured error, while the commanded-error-based frame-
work uses the average commanded error as a convergence
criterion, respectively. Both frameworks’ learning process
is considered to converge if the average error difference
between two iterations is small enough.

D. Stability Analysis

To analyze the stability of the VRP-OILC, we simplify the
walking model by assuming there is only one waypoint per it-
eration, i.e., one VRP, DCM and CoM waypoint respectively,
and considering only straightforward walking. The notation
of the waypoints is also simplified by omitting the local time
“t” inside the bracket, e.g., we use vd,i to denote the ith

iteration’s desired VRP waypoint. These waypoints are the
waypoints at local time moment t = 0 s. Furthermore, we
build a state-space representation of the measurement-error-
based VRP-OILC as:[

ξi+1

vl,i+1

]
=

[
a1 a2

a3 a4

]
︸ ︷︷ ︸

A

[
ξi
vl,i

]

+

[
a5d(0)− D(T )

b
−kld(0)

]
+

[
FFT4

FFT1

]
,

(16)

where d is the VRP disturbance error and D is the inte-
gration of the VRP disturbance error. The details about the
derivations can be seen in Appendix V-A. Moreover, the
state-space model of the commanded-error-based VRP-OILC
is derived in Appendix V-B. Both models have the same state
matrix A, whose entries are time-invariant constant values,
so these models’ stability can be analyzed via the eigenvalues
of A.

Fig. 2 shows the maximum absolute eigenvalue locus (the
red line) of the matrix A for fixed forgetting factor kf and
different learning gain kl. The maximum eigenvalue is inside
the unit circle when |kf − kl| < 1. This is the VRP-OILC’s
stability condition, which is the same as the one shown
in [10]. Note that the presented stability analysis can be
extended to an arbitrary number of waypoints. The same
stability condition can be obtained from the analysis.

IV. RESULT EVALUATION

The proposed VRP-OILC is implemented on the DLR
humanoid robot TORO [17], which has a height of 1.74 m
and a weight of 77.5 kg. The robot’s whole control loop is
executed at a sampling frequency of 1 kHz. For the VRP-
OILC setup, four important design decisions were taken as
follows:

1) We only used the 2-dimensional VRP-OILC framework
for the learning, which means that the framework will not
adjust the reference trajectory in Z direction. The reason is:
we only concern about whether the VRP stays inside the
support polygon in the X and Y direction.

2) To avoid problems caused by measurement noise, such
as a jerky learned VRP trajectory, we set the ILC update
interval ∆tILC to 0.01 s for all simulations and experiments.

3) The measurement-error-based framework, which mea-
sured the VRP by FT sensors, was evaluated in simulation.
Since the FT sensors were not available on the real robot
and the measured VRP based on the DCM model is noisy,
we used a commanded-error-based framework in the exper-
iments.

4) To suppress the discontinuity of VRP measurement
during the foot landing and lifting, we applied a variable
forgetting factor method during the simulations and experi-
ments inspired by [10]: the kf remained to 1 in SS phases
and changed to 0.5 in DS phases.

A. Simulation
The simulations were conducted in OpenHRP3 [18]. To

simulate model inaccuracies, we changed the robot link
masses while maintaining the total mass to 77.5 kg. The
upper and middle graphs in Fig. 3 compares the measured
VRP trajectory with and without using the VRP-OILC
(i.e., vm,ILC and vm,noILC , respectively) for straightforward
walking. The zoomed-in areas show that the measured VRP
converged to the desired trajectory after using VRP-OILC.
The convergence of the measured VRP can also be observed
in the lower graph of Fig. 3, where the average measured
VRP error em, ILC of VRP-OILC decreased when compared
with the constant average error em, noILC without using our
framework, from about 7 mm to 2 mm.
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B. Experiments

Fig. 4 shows the experimental results of apply-
ing commanded-error-based VRP-OILC for straightforward
walking. The commanded VRP trajectory vc,ILC converged
to the desired trajectory successfully by tracking the learned
VRP reference trajectory vl, as shown in the upper and
middle graphs. Also, the measured VRP trajectory vm,ILC ,
a filtered measurement based on the DCM model, was closer
to the desired trajectory. The lower graph of Fig. 4 illustrates
the convergence of the commanded and measured VRP: the
average commanded error ec,ILC decreased from 25 mm to
less than 5 mm and the average measured error em,ILC was
reduced from around 40 mm to 30 mm.

Moreover, our VRP-OILC achieved fast walking with
TSS = 0.7 s and TDS = 0.2 s, which was impossible without
the proposed framework. The upper graph in Fig. 5 shows
that the robot fell at t = 4.6 s because the effect of the model
inaccuracies increased the VRP tracking error eventually
leading to the robot falling. The second and third graphs
in the middle in Fig. 5 illustrates a successful fast walking
by applying VRP-OILC, where the zoomed-in areas indicate
that the measured VRP vm,ILC and the commanded VRP
vc,ILC were closer to the desired trajectory. The convergence
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Fig. 4: Experimental results of a straightforward walking
with TSS/TDS : 0.9 s/0.3 s, sagittal and lateral learning gain
kl,sa/kl,la: 1/0.5. The upper and middle graphs are the VRP
plots of applying VRP-OILC, and the lower graph shows
the measured and commanded VRP average error with and
without using our framework.

of vm,ILC and vc,ILC can also be demonstrated in the lower
graph of Fig. 5, where the average commanded error ec,ILC
was reduced from 30 mm to less than 10 mm and the average
measured error em,ILC decreased from 50 mm to around 40
mm.

V. CONCLUSIONS

This paper proposes an online VRP adaptation frame-
work for improving the robustness of the DCM-based biped
walking. Our framework can be divided into two different
implementations: measurement-error-based and commanded-
error-based framework. The former learns an adjusted VRP
reference trajectory from the measured VRP error, while
the latter uses the commanded VRP error when FT sensors
are not available. Both implementations use the ILC for
the learning process. The enhanced walking robustness was
demonstrated through the reduced average VRP error and
increased achievable walking speed.

For future work, we plan to test the measured-error-
based VRP-OILC on TORO. Additionally, we will study
different methods to improve the robustness of walking in
complex environments, where the external disturbances are
non-repetitive.
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Fig. 5: Experimental results of a straightforward fast walking
with TSS/TDS : 0.7 s/0.2 s, sagittal and lateral learning gain
kl,sa/kl,la: 1/0.5. The upper graph is the lateral VRP plot
without using VRP-OILC. The second and third graphs in the
middle are the VRP plots of applying VRP-OILC. The lower
graph shows the measured and commanded VRP average
error of using our framework.

APPENDIX

A. Derivation of Measurement-Error-Based VRP-OILC’s
State-Space Model

We assume the ith iteration is the current iteration (i ≥ 0).
To distinguish the waypoint duration T (i.e., the duration
between two waypoints) from the iteration duration Titer,
the relation between them is Titer = nwT , where nw is
the waypoint number in each iteration. In Section III-D, nw
equals 1 because there is only one waypoint per iteration.
Moreover, the waypoint is assumed to be at the local time
moment of t = 0 s.
• Calculation of vl,i+1: As mentioned in line 26 of

Algorithm 1, the learned DCM is calculated as:

ξl,i = α vl,i + β vd,i+1 + γ ξd,i+1. (17)

Then, the commanded VRP vc,i at the current iteration is
expressed as:

vc,i = vl,i + (1 + kξb) (ξi − ξl,i) . (18)

The ILC updating law for vl,i+1 is:

vl,i+1 = vd,i+1 + kf (vl,i − vd,i) + kl (vd,i − vm,i) . (19)

When model inaccuracies exist, there is a force error ∆F
between the CoM total force F and the commanded force
Fc, which can be modeled as ∆F (t) = F (t) − Fc(t). The
F and Fc can be further derived to vm and vc based on (2).
Therefore, the VRP disturbance error is modeled as:

d(0) = vm,i − vc,i. (20)

Inserting (17), (18) and (20) into the ILC updating law (19)
yields

vl,i+1 = vd,i+1 + kfvl,i − kfvd,i + klvd,i − klvl,i
− kl (1 + kξb)︸ ︷︷ ︸

ζ

(ξi − ξl,i)− kld(0)

= [kf + kl(ζα− 1)]︸ ︷︷ ︸
a4

vl,i + (−klζ)︸ ︷︷ ︸
a3

ξi

− kld(0) + FFT1,

(21)

where FFT1 is a feedforward term denoting all the original
desired quantities (e.g., vd,i+1 and ξd,i+1), and ξi is the
measured DCM position considered as a system state.
• Calculation of ξi+1: A discontinuity of the ξl,i is

caused by adjusting the next iteration’s reference VRP and
DCM point from their original desired waypoints to the
learned waypoints. The calculation of ξl,i+1 is expressed by
substituting i+ 1 for i in (17):

ξl,i+1 = α vl,i+1 + FFT2. (22)

After the ILC updating, (17) becomes the following equation
based on (21) and (22):

ξ∗l,i = [α+ (β + γα) a4]vl,i + (β + γα) a3ξi

− kl (β + γα)d(0) + FFT3,
(23)

where ξ∗l,i is the learned DCM waypoint at the ith iteration
after the ILC learning.

To find the relation between ξi+1 and ξi, it is necessary
to start from the DCM dynamics. The continuous-time DCM
dynamics in ith iteration is expanded by inserting the (3),
(18) and (20):

ξ̇i(t) =
1

b
(ξi(t)− vm,i(t))

=
1

b
(ξi(t)− vc,i(t)− d(t))

= ξ̇l,i(t)− kξ (ξi(t)− ξl,i(t))−
d(t)

b
.

(24)

Moving the ξ̇l,i(t) to the left side of (24), a DCM closed-
loop dynamics with the disturbance term can be obtained
as:

ξ̇i(t)− ξ̇l,i(t)︸ ︷︷ ︸
ε̇i(t)

= −kξ (ξi(t)− ξl,i(t))︸ ︷︷ ︸
εi(t)

−d(t)

b
, (25)



where the DCM error εi(t) can be derived by solving (25):

ξi(t)− ξl,i(t)︸ ︷︷ ︸
εi(t)

= e−kξt

ξi(0)− ξ∗l,i(0)︸ ︷︷ ︸
εi(0)

−1

b

∫ t

0

ekξτd(τ)dτ


= e−kξt ξi − e−kξt ξ∗l,i

− 1

b
e−kξt

∫ t

0

ekξτd(τ)dτ︸ ︷︷ ︸
D(t)

.

(26)
Inserting (21), (22) and (23) into (26), the relation between
ξi+1, ξi and vl,i can be found as:

ξi+1 = ξi(T ) = ξl,i(T ) + e−kξT ξi − e−kξT ξ∗l,i −
D(T )

b

= ξl,i+1 + e−kξT ξi − e−kξT ξ∗l,i −
D(T )

b
=
[
αa4 − e−kξT [α+ a4 (β + γα)]

]︸ ︷︷ ︸
a2

vl,i

+
[
e−kξT + αa3 + e−kξT klζ (β + γα)

]︸ ︷︷ ︸
a1

ξi

+
[
e−kξT kl(β + γα)− αkl

]︸ ︷︷ ︸
a5

d(0)

− D(T )

b
+ FFT4.

(27)
Finally, the state-space model is built based on (21) and

(27) as:[
ξi+1

vl,i+1

]
=

[
a1 a2

a3 a4

]
︸ ︷︷ ︸

A

[
ξi
vl,i

]

+

[
a5d(0)− D(T )

b
−kld(0)

]
+

[
FFT4

FFT1

]
,

(28)

B. Derivation of Commanded-Error-Based VRP-OILC’s
State-Space Model

In this framework, the ILC updating law becomes:

vl,i+1 = vd,i+1 + kf (vl,i − vd,i) + kl (vd,i − vc,i) . (29)

Note that (29) is exactly the same as (21) without the
disturbance term d(0). Therefore, (29) can be rewritten as:

vl,i+1 = a4vl,i + a3ξi + FFT1, (30)

where the disturbance term d(0) disappears in (30). There-
fore, the calculation of ξi+1 can be obtained by following
the same derivation as for (22) - (27) as:

ξi+1 = a2vl,i + a1ξi −
D(T )

b
+ FFT4. (31)

From (30) and (31), the state-space model is:[
ξi+1

vl,i+1

]
=

[
a1 a2

a3 a4

]
︸ ︷︷ ︸

A

[
ξi
vl,i

]

+

[
−D(T )

b
0

]
+

[
FFT4

FFT1

]
.

(32)
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