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Abstract. We propose a weakly-supervised approach for object local-
ization based on top-down attention which is able to consider both at-
tributes and object classes as attentional cues. This enables to not only
search for objects but additionally for objects with speci�c attributes
such as colors or shapes. Our approach consists of two streams: an at-
tribute stream and an object stream. By tracing backward through these
two streams and localizing activated neurons in hidden layers, we gener-
ate two top-down attention maps, one for attributes and one for objects.
Fusing these maps generates a joint attention map, which highlights re-
gions with a speci�c attribute and object. We show experimentally that
our method can localize objects in cluttered images by only specifying
their attributes, and that instances of the same class can be discriminated
based on their attributes.

Keywords: Object localization · Object attribute · Top-down attention.

1 Introduction

Unconstrained environments, unknown objects, varying illumination, and limited
computational resources challenge vision algorithms in real-world applications
such as robotics. In human perception, attention mechanisms enable to cope
with such challenges by prioritizing processing on the most relevant information
[21]. For humans, the most relevant parts of a scene are determined by bottom-up
and top-down factors [28]. Bottom-up factors guide our attention to salient parts
of a scene that automatically draw attention, such as a �ickering light or a strong
color contrast. Top-down attention enables us to focus on behaviorally relevant
regions: the bakery when we are hungry, or the station clock when hurrying to
catch our train.

While many computational models of bottom-up attention (saliency) have
been proposed [9, 13, 14], top-down attention is not as well investigated. Tradi-
tional top-down attention systems have mainly emphasized and localized target-
speci�c features such as a certain color or orientation [8, 19]. Recent top-down
attention approaches based on convolutional neural networks (CNNs) localize
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Fig. 1. (a) Input image, and top-down attention maps for (b) an object (dog), and for
(c) a combination of both object and attribute (brown dog).

objects by tracing back activations from class-speci�c neurons to hidden layer
neurons [3, 39]. This enables to quickly �nd the panda [3] or any other pre-trained
object in a scene.

Existing methods search for either features [8, 19] or objects [3, 39], but it
is known that both cues are important targets in human visual attention [17,
37]3: humans may look for a speci�c object class, but also guide their attention
to attributes, for example to all red things or to striped objects. In applications
such as service robotics or human-robot interaction, a combination of both is
important: a robot should be able to not only focus on all cups on a table, but
to select a cup with certain attributes (�Bring me the blue cup�). Additionally, a
task a human gives to a robot does not necessarily include the object class, but
sometimes only an attribute (�Pick up the red item over there�).

In this paper, we propose a weakly supervised method for object localization
using a top-down attention mechanism which is able to consider both attributes
and object class information. The input to our system is an image and a desired
target attribute and object, e.g., �brown� and �dog� in Fig. 1. The outputs of
the system are an attribute- and an object-speci�c attention map. The attribute
and object attention maps can be used separately, or they can be fused to ob-
tain a combined attribute-object attention map that highlights the regions in
the input image that correspond to both the desired attribute and object. Our
approach is able to localize attributes in images, as well as discriminate between
object instances. In attribute localization, we show our method performs better
empirically than general visual question answering [35].

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 describes the architecture of our proposed approach and Section
4 presents the experimental results. Concluding remarks are given in Section 5.

2 Related work

We brie�y review relevant works in attribute classi�cation and localization, top-
down attention, weakly supervised object localization, and image captioning

3 A third cue is spatial location, which we do not address here.
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and visual question answering. We focus on how top-down attention is treated
in these works, motivating our proposed approach.

Attribute classi�cation and localization: Attributes can describe parts
of an object (has nose, has headlight) [6], or the characteristic features of objects
(color, texture, pattern) [2, 12, 24]. Existing attribute classi�cation methods such
as [5, 18, 22] use CNN extracted feature descriptors and support vector machines.
In addition, approaches applying Bayesian theory [7, 15] and deep learning [2, 4,
33, 40] have been proposed. For attribute localization, Xiao et al. [34] focus on
relative attributes between pairs of images to learn the spatial extent of the at-
tributes. Wang et al. [30] propose a weakly supervised method for studying scene
con�guration and simultaneous attribute localization. However, these methods
do not support adding a top-down signal or querying for an attribute.

Top-down attention: Di�erent studies �nd that humans can direct their
attention to not only objects, but also to spatial locations and features [17,
37]. The guided search model of Wolfe [31] introduces top-down cues that boost
target-relevant features. Inspired by these psychological theories, early computa-
tional models of top-down attention learn how much feature channels contribute
to �nding a target object. Some of these approaches excite target related fea-
tures [39] while others also inhibit irrelevant features [8, 29].

Deep-learning-based top-down object search [3, 39] is realized by highlighting
regions corresponding to the target class in the hidden layer activation maps. Cao
et al. [3] introduced feedback layers in a classi�cation network to infer the acti-
vation status of hidden layer neurons. During the backward pass, neurons in the
feedback layers act as gates and open only connections associated with the tar-
get class. Zhang et al. [39] proposed Excitation Backprop (Ex-BP), which given
a top-down signal for a target object, reveals the location of the target-speci�c
activation in the input image. The algorithm applies to any deep classi�cation
network without the need for any modi�cation, unlike [3].

Weakly supervised object localization: Segmentation-based approaches
for weakly supervised localization [10, 30] classify each previously determined
image segment, thereby giving the location information along with the object
class. Oquab's fully convolutional model [20] is similar to the segmentation-based
approaches, except instead of segments each sliding window is classi�ed. How-
ever, the aforementioned approaches do not facilitate adding a top-down signal
for a target object. Alternatively, recovering the location information from clas-
si�cation CNNs allows a mechanism for incorporating the top-down signal [25,
41]. Approaches like Class Activation Mapping (CAM) [41] and Grad-CAM [25]
are similar to Ex-BP [39] in functionality.

Image captioning and visual question answering: Some works in im-
age captioning (IC) and visual question answering (VQA) learn to output at-
tention maps corresponding to speci�c words in the generated caption or answer
sentence [1, 16, 26, 36]. The generated sentences may include object names, at-
tributes, or relationships and the corresponding attention map shows the relevant
region in the input image. However, these methods are not suited for generic ob-
ject or attribute attention. Top-down signals in IC [16, 36] are limited to the
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Fig. 2. Overview of the object localization process using attributes. Attention maps
are generated from (a) the attribute network for the target attribute (yellow), and
from (b) the object network for the target object (motorbike). (c) Object and attribute
attention maps are combined to obtain the object-attribute attention map, showing
the location of the target object having the target attribute (yellow motorbike).

set of words from the generated caption. VQA methods such as [1, 26] rely on
question-answer annotations [11] and an object detection network that uses ob-
ject and attribute annotations and their corresponding locations.

3 Architecture

Fig. 2 shows an overview of our object localization process with attribute guid-
ance. Our system contains two streams: an attribute classi�cation stream ((a) in
Fig. 2) trained to classify attributes such as color, shape, pattern, and texture;
and an object classi�cation stream (b) consisting of a standard object classi�ca-
tion network, namely the VGG16 network [27]. The attribute network, named
Deep Attribute Network (DAN) is described in Sec. 3.1. In both streams, a for-
ward pass enables classi�cation of attributes and objects, and a backward pass
traces the activations in a top-down manner to output an attribute- and an
object-speci�c attention map, as described in Sec. 3.2. The attribute and object
attention maps can be used separately, or they can be combined to obtain an
attribute-object attention map (c), which shows the locations in the input image
that correspond to both the desired attribute and object.

3.1 Deep attribute network

Attributes are descriptive properties of objects [6]. Low-level attributes such as
color, shape, or type of material can be shared by objects of di�erent classes.
High-level object-part attributes, such as headlight, wheel, side mirror, are spe-
ci�c to certain objects and are not universally applicable. We consider only low-
level attributes that can describe a wide range of objects. CNNs learn Gabor-like
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Fig. 3. The deep attribute network (DAN). The network is adapted from the VGG-16
model [27], by replacing the last two fully-connected layers with the new layers fcA
and fcB. DAN is �netuned till layer conv5_1.

and color features in the �rst layers [38], which are useful for discriminating our
target attribute groups - color, shape, pattern and texture. So, we modify VGG-
16 [27], a standard object classi�cation network, and �netune the last layers
to adapt to the attribute classi�cation similarly as in [2]. We obtain the Deep
Attribute Network (DAN) for low-level attribute classi�cation as shown in Fig. 3.

DAN is trained using transfer learning pre-trained on the ImageNet dataset
[23]. All layers up to and including (fc6) are retrained. Two new fully-connected
layers fcA with 1024 units and fcB with 25 units are added. The 25 units in the
fcB layer correspond to the 25 target attribute classes in the ImageNet-Attribute
dataset [24] in the attribute groups color, shape, pattern and texture. As object
attribute classi�cation is a multilabel classi�cation task, the �nal layer fcB uses a
sigmoid activation. All other layers use ReLU activation. We train DAN similarly
as in [2], using weighted cross-entropy loss for attribute classi�cation without any
localization labels.

3.2 Top-down attention

Top-down attention localizes image regions likely to show the target object. In
deep networks, target information is usually provided to the network at the
output layer by indicating the class nodes which are target relevant, e.g. [3, 41].
We use Grad-CAM [25], originally introduced to provide visual explanations for
deep networks, to generate top-down attention maps. Given a top-down cue at an
output node of the network, Grad-CAM generates an attention map highlighting
the regions in the input image that activated the output node.

Grad-CAM calculates the top-down attention map for a target class c as a
weighted sum of activation maps Ak in the last convolutional layer. The weights
αc
k are derived from the gradients of the output element corresponding to c

with respect to elements of the activation map Ak. The weight indicates the
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importance of the activation map for the target class. The attention map Lc

for class c is Lc = ReLU (
∑

k α
c
kAk), where the ReLU ensures only positive

contributions towards the target class c are considered.

We compute the attribute and object speci�c attention maps using Grad-
CAM. To identify a target object with a speci�c attribute, the attribute-object
attention map is computed by multiplying the individual maps as shown in
Fig. 2 (c). The greatest value in an attention map indicates the object location.
As the attribute and object streams are independent, our method also works for
unknown object classes, in which case only the attribute cue is used.

4 Experiments

We introduce the datasets we use in Sec. 4.1 and describe our evaluation method-
ology in Sec. 4.2. Sec. 4.3 demonstrates that object attributes can be successfully
applied to localize objects in images. Sec. 4.4 then shows how much attributes
help in object localization. We omit evaluation of object localization without
attributes as this is covered in previous works [27].

4.1 Datasets

ImageNet-Attribute [24]: Contains annotations of 25 low-level object at-
tributes in four categories: color , shape , pattern , and texture. The dataset
consists of 9600 images from 384 synsets. Each image contains one object and
is also annotated with the object class label and the corresponding bounding
box. We divide the dataset into training, validation, and test sets with 5760,
1920, and 1920 images, respectively. DAN is trained on the training split of this
dataset. The dataset is useful for training attributes, but not especially suitable
for evaluating object or attribute localization since the images show mostly only
a single object in large scale, often centered.

a-Pascal [6]: The images contain a varying number of objects from 20 classes
annotated with bounding boxes, and 64 attributes describing shape, material,
and high-level object components. The dataset is well suited for the attribute-
object localization task. For our evaluation, we select the low-level attributes that
are present in the training dataset: three shape attributes (2D boxy, 3D boxy,
round) and �ve material attributes (metal, wood, furry, shiny, vegetation). The
shape attributes 2D boxy and 3D boxy are not present in the training dataset.
After manually reviewing the images, we found both attributes similar in ap-
pearance to the rectangle attribute of ImageNet-Attribute dataset. We merge
these two attributes and evaluate them as the rectangle attribute.

Object-Attribute: We create a dataset for evaluating the attribute local-
ization task. The new Object-Attribute dataset consists of 60 images from a
cluttered kitchen environment. The number of objects per image is between 3
and 8. We annotate the images using the same color and shape attributes as in
the ImageNet-Attribute dataset, and add bounding box annotations for objects.
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4.2 Pointing game evaluation

Top-down attention maps highlight class-discriminative regions but do not pro-
vide pixel-precise boundaries of target classes. Due to this, we evaluate the per-
formance of our approach with the Pointing Game experiment [39]. To calculate
accuracy, the maximum saliency point (MSP) in a target-speci�c top-down at-
tention map is selected. A hit is counted if the point is on any of the annotated
instances of the cued target, otherwise a miss occurs. The pointing game accuracy
is calculated as hits/(hits+misses). This is equivalent to the top-1 accuracy
metric used for evaluating object localization methods [27]. We also calculate
the accuracy in a more relaxed setting from the top-3 most salient regions. The
attention map is thresholded at 90% of the maximum saliency value of the map.
The three regions with the greatest average saliency are selected. If any of the
centroids of these regions lie in the ground truth bounding box area, a hit is
counted. Otherwise, a miss is counted.

To calculate recall, we determine a hit or a miss similarly as for top-1 accu-
racy. We inhibit the area around the current MSP, and extract the next MSP,
repeating k times. For top-k recall, we count the number of unique bounding
boxes with hits among the �rst k MSPs, and calculate the ratio to the total
number of applicable bounding boxes. We average across all images.

4.3 Experiment 1: Attribute localization

Can attributes be used to localize objects without any information about the
class of the target object? This is of interest for autonomous robots to �nd objects
only based on their attributes such as with the given task �bring me the red object
over there". We �rst compare variants of our attribute localization method using
either Grad-CAM [25], Excitation-Backprop (Ex-BP) [39], or Class Activation
Mapping (CAM) [41]. We also compare the attribute localization performance
to a popular VQA method.

Pointing game accuracy and recall:We generate attention maps at pool5
of DAN, for Grad-CAM and Ex-BP. For CAM, we follow [41]: �rst, layers (pool5-
fcB) in DAN are removed and a convolutional layer conv6 with 512 �lters of size
3 × 3, stride 1, padding 1 is added. We insert a global average pooling layer, a
fully-connected layer fcC with 25 nodes and a sigmoid layer. The newly added
layers (conv6-fcC) are trained for 6 epochs similarly as in [2]. We generate the
attention maps for CAM at layer conv6 of the modi�ed network.

Table 1 reports the accuracy and recall of Ex-BP, CAM, and Grad-CAM
on all datasets. Only attribute classes are used as top-down cues and the mean
across all attribute classes is reported4. For all three methods, recall on the
Imagenet Attribute dataset is high, as is the top-1 accuracy. Among the test
datasets, CAM and Grad-CAM achieve similar accuracy and recall on Object-
Attribute dataset, whereas, in the more complex a-Pascal dataset, Grad-CAM
performs the best on our model. Overall the result indicates that objects can be

4 The types and number of attributes are di�erent for the three datasets; see Sect. 4.1.
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Table 1. Pointing game: mean attribute localization accuracy and recall for Imagenet-
Attribute (IA), Object-Attribute (OA) and a-Pascal datasets.

Accuracy Recall
IA OA a-Pascal IA OA a-Pascal

top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-10 top-1 top-10 top-1 top-10

Ex-BP 0.88 0.90 0.65 0.72 0.52 0.57 0.88 0.88 0.58 0.61 0.44 0.45
CAM 0.85 0.88 0.69 0.75 0.47 0.52 0.87 0.87 0.62 0.64 0.42 0.43

Grad-CAM 0.79 0.83 0.70 0.71 0.56 0.60 0.80 0.80 0.61 0.64 0.48 0.50

round

Fig. 4. Sample attribute attention maps overlapped on the input image from (a) a-
Pascal and (b) Object-Attribute datasets.

localized using only their attributes. Based on the test dataset performance, we
conclude that Grad-CAM performs best for generating attention maps. Grad-
CAM is exclusively used in all of the remaining experiments in the paper.

Fig. 4 shows sample attention maps for the attributes round, vegetation, red
and green from the a-Pascal and Object-Attribute datasets. The bounding box
of the object with the target attribute is marked in red. The maximum saliency
point, indicated by the red dot, shows the predicted location of the objects, even
if they are partially occluded (the bucket in the rightmost image in Fig. 4 (b)).

Comparison to Visual Question Answering: Since visual question an-
swering methods can also be used for producing attention map for a speci�c
query, we compare to one such method named �Ask, Attend and Answer� (AAA)
[35]. We input an image and a query �Where is the x object?�, where x is the at-
tribute label. Table 2 reports the accuracy and recall on Object-Attribute dataset
for all attributes, and separately for the attribute groups color and shape. This
dataset is not used to �netune any of the models. Our simple method that focuses
on attribute localization clearly outperforms the more general VQA method.
AAA performs better on the shape attributes, particularly for the shapes `long'
and `rectangle'. In contrast to AAA, our method is weakly supervised for object
localization, using object and attribute annotation, but no location annotation.

4.4 Experiment 2: Joint attribute-object localization

Does using attributes help to �nd objects? To answer this, we conduct the point-
ing game experiment for a combined object and attribute top-down signal, using
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Table 2. Comparison of attribute localization performance between our approach and
Visual Question Answering method (AAA) on the Object-Attribute dataset.

top-1 accuracy top-1 recall top-10 recall

attribute type all color shape all color shape all color shape

AAA [35] 0.55 0.53 0.59 0.48 0.48 0.47 0.50 0.48 0.55
Ours 0.70 0.75 0.55 0.61 0.69 0.38 0.64 0.72 0.41

Table 3. Pointing game: top-1 attribute-object localization accuracy. Number in paren-
theses shows improvement compared to object localization. Attribute attention im-
proves accuracy for a majority of object classes, as highlighted in blue.

loc acc → 0.84 0.65 0.58 0.48 0.41 0.41 0.35

Obj/Attrib loc acc ↓ furry round metallic wooden shiny vegetation rectangular avg. improvement

cat 0.96 0.94 (0) - - - - - - 0.00
dog 0.90 0.90 (0.01) - - - - - - 0.01
cow 0.90 0.95 (0.06) - - - - - - 0.06
horse 0.86 0.93 (0.06) - - - - - - 0.06
motorbike 0.83 - - 0.74 (-0.06) - 0.67 (-0.03) - - -0.05
aeroplane 0.82 - 1.00 (0) 0.89 (0.08) 0.60 (0) 0.83 (0.02) - 0.68 (-0.04) 0.01
train 0.82 - 0.78 (0.11) 0.87 (0.03) - 0.76 (-0.06) - 0.81 (-0.03) 0.01
bus 0.81 - - 0.78 (-0.04) - 0.59 (-0.11) - 0.58 (-0.15) -0.10
diningtable 0.78 - 0.75 (-0.06) 0.80 (0.10) 0.68 (-0.06) 0.81 (0) - 0.77 (-0.06) -0.02
sofa 0.76 - 0.55 (-0.18) - 0.69 (-0.08) - - 0.52 (-0.19) -0.15
tvmonitor 0.75 - - 0.48 (-0.19) - 0.52 (-0.23) - 0.54 (-0.20) -0.21
bicycle 0.71 - - 0.76 (0.04) - 0.66 (0) - - 0.02
boat 0.59 - 0.55 (0) 0.66 (0.17) 0.50 (0.06) 0.45 (0.09) - 0.57 (0.03) 0.07
car 0.57 - - 0.60 (0.06) - 0.47 (-0.04) - 0.47 (-0.03) 0.00
pottedplant 0.55 - - - - - 0.56 (0.01) - 0.01
chair 0.48 - - 0.31 (0.06) 0.52 (0.03) 0.48 (0.09) - 0.44 (0.04) 0.06
bottle 0.41 - - 0.44 (0.11) - 0.35 (0.02) - - 0.07

Grad-CAM to create the attention maps. We evaluate on the a-Pascal dataset or
its subsets. For object localization, we replace the softmax layer of VGG-16 [27]
with a sigmoid layer with 20 output nodes corresponding to the object classes,
and train with the cross-entropy loss.

Object vs attribute-object localization: Table 3 reports the accuracy
for the integrated attribute-object attention and the improvement over only us-
ing object attention in brackets. The average improvement is reported in the
rightmost column. The object/attribute cases where the localization improved
compared to only using object attention are highlighted in blue. The additional
attribute cue improves the localization for 10 out of 17 classes. Accuracy de-
creases for 5 classes - motorbike, bus, diningtable, sofa and tvmonitor. This may
be due to a dominance of the object classi�cation stream which has been trained
with a much larger dataset. For example, the greatest decreases are observed for
the attributes shiny and rectangle. The average precision of DAN on a-Pascal
dataset for these two attributes are 0.32 and 0.55 respectively [2]. The poor at-
tribute classi�cation performance a�ects the corresponding attribute localization
accuracy (0.41 and 0.35 respectively) and therefore, the combined object and at-
tribute localization performance. Other failure cases are for the object/attribute
combinations sofa/round and tvmonitor/metallic. This is explained by the con-
tradictory annotations in the training (rectangle) and test dataset (round) for
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Table 4. Localization performance in images with visually similar objects. Attribute
attention clearly improves performance.

Top-down cue top-1 accuracy top-1 recall top-10 recall

Object 0.56 0.33 0.35
Attribute-Object 0.64 0.39 0.41

Table 5. Attribute-object localization performance for combinations of objects and
attributes either in the training set or not.

Combination type top-1 accuracy top-1 recall top-10 recall

In training set 0.61 0.52 0.54
Not in training set 0.58 0.49 0.51

sofa, and by the absence of the object-attribute combination tvmonitor-metallic
in the training dataset respectively. The overall performance in this experiment
clearly shows that attributes are useful cues for localizing objects within the
proposed top-down attention framework.

Searching amongst visually similar objects: We consider images with
multiple instances of the target attribute with a di�erent object class, e.g., images
with both a red car and a red ball. These search cases are the most di�cult:
in psychological visual search tasks, humans are slower to �nd the target if
there are distractors with similar appearance to the target [32]. We repeat the
previous experiment on 287 such images in a-Pascal. Table 4 reports the accuracy
and recall for object and attribute-object attention. Corresponding to the more
di�cult task, attribute-object localization performance is naturally lower in these
cases than the average of the dataset (0.67). Nevertheless, localization accuracy
and recall improve when an attribute top-down signal is used in addition to the
class information. This shows a clear advantage of the attribute information for
object localization.

Unobserved object-attribute combinations: We �nd the combinations
of objects and attributes that exist both in the training and test data, and
also the combinations that appear only in the test data but not in the training
data. We evaluate attribute-object localization performance on both of these
subsets. Table 5 shows that the performance for object-attribute pairs that are
not present in the training data decreases, as expected, but only by 3% compared
to the cases present in the training data. This shows that our method generalizes
well to unseen pairs of objects and attributes.

5 Conclusion

We present a simple yet e�ective approach for localizing attributes in images
with top-down attention. We generate attribute and object attention maps to
localize attributes, objects, or a combination of both. Our approach can search
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for objects, or for image regions of certain properties, and discriminate object
class instances based on attributes, while generalizing to unseen combinations
of objects and attributes. A limitation of our method is that the contribution
of object and attribute localization streams is not controllable. This may lead
to a localization failure when either one of the streams fails. Further exper-
iments can be conducted to demonstrate applicability in a real-world robotics
scenario. Finally, a comparison to object localization methods could further help
to demonstrate the bene�ts and disadvantages of attribute-based localization.
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