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Abstract

Partial differential equations (PDEs) play an important role in natural sciences; however,
they are far from trivial to solve. This work discusses how high-order time stepping
schemes can be implemented in Python and applied to automatically solving PDEs
with time-dependent boundary conditions. To this end, the Python libraries FEniCS
and Irksome are analyzed. FEniCS provides an automated solution of PDEs employing
the Finite Element Method, Irksome implements a way of automating Runge-Kutta
time-stepping methods which are commonly used for the time discretization step in
solving PDEs. However, they are not compatible. The goal of this work is developing a
Python implementation of Runge-Kutta methods which is compatible with FEniCS and
based on the implementation provided by Irksome. In general, a main challenge when
applying Runge-Kutta methods is their high complexity, especially for higher orders.
Therefore, this work implements a solution that automates the calculation of PDEs for
different methods by simply specifying their butcher tableau. Furthermore, an example
application of solving the elastodynamics equation with the generalized-α method is
given.
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1 Introduction

The process of solving a scientific problem typically requires a variety of skills and a
large depth and breadth of knowledge. Mastering all of these is rarely possible for a
single person. However, with the help of various open source projects that assemble
different components to solve a problem, a way to facilitate developing a solution is
created. This also applies to solving differential equations, which are equations that
contain at least one derivative. They play an important role in most natural science and
engineering disciplines as they can describe for example movements, currents, curves,
models and all kind of other physical problems [1]. As Steven Strogatz, professor of
Applied Mathematics at Cornell University, said: “Since Newton, mankind has come
to realize that the laws of physics are always expressed in the language of differential
equations.”

However, most methods and libraries that exist for solving differential equations
are designed for ordinary differential equations (ODE), which only depend on one
variable. For partial differential equations (PDE) involving various variables and their
derivatives, there are less options, especially for time discretization.

In this work, the Finite Element Method (FEM) is used for solving PDEs. FEM was
introduced in the 1940s and computes the solution by dividing a computational domain
into smaller parts – the so-called finite elements – and then solving these individually.
In this thesis, the open source python library FEniCS is employed to solve PDEs with
FEM. Additionally, time discretization is necessary to solve time-dependent problems.
Methods for this already emerged in the 19th century. Those can calculate analytical as
well as numerical solutions. An analytical solution is always exact, while a numerical
solution can be an approximation. In 1895, C. Runge developed a generalization of the
numerical computation of any solution of a given differential equation whose analytical
solution is not known [2]. In 1901 Kutta took up this idea and further developed it,
therefore they are called Runge-Kutta methods. One python library implementing this
method is called Irksome. However, it is only compatible with Firedrake – another
library for solving partial differential equations with FEM. The goal of this work is to
implement a version of Irksome which is compatible with FEniCS.

In chapter 2, differential equations will be introduced and the concept of boundary
conditions will be explained. Chapter 3 explains different time-stepping methods and
their working. In chapter 4, FEniCS and Firedrake combined with Irksome will shortly
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1 Introduction

be introduced. Subsequently, chapter 5 shows how the 1D-advection equation and the
heat equation can be implemented in FEniCS with different time stepping methods
using the concept of Irksome. Thereafter, chapter 6 gives a further example application
of solving the elastodynamics equation with the generalized-α method. Chapter 7
describes the results and analyzes the different methods in terms of implementation,
accuracy, time and complexity. Lastly, chapter 8 summarizes the findings of this work
and gives an outlook on future work.

2



2 Differential Equations

This chapter explains the concept of differential equations. In principle, a differential
equation can be understood as an equation that includes at least one derivative, which
can depend on different variables. The highest order of the derivative corresponds to
the order of the differential equation. A main distinction is made between ODEs and
PDEs. In an ODE, the unknown function depends only on one variable whereas in a
PDE, it depends on several variables [3]. This will be explained in more detail in the
next two sections. Subsequently, section 2.3 introduces boundary conditions which can
specify the solution of a differential equation. Thereafter, three examples of PDEs will
be introduced in section 2.4. To validate that a PDE is solved as expected, the method
of manufactured solution (MMS) can be used. This will be explained shortly at the end
of this chapter with the example of the heat equation in section 2.5.

2.1 Ordinary Differential Equations

As explained above, an ODE is a differential equation which only depends on one
variable. The equation

F(x, y(x), y(1)(x), ..., y(n)(x)) = 0

is an ODE of n-th order for the unknown function y(x), where F is given [4]. As ODEs
only depend on one variable, they are in general relatively straightforward to solve.
Therefore, there already exist various methods which is why the focus of this work lies
on partial differential equations.

2.2 Partial Differential Equations

A PDE is a differential equation which depends on more than one variable. The implicit
form of PDE for a function u which depends on two variables x and y is

F(x, y, u(x, y),
∂u(x, y)

∂x
,

∂u(x, y)
∂y

, ...,
∂2u(x, y)

∂x∂y
, ...) = 0 (2.1)
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2 Differential Equations

PDEs depend on various variables; therefore, they are a lot harder to solve. While it is
very difficult to find a solution to a PDE, it is easy to check whether a given function
is a solution to a partial differential equation [1]. Nevertheless, different methods for
solving PDEs have been developed. Among the most well-known is the finite element
method (FEM) which is used in this work. As a further example, the method of lines
(MOL) is introduced at the end of this subsection.

Finite Element method

One of the most common ways of solving PDEs is using the finite element method. It is a
numerical analysis technique for approximating a wide variety of engineering problems.
The main idea is to model a solution region by replacing it with an assemblage of
discrete elements [5]. This idea was first introduced in the work of Courant [6] in 1943.
He used linear approximation over sub regions with values specified at discrete points,
which can be seen as the node points of a mesh of elements. However, the name finite
element method was first used in 1960 by Clough in [7].

Principles of FEM

The finite element method reduces a continuum to elements, the so called finite ele-
ments, and expresses the unknown field variables in terms of approximating functions
within each element. These approximating functions are also called interpolation func-
tions and define the field variable throughout the assemblage of elements. Therefore,
the degree of the approximation depends on the size and number of elements as well as
the selected interpolation functions [5]. The solving of a problem follows a step-by-step
process as explained in [5]:

• Discretize the continuum

• Select interpolation functions

• Find element properties

• Assemble the element properties to obtain the system equations

• Impose the boundary conditions

• Solve the system equations

First, the continuum must be divided into subdomains, the so-called elements. Next,
interpolation functions are selected, which each represent the variation of the field
variable over the element. Third, element properties must be found. Subsequently,
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2 Differential Equations

element properties are assembled in order to find the properties of the overall system.
This is done by combining the matrix equations expressing the behaviour of the
elements. Therefore, a matrix equation for the entire system is formed which has the
same form as the equations of the individual elements except that it contains more
terms as it includes all the nodes. Fifth, the boundary conditions are imposed. Most
systems need boundary conditions in order to have a single solution, which will be
explained further in section 2.3. Therefore, these known values on the boundaries are
added to the system equations. Last, the system is solved by solving a set of linear or
nonlinear algebraic equations.

Although the finite element method was developed in the 1940s, it still remains the
dominant method for solving continuum problems today.

Method of lines

MOL is another approach to solve PDEs. Its basic idea is to replace the spatial
derivatives in the PDE with algebraic approximations. This lets the spatial derivatives
no longer be stated explicitly in terms of the spatial independent variable. Therefore
only the initial value variable remain for solving the equation. That way, a system of
ODEs can be created that approximates the original PDE. Then, any algorithm can be
applied for solving the ODEs and get a numerical approximation of the PDE [8].

2.3 Boundary Conditions

Since the solutions of differential equations are usually not unique, they are often
specified by a set of boundary conditions or initial conditions. A boundary condition
describes the behaviour of a function on the boundary of its area of definition. An
initial condition specifies the state of the system at the initial time t = 0. It should be
noted that not all boundary conditions lead to a solution; therefore, it is important to
use conditions that make physical sense. The maximum order of the derivative in the
boundary condition must be one order less than the order of the differential equation
[9]. The five types of boundary conditions often used are the Dirichlet boundary
condition, the von Neumann boundary condition, the Robin’s boundary condition, the
mixed boundary condition and the Cauchy boundary Condition.

The Dirichlet boundary condition specifies the value of the unknown function u on
its boundary. For a PDE as described in 2.1, it can be written as

u(x) = g(x), x ∈ δΩ

where Ω is the area of definition and the function g : δΩ→ R describes the solutions
of the function on the boundary.
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2 Differential Equations

A second main type are the von Neumann boundary conditions. These specify the
values of the derivative for the boundaries of the definition area and can be defined for
a PDE as

∂u(x)
∂n

= g(x), x ∈ δΩ

where Ω is the area of definition, g(x) is a given scalar function and n is the normal to
the boundary δΩ.

Robin’s boundary condition is a weighted combination of the ones introduced above.
It employs a linear combination of the values of a function and its derivative on the
boundary of the definition area. It is defined as

au(x) + b
∂u(x)

∂n
= g(x), x ∈ δΩ

where a and b are non-zero constants, Ω is the definition area, u is the unknown
function and ∂u(x)

∂n is the normal derivative at the boundary.
When using mixed boundary conditions, different types of boundary conditions are

applied in different parts of the domain. Cauchy boundary conditions are put both on
the unknown field and its derivative. In contrary to the Robin condition, this implies
the imposition of two constraints1.

2.4 Examples of PDEs

In the following, three well-known PDEs, the one-dimensional advection equation(1D-
advection equation) , the heat equation as well as the elastodynamics equation will be
introduced. They are also used in the code examples of this work.

1D-advection equation

The advection problem is defined in the interval [α, β] and the PDE and its boundary
conditions are defined as

∂u
∂t

+ c
∂u
∂x

= 0, t ∈ (0, T), c > 0

u(0, x) = u0(x)

u(α) = u(β) = 0

The advection equation can be solved analytically, which will later be used for calcu-
lating the error of the solution computed with time discretization methods [10]. Its
solution is

1https://www.simscale.com/docs/simwiki/numerics-background/what-are-boundary-conditions/
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2 Differential Equations

u(t, x) = g(x− ct)

Heat equation

The heat equation is one of the most common problems in thermodynamics. It describes
the stationary distribution of heat in a body to a time-dependent problem. For a two-
dimensional spatial domain Ω, the model reads [11]

∂u
∂t

= 52u + f in Ω× (O, T], (2.2)

u = uD on δΩ× (0, T], (2.3)

u = u0 at t = 0. (2.4)

Both examples make use of Dirichlet boundary conditions.

Elastodynamics equation

Elastonynacmics is part of continuum mechanics and covers the propagation of waves
in elastic media [12]. The elastodynamic equation, which describes the wave movement
of an elastic medium, reads the following:

5σ + ρb = ρ
∂2u
∂t2

u is the displacement vector field, the time derivation ∂2u
∂t2 is the acceleration, ρ the

material density, b a given body force and σ the stress tensor related to the displacement
through a constitutive equation [13]. For further details about the equations [13] can be
read. In this work, the elastodynamic equation is solved in 6 using the generalized-α
method as time discretization as it allow to add numerical damping.

2.5 Method of manufactured solution

MMS is is a procedure to determine if a piece of software will accurately calculate a
solution to a prescribed numerical order2. This is done by constructing a problem with
a known analytical solution so that it can be easily checked if the computed solution is
correct. So for example, if the heat equation was solved with a first order time stepping
method, one would need to create a test problem, that can easily be solved and has a

2https://mfix.netl.doe.gov/doc/vvuq-manual/main/html/mms/overview.html
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linear variation in time. The FEniCS tutorial [11] suggests the following for the heat
equation

u = 1 + x2 + αy2 + βt

with two arbitrary parameter α and β. This function guarantees, that the computed
values at the nodes will be exact regardless of the size of the elements and δt, as long as
it is used with uniformly partitioned mesh [11]. By inserting this into the heat equation
2.2 one can find that

f (x, y, t) = β− 2− 2a

Also, the initial value of the equation must be given by

u0 = 1 + x2 + αy2

and the boundary value by

uD = 1 + x2 + αy2 + βt

As the analytical solution of the problem is known, this can be used to calculate possible
errors in the computed solution. To validate higher order methods, one can also adapt
the problem to higher orders in time. So for example a polynomial order of 16 can be
reached with

u = 1 + x2 + αy2 + βt16

and the corresponding equations

f (x, y, t) = 1516 − 2− 2a

u0 = 1 + x2 + αy2 + 16t15

uD = 1 + x2 + αy2 + βt16

8



3 Time stepping methods

In the following, different methods to discretize the time in order to solve partial
differential equations are presented. First, the Runge-Kutta methods are introduced.
Their subdivision into explicit and implicit methods is explained with the aid of
examples. To this end, the Butcher tableau, the explicit Euler method, the Heun’s
method and the RK4 method are introduced. Next, three examples for implicit Runge-
Kutta methods – the Radau IIa methods, the Lobatto IIIc methods as well as the
Gauss-Legendre methods – are discussed. Subsequently, the generalized-α method is
introduced as an alternative to Runge-Kutta methods.

As many different problems can be described by the initial value problem for first
order ODEs, the following equations will be considered for section 3.1 [14].

∂y
∂t

= f (t, y), t ∈ (0, T), (3.1)

y(0) = y0 (3.2)

A numerical time stepping method calculates a sequence y0, y1, y2,,... such that yk
approximates the solution of y(t0 + kδt). δt is the stepsize, so that δt ∗ k is the total time
span T.

3.1 Runge-Kutta Methods

The Runge–Kutta methods are a family of implicit and explicit iterative methods used
in time discretization for the approximate solutions of differential equations and belong
to the class of one-step integrators [15]. They were first introduced by Carl Runge
in 1893 [2] and Wilhelm Kutta in 1901 [16]. The main idea behind the Runge-Kutta
methods is that the calculation of the solution is performed in a certain number of
stages. Even though the order of the error does not necessarily equal the number of
stages, it usually applies that increasing the number of stages also increases the order of
the error. Runge-Kutta methods can be divided into two groups: explicit and implicit
approaches. The family of implicit methods has only been known for about 50 years
and has become much more important than the explicit methods as they guarantee
more stability [17]. Although implicit methods require higher computational costs, they
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3 Time stepping methods

are usually the superior choice for solving most scientific problems. These problems,
where the cost is worth paying, are called stiff problems. Therefore, non-stiff problems
are usually efficiently solved with explicit Runge-Kutta methods and stiff problems
with implicit ones [15].

In the following, the difference between explicit and implicit methods will be shown.
In section 3.1.1, the concept of Butcher tableaux will also be explained.

3.1.1 Explicit Runge-Kutta Methods

In order to approximate the individual solutions, the interval [0, T] is divided into N
time steps with a step size δt. For each point y(n + 1) with tn+1 = tn + δt

y(n + 1) = y(n) + δt
S

∑
i=1

biki

applies with S being the number of stages and ki being

k1 = f (tn, yn)

k2 = f (tn + c2δt, yn + δta(21k1)

k3 = f (tn + c3δt, yn + δt(a31k2 + a32k2)

...

ks = f (tn + cSδt, yn + δ(tas1k1 + ... + as,s−1ks−1)

The Coefficients aij, bi and ci are determined by the particular method, but it usually
holds that ci = ∑i−1

j=1 aij. Additionally, a Runge-Kutta method is consistent only if
∑s

i=1 bi = 1.

Butcher Tableau

With the coefficients aij, bi and ci , each Runge-Kutta method can be defined by a so
called Butcher Tableau, which has the following form:

c1 a11 a12 · · · a1s

c2 a11 a12 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

With those, a Runge-Kutta method can easily be specified by only giving a tableau.

10



3 Time stepping methods

The simplest explicit Runge-Kutta method is the explicit Euler methods, which has
only one stage. Furthermore, Heun’s method will be explained as it is an improved
Euler method. On the other hand, the most used explicit Runge-Kutta method is the
RK4 method, which has four stages and is of fourth order.

Explicit Euler method

The most known explicit Runge-Kutta method is the explicit Euler method, which
proposes the following equation for solving the initial value problem 3.1 [15]

y(n + 1) = y(n) +
∫ tn+1

tn

f (t, y(t))dt

Its Butcher Tableau is given by

0 0
1

The explicit Euler method is a first-order method and was introduced by Leonhard
Euler in 1768 [18]. It is often used as the basis of other, more complex methods.

Heun’s Method

Heun’s method, which is often referred to as an improved Euler method has the Butcher
Tableau

0 0 0
1 1 0

1/2 1/2

It is a two stage method and considers the interval spanned by the tangent line segment
for the calculation of each time step.

RK4 method

The RK4 method is the most common Runge-Kutta method and is therefore also
referred to as classical Runge-Kutta method. It has four stages and the following
Butcher Tableau:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0
1/6 1/3 1/3 1/6

11



3 Time stepping methods

As the RK4 method is a fourth-order method, its local truncation error is on the order
of O(t5) and its total accumulated error on the order of O(t4).

3.1.2 Implicit Runge-Kutta Methods

In the following, the family of implicit Runge-Kutta methods are explained more
precisely using equations 3.1 and 3.2. In order to approximate the individual solutions,
the interval [0,T] is again divided into N time steps with a step size δt. Each point
y(n + 1) can be calculated with

y(n + 1) = y(n) + δt
S

∑
i=1

biki

and ki

ki = f (tn + cih, yn + h
S

∑
j=1

aijk j)

As above, aij, ci and bi are in principle chosen arbitrarily, but so that the resulting
methods have a given accuracy. S describes the number of stages [19]. In general,
implicit methods have higher computational costs. However, since they are more stable,
they are used more often. The code examples in 5 use the following three families of
implicit methods.

Radau IIa methods

Radau IIa methods are time discretization methods for solving stiff differential equa-
tions.

The most known method of this family is the implicit Euler method, which is also
called backward Euler method. It is the implicit counterpart of the explicit Euler
method and is therefore the simplest implicit method. Its Butcher Tableau is

1 1
1

Therefore, it computes the approximation using

yn+1 = yn + δt f (yn+1, tn+1)

It is a first order method with a local truncation error of O(t2) and an error at specific
time t of O(t). Because of its simplicity it is often used in numerical analysis and
scientific computing.

The third order Radau IIa method has the Butcher Tableau

12
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1/3 5/12 -1/12
1 3/4 1/4

3/4 1/4

There even exists a 17th order Radau IIa method which was introduced in 2010 and
can be further seen in [20].

Lobatto IIIc methods

The LobattoIIIC methods are discontinuous collocation methods, which all have the
order (2s− 2). Also, all of them have the coefficients c0 = 0 and ci = 1. For example
the second order method which consequently has two stages has the Butcher Tableau

0 1/2 -1/2
1 1/2 1/2

1/2 1/2

It is also called trapezoidal Rule and has a local truncation error of O(t3) and an error
at specific time t of O(t2).

Another example is the fourth-order Lobatto IIIc method with the butcher tableau

0 1/6 -1/3 1/6
1/2 1/6 5/12 - 1/12

1 1/6 2/3 1/6
1/6 2/3 1/6
-1/2 2 -1/2

It has two stages, a local truncation error of O(t5) and an error at specific time of O(t4).

Gauss-Legendre methods

Last, the family of Gauss-Legendre methods is introduced. They are collocation
methods based o the points of the Gauss-Legendre quadrature. All of them have
a order of 2s, so the order is twice as high as the number of stages. However, the
computational cost is rather excessive, therefore they are rarely used [21].

The two order Gauss-Legendre is also called implicit midpoint rule and has the
Butcher tableau

1/2 1/2
1

13



3 Time stepping methods

The name midpoint rule has emerged from the fact, that the solution is always approxi-
mated at the midpoint between tn and tn + 1.

Gauss-legendre only need two stages to get a fourth order method. The correspond-
ing butcher tableau is

1
2 −

1
6

√
3 1

4
1
4 −

1
6

√
3

1
2 +

1
6

√
3 1

4 +
1
6

√
3 1

4
1
2

1
2

As one can see, the butcher tableau is rather complicated compared to the of the Lobatto
IIIc and the Radau IIa methods. But, for problems, where computational costs are not
most important, Gauss-Legendre methods are a good choice, as for example a 16th
order method can be implemented with only eight stages.

3.2 Generalized-α method

This section introduces the generalized-α method which can also be seen as an extension
of the Newmark-beta method.The generalized-α method possesses numerical damping
that can be controlled by the user [22]. Even though higher frequencies have been
found to improve the convergence of iterative equation solvers, those often lead to less
accuracy or excessive algorithmic damping in low frequency modes. The generalized-
α methods avoids this while giving a second order accuracy in time and provides
unconditional stability. Also, the algorithmic parameters can be defined in terms
of the desired amount of high-frequency dissipation. Therefore, it is widely used
in engineering and science [23]. In the following, it is shown how the generalized-
α method is used for solving the semi-discrete initial value problem for non-linear
structural dynamics.

M
∂2u
∂t2 + C

∂u
∂t

+ S(u(t)) = F(t)

M and C are the mass and damping matrices, S(u(t)) describes the vector of non-linear
internal forces, F(t9) is the vector of applied loads and u(t) is the displacement vector
[24]. To solve the problem, a function u = u(t) which satisfies the Equation for all
t ∈ [0, T], t > 0 with the given initial value conditions must be determined.

u(0) = d, u′(0) = v

The generalized-α method solves the equation at intermediate time between tn and tn+1

as follows

[M]{un+1−αm}+ [C]{un+1−α f }+ [K]{un+1−α f } = {F(tn+1−α f )} (3.3)
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For α f = αm = 0, equation 3.3 describes the Newmark method. Usually, parameters
αm, α f ≤ 1

2 are used.

15



4 Frameworks

The two open source libraries FEniCS and Firedrake that are used in this work will
be introduced in the following. They both provide an automatic solution of partial
differential equations. However, there are several differences between them, which will
be analyzed in this chapter. The focus lies on FEniCS as it is the library used in the
programmed part of this work. In order to solve partial differential equations with
Runge-Kutta methods, Firedrake can be combined with the package Irksome.

4.1 FEniCS

FEniCS is a collection of open-source packages and allows the automated solution of
differential equations with the finite element method. It can be used with C++ and
Python on the operating systems Linux, OS X, Unix and Windows. However, in this
work, FEniCS was used in Python on a Windows system. It consists of the following
core components [25]:

• UFL (Unified Form Language) defines an interface for choosing finite element
spaces and expressions for weak forms in a close to mathematical notation.

• FIAT (FInite element Automatic Tabulator) allows an automatic generation of
functions for a wide range of finite element families.

• FFC (FEniCS Form Compiler) is used to create a low-level C++ Code from the
high-level description of the form. It is needed for the C++ Interface.

• DOLFIN is the C++/Python interface of FENiCS and provides the problem
solving environment.

• UFC (Unified Form-assembly Code) is the interface between FFC and DOLFIN.

• INSTANT is a module that allows to incline C++ code in Python

FEniCS contains an ensemble of functions and tools. For further documentation, please
refer to [11]. Nevertheless, some of the FEniCS functions need to be discussed in this
work for the code to be understandable. First, DOLFIN allows to create a mesh with a
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single line of code. E.g. a uniform finite element mesh over the square unit [0, 1]x[0, 1]
divided into 8x8 rectangles which are each divided into a pair of triangles would be
created with

mesh = UnitSquareMesh(8, 8)

To define functionspaces and functions, FEniCS provides classes. A functionspace is
created with 3 arguments, the first holding the mesh, the second the type of element
and the third the degree of the finite element. For the type of element, FEniCS supports
all simplex element families and the notation defined in the Periodic Table of the
Finite Elements [26]. For functions defined on the functionspace, the classes Function(),
TrialFunction and TestFunction() are provided. With these, the unknown function
u and the testfunction v can be defined. The following code example shows how a
functionspace of the standard Lagrange family with its corresponding functions can be
implemented with FEniCS [11].

V = FunctionSpace(mesh, 'P', 1)
u = TrialFunction(V)
v = TestFunction(V)

For solving a PDE, an additional option to specify Boundary conditions must be
provided. Usually, Dirichlet boundary conditions are used, which can be initiated with
three arguments: first, the functionspace they are defined on, second, an expression uD

defining which points belong on the boundary, and third, a function that defines which
points belong on the boundary [11]. A simple time-dependent Dirichlet boundary
condition can be written as

def boundary(x, on_boundary):
return on_boundary

V = FunctionSpace(msh, "CG", 1)
u_D = Expression('x[0]-c*t', degree=1, c=c,t=0)
bc = DirichletBC(V, u_D, boundary)

C++ syntax is used to define the expression uD. It can depend on the variables x[i]
which correspond to the coordinates of the mesh. The function boundary checks if x
is on the boundary of the defined area. One can also define more complex boundary
functions to, for example, restrict the domain where the boundary condition is applied
to only a part of the boundary. We refer to [11] for examples.

The variational problem can be defined either in its standard or in its abstract form.
This is done with the unified form language which is, as described above, part of the
FEniCS project. It defines discrete variational form and functional in a close to pen-
and-paper notation. It has a set of operators and atomic expressions that help express

17



4 Frameworks

variational forms and functionals. Expressing forms in the following generalized format
is possible

a(v; w) =
nc

∑
k=1

∫
Ωk

Ic
k(v; w)dx +

ne

∑
k=1

∫
δΩk

Ie
k(v; w)ds +

ni

∑
k=1

∫
Γk

Ii
k(v; w)dS

In UFL, integrals are expressed by multiplication with a measure representing the
integral. Thus, a multiplication with dx is the integral over the interior of the domain
Ω, with ds over the boundary δΩ of Ω and with dS over the set of interior facets Γ.
Also, UFL has a way to express spatial derivatives. This can be done with

f = Dx(v, i)

which describes the scalar derivative in spatial direction xi. Further information on
how to define forms with UFL can be found in the UFL documentation [27]. As an
example, the abstract form of the heat equation solved with the implicit Euler method
can be written in UFL as

F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)

The derivation of this term is explained in detail in chapter 5.
Furthermore, it is possible to define finite elements with UFL. It is notated as

element = FiniteElement(family, cell, degree)

where family is one of the possible element families, cell is the element domain and
degree the polynomial degree. Information on how a cell is defined and which families
are available can as well be found in the UFL documentation. For elements there
exist the classes FiniteElement, VectorElement, TensorElement, MixedElement and
EnrichedElement in FEniCS.

Subsequently, the time-stepping with FEniCS is performed as

u = Function(V)
t = 0
for n in range(num_steps):

# Update current time
t += dt
u_D.t = t
# Solve variational problem
solve(a == L, u, bc)
# Update previous solution
u_n.assign(u)

This section described the basic functions of FEniCS that are used in this work. A
complete documentation can be found in [28].
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4.2 Firedrake

Firedrake is another tool for automating the numerical solution of partial differential
equations. Even though it adopts the domain-specific language for the finite element
method of the FEniCS project, it has a pure Python runtime-only implementation
centred on the composition of several existing and new abstractions for particular
aspects of scientific computing. Additionally, it does not use the interface DOLFIN,
but PyOP2, which is a parallel, unstructured mesh computation framework. The main
optimisations include factorising mixed function spaces, transforming and vectorising
inner loops, as well as intrinsically supporting block matrix operations [29]. Firedrake
adds to the in FEniCS implemented separation of concerns between employing the finite
element method and implementing it a separation within the implementation layer
between the local discretization of mathematical operators and their parallel execution
over the mesh. This results in a more compact code base, as the core Firedrake code
only has 5000 lines of executable code [29]. However, the framework used in the code
examples is FEniCS, so the usage of Firedrake is not further introduced, but can be
seen in [29].

In this work, we try to adapt the Firedrake package Irksome in a way that it also
works with FEniCS. The package implements a way of automating Runge-Kutta time-
stepping for finite Element methods. It was first introduced in 2020 by Patrick E. Farrell,
Robert C. Kirby and Jorge Marchena-Menendez [19]. The Project itself is restricted
to Runge-Kutta methods, which cover various orders of accuracy. Instead of being a
blackbox model of a Runge-Kutta method, it relies on a UFL manipulation approach.

The package Irksome has four main classes: ButcherTableaux, deriv, stepper and
getForm. ButcherTableaux provides an interface for creating the corresponding Butcher
Tableau to the used Runge-Kutta method. It is initialized with the Arguments A, b,
btilde, c and order, of which A, b and c contain the weights of the Runge-Kutta method,
btilde the weights for an embedded lower order method, if present, and order the
formal order of accuracy of the method. While theoretically every Runge-Kutta method
can be implemented by passing its Butcher tableau, Irksome provides implementations
of many classical methods, like Gauss-Legendre, Lobatto IIIc and Radau IIa [19].

The class deriv handles the time derivative which is used in Irksome instead of coding
the time discretization method. The time derivative is represented with Dt(u). This
allows to use the semi-discrete form of any PDE according to the methods of lines
introduced in section 2.2. In chapter 5 Dt(u) is used in the code examples to represent
code, which does not yet have a time-stepping method implemented. However, in our
implementation of Irksome in needs to be replaced by the used time-stepping method.

Stepper provides an interface to handle the main class of Irksome getForm. It takes
an instance F of a UFL form as input which describes the semi-discrete problem

19



4 Frameworks

F(t, u; v) == 0, a Butcher tableau representing the Runge-Kutta method, the time
values t and dt, a function u0 containing the current state of the problem to be solved,
and, optionally, boundary conditions and solver parameters. At each time step, the
function stepper.advance(sel f ) is called, which performs the solving of the problem.

The main functionality of Irksome is implemented in the function getForm. The
function takes the UFL form for the time-dependent variational form, a Butcher tableau,
the current time, a UFL coefficient and, optionally, boundary conditions as an input. It
returns the UFL for the coupled, multi-stage method and the boundary conditions.
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5 Implementation of Runge-Kutta Methods

As Irksome currently only works with the Firedrake package, the goal of this work
was to adjust the code in order to work with FEniCS as well. In the following, it will
be shown how Irksome automates the solution with Runge-Kutta methods using the
examples of the 1D-advection equation and the heat equation. Hereafter, the developed
solution, which automatically adapts the code to different Runge-Kutta methods for a
given butcher tableau, is introduced.

5.1 1D-Advection equation

The code was developed with two different PDEs, of which one is the 1D-advection
equation and the other the heat equation.

1D-advection equation

As described in chapter 2, the advection problem is the following

∂u
∂t

+ c
∂u
∂x

= 0, t ∈ (0, T), c > 0

u(0, x) = u0(x)

u(α) = u(β) = 0

The advection equation can be solved analytically, which will later be used for calcu-
lating the error of the solution computed with time discretization methods [10]. Its
solution is

u(t, x) = g(x− ct)

Usually, with the Irksome extension Dt(u) describing the time discretization, the
equation can be written in UFL in its semi-deiscrete form as

F = u*v*dx + u_n*v*dx - c*dt*Dt(u)*v*dx

However, a time stepping method to replace Dt(u) is necessary for the solution. In
the following, it will be discussed how this can be done with the one stage Radau IIa
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method, the so-called implicit Euler method, and thereafter with Heun’s method.
Thereby, it will also be elaborated in more detail how Runge-Kutta methods can be
implemented.

Solution with the implicit Euler method

First, the 1d-advection equation was solved in the usual way of solving an equation in
FEniCS with the implicit Euler method as introduced in the FEniCS tutorial [11]. To this
end, the time derivative is first discretized by a finite difference approximation yielding
a sequence of stationary problems which are then each turned into a variational form.
Let un mean u at time level n. Then, the 1D-advection equation at time level n + 1 can
be written as:

(
∂u
∂t

)n+1 = −c
∂un+1

∂x
Using the backward Euler time discretization, the time-derivative can be approximated
with

(
∂u
∂t

)n+1 ≈ un+1 − un

δt

This results in a sequence of spatial problems for un+1:

un+1 + un − cδt
∂un+1

∂x
= 0

For the finite element method, the equation then has to be multiplied by a testfunction
v and integrated by parts. In the following, the symbol u will be used for un+1

Fn+1(u; v) =
∫ β

α
(uv + unv− cδtv

∂u
∂x

)dx = 0

In UFL, this can be written as

F = u*v*dx + u_n*v*dx - dt*c*Dx(u,1)*v*dx

with v being the testfunction, u the trialfunction, u_n the known solution of the previous
step and dt the time step size. The Dt() from before was hereby replaced by the implicit
Euler method.

Solution with the implicit Euler method based on Irksome

However, for implementing Runge-Kutta methods, the variational form needs to update
stages rather than updating the value of the previous calculated time step [19]. To this
end, Irksome provides an automatic transformation from the semidiscrete form F to its
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Runge-Kutta variational form. The concept of this will be shown in the following using
the examples Backward Euler method and Heun’s method. As described above, the
implicit Euler method has the Butcher Tableau

1 1
1

Therefore, k0 and u0 can be defined as

k1 = f (tn, un)

u0 = un + δt f (tn, un)

In UFL, this can be written as:

k1 = Function(V)
v0 = TestFunction(V)
u0 = u_n + dt*Constant(1.0)*k0
F = u*v0*dx+u0*v*dx - dt*Dx(u0,1)*v0*k0*dx

u_n is a given function in a functionspace V containing the solution at time n and dt is
the time step size.

Solution with Heun’s Method based on Irksome

We have generalized the implicit Euler method. Now we can use any Runge-Kutta
method, e.g. Heun. For this we still need some modifications, which are explained in
the example. The 1D-advection equation was solved with the Heun’s method which is
also known as the explicit midpoint rule. Heun’s method has the Butcher Tableau

0 0 0
1 1 0

1/2 1/2

Accordingly, the Runge-Kutta equations can be defined as:

k1 = f (tn, un)

k2 = f (tn + δt, un + δtk1)

u0 = un

u0 = un + δtk1

The corresponding UFL code is given by
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E = V.ufl_element() * V.ufl_element()
Vbig = FunctionSpace(V.mesh(),E)
u = TrialFunction(V)
k = Function(Vbig)
k0, k1 = split(k)
v0, v1 = TestFunctions(Vbig)
u0 = u_n + dt*Constant(0.0)*k0 + dt*Constant(0.0)*k1
u1 = u_n + dt*Constant(1.0)*k0 + dt*Constant(0.0)*k1
F = u*v0*dx + u*v1*dx + u0*v0dx + u1*v1*dx

- dt*Dx(u0,1)*v0*k0*dx - dt*Dx(u1,1)*v1*k1*dx

As above, un is a given function in a Functionspace V containing the solution at time n
and dt is the time step size. As Heun’s method is an implicit method, solving PDEs
with it is not very reasonable. However, here, it was used with the purpose of showing
the functionality with Irksome.

5.2 Heat equation

For the development of the simplified version of Irksome, the example of the heat
equation was also used. Although the 1D-advection equation is very simple, as it is
only a first order equation and the analytical solution is very easy to calculate, the heat
equation is more suitable for our purposes. This is due to the fact that it can be solved
accurately and the analytical solution can be adapted very easily to the respective needs.
However, the heat equation is of second order and has a right side, which makes it a
bit more complicated.

The heat equation was first implemented using the implicit Euler method based on
the FEniCS tutorial, and then using the Lobatto IIIc method based on a code proposed
in the Irksome paper [19].

Heat equation

The heat equation is given by the following as can be seen in Chapter 2 and in [11]

∂u
∂t

= 52u + f in Ω× (0, T], (5.1)

u = uD on δΩ× (0, T], (5.2)

u = u0 at t = 0. (5.3)

With the Irksome extension Dt(), one would express this in UFL in its semi-discrete
form as [19]
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F = inner (Dt(u), v) * dx + inner (grad(u), grad(v)) * dx

As our version of Irksome does not support Dt() it will be replaced with different
time-stepping methods in the next subsections.

In the following examples, let the boundaries u_D be as described in section 2.5
using the MMS

u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t',
degree=2, alpha=alpha, beta=beta, t=0)

with alpha and beta being arbitrary parameters. With this definition of u_D, the
problem is a first order problem.

Solution with the one stage Radau IIa method

The FEniCS tutorial [11] explains in further detail how the time derivative of the heat
equation is first discretized into a sequence of stationary problems, which are then each
turned into a variational form. This step is not included here, since it can be read in
detail in [11].

For the backward Euler time stepping method, the resulting equation is

Fn+1(u; v) =
∫

Ω
(uv + δt5 u5 v− (un + f n+1v)dx

where v is the testfunction, δt the time step size and the symbol u is used for un+1. In
UFL, this is written as

F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx

with v being the testfunction, u the trialfunction, u_n the known solution of the previous
step and dt the time step size. As the backward Euler method is a first order method, it
can only solve first order problems without errors beyond computational errors.

Solution with the second order Lobatto IIIc method based on Irksome

Next, the two dimensional heat equation is solved using the second order Lobatto IIIc
method as described in [19]. The second order Lobatto IIIc method has the Butcher
Tableau

0 1/2 -1/2
1 1/2 1/2

1/2 1/2
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As it has two stages, the solution at each point n + 1 can be computed with

yn+1 = yn + δtb1k1 + δtb2k2 (5.4)

with
k1 = f (tn + c1δt, yn + δta11k1 + δta12k2)

k2 = f (tn + c2δt, yn + δta21k1 + δta22k2)

and
ũ1 = yn ++δta11k1 + δta12k2 (5.5)

ũ2 = yn + δta21k1 + δta22k2 (5.6)

The right hand side (RHS) of the heat equation can be calculated with equation 5.1 by
subtracting the time derivative on both sides

rhs = u− ∂u
∂t

(5.7)

With this, the weak form of the solution u is

<
∂u
∂t

, v > + < 5u,5v >=< rhs, v >

Therefore, the weak form for each stage ki must be

< ki, vi > + < 5ũi,5vi >=< rhs(tn + ciδt), v

Consequently, the complete variational form for the heat equation solved with a two
stage Runge-Kutta method is

0 =< k1, v1 > + < 5u1,5v1 > − < rhs1, v1 > +

< k2, v2 > + < 5u2,5v2 > − < rhs2, v2 >

One challenge for the implementation arose particularly at the implementation of the
RHS as it must include the derivative and also be adapted to the number of stages.
This was resolved as follows

f = ns * [None]
for i in range(ns):

f[i] = Expression('beta - 2 - 2*alpha', degree=2,
alpha=alpha, beta=beta, t=0)

f[i].t = t + bt.c[i] * dt
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As can be seen, the in section 2.5 according to the MMS calculated u_D was used. The
functions u and v as well as the Form F are then defined as

k0, k1 = TrialFunctions(Vbig)
v0, v1 = TestFunctions(Vbig)

u0 = u_ini + A[0][0] * dt * k0 + A[0][1] * dt * k1
u1 = u_ini + A[1][0] * dt * k0 + A[1][1] * dt * k1

F = (inner(k0 , v0) * dx + inner(grad(u0), grad(v0)) * dx)
+ (inner(k1, v1) * dx + inner(grad(u1), grad(v1)) * dx)-
f[1] * v1 * dx - f[0] * v0 * dx

where u_ini is the interpolation of uD with V and describes the solution at t=0.
In this example, it also needs to be taken into account that the boundary conditions

need to be a time derivation of u_D for the reason that the solution is found by
computing the stages k0 and k1. Therefore, the boundary conditions are defined as

du_Ddt = ns * [None]
bc = []
for i in range(ns):

du_Ddt[i] = Expression('beta', degree=2, alpha=alpha,
beta=beta, t=0)

du_Ddt[i].t = t + bt.c[i] * dt
bc.append(DirichletBC(Vbig.sub(i), du_Ddt[i], boundary))

The expression beta is the time derivative of u_D as explained in section 2.5. The two
stage Lobatto IIIc method is a second order method and can therefore solve second
order problems without errors besides computational ones.

5.3 Code

This subsection explains how the simplified FEniCS version of Irksome was imple-
mented and how it is based on the original Irksome code. For this, the heat equation is
used again.

As described in section 4.2 the functionality of Irksome is mainly implemented by the
function getForm, which performs the UFL manipulation and also adopts the boundary
condition to the corresponding Runge-Kutta method. The class stepper handles the
interaction with getForm.

However, our implemented version only uses the file ButcherTableaux; nevertheless,
the code is also based on the other Irksome classes, especially getForm. It can be
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divided into three parts. First, the general conditions for solving the equation are set
up, next, the variational form is created and, finally, the equation itself is solved.

Setting up benchmark scenario

To begin with, all the parameters are defined. These are the final time, current time,
number of time steps, time step size and additional parameters that may be needed for
solving the functions. In our example of the heat equation, these are the parameters
alpha and beta, which are used for the initial conditions.

T = 2.0 # final time
t = 0 # current time
num_steps = 20 # number of time steps
dt = T / num_steps # time step size
alpha = 3 # parameter alpha
beta = 1.2 # parameter beta

Now, the geometry is defined. For our example, a mesh with a size of 8 ∗ 8 is chosen.
However, any mesh can be used.

nx = ny = 8
msh = UnitSquareMesh(nx, ny)

Finally, the Butcher tableau is selected. The Irksome file ButcherTableaux is used for
this. It represents many different Runge-Kutta methods. The required number of stages
can be passed by a parameter. For example, the following code would initialize the
two-stage LobattoIIC method.

bt = LobattoIIIC(2)
num_stages = bt.num_stages
A = bt.A
b = bt.b
c = bt.c

Creating variational form

To solve the equation, the variational form must be created. To this end, a functionspace
must be initialized. Since the equation is solved with a Runge-Kutta method in several
stages, it must have the same dimension as the number of stages. This was realised
with the help of a mixed element.
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# Create mixed function space depending on number of stages
V = FunctionSpace(msh, "P", 1)
if(num_stages==1):

Vbig=V
else:

mixed = MixedElement(num_stages*[V.ufl_element()])
Vbig = FunctionSpace(V.mesh(), mixed)

However, if there is only one stage, FEniCS cannot use a mixed element. Due to this,
there is a need for the if-clause.

To have a unique solution, initial conditions must be defined. The parameters alpha
and beta are used for this. Also, as the heat equation is time dependent, the initial
condition is time dependent.

# Define initial condition
u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t*t', degree=2,

alpha=alpha, beta=beta, t=0)
u_ini = interpolate(u_D, V)

Next, the boundary conditions are set up. Since the individual stages ki are calcu-
lated as the solution, this must be a time derivative of u_D. The calculation for the
corresponding number of stages is performed as follows

def boundary(x, on_boundary):
return on_boundary

du_Ddt = num_stages * [None]
bc = []
for i in range(num_stages):

du_Ddt[i] = Expression('2*beta*t', degree=3, alpha=alpha,
beta=beta, t=0)

du_Ddt[i].t = t
for j in range (i-1):

du_Ddt[i].t = du_Ddt[i].t + bt.c[j] * dt
if(num_stages==1):

bc.append(DirichletBC(Vbig, du_Ddt[i], boundary))
else:

bc.append(DirichletBC(Vbig.sub(i), du_Ddt[i], boundary))

In FEniCS, trialfunctions as well as testfunctions can always be defined with the
functions TestFunction() and TrialFunction() by simply passing a functionspace as
the argument. However, if multidimensional functionspaces are used as they are

29



5 Implementation of Runge-Kutta Methods

needed for solving equations with Runge-Kutta methods, that have more than one
stage, there also need to be multiple test- and trialfunctions. This can be implemented
by splitting the functions that have been defined over the expanded functionspace. As
a result, the number of test- and trialfunctions equals the number of stages f of the
used Runge-Kutta method.

k = TrialFunction(Vbig)
v = TestFunction(Vbig)
ks = split(k)
vs = split(v)

Afterwards, the solutions for each individual stage are calculated. Doing this is
equivalent to equations 5.5 and 5.6 and implemented with the help of two for-loops.
The values in the matrix A from the Butcher Tableaux are also used as explained in
Chapter 3.

u = num_stages * [None]
for i in range(num_stages):

uhelp = u_ini
for j in range (num_stages):

uhelp = uhelp + A[i][j] * dt * ks[j]
u[i] = uhelp

In order to solve the equation, the right-hand side of the equation must also be defined,
since it is not equal to zero. Since it is calculated as in 5.7, this can be realised by the
following code. Again, the derivative of u_D must be employed.

f = num_stages * [None]
for i in range(num_stages):

f[i] = Expression('2*beta*t- 2 - 2*alpha', degree=2,
alpha=alpha, beta=beta, t=0)

f[i].t = t + c[i] * dt
rh = 0
for i in range(num_stages):

rh = rh + f[i]* vs[i]*dx

Finally, the weak Runge-Kutta Form is assembled from the calculated parts.

F = 0
for i in range(num_stages):

F = F + heatreplace(vs[i],u[i],ks[i])
F = F - rh
a, L = lhs(F), rhs(F)
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For this, there exists the function replace. It takes the arguments v, u and k and then
returns the left side of the heat equation with the passed parameters. Theoretically, this
function can be replaced with any other function for different equations which makes
an adaption of the code to other problems easy. However, for the heat equation the
function replace is defined as follows

def replace( v, u, k):
L = (inner(k , v) * dx + inner(grad(u), grad(v)) * dx)
return L

One of the advantages of the concept of Irksome is that one must only define the
semi-discrete form of the PDE as it is used in the method of lines. This is the simplified
space discretization without any time discretization.

Solving equation

The last step is to solve the problem itself. The unknown stages are the values that need
to be solved. Therefore, they are defined as a function over the expanded functionspace.
For solving the equation, a for-loop over the number of time steps is used and the
individual stages are calculated at each time. Subsequently, the solution must be put
together, as calculated in 5.4. Also, the time in the boundary conditions and the RHS
must be updated in each step, as well as the time itself. Finally, a reference solution is
computed by interpolating the initial condition V. This helps calculating the error.

# Unknown: stages k
k = Function(Vbig)
for n in range(num_steps):

# Update BCs and rhs wrt current time.
for i in range(num_stages):

du_Ddt[i].t = t + bt.c[i] * dt
f[i].t = t + bt.c[i] * dt

# Compute solution for stages
solve(a == L, k, bc)
# Assemble solution from stages
if(num_stages==1):

u_sol_help = u_ini+ dt*bt.b[0]*k
else:

u_sol_help = u_ini
for i in range (num_stages):

u_sol_help = u_sol_help + dt*bt.b[i]*k.sub(i)
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u_sol = project(u_sol_help,V)
u_ini.assign(u_sol)
# Update time and compute reference solution
t += dt
u_D.t = t
u_ref = interpolate(u_D, V)

To estimate the error, the L2-norm is calculated. For an n-dimensional vector, this is
defined as

|x| =
√

n

∑
k=1
|xk|2

The different Runge-Kutta methods compute the expected results with expected errors
for higher order equations. Further derivation on the results can be found in Chapter 7.
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6 Generalized-α method

This chapter describes how the in section 2.4 presented elastodynamics equation was
implemented in FEniCS using the generalized-α method. The code is based on the
example 1 introduced in [13]. In order to examine the functioning of the generalized-α
method in more detail, the sample code2 was supplemented by an error calculation.
Hereby the decrease of the total energy loss in the time period of 4.0 seconds was
calculated for different different time steps [0.25, 0.125, 0.0625, 0.03125]. As can be
seen in Figure 6.1, the total energy loss decreases with increasing time t, thus this
implementation of the generalized-α method is not energy conserving. This is indicating
numerical damping, which is according to [13] as expected. Also, it can be seen that
with decreasing time step size, the total energy loss increases.

1https://comet-fenics.readthedocs.io/en/latest/_sources/demo/elastodynamics/demo_elastodynamics.py.rst.txt
2https://comet-fenics.readthedocs.io/en/latest/demo/elastodynamics/demo_elastodynamics.py.html#time-

discretization-using-the-generalized-alpha-method
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Figure 6.1: Total energy loss of the elastodynamics equation
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7 Results

This chapter shows how the different time stepping methods behave for PDEs of
different polynomial degree. In chapter 5 it was shown how to implement different
time-stepping methods for the heat equation. Now the MMS as explained in section 2.2
will be used to fit the polynomial degree of the test problem to the order of the time-
stepping methods and to calculate the error. All of the results in this chapter are based
on the following setup to solve the heat equation

• maximum simulation time T = 2.0

• largest timestep size δt0 = 1/4

• considered timestep sizes δti = [1/4, 1/8, 1/16, ..., 1/1024, 1/2048]

In 7.1 the results in general are introduced. Thereafter, a convergence study is performed
in 7.2.

7.1 General results

The implemented code for solving PDEs with Runge-Kutta methods behaves according
to the order of the used method. Because of the usage of Runge-Kutta methods we
achieved to solve heat equation with a very high order RHS. So, it was for example
possible to solve the heat equation, with a polynomial order of the RHS of 16 with an
eight stage Gauss-Legendre method.

We tested this with a series of Gauss-Legendre methods of orders 1-8 and a large
time step size of δt = 0.03125 solving the heat equation with right-hand side terms
of order 2-16. The initial condition was adapted to the orders of the time-stepping
method according to the MMS. So for example the initial condition u_D of 16th order
was defined as:

u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] +
beta*t*t*t*t*t*t*t*t*t*t*t*t*t*t*t*t',
degree=2, alpha=alpha, beta=beta, t=0)

The results can be seen in the following table
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7 Results

Number of stages Polynomial order of RHS Error
1 2 1.098402742047217e-14
2 4 7.45602465414041e-15
3 6 7.228898649093617e-15
4 8 7.612449719588713e-15
5 10 7.90655177936233e-15
6 12 7.975739059056074e-15
7 14 7.793098923555298e-15
8 16 8.098984644410854e-15

As all of the the errors are quite small, they most likely originated from computational
errors, therefore the methods work according to their orders.

7.2 Convergence study

The FEniCS version of Irksome can also be used to perform a convergence study. The
heat equation as implemented in chapter 5 is again used as a benchmark scenario.

There were several convergence studies done. For each study, one each of the three
families of implicit Runge-Kutta methods presented was used. The notation of the
graphs used is L(i) for the Lobatto IIIc method with i stages, R(i) for the Radau IIa
method with i stages and G(i) for the Gauss-Legendre method with i stages.

Third order heat equation

First, a heat equation problem with a third order RHS was solved using different
Runge-Kutta methods. The applied initial condition is the following

u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t*t*t',
degree=2, alpha=alpha, beta=beta, t=0)

The results can be seen in Figure 7.1. G(1) is the second order Gauss-Legendre methods,
which has one stage, L(3) is the fourth order Lobatto IIIc method with three stages
and R(1) the first order Radau IIa method with one stage which is the implicit Euler
method. All methods behave as expected and reach the order that is expected by theory.
The errors of the fourth order Lobatto IIIc method are so small that they most likely
originated from computational errors. This also explains, why they are bigger for
smaller time-steps, as those require more computational work. Therefore, Lobatto IIIc
also behaves as expected.
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Figure 7.1: Methods behave as expected for a heat equation with a third order RHS
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Figure 7.2: Methods behave as expected for a heat equation with a fifth order RHS

37
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Fifth order heat equation

Another convergence study was performed with a heat equation with a fifth order RHS.
For this, u_D was changed to:

u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t*t*t*t*t',
degree=2, alpha=alpha, beta=beta, t=0)

This was solved with the three staged Lobatto IIIc method, the implicit Euler method
and the two stage Gauss-Legendre method. As can be seen in 7.2, the results almost
meet the expectations. Only at very small time steps, there are a few deviations from the
usual error curves for the fourth order methods L(3) and G(2). This can be explained by
the fact, that those errors are extremely small and therefore in the area of computational
errors.

Seventh order heat equation

Last, a convergence study was done with a heat equation with a seventh order RHS
and the following initial condition for u_D

u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t*t*t*t*t*t*t',
degree=2, alpha=alpha, beta=beta, t=0)

For the time discretization the Lobatto IIIc method, the Radau IIa method and the
Gauss-Legendre method are all used with three stages. This means L(3) is a fourth
order methods, R(3) a fifth order method and G(3) a sixth order method. As one can
see in 7.3, the graph only behaves as expected with larger time steps. G(3) has the
largest deviations, as it also has the largest order. This again is due to computational
errors.. Therefore, the graphs correspond as expected to the respective error order.
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Figure 7.3: Methods behave as expected for a heat equation with a third order RHS
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8 Conclusion and Outlook

The following sections summarize the conducted work and give an outlook on further
research.

8.1 Summary of the Work

As it is a long-standing critique of fully implicit Runge-Kutta methods, especially for
PDEs, that they require a very large algebraic solve for all stages concurrently [19], it is
very beneficial to have a program like Irksome. Originally, it was planned to develop
an equivalent version of Irksome, which is compatible with FEniCS. However, due to
several differences between Firedrake and FEniCS, this would have been beyond the
scope of this thesis. Therefore, this work provides a simplified version. Thereby, it is
possible to implement Runge-Kutta methods of several families simply by specifying
the respective Butcher tableau. In chapter 7 it has been shown that these methods
work up to the 16th order. We used a simple heat equation example to verify correct
behavior through convergence studies. It showed that the methods behave according to
their order in convergence studies. The 1D-advection equation and the heat equation
were used to develop the code. Also, we implemented the elastodynamics equation
with the generalized-α method to give a further example of how PDEs are solved with
time-stepping methods.

Thanks to projects like Irksome, it is becoming more and more easy to solve PDEs
efficiently and accurately with a relatively intuitive code compared to the problem itself.
This is precisely why it is important to offer this simplification to the widest more than
one finite element toolboxes. This work is meant to transfer an automated Runge-Kutta
method for differential equations to FEniCS.

8.2 Outlook

In this work, we have seen that the concepts of Irksome can be transferred to FEniCS.
Naturally, this does not only apply for FEniCS, but for finite element toolboxes in
general. As the implementation of time stepping schemes can be complicated, time-
consuming and error-prone, simple ways to implement efficient methods for time
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8 Conclusion and Outlook

discretization are needed. This was done with Irksome [19] and also with our proposed
code for Runge-Kutta methods. However, it would be good if the in this paper proposed
code could be further evaluated as it was only tested with the heat equation so far.
Irksome on the other hand gives more examples of solving different PDEs in [19]. It is
presumably possible to extend the FEniCS code to the functionalities of Irksome. For
some PDEs the generalised-α method might be the better choice as it allows numerical
dumping, which can be controlled by the user. But it is only a second order method
and can therefore not be used for an analytical solution of higher order differential
equations. However, it can still approximate those. In [23] a third-order generalized-
alpha method is devised and analyzed. To achieve this, extra parameters were assigned
to the higher-order terms of a Taylor series representation. Nevertheless, in the current
state of research, the generalised-α method still only exists up to the third order.

Since partial differential equations are used in the solution of most physical problems,
research about solving them is essential. This thesis showed that Runge-Kutta methods
can be generalized not only for Irksome, but also for other finite element toolboxes like
FEniCS.
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