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Abstract

Potential interactions of new physics, which violate CP- and baryon-number conser-

vation, are investigated within an effective field theory approach. In particular, CP-

violating interactions involving the Higgs boson and gluons are studied, focusing on

new-physics scenarios with vanishing or strongly suppressed light-quark Yukawa coup-

lings. The CP-violating interactions lead to three- and four-gluon operators of Weinberg

type at low energies, which contribute to the electric dipole moment of the neutron. The

corresponding hadronic matrix elements are calculated with the help of sum-rule tech-

niques in QCD. Moreover, baryon-number-violating interactions that involve gravity are

studied in this thesis. In this context, the sensitivity of existing and next-generation

neutrino experiments in detecting a proton-decay signature with a pion, a positron and

a graviton in the final state is examined. The hadronic form factors that parametrise

the corresponding proton-to-pion transition are calculated by means of light-cone sum

rules. The validity of the sum-rule approach is verified on the basis of a matrix element

for a related but simpler decay channel which is known from lattice QCD.

Zusammenfassung

Im Rahmen einer effektiven Feldtheorie werden potenzielle Wechselwirkungen (WW)

neuer Physik untersucht, welche CP- und Baryonenzahlerhaltung verletzen. Im Fokus

stehen CP-verletzende WW zwischen dem Higgsboson und Gluonen, wobei insbeson-

dere Modelle mit sehr kleinen oder verschwindenden Yukawa-Kopplungen für leichte

Quarks untersucht werden. Die CP-verletzenden WW führen bei niedrigen Energien zu

Weinberg-Operatoren mit drei oder vier Gluonen, welche zum elektrischen Dipolmo-

ment des Neutrons beitragen. Die zugehörigen hadronischen Matrixelemente werden

mithilfe von Summenregeln in der QCD berechnet. Außerdem werden in dieser Arbeit

gravitative WW untersucht, welche die Baryonenzahlerhaltung verletzen. Dabei wird

die Sensitivität von existierenden und zukünftigen Neutrino-Experimenten bezüglich

Signaturen von Protonzerfällen mit einem Pion, einem Positron und einem Graviton

im Endzustand untersucht. Die hadronischen Formfaktoren, welche den Übergang vom

Proton zum Pion parametrisieren, werden mithilfe von Light-Cone-Summenregeln be-

rechnet. Die Gültigkeit des Summenregelansatzes wird anhand eines ähnlichen, aber

einfacheren Matrixelements verifiziert, welches bereits in der Gittereichtheorie berech-

net wurde.
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1 Introduction

The formulation of the Standard Model (SM) has been ground-breaking for modern

particle physics. The theory is celebrated for its grand success in describing the fun-

damental forces in nature (in combination with general relativity (GR)) and many of

its predictions have been verified ever since its proposal. In particular, collider exper-

iments of the pre–large hadron collider (LHC) era tested the electroweak interactions

of the SM at a very high degree of precision [1]. But it was not until the time of LHC

physics that the Higgs boson was directly measured [2,3] and the Yukawa interactions

of the Higgs field with the heavy generations of quarks and leptons in the SM could be

established experimentally [4].1

There is however ample of both theoretical and empirical motivation to hypothesise

the existence of new physics beyond the SM (BSM). For instance, it is well known that

gravity as described by GR, or rather the Einstein-Hilbert action, has to be augmented

at sufficiently high energies, at the latest at the Planck scale. Another issue that arises

in this context is the Hierarchy problem. The problem is given by the observation that

the physical Higgs mass is around the electroweak scale even though quantum correc-

tions would lead to contributions proportional to the scale of new physics, which might

be as high as the Planck scale if indeed no new dynamics arises at lower energies [5–8].

But also empirical evidence points towards new physics; well-known examples are the

lack of a dark matter candidate in the SM and the absence of neutrino masses which

are however required to explain neutrino oscillations [9, 10]. The latter observation

provides evidence of lepton-flavour violation, which cannot occur in the SM due to a

global symmetry of the Lagrangian. Other symmetries of this kind exist in the SM, and

they also forbid or strongly suppress processes that violate lepton- or baryon-number

conservation. However, all these global symmetries arise accidentally, i.e. they are not

required to obtain a consistent model, so one might naturally expect that they are

broken by BSM physics at some level. But there is an even stronger motivation to look

for new physics that violates fundamental symmetries in the SM than is provided by

the mere possibility of its existence. In particular, baryon-number conservation and

1Details and references on the current experimental status of research on the Yukawa couplings of

lighter quark generations are provided in Section 5.1.
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1 Introduction

discrete symmetries like parity (P) and charge conjugation (C) play an important role

in the discussion on the matter-antimatter asymmetry in the observable universe.

Today’s great dominance of baryons over anti-baryons is most likely a remnant of a

small imbalance in the early universe [11]. Models of baryogenesis describe a dynam-

ical mechanism that can explain the asymmetry at present. Sakharov established three

conditions that are required for successful baryogenesis [12]: First, baryon-number sym-

metry must be violated because otherwise the transition from a state with a net baryon

number of zero to a state with a non-zero baryon number is forbidden. Second, the

discrete symmetry C and the combination CP must be violated. If C and CP were ex-

actly preserved, the relevant processes of particles and anti-particles would occur at the

same rate, so no asymmetry could emerge if the initial state was C- or CP-symmetric.

Third, the system has to depart from thermal equilibrium because otherwise, the state

of the system would not change in time. These qualitative arguments are examined

more rigorously in the articles [11–13]. All three conditions are actually satisfied in the

SM and generic models of cosmology, but a quantitative analysis in this setup shows

that the observed asymmetry cannot be fully accounted for [13,14]. This is considered

yet another proof of the existence of BSM physics. Moreover, it can be concluded that

searches for new sources of CP and baryon-number violation are well motivated by the

observation of the matter-antimatter asymmetry.

While strong and electromagnetic (EM) interactions separately preserve P and C,

the electroweak theory violates both symmetries. But it turns out that the flavour

structure of quarks in the SM, as encoded in the Cabibbo–Kobayashi–Maskawa (CKM)

matrix, includes a single physical complex phase which leads to CP violation in flavour-

changing interactions. The Jarlskog invariant [15] is constructed from the complex

phase and other parameters of the CKM matrix, and it quantifies CP violation in a

basis-independent manner. The observable turns out to be suppressed by off-diagonal

CKM elements, so the amount of CP violation in the weak sector of the SM is actually

small. The only other possibility of CP violation in the SM may be given by a so-called

θ term in the strong sector; however, it was experimentally established that this too

would have to be a small effect (cf. Section 2.2).

Since measurable effects of CP and baryon-number violation are strongly suppressed,

both symmetries can be considered to be approximately preserved in the SM. This of-

fers a great opportunity to search for BSM physics in rare or forbidden processes: No

detailed knowledge of the SM contributions is required because they are often negli-

gible. This means that even small contributions due to new physics can be detected if

the sensitivity of the experiment is high enough. In particular, low-energy experiments

searching for rare and forbidden processes are known to provide powerful constraints

on related BSM models [16]. Typical examples are searches for electric dipole mo-

2



ments (EDMs), sensitive to CP violation, and proton decay, which tests baryon-number

violation. In these experiments, however, only indirect effects of new physics are probed

by searching for deviations from the SM prediction in the properties of known particles.

So the details of the underlying physics may not be fully revealed. Hence, by searching

for such indirect effects often a wide range of BSM scenarios is tested instead of a par-

ticular model. The observation of the matter-antimatter asymmetry also provides little

information on the details of the new physics since it is parametrised by only a single

parameter. It is therefore very convenient to employ a model-independent approach to

parametrise the effects of new physics so that no strong assumptions on the details of

the underlying BSM theory are required.

A framework to study the effects of CP- and baryon-number-violating new physics

at low energies necessarily involves new interactions among the SM particles, i.e. new

operators, to capture virtual effects. The underlying assumption is that all new particles

that could be relevant are too heavy to be produced on-shell in the experiment and

they can be effectively decoupled from the particle spectrum. Then new physics either

modifies the SM parameters or leads to higher-dimensional operators in the Lagrangian,

i.e. operators of mass dimension larger than four, which are built from the SM fields [17].

If operators with arbitrarily high mass dimension are permitted in the Lagrangian, the

theory is called an effective field theory (EFT).

Since the scattering amplitudes obtained from operators of mass dimension n > 4

contain contributions that scale with energy to the power of n − 4, it is immediately

clear that a theory with higher-dimensional operators can only be valid up to a certain

cutoff scale. So the theory works effectively in a certain energy regime and requires

ultraviolet (UV) completion above this cutoff. A typical example is the 4-Fermi theory

or V −A theory of weak interactions, where four-fermion interactions are described by

dimension-six operators multiplied by inverse powers of the masses of the weak gauge

fields. The effective theory requires a UV completion (i.e. the theory of electroweak

interactions) as the energy approaches the mass of the W boson. In contrast, the

strong and electroweak interactions in the SM are renormalisable (cf. Chapter 2), and

in principle, they can be employed to derive predictions at any energy scale. In practice

however other subtleties may arise, e.g. at low energies where the strong interactions

of quantum chromodynamics (QCD) lead to confinement.

Another interesting example of an EFT is GR. Any field in the SM interacts grav-

itationally, and in this work, gravity in terms of GR as an EFT will be considered

to be part of the SM. It is well known that the effective quantum field theory (QFT)

of gravity is non-renormalisable and requires a UV completion at the Planck scale or

below. Therefore, the Planck mass naturally sets an upper limit on the validity of the

SM as a theory of fundamental interactions in nature. To date, no deviations from the

3



1 Introduction

predictions of GR have been observed; on the other hand, if the theory indeed holds for

energies up to the Planck scale one would not even expect to see large departures from

GR at low energies because all interactions due to BSM physics would be Planck-mass

suppressed. In other words, a very high experimental sensitivity would be required to

probe gravitational interactions at the particle level. Various constraints on the inter-

actions of gravitons and SM particles due to BSM physics can be derived in an EFT

framework [18], but proton decay searches are expected to set the nominally strongest

bounds on the associated new-physics couplings.

In order to probe new physics by means of e.g. the neutron EDM (nEDM) or pro-

ton decay searches, theory predictions for the associated low-energy observables are

required. But the coupling of partons in QCD becomes strong at hadronic scales, and

the parameters that can be measured are related to properties of hadrons rather than

elementary fields. The scale where the perturbative expansion in powers of the strong

coupling breaks down is called the QCD or confinement scale, which lies in the vicinity

of 300 MeV. Predictions for the nEDM or proton decay, which are probed at energies

close to the nucleon mass of about 1 GeV, rely on the knowledge of the associated

hadronic matrix elements of partonic operators. However, it is not possible to calculate

these matrix elements perturbatively because of large radiative corrections, i.e. non-

perturbative effects are important at energies close to the QCD scale. For many of

the scenarios discussed in this thesis, even numerical evaluations by means of lattice

QCD (LQCD) are not available at present. Thus, other methods to derive at least

estimates for the hadronic matrix elements are needed to study the effects of BSM

physics on the relevant low-energy observables. Sum-rule techniques in QCD can be

employed for this purpose. They permit a systematic separation of the leading perturb-

ative and non-perturbative effects so that eventually the form factors that parametrise

the hadronic matrix elements can be calculated approximately.

This work focuses on model-independent studies on new physics related to CP and

baryon-number violation. In particular, the hadronic matrix elements that parametrise

the BSM contributions to the nEDM as well as two- and three-body proton decay rates

are studied with the help of sum-rule techniques in QCD. The thesis is structured as

follows. The basics of EFTs are discussed in Chapter 2. Here, a suitable operator

basis for the analyses of the subsequent chapters is identified, and an overview of the

experimental probes of EDMs and proton decay modes is provided.

In Chapter 3, the methods of QCD sum rules are introduced. A simple example is

studied in Section 3.1 in order to illustrate important features of the sum-rule tech-

niques. Section 3.2 contains a more involved application. Here, the QCD sum rules are

presented that describe the contributions of CP-violating dimension-six and dimension-

4



eight gluon operators to the nEDM. The corresponding hadronic matrix elements rep-

resent one of the leading contributions to the nEDM in models that contain new sources

of CP violation in the strongly interacting sector. In Chapter 4, the hadronic matrix

elements of semi-leptonic two- and three-body proton decay modes are calculated with

the help of light-cone sum rules (LCSRs) in QCD. The focus is on transitions with a

neutral pion and a positron in the final state since the associated decay channels are

expected to be dominant in many BSM scenarios and they typically set the strongest

constraints on new-physics models. Section 4.1 is about a simple two-body proton

decay. The hadronic form factors that parametrise the matrix element of the corres-

ponding proton-to-pion transition have been extensively studied in literature by means

of LQCD. The LCSR predictions can thus be verified by LQCD results. Then, the

same techniques are employed in Section 4.2 to estimate the form factors that para-

metrise semi-leptonic proton decay involving an additional graviton in the final state.

These predictions are required to probe gravitational interactions of partons that violate

baryon-number conservation.

Eventually, phenomenological applications of the sum-rule results are discussed in

Chapter 5. In Section 5.1, CP-violating interactions of the Higgs boson and gluons

induced by a dimension-six operator are examined. The Higgs-gluon couplings gen-

erate self-interactions for gluons at low energies when the Higgs particle is integrated

out.2 These gluonic interactions contribute to the nEDM through the hadronic matrix

elements that are calculated in Section 3.2. An example of baryon-number violation

due to BSM physics is discussed in Section 5.2. In particular, an effective interaction

is studied, which involves gravity and leads to semi-leptonic proton decay with a grav-

iton in the final state. Here, the LCSR results of Section 4.2 are needed to calculate

the relevant hadronic matrix element. A summary and discussion of the results of

Chapters 3, 4 and 5 are provided in Chapter 6.

2The role of other partonic operators, which are typically generated in this context, is also discussed

in Section 5.1.
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This thesis is based on the following publications by the author

[19] U. Haisch and A. Hala, Sum rules for CP-violating operators of Weinberg type,

JHEP 11 (2019) 154 [1909.08955],

[20] U. Haisch and A. Hala, Bounds on CP-violating Higgs-gluon interactions: the case

of vanishing light-quark Yukawa couplings, JHEP 11 (2019) 117 [1909.09373],

[21] U. Haisch and A. Hala, Light-cone sum rules for proton decay, JHEP 05 (2021)

258 [2103.13928],

[22] U. Haisch and A. Hala, Semi-leptonic three-body proton decay modes from light-

cone sum rules, prepared for submission to JHEP (2021) [2108.06111].

In particular, the results of Chapters 3, 4 and 5 were originally published in the above

references, which is also indicated at the beginning of the respective sections.
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2 An EFT perspective on fundamental

symmetries

At the heart of EFTs in particle physics is the idea of describing a physical phenomenon

that involves two or more scales with the help of a simple, effective theory by utilising

the ratio of well-separated scales as an expansion parameter. The intuitive idea is that

physical effects at very small length scales should not affect the dynamics at large dis-

tances — at least at a certain level of accuracy. Following this reasoning, an effective

theory can be considered an approximation of an exact theory at a given scale, and

in this sense, any theory can be regarded as an effective theory. Moreover, EFTs can

even be employed if not all the details of an underlying theory are known. The lack

of information about the exact theory then is reflected in the fact that free, unknown

parameters occur in the expansion of the effective theory. The EFT method is particu-

larly convenient for studying the effects of BSM physics in a bottom-up approach. The

SM is then considered to be an approximation to a more fundamental theory which

additionally includes new particles or new interactions or both.

All of the strong and electroweak interactions in the SM are given by renormalis-

able operators, i.e. operators with mass dimension smaller than or equal to four. In

a renormalisable QFT, only a finite number of counterterms are needed to cure all

UV divergences of loop effects. What seems to be a technical remark has, however,

profound implications on the applicability of the theory. In a renormalisable theory,

in principle, infinitely many predictions can be derived from a finite number of meas-

urements, which fix the coefficients of the operators. If the Lagrangian contained non-

renormalisable interactions, then all higher-dimensional operators that are allowed by

the specified symmetries and field content need to be included in the theory to cancel

all UV divergences (see e.g. Refs. [23, 24] for details). An EFT in particle physics by

definition allows for terms of arbitrarily high mass dimension, so it contains infinitely

many coefficients (parameters). Under certain conditions however, only a finite num-

ber of operators, i.e. also a finite number of coefficients, are ever relevant to obtain a

prediction at the desired level of accuracy.

As an example, consider the V −A theory mentioned in Chapter 1, where the massive

W boson is integrated out. Here, the dimension-six four-fermion operators of the theory

7



2 An EFT perspective on fundamental symmetries

are only the leading-order (LO) low-energy approximation to an expansion in powers

of momenta divided by the heavy W mass. Similarly, the effects of BSM physics on

an experimental observable, which is measured at some energy E, can typically be

incorporated in terms of an expansion in powers of the ratio E/m∗ or possibly v/m∗

for experiments performed below the electroweak scale v ' 246 GeV. Here, m∗ is the

energy scale where the dynamics of the theory change due to new physics, e.g. the mass

of a heavy new particle. Hence, a separation between the new physics scale and the

other relevant energy scales is required to ensure the convergence of the expansion. In

other words, if the energy scale of the experiment is well below the new physics scale,

only a finite number of operators is required to obtain a prediction at finite accuracy.

Often, only the leading terms of the operator expansion are needed. If the EFT is

obtained by integrating out heavy resonances from the particle spectrum, the theory

is only valid up to energies of the lowest-lying mass scale where new particles can be

produced on-shell in the experiment (see Refs. [23–25] and references therein for further

reading).

An EFT description of new physics crucially relies on the concept of locality, which

matches the intuition that long-distance effects can be separated from the short-range

dynamics of the UV completion of the theory. Namely, the effects of heavy new physics

are incorporated in the infrared (IR) regime by augmenting the Lagrangian by a series

of local, higher-dimensional operators that are built from the field content of the low-

energy theory. The coefficients of these higher-dimensional operators, which are referred

to as Wilson coefficients, encode the short-distance effects and are a priori unknown

unless they are measured or specified by the details of the underlying UV completion. In

the V −A theory these can be computed from the parameters of the electroweak sector

of the SM, which is the UV completion of the theory. The higher-dimensional operators

themselves, or rather the scattering amplitudes computed from them, describe the long-

range dynamics since they are constructed from the field content of the low energy

theory.

Often, the scale dependence of amplitudes related to higher-dimensional operators is

made explicit by factoring out inverse powers of an energy scale Λ such that the Wilson

coefficients are dimensionless. Note that only the product of the dimensionless Wilson

coefficient and 1/Λn with an appropriate power n can be extracted from experimental

data, i.e. only the coefficients of the operators as a whole can be measured. The scale Λ

is then proportional to the new physics scale m∗, but additional factors of SM coupling

constants as well as new couplings and possibly loop factors may be hidden in the

Wilson coefficients and the scale Λ.

The EFT approach also allows the systematic treatment of problems that involve

multiple scales. Many of the observables studied in this thesis are extracted from

8



low-energy measurements performed at hadronic scales, i.e. around the nucleon mass

mN ∼ 1 GeV. So between the scale of new physics m∗ and the energy scale of the

experiment many thresholds might occur, below which a certain particle cannot be

produced on-shell. Starting from a suitable operator basis at high energies that cap-

tures the effects of new physics and contains unknown Wilson coefficients, an EFT of

light fields at low energies can be obtained by making successive use of a matching

procedure at each mass threshold [25]. Here, the Wilson coefficients of a low-energy

theory that excludes a certain heavy particle are expressed in terms of the coefficients of

the respective high-energy EFT that includes this particle. The matching is performed

at the renormalisation group (RG) scale µ, which is usually chosen near the respective

mass threshold, and with the help of the RG equations (RGEs) the coefficients can be

evolved down to lower energies. Hence, this approach enables us to study the effects of

physics beyond the SM within the EFT framework at low energies — without detailed

knowledge of the underlying UV-complete theory.

The SM EFT (SMEFT) includes all operators that can be constructed from the SM

field content and that preserve the SM gauge symmetries as well as Lorentz symmetry.

The main focus of this thesis concerns low-energy probes of rare and forbidden processes

related to CP and baryon-number violation, where only a small subset of SMEFT

operators is relevant. The experiments that test the corresponding conservation laws

are sensitive enough to probe even strongly suppressed contributions of BSM scenarios.

In particular, the non-conservation of baryon number is strongly constrained by state-

of-the-art proton decay searches provided by the Super-Kamiokande (SK) experiment

[26, 27]. Therefore, even the highly suppressed contributions of operators involving

gravity can be probed in principle [18]. Although gravity can be considered to be part

of the SM, gravitational effects are typically not taken into account in the construction

of the SMEFT because they are suppressed by powers of the gravitational coupling

and therefore often negligible. Studying gravity-associated proton decay, therefore,

requires an extension of the SMEFT with couplings involving the graviton, which leads

to the so-called GRSMEFT [28, 29]. The latter theory includes possible departures

from GR, which can be systematically studied in the EFT approach. The EFT of

gravity breaks down at the Planck mass MPl = 1/
√
GN ' 1.22 · 1019 GeV, where

GN ' 6.71·10−39 GeV−2 [30] denotes the gravitational constant; however, modifications

of gravity may arise well below the Planck mass.

The goal of this chapter is to establish a systematic framework for model-independent

studies of new physics related to CP violation in Higgs-gauge boson interactions on the

one hand and baryon-number-violating new physics on the other hand. The chapter is

structured as follows. The general idea behind the SMEFT is presented in Section 2.1.

Section 2.2 is devoted to the basics of low-energy probes of CP violation and the nEDM

9



2 An EFT perspective on fundamental symmetries

in particular. In Section 2.3, baryon-number violation and proton decay are discussed.

In particular, the set of operators in the SMEFT that is needed to study the possible

effects of new physics is identified in these sections. Finally, the basic features of the

EFT of GR as well as the GRSMEFT are outlined in Section 2.4.

2.1 The idea of the SMEFT

The most general EFT constructed out of the SM fields that preserves the gauge sym-

metries SU(3)C × SU(2)L × U(1)Y is provided by the SMEFT, where effects of BSM

physics are described by higher-dimensional operators while the four-dimensional part

corresponds to the SM Lagrangian. Schematically, the Lagrangian reads

LSMEFT = LSM + L(5) + L(6) + . . . , (2.1)

where the ellipsis denotes operators of mass dimension higher than six. Each of the

higher-dimensional parts of the Lagrangian is composed of a finite set of operators Oi

and powers of the expansion parameter Λ according to the mass dimension n,

L(n) =
∑
i

C i
Λn−4

Oi , (2.2)

where the C i denote dimensionless Wilson coefficients. Note that only the combinations

C i/Λ
n−4 can be measured, and hence the parameters may be combined into Wilson

coefficients with negative mass dimension,

Ci ≡
C i

Λn−4
. (2.3)

This notation will be employed in later chapters of this thesis. By limiting the field

content to that of the SM, electroweak symmetry breaking (EWSB) by the SM Higgs

mechanism is assumed; possible relaxations of this assumption are not discussed in

this thesis (for further reading see Ref. [31] and references therein). At the dimension-

five level only two operators exist in the SMEFT [32], which consist of two lepton

doublets and two insertions of the Higgs doublet and which generate a Majorana mass

for neutrinos.1 Most scenarios of BSM physics discussed in this thesis rely on the

dimension-six basis of the SMEFT, which already comprises 84 independent operators

[32–36] (a discussion on the systematic construction of the operator basis is provided in

the Refs. [37, 38]).2 However, only a subset of the operators in the SMEFT is relevant

1Note that equivalent operators for different fermion generations are counted as one here. However,

operators that are related by hermitian conjugation are counted separately. In parts of the literature,

fewer operators are quoted at the various levels of mass dimension because hermitian conjugates of

operators are not counted separately.
2Note that the list provided in Ref. [35] contains redundant operators, which are removed in Ref. [36].
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2.2 CP violation in the SM and beyond

for a specific process. The power of the SMEFT lies in the fact that it systematically

encodes the effects of new physics on observables in terms of the Wilson coefficients. As

the EFT works without detailed knowledge of the new physics, a large number of new

theories can be explored by studying once the effects of those operators that contain

the relevant field content and have appropriate symmetry properties. Moreover, the

relative significance of different experimental probes for the underlying new-physics

model can be efficiently assessed with the help of the SMEFT.

Some of the Wilson coefficients in the EFT may however contribute to the same

observable. Then only a combination of the coefficients can be constrained by measuring

the observable but not each of them individually. The parameter space is said to have

a flat or weakly bound direction in this case, and certain details of the UV physics

cannot be resolved. This happens for instance when studying CP-violating interactions

between the SM Higgs and gauge fields with the help of an EFT approach. As a solution

in this particular case, low-energy probes can be combined with collider searches [39],

which respectively probe different combinations of the relevant Wilson coefficients. A

more detailed discussion on this topic is provided in Section 5.1 of this thesis.

2.2 CP violation in the SM and beyond

The CPT theorem states that any operator in a local and Lorentz invariant QFT is

invariant under the combined transformation of charge conjugation C, parity P and

time reversal T [40, 41]; see Section 4.3 of Ref. [42] for a proof. The theorem agrees

with all observations at present, and it directly follows that CP is actually equivalent

to time reversal, since CPT = 1. In the SM, CP is violated by the complex phase

of the CKM matrix, which also parametrises non-diagonal, i.e. flavour-changing, weak

interactions among the quarks after EWSB. But there is another source of CP violation

that is permitted by the SM symmetries, which is the strong CP phase θ̄ in QCD. In

particular, the SM Lagrangian admits a bare θ term,

Lθ = θ
g2
s

32π2
εµνρσGAµνG

A
ρσ , (2.4)

where GAµν denotes the gluon field-strength tensor, gs is the strong coupling constant

and εµνρσ is the Levi-Civita symbol with ε0123 = +1. The bare θ term can however

receive an additional contribution from the phase of chiral rotations in the up- and

down-quark Yukawa sector due to the axial anomaly. Only a combination of the latter

phase and the bare θ parameter that is invariant under chiral rotations can be physical;

such a combination is provided by

θ̄ = θ + Arg det (YdYu) , (2.5)
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2 An EFT perspective on fundamental symmetries

where Yu and Yd denote the up- and down-quark Yukawa matrices. It should be noted

at this point that one can also write down bare θ-like terms for the electroweak gauge

fields. These, however, can be removed by chiral rotations, and thus they are basis-

dependent and therefore unphysical. The strong CP phase is severely constrained by

searches for the nEDM dn. By naive dimensional analysis (NDA) one obtains the

estimate [43]
dn
e
∼ θ̄ mred

Λ2
had

, (2.6)

where e is the elementary charge, Λhad ∼ 1 GeV denotes the hadronic scale and mred =

mumd/(mu +md) is the reduced quark mass with mu and md the up- and down-quark

masses. By employing the numerical values for the light-quark masses evaluated at

1 GeV in the MS-scheme provided in Ref. [30], the reduced mass is given by mred '
2 MeV.

Experimentally, the strongest bounds on the magnitude of the nEDM come from

measurements with ultracold neutrons, which are exposed to an electric and a magnetic

field [44–47]. While the magnetic field is fixed, the electric field is alternated between

a parallel and an anti-parallel orientation compared to the magnetic field. The shift

in the frequency of the Larmor precession of the neutron spin polarisation about the

direction of the external fields is proportional to the EDM and can be determined

experimentally. This yields an upper bound on the magnitude of the nEDM of [44–46]

|dn|
e

< 2.2 · 10−26 cm (2.7)

at 95% confidence level (CL). The SM prediction for the nEDM due to the complex

phase in the Yukawa sector is CKM and loop suppressed, which yields a tiny value

of about dCKM
n /e ∼ 10−32 cm [48]. This contribution can be neglected and thus the

experimental constraint can be readily translated into a bound on the strong CP phase

of |θ̄| . 6 · 10−10. This requires a strong tuning in the combination (2.5), which is

surprising — even more so if potentially large corrections due to yet unknown additional

sources of CP violation at high scales are taken into consideration. This constitutes

the strong CP problem. The tuning in θ̄ may arise accidentally, but one might expect

a more natural explanation where this parameter is dynamically turned to zero, e.g.

by a mechanism of the Peccei–Quinn type [49–51] (for further reading see Refs. [43,52]

and references therein).

The discussion on the strong CP phase nicely illustrates the power of experimental

low-energy searches for EDMs in testing flavour-diagonal CP violation. In general,

together with the nEDM constraint (2.7), the strongest EDM limits at present are set

by measurements of the electron spin precession in thorium monoxide [53, 54] and the

mercury atom [55, 56]. These searches are known to place stringent constraints on a
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2.2 CP violation in the SM and beyond

wide range of BSM scenarios with additional sources of CP violation (see also [39,43,52,

57–76] for reviews and recent discussions). For systematic, model-independent studies

the EFT approach can be employed.

The largest contributions to the EDMs from higher-dimensional operators in the

SMEFT are expected to arise at the dimension-six level (before EWSB). But EDMs

are typically measured at low energies so that it is often more convenient to work with

an EFT where also the massive gauge fields, the Higgs field and the heavy fermions of

the SM have been integrated out. In this case one can distinguish between operators

including and excluding fermions; the former read [43]

LCP-odd ⊃ −
i

2

∑
ψ=u,d,s,e,µ

dψ ψ̄σµνγ5ψF
µν − i

2

∑
ψ=u,d,s

d̃ψ ψ̄σµνγ5ψG
µν + L4F , (2.8)

where σµν = i/2 (γµγν − γνγµ), Fµν denotes the EM field strength tensor and Gµν =

GAµνT
A with TA the SU(3) generators. The parameters dψ with ψ = u, d, s, e, µ respect-

ively denote the EDMs of the up-quark u, down-quark d, strange-quark s, the electron

e and the muon µ. The chromo-electric dipole moments (CEDMs) of the light quarks

are given by d̃ψ, and L4F denotes numerous four-fermion operators of mass dimension

six constructed out of the light fermions. The latter operators are often neglected be-

cause they require two flips of chirality which typically originates from dimension-eight

operators [43]. At the dimension-six level, also a pure gauge operator exists, the so-

called Weinberg operator, and even dimension-eight operators of Weinberg type may

be relevant in certain applications (cf. Sections 3.2 and 5.1 as well as Refs. [19, 20]).

The relevant interactions are [77–82]

LCP-odd ⊃−
gs
3
C3G̃f

ABC G̃AµνG
B νρGC µρ

− g2
s

12

3∑
m=1

C4G̃,m c
ABCD
m G̃AµνG

B µνGCρλG
Dρλ ,

(2.9)

where G̃Aµν = 1/2 εµνρλGAρλ denotes the dual of the gluon field strength tensor and

fABC are the fully anti-symmetric structure constants of SU(3)C . The colour structure

of the dimension-eight operators is given by

cABCDm =
{
δAB δCD, δAC δBD, dABEdCDE

}
, (2.10)

where

dABC = 2 Tr
[
TA
{
TB, TC

}]
(2.11)

denotes totally symmetric constants.

At energies close to the QCD scale ΛQCD ∼ 300 MeV, hadrons populate the particle

spectrum. When studying the EDMs of atoms or molecules, atomic and nuclear inter-

actions need to be taken into account in addition to partonic EDM contributions; see
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2 An EFT perspective on fundamental symmetries

Refs. [70, 83, 84] for reviews. The nEDM however allows direct access to CP violation

at the parton level. One of the main goals of this thesis is to explore the contributions

of pure-gluon operators to the nEDM,

Lhadronic ⊃ −
i

2
dn n̄σµνγ5nF

µν , (2.12)

where n is the neutron field. The contributions of pure-gluon as well as quark-gluon op-

erators to the nEDM involve non-perturbative physics because the typical energy scale

of the problem is given by the neutron mass of about 1 GeV. While the thorium monox-

ide measurements can be interpreted as a probe of the electron EDM (eEDM) with small

theoretical uncertainties [85, 86], nucleon, nuclear and diamagnetic EDMs receive con-

tributions from several effective operators that are plagued by theoretical uncertainties

of different sizes. For instance, the EDM contributions from down and up quarks to

the nEDM have been calculated with an accuracy of O(5%) using LQCD [87–89], while

sum-rule calculations [90–92] can be used to determine the nEDM contributions from

the down-quark and up-quark CEDMs with uncertainties of O(50%). To date, only

estimates of the hadronic matrix element of the leading operator of Weinberg type ex-

ist. These rely on either NDA [77], the vacuum insertion approximation (VIA) [93] or

sum rules [94]. The resulting uncertainties are hard to quantify but are commonly said

to be of O(100%). LQCD computations of the contributions of the CEDMs and the

leading Weinberg operator have gained significant momentum in recent years [95–102],

and considering the ongoing efforts by several LQCD groups, calculations with uncer-

tainties similar to those of the sum-rule estimates may be achievable within the next

five years [103,104]. To fully exploit the expected increase in sensitivity of future EDM

searches (see for instance [105–107] for discussions), improved calculations of the had-

ronic matrix elements of CEDMs and Weinberg-type operators are direly needed. This

is the subject of Section 3.2.

2.3 Baryon-number violation and proton decay

The idea of a symmetry that ensures the stability of the proton has a rather long history,

and it was referenced already in the first half of the 20th century [108, 109]. Baryon

number is preserved at the classical level in the SM, where baryon-number conservation

accidentally arises in the form a global symmetry. Baryon number as well as lepton

number are however anomalous, and they are broken by non-perturbative effects [110].

While instanton-like transitions between degenerate vacua are suppressed by the tun-

nelling amplitude, which is proportional to exp
(
−8π2/g2

)
∼ 10−84 with g ' 0.64 the

SU(2)L gauge coupling constant, sphaleron processes may have occurred frequently in

the early universe, and they play an important role in models of baryogenesis [11–13].
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2.3 Baryon-number violation and proton decay

Baryon and lepton number both change by three units in anomaly-related processes in

the SM [110] so that the proton is stable (and the difference between baryon and lepton

number is preserved).

Considering baryon-number violation at the perturbative level, however, is well

motivated by theories of grand unification (GUTs) [111, 112], supersymmetric theor-

ies [113–115], models of baryogenesis [11,12] and more generally in theories of quantum

gravity, where the global symmetries of the SM are expected to be broken at some

level [116,117]. In the case of GUTs, baryon number is typically violated by tree-level

interactions, and proton decay is mediated by the massive gauge fields of the spontan-

eously broken unified gauge group [118–121]. On the experimental side, searches for

simple proton decay channels, such as decays into a pseudoscalar meson and an anti-

lepton, provide very strong constraints on the proton lifetime of τp & 1034 years [122].

These bounds can be used to probe theories that predict proton decay up to extremely

high energy scales, thereby putting severe constraints on the scale of unification.

The discussion of proton decay can be put on a more systematic footing in a model-

independent manner by using the relevant set of lowest-dimensional operators of the

SMEFT. There are four types of operators at the dimension-six level that violate baryon

number and lead to proton decay [32–34]. GUTs provide a variety of predictions for

decay widths that involve flavour-changing interactions, but the following discussion is

restricted to the first generation of quarks and leptons because the decay channel of a

proton (p) into a neutral pion (π0) and a positron (e+) is expected to be dominant in

many scenarios (compared to processes involving heavier mesons and neutrinos) [118–

121], and the most stringent bounds on the proton lifetime arise from probes of this

channel [123–125]. The relevant low-energy effective Lagrangian reads

L(6)
/B

=
∑
Γ,Γ′

cΓΓ′ OΓΓ′ =
∑
Γ,Γ′

cΓΓ′ ε
abc
(
dTaCPΓub

) (
eTCPΓ′uc

)
, (2.13)

where C is the charge conjugation matrix, T denotes the transpose of the Dirac or spinor

index, the symbols PΓ,Γ′ denote the left- and right-chiral projectors PL and PR such

that Γ (Γ′) denotes the chirality of the first (second) fermion bilinear, εabc is the fully

antisymmetric Levi-Civita symbol and a, b, c are colour indices. We consider all possible

chirality combinations of the interaction (2.13) in order to provide a model-independent

analysis. Note that the Wilson coefficients cΓΓ′ , which encode short-distance physics,

have a mass dimension of −2.

The strongest bound on the proton lifetime τp is set by the SK experiment [26, 27]

for the decay channel p→ π0 e+ which is given by [122]

τp
B (p→ π0 e+)

> 2.4 · 1034 yr (2.14)
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at the 90% CL, where B
(
p→ π0 e+

)
denotes the branching ratio of the channel. The

SK water Cherenkov detector is located underground in Japan for shielding against

cosmic ray muons. The water tank of SK is covered with inward- and outward-facing

arrays of photomultiplier tubes. The inner detector can measure the Cherenkov light

produced within the detector, and events from particles entering the detector from the

outside can be discriminated with the help of the outer detector; for details see Ref. [26].

The most dominant source of background for the pion-positron channel comes from

interactions of atmospheric neutrinos with the water molecules inside the detector [126].

Information on the underlying event is extracted from the size, shape and orientation

of the Cherenkov light pattern. The Cherenkov light-cone of highly energetic particles

produces a signal of ring-like shape on the array of photomultiplier tubes of the inner

detector. Low-mass particles like electrons and photons produce EM showers while

heavier particles like the muon do not so that all of the detected Cherenkov light comes

from the original particle in the latter case. Therefore, muons produce sharper rings

which allows us to distinguish between e-like and µ-like events [126, 127]. The final

state pion decays into two photons in about 99% of the cases [30] and hence can be

measured by the same means.

Deriving constraints on models that predict proton decay induced by the operat-

ors (2.13) requires a theoretical prediction for the widths of semi-leptonic proton decay

channels such as p → π0 e+, which in turn relies on the knowledge of the hadronic

matrix element of the underlying proton-to-meson transition. Experiments such as SK

attempt to measure the decay products of protons that are approximately at rest, and

thus the relevant energy scale for the hadronic transition is given by the proton mass.

A perturbative description of the relevant hadronic matrix elements in QCD is not pos-

sible at this energy scale because of large radiative corrections due to the exchange of

soft gluons. A prediction for the hadronic matrix elements by other means is therefore

required to probe baryon-number-violating new physics with the help of experimental

data from proton decay searches.

Moreover, experimental bounds are today available for a broad range of baryon-

number-violating processes [123–125]. In particular, inclusive proton decay searches

for processes like p → π0 `+ + X might be of interest if baryon-number violation does

not become manifest in a simple two-body decay. For example, the case where X is a

graviton may provide relevant constraints on theories where baryon-number violation

occurs in connection with gravity such as in the GRSMEFT. LQCD results are not

available for processes of this kind, which raises the question: how can one obtain

estimates of the proton lifetime in such cases? This issue is addressed in Chapter 4

with the help of LCSR techniques. A short description of an EFT framework including

gravitational effects is provided in the following section.

16



2.4 EFT of gravity

2.4 EFT of gravity

An effective description of the classical phenomena as well as the quantum effects of

gravity at low energies is naturally provided by the EFT framework [128]. Gravity as

an EFT should reproduce GR in the classical limit, and therefore a convenient way to

construct such an EFT is by quantising GR for weak gravitational fields. This topic

has been reviewed many times, see e.g. [129–133], so only some key features will be

presented in the following in order to clarify the terminology and conventions. Possible

extensions due to BSM physics are discussed later on in this section.

The starting point for the EFT of gravity is the action of GR, that is the Einstein-

Hilbert term augmented by a matter Lagrangian Lm,

Sg =
2

κ2

∫
d4x
√
−g [R+ Lm] (2.15)

where g is the determinant of the metric tensor gµν , R is the Ricci scalar and κ = 2/MPl

with MPl = 1/
√

8πGN ' 2.435 · 1018 GeV the reduced Planck mass. Here and in the

following, the cosmological constant term is neglected. The equations of motion for

this choice of the action correspond to the Einstein field equations,

Rµν −
1

2
gµνR = −8πGNTµν , (2.16)

where Rµν is the Ricci tensor and the energy-momentum tensor Tµν is defined by the

variation of the matter action Sm = 2/κ2
∫
d4x
√
−gLm,

δSm = −1

2

∫
d4x
√
−g(x)Tµν(x) δgµν(x) . (2.17)

The graviton field operator hµν(x) is obtained by quantising linear perturbations around

Minkowski spacetime η = diag(+1,−1,−1,−1) for a weak gravitational field,

gµν(x) = ηµν + κhµν(x) , gµν(x) = ηµν − κhµν +O
(
κ2h2

)
. (2.18)

The hence obtained EFT of gravity has a gauge symmetry under which the graviton

field in the weak field limit transforms as

hµν(x)→ h′µν(x′) = hµν(x)− ∂µξν − ∂νξµ , (2.19)

with x′µ = xµ + κξµ(x) and ξµ(x) infinitesimal. The gauge is fixed in the following by

choosing the de Donder or harmonic gauge,

∂µh
µ
ν =

1

2
∂νh , (2.20)

where h ≡ hµµ. Quantising GR leads to a non-renormalisable theory because quantum

corrections give rise to higher-dimensional operators in pure gravity [134–137] but also
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for gravity-matter couplings [134, 135, 138–140]. Hence it is a natural example of an

EFT, which breaks down at 1/κ, so a UV completion of GR is required to describe

gravity at and beyond the Planck scale.

But departures from GR may arise at energies well below the Planck mass; in par-

ticular, little is known about gravitational interactions at the particle level because

direct experimental probes are typically not sensitive enough to measure Planck-mass

suppressed interactions. In order to study the imprints of possible deviations from

GR due to new physics, the LO terms in the Einstein-Hilbert action (2.15) need to

be augmented by higher-dimensional interactions in the EFT. The most general EFT

of gravitons and SM fields including pure gravity terms as well as all potential matter

couplings, which can be generated by BSM physics, is called GRSMEFT [28,29]. It can

be used to systematically study departures from GR in a bottom-up approach, i.e. in a

model-independent fashion. In order to construct the GRSMEFT, it suffices to consider

higher-dimensional operators that involve the Weyl tensor, which transforms in an ir-

reducible representation of the Lorentz group (in contrast to the Riemann tensor Rµνρσ

which is reducible). All occurrences of the Ricci scalar and the Ricci tensor can be re-

moved by field redefinitions of the metric [28]. Corrections to the Lagrangian (2.15) due

to higher-dimensional operators arise at mass dimension six and higher. The phenomen-

ology of all matter interactions at the dimension-six level as well some dimension-eight

operators in the GRSMEFT is studied in Ref. [18].

A promising attempt to probe some of the gravitational interactions at the particle

level is to study rare and forbidden processes. Particularly strong experimental con-

straints on the new-physics couplings of the GRSMEFT come from proton decay

searches [18, 22]. The most relevant proton decay channel that involves a graviton G

is p→ π0 e+G.3 Phenomenologically, this decay mode would lead to a final state with

a positron, two photons from the decaying pion and missing energy because the grav-

iton escapes undetected, but no experimental searches for this kind of signature exist.

Nevertheless, constraints for related signatures can be employed to test the relevant op-

erator in the GRSMEFT; and a detailed discussion of the corresponding experimental

searches is postponed to Section 5.2.

Considering the case of one generation of fermions, baryon-number violation is in-

duced by only a single dimension-eight operator in the GRSMEFT [28, 29]. We write

this operator in the following way

L(8)
/B

= c /B ε
abc
(
dTaCσ

µνPRub
) (
eTCσρσPRuc

)
Cµνρσ + h.c. , (2.21)

3Note that the two-body transition p→ e+G is forbidden by angular momentum conservation.
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where the notation is similar to the previous sections. Here, Cµνρσ represents the Weyl

tensor which is the traceless part of the Riemann tensor Rµνρσ. It takes the form

Cµνρσ = Rµνρσ −
(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

1

3
gµ[ρgσ]νR , (2.22)

where the brackets denote index anti-symmetrisation, i.e. X[µYν] = (XµYν −XνYµ)/2.

Notice that the Wilson coefficient c /B entering (2.21) carries mass dimension −4.

The challenge when computing decay rates due to the interaction (2.21) is once again

given by the fact that the hadronic transition for the semi-leptonic decay involves non-

perturbative effects. As mentioned at the end of the previous section, LCSR techniques

can be employed to derive estimates on the form factors that parametrise the matrix

element. The computation follows the procedure that is employed for the two-body

proton decay, and the details are spelled out in Chapter 4 and in particular Section 4.2.

Eventually, these results are applied in Section 5.2 for studying the phenomenology of

proton decay in the GRSMEFT.
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techniques

The effects of new physics on hadronic properties in low-energy experiments can be

systematically studied with the help of the EFT approach. But how do the new inter-

actions, that are introduced in Chapter 2 in terms of higher-dimensional operators, con-

tribute to observables at hadronic energy scales? The problem is that non-perturbative

effects become important in QCD at energies of a few GeV, i.e. close to the confine-

ment scale ΛQCD. Sum-rule techniques in QCD address this issue, and they enable us

to encode a systematic separation of the short-range quark-gluon interactions and soft,

non-perturbative effects. The former can be calculated perturbatively in QCD while

the latter have to be determined by other means.

The central objects in sum-rule calculations are correlation functions of hadronic

currents. These currents interpolate between the asymptotic incoming and outgoing

states of the hadrons. The correlation functions or correlators are chosen such that they

can be related to the relevant hadronic matrix element of a physical process, but they

are evaluated at large virtualities. Formally the separation of long- and short-distance

effects is implemented with the help of an operator product expansion (OPE). The

short-range interactions are computed in QCD while the long-range interactions are

captured in terms of vacuum condensates or light-cone distribution amplitudes (DAs).

These non-perturbative objects must be provided as external input to the sum rules,

which typically comes from either other sum-rule calculations, LQCD computations or

experimental results. The hence obtained QCD result is then matched on a sum over

hadronic states that provides an alternative description of the correlation function.

This matching leads to sum rules that relate the contributions of partonic operators to

hadronic properties.

The advantage of the sum rules is that the non-perturbative interactions inside the

hadrons do not need to be modelled explicitly because the OPE systematically encodes

them in terms of known objects (at large virtualities). The accuracy of the sum-

rule approach is however limited because of two reasons. First, the sum rules can

be computed only up to a finite order in the OPE as well as in the αs expansion.

Radiative corrections may be particularly significant in applications for the nucleon
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where the renormalisation scale is often close to the confinement scale. Second, the

sum over hadronic states contains not just the ground state of a hadronic resonance

but also heavier excited and multiparticle states with the same quantum numbers as

the ground state. The sum rules are constructed such that heavier states are typically

suppressed, but their contributions can be modelled only approximately. These two

sources of uncertainty are typically reflected in the fact that the sum rules depend

on certain unphysical parameters that are introduced in the calculation. Therefore,

one usually tries to minimise the dependence on such parameters as described in the

following sections, but in general this constitutes a source of systematic uncertainty,

and the size of the corresponding error can only be estimated.

Despite these restrictions, many fruitful applications exist which employ one of the

two common versions of the sum rules: QCD sum rules (aka SVZ sum rules), which were

introduced by Shifman, Vainshtein and Zakharov [141], and LCSRs [142–147] which also

incorporate the concepts of hard exclusive processes [148–154]. In the following section,

basic concepts of QCD sum rules are introduced, and a more involved application is

discussed in Section 3.2 where the contributions of pure-gluon operators to the nEDM

are discussed. The results that are presented in Section 3.2 were originally published

in the article [19]. Applications of the LCSR approach are discussed separately in

Chapter 4.

3.1 QCD sum rules for baryons: Ioffe’s formula

Before discussing a more involved application in the following section, Ioffe’s formula

for the nucleon mass [155] is derived in order to illustrate some of the basic features

of sum-rule techniques. The nucleon mass mN can be extracted from the propagator,

which is related to the two-point correlation function Π2-pt,

Π2-pt = i

∫
d4x eipx 〈0|T [ηN (x)η̄N (0)] |0〉 . (3.1)

Here T denotes the time-ordering operator, ηN (x) denotes an interpolating current

for the nucleon evaluated at the spacetime point x, p is the nucleon’s momentum and

|0〉 represents the QCD vacuum. The exact partonic structure of the nucleon is not

known, but the current ηN is chosen such that it overlaps with the physical nucleon

state |N(p)〉,
〈0| ηN (x) |N(p)〉 = λN uN (p)e−ipx . (3.2)

where λN quantifies the coupling strength between the current and the physical state,

uN (p) is the polarisation spinor of the nucleon and the spin of the nucleon is left implicit.

Next, a complete set of intermediate states is inserted into the correlator by making
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3.1 QCD sum rules for baryons: Ioffe’s formula

use of the completeness relation

1 =
∑∫
N ′

|N ′〉 〈N ′| , (3.3)

where the sum extends over all single and multi-particle states that have the quantum

numbers of the nucleon N including a summation over their spin and the integra-

tion is over the momenta k of the particles. Factors of the integration measure,

d3k/(2k0(2π)3), are not denoted explicitly in the above formula. Note that excita-

tions of the nucleon with both positive and negative parity occur in the sum. By

separating the ground state from contributions of the heavier excited states and the

continuum one obtains

Π2-pt = iλ2
N

∫
d4x

d̄3k

2k0
eipx

×
[
θ(x0) (/k +mN ) e−ikx − θ(−x0) (/k −mN ) eikx

]
+ . . . ,

(3.4)

where d̄k ≡ dk/(2π) and the ellipsis denotes the contributions of heavier states. The

Heaviside step functions θ(x0) and θ(−x0) arise due to time ordering; the standard

treatment of these functions is outlined e.g. in Section 10.2 of Ref. [156] or Sec-

tion 3.6 of [157]. The procedure is nevertheless summarised in the following because it

can be applied to the non-standard applications in the following sections, as well. The

basic idea is to use the integral representation of the Heaviside function,

θ(x0) = lim
ε→0+

∫ ∞
−∞

dτ

2πi

eiτx
0

τ − iε
, (3.5)

and to use d̄3k/(2k0) exp(ikx) = 2π d̄4k δ(k2 − m2
N ) θ(k0) exp(ikx). For a function

f(k0,~k) of the momentum k = (k0, ~k )T one obtains∫
d̄3k

2k0
e−ikxθ(x0)f(k0,~k) =

= −i
∫
d̄4k dτ δ

(
(k0 + τ)2 − ~k2 −m2

N

)
θ(k0 +mN )

e−ikx

τ − iε
f(k0 + τ,~k)

= i

∫
d̄4kf(Ek,~k)

e−ikx

2Ek(k0 − Ek + iε)

(3.6)

where the shift k0 → k0 + τ is applied to remove τ from the exponent in the first step,

the Dirac delta function and the remaining Heaviside function are used to perform the

τ integration in the second step and Ek = (~k2 + m2
N )(1/2). Similarly, the second term

is written as∫
d̄3k

2k0
eikxθ(−x0)f(k0,~k) = −i

∫
d̄4kf(−Ek,−~k)

e−ikx

2Ek(k0 + Ek + iε)
. (3.7)
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Hence one arrives at

Π2-pt = −λ2
N

/p+mN

p2 −m2
N + iε

+ . . . , (3.8)

where the pole of the ground state is now explicit. Excited and multi-particle states,

which are denoted by the ellipsis, lead to additional poles and branch cuts at larger

values of p2. Ideally, the sum rules are constructed such that the contributions of

heavier states are small compared to the contribution of the ground state. This topic

will be addressed later.

When studying correlators related to proton decay in the context of LCSRs in

Chapter 4, only the positive energy solutions contribute to the hadronic representa-

tion. In this case, the ground-state contribution can be parametrised by employing the

fact that the momentum integral in equation (3.6) is dominated by the pole contribution

at k0 = Ek where the following replacement holds

1

k0 − Ek + iε
=

k0 + Ek − iε
k02 − E2

k + iε

k0=Ek−→ 2Ek
k2 −m2

N + iε
, (3.9)

so that the pole of the ground-state contribution is recovered.

Equation (3.8) constitutes the hadronic or phenomenological side of the sum rules.

The next step is to derive a result for the correlation function (3.8) in QCD. To this

end an explicit form of the interpolating current ηN (x) is required. The current of a

proton can be parametrised by the following two independent terms

η1(x) = 2εabc
(
uTa (x)Cγ5db(x)

)
uc(x) , η2(x) = 2εabc

(
uTa (x)Cdb(x)

)
γ5uc(x) .

(3.10)

The corresponding currents for a neutron are obtained from that of the proton by the

replacement u ↔ d. In literature, often an alternative set of currents is employed,

ηV (x) and ηT (x), which can be obtained from the two above ones by means of Fierz

transformations as follows(see for instance [158,159])

ηV (x) = η2(x)− η1(x) = εabc
(
uTa (x)Cγµub(x)

)
γ5γ

µuc(x) ,

ηT (x) = η2(x) + η1(x) = εabc
(
uTa (x)Cσµνub(x)

)
γ5σ

µνuc(x) .
(3.11)

The combination ηV (x) is sometimes referred to as Ioffe’s current, which was used in

his original work [155]. Moreover, it can be argued that from these two currents, ηV (x)

is more pertinent than ηT (x) as the sum rules derived for the latter choice are plagued

by large contributions from heavier states [155, 160]. The ideal choice of the current

depends on the application; while physical predictions must be independent of this

choice (to a certain extent), technical features like the convergence of the OPE and

the size of the contributions of heavier states typically depend on the choice of the

current. Consider the linear combination η2 + βη1 with some real-valued number β.
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3.1 QCD sum rules for baryons: Ioffe’s formula

The parameter β is unphysical and the less a prediction for an observable depends

on this parameter the closer it should be to the true, physical result. For a certain

regime of values for β the prediction may be approximately independent of β, i.e. a flat

function of the parameter. In this regime, the accuracy of the sum rules is expected to

be better than if the dependence was strong. So by finding the right regime for β the

accuracy can be improved. In the following though the sum rules are presented for the

historical choice ηN (x) = ηV (x), i.e. β = −1, for simplicity.

The time-ordered product in the correlator (3.1) can be expanded in terms of com-

posite, local operators On(0) with increasing mass dimension which are built from the

quark fields,

i T [ηV (x)η̄V (0)] =
∑
n

Cn(x)On(0) , (3.12)

where the Cn denote Wilson coefficients, which contain the information on the x-

dependence. The OPE converges for space-like and small x, x2 < 0 and x ∼ 0 [161].

By taking the vacuum expectation value and the Fourier transform, an expansion in

terms of local condensates and momentum-dependent functions Cn(p) is obtained. The

operators and coefficients of the OPE are defined at a specific scale µ— the renormalisa-

tion scale. Long- and short-range interactions are characterised by energies below and

above µ, respectively. While the condensates capture the long-distance (or IR) physics

in terms of condensates, the Wilson coefficients are determined by short-range (or UV)

interactions. Thus, the integration over momenta of radiative corrections should in

principle be divided into the domains of k < µ and k > µ, which then respectively

contribute to the condensates and the Wilson coefficients. In practice, it is however

assumed that perturbative corrections are subtracted from the condensates, which are

thus considered to be purely non-perturbative objects, so that loop-integrals for cor-

rections to the Wilson coefficients extend over the whole domain of momenta [162,163].

Hence, the OPE systematically separates long- and short-range interactions, where the

factorisation scale is given by the renormalisation scale µ.

Since radiative corrections are computed only up to a finite order, the terms of the

OPE depend on the renormalisation scale µ even though physical quantities are of

course independent of this scale. The UV divergences that occur in the calculation of

the perturbative part can be handled by applying a Borel transformation with respect

to P 2 ≡ −p2 on both sides of the sum rules, which for a function F (P 2) is defined by

B
[
F (P 2)

]
= lim

P 2, n→∞
P 2/n = M2 = const.

(P 2)n

(n− 1)!

(
− d

dP 2

)n
F (P 2) , (3.13)
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3 QCD at hadronic scales: sum-rule techniques

where M denotes the so-called Borel mass.1 All poles and constants from the regu-

larisation occur as factors of polynomials in P 2, so they vanish after taking the Borel

transform. Furthermore, the Borel transformation eventually turns the OPE into an

expansion in powers of the QCD scale ΛQCD ' 300 MeV over the Borel mass M , or

rather (Λ2
QCD/M

2)n with n ≥ 0, because the condensates are expected to scale like

some power of ΛQCD. Radiative corrections are typically evaluated at the Borel mass

as well, i.e. µ ∼M , because it is related to the momentum flow through the correlator.

On the hadronic side of the sum rules, the Borel transform effectively exponenti-

ates the denominators, e.g. the masses of the resonances. A collection of useful Borel

transforms can be found for instance in [164–166] and reads

B
[(
P 2
)k]

= 0 ,

B

[(
1

P 2

)k]
=

1

(k − 1)!

(
1

M2

)k
,

B

[(
1

s+ P 2

)k]
=

1

(k − 1)!

(
1

M2

)k
e−

s
M2 ,

(3.14)

B
[(
P 2
)k

ln
(
P 2
)]

= (−1)k+1Γ(k + 1)(M2)k ,

B

[(
1

P 2

)k (
ln

(
P 2

µ2

))−ε]
=

1

Γ(k)

(
1

M2

)k (
ln

(
P 2

µ2

))−ε

×

[
1 +O

((
ln

(
P 2

µ2

))−1
)]

.

Here k ∈ N+ and Γ(z) denotes the Euler gamma function. From (3.14) it is clear

that heavier states exhibit a stronger suppression than the ground state after Borel

transformation, which is another advantage of this approach.

Section 3.2 contains many details on the calculation of local OPEs, so for the cor-

relation function (3.1) with the current ηV (x) in (3.11) only the results, which can be

found in the Refs. [155, 167, 168], are presented here. In particular, there are two sum

rules that can be extracted from this correlator, one for each of the structures in (3.8),

i.e. for /p and 1. By matching the QCD result on the hadronic expression (3.8), the

following result is obtained after Borel transformation

λ2
N e
−m2

N/M
2

+ . . . = M6 + . . . ,

λ2
N mN e

−m2
N/M

2
+ . . . = −8π2 〈q̄q〉M4 + . . . ,

(3.15)

1Note that the OPE converges only if P 2 > 0 and in particular P 2 � Λ2
QCD.
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3.1 QCD sum rules for baryons: Ioffe’s formula

where condensates of mass dimension higher than 3, radiative corrections and contri-

butions from heavier states are neglected as indicated by the ellipses. The Borel mass

M is expected to be in the ballpark of the nucleon mass, which is well above ΛQCD and

well below the lightest excitation in the nucleon spectrum with a mass of approximately

1.44 GeV [30]. A crude estimate for the nucleon mass is hence obtained by taking the

ratio of the two sum rules and setting the Borel mass to M ' 1 GeV,

mN ' −8π
〈q̄q〉
M2

' 1.2 GeV , (3.16)

where the numerical value 〈q̄q〉 ' −(0.25 GeV)3 has been used. This estimate repro-

duces the physical value of the nucleon mass within a deviation of about 30%. This

result is however accidental to some extent, because large radiative corrections at the

order αs occur in the first sum rule which are then partially cancelled by αs-corrections

for the second sum rule. For a more rigorous analysis of QCD sum rules for the nucleon

mass see Section 6.7 of Ref. [169] and references therein.

The above discussion clearly illustrates the limitations of the sum-rule techniques

for nucleons. Working at the LO in the OPE and in the αs expansion often leads

to large uncertainties due to the occurrence of unphysical parameters, and often it is

difficult to determine the size of the related uncertainty. One way to fix the Borel mass

and to estimate part of the uncertainties is to determine a window, where M is large

enough so that the OPE converges sufficiently fast and small enough so that heavier

states are sufficiently suppressed. Then M can be varied within the Borel window

to assess how strongly the final prediction for a physical parameter depends on the

choice of this parameter. In addition, one can try to model the contributions of heavier

states explicitly so that their contribution can be subtracted from the sum rules. The

most common model approximates the sum over hadronic states (3.8) by the pole of

the ground state plus a continuous distribution covering smeared heavier resonances

and multi-particle states, or in short: pole + continuum. The continuum part is then

estimated by the QCD result of the sum rules, which should hold at sufficiently large

virtualities because the OPE becomes exact in the limit P 2 →∞. This approximation

is known as quark-hadron duality [170] (see also [171] for a review). The method will

be applied in Chapter 4 in the context of LCSRs, where technical details are explained.

With these improvements, the systematic uncertainties that are intrinsic to all sum

rules can be somewhat reduced. The applications that are discussed in Sections 3.2 and

Chapter 4 are technically more involved and the uncertainties range from 25% to 100%;

however, in typical applications of these results, as for instance presented in Chapter 5,

estimates at the correct order of magnitude are desirable.
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3 QCD at hadronic scales: sum-rule techniques

3.2 Sum rules for CP-violating operators of Weinberg type

The goal of this section is to determine the contributions of the hadronic matrix ele-

ments of effective operators of Weinberg type defined in (2.9) to the nEDM from (2.12).

The operators of interest are dubbed O6 and O8,

O6 = fABC G̃AµνG
B νρGC µρ , O8 = cABCD G̃AµνG

B µνGCρλG
Dρλ . (3.17)

In the case of the dimension-six contribution O6 such a calculation has already been

performed in [94], but this publication does not provide details on the actual com-

putation making an independent re-evaluation worthwhile. The determination of the

hadronic matrix elements of the dimension-eight term O8 is instead new. Both results

are used in Section 5.1, where model-independent bounds on CP-violating Higgs-gluon

interactions in BSM scenarios with vanishing or highly suppressed light-quark Yukawa

couplings are derived.

The central object for the derivation of the sum-rule estimates for the hadronic matrix

elements is the following correlation function

Π(q2) = i

∫
d4x eiqx 〈0 |T [ηn(x) η̄n(0)]| 0〉EM,Ok

, (3.18)

where ηn(x) is the interpolating field of the neutron, |0〉 represents the vacuum on a

CP-conserving background and the subscripts EM and Ok imply that the correlator is

evaluated in the presence of a constant external EM source and one of the operators

introduced in (3.17). The basic idea is to calculate (3.18) using two different approaches

(as outlined in the introduction of this chapter) and to match the results to obtain an

analytic expression for the nEDM. In the first approach, one defines a phenomenolo-

gical form Πphen of the correlator, which incorporates the wave function of the neutron,

its EDM and other parameters. The second approach relies instead on an OPE of the

correlator leading to the object ΠOPE that depends on the expectation values of effect-

ive operators, such as the three-gluon and four-gluon interactions introduced in (3.17).

Matching the expressions for Πphen and ΠOPE then yields the contribution of the ef-

fective operators of interest to the nEDM. To improve the accuracy of the sum rules,

the correlators are, however, not matched themselves but their Borel transforms are

considered in order to remove higher-order polynomial terms and to suppress excited

states.

The analysis is structured as follows. In Section 3.2.1 the phenomenological side of

the sum rules is derived. The OPE computation of the dimension-six and dimension-

eight contributions is described in Section 3.2.2 and Section 3.2.3, respectively. The

matching and the numerical analysis of the sum rules are performed in Section 3.2.4.

Technical details are relegated to the appendices.

28



3.2 Sum rules for CP-violating operators of Weinberg type

3.2.1 Phenomenological side of the sum rules

The parametrisation of the correlation function (3.18) is derived in two steps. Since

we are eventually interested in the electric dipole interactions of the neutron with the

background, first the relevant EM interactions of the correlator are decomposed in

Section 3.2.1.1. After the structures of the EM dipole interactions are identified, a

representation suitable for the sum-rule calculations is derived in Section 3.2.1.2.

3.2.1.1 Hadronic representation

In this section, the phenomenological form Πphen of the correlator (3.18) is derived

following the argument presented in [90, 92, 172, 173]. An often considered approach

for the phenomenological side of two-point correlators is the use of dispersion rela-

tions [141, 164, 165, 168, 174–176]. Since we are interested in the correlator of two

nucleon currents ηn in an external EM field, we are, however, effectively dealing with

a three-point correlation function. Dispersion relations for three-point correlators are

less constraining than those of two-point correlators due to the lack of positivity con-

straints [173]. Therefore, we relate the correlator (3.18) to a perturbative expansion of

the nucleon propagator in a non-zero and constant EM background. We write

ΠN (q2) = Π
(0)
N (q2) + eΠ

(1)
N (q2) + . . . , (3.19)

where e is the electron charge magnitude that serves as the expansion parameter. The

first non-trivial term in (3.19) describes the response of the nucleon states to the weak

external perturbation and arises from a single insertion of the EM interactions

LEM(x) = Jµ(x)Aµ(x) , Jµ(x) = e
∑
q=d,u

Qq q̄(x)γµq(x) . (3.20)

It takes the form

eΠ
(1)
N (q2) = i

∫
d4x d4y eiqx 〈0 |T [ηn(x) η̄n(0) iLEM(y)]| 0〉 . (3.21)

Here Jµ denotes the EM current, Aµ is the photon field and Qq is the fractional electric

charge of the relevant quark. Note that the EM field is a non-dynamical, classical field

in this approach.

In order to evaluate the first-order contribution to (3.19), we insert a complete set of

hadronic states N ′ and N ′′ with the quantum numbers of the neutron into (3.21), i.e. we

make use of the identity 1 =
∑∫
N ′ |N

′〉 〈N ′| twice. Working in the so-called fixed-point

gauge (see Appendix A), which allows us to express the photon field through the QED

field strength tensor employing Aµ(y) = −1/2 yνFµν(0)
(
cf. (A.5)

)
, one obtains the
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following expression for the first non-trivial term in the Taylor expansion (3.19) of the

nucleon propagator ΠN (q2):

eΠ
(1)
N (q2) =

∑
N ′,N ′′

∫
d4x d4y eiqx θ(x0 − y0) θ(y0)

1

2
yνFµν(0)

× 〈0| ηn(x) |N ′〉 〈N ′| Jµ(y) |N ′′〉 〈N ′′| η̄n(0) |0〉+ . . . .

(3.22)

Here the ellipses represent the different combinations due to time ordering. The double

sum in (3.22) involves three types of matrix elements of the EM current. These cor-

respond to nucleon transitions of (i) ground state to ground state, (ii) ground state to

excited states and vice versa, and (iii) excited states to excited states.

Let us first focus on the ground-state contributions, i.e. the terms of the hadronic

sums that involve only neutron states |n〉. Up to an arbitrary chiral phase χ the matrix

elements involving |n〉 can be parametrised by the coupling λn between the physical

neutron and the interpolating current ηn as follows

〈0| ηn(x) |n〉 = λnU(χ)un(p, s) , U(χ) = ei
χ
2
γ5 . (3.23)

Here un is the neutron spinor which satisfies(
/p−mn

)
un(p, s) = 0 ,

∑
s

un(p, s) ūn(p, s) = /p+mn , (3.24)

with /p = pµγ
µ, mn denoting the neutron mass and ūn(p, s) = u†n(p, s)γ0. Notice that

for our correlator (3.22) a spin summation is implicit in the sum over all hadronic

states.

The product of the matrix element involving the EM current and the photon field

can be reduced to a set of four neutron form factors (see for instance [177])∫
d4x eiqx 〈n| Jµ(x) |n〉Aµ = (2π)4 δ(4) (q − (p2 − p1))

× ūn(p2, s2)Γµ(p1, p2)un(p1, s1)Aµ(q) ,

(3.25)

with

Γµ(p1, p2)Aµ(q) = F1(q2)γµA
µ −

(
F2(q2) + F3(q2) iγ5

) σµνFµν
4mn

+ F4(q2)γµγ5 ∂νF
µν .

(3.26)

Here q = p2−p1 is the outgoing momentum carried by the photon. At q2 = 0, the form

factors in (3.26) can be identified with the fractional electric charge Qn, the magnetic

moment µn, the EDM dn and the anapole moment an of the neutron. Since the electric
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charge of the neutron is zero and its anapole moment, as a result of the constant EM

background, vanishes as well, one has explicitly

µn =
F2(0)

2mn
, dn =

F3(0)

2mn
. (3.27)

It then follows that the tensor structures in (3.26) associated with µn and dn only differ

by a factor iγ5, meaning that at zero-momentum transfer one can write

Γµ(p1, p2)Aµ(q) |q2=0 = −µn
2

(
1 +

dn
µn

iγ5

)
σ · F = −1

2

(
µnσ · F − dnσ · F̃

)
, (3.28)

with σ · F = σµνF
µν etc. and we have used that γ5σ · F = iσ · F̃ .

Inserting (3.23), (3.25) and (3.28) into (3.22) and using (3.24), one obtains for the

|n〉 contributions to the first-order correction (3.22) of the nucleon correlation function

the following expression

eΠ
(1)
N (q2) = − λ2

n

2 (q2 −m2
n)2 U(χ)P U(χ) + . . . , (3.29)

with

P =
(
/q +mn

) (
µnσ · F − dnσ · F̃

) (
/q +mn

)
. (3.30)

Here the ellipsis denotes contributions due to excited states and other operators that

turn out to be suppressed in the course of our analysis. Up to O(χ) the Lorentz

structure in (3.29) behaves under chiral transformations as

U(χ)P U(χ) = P +
{
P, i

χ

2
γ5

}
+O(χ2)

= mn

{
µnσ · F − dnσ · F̃ , /q

}
+m2

n

[
µnσ · F − (dn + χµn)σ · F̃

]
+ /q

[
µnσ · F − (dn − χµn)σ · F̃

]
/q +O(χ2) .

(3.31)

This result implies that the anti-commutators
{
σ · F, /q

}
and

{
σ · F̃ , /q

}
are the only

structures that are invariant under chiral rotations.

3.2.1.2 Phenomenological parametrisation

In calculating dn it should then be clear from the above discussion that one should

study the operator
{
σ ·F̃ , /q

}
as this structure is the unique choice with an unambiguous

coefficient for what concerns the EDM. We thus make the following ansatz [90,92,172,

173]

Π
(1)
N (q2) =

1

2
f(q2)

{
σ · F̃ , /q

}
, (3.32)
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with

f(q2) =
λ2
nmndn

(q2 −m2
n)2

+
∑
N ′ 6=n

f ′N
(q2 −m2

n)(q2 −m2
N ′)

+
∑

N ′,N ′′ 6=n

fN ′N ′′

(q2 −m2
N ′)(q

2 −m2
N ′′)

,

(3.33)

for the first-order contribution to the nucleon propagator (3.19). The first term in (3.33)

corresponds to the ground-state contribution. It matches the result that we have

already derived in (3.29). The second and third term describe transitions of the ground

state to excited states and vice versa and transitions of excited states to excited states,

respectively. The corresponding form factors are called fN ′ and fN ′N ′′ . They do not

have definite signs due to the lack of positivity constraints of the considered correl-

ator [173].

Applying the Borel transformation defined in Section 3.1, one finds that the numeric-

ally leading contributions of the Borel transforms of the three terms in (3.33) are given

by

cn = B
[
λ2
nmndn

(q2 −m2
n)2

]
=
λ2
nmndn
M4

e−
m2
n

M2 ,

cN ′ = B
[

fN ′

(q2 −m2
n)(q2 −m2

N ′)

]
' fN ′

M2
(
m2
N ′ −m2

n

) e−m2
n

M2 ,

cN ′N ′′ = B
[

fN ′N ′′

(q2 −m2
N ′)(q

2 −m2
N ′′)

]
' fN ′N ′′

M4
e−

m2
N′
M2 .

(3.34)

Here we have exploited that empirically mN ′ � mn and mN ′ ' mN ′′ . Compared to

the ground-state contribution the mixed ground-state and excited-state contributions

and the excited-states only contributions are hence of approximate size

cN ′

cn
' 0.3

fN ′

λ2
nmndn

(
M

0.6 GeV

)2

,
cN ′N ′′

cn
' fN ′N ′′

λ2
nmndn

e−
m2
N′−m

2
n

M2 , (3.35)

where we have used the values mn ' 0.94 GeV and mN ′ ' 1.44 GeV [178] for the mass of

the neutron and its lightest excitation to obtain the quoted numerical prefactor. Under

the assumption that |fN ′ | ' |fN ′N ′′ | ' λ2
nmndn and setting M = 2ΛQCD ' 0.6 GeV

with ΛQCD the QCD scale, the mixed ground-state and excited-state (excited-states

only) contributions therefore naively amount to relative corrections of the order of

30% (5%). In the following, we only include the ground-state contribution to (3.32)

in our sum-rule calculation, and estimate the uncertainties that are associated to this

simplification by a variation of the Borel mass M (cf. Section 3.2.4).

The appropriate form of the phenomenological side of our sum rule can be established

by realising that the contributions to the nEDM induced by CP-violating Weinberg-

type operators (3.17) have a simple pictorial interpretation [93]. As illustrated in
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3.2 Sum rules for CP-violating operators of Weinberg type

Figure 1. Contributions to the neutron EDM induced by CP-violating Weinberg-type operators. The dotted
vertices indicate operator insertions and the solid lines represent propagators of the neutron n or the excited
states N0 and N00. See text for further explanations.

Applying the Borel transformation defined in Appendix B, one finds that the numerically lead-
ing contributions of the Borel transforms of the three terms in (3.15) are given by

cn = B
"
�2 mn dn

(q2 � m2
n)2

#
=
�2 mn dn

M4 e�
m2

n
M2 ,

cN0 = B
266664

fN0

(q2 � m2
n)(q2 � m2

N0)

377775 ' fN0

M2
⇣
m2

N0 � m2
n

⌘ e�
m2

n
M2 ,

cN0N00 = B
266664

fN0N00

(q2 � m2
N0)(q

2 � m2
N00)

377775 ' fN0N00

M4 e�
m2

N0
M2 .

(3.16)

Here we have exploited that empirically mN0 � mn and mN0 ' mN00 . Compared to the ground-
state contribution the mixed ground-state and exited-state contributions and the excited-states only
contributions are hence of approximate size

cN0

cn
' 0.3

fN0

�2 mn dn

✓ M
0.6 GeV

◆2
,

cN0N00

cn
' fN0N00

�2 mn dn
e�

m2
N0 �m2

n

M2 , (3.17)

where we have used the values mn ' 0.94 GeV and mN0 ' 1.44 GeV [68] for the mass of the
neutron and its lightest excitation to obtain the quoted numerical prefactor. Under the assumption
that | fN0 | ' | fN0N00 | ' �2 mn dn and setting M = 2⇤QCD ' 0.6 GeV with ⇤QCD the QCD scale, the
mixed ground-state and exited-state (excited-states only) contributions therefore naively amount to
relative corrections of the order of 30% (5%). In the following, we only include the ground-state
contribution to (3.14) in our sum-rule calculation, and estimate the uncertainties that are associated
to this simplification by a variation of the Borel mass M (cf. Section 6).

The appropriate form of the phenomenological side of our sum rule can be established by
realising that the contributions to the nEDM induced by CP-violating Weinberg-type operators (1.1)
have a simple pictorial interpretation [37]. As illustrated in Figure 1, there are two types of graphs
that one needs to consider in general. The first type of diagrams (left and middle) factorises into a
propagator with a CP-violating mass insertion proportional to i�5 and into a part that couples to the
external photon field. The e↵ect of Weinberg-type operators in this context is to rotate the nucleon
wave function by an amount proportional to dn/µn as in (3.10). The second type of diagrams (right)
only exists if either an insertion of an operator is considered that couples several gluons to a single
photon or if at least one of the external legs corresponds to an excited state [37]. The former
possibility is not viable at the dimension-six level, because there is no gauge-invariant operator
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Figure 3.1: Contributions to the neutron EDM induced by CP-violating Weinberg-type oper-

ators. The dotted vertices indicate operator insertions and the solid lines represent propagators

of the neutron n or the excited states N ′ and N ′′. See text for further explanations.

Figure 3.1, there are two types of graphs that one needs to consider in general. The

first type of diagrams (left and middle) factorises into a propagator with a CP-violating

mass insertion proportional to iγ5 and into a part that couples to the external photon

field. The effect of Weinberg-type operators in this context is to rotate the nucleon wave

function by an amount proportional to dn/µn as in (3.28). The second type of diagrams

(right) only exists if either an insertion of an operator is considered that couples several

gluons to a single photon or if at least one of the external legs corresponds to an excited

state [93]. The former possibility is not viable at the dimension-six level, because there

is no gauge-invariant operator that couples two gluons to a single photon. In the

approximation that neglects the contributions of vertex diagrams and excitations, one

can therefore use the following parameterisation

Πphen(q2) = − λ2
nm

2
n µn

2 (q2 −m2
n)

(
1 + r(q2) iγ5

)
, (3.36)

where the coefficient function r(q2) has to be determined by matching the phenomen-

ological side of the sum rule to the corresponding OPE calculation. Since from (3.28)

we know that the EDM and the magnetic moment of the neutron are simply related

by a chiral rotation with iγ5 though, the following relation holds

dn = µnr(q
2) . (3.37)

In physical terms this result means that the Weinberg-type contributions to dn can be

approximated by calculating the iγ5 rotation of the nucleon wave function and relating

it to the corresponding chiral rotation of µn [93,94]. In Section 3.2.2 and Section 3.2.3

we will use (3.36) and (3.37) to extract the hadronic matrix elements of O6 and O8,

respectively.

3.2.2 OPE calculation for the dimension-six operator

The QCD calculation for the correlation function is carried out in several steps. First,

the appropriate choice for the interpolating current of the neutron is discussed in Sec-

tion 3.2.2.1. In Section 3.2.2.2, the contribution of the dimension-six Weinberg operator
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to the quark propagator on a CP-conserving background is described, which directly

contributes to the OPE of the correlation function as outlined in Section 3.2.2.3. Even-

tually, the matching of the QCD result and the phenomenological representation of the

correlator is discussed in Section 3.2.2.4.

3.2.2.1 Interpolating current

We parameterise the interpolating current introduced in (3.18) as follows

ηn(x) = j1(x) + βj2(x) , (3.38)

where the real parameter β is kept arbitrary throughout our calculations. The two

currents

j1(x) = 2εabc
(
dTa (x)Cγ5ub(x)

)
dc(x) , j2(x) = 2εabc

(
dTa (x)Cub(x)

)
γ5dc(x) ,

(3.39)

form a basis for projection onto the neutron state in the case of a CP-conserving

background. The current j1(x) is often used in LQCD simulations to describe the

neutron wave function (see for instance [179–181]). While j2(x) vanishes in the non-

relativistic limit, it should be included in the interpolating field since we are dealing

with light quarks. In (3.39) C is the charge conjugation matrix, which satisfies C =

C∗ = −C† = −CT = −C−1, CγT5 C = −γ5 and C†γ0 = γ0C.

Notice that in contrast to the publications [90,92,172,173], we do not need to consider

the two additional currents i1(x) = γ5j2(x) and i2(x) = γ5j1(x), because in our case

the only source of CP violation is provided by the Weinberg-type operators (3.17).

The vacuum |0〉 appearing in correlators such as (3.18) is instead taken to be CP-

conserving, which in particular means that we assume that the QCD θ term θ G̃AµνG
Aµν

vanishes either accidentally or dynamically due to a Peccei-Quinn mechanism [49] (cf.

Section 2.2).

3.2.2.2 Weinberg contribution to the quark propagator

In the presence of a non-trivial EM background and the dimension-six operator O6, the

OPE of the correlator (3.18) can be formally written as

ΠOPE(q2) = i

∫
d4x eiqx 〈0 |T [ηn(x) η̄n(0)]| 0〉EM,O6

=
∑
k

Ck(q
2) 〈Ok〉 , (3.40)

where Ck are the Wilson coefficients and 〈Ok〉 = 〈0|Ok|0〉 are vacuum matrix elements

or condensates of the operator Ok (cf. Section 3.1).

One important ingredient to evaluate (3.40) is the quark propagator on the CP-

conserving background including insertions of the EM field and O6. In position space
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3.2 Sum rules for CP-violating operators of Weinberg type

Figure 2. Contribution of the dimension-six Weinberg operator to the quark propagator. The dotted vertex
represents the operator insertion, the crosses indicate interactions with the background and the solid lines
depict quark propagators.

where Ck are so-called Wilson coe�cients and hQki = h⌦|Qk|⌦i are vacuum matrix elements or
condensates of the operator Qk.

One important ingredient to evaluate (4.3) is the quark propagator on the CP-conserving back-
ground including insertions of the EM field and O6. In position space and suppressing colour and
spinor indices the sought propagator reads

S (x) = S (0)(x) + S q(x) + S O6 (x) , (4.4)

where the first term is the free propagator for a massless quark and the second term describes
non-perturbative interactions with background quark fields. As shown in Appendix C at leading
order (LO) in the OPE these two quantities take the following form

S (0)(x) =
i/x

2⇡2x4 , S q(x) = � 1
12
hq̄qi , (4.5)

with hq̄qi ' �(0.25 GeV)3 [65, 66, 73] the quark condensate.
The e↵ective operator O6 can be perturbatively inserted into the quark propagator [38]. The

corresponding Feynman diagram is shown in Figure 2. It follows that the Weinberg-induced con-
tribution to (4.4) can be written as

S O6 (x) =
Z

d4z1d4z2 S (0)(x � z1)S O6
amp(z1 � z2)S (0)(z2) , (4.6)

where the amputated two-point function S O6
amp(z) is given by

S O6
amp(z) = igs tA

ac�
µ
ik

D
T

h
qk

c(x)DO6 AB
µ⌫ (z) q̄l

d(0)
iE

igs tB
db�
⌫
l j

= �g2
s tA

ac tB
db�
µ
ik�
⌫
l j

D
T

h
qk

c(0)DO6 AB
µ⌫ (z) q̄l

d(0)
iE
+ . . . .

(4.7)

Here gs denotes the QCD coupling constant, tA are the colour generators of SU(3) and we have
expanded the quark wave function to zeroth order using (A.7) to obtain the final result. The ob-
ject DO6 AB

µ⌫ (z) entering (4.7) represents the Weinberg-induced correction of the gluon propagator.
Pictorially, one has

DO6 AB
µ⌫ (z) = + . . . , (4.8)
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Figure 3.2: Contribution of the dimension-six Weinberg operator to the quark propagator.

The dotted vertex represents the operator insertion, the crosses indicate interactions with the

background and the solid lines depict quark propagators.

and suppressing colour and spinor indices the sought propagator reads

S(x) = S(0)(x) + Sq(x) + SO6(x) , (3.41)

where the first term is the free propagator for a massless quark and the second term

describes non-perturbative interactions with background quark fields. As shown in

Appendix B at LO in the OPE these two quantities take the following form

S(0)(x) =
i/x

2π2x4
, Sq(x) = − 1

12
〈q̄q〉 , (3.42)

with 〈q̄q〉 ' −(0.25 GeV)3 [175,176,182] the quark condensate.

The effective operator O6 can be perturbatively inserted into the quark propag-

ator [94]. The corresponding Feynman diagram is shown in Figure 3.2. It follows that

the Weinberg-induced contribution to (3.41) can be written as

SO6(x) =

∫
d4z1d

4z2 S
(0)(x− z1)SO6

amp(z1 − z2)S(0)(z2) , (3.43)

where the amputated two-point function SO6
amp(z) is given by

SO6
amp(z) = igsT

A
acγ

µ
ik

〈
T
[
qkc (x)DO6 AB

µν (z) q̄ld(0)
]〉
igsT

B
dbγ

ν
lj

= −g2
s T

A
acT

B
dbγ

µ
ikγ

ν
lj

〈
T
[
qkc (0)DO6 AB

µν (z) q̄ld(0)
]〉

+ . . . .

(3.44)

Here we have expanded the quark wave function to zeroth order using (A.7) to obtain

the final result. The object DO6 AB
µν (z) entering (3.44) represents the Weinberg-induced

correction of the gluon propagator. Pictorially, one has

DO6 AB
µν (z) =

Figure 2. Contribution of the dimension-six Weinberg operator to the quark propagator. The dotted vertex
represents the operator insertion, the crosses indicate interactions with the background and the solid lines
depict quark propagators.

where Ck are so-called Wilson coe�cients and hQki = h⌦|Qk|⌦i are vacuum matrix elements or
condensates of the operator Qk.

One important ingredient to evaluate (4.3) is the quark propagator on the CP-conserving back-
ground including insertions of the EM field and O6. In position space and suppressing colour and
spinor indices the sought propagator reads

S (x) = S (0)(x) + S q(x) + S O6 (x) , (4.4)

where the first term is the free propagator for a massless quark and the second term describes
non-perturbative interactions with background quark fields. As shown in Appendix C at leading
order (LO) in the OPE these two quantities take the following form

S (0)(x) =
i/x

2⇡2x4 , S q(x) = � 1
12
hq̄qi , (4.5)

with hq̄qi ' �(0.25 GeV)3 [65, 66, 73] the quark condensate.
The e↵ective operator O6 can be perturbatively inserted into the quark propagator [38]. The

corresponding Feynman diagram is shown in Figure 2. It follows that the Weinberg-induced con-
tribution to (4.4) can be written as

S O6 (x) =
Z

d4z1d4z2 S (0)(x � z1)S O6
amp(z1 � z2)S (0)(z2) , (4.6)

where the amputated two-point function S O6
amp(z) is given by

S O6
amp(z) = igs tA

ac�
µ
ik

D
T

h
qk

c(x)DO6 AB
µ⌫ (z) q̄l

d(0)
iE

igs tB
db�
⌫
l j

= �g2
s tA

ac tB
db�
µ
ik�
⌫
l j

D
T

h
qk

c(0)DO6 AB
µ⌫ (z) q̄l

d(0)
iE
+ . . . .

(4.7)

Here gs denotes the QCD coupling constant, tA are the colour generators of SU(3) and we have
expanded the quark wave function to zeroth order using (A.7) to obtain the final result. The ob-
ject DO6 AB

µ⌫ (z) entering (4.7) represents the Weinberg-induced correction of the gluon propagator.
Pictorially, one has

DO6 AB
µ⌫ (z) = + . . . , (4.8)
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+ . . . , (3.45)

where the dotted vertex represents the insertion of the operator O6 and the cross

indicates interactions with the classic background.
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In order to determine the form of (3.45) we rely on standard background-field tech-

niques. We start by writing the dimension-six Weinberg operator of (3.17) in a more

convenient form, namely as (see for instance [79,80,82])

O6 = − i

16
fABC Tµνρλστ GAµνG

B
ρλG

C
στ , (3.46)

where Tµνρλστ denotes the following trace

Tµνρλστ =
i

2
Tr
(
σµνσρλσστ γ5

)
. (3.47)

Notice that this tensor is anti-symmetric under µ ↔ ν, etc. as well as µν ↔ ρλ etc.

By splitting the original gluon field GAµ = ḠAµ + ĜAµ into a classical field ḠAµ and

quantum field ĜAµ , one can then expand the QCD field strength tensor around its

classical configuration to obtain

GAµν = ḠAµν + D̄µĜ
A
ν − D̄νĜ

A
µ + gsf

ABCĜBµ Ĝ
C
ν ,

D̄µĜ
A
ν = ∂µĜ

A
ν + gsf

ABCḠBµ Ĝ
C
ν .

(3.48)

When one now expands (3.46) using (3.48), one is only interested in terms that are

linear in ḠAµ and bilinear in ĜAµ . Using the anti-symmetric properties of fABC and that

of (3.47), we find that the relevant terms are

O6 = −3i

2
fABC Tµνρλστ ∂µḠ

A
ν ∂ρĜ

B
λ ∂σĜ

C
τ + . . . . (3.49)

Employing the result (3.49) one can now calculate the Weinberg-induced corrections

(3.45) to the gluon propagator. By performing all possible contractions of the time-

ordered product, we obtain the expression

DO6 AB
µν (z) =

∫
d4y

〈
T
[
ĜAµ (z)ĜBν (0) iO6(y)

]〉
=

3

2
fCDETαβγδϕπ

∫
d4y

{
∂yαḠ

C
β (y)

[
∂yγD

(0)AD
µδ (z − y)∂yϕD

(0)BE
νπ (y)

+ ∂yϕD
(0)AE
µπ (z − y)∂yγD

(0)BD
νδ (y)

]}
,

(3.50)

where D
(0)AB
µν (x) denotes the free gluon propagator in position space. In Feynman

gauge it takes the following simple form

D(0)AB
µν (x) =

∫
d̄ 4p e−ipx

[
−iδAB ηµν

p2

]
=

1

4π2x2
δABηµν , (3.51)

a result that can be gleaned by inspection of (C.3).
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In order to simplify (3.50) we use the following two relations

∂µḠ
A
ν (x) =

1

2
GAµν(0) + . . . , ∂µD

(0)AB
νρ (x) = −δABηνρ

∫
d̄ 4p e−ipx

pµ
p2
, (3.52)

which follow from the expansion (A.6) and the explicit form (3.51) of the free gluon

propagator in momentum space, respectively. Using (3.52) yields

DO6 AB
µν (z) = −3

4
fABCGCαβ(0)

×
∫
d4yd̄ 4pd̄ 4qe−ip(z−y)e−iqy

[
Tαβγµϕν

pγqϕ
p2q2

− Tαβγνϕµ pϕqγ
p2q2

]
= −3

2
fABCGCαβ(0)Tαβγµϕν

∫
d̄ 4pe−ipz

pγpϕ
p4

=
3i

8π2
fABCGCαβ(0)Tαβγµϕν

1

z4

[
zγzϕ −

ηγϕ
2
z2
]
,

(3.53)

where in the last step we have employed the Fourier integral given in (C.6).

Plugging this into (3.44) we find

SO6
amp(z) = −3igs

8π2
fABCTAacT

B
dbγ

µ
ikγ

ν
lj 〈qkc (0)gsḠ

C
αβ(0)q̄ld(0)〉 Tαβγµϕν 1

z4

[
zγzϕ −

ηγϕ
2
z2
]

=
igs

512π2
fABC (TATCTB)ab(γ

µσαβγ
ν)ij T

αβγµϕν

× 1

z4

[
zγzϕ −

ηγϕ
2
z2
]
〈q̄gsσ ·Gq〉

=
3igsδab
32π2z2

γ5
ij 〈q̄gsσ ·Gq〉 .

(3.54)

Here we have used that the non-perturbative quark-gluon condensate appearing in the

first line simplifies as follows (see for instance [166,181])

〈qkc (0)gsḠ
C
αβ(0)q̄ld(0)〉 = − 1

192
σklαβ T

C
cd 〈q̄gsσ ·Gq〉 , (3.55)

with σ ·G = σµνG
AµνTA. Furthermore, the colour factor in the second line evaluates

to

fABC (TATCTB)ab = − i
2
CACF δab , (3.56)

with the Casimir operators given by CA = 3 and CF = 4/3 for SU(3).

From (C.9) one sees that the Fourier transform of (3.54) reads

SO6
amp(p) =

3gs
8p2

γ5 〈q̄gsσ ·Gq〉 , (3.57)
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where we have dropped colour and spinor indices. Inserting this result into (3.43) leads

to

SO6(x) =
3gs
8
〈q̄gsσ ·Gq〉

∫
d4z1d

4z2d̄
4pd̄ 4qd̄ 4r ei(q−p)z1ei(p−r)z2e−iqx

/qγ5/r

q2p2r2

= −3gs
8
γ5 〈q̄gsσ ·Gq〉

∫
d̄ 4pe−ipx

1

p4
=

3gs
128π2

iγ5 〈q̄gsσ ·Gq〉 ln

(
−
µ2

IRx
2

4

)
.

(3.58)

To arrive at the final result we have made use of the Fourier integral (C.4) dropping

infrared (IR) poles and constant pieces, because such terms vanish after Borel trans-

formation. The appearance of the scale µIR signals that the O6 contribution to (3.40)

will depend logarithmically on an IR cut-off. Notice finally that the second result

in (3.58) implies that the Weinberg-induced correction to the quark propagator takes

the following form in momentum space

SO6(p) = −3gs
8p4

γ5 〈q̄gsσ ·Gq〉 . (3.59)

This result agrees up to a factor of i with the corresponding expression reported in [94]

after taking into account that the definition of O6 used in this paper differs from the

one employed in (3.17) by a factor of 1/3.

3.2.2.3 OPE including the Weinberg operator

In terms of (3.41) and

Sc(x) = CST (x)C = S(0)(x)− Sq(x)− SO6(x) , (3.60)

the general form of the correlator (3.40) can be written as

ΠOPE(q2) = 24i

∫
d4x eiqx

{
Tr (Scγ5Sγ5)S + Sγ5S

cγ5S

+ β [Tr (ScSγ5) γ5S + γ5Sγ5S
cS + Tr (Scγ5S)Sγ5 + SScγ5Sγ5]

+ β2
[

Tr (ScS) γ5Sγ5 + γ5SS
cSγ5

]}
,

(3.61)

where we have performed all possible Wick contractions. Here β is the real parameter

that appears in our definiton (3.38) of the interpolating current for the neutron.

We are only interested in the LO result of the OPE, in other words in terms that are

linear either in the quark condensate (3.42) or the Weinberg-induced correction (3.58) to

the quark propagator. The relevant contributions are given by the following expression

ΠOPE(q2) = −24i

∫
d4x eiqx

[
S(0)(x)

]2 [
fq(β)Sq(x) + fO(β)SO6(x)

]
, (3.62)
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3.2 Sum rules for CP-violating operators of Weinberg type

Figure 3. One-loop and two-loop contributions to the OPE correlation function (4.25). Insertions of the
interpolating currents ⌘(x) or ⌘̄(0) are denoted by circled crosses. The lower quark lines correspond to
the free propagator S (0)(x) of a massless quark, while the crosses indicate interactions with either quark or
gluon background fields. In the right graph the dotted vertex represents the insertion of the Weinberg-type
operator O6.

4.4 Matching and discussion

In order to derive the sum rules for the O6 contribution to the nEDM, we match the phenomenolog-
ical and the OPE correlators, i.e. we set (3.18) and (4.28) equal and determine the coe�cient r(q2)
that appears in front of the i�5 term in ⇧phen(q2). After Borel transformation and identifying the IR
cut-o↵ with the QCD scale, we obtain

r6(�) =
9gs m2

0

32⇡2

fO(�)
fq(�)

ln

0BBBBB@
M2

⇤2
QCD

1CCCCCA . (4.29)

With this result at hand, we now discuss the appropriate choice for the mixing parameter �
introduced in (4.1) for our sum rule. There are two commonly used ways for fixing this parameter:
(i) at a value where the leading terms of the OPE are stationary under variations of � or (ii) at a
point that maintains a balance between OPE convergence and contributions of excited states. Both
method are not applicable in our case, because (i) the result (4.29) does not possess an extremum
and (ii) contributions of excited states have been ignored in our sum rule (cf. Section 3.2). The
procedure advocated in [33, 35, 58, 59] where � is chosen such that subleading IR logarithms are
cancelled in the QCD ✓-term and CEDM contributions to the nEDM is also not useful, since in the
OPE side (4.28) of our sum rule IR logarithms appear already at LO.

Our choice of � is instead based on the observation that the function fq(�) introduced in (4.26)
appears in the numerator of Io↵e’s formula [76], which for arbitrary � takes the following form [71]

mn = �7 � 2� � 5�2

5 + 2� + 5�2

4 (2⇡)2

M2 hq̄qi . (4.30)

This relation connects the neutron mass mn to the quark condensate hq̄qi. While it is not an exact
relationship, one observes that for � = 1, Io↵e’s formula (4.30) predicts mn = 0 in gross disagree-
ment with observation. For the second standard choice of the mixing parameter, i.e. the so-called
Io↵e interpolating current with � = �1, one instead has mn ' 1.2 GeV3/M2 if the numerical value
hq̄qi ' �(0.25 GeV)3 for the quark condensate is used. For � = �1 and a Borel mass of M ' 1 GeV,
the formula (4.30) thus predicts a neutron mass that is in the ballpark of the experimental measured
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Figure 3.3: One-loop and two-loop contributions to the OPE correlation function (3.62).

Insertions of the interpolating currents ηn(x) or η̄n(0) are denoted by circled crosses. The lower

quark lines correspond to the free propagator S(0)(x) of a massless quark, while the crosses

indicate interactions with either quark or gluon background fields. In the right graph the

dotted vertex represents the insertion of the Weinberg-type operator O6.

with

fq(β) = 7− 2β − 5β2 , fO(β) = 5 + 2β − 7β2 . (3.63)

This result can be interpreted in terms of the two Feynman diagrams depicted in

Figure 3.3. The left graph shows the Sq(x) part of (3.62) which corresponds to a

one-loop diagram because the background quark fields are non-dynamical. The right

diagram has instead a dynamical and perturbative gluon that closes the second loop. In

the case of the SO6(x) correction one therefore has to deal with a two-loop contribution.

To evaluate (3.62) we now parameterise the mixed quark-gluon condensate as [167]

〈q̄gsσ ·Gq〉 = m2
0 〈q̄q〉 , (3.64)

where m2
0 ' 0.8 GeV2 is a QCD parameter. Inserting (3.42) and (3.58) into (3.62), we

then find

ΠOPE(q2) =
6i 〈q̄q〉
π4

∫
d4x eiqx

1

x6

[
−fq(β)

12
+

3gsm
2
0fO(β)

128π2
ln

(
−
µ2

IRx
2

4

)
iγ5

]

=
q2

16π2
fq(β) ln

(
−
µ2

UV

q2

)
〈q̄q〉

[
1− 9gsm

2
0

32π2

fO(β)

fq(β)
ln

(
−
µ2

IR

q2

)
iγ5

]
.

(3.65)

Here we have used the Fourier integrals given in (C.10) and (C.12), respectively, to

obtain the second line.

3.2.2.4 Matching and discussion

In order to derive the sum rules for the O6 contribution to the nEDM, we match the

phenomenological and the OPE correlators, i.e. we set (3.36) and (3.65) equal and
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3 QCD at hadronic scales: sum-rule techniques

determine the coefficient r(q2) that appears in front of the iγ5 term in Πphen(q2). After

Borel transformation and identifying the IR cut-off with the QCD scale, we obtain

r6(β) =
9gsm

2
0

32π2

fO(β)

fq(β)
ln

(
M2

Λ2
QCD

)
. (3.66)

With this result at hand, we now discuss the appropriate choice for the mixing

parameter β introduced in (3.38) for our sum rule. There are two commonly used

ways for fixing this parameter: (i) at a value where the leading terms of the OPE are

stationary under variations of β or (ii) at a point that maintains a balance between

OPE convergence and contributions of excited states (cf. the discussion presented in

Section 3.1). Both methods are not applicable in our case, because (i) the result (3.66)

does not possess an extremum and (ii) contributions of excited states have been ignored

in our sum rule (cf. Section 3.2.1.1). The procedure advocated in [90,92,172,173] where

β is chosen such that subleading IR logarithms are cancelled in the QCD θ term and

CEDM contributions to the nEDM is also not useful, since on the OPE side (3.65) of

our sum rule IR logarithms appear already at LO.

Our choice of β is instead based on the observation that the function fq(β) introduced

in (3.63) appears in the numerator of Ioffe’s formula [155], which for arbitrary β takes

the following form [181]

mn = −7− 2β − 5β2

5 + 2β + 5β2

4 (2π)2

M2
〈q̄q〉 . (3.67)

This relation connects the neutron mass mn to the quark condensate 〈q̄q〉. While

it is not an exact relationship, one observes that for β = 1, Ioffe’s formula (3.67)

predicts mn = 0 in gross disagreement with observation. For the second standard

choice of the mixing parameter, i.e. the Ioffe interpolating current with β = −1, one

instead has mn ' 1.2 GeV3/M2 if the numerical value 〈q̄q〉 ' −(0.25 GeV)3 for the

quark condensate is used (cf. Section 3.1). For β = −1 and a Borel mass of M '
1 GeV, the formula (3.67) thus predicts a neutron mass that is in the ballpark of

the experimental value mn ' 0.94 GeV. We conclude from this that the appropriate

choice for the mixing parameter in the case of our sum rule (3.65) is β = −1. In

fact, this choice is the one that has been employed in essentially all CP-even sum

rules [155, 160, 167], including the sum-rule calculations of the anomalous magnetic

moment µn of the neutron [168, 174, 183, 184]. We believe that the Ioffe interpolating

current has also been used in [94].

3.2.3 OPE calculation for the dimension-eight operators

The procedure for the dimension-eight Weinberg-type operators follows the steps taken

for the dimension-six operator, which was outlined in Section 3.2.2. After the con-
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3.2 Sum rules for CP-violating operators of Weinberg type

tributions of the gluonic self-interactions to the quark-propagator are determined in

Section 3.2.3.1, the OPE derived in the previous section is employed to perform the

matching on the hadronic form of the correlation function in Section 3.2.3.2.

3.2.3.1 Weinberg contribution to the quark propagator

In this section, we derive the contribution to the nEDM from the dimension-eight

Weinberg operator O8 introduced in (3.17). Like in Section 3.2.2.2 we will treat the

CP-violating four-gluon operator as a perturbative insertion into the quark propagator.

The corresponding Feynman graph is shown in Figure 3.4. In analogy to (3.41), (3.43)

and (3.44) we write

S(x) = S(0)(x) + Sq(x) + SO8(x) , (3.68)

and

SO8(x) =

∫
d4z1d

4z2 S
(0)(x− z1)SO8

amp(z1 − z2)S(0)(z2) , (3.69)

with

SO8
amp(z) = −g2

s T
A
acT

B
dbγ

µ
ikγ

ν
lj

〈
T
[
qkc (0)DO8 AB

µν (z) q̄ld(0)
]〉

+ . . . . (3.70)

The explicit LO expressions for S(0)(x) and Sq(x) can be found in (3.42). The function

DO8 AB
µν (z) in (3.70) corresponds to the correction of the gluon propagator due to an

insertion of O8, namely

DO8 AB
µν (z) =

value mn ' 0.94 GeV. We conclude from this that the appropriate choice for the mixing parameter
in the case of our sum rule (4.28) is � = �1. In fact, this choice is the one that has been employed
in essentially all CP-even sum rules [75–77], including the sum-rule calculations of the anomalous
magnetic moment µn of the neutron [61, 62, 78, 79]. We believe that the Io↵e interpolating current
has also been used in [38].

5 OPE calculation for the dimension-eight operators

5.1 Weinberg contribution to the quark propagator

In this section, we derive the contribution to the nEDM from the dimension-eight Weinberg oper-
ator O8 introduced in (1.1). Like in Section 4.2 we will treat the CP-violating four-gluon operator
as a perturbative insertion into the quark propagator. The corresponding Feynman graph is shown
in Figure 4. In analogy to (4.4), (4.6) and (4.7) we write

S (x) = S (0)(x) + S q(x) + S O8 (x) , (5.1)

and
S O8 (x) =

Z
d4z1d4z2 S (0)(x � z1)S O8

amp(z1 � z2)S (0)(z2) , (5.2)

with
S O8

amp(z) = �g2
s tA

ac tB
db�
µ
ik�
⌫
l j

D
T

h
qk

c(0)DO8 AB
µ⌫ (z) q̄l

d(0)
iE
+ . . . . (5.3)

The explicit LO expressions for S (0)(x) and S q(x) can be found in (4.5). The function DO8 AB
µ⌫ (z)

in (5.3) corresponds to the correction of the gluon propagator due to an insertion of O8, namely

DO8 AB
µ⌫ (z) = + . . . . (5.4)

To determine the analytic expression corresponding to (5.4), we proceed as in Section 4.2 and
write the operator O8 in the more convenient form

O8 =
i

16
cABCD T µ⌫�⇢1 T↵���2 GA

µ⌫G
B
�⇢G

C
↵�G

D
�� , (5.5)

with
T µ⌫�⇢1 =

i
2

Tr
⇣
�µ⌫��⇢

⌘
, T↵���2 =

i
2

Tr
⇣
�↵�����5

⌘
. (5.6)

These traces are anti-symmetric under the exchanges µ$ ⌫ etc. but symmetric under the exchanges
µ⌫ $ �⇢ etc. The e↵ective operator O8 is then expanded in terms of partial derivatives and gluon
fields using (4.11). Picking out the terms that are bilinear in both the background field ḠA

µ and the
quantum field ĜA

µ , we obtain

O8 = i cABCD T µ⌫�⇢1 T↵���2

h
@µḠA

⌫ @�Ḡ
B
⇢ @↵Ĝ

C
� @�Ĝ

D
� + @µḠ

A
⌫ @�Ĝ

B
⇢ @↵Ḡ

C
� @�Ĝ

D
�

+ . . . + @µĜA
⌫ @�Ĝ

B
⇢ @↵Ḡ

C
� @�Ḡ

D
�

i
+ . . . ,

(5.7)
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+ . . . . (3.71)

To determine the analytic expression corresponding to (3.71), we proceed as in Sec-

tion 3.2.2.2 and write the operator O8 in the more convenient form

O8 =
i

16
cABCD Tµνλρ1 Tαβγδ2 GAµνG

B
λρG

C
αβG

D
γδ , (3.72)

with

Tµνλρ1 =
i

2
Tr
(
σµνσλρ

)
, Tαβγδ2 =

i

2
Tr
(
σαβσγδγ5

)
. (3.73)

These traces are anti-symmetric under the exchanges µ↔ ν etc. but symmetric under

the exchanges µν ↔ λρ etc. The effective operator O8 is then expanded in terms of

partial derivatives and gluon fields using (3.48). Picking out the terms that are bilinear

in both the background field ḠAµ and the quantum field ĜAµ , we obtain

O8 = i cABCD Tµνλρ1 Tαβγδ2

[
∂µḠ

A
ν ∂λḠ

B
ρ ∂αĜ

C
β ∂γĜ

D
δ + ∂µḠ

A
ν ∂λĜ

B
ρ ∂αḠ

C
β ∂γĜ

D
δ

+ . . . + ∂µĜ
A
ν ∂λĜ

B
ρ ∂αḠ

C
β ∂γḠ

D
δ

]
+ . . . ,

(3.74)
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3 QCD at hadronic scales: sum-rule techniques

Figure 4. Contribution of the dimension-eight Weinberg operator to the quark propagator. The operator
insertion corresponds to the dotted vertex, interactions with the background are represented by crosses and
quark propagators are depicted by solid lines.

where the ellipses in the bracket represent the other three terms that are quadratic in ḠA
µ and ĜA

µ .
With the expression (5.7) at hand it is a matter of simple algebra to calculate (5.4). Using the

relations in (4.15) we find

DO8 AB
µ⌫ (z) =

Z
d4y

D
T

h
ĜA
µ (z)ĜB

⌫ (0) iO8(y)
iE

= �4i cCDEF
Z

d̄4 pe�ipz 1
p4

 ⇣
�AD�BF G̃E

⌫�G
C
µ⇢ + �

AF �BDG̃E
µ�G

C
⌫⇢

⌘
p�p⇢ + . . .

� 1
2

⇣
�AC �BD + �AD�BC

⌘
G̃E ·GF

⇣
pµp⌫ � gµ⌫p2

⌘ �
.

(5.8)

Here we have used the shorthand notation G̃A · GB = G̃A
µ⌫G

Bµ⌫ and all field strength tensors and
duals are evaluated at 0. The ellipses represent three additional terms that have a structure that is
similar to that of the contribution proportional to p�p⇢.

Inserting (5.8) into (5.3) it then turns out that to obtain the amputated two-point function
S O8

amp(z), one has to calculate objects of the form

MAB
�⇢ = tA

ac tB
db�
µ
ik�
⌫
l j XCD

D
qk

c(0) g2
s G̃C
µ�(0)GD

⌫⇢(0) q̄l
d(0)

E
,

NAB
µ⌫ = tA

ac tB
db�
µ
ik�
⌫
l j XCD

D
qk

c(0) g2
s G̃C(0) ·GD(0) q̄l

d(0)
E
,

(5.9)

where XCD is a symmetric tensor in colour space. To achieve this we expand the quark current in
terms of the set of basis matrices

�n =
n
1, �5, �↵, i�5�↵, �↵�

o
, (5.10)

using the Fierz identity (see for instance [80, 81])

qi
a q̄l

d = �
�ad

12
�il

n
�
q̄�n q

� � tCad

2
�il

n
�
q̄tC�nq

�
. (5.11)

In the case of the structure MAB
�⇢ , we obtain

MAB
�⇢ = �

µ�n�
⌫

"
� tAtB

12
XCD

D
q̄�n qg2

s G̃C
µ�G

D
⌫⇢

E
� tAtEtB

2
XCD

D
q̄tE�n qg2

s G̃C
µ�G

D
⌫⇢

E#
, (5.12)

where a sum over the five di↵erent Lorentz structures in (5.10) is implicit.
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Figure 3.4: Contribution of the dimension-eight Weinberg operator to the quark propagator.

The operator insertion corresponds to the dotted vertex, interactions with the background are

represented by crosses and quark propagators are depicted by solid lines.

where the ellipsis in the bracket represents the other three terms that are quadratic in

ḠAµ and ĜAµ .

With the expression (3.74) at hand it is a matter of simple algebra to calculate (3.71).

Using the relations in (3.52) we find

DO8 AB
µν (z) =

∫
d4y

〈
T
[
ĜAµ (z)ĜBν (0) iO8(y)

]〉
= −4i cCDEF

∫
d̄ 4pe−ipz

1

p4

×
[(
δADδBF G̃EνλG

C
µρ + δAF δBD G̃EµλG

C
νρ

)
pλpρ + . . .

− 1

2

(
δAC δBD + δADδBC

)
G̃E ·GF

(
pµpν − ηµνp2

) ]
.

(3.75)

Here we have used the shorthand notation G̃A ·GB = G̃AµνG
B µν and all field strength

tensors and duals are evaluated at 0. The ellipsis represents three additional terms that

have a structure that is similar to that of the contribution proportional to pλpρ.

Inserting (3.75) into (3.70) it then turns out that to obtain the amputated two-point

function SO8
amp(z), one has to calculate objects of the form

MAB
λρ = TAacT

B
dbγ

µ
ikγ

ν
lj X

CD
〈
qkc (0)g2

s G̃
C
µλ(0)GDνρ(0) q̄ld(0)

〉
,

NAB
µν = TAacT

B
dbγ

µ
ikγ

ν
lj X

CD
〈
qkc (0)g2

s G̃
C(0) ·GD(0) q̄ld(0)

〉
,

(3.76)

where XCD is a symmetric matrix in colour space. To achieve this we expand the quark

current in terms of the set of basis matrices,

Γn =

{
1, γ5, γα, iγ5γα,

1√
2
σαβ

}
, (3.77)

using the Fierz identity (see for instance [158,159])

qia q̄
l
d = −δad

12
Γiln
(
q̄Γnq

)
−
TCad
2

Γiln
(
q̄ TCΓnq

)
. (3.78)
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In the case of the structure MAB
λρ , we obtain

MAB
λρ = γµΓnγ

ν

[
− TATB

12
XCD

〈
q̄Γnqg

2
s G̃

C
µλG

D
νρ

〉
− TATETB

2
XCD

〈
q̄ TEΓnqg

2
s G̃

C
µλG

D
νρ

〉]
,

(3.79)

where a sum over the five different Lorentz structures in (3.77) is implicit.

Recalling from (3.54) that we are only interested in the pieces of SO8
amp(z) that are

proportional to iγ5 it is readily seen that these contributions all arise from the term

γµγ5γ
ν = −ηµνγ5 +

1

2
εµνλρσλρ (3.80)

in the above expression for MAB
λρ . The colour factors appearing in (3.79) can be de-

composed in the following way

TATB =
1

6
δAB +

1

2
dABCTC +

i

2
fABCTC ,

TATCTB =
1

12
dABC − i

12
fABC +

1

6
δBCTA

+
1

4

(
dBCD − ifBCD

) (
dADE + ifADE

)
TE .

(3.81)

Realising that only the structures that are proportional to δAB and dABC in (3.81) can

lead to SU(3) invariant condensates, we find that the terms relevant for our sum-rule

calculation of the O8 contributions are

MAB
λρ = −ηµν γ5

[
− δAB

72
XCD

〈
q̄γ5qg

2
s G̃

C
µλG

D
νρ

〉
− dABE

24
XCD

〈
q̄ TEγ5qg

2
s G̃

C
µλG

D
νρ

〉]
+ . . .

= ηλργ5

[
δAB

288
XCD

〈
QCD

〉
+
dABE

96
XCD

〈
QECD

〉]
+ . . . .

(3.82)

Here we have used the identity

XAB G̃AµλG
B µ

ρ =
1

4
ηλρX

AB G̃A ·GB , (3.83)

that holds for any symmetric XAB and introduced the following shorthand notation〈
QAB

〉
=
〈
q̄γ5qg

2
s G̃

A ·GB
〉
,

〈
QABC

〉
=
〈
q̄ TAγ5qg

2
s G̃

B ·GC
〉

(3.84)

for the two types of condensates appearing in (3.82). A calculation similar to the one

detailed above leads to

NAB
µν = ηµν γ5

[
δAB

72
XCD

〈
QCD

〉
+
dABE

24
XCD

〈
QECD

〉]
+ . . . . (3.85)
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To determine the expression (3.70), we the employ colour structures cABCD defined

in (2.10), which appear in the definition (3.17) of O8. Notice that these coefficients

are symmetric under the simultaneous exchange of A ↔ B and C ↔ D and the

pairwise exchange AB ↔ CD. Using (3.82), (3.85) and the properties of cABCD, we

find that (3.70) can be written as follows

SO8
amp(z) = − 1

72π2z2
γ5

[
cAB

〈
QAB

〉
+ cABC

〈
QABC

〉 ]
, (3.86)

with the new colour structures

cAB = cACBC + cACCB + 3cABCC ,

cABC = 3dCDE
(
cADBE + cADEB + 3cABDE

)
.

(3.87)

In fact, using the identities (see for instance [185])

dACDdBCD =
C2
A − 4

CA
δAB , dADEdBDF dCEF =

C2
A − 12

2CA
dABC , (3.88)

it is a matter of simple algebra to show that for the three colour structures in (2.10)

the coefficients (3.87) take the explicit form

cAB = c1δ
AB , cm1 =

{
26, 12,

10

3

}
, cABC = c2d

ABC , cm2 = {6, 12, 12} .

(3.89)

A comparison of (3.86) with (3.54) and (3.58) then implies that the Weinberg-induced

correction (3.69) to the quark propagator in position space can be written as

SO8(x) =
1

288π2
iγ5 ln

(
−
µ2

IRx
2

4

)

×
[
c1

〈
q̄ iγ5qg

2
s G̃ ·G

〉
+ c2

〈
q̄ TA iγ5qg

2
s dABC G̃

B ·GC
〉]

,

(3.90)

with the coefficients c1 and c2 given in (3.89). Notice that the dimension-seven condens-

ates appearing in (3.90) are the only non-zero matrix elements that can be constructed

out of two quark fields, a QCD field strength tensor and its dual [186,187]. This finding

provides a sanity check of the calculations leading to SO8(x).

3.2.3.2 OPE correlator, matching and discussion

To determine the OPE correlator (3.40) which corresponds to the dimension-eight

Weinberg-type operator O8, we also need values for the two condensates in (3.90).

The only estimates that exist at present are based on the instanton liquid model [176,

188–191]. One obtains [187]〈
q̄ iγ5qg

2
s G̃ ·G

〉
=

64

5ρ̄4
〈q̄q〉 ,

〈
q̄ TA iγ5qg

2
s dABC G̃

B ·GC
〉

=
32

15ρ̄4
〈q̄q〉 . (3.91)

44



3.2 Sum rules for CP-violating operators of Weinberg type

In the diluted instanton gas model, the quark condensate is given by

〈q̄q〉 = − 3mq

2π2 ρ̄2
, (3.92)

where mq ' ΛQCD ' 0.3 GeV denotes the constituent quark mass and ρ̄ ' 1/(0.6 GeV)

is the average instanton size. Notice that for the quoted values of mq and ρ̄ one finds

〈q̄q〉 ' −(0.25 GeV)3 in agreement with the standard value for the quark condens-

ate [175,176,182].

Noticing that after employing the relations (3.91) the structures of (3.90) and (3.58)

are precisely the same, the derivation of ΠOPE(q2) and the matching of the phenomen-

ological and the OPE correlators for O8 proceeds as in Sections 3.2.2.3 and 3.2.2.4, re-

spectively. In particular, for the coefficient r(q2) that multiplies the iγ5 term in (3.36),

we obtain

r8(β) =
4 (6c1 + c2)

45π2 ρ̄4

fO(β)

fq(β)
ln

(
M2

Λ2
QCD

)
, (3.93)

with the functions fq(β) and fO(β) defined in (3.63). Like in the case of O6, we

will employ β = −1 in our numerical analysis of the O8 matrix elements, since this

is the appropriate choice for our sum-rule calculations (cf. the discussion at the end

of Section 3.2.2.4).

3.2.4 Numerical analysis

In this section, the final numerical results of the sum-rule calculations are presented,

which are then used in the phenomenological application that is discussed in Section 5.1.

3.2.4.1 Dimension-six contribution

Using β = −1 and inserting (3.66) into (3.37), we obtain the following expression for

the contribution of the dimension-six Weinberg operator to the nEDM

(
dn
)
O6

= −µn
9gsm

2
0

32π2
ln

(
M2

Λ2
QCD

)
, (3.94)

which differs from the analytic result given in [94] by a sign.

In our numerical analysis we use

µn = −1.91
e

2mp
= −1.02

e

GeV
, gs =

√
4παs = 2.13± 0.03 ,

(3.95)

m2
0 = (0.8± 0.2) GeV2 ,

M

ΛQCD
∈
√

2 [1, 2] ,
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where the input values and errors of µn, mp, gs and m2
0 are taken from [175,176,178,182]

and the strong coupling constant corresponds to a LO αs evaluated at a renormalisa-

tion scale of 1 GeV. We note that our choice M ∈
√

2 [1, 2] ΛQCD ' [0.42, 0.85] GeV

covers the full range of Borel masses that has been considered in the related sum-rule

calculations of the QCD θ term and CEDM contributions to the nEDM [90,92,172,173].

With the input given in (3.95) we find from (3.94) the following numerical result(
dn
e

)
O6

= 74 (1± 0.5) MeV , (3.96)

where the individual uncertainties have been added in quadrature to obtain the final

relative error of 50%. The dominant source of uncertainty in our prediction for (dn/e)O6

arises from the variation of the scale ratio M/ΛQCD and amounts to almost 90% of the

total error given above. We add that the quoted total uncertainty in (3.94) is larger

than the naive expectation of the size of the sum-rule contributions due to excited states

(cf. the discussion at the end of Section 3.2.1.2) and that the sum-rule predictions

for the down-quark and up-quark CEDMs [90, 92] are also accurate to about 50%.

Notice that the central value of our prediction (3.94) differs by a factor of roughly 1/3

from the numerical result presented in [94]. Here a factor of 1/3 is accounted for by

the different normalisation of the effective operator O6, while the flipped overall sign

in (3.94) is compensated by the fact that in the latter article the incorrect relation

µn = 1.91 e/(2mp) has been used to obtain a numerical result.

3.2.4.2 Dimension-eight contributions

Inserting (3.93) into (3.37), we find for the Ioffe interpolating current, i.e. β = −1,

the following expression for the nEDM contribution of the dimension-eight Weinberg

operators (
dn
)m
O8

= −µn
72

5π2 ρ̄4
ln

(
M2

Λ2
QCD

) {
1,

14

27
,
16

81

}
, (3.97)

where the numbers in the curly bracket correspond to the three different colour struc-

tures in (2.10).

The average instanton size that enters (3.97) can be determined in various ways.

Including the value of ρ̄ that allows us to reproduce the phenomenological values of the

quark and gluon condensates [188], that is obtained through variational techniques and

the mean field approximation [189] and that is found in LQCD calculations [192–197],

we arrive at the combination

ρ̄ =
1

(0.58± 0.09) GeV
. (3.98)

This prediction has an uncertainty of 15%, which we believe to be a rather conservative

error in view of the results given in [188,189,192–197].
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In order to obtain a numerical result for the O8 contribution to the nEDM, we use

the input given in (3.95) and (3.98). Adding individual uncertainties in quadrature we

find (
dn
e

)m
O8

= 2.5 · 10−1 (1± 0.8) GeV3
{

1, 0.5, 0.2
}
. (3.99)

Here the dominant source of uncertainty stems again from the variation of M/ΛQCD

and amounts close to 60% of the quoted total error of 80%.
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4 LCSRs for proton decay

Many concepts of QCD sum rules that were presented in Chapter 3 and in particular

in Section 3.1 can be found again in LCSR calculations [142–147] for proton decay

channels of the type p → π0 `+ + X, where `+ denotes an anti-lepton and X can be

anything. The main difference compared to SVZ sum rules is that instead of employing

an expansion around short distances, LCSRs utilise an expansion in small transverse

separations among partons in the infinite momentum frame [198]. The approach ef-

fectively combines the methods of QCD sum rules and the theory of hard exclusive

processes [148–154]. Eventually, this enables the separation of the hard scattering from

soft interactions. While the hard-scattering kernel can be computed perturbatively in

QCD, the soft contributions are parametrised in terms of DAs of the final-state pion.1

Moreover, the approximate conformal symmetry of QCD permits a decomposition of

the DAs in terms of partial waves or conformal spin so that transverse and longitud-

inal variables in the pion wave function can be separated [199, 200]. This leads to an

expansion of the DAs in terms of a converging series of orthogonal polynomials of the

momentum fraction carried by one of the partons in the pion (cf. Appendix D). The

coefficients of the expansion are hadronic parameters which enter the LCSRs as input.

In Sections 4.1 and 4.2, the LCSR approach is employed to estimate the form factors

that parametrise the hadronic matrix elements of proton-to-pion transitions which are

relevant for semi-leptonic proton decay channels. The framework for this endeavour is

developed in Section 4.1 where a simple two-body decay is studied. The contents of this

section were originally published in the article [21], and the results could be verified

by comparing them to recent lattice computations. By employing the same methods,

the hadronic form factors for proton decay in GRSMEFT can be calculated, which is

shown in Section 4.2; this part is based on the contents of Ref. [22].

1Some of the condensates that were introduced in Chapter 3 also occur in the LCSRs when a naive

factorisation approach is used for higher-order DAs; see Section 4.1.2 for details.

49



4 LCSRs for proton decay

4.1 Semi-leptonic two-body proton decay modes

Early attempts to compute the hadronic matrix elements of semi-leptonic proton decays

date back to the ’80s and employed non-relativistic quark models, often based on the

approximate SU(6) flavour-spin symmetry of the partons [201–205], bag models which

allow for relativistic partons [206–211], or QCD sum rules [212]. An effective chiral

theory was also proposed in the articles [213–216], which can be used to derive relations

among the various two-body decay widths but still contains a priori unknown low-

energy constants. As a result, the latter approach cannot predict the absolute value of

the proton decay width without further input. The methods mentioned above have also

been applied to estimate these low-energy constants, in which case the final predictions

for the hadronic matrix elements suffer from additional systematic uncertainties due

to the approximate nature of the effective chiral theory. Moreover, the results of these

model calculations differ by up to an order of magnitude from each other (see Table VI

in [217] for a summary and comparison). On the other hand, LQCD groups have by now

achieved to directly compute the needed hadronic matrix elements within uncertainties

of (10 − 15)% [217–224]. These results cover all two-body decays into pseudoscalar

mesons and light anti-leptons, which are relevant for GUTs.

In this section, a method to estimate the hadronic matrix elements that enter pro-

cesses of the type p → π0 `+ (+X) is established. As a proof-of-principle the general

approach is applied to the simple two-body case p → π0 e+ with e+ a positron, while

the application to three-body proton decay processes such as transitions involving an

additional graviton is discussed in Section 4.2. In fact, studying the simple decay mode

p→ π0 e+ allows us to make a thorough comparison with the latest LQCD results [223].

In this way, we are not only able to validate our method but can also assess the sys-

tematic uncertainties that plague our estimates. Our method employs the techniques

of LCSRs in QCD. The light-cone expansion works well if the momentum transfer q

from the proton to the pion is large in magnitude and space-like, i.e. q2 < 0. We there-

fore cannot directly compute the hadronic matrix elements at the physical point of the

two-body decay kinematics, where q2 is fixed and equal to the square of the positron

mass. However, we are able to find values in the space-like regime at q2 ' −0.5 GeV2,

which are close enough to the physical regime to provide an estimate of the hadronic

matrix elements at the physical point by means of suitable extrapolations. Albeit this

approach does not achieve the same level of accuracy as the state-of-the-art LQCD

calculation [223], the results of this work are promising, because the obtained precision

is better than the methods that have been developed in the ’80s to estimate proton

decay rates. Furthermore, the LCSR approach developed in this section should be able

to at least provide order-of-magnitude estimates for hadronic matrix elements that
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4.1 Semi-leptonic two-body proton decay modes

enter certain three-body proton decay processes. Such decays could be phenomenolo-

gically relevant (see for instance [124]) but only model estimations exist for selected

modes [225], making three-body final-state proton decay processes an interesting target

of future LQCD studies [104].

This section is organised is as follows. In Section 4.1.1 the framework for studying

hadronic matrix elements for the p → π0 e+ decay is explained. In particular, all of

the dimension-six operators in the SMEFT that are relevant for this decay, which are

presented in (2.13), are considered so that the analysis is model-independent. These

operators are typically generated by baryon-number-violating new physics that can be

integrated out below a certain (large) energy scale. As a next step, the hadronic matrix

elements are decomposed into form factors. These form factors enter a correlation

function that is computed with the help of LCSR techniques in Section 4.1.2, which

allows us to derive the LCSRs for the form factors relevant for proton decay in GUTs.

In Section 4.1.3 we turn to the numerical evaluation of the LCSRs and compute the

form factors in the regime of virtual momentum transfer. Eventually, these findings are

compared to the results of the latest LQCD computation [223] and the uncertainties

that enter the final estimates are discussed in detail. Technical details are relegated to

the appendices.

4.1.1 Phenomenological parametrisation

The transition matrix element of the proton decay p → π0 e+ induced by an insertion

of an operator entering (2.13) can be factorised into a hadronic and leptonic part (up

to electroweak corrections),

〈π0(pπ)e+(q)|OΓΓ′ |p(pp)〉 = v̄ce(q)HΓΓ′(pp, q)up(pp) . (4.1)

Here up(pp) denotes the spinor of the proton with momentum pp and v̄ce(q) is the charge

conjugate anti-spinor of the electron with momentum q ≡ pp−pπ. The main goal of the

following analysis is to calculate the hadronic matrix element HΓΓ′(pp, q) of the p→ π0

transition,

HΓΓ′(pp, q)up(pp) ≡ 〈π0(pπ)| εabc
(
dTaCPΓub

)
PΓ′uc |p(pp)〉 , (4.2)

where all the quark fields are evaluated at the space-time point x = 0. For an on-shell

proton the above matrix element can be decomposed into two form factors as follows,

HΓΓ′(pp, q)up(pp) = iPΓ′

(
W 0

ΓΓ′(q
2) +

/q

mp
W 1

ΓΓ′(q
2)

)
up(pp) , (4.3)

with mp = 938 MeV the proton mass. Notice that the form factors are related due to

parity, which is conserved in QCD. Specifically, one has

Wn
RR(q2) = Wn

LL(q2) , Wn
LR(q2) = Wn

RL(q2) , (4.4)
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4 LCSRs for proton decay

with n = 0, 1. In this work we calculate the combinations ΓΓ′ = RR,LR explicitly,

which covers all chirality combinations due to the above relations.

The starting point for evaluating the form factors Wn
ΓΓ′(q

2) in LCSRs is the correla-

tion function

ΠΓΓ′(pp, q) = i

∫
d4x eiqx 〈π0(pπ)|T [QΓΓ′(x)η̄p(0)] |0〉 , (4.5)

where the current ηp (η̄p ≡ η†pγ0) is a combination of three quark fields that interpolates

the proton,

〈0|ηp(0)|p(pp)〉 = mpλpup(pp) . (4.6)

Here λp denotes the couplings strength of the current ηp to the physical proton state.2

The strongly-interacting parts of the dimension-six operators (2.13) are represented by

QΓΓ′(x) ≡ εabc
(
dTa (x)CPΓub(x)

)
PΓ′uc(x) . (4.7)

In order to derive a parametrisation of the hadronic matrix elements HΓΓ′(pp, q) we

insert a complete set of intermediate states that have the same quantum numbers as

the proton into (4.5) (cf. equation (3.3)) and isolate the pole contribution of the ground

state to obtain the hadronic representation of the correlation function:

Πhad
ΓΓ′ (pp, q) = − mp

p2
p −m2

p + iε
λpHΓΓ′(pp, q)

(
/pp +mp

)
+ . . .

= PΓ′

(
Πhad,S

ΓΓ′ +
/pp
mp

Πhad,P
ΓΓ′ +

/q

mp
Πhad,Q

ΓΓ′ +
iσppq

m2
p

Πhad,T
ΓΓ′

)
,

(4.8)

with ε > 0 and infinitesimal, σpq ≡ σµν p
µqν , and the ellipsis denotes contributions

from heavier states, i.e. excited states and the continuum. The four independent Dirac

structures in (4.8) can be used to derive LCSRs for the form factors Wn
ΓΓ′(q

2) or com-

binations of them. The corresponding scalar functions Πhad,γ
ΓΓ′ depend only on the square

of the proton momentum p2
p and on the square of the momentum transfer Q2 ≡ −q2.

They are conveniently parametrised in terms of dispersion integrals,

Πhad,γ
ΓΓ′ (p2

p, Q
2) =

∫ ∞
m2
p

ds
ρhad,γ

ΓΓ′ (s,Q2)

s− p2
p

, (4.9)

where γ = S, P,Q, T and we have introduced the spectral densities

ρhad,γ
ΓΓ′ (s,Q2) ≡ 1

π
Im Πhad,γ

ΓΓ′ (s+ iε,Q2) . (4.10)

2Note the difference in the normalisation compared to the conventions used in the previous sections,

i.e. equations (3.2) and (3.23).
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Separating the ground-state contribution from the contribution of heavy states de-

noted by ρcont,γ
ΓΓ′ (s,Q2), the four spectral densities appearing in (4.8) can be cast into

the form

ρhad,γ
ΓΓ′ (s,Q2) = iλpm

2
p δ
(
s−m2

p

)
W γ

ΓΓ′(s,Q
2) + ρcont,γ

ΓΓ′ (s,Q2) , (4.11)

where

WS
ΓΓ′(s,Q

2) = W 0
ΓΓ′(s,Q

2) +
s−Q2 −m2

π

2m2
p

W 1
ΓΓ′(s,Q

2) ,

WP
ΓΓ′(s,Q

2) = W 0
ΓΓ′(s,Q

2) , WQ
ΓΓ′(s,Q

2) = W T
ΓΓ′(s,Q

2) = W 1
ΓΓ′(s,Q

2) ,

(4.12)

and mπ = 135 MeV is the pion mass. We stress that the relations (4.12) only hold on-

shell, i.e. if s = m2
p. This is however guaranteed by the δ

(
s−m2

p

)
function appearing

in (4.11). Under the assumption of a global quark-hadron duality [170] (see also [171]

for a review) the contributions of heavy states can be approximated by∫ ∞
s0

ds
ρcont,γ

ΓΓ′ (s,Q2)

s− p2
p

'
∫ ∞
s0

ds
ρQCD,γ

ΓΓ′ (s,Q2)

s− p2
p

, (4.13)

where ρQCD,γ
ΓΓ′ (s,Q2) are the spectral densities in QCD and we will explain how to

compute them in the next section. The approximation (4.13) is expected to work well

for a sufficiently large continuum threshold s0, which is a free parameter and has to be

determined within the LCSR calculation. A more detailed discussion on how to fix s0 is

provided in Section 4.1.3, but ideally it is chosen low enough to cover even the lightest

excitation, which is the Roper resonance with a mass of 1.44 GeV.

4.1.2 LCSR calculation

The basic idea of the LCSRs is to derive a result for ΠΓΓ′(pp, q) in QCD while paramet-

rising unknown soft contributions in terms of quantities that can be determined by other

means. It can be shown that for large virtualities Q2 � Λ2
QCD and P 2

p ≡ −p2
p � Λ2

QCD

with ΛQCD ' 300 MeV the QCD scale, the integrand of the correlator (4.5) can be ap-

proximated by an expansion on the light-cone x2 ∼ 1/Q2 ' 0 (see [175] and references

therein). Schematically, this light-cone expansion takes the form

T [QΓΓ′(x)η̄p(0)] =
∑
k

Ck(x)Ok(0) , (4.14)

where the Wilson coefficients Ck encode the hard scattering process and the objects Ok
are composite operators of twist k. The matrix elements of these composite operators

correspond to the light-cone DAs of the pion which are non-perturbative objects. Per-

forming a Borel transformation with respect to P 2
p then yields an expansion in inverse
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powers of the two scales that enter our calculation, i.e. it leads to a power expan-

sion in Λ2
QCD/M

2 and Λ2
QCD/Q

2, where M denotes the Borel mass associated to P 2
p(

cf. (3.13)
)
. In the following analysis we will provide explicit LCSR expressions that

include the leading contributions in this expansion, namely the twist-2 and twist-3 DAs.

We will however also comment on the possible impact of twist-4 contributions in all

cases where such terms could be phenomenologically relevant (cf. Section 4.1.3).

In order to carry out the light-cone expansion, we need to choose an explicit form for

the proton current ηp. The most general choice with the appropriate quantum numbers

(at lowest order in derivatives and spin) can be written as a linear combination of the

two currents introduced in equation (3.10) [160]:

η1(x) = 2εabc
(
uTa (x)Cγ5db(x)

)
uc(x) , η2(x) = 2εabc

(
uTa (x)Cdb(x)

)
γ5uc(x) .

(4.15)

The current η1 excites the ground state as well as heavier states, while η2 almost

exclusively excites heavier states [180]. As a result the coupling strength of η1

(
cf. (4.6)

)
to the proton state is larger by a factor of about 100 than that of η2. Due to its weak

coupling to the proton state, the contribution of the current η2 is expected to be very

small in the case at hand, and we therefore choose for simplicity

ηp(x) ≡ η1(x) , (4.16)

neglecting a possible admixture of η2. This choice of the proton current also corresponds

to the interpolator usually used in LQCD calculations. Note that the proton current

enters the correlator linearly in the case at hand. In contrast to that, the applications

discussed in Sections 3.1 and 3.2 rely on correlation functions with two powers of the

current, so that also mixed contributions of the form η1 × η2 contribute there (see also

the discussion of Section 3.2.2.4.

The expansion of the time-ordered product that occurs in the twist expansion (4.14)

is carried out by partially contracting the quark fields,

T [QΓΓ′(x)η̄p(0)] =− 1

2
εijk εabc PΓ′

{(
ūa(0)ΓAu

i(x)
)

×
[
Skcu (x)γ5S̃

jb
d (x)PΓΓA + Skcu (x) Tr

(
ΓAγ5S̃

jb
d (x)PΓ

)
+ ΓAγ5S̃

jb
d (x)PΓS

kc
u (x) + ΓA Tr

(
Skcu (x)γ5S̃

jb
d (x)PΓ

) ]
+
(
d̄a(0)ΓAd

i(x)
) [
Skcu (x)γ5Γ̃APΓS

jb
u (x) + Skcu (x) Tr

(
Sjbu (x)γ5Γ̃APΓ

) ]}
.

(4.17)

Here we have employed the following basis of gamma matrices

ΓA =

{
1, γ5, γ

ρ, iγργ5,
1√
2
σρσ
}
, (4.18)
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and we use the notation Γ̃A ≡ CΓTAC with C = iγ2γ0 and a summation over the

index A is implicit. The pairwise contraction of up (down) quark fields is denoted by

Siju (x)
(
Sijd (x)

)
, i, j, k are colour indices and Tr denotes a trace over Dirac matrices.

Hereafter we will work in the isospin limit and will therefore drop the flavour index of

the contraction.

With the help of (4.18) it is possible to derive the following completeness relation:

u(x)ū(0) = −1

4
(ū(0)ΓAu(x)) ΓA . (4.19)

The contracted fields need to be expanded for light-like distances (including single-gluon

emission), which reads [226]

Sij(x) =
i/x

2π2x4
δij − igs

16π2x2

∫ 1

0
duGijµν(ux) [ū/xσµν + uσµν/x] + . . . , (4.20)

where the ellipsis represents terms that lead to contributions of twist higher than three,

we have employed the short-hand notation Gijµν ≡ GAµνT
ij
A for the gluon field strength

tensor and defined ū ≡ 1−u. We neglect contributions proportional to the quark masses

because they are numerically negligible. In the following we consider only single-gluon

interactions which is consistent with truncating the expansion (4.14) after the leading-

twist contribution [199]. This leads to the two types of one-loop diagrams that are

displayed in the top row of Figure 4.1.

In addition to these LO terms factorised contributions of higher twist and multiplicity

turn out to be numerically relevant in the case at hand. Such contributions originate

from operators with four quark fields or four quark fields and one gluon, such that only

one pair of quarks is contracted in the time-ordered product. Part of the respective

amplitudes can be approximated by a factorisation into two- or three-particle DAs (of

twist two and three) and vacuum condensates of the remaining quark and gluon fields.

Such contributions scale with a smaller power of 1/Q2 than genuine, non-factorisable

terms of higher twist (as one might naively expect from the light-cone expansion (4.14))

and instead are suppressed by powers of 1/M2 [227, 228]. Effectively, these factorised

contributions can be taken into account by replacing one of the contractions Sij(x)

in the expression (4.17) by the appropriate local terms and condensates as encoded

by [181]

∆Sij(x) = −〈q̄q〉
12

δij
(

1 +
m2

0x
2

16

)
− igs

32π2x2
Gijµν(0) [/xσµν + σµν/x] + . . . . (4.21)

The ellipsis denotes higher-dimensional condensates and terms with additional gluons,

which are neglected in our work because they are numerically small. The parameter m0

entering (4.21) is associated with the mixed condensate

〈q̄gsG · σq〉 = m2
0 〈q̄q〉 , (4.22)
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p e+

π0

p e+

π0

p e+

π0

p e+

π0

p e+

π0

p e+

π0

Figure 4.1: Feynman diagrams contributing to the light-cone expansion of (4.14) at the twist-

2 and twist-3 level including factorised higher-twist contributions. The two vertices with a

circled cross denote insertions of the currents QΓΓ′(x) and ηp(0). The external proton and

positron lines are attached for illustration even though they do not enter the LCSR computation.

The diagrams shown in the top row result from the light-cone expansion (4.20). The diagrams in

the middle and bottom row instead originate from factorised higher-twist contributions, which

involve the condensates 〈q̄q〉 and 〈q̄gsG · σq〉 of (4.21) and (4.22) (crosses on the bottom of the

diagram). See text for further details.

where G · σ ≡ Gµνσ
µν . The diagrams resulting from the local expansion (4.21) of the

contraction are displayed in the middle and bottom row of Figure 4.1.

The uncontracted quark bilinears in (4.17) form a pion and still need to be expanded

around light-like distances to obtain the light-cone DAs. The pion DAs have been

extensively studied in the literature (see [229] for a state-of-the-art discussion), and they

have definite twist. The only twist-2 pion DA is given by (cf. for instance [200,230])

〈π0(pπ)|q̄(0)γµγ5τ
3q(x)|0〉 = − ifπ√

2
pµπ

∫ 1

0
du eiūpπx φ(2)(u, µ) , (4.23)
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4.1 Semi-leptonic two-body proton decay modes

where q ≡ (u d)T and τ3 ≡ σ3/2 with σ3 = diag (1,−1) the third Pauli matrix,

while fπ denotes the pion decay constant given by fπ = (130.2± 0.8) MeV [231].3 The

parameters u and ū correspond to the momentum fractions of the two quarks that form

the pion. The renormalisation scale µ that appears in the twist-2 pion DA φ(2)(u, µ)

is set equal to 1 GeV for most of this work. Higher-order contributions to the matrix

element (4.23) arise at the twist-4 level. There are two two-particle twist-3 DAs called

φ
(3)
p (u, µ) and φ

(3)
σ (u, µ). These are defined by [200,230]

〈π0(pπ)|q̄(0)iγ5τ
3q(x)|0〉 =

fπµπ√
2

∫ 1

0
du eiūpπx φ(3)

p (u, µ) , (4.24)

〈π0(pπ)|q̄(0)σµνγ5τ
3q(x)|0〉 = − ifπµπ

6
√

2

(
1− ρ2

π

)
(pµπx

ν − pνπxµ)

(4.25)

×
∫ 1

0
du eiūpπx φ(3)

σ (u, µ) .

We also include the only twist-3 three-particle DA called T (3)(αd, αu, αg, µ), which

depends on the momentum fractions αd, αu and αg of the down quark, up quark and

gluon, respectively, as well as on µ. This object is defined as follows [200,230]

〈π0(pπ)|q̄(0)σµνγ5gsG
αβ(ux)τ3q(x)|0〉 =

ifπµπ√
2

(
pαπp

µ
πη

νβ − pαπpνπηµβ + pβπp
ν
πη

αµ − pβπpµπηαν
)

(4.26)

×
∫ 1

0
dαd dαu dαg δ(1− αd − αu − αg)ei(αu+uαg)pπx T (3)(αd, αu, αg, µ) .

The normalisation of the twist-3 DAs contains the sum of the up- and down-quark

mass, which fixes the values of the parameters µπ and ρπ as well as the quark condensate

via the Gell-Mann–Oakes–Renner (GMOR) relation m2
π ' −2 (mu +md) 〈q̄q〉 /f2

π first

derived in the article [232]. One obtains

µπ ≡
m2
π

mu +md
' −2 〈q̄q〉

f2
π

, ρπ ≡
mu +md

mπ
' −f

2
πmπ

2 〈q̄q〉
. (4.27)

The DAs can be obtained by a conformal expansion [200]. Explicit formulas for the

DAs appearing in our work are provided in Appendix D.

Summing up all the contributions of Figure 4.1, using (4.23) to (4.26) and performing

a Fourier integration allows us to derive an analytic expression for the QCD correlation

function

ΠQCD
ΓΓ′ (pp, q) = PΓ′

(
ΠQCD,S

ΓΓ′ +
/pp
mp

ΠQCD,P
ΓΓ′ +

/q

mp
ΠQCD,Q

ΓΓ′ +
iσppq

m2
p

ΠQCD,T
ΓΓ′

)
. (4.28)

3We employ the Fock-Schwinger gauge, i.e. xµGAµ = 0 with GAµ the gluon field, such that the Wilson

lines which enter the definition of the DAs are equal to 1.
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The analytic expressions for the results of ΠQCD,γ
ΓΓ′

(
p2
p, Q

2
)

are somewhat lengthy and

therefore provided in Appendix E. In the derivation of these results integrals of the

following type are encountered∫
d4x eiPx

xµxν . . .

(x2)n
,

∫
d4x eiPgx

xµxν . . .

(x2)n
, (4.29)

where the relevant momenta P ≡ q + ūpπ and Pg ≡ q + αpπ with α ≡ αu + uαg arise

from combining the exponential factor in (4.5) with those of (4.23) to (4.26). The

momentum dependence can be rewritten in terms of Q2 = −q2 and P 2
p = −p2

p using

P 2 = (ūpp + uq)2 = −ūP 2
p − u

(
Q2 + ūm2

π

)
, (4.30)

P 2
g = (αpp + ᾱq)2 = −αP 2

p − ᾱ
(
Q2 + αm2

π

)
, (4.31)

where we employ the notation z̄ ≡ 1 − z for the momentum fractions z = u and

z = α. The UV divergent Fourier integrals are carried out in dimensional regularisation

(cf. Appendix C). In this step of the sum-rule calculation, the poles and the scheme-

dependent constants can be dropped as long as we perform a Borel transformation in

the end (cf. Section 3.1). Only inverse powers of the momenta, arising from finite

integrals, and logarithms from the divergent integrals contribute to our sum rules.

For the matching with the hadronic representation (4.8), we also introduce QCD

spectral densities like it was done in (4.9) and (4.10) for the hadronic case. The match-

ing conditions for the LCSRs (γ = S, P,Q, T ) then read

Πhad,γ
ΓΓ′

(
p2
p, Q

2
) !

= ΠQCD,γ
ΓΓ′

(
p2
p, Q

2
)
. (4.32)

Using the quark-hadron duality in the form (4.13), we can subtract the unknown

contributions of heavy states from the LCSRs. Effectively, this procedure cuts off

the spectral integral computed in QCD at the continuum threshold s0. Applying a

Borel transformation with respect to P 2
p to both sides of the sum rules suppresses

heavy contributions exponentially and generically improves the accuracy of the LCSR

approach — the accuracy of our LCSRs will be investigated in Section 4.1.3. The

Borel transformations also remove all terms that are polynomial in P 2
p , which sets all

divergent contributions of the dispersion integrals as well as the UV divergences of the

diagrams in Figure 4.1 to zero; cf. Section 3.1. Moreover, only the imaginary parts of

the correlation functions ΠQCD,γ
ΓΓ′ (s + iε,Q2) enter the dispersion integrals (4.13), and

eventually the s-integration has to be performed.

All the steps described above can be translated into replacement rules for the integrals

over the momentum fraction. For the logarithmic terms we find∫ 1

0
du f(u)

(
P 2
)n

ln

(
−P 2

µ2

)
→ −n!

∫ ∆

0
du f(u) (ūM2)n e(s̃) Ẽn+1(s̃) , (4.33)
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with µ the renormalisation scale and f(u) some function which depends on the mo-

mentum fraction u. Here we have introduced

∆ ≡ s0 +Q2 +m2
π

2m2
π

(
1−

√
1− 4m2

πs0

(s0 +Q2 +m2
π)2

)
, (4.34)

e(s) ≡ e−
s
M2 , Ẽn(s) ≡ En

(
s0 − s
M2

)
, s̃ ≡ u

ū

(
Q2 + ūm2

π

)
, (4.35)

where

En(x) ≡ 1− e−x
n−1∑
k=0

xk

k!
. (4.36)

The upper limit of the integration over u satisfies ∆(Q2 = 0) = 1 = ∆(s0 → ∞) and

∆ ≤ 1, and it arises because the dispersion integral only has support if s0 ≥ s̃.
For terms involving three-particle DAs one furthermore has∫ 1

0
Dαf(u, αu, αg)

(
P 2
g

)n
ln

(
−P 2

g

µ2

)
→− n!

∫ 1

0
Dαθ (α−∆g) f(u, αu, αg)

× (αM2)n e(s̃g) Ẽn+1 (s̃g) ,

(4.37)

where f(u, αu, αg) now depends on u, αu and αg, and we have eliminated αd = 1 −
αu − αg. We have furthermore used the abbreviation

Dα ≡ dudαu dαg θ(1− αu − αg) (4.38)

for the integration measure. The integration boundaries are now modified by the Heav-

iside step function θ(x),

∆g ≡
s0 +Q2 −m2

π

2m2
π

(√
1 +

4m2
πQ

2

(s0 +Q2 −m2
π)2
− 1

)
, s̃g ≡

ᾱ

α

(
Q2 + αm2

π

)
, (4.39)

where ∆g(Q
2 = 0) = 0 = ∆(s0 →∞) and ∆g ≥ 0. For the non-divergent contributions

appearing in our LCSRs, we find∫ 1

0
du f(u)

1

P 2
→ − 1

M2

∫ ∆

0
du

f(u)

ū
e(s̃) , (4.40)

∫ 1

0
du f(u)

1

P 4
→ 1

M4

∫ ∆

0
du

f(u)

ū2
e(s̃) +

f(∆)

M2
(
Q2 + ∆̄2m2

π

) e(s0) , (4.41)

∫ 1

0
du f(u)

1

P 6
→− 1

2M6

∫ ∆

0
du

f(u)

ū3
e(s̃)− f(∆)

2M4∆̄
(
Q2 + ∆̄2m2

π

) e(s0)

− ∆̄2

2M2
(
Q2 + ∆̄2m2

π

) e(s0)
∂

∂∆

f(∆)

∆̄(Q2 + ∆̄2m2
π)
,

(4.42)
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and for the three-particle integrals:∫ 1

0
Dαf(u, αu, αg)

1

P 2
g

→ − 1

M2

∫ 1

0

Dα

α
θ (α−∆g) f(u, αu, αg) e(s̃g) , (4.43)

∫ 1

0
Dαf(u, αu, αg)

1

P 4
g

→ 1

M4

∫ 1

0

Dα

α2
θ (α−∆g) f(u, αu, αg) e(s̃g)

+
1

M2

∫ 1

0
du dαg θ (1− ūαg −∆g) e(s0)

× f(u,∆g − uαg, αg)
Q2 + ∆2

gm
2
π

.

(4.44)

Finally, the matching conditions (4.32) take the form

iλpm
2
p e
−
m2
p

M2 W γ
ΓΓ′(s0, Q

2) =

∫ s0

0
ds e−

s
M2 ρQCD,γ

ΓΓ′
(
s,Q2

)
, (4.45)

where the expressions for the form factors W γ
ΓΓ′(s0, Q

2) can be found in (4.12) and the

right-hand sides are given by the expressions of Appendix E when the replacement rules

as described above are employed. By an appropriate combination of the four independ-

ent relations (4.45) one can derive two LCSRs for each of the two form factors appearing

in (4.3). Hereafter we will refer to these combinations as W 0,P
ΓΓ′ (s0, Q

2), W 0,S+T
ΓΓ′ (s0, Q

2),

W 1,Q
ΓΓ′ (s0, Q

2) and W 1,T
ΓΓ′ (s0, Q

2). Notice that the LCSRs (4.45) depend on two unphys-

ical parameters, namely the continuum threshold s0 and the Borel mass M . However,

the results of a LCSR calculation can only be trusted if the final predictions are to a

certain extent independent of the exact choice of s0 and M . In Section 4.1.3 we will

provide criteria that allow us to assess the convergence properties of (4.45), which we

will then use to estimate the uncertainties that plague our LCSR results for the form

factors Wn,γ
ΓΓ′ (Q

2).

The coupling λp in (4.45) is in principle known from LQCD calculations (see [181]

and references therein), but it can as well be extracted from local QCD sum rules of

the two-point correlator

i

∫
d4x eipx 〈0|T [ηp(x)η̄p(0)] |0〉 = −λ2

p
/p+mp

p2 −m2
p + iε

+ . . . , (4.46)

where the ellipsis denotes the contributions of heavier states. Using λp from sum rules

has the salient advantage that in this way the uncertainties of the form factors due to the

input parameters such as the quark condensate 〈q̄q〉 or m2
0 are reduced.4 We therefore

choose to fix λp with the help of sum-rule techniques rather than to take λp from LQCD

4In B-meson to light-meson transitions this procedure even leads to a partial cancellation of perturb-

ative corrections, which improves the convergence of the sum rules [230].
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computations. The sum rule derived from the structure /p of the correlator (4.46)

is typically disregarded due to uncontrollably large radiative corrections as well as

large contributions from heavier states [181]; see also the discussion in Section 3.1 and

references provided there for details. We thus extract λp from the sum rule for the

mass term. As outlined in Section 3.1, the QCD result for the correlator (4.46) can be

expressed in terms of an expansion in condensates with increasing mass dimension. In

the following, contributions including condensates up to dimension seven are included

but no perturbative QCD corrections. Using the proton current (4.16) yields [181]

λ2
p = − 〈q̄q〉

16π2m3
p

e
m2
p

M 2

[
7M 4E2

(
s̄0

M 2

)
− 3m2

0M
2E1

(
s̄0

M 2

)
+

19π2

18

〈αs
π
G2
〉]
(4.47)

with αs ≡ g2
s/(4π), G2 ≡ GAµνG

A,µν , where the definition of En(x) can be found

in (4.36). The parameters s̄0 and M denote the continuum threshold and the Borel

mass of the local sum rule (4.47). These parameters can be related to the corresponding

parameters of the LCSRs, because the Borel mass is connected to the momentum flow

through the proton current. However, we assume for simplicity that s̄0 and M are

independent parameters and determine them such that the value of λp does not depend

too strongly on the specific choice.

Notice finally that the sign of λp is not fixed by (4.47). More generally, the sign of

λp depends on the (unphysical) phase of the nucleon wave function. The same holds

for the overall sign of the form factors Wn,γ
ΓΓ′ (s0, Q

2) that are determined from (4.45).

The relative sign between W 0
ΓΓ′(Q

2) and W 1
ΓΓ′(Q

2) is however fixed by our sum rules.

In the following, we will choose a negative sign for the coupling strength of the proton

current, i.e. we will use λp < 0.

4.1.3 Numerical analysis

To derive physical predictions from (4.45), we need to find regions where the LCSRs

converge sufficiently fast as an expansion in Λ2
QCD/Q

2 and Λ2
QCD/M

2 and where the

sum rules are to a certain extent insensitive to the choice of the continuum threshold

s0 and the Borel mass M . Therefore, the Borel mass M has to be chosen well above

the QCD scale ΛQCD but at the same time below the mass of the lightest excitation.

These conditions are formulated more precisely in the following, and they lead to a set

of requirements which are then applied to each of the four LCSRs (4.45) as well as the

local sum rule (4.47).

In order to eliminate contributions other than the proton in our sum-rule calcula-

tions [141], we use s0 = s̄0 = (1.44 GeV)2 as a central value in all cases. This value

of the continuum threshold s0 corresponds to the mass of the lightest excited state in

the nucleon spectrum, i.e. the Roper resonance. We then vary s0 (and s̄0) between
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(1.4 GeV)2 and (1.5 GeV)2 to estimate the uncertainty related to the choice of the

continuum threshold. A similar procedure has been adopted in [233, 234], and our

choice can be further motivated by the observation that for values in this interval,

the sum rule (4.47) leads to a good agreement with the LQCD results for λp (see for

instance [218,235–237]).

A lower bound on M is determined by demanding sufficient suppression of higher

powers in the OPE. In particular, we require that the contribution of the highest

dimensional condensate in each LCSR does not amount to more than approximately

30% of the total QCD result. An upper limit on M is instead obtained by demanding

that the ground-state contribution in the hadronic representation constitutes at least

50% of the dispersion integral. In other words the contributions of the heavy states,

which we model by the QCD result, are smaller or equal than approximately 50% of

the total result, ∣∣∣PQCD,γ
ΓΓ′ (s0,∞)

∣∣∣∣∣∣PQCD,γ
ΓΓ′ (0,∞)

∣∣∣ . 0.5 , (4.48)

with

PQCD,γ
ΓΓ′ (s1, s2) =

∫ s2

s1

ds
ρQCD,γ

ΓΓ′
(
s,Q2

)
s− p2

p

. (4.49)

We then vary the Borel mass M in this so obtained Borel window to estimate the

systematic uncertainty related to the variation of this unphysical parameter.

The physical values of the form factors do not depend on the choice of the con-

tinuum threshold s0 or the Borel mass M . The residual dependence of the form factors

extracted from the LCSRs on these parameters originates from the truncation of the

expansion in Λ2
QCD/M

2 at a finite order and the effective description of the a priori

unknown contributions of heavy states. Therefore, the predictions of the sum rules are

reliable if the dependence on the unphysical parameters is weak, and thus the uncer-

tainties related to the variation of these parameters also quantifies the validity of the

predictions.

In order to illustrate the latter statements we show in Figure 4.2 and Figure 4.3 the

dependence of the form factors W 0,S+T
RR (s0, Q

2) and W 1,Q
LR (s0, Q

2) on the Borel mass M ,

respectively. In each panel predictions are displayed for the following three different val-

ues of the continuum threshold s0 = (1.4 GeV)2 (dashed lines), s0 = (1.44 GeV)2 (solid

lines) and s0 = (1.5 GeV)2 (dotted lines), and each figure contains results where the

form factors are evaluated at Q2 = 0.5 GeV2 (left panels) and Q2 = 2 GeV2 (right

panels). The shown predictions have been obtained for the central values of the input

parameters as given in (4.50) to (4.52) and (D.5) to (D.7). One sees that for very small

values of M the form factors steeply increase because the power suppression in 1/M2

becomes ineffective. On the other hand, for large values of M the exponential suppres-
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Figure 4.2: Form factor W 0,S+T
RR (s0, Q

2) as a function of the Borel mass M for three values

of the continuum threshold s0. The left (right) plot shows the results at Q2 = 0.5 GeV2
(
Q2 =

2 GeV2
)
.

sion of heavier states due to the factor e−s/M
2

in the dispersion integrals (4.45) is not

present. This in turn leads to a stronger sensitivity on M such that the form factors

increase again for larger Borel masses. The sensitivity to the continuum threshold is

also more pronounced if M gets closer to s0, as indicated by the widening of the col-

oured bands in Figures 4.2 and 4.3. One can furthermore observe that the sensitivity

on the unphysical parameters becomes stronger for larger values of Q2. We remark

that for Q2 & 2 GeV this effect saturates such that the plots on the right-hand side of

Figures 4.2 and 4.3 represent in a sense worst-case scenarios. The results of the other

LCSRs behave similarly to W 0,S+T
RR (s0, Q

2) and W 1,Q
LR (s0, Q

2), so we do not show their

dependence on M explicitly.

By considering the momentum range 0.5 GeV2 ≤ Q2 ≤ 2.5 GeV2, we find the

Borel windows 0.7 GeV ≤M ≤ 1.1 GeV for the LCSRs with γ = S,Q, T and ΓΓ′ = RR

and 0.7 GeV ≤ M ≤ 1 GeV for the LCSRs with γ = S,Q, T and ΓΓ′ = LR. The

LCSRs for the structure γ = P do not meet the above requirements in the Q2 region

of interest, because the contributions of heavy states are large and even dominate the

sum rules for certain values of Q2. In order to have one common Borel window for each

chirality combination, we also choose in the case γ = P either 0.7 GeV ≤M ≤ 1.1 GeV

or 0.7 GeV ≤ M ≤ 1 GeV as our Borel window when studying the Q2 dependence of

W 0,P
ΓΓ′ (Q

2).

In our numerical analysis of the LCSRs we make use of (mu + md)/2 = (3.410 ±
0.043) MeV [231] which corresponds to the MS value at 2 GeV. Using the two-loop RG
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Figure 4.3: As Figure 4.2 but for the form factor W 1,Q
LR (s0, Q

2).

running and the one-loop threshold corrections as implemented in RunDec [238, 239],

we obtain at 1 GeV the value mu + md = (8.60 ± 0.11) MeV. Employing the GMOR

relation this value leads to

〈q̄q〉 = −
(

(256± 2) MeV
)3
, (4.50)

if the LO chiral corrections of [240] are included and uncertainties are added in quad-

rature. For the non-perturbative parameters defined in (4.27) we then find

µπ = (1.98± 0.05) GeV , ρπ = 0.068± 0.002 . (4.51)

The parameter m0 for the mixed condensate as well as the pure-gluon condensate

are known from sum-rule estimates evaluated at 1 GeV. We will use the values and

uncertainties from [241] which are widely accepted. The relevant numbers read

m2
0 = (0.8± 0.2) GeV2 ,

〈αs
π
G2
〉

= (0.009± 0.009) GeV4 . (4.52)

We remark that using (4.52) the local QCD sum rule (4.47) agrees with the LQCD

results for λp within uncertainties (cf. Table I of [181]). The corresponding Borel window

is 0.7 GeV ≤M ≤ 1 GeV. The central values and uncertainties of the parameters that

enter the definitions of the twist-2 and twist-3 pion DAs can be found in (D.5), (D.6)

and (D.7).

After having explained how we choose the continuum thresholds and the Borel mass

windows and having specified the numerical values of the input parameters, we are

in a position to present the results of our LCSR analysis. Our results for the form

factors Wn,γ
RR (Q2) and Wn,γ

LR (Q2) are shown in Figure 4.4 and Figure 4.5 as coloured
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lines and bands, respectively. The predictions in the range 0.5 GeV2 ≤ Q2 ≤ 2.5 GeV2

result from a direct evaluation of (4.45). The solid curves correspond to the results

obtained for the central values of the unphysical and physical parameters, while the

bands represent the corresponding theoretical uncertainties. The latter are determined

by varying all input parameters independently within their allowed ranges and adding

individual uncertainties in quadrature.5 For Q2 ≤ 0.5 GeV2 we instead rely on an ex-

trapolation. Specifically, we consider both a linear and a quadratic fit in Q2 to the

LCSR form factors Wn,γ
ΓΓ′ (Q

2) evaluated in the vicinity of Q2 = 0.6 GeV2, and take the

smallest and largest values of the fits at each Q2 to obtain the displayed uncertainty

bands. The results of the quadratic fit to our central form-factor predictions are indic-

ated as dashed lines. For comparison we also show the values of Wn
ΓΓ′(Q

2) determined

in the recent LQCD study [223]. The numbers given in this article correspond to the

MS form factors evaluated at 2 GeV and we use the two-loop RG running (cf. [217,242])

of (2.13) to evolve the form factors down to 1 GeV. The shown single (double) error

bars represent the statistical (total) uncertainties of the LQCD predictions. Notice that

the LQCD uncertainties at the physical point, i.e. Q2 ' 0, are dominantly of systematic

origin.

As explained before, based on our study of the Borel windows we expect the LCSR

prediction for W 0,P
ΓΓ′ (Q

2) to be less reliable than the other results because of the large

contributions of heavy states. Indeed, when comparing the results of W 0,P
ΓΓ′ (Q

2) and

W 0,S+T
ΓΓ′ (Q2) as shown in Figures 4.4 and 4.5, one finds that W 0,S+T

ΓΓ′ (Q2) is closer

to the LQCD predictions than W 0,P
ΓΓ′ (Q

2) for both chirality combinations, and that

W 0,S+T
LR (Q2) itself agrees well with the LQCD calculation within uncertainties. One

also observes from Figure 4.4 that the LCSR predictions for the modulus of Wn,γ
RR (Q2)

tend to undershoot the LQCD results. An exhaustive comparison to the shown LQCD

results for Q2 & 0.5 GeV2 would require knowledge about the systematic uncertainties

of the LQCD calculations for non-zero Q2. A full error budget is in Tables 4 and 5

of the work [223] however provided only for Q2 ' 0. Notice that if the systematic

uncertainties at Q2 & 0.5 GeV2 were comparable to the systematic uncertainties at

Q2 ' 0, our LCSR results might in fact overlap with the displayed LQCD predictions

for Q2 & 0.5 GeV2.

The observed differences between the LCSR and the LQCD results may be related

to higher-twist effects. In order to examine this issue, we have calculated the twist-

4 corrections to (4.23), which is the only two-particle twist-4 correction [199], using

the hadronic input parameters provided in [243]. We find that for Q2 = 0.5 GeV2

the relative corrections to the values of the form factors shown in Figure 4.4 amount

5Since we use the pion decay constant fπ and the condensate 〈q̄q〉 as input parameters the uncertainties

of µπ and ρπ
(
cf. (4.51)

)
are not separately included when calculating the total uncertainties.
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Figure 4.4: Form factors Wn,γ
RR (Q2) as a function of Q2. The coloured curves and bands cor-

respond to the central values and uncertainties of the four independent LCSRs (4.45). The

predictions for 0.5 GeV2 ≤ Q2 ≤ 2.5 GeV2 are obtained by a direct calculation (solid lines),

while the predictions for Q2 ≤ 0.5 GeV2 are obtained by an extrapolation (dashed lines). The

black dots display the central values of the form factors calculated in LQCD [223]. The associ-

ated single (double) error bars represent statistical (total) uncertainties. Consult the main text

for further information.

to 38% for W 0,P
RR , 5% for W 0,S+T

RR , 51% for W 1,Q
RR and 26% for W 1,T

RR . Other twist-4

corrections to the LCSRs arise from additional three-particle DAs (see [200, 230] for

details), and depending on their size and sign the actual effect of twist-4 corrections

may be notably different from the numbers quoted here. Nevertheless, the corrections

we have computed are larger for the vectorial structures than for the scalar and tensor

structure. This could explain why our LCSR calculation of Wn,γ
RR (Q2) seems to work

better for γ = S + T, T than for γ = P,Q. As a comparison, the two-particle twist-4
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Figure 4.5: As Figure 4.4 but for the form factors Wn,γ
LR (Q2).

contributions to the form factor values shown in Figure 4.5 amount to 22% for W 0,P
LR ,

7% for W 0,S+T
LR , 12% for W 1,Q

LR and 31% for W 1,T
LR at Q2 = 0.5 GeV2. In this case the

tensor structure receives a larger correction than the vectorial structures, but overall the

twist-4 corrections seem to be better under control for ΓΓ′ = LR than for ΓΓ′ = RR.

This may explain why the LCSR predictions for Wn,γ
LR (Q2) are in general in good

agreement with the LQCD results. In conclusion, we expect that uncertainties due to

higher twist are minor for Q2 & 1 GeV2, while in the range 0.5 GeV2 . Q2 . 1 GeV2,

twist-4 corrections may in the case ΓΓ′ = RR account for the differences between

our LCSR predictions and the corresponding LQCD results. Notice that on general

grounds one would expect that the total uncertainties of the LCSRs become larger for

decreasing values of Q2, because the power suppression in Λ2
QCD/Q

2 of the light-cone

expansion (4.14) starts to become ineffective. In the plots of Figures 4.4 and 4.5 this
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Figure 4.6: Comparison between the physical form factors Wn
RR (left) and Wn

LR (right) ob-

tained by our LCSRs (red squares and error bars) and the state-of-the-art LQCD calculation

(black dots and error bars) [223]. The shown results correspond to the MS scheme renormalised

at 2 GeV. See main text for additional details.

effect is mimicked by our extrapolation procedure that leads to larger total uncertainties

for Q2 . 0.5 GeV2.

The physical form factors W 0
ΓΓ′ ≡W 0

ΓΓ′(Q
2 ' 0) can be extracted from both the LC-

SRs for W 0,P
ΓΓ′ (Q

2) and W 0,S+T
ΓΓ′ (Q2), while in the case of W 1

ΓΓ′ ≡ W 1
ΓΓ′(Q

2 ' 0) one

can consider the two independent combinations W 1,Q
ΓΓ′ (Q

2) and W 1,T
ΓΓ′ (Q

2). Since we

believe that the LCSR for W 0,P
ΓΓ′ (Q

2) is unreliable, we determine W 0
ΓΓ′ from the full

range of solutions for W 0,S+T
ΓΓ′ (0). The prediction for the form factor W 1

ΓΓ′ is instead

obtained from the extrapolations leading to W 1,Q
ΓΓ′ (0) and W 1,T

ΓΓ′ (0), because in this case

the different LCSR estimates result in quite similar numerical predictions (see Fig-

ures 4.4 and 4.5). At a renormalisation scale of 1 GeV, we obtain in this way the

following central values and uncertainties:

W 0
RR = (0.084± 0.021) GeV2 , W 1

RR = (−0.068± 0.023) GeV2 , (4.53)

W 0
LR = (−0.118± 0.030) GeV2 , W 1

LR = (0.14± 0.06) GeV2 . (4.54)

Our LCSR predictions have total uncertainties of around (25 − 40)%. In Figure 4.6

we compare the results (4.53) and (4.54) evolved to 2 GeV to the corresponding LQCD

predictions [223]. Notice that two-loop RG effects (see [217, 242]) lead to an enhance-

ment of the LCSR results by 8.9% and 9.9%, respectively. From the two panels it is

evident that while the LCSR approach does not achieve the (10−15)% accuracy of the

latest LQCD computations of the form factors Wn
ΓΓ′ , the overall agreement between

our LCSR predictions and the latest LQCD results is quite compelling.
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4.2 Semi-leptonic three-body proton decay modes

4.2 Semi-leptonic three-body proton decay modes

While for all two-body proton decays into anti-leptons and pseudoscalar mesons, LQCD

techniques nowadays enable direct computations of the relevant hadronic matrix ele-

ments within uncertainties of (10 − 15)% [217–224], LQCD calculations of three-body

decay modes do not exist at present although the formalism and methodologies are in

principle known [104]. Model estimates of three-body final-state proton decay rates are

therefore available only for selected modes [225] or rely on NDA and phase-space argu-

ments [124, 125]. In Section 4.1 it was shown that by employing LCSRs it is possible

to reproduce the LQCD results for the hadronic matrix elements relevant for GUT-like

proton decay. The goal of this Section is to extend the LCSR formalism developed in

the previous Section to the case of semi-leptonic three-body proton decay processes.

In particular, we will describe in detail the calculation of all form factors needed to

compute the differential decay rate for the process p → e+π0G with G denoting a

graviton. This decay mode is the leading proton decay channel in the effective theory

that describes the interactions of gravitons and SM particles aka GRSMEFT [28, 29].

Of all possible laboratory probes of the GRSMEFT proton decay measurements are

expected to set the nominally strongest bound on the effective mass scale that sup-

presses the GRSMEFT interactions. While this work focuses on obtaining predictions

for p→ e+π0G, the provided analytic expressions and numerical results allow compu-

tations of the differential decay rates of other semi-leptonic three-body proton decay

modes as well.

This Section is structured as follows. In Section 4.2.1 the calculation of the relevant

hadronic matrix elements using LCSR techniques is outlined, while the structure of

the resulting LCSRs is discussed in Section 4.2.2. We turn to the numerical evaluation

of the LCSRs in Section 4.2.3, providing predictions and uncertainty estimates for

the proton-to-pion form factors in the physical region. Section 4.2.4 provides a cross-

check on the LCSR results for the form factors; the hadronic form factors derived for

the matrix element of the semi-leptonic three-body decay p → e+π0G can actually

be related to the two form factors that parametrise the two-body decay p → e+π0

if only right-handed fields are considered at the partonic level. Since the results for

the latter channel agreed with state-of-the-art lattice computations (cf. Section 4.1.3),

the comparison presented in Section 4.2.4 validates the LCSR results presented in the

following. Analytical expressions for the LCSRs are displayed in Appendix F.

4.2.1 Hadronic form factors

In what follows we discuss the necessary steps to calculate the hadronic part of the

p → π0e+G amplitude with the help of LCSRs in QCD. We employ the notation and

69



4 LCSRs for proton decay

conventions introduced in Section 4.1. The starting point for the sum rules is the

correlation function

Πµν(pp, q) = i

∫
d4x eiqx 〈π0(pπ)|T [Qµν(x)η̄p(0)] |0〉 , (4.55)

where the proton current ηp and the coupling strength λp of the current to the phys-

ical proton state are defined in equation (4.6). The strongly-interacting part of the

dimension-eight operator (2.21) is encoded by

Qµν(x) ≡ εabc
(
dTa (x)CσµνPRub(x)

)
PRuc(x) . (4.56)

By following the standard procedure the hadronic representation of the sum rules

can be cast into the form

Πhad
µν (pp, q) = − mp

p2
p −m2

p + iε
λpHµν(pp, q)

(
/pp +mp

)
+ . . . , (4.57)

with ε > 0 and infinitesimal, and the ellipsis denotes contributions from heavier states,

i.e. excited states states and the continuum. The hadronic tensor Hµν(pp, q) that char-

acterises the p→ π0 transition can be parameterised by four independent form factors

wn with n = 1, 2, 3, 4 in the following way

Hµν(pp, q)up(pp) ≡ 〈π0(pπ)| εabc
(
dTaCσ

µνPRub
)
PRuc |p(pp)〉

= PR

[(
iεµνppq + 2p[µ

p q
ν]
) w1

m2
p

+ iσppq
(
iεµνppq + 2p[µ

p q
ν]
) w2

m4
p

+ 2i
(
p[µ
p σ

ν]q − q[µσν]pp
) w3

m2
p

+ iσµνw4

]
up(pp) .

(4.58)

Here the proton spinor is understood to be on-shell, the fully antisymmetric Levi-

Civita tensor is defined with the convention ε0123 = +1 and we have introduced the

abbreviations σµp ≡ σµν pν , σpq ≡ σµν pµqν and εµνpq ≡ εµνρσ pρqσ.

The decomposition (4.58) can be derived in the following way. One first notices that

only three types of Lorentz structures can occur in the square brackets of (4.58), namely

scalar, vector and tensor structures which are proportional to the Dirac matrices 1, γρ

and σρσ. With the help of the Dirac equation all vector structures can be turned into

scalar or tensor ones because one can always insert a factor of /pp/mp in front of the on-

shell spinor up(pp). The only available objects for constructing Lorentz tensors which

are antisymmetric under the exchange of µ and ν are therefore ηρσ, pρp, qρ, ερσαβ and

σρσ, where the metric tensor ηρσ here is only used to contract the indices of the other

building blocks. The hadronic tensor furthermore has to fulfil the duality relation

H̃µν ≡ i

2
εµνρσHρσ = Hµν , (4.59)
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which the first line of (4.58) satisfies because

γ5σ
µν =

i

2
εµνρσσρσ . (4.60)

Regarding the scalar structures, the only combination of pρp, qσ and ερσαβ that satisfies

the constraint (4.59) is the one in (4.58) that is multiplied by the form factor w1. Notice

that for constructing all possible tensor structures one can remove any occurrence of the

Levi-Civita tensor because with the help of (4.60) one can always generate a second

Levi-Civita tensor. The product of the two Levi-Civita tensors furthermore can be

reduced to factors of the metric tensor. This implies that all possible tensor structures

can be constructed entirely from σρσ and the two four-momenta pρp and qσ. Exhausting

all possibilities, one finds six Lorentz structures with the appropriate transformation

property under the exchange of the two Lorentz indices:

{Xµν
m } ≡

{
q[µσν]q , p[µ

p σ
ν]pp , q[µσν]pp , p[µ

p σ
ν]q , p[µ

p q
ν]σppq , σµν

}
, (4.61)

where the square brackets around the Lorentz indices denote anti-symmetrisation (cf.

Section 2.4). The last of the above structures satisfies PRX̃
µν
6 = PRX

µν
6 and thus it can

be chosen as one of the basis elements in the tensor decomposition (4.58). This leads

to the form factor w4. Now, the only remaining task is to find a linear combination

Xµν ≡
5∑

m=1

amX
µν
m , (4.62)

of the first five structures of (4.61) that satisfies the duality condition (4.59). This leads

to relations among the coefficients am but leaves two linear combinations unconstrained,

implying the existence of two more independent form factors. The actual expressions

are somewhat lengthy, but a much more compact form can be obtained by noting that

Xµν
1 and Xµν

2 occur as a combination that can be replaced by a sum of εµνppqσppq and

the structures Xµν
m with m 6= 1, 2. In this way one ends up with two more independent

Lorentz structures in (4.58) which define the form factors w2 and w3. We add that after

making use of the Dirac equation and algebraic identities the result (4.58) matches the

decomposition provided in [244,245].

With the help of the decomposition (4.58) the hadronic representation of the correl-

ation function (4.57) can be written as

Πhad
µν (pp, q) = PR

[
1

m2
p

(
iεµνppq + 2p[µ

p q
ν]
)

Πhad
S +

/q

m3
p

(
iεµνppq + 2p[µ

p q
ν]
)

Πhad
A1

+
/pp
m3
p

(
iεµνppq + 2p[µ

p q
ν]
)

Πhad
A2

+
1

mp

(
iγρε

µνρq + 2γ[µqν]
)

Πhad
A3

+
1

mp

(
iγρε

µνρpp + 2γ[µpν]
p

)
Πhad
A4

+ iσµνΠhad
T1
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+
2i

m2
p

(
p[µ
p σ

ν]q − q[µσν]pp
)

Πhad
T2

+
iσppq

m4
p

(
iεµνppq + 2p[µ

p q
ν]
)

Πhad
T3

]
,

(4.63)

where εµνρp ≡ εµνρσ pσ. The eight Dirac structures in (4.63) can be used to derive

LCSRs for the four form factors wn or combinations of them. The corresponding scalar

functions Πhad
α with α = S,A1, A2, A3, A4, T1, T2, T3 depend only on the square p2

p of the

proton four-momentum and on the square Q2 ≡ −q2 of the four-momentum transfer

between the proton and the neutral pion. They can be expressed as dispersive integrals

as follows

Πhad
α (p2

p, Q
2) =

∫ ∞
m2
p

ds
ρhad
α (s,Q2)

s− p2
p

, (4.64)

where

ρhad
α (s,Q2) ≡ 1

π
Im Πhad

α (s+ iε,Q2) (4.65)

are spectral densities. In this way the ground-state contribution can be separated from

the contributions due to heavier states collectively denoted by ρcont
α (s,Q2):

ρhad
α (s,Q2) = λpm

2
p δ
(
s−m2

p

)
Wα(s,Q2) + ρcont

α (s,Q2) . (4.66)

On-shell, i.e. for s = m2
p , the functions Wα(Q2) ≡Wα(m2

p, Q
2) take the following form

WS(Q2) = w1 , WA1(Q2) = w2 , WA2(Q2) = w1 + w3 −
w2

2m2
p

(
m2
p −Q2 −m2

π

)
,

WA3(Q2) = −w3 , WA4(Q2) = −w4 +
w3

2m2
p

(
m2
p −Q2 −m2

π

)
,

WT1(Q2) = w4 , WT2(Q2) = w3 , WT3(Q2) = w2 ,

(4.67)

with mπ ' 135 MeV denoting the mass of the neutral pion.

4.2.2 Structure of the LCSRs

The derivation of the QCD results for the LCSRs proceeds in full analogy to Sec-

tion 4.1.2, which contains many technical details. The analytic expressions for the QCD

correlation functions relevant for this section can be found in Appendix F. Rather than

repeating the necessary steps to derive them, let us discuss the structure of the ΠQCD
α

functions. A striking feature of the results for the QCD correlation function is that

ΠQCD
T3

= 0 (4.68)

at the lowest order in the twist expansion. The first non-zero correction to the QCD

function ΠQCD
T3

schematically takes the form

ΠQCD
T3

∼ 〈q̄q〉 · 〈π0| q̄(0)γµ igsG̃
αβ(ux)τ3q(x) |0〉 . (4.69)
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Here we have defined G̃αβ ≡ εαβµνGAµνT
A/2. The contribution (4.69) corresponds to

a three-particle pion distribution amplitude (DA) of twist 4 with the fields evaluated

at 0, ux and x. See for instance [200, 230] for details. Being of higher twist the

correction (4.69) is expected to be small compared to the values predicted for the form

factor w2 by the LCSRs for ΠA1 and ΠA2 — cf. (4.67). This implies that there has

to be a cancellation among the contributions of the ground state and that of heavier

states in the hadronic sum leading to Πhad
T3
' 0. Similar cancellations are also observed

in certain QCD sum rules for the nucleon mass [155, 160]. In this case, for a specific

choice of the nucleon interpolating current, one of the sum rules starts at higher order

in the OPE, which numerically yields a very small value for the QCD side of the sum

rule. In this example, on the hadronic side excitations of the nucleon with even and odd

parity contribute with opposite signs leading to a cancellation. In the case of (4.68) the

contributions of excited states are not sign-definite, but in principle cancellations may

occur if the contributions from heavier states are sizeable. Sum rules that have this

feature cannot be used to extract the form factors related to the ground state because

the corrections of excited states are just as important as the formally leading ground-

state contributions. The LCSR for the correlation function ΠT3 is thus disregarded in

our work.

Convergence criteria are now applied to the remaining LCSRs in order to determine

the Borel window for each Πα. Notice that compared to the correlator studied for

GUT-like proton decay in Section 4.1 the hadronic representation of the correlation

function (4.63) comprises a larger number of independent Lorentz structures. This

feature leads to simpler analytic LCSR expressions for the correlation functions Πα,

but it also renders the numerical impact of the dimension-five condensate 〈q̄gsG · σq〉
with G·σ ≡ Gµνσµν larger than in the GUT case. As a result the LCSRs analysed below

will have larger uncertainties than those that have been studied in Section 4.1. In the

following, we will use the LCSRs for ΠS , ΠA1 , ΠA2 and ΠT1 to extract the form factors

wn because they are the most well behaved with regard to the power suppression of

higher-dimensional condensates and the dominance of the ground-state contributions.

We add that the LCSR for ΠA4 also fulfils the convergence criteria but one would need

to combine it with the result for ΠT1 to extract the form factor w3 and it turns out

that the Borel windows of these two LCRSs do not overlap.

In the case of the LCSRs for ΠS and ΠA2 we find the window 1.1 GeV . M .

1.5 GeV with M the Borel mass, while for ΠT1 we obtain 0.7 GeV . M . 1.1 GeV.

In all three cases the Borel analysis has been restricted to 0.6 GeV2 . Q2 . 2.5 GeV2.

The lower limits are obtained by demanding that the mixed condensate 〈q̄gsG · σq〉 does

not account for more than 50% of the total QCD result and as an absolute minimum

of the Borel mass we choose 0.7 GeV. The upper limits arise from the requirement
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that heavier states constitute less than 50% of the total dispersion integrals (4.64)

and that the Borel mass should not considerably exceed the continuum threshold s0 =

1.44 GeV2. The latter is chosen as the square of the mass of the Roper resonance [30]

which is the lightest excitation in the nucleon spectrum. The Borel transformation

ensures that heavier states with a mass mN ′ are exponentially suppressed by a factor

of exp
(
−(m2

N ′ −m2
p)/M

2
)
, but the dispersion integral over heavier states, which starts

at s0, can be modelled as an integral over the QCD result assuming quark-hadron

duality [170,171].

In order to determine all four form factors wn one also needs to evaluate ΠA1 , where

the power suppression turns out to be less effective than in the other cases. Therefore

the use of this LCSR is restricted to Q2 & 0.9 GeV2 because the power suppression

becomes more effective for larger values of Q2. For Borel masses of 1.1 GeV . M .

1.5 GeV the relative contribution of the dimension-five condensate 〈q̄gsG · σq〉 to the

LCSR lies between 60% and 100%. The form factor w2 can therefore only be estimated

within systematic uncertainties of the order of 100%. The result of w2 also enters

the prediction for w3 through the LCSR for ΠA2 but the contribution is suppressed

by a kinematical factor of about 0.1 for Q2 ' 1 GeV2
(
cf. (4.67)

)
. As a result the

uncertainties plaguing w2 represent only a subleading part of the uncertainty in w3. In

fact, it turns out that the differential decay width of p→ e+π0G receives the dominant

contributions from the form factors w1 and w3, meaning that the uncertainty due to

w2 plays only a minor role in the proton decay phenomenology in the GRSMEFT.

If one could resum the expansion of the QCD side to all orders and exactly model

the contributions of heavier states on the hadronic side, the dependence on M and s0

of the form factors would vanish. Truncating the expansion at some finite order leaves

a residual dependence on these parameters, but ideally the results for the form factors

wn do not depend too strongly on the exact choice of these unphysical parameters.

Figure 4.7 displays the dependence of the form factors on the Borel mass M and the

continuum threshold s0, where s0 is varied between (1.4 GeV)2 and (1.5 GeV)2. The

broader the obtained band the stronger is the dependence of the form factor on s0, and

the steeper the curves the stronger is the dependence on M . By varying the Borel mass

within the corresponding window and the continuum threshold between (1.4 GeV)2 and

(1.5 GeV)2 one can obtain an uncertainty estimate for the relevant form factor wn.

4.2.3 Numerical analysis

Using the numerical input and the definitions of the pion DAs of Sections 4.1.2 and 4.1.3

and Appendix D we obtain the results for the form factors wn shown in Figure 4.8.

The displayed central values of wn correspond to M = 1.3 GeV for ΠS , ΠA1 and ΠA2 ,

while in the case of ΠT1 we use M = 0.9 GeV. All central predictions employ s0 =

74



4.2 Semi-leptonic three-body proton decay modes

s0 = (1.4 GeV)2

s0 = (1.44 GeV)2

s0 = (1.5 GeV)2

0.8 1.0 1.2 1.4 1.6 1.8

0.030

0.032

0.034

0.036

0.038

M [GeV]

w
1(
s 0
,Q

2 )
[G
eV

2 ]

Q2 = 1.0 GeV2

s0 = (1.4 GeV)2

s0 = (1.44 GeV)2

s0 = (1.5 GeV)2

0.8 1.0 1.2 1.4 1.6 1.8
0.012

0.014

0.016

0.018

0.020

M [GeV]

w
2(
s 0
,Q

2 )
[G
eV

2 ]

Q2 = 1.0 GeV2

s0 = (1.4 GeV)2

s0 = (1.44 GeV)2

s0 = (1.5 GeV)2

0.8 1.0 1.2 1.4 1.6 1.8

0.000

0.005

0.010

0.015

M [GeV]

w
3(
s 0
,Q

2 )
[G
eV

2 ]

Q2 = 1.0 GeV2

s0 = (1.4 GeV)2

s0 = (1.44 GeV)2

s0 = (1.5 GeV)2

0.6 0.8 1.0 1.2 1.4

0.010

0.011

0.012

0.013

0.014

0.015

0.016

M [GeV]

w
4(
s 0
,Q

2 )
[G
eV

2 ]

Q2 = 1.0 GeV2

Figure 4.7: Form factors wn(s0, Q
2) as a function of the Borel mass M for three different

values of the continuum threshold s0. All plots show the results at Q2 = 1 GeV2.

(1.44 GeV)2. The total theoretical uncertainties receive contributions from variations of

M and s0 as described above but also from variations of the numerical input parameters

within their uncertainties. Each parameter is varied independently while the remaining

parameters are kept fixed at their central values. The total uncertainty is then obtained

by adding individual uncertainties in quadrature. The values of the form factors w1(Q2)

and w4(Q2) are computed with the help of the LCSRs for Q2 ≥ 0.6 GeV2 while for

Q2 ≤ 0.6 GeV2 the values are obtained by a naive extrapolation. Similarly, the form

factors w2(Q2) and w3(Q2) are predicted by the LCSRs for Q2 ≥ 0.9 GeV2 and by

the extrapolation for Q2 ≤ 0.9 GeV2. A linear and a quadratic function in Q2 is

taken to extrapolate the form factors which are then fitted to the results of the values
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Figure 4.8: Form factors wn(Q2) as a function of Q2. The coloured curves and bands cor-

respond to the central values and uncertainties of the LCSRs. In the case of w1(Q2) and

w4(Q2)
(
w2(Q2) and w3(Q2)

)
the predictions for 0.6 GeV2 ≤ Q2 ≤ 1.5 GeV2 (0.9 GeV2 ≤

Q2 ≤ 1.5 GeV2) are obtained by a direct calculation (solid lines), while the predictions for

Q2 ≤ 0.6 GeV2 (Q2 ≤ 0.9 GeV2) are obtained by an extrapolation (dashed lines). Consult the

main text for further explanations.

obtained from the LCSRs in the vicinity of Q2 = 0.6 GeV2 for w1(Q2) and w4(Q2)

and Q2 = 0.9 GeV2 for w2(Q2) and w3(Q2). For a given form factor the quadratic

fit is chosen to obtain the central value for wn, while the maximum and minimum of

all extrapolations determine the uncertainty band. We remark that the same fitting

approach has been successfully used in the LCSR calculation of Section 4.1 to reproduce

the results from LQCD in the case of a GUT-like proton decay.

The fit formulas for the form factors wn that we obtain in the physical region, i.e. in

the four-momentum range −0.65 GeV2 ' −(mp −mπ)2 ≤ Q2 ≤ 0, take the following
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form

w1(Q2) =



[
0.012

(
Q2

GeV2

)2

− 0.045

(
Q2

GeV2

)
+ 0.069

]
GeV2 ,[

0.011

(
Q2

GeV2

)2

− 0.044

(
Q2

GeV2

)
+ 0.066

]
GeV2 ,[

0.058− 0.027

(
Q2

GeV2

)]
GeV2 ,

(4.70)

w2(Q2) =



[
0.009

(
Q2

GeV2

)2

− 0.036

(
Q2

GeV2

)
+ 0.046

]
GeV2 ,[

0.008

(
Q2

GeV2

)2

− 0.033

(
Q2

GeV2

)
+ 0.043

]
GeV2 ,[

0.031− 0.015

(
Q2

GeV2

)]
GeV2 ,

(4.71)

w3(Q2) =



[
0.012

(
Q2

GeV2

)2

− 0.035

(
Q2

GeV2

)
+ 0.030

]
GeV2 ,[

0.011

(
Q2

GeV2

)2

− 0.032

(
Q2

GeV2

)
+ 0.024

]
GeV2 ,[

0.009− 0.009

(
Q2

GeV2

)]
GeV2 ,

(4.72)

w4(Q2) =



[
0.004

(
Q2

GeV2

)2

− 0.012

(
Q2

GeV2

)
+ 0.024

]
GeV2 ,[

0.003

(
Q2

GeV2

)2

− 0.009

(
Q2

GeV2

)
+ 0.018

]
GeV2 ,[

0.014− 0.005

(
Q2

GeV2

)]
GeV2 .

(4.73)

Here the upper (lower) line in each formula corresponds to the upper (lower) border of

the corresponding envelope shown in Figure 4.8, while the middle line represents the

central value of our LCSR form factor prediction. We add that the form factors wn are

related to the off-shell form factors of the decomposition of the more general matrix

element 〈π0|εabcdαau
β
b u

γ
c |p〉 [244, 245], where α, β and γ are Dirac indices. Certain

combinations of the form factors wn therefore yield the form factors W k
RR with k = 0, 1

that are relevant for GUT-like proton decay. In Section 4.2.4 we show that using the

results (4.70) to (4.73) allows reproducing the physical values of the form factors W k
RR
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calculated in Section 4.1 within uncertainties. This gives reason to believe that the

naive extrapolation used to obtain the above expressions for wn approximates the true

scaling in the relevant four-momentum regime.

4.2.4 GUT-like form factors

The hadronic form factors wn with n = 1, 2, 3, 4 of the process p→ e+π0G are related

to the form factors W k
RR with k = 0, 1 of the GUT-like decay p→ e+π0. The subscript

RR for the latter process denotes the chiralities of the quark fields in the associated

dimension-six operator (2.13), which leads to the hadronic transition HRR(pp, q) defined

in equations (4.2) and (4.3). Other transitions due to operators of the type (2.13) with

different chiralities for the quark fields exist and contribute to GUT-like proton decay.

But only the matrix element HRR(pp, q), where all quarks are right-handed, is related

to the decay induced by the GRSMEFT operator (2.21).

The hadronic matrix elements of both scenarios of proton decay, mediated by either

the dimension-six term (2.13) or the dimension-eight term (2.21), are related to the

more general matrix element

Hαβγ(pp, q) ≡ 〈π0(pπ)|εabcdαau
β
b u

γ
c |p(pp)〉 , (4.74)

where all fields are evaluated at zero. In particular, the following relations hold

(CPR)αβ (PR)δγ H
αβγ(pp, q) = [HRR(pp, q)up(pp)]δ , (4.75)

(CσµνPR)αβ (PR)δγ H
αβγ(pp, q) = [Hµν(pp, q)up(pp)]δ , (4.76)

where Hµν(pp, q) is defined in (4.58).

The most general decomposition of Hαβγ(pp, q) in terms of a set of form factors for

an off-shell proton is provided in [244,245] — see in particular (4.64) of the first arXiv

version of [245]. Hence, both sets of on-shell form factors wn and W k
RR can be related

to these off-shell form factors upon using the equations of motion for the proton. In

this way it is possible to relate the on-shell form factors for both scenarios of proton

decay among each other. We find

W 0
RR(Q2) = 3w4(Q2)−

m2
p −Q2 −m2

π

2m2
p

(
2w3(Q2)− w1(Q2)

)
(4.77)

−

[
Q2

m2
p

+

(
m2
p −Q2 −m2

π

)2
4m4

p

]
w2(Q2) ,

W 1
RR(Q2) = 2w3(Q2)− w1(Q2) . (4.78)

Numerical results for W k
RR(Q2) were computed in Section 4.1.3, where our findings

were also shown to be in agreement with the results of the state-of-the-art LQCD
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Figure 4.9: Comparison of the form factors W 0
RR(Q2) (left panel) and W 1

RR(Q2) (right panel)

obtained by the direct calculation and the indirect method based on the relations (4.77) and

(4.78). The results of the direct (indirect) computation are indicated in red (blue) and the

coloured envelopes include all possible solutions found in [21] and (4.70) to (4.73), respectively.

Further explanations can be found in the main text.

calculation [223] at Q2 = 0. The form factors wn(Q2) are derived in the same way in

this work. One can therefore employ the relations (4.77) and (4.78) to directly assess the

validity of first the numerical results presented in Figure 4.8 for large virtualities (Q2 �
Λ2

QCD with ΛQCD ' 300 MeV the QCD scale) and second the extrapolations (4.70)

to (4.73) for physical momenta (Q2 . 0). We find that the relations (4.77) and (4.78)

hold numerically within uncertainties in the relevant regime −(mp − mπ)2 ≤ Q2 ≤
(2 GeV)2, even though the uncertainties of the combinations on the right-hand sides

of (4.77) and (4.78) are rather large and the results tend to undershoot the more

accurate results for W 0
RR(Q2) and W 1

RR(Q2) obtained by a direct calculation of the

corresponding left-hand sides. This feature is illustrated by the two panels in Figure 4.9.

Although the agreement is not perfect, the shown results validate to a certain extent

the LCSR approach employed in this section as well as the extrapolation procedure

used to obtain (4.70) to (4.73).
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5 Low-energy probes of CP and

baryon-number violation

Indirect probes of new-physics contributions to processes that are rare or forbidden

in the SM provide an excellent opportunity to search for physics beyond the SM [16]

(see also Chapter 1 for more details). However, it was established in the previous

chapters that the theory predictions for the corresponding BSM effects often rely on the

knowledge of the associated hadronic transition matrix elements. Estimates for various

matrix elements related to the nEDM and proton decay are derived in Chapters 3 and 4

with the help of sum-rule techniques in QCD. These results are applied in the following

for the purpose of studying certain aspects of the associated BSM phenomenology. As

advertised in Chapter 2, the following discussions are model-independent to a large

extent; nevertheless, references on practical scenarios are provided in the following

sections.

Section 5.1 is about BSM theories that generate effective, CP-violating Higgs-gluon

interactions. Experimentally, the CP structure of Higgs-gauge boson interactions can

be probed by measurements of the kinematic properties of the Higgs boson and the

associated jet spectra [246,247]. In the context of the SMEFT (cf. Section 2.1) one CP-

violating dimension-six operator, that has been constrained using LHC data [248–251],

is

LφG̃ = −g2
s φ
†φ G̃AµνG

Aµν CφG̃ . (5.1)

Here, φ is the SM Higgs doublet and GAµν the QCD field strength tensor, where the

conventions of the previous chapters are employed. Notice that the Wilson coeffi-

cient CφG̃ introduced in (5.1) carries mass dimension −2. Higgs-gauge boson interac-

tions of the type (5.1) have been studied in Ref. [39], where also operators involving

electroweak gauge fields are considered. This reference provides a global picture of high-

and low-energy constraints on Higgs-gauge boson interactions and the authors discuss

how different probes can be interfaced to constrain the parameter space spanned by

the relevant Wilson coefficients. The purpose of the analysis presented in Section 5.1

is to extend the study [39] with regard to Higgs-gluon interactions as given by (5.1)

and in particular to examine those contributions to the nEDM that are independent

of the light-quark Yukawa interactions. The Yukawa couplings of light quarks are ex-
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perimentally unknown, raising the question, which effects on the nEDM remain if the

Higgs boson does not couple to the light quarks inside the neutron in an SM-like fash-

ion. This issue is explained in more detail in Section 5.1. The results of this section

were originally published in Ref. [20].

Section 5.2 is dedicated to a particular scenario of proton decay, namely p→ e+π0G,

which is described by the effective interactions of the GRSMEFT introduced in Sec-

tion 2.4. Such a transition is induced by the operator (2.21) which constitutes a source

of baryon-number violation beyond the SM and a possible departure from GR — both

effects are to some extent required by theoretical and empirical observations as dis-

cussed in Chapter 1 (see also Sections 2.3 and 2.4 for related discussions). The content

of Section 5.2 is largely based on the article [22].

5.1 CP-violating Higgs-gluon interactions in the limit of

vanishing light-quark Yukawa couplings

Searches for EDMs are known to place stringent constraints on many new-physics

scenario with additional sources of CP violation (see [43,52,57,60,62–65,67–72,75,76]

for reviews and recent discussions). In particular, the low-energy constraints on effective

operators of the form (5.1) have been considered in Refs. [39, 58, 59, 61, 66, 73, 74]. In

fact, the recent article [39] performed a comprehensive study of the relative strengths

and complementarity of collider and low-energy measurements in probing CP violation

in Higgs-gauge boson interactions. Employing a SMEFT description and working in

the context of so-called universal theories [252–254], i.e. theories in which mainly the

couplings between the SM Higgs and gauge bosons are modified by new dynamics,

it was found that in a single-operator analysis the existing EDM limits leave very

little room for observing CP violation in the Higgs sector at the LHC. Including all

relevant dimension-six CP-violating operators, it was furthermore established that the

EDM searches enforce strong correlations among Higgs-gauge boson couplings, which

barring intricate cancellations lead again to stringent bounds on the individual Wilson

coefficients. Similar conclusions were drawn in [74] where only the limits arising from

the eEDM have been studied.

In the following a simple way of how-to relax the constraints obtained in [39, 74] is

pointed out. In contrast to the these articles, it is not assumed here that the new-

physics modifications are confined to the Higgs-gauge boson sector, but also allow for

effects in the Yukawa sector. Specifically, we will consider the following dimension-six

SMEFT terms

Lφq = −Yd φ†φ Q̄LφdR Cφd − Yu φ†φ Q̄L φ̃uR Cφu + h.c. , (5.2)
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where we have employed the shorthand notation φ̃i = εij
(
φj
)∗

with εij totally anti-

symmetric and ε12 = +1. The Yukawa couplings Yd and Yu are matrices in flavour

space and a sum over flavour indices is implicit in (5.2). Finally, QL denote left-handed

quark doublets, while dR and uR are right-handed fermion singlets of down-quark and

up-quark type, respectively.

After EWSB the dimension-six operators in (5.2) modify the couplings of the Higgs

boson to quarks. Assuming that new-physics is minimally flavour violating [255] and

that the Wilson coefficients Cφu and Cφd are real,1 each SM quark Yukawa coupling

gets rescaled by an independent factor

κq ' 1 + v2Cφq , (5.3)

where q = t, b, c, s, d, u and v ' 246 GeV denotes the electroweak vacuum expectation

value. The coupling modifiers κq or equivalently the Wilson coefficients Cφq can be con-

strained by LHC Higgs physics. In the case of the top and bottom quark, our knowledge

of Yukawa interactions has undergone a revolution in recent years, since the ATLAS

and CMS collaborations have independently observed pp → tt̄h production [256, 257]

and the h → bb̄ decay [258, 259]. Combining direct and indirect information on the

Higgs properties into a global fit ATLAS [260] finds the following 68% CL limits2

κt = 1.02+0.11
−0.10 , κb = 1.06+0.19

−0.18 . (5.4)

The quoted results are in full agreement with the bounds obtained by CMS [261], and

yield clear and model-independent evidence for the existence of non-zero top-quark

and bottom-quark Yukawa couplings in nature. Despite significant experimental and

theoretical effort [262–282] only very weak (no relevant) bounds exist at present in the

case of the second-generation (first-generation) quarks. Whether the Higgs mechanism

is responsible for the generation of the masses of the charm, strange, down and up

quark is thus an open question, and new-physics scenarios (see e.g. [283]) that predict

a significant reduction of the couplings of the observed Higgs boson to the first two

generation of quarks, i.e. κc,s,d,u ' 0, are from the phenomenological point of view a

viable option.

A question that one therefore may want to ask is how sensitively the LHC limits [248–

251] and the EDM constraints [39, 74] depend on the assumption that the observed

Higgs boson has couplings to the light fermions. In the case of the operator (5.1) this

question can be answered immediately by looking at the Feynman diagrams depicted in

1CP-violating diagonal [62, 75] and flavour-changing Higgs-fermion [64] couplings involving the third

generation would be subject to stringent EDM constraints.
2In the considered benchmark model no new-physics contributions to Higgs-boson decays are assumed

to exist and Higgs-boson vertices involving loops are resolved in terms of their SM content.
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g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

q
<latexit sha1_base64="I1Phjce56vokL6HsCzbzu7mDVqk=">AAAB6HicbZC7SwNBEMbnfMb4iqa0WQwBq3BnY8qAjWUC5gHJEfY2c8mavb1zd08IRzo7GwtFbP2T7Oz8U9w8Ck38YOHHNzPszBckgmvjul/OxubW9s5ubi+/f3B4dFw4OW3pOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw9q7cfUGkey1szSdCP6FDykDNqrNW47xdKbsWdi6yDt4RSrVh+/AaAer/w2RvELI1QGiao1l3PTYyfUWU4EzjN91KNCWVjOsSuRUkj1H42X3RKytYZkDBW9klD5u7viYxGWk+iwHZG1Iz0am1m/lfrpias+hmXSWpQssVHYSqIicnsajLgCpkREwuUKW53JWxEFWXGZpO3IXirJ69D67LiWW7YNKqwUA7O4BwuwIMrqMEN1KEJDBCe4AVenTvn2Xlz3hetG85ypgh/5Hz8AFkxjsM=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="G7WQgX+l3qqtA/MpVS2wsYKwIfE=">AAAB6HicbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NlKS2FhCIh8JXMjeMgcre3vn7p4JufALbCw0xtafZOe/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG09tFvfuESvNY3ptZgn5Ex5KHnFFjrdbjsFJ1a+5SZBO8HKqQqzmsfA1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedk0vrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT1v2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNd8yy33GqjnsdRhHO4gCvw4AYacAdNaAMDhGd4hTfnwXlx3p2PVWvByWfO4I+czx/XXYzn</latexit>

q
<latexit sha1_base64="I1Phjce56vokL6HsCzbzu7mDVqk=">AAAB6HicbZC7SwNBEMbnfMb4iqa0WQwBq3BnY8qAjWUC5gHJEfY2c8mavb1zd08IRzo7GwtFbP2T7Oz8U9w8Ck38YOHHNzPszBckgmvjul/OxubW9s5ubi+/f3B4dFw4OW3pOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw9q7cfUGkey1szSdCP6FDykDNqrNW47xdKbsWdi6yDt4RSrVh+/AaAer/w2RvELI1QGiao1l3PTYyfUWU4EzjN91KNCWVjOsSuRUkj1H42X3RKytYZkDBW9klD5u7viYxGWk+iwHZG1Iz0am1m/lfrpias+hmXSWpQssVHYSqIicnsajLgCpkREwuUKW53JWxEFWXGZpO3IXirJ69D67LiWW7YNKqwUA7O4BwuwIMrqMEN1KEJDBCe4AVenTvn2Xlz3hetG85ypgh/5Hz8AFkxjsM=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="G7WQgX+l3qqtA/MpVS2wsYKwIfE=">AAAB6HicbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NlKS2FhCIh8JXMjeMgcre3vn7p4JufALbCw0xtafZOe/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG09tFvfuESvNY3ptZgn5Ex5KHnFFjrdbjsFJ1a+5SZBO8HKqQqzmsfA1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedk0vrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT1v2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNd8yy33GqjnsdRhHO4gCvw4AYacAdNaAMDhGd4hTfnwXlx3p2PVWvByWfO4I+czx/XXYzn</latexit>

q
<latexit sha1_base64="I1Phjce56vokL6HsCzbzu7mDVqk=">AAAB6HicbZC7SwNBEMbnfMb4iqa0WQwBq3BnY8qAjWUC5gHJEfY2c8mavb1zd08IRzo7GwtFbP2T7Oz8U9w8Ck38YOHHNzPszBckgmvjul/OxubW9s5ubi+/f3B4dFw4OW3pOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw9q7cfUGkey1szSdCP6FDykDNqrNW47xdKbsWdi6yDt4RSrVh+/AaAer/w2RvELI1QGiao1l3PTYyfUWU4EzjN91KNCWVjOsSuRUkj1H42X3RKytYZkDBW9klD5u7viYxGWk+iwHZG1Iz0am1m/lfrpias+hmXSWpQssVHYSqIicnsajLgCpkREwuUKW53JWxEFWXGZpO3IXirJ69D67LiWW7YNKqwUA7O4BwuwIMrqMEN1KEJDBCe4AVenTvn2Xlz3hetG85ypgh/5Hz8AFkxjsM=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="G7WQgX+l3qqtA/MpVS2wsYKwIfE=">AAAB6HicbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NlKS2FhCIh8JXMjeMgcre3vn7p4JufALbCw0xtafZOe/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG09tFvfuESvNY3ptZgn5Ex5KHnFFjrdbjsFJ1a+5SZBO8HKqQqzmsfA1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedk0vrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT1v2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNd8yy33GqjnsdRhHO4gCvw4AYacAdNaAMDhGd4hTfnwXlx3p2PVWvByWfO4I+czx/XXYzn</latexit>t
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<latexit sha1_base64="OEnV/KOUXA5QOMMT6VCcBFI8eYo=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVZt0C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPcs1t1S5hpnycATHcAoenEMFbqEKdWCA8AQv8OrcO8/Om/M+K805855D+CPn4wc8Ao61</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="3P7akWg4H1bIb+3dAs/NcEduJPk=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0H1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHMu4zo</latexit>

q
<latexit sha1_base64="I1Phjce56vokL6HsCzbzu7mDVqk=">AAAB6HicbZC7SwNBEMbnfMb4iqa0WQwBq3BnY8qAjWUC5gHJEfY2c8mavb1zd08IRzo7GwtFbP2T7Oz8U9w8Ck38YOHHNzPszBckgmvjul/OxubW9s5ubi+/f3B4dFw4OW3pOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw9q7cfUGkey1szSdCP6FDykDNqrNW47xdKbsWdi6yDt4RSrVh+/AaAer/w2RvELI1QGiao1l3PTYyfUWU4EzjN91KNCWVjOsSuRUkj1H42X3RKytYZkDBW9klD5u7viYxGWk+iwHZG1Iz0am1m/lfrpias+hmXSWpQssVHYSqIicnsajLgCpkREwuUKW53JWxEFWXGZpO3IXirJ69D67LiWW7YNKqwUA7O4BwuwIMrqMEN1KEJDBCe4AVenTvn2Xlz3hetG85ypgh/5Hz8AFkxjsM=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="G7WQgX+l3qqtA/MpVS2wsYKwIfE=">AAAB6HicbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NlKS2FhCIh8JXMjeMgcre3vn7p4JufALbCw0xtafZOe/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG09tFvfuESvNY3ptZgn5Ex5KHnFFjrdbjsFJ1a+5SZBO8HKqQqzmsfA1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedk0vrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT1v2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNd8yy33GqjnsdRhHO4gCvw4AYacAdNaAMDhGd4hTfnwXlx3p2PVWvByWfO4I+czx/XXYzn</latexit>q

<latexit sha1_base64="I1Phjce56vokL6HsCzbzu7mDVqk=">AAAB6HicbZC7SwNBEMbnfMb4iqa0WQwBq3BnY8qAjWUC5gHJEfY2c8mavb1zd08IRzo7GwtFbP2T7Oz8U9w8Ck38YOHHNzPszBckgmvjul/OxubW9s5ubi+/f3B4dFw4OW3pOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw9q7cfUGkey1szSdCP6FDykDNqrNW47xdKbsWdi6yDt4RSrVh+/AaAer/w2RvELI1QGiao1l3PTYyfUWU4EzjN91KNCWVjOsSuRUkj1H42X3RKytYZkDBW9klD5u7viYxGWk+iwHZG1Iz0am1m/lfrpias+hmXSWpQssVHYSqIicnsajLgCpkREwuUKW53JWxEFWXGZpO3IXirJ69D67LiWW7YNKqwUA7O4BwuwIMrqMEN1KEJDBCe4AVenTvn2Xlz3hetG85ypgh/5Hz8AFkxjsM=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="LDG8Vtv3ZbXgSl/hqs8x8/yk1L0=">AAAB6HicbZC7SgNBFIbPxluMt2hKm8EQsAq7NqYM2FgmYC6QLGF2cjYZM3txZlYISzo7GwtFbH0YH8BOH8An8AGcXApN/GHg4z/nMOf8Xiy40rb9YWXW1jc2t7LbuZ3dvf2D/OFRU0WJZNhgkYhk26MKBQ+xobkW2I4l0sAT2PJGF9N66xal4lF4pccxugEdhNznjGpj1W96+aJdtmciq+AsoFgtlO6+374+a738e7cfsSTAUDNBleo4dqzdlErNmcBJrpsojCkb0QF2DIY0QOWms0UnpGScPvEjaV6oycz9PZHSQKlx4JnOgOqhWq5Nzf9qnUT7FTflYZxoDNn8Iz8RREdkejXpc4lMi7EByiQ3uxI2pJIybbLJmRCc5ZNXoXlWdgzXTRoVmCsLx3ACp+DAOVThEmrQAAYI9/AIT9a19WA9Wy/z1oy1mCnAH1mvP9MukV0=</latexit><latexit sha1_base64="G7WQgX+l3qqtA/MpVS2wsYKwIfE=">AAAB6HicbZA9TwJBEIbn8AvxA9TSZiMxsSJ3NlKS2FhCIh8JXMjeMgcre3vn7p4JufALbCw0xtafZOe/cYErFHyTTZ68M5OdeYNEcG1c99spbG3v7O4V90sHh0fH5crJaUfHqWLYZrGIVS+gGgWX2DbcCOwlCmkUCOwG09tFvfuESvNY3ptZgn5Ex5KHnFFjrdbjsFJ1a+5SZBO8HKqQqzmsfA1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedk0vrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT1v2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNd8yy33GqjnsdRhHO4gCvw4AYacAdNaAMDhGd4hTfnwXlx3p2PVWvByWfO4I+czx/XXYzn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g

g

g

g

H

G

T2 P1 N3

h
<latexit sha1_base64="OEnV/KOUXA5QOMMT6VCcBFI8eYo=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVZt0C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPcs1t1S5hpnycATHcAoenEMFbqEKdWCA8AQv8OrcO8/Om/M+K805855D+CPn4wc8Ao61</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="3P7akWg4H1bIb+3dAs/NcEduJPk=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0H1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHMu4zo</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>
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Figure 5.1: Left: Tree-level graphs that give rise to pp → h + 2j production at the LHC.

Right: Example one-loop diagram that contributes to the nEDM. The black squares indicate

insertions of the CP-violating dimension-six operator (5.1).

Figure 5.1. The two tree-level diagrams on the left-hand side give a correction to Higgs

plus two jet production pp→ h+2j, while the one-loop graph shown on the right induces

CEDMs for light quarks, which in turn generate non-zero contributions to the nEDM

and all other hadronic EDMs. Since the diagrams that lead to the LHC signal do not

involve a vertex where the Higgs couples to a light quark, the constraints on CφG̃ that

can be obtained from kinematic properties of pp → h + 2j are obviously independent

of the size of the κq parameters. The amplitude of the chromoelectric dipole transition

q → qg instead depends linearly on κq, and hence tends to zero in the limit of vanishing

light-quark Yukawa couplings. In consequence, if the down-quark and up-quark Yukawa

couplings are identical to zero, no bound on the Wilson coefficient CφG̃ can be obtained

from hadronic EDM searches at the one-loop level. The same statement can be shown

to hold for the Wilson coefficients of the dimension-six operators which encode the CP-

violating couplings between the Higgs and electroweak gauge bosons and contribute to

the eEDM. Since in [39, 74] it is assumed that the Yukawa couplings of light fermions

are exactly SM-like, it follows that the limits derived in these papers do not directly

apply in the case that the light-fermion Yukawa couplings vanish exactly or are strongly

suppressed.

Motivated by the above observation, the leading contributions to the nEDM that

involve an insertion of (5.1) and that survive in the limit of vanishing light-quark

Yukawa couplings are computed in Section 5.1.1. Based on these results, the bounds

on the Wilson coefficient of the CP-violating dimension-six operator (5.1) from current

and future nEDM searches are then derived in Section 5.1.2 and compared to existing

LHC limits as well as their projections.

5.1.1 Calculation

Before describing the basic steps of the calculation, it should be mentioned that after

EWSB the operator (5.1) shifts the QCD θ term (2.4) by a finite amount, i.e. θ →
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5.1 CP-violating Higgs-gluon interactions

θ−8π2v2CφG̃. Since based on the current experimental nEDM results the (physical) θ

parameter has to be tiny (cf. equations (2.6) and (2.7)), it is assumed in the following

that the total θ term vanishes dynamically due to a Peccei-Quinn mechanism [49].

Under this assumption there is no direct bound on (5.1), and the Wilson coefficient CφG̃
can be treated as a free parameter in the SMEFT as done in the analyses [39,248–251].

As explained previously, the goal of this work is it to calculate the numerically

most relevant contributions to the nEDM that are proportional to the Wilson coeffi-

cient CφG̃ and that involve the Yukawa couplings of the third-generation quarks. It

turns out that at the matching scale the relevant loop graphs give rise to two CP-

violating higher-dimensional operators of Weinberg type, namely the terms associated

to the Wilson coefficients C3G̃ and C4G̃,1 of (2.9). Since the bottom-quark contri-

butions can be shown to be suppressed relative to the top-quark effects by a factor

of m2
b/m

2
h ln2

(
m2
b/m

2
h

)
' 5%, we neglect corrections that are proportional to the

bottom-quark Yukawa coupling in what follows. The top-quark effects are all linearly

dependent on the coupling modifier κt. In view of the observed SM-like nature (5.4) of

the top-quark Yukawa coupling, we will simply employ κt = 1 in our calculations. Al-

lowing for O(10%) variations of κt would, however, not qualitatively change the results

of the numerical analysis performed in Section 5.1.2.

5.1.1.1 Dimension-six contribution

The LO matching correction to the Wilson coefficient C3G̃ proportional to CφG̃ arises

from two-loop Feynman diagrams like the ones displayed on the left-hand side in Fig-

ure 5.2. Employing a hard mass procedure (see [284] for a review) to obtain systematic

expansions of the relevant two-loop diagrams in powers of the external momenta and

the ratio x = m2
t /m

2
h with mt ' 163 GeV and mh ' 125 GeV the top-quark and

Higgs-boson mass, we find the following analytic result

C3G̃(mh) =
α2
s(mh)

8π2

[
65

6
+ 2 lnx+

1

x

(
383

900
+

2

15
lnx

)]
CφG̃(mh) , (5.5)

where αs = g2
s/(4π). The expression given above corresponds to the MS scheme with

the renormalisation scale set to µ = mh.3 The actual calculation was performed in a Rξ

background field gauge for the gluon [286, 287] keeping an arbitrary gauge parameter.

The Levi-Civita tensor εµνρλ was treated as an external four-dimensional object. Our

computations made use of the in-house codes that were developed in the context of [288,

289], except for the tensor reduction of two-point and three-point one-loop integrals

3The sum of the bare two-loop Feynman diagrams that contributes to (5.5) is not UV finite. The

remaining UV pole is cancelled by taking into account the one-loop mixing of the operator φ†φGAµνG̃
Aµν

into Q̄Lσ
µνTAuR φ̃ G

A
µν+h.c.. We have calculated the relevant one-loop mixing finding agreement with

the result given in [285].
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which relied on Package-X [290]. We add that we have calculated higher-order terms

in the 1/x expansion of C3G̃(mh) and found that these corrections shift the numerical

value of the matching correction (5.5) by less than a permille.4 Such an accuracy is

more than sufficient for our purpose.

The RG flow from the electroweak to the hadronic scale µH = 1 GeV does not only

change the value of the Wilson coefficient C3G̃, but also induces non-zero contributions

for the EDMs dq and the CEDMs d̃q of the down and up quarks defined in equation (2.8)

with q = d, u. In the basis ~C6 =
(
dq, d̃q, C3G̃

)T
, the one-loop anomalous dimension (AD)

matrix takes the following form [79,80,291]

γ̂6 =


32

3
0 0

32

3

28

3
0

0 −6 3 + 2NF + 2β0

 , (5.6)

where β0 = 11− 2/3NF is the LO QCD beta function and NF denotes the number of

active quark flavours. Resumming leading-logarithmic corrections in the five-flavour,

four-flavour and three-flavour theory, we obtain

dq(µH) ' −5.6 · 10−2 eQqmq(µH)C3G̃(mh) ,

d̃q(µH) ' 1.2 · 10−1mq(µH)C3G̃(mh) ,

C3G̃(µH) ' 1.3 · 10−1C3G̃(mh) .

(5.7)

Here Qq is the fractional electric charge of the relevant quark and mq(µH) is its MS mass

at the hadronic scale. The numerical factors in (5.7) correspond to the values αs(mh) '
0.11, αs(mb) ' 0.21, αs(mc) ' 0.32 and αs(µH) ' 0.36 of the QCD coupling constant.

Notice that the Wilson coefficient C3G̃ of the dimension-six Weinberg operator gets

strongly suppressed by one-loop RG running in QCD.5

The hadronic matrix elements of the dimension-six operators corresponding to the

Wilson coefficients dq, d̃q and C3G̃ in (5.7) are known with varying levels of theoretical

uncertainties. The EDM contributions from down and up quarks have been calculated

4The analytic expressions for the O(1/x2) and O(1/x3) terms can be found in the LATEX source code

of the article [20].
5The two-loop and three-loop NF -independent contributions to the AD of the dimension-six Weinberg

operator have been calculated very recently [292]. Due to cancellations between the next-to-leading-

logarithmic and the next-to-next-to-leading-logarithmic QCD corrections, the total three-loop result is

numerically close to the one-loop result for C3G̃(µH) reported in (5.7). In view of this and given the

sizeable uncertainties of the hadronic matrix element of the dimension-six Weinberg operator
(
cf. (5.8)

)
using only the leading-logarithmic RG evolution is fully justified. In the same spirit, the two-loop and

three-loop mixing of the quark EDMs and CEDMs [291,293–295] is also neglected in (5.7).
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t
<latexit sha1_base64="wsJU5ViOPixYFF3HTdl+vM3Vknw=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zV6yZm/v2J0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIoVB1/12ciura+sb+c3C1vbO7l5x/6Bh4lQzXmexjHUroIZLoXgdBUreSjSnUSB5MxjeTPLmA9dGxOoORwn3I9pXIhSMorVq2C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmnEFTJJjWl7boJ+RjUKJvm40EkNTygb0j5vW1Q04sbPpoOOyYl1eiSMtX0KydT93ZHRyJhRFNjKiOLALGYT87+snWJ44WdCJSlyxWYfhakkGJPJ1qQnNGcoRxYo08LOStiAasrQ3qZgj+AtrrwMjbOyZ7nmlirXMFMejuAYTsGDc6jALVShDgw4PMELvDr3zrPz5rzPSnPOvOcQ/sj5+AFOMo7B</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="DzF5koUpPwIvXkf31NeVijvAmQI=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7Gy2DNpYJmA9IjrC3mUvW7H2wOyeEkF9gY6GIrT/Jzn/jJrlCE19YeHhnhp15g1RJQ6777RQ2Nre2d4q7pb39g8Oj8vFJyySZFtgUiUp0J+AGlYyxSZIUdlKNPAoUtoPx3bzefkJtZBI/0CRFP+LDWIZScLJWg/rlilt1F2Lr4OVQgVz1fvmrN0hEFmFMQnFjup6bkj/lmqRQOCv1MoMpF2M+xK7FmEdo/Oli0Rm7sM6AhYm2Lya2cH9PTHlkzCQKbGfEaWRWa3Pzv1o3o/DGn8o4zQhjsfwozBSjhM2vZgOpUZCaWOBCS7srEyOuuSCbTcmG4K2evA6tq6pnueFWard5HEU4g3O4BA+uoQb3UIcmCEB4hld4cx6dF+fd+Vi2Fpx85hT+yPn8Ad7rjPQ=</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>
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<latexit sha1_base64="OEnV/KOUXA5QOMMT6VCcBFI8eYo=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVZt0C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPcs1t1S5hpnycATHcAoenEMFbqEKdWCA8AQv8OrcO8/Om/M+K805855D+CPn4wc8Ao61</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="3P7akWg4H1bIb+3dAs/NcEduJPk=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0H1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHMu4zo</latexit>
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<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

h
<latexit sha1_base64="OEnV/KOUXA5QOMMT6VCcBFI8eYo=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVZt0C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPcs1t1S5hpnycATHcAoenEMFbqEKdWCA8AQv8OrcO8/Om/M+K805855D+CPn4wc8Ao61</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="3P7akWg4H1bIb+3dAs/NcEduJPk=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0H1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHMu4zo</latexit>
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<latexit sha1_base64="wsJU5ViOPixYFF3HTdl+vM3Vknw=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zV6yZm/v2J0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIoVB1/12ciura+sb+c3C1vbO7l5x/6Bh4lQzXmexjHUroIZLoXgdBUreSjSnUSB5MxjeTPLmA9dGxOoORwn3I9pXIhSMorVq2C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmnEFTJJjWl7boJ+RjUKJvm40EkNTygb0j5vW1Q04sbPpoOOyYl1eiSMtX0KydT93ZHRyJhRFNjKiOLALGYT87+snWJ44WdCJSlyxWYfhakkGJPJ1qQnNGcoRxYo08LOStiAasrQ3qZgj+AtrrwMjbOyZ7nmlirXMFMejuAYTsGDc6jALVShDgw4PMELvDr3zrPz5rzPSnPOvOcQ/sj5+AFOMo7B</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="DzF5koUpPwIvXkf31NeVijvAmQI=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7Gy2DNpYJmA9IjrC3mUvW7H2wOyeEkF9gY6GIrT/Jzn/jJrlCE19YeHhnhp15g1RJQ6777RQ2Nre2d4q7pb39g8Oj8vFJyySZFtgUiUp0J+AGlYyxSZIUdlKNPAoUtoPx3bzefkJtZBI/0CRFP+LDWIZScLJWg/rlilt1F2Lr4OVQgVz1fvmrN0hEFmFMQnFjup6bkj/lmqRQOCv1MoMpF2M+xK7FmEdo/Oli0Rm7sM6AhYm2Lya2cH9PTHlkzCQKbGfEaWRWa3Pzv1o3o/DGn8o4zQhjsfwozBSjhM2vZgOpUZCaWOBCS7srEyOuuSCbTcmG4K2evA6tq6pnueFWard5HEU4g3O4BA+uoQb3UIcmCEB4hld4cx6dF+fd+Vi2Fpx85hT+yPn8Ad7rjPQ=</latexit>

t
<latexit sha1_base64="wsJU5ViOPixYFF3HTdl+vM3Vknw=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zV6yZm/v2J0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIoVB1/12ciura+sb+c3C1vbO7l5x/6Bh4lQzXmexjHUroIZLoXgdBUreSjSnUSB5MxjeTPLmA9dGxOoORwn3I9pXIhSMorVq2C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmnEFTJJjWl7boJ+RjUKJvm40EkNTygb0j5vW1Q04sbPpoOOyYl1eiSMtX0KydT93ZHRyJhRFNjKiOLALGYT87+snWJ44WdCJSlyxWYfhakkGJPJ1qQnNGcoRxYo08LOStiAasrQ3qZgj+AtrrwMjbOyZ7nmlirXMFMejuAYTsGDc6jALVShDgw4PMELvDr3zrPz5rzPSnPOvOcQ/sj5+AFOMo7B</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="DzF5koUpPwIvXkf31NeVijvAmQI=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7Gy2DNpYJmA9IjrC3mUvW7H2wOyeEkF9gY6GIrT/Jzn/jJrlCE19YeHhnhp15g1RJQ6777RQ2Nre2d4q7pb39g8Oj8vFJyySZFtgUiUp0J+AGlYyxSZIUdlKNPAoUtoPx3bzefkJtZBI/0CRFP+LDWIZScLJWg/rlilt1F2Lr4OVQgVz1fvmrN0hEFmFMQnFjup6bkj/lmqRQOCv1MoMpF2M+xK7FmEdo/Oli0Rm7sM6AhYm2Lya2cH9PTHlkzCQKbGfEaWRWa3Pzv1o3o/DGn8o4zQhjsfwozBSjhM2vZgOpUZCaWOBCS7srEyOuuSCbTcmG4K2evA6tq6pnueFWard5HEU4g3O4BA+uoQb3UIcmCEB4hld4cx6dF+fd+Vi2Fpx85hT+yPn8Ad7rjPQ=</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>g

<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

t
<latexit sha1_base64="wsJU5ViOPixYFF3HTdl+vM3Vknw=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zV6yZm/v2J0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIoVB1/12ciura+sb+c3C1vbO7l5x/6Bh4lQzXmexjHUroIZLoXgdBUreSjSnUSB5MxjeTPLmA9dGxOoORwn3I9pXIhSMorVq2C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmnEFTJJjWl7boJ+RjUKJvm40EkNTygb0j5vW1Q04sbPpoOOyYl1eiSMtX0KydT93ZHRyJhRFNjKiOLALGYT87+snWJ44WdCJSlyxWYfhakkGJPJ1qQnNGcoRxYo08LOStiAasrQ3qZgj+AtrrwMjbOyZ7nmlirXMFMejuAYTsGDc6jALVShDgw4PMELvDr3zrPz5rzPSnPOvOcQ/sj5+AFOMo7B</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="DzF5koUpPwIvXkf31NeVijvAmQI=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7Gy2DNpYJmA9IjrC3mUvW7H2wOyeEkF9gY6GIrT/Jzn/jJrlCE19YeHhnhp15g1RJQ6777RQ2Nre2d4q7pb39g8Oj8vFJyySZFtgUiUp0J+AGlYyxSZIUdlKNPAoUtoPx3bzefkJtZBI/0CRFP+LDWIZScLJWg/rlilt1F2Lr4OVQgVz1fvmrN0hEFmFMQnFjup6bkj/lmqRQOCv1MoMpF2M+xK7FmEdo/Oli0Rm7sM6AhYm2Lya2cH9PTHlkzCQKbGfEaWRWa3Pzv1o3o/DGn8o4zQhjsfwozBSjhM2vZgOpUZCaWOBCS7srEyOuuSCbTcmG4K2evA6tq6pnueFWard5HEU4g3O4BA+uoQb3UIcmCEB4hld4cx6dF+fd+Vi2Fpx85hT+yPn8Ad7rjPQ=</latexit>

�

�

�

�

�

�

� �

������

t
<latexit sha1_base64="wsJU5ViOPixYFF3HTdl+vM3Vknw=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zV6yZm/v2J0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIoVB1/12ciura+sb+c3C1vbO7l5x/6Bh4lQzXmexjHUroIZLoXgdBUreSjSnUSB5MxjeTPLmA9dGxOoORwn3I9pXIhSMorVq2C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmnEFTJJjWl7boJ+RjUKJvm40EkNTygb0j5vW1Q04sbPpoOOyYl1eiSMtX0KydT93ZHRyJhRFNjKiOLALGYT87+snWJ44WdCJSlyxWYfhakkGJPJ1qQnNGcoRxYo08LOStiAasrQ3qZgj+AtrrwMjbOyZ7nmlirXMFMejuAYTsGDc6jALVShDgw4PMELvDr3zrPz5rzPSnPOvOcQ/sj5+AFOMo7B</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="DzF5koUpPwIvXkf31NeVijvAmQI=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7Gy2DNpYJmA9IjrC3mUvW7H2wOyeEkF9gY6GIrT/Jzn/jJrlCE19YeHhnhp15g1RJQ6777RQ2Nre2d4q7pb39g8Oj8vFJyySZFtgUiUp0J+AGlYyxSZIUdlKNPAoUtoPx3bzefkJtZBI/0CRFP+LDWIZScLJWg/rlilt1F2Lr4OVQgVz1fvmrN0hEFmFMQnFjup6bkj/lmqRQOCv1MoMpF2M+xK7FmEdo/Oli0Rm7sM6AhYm2Lya2cH9PTHlkzCQKbGfEaWRWa3Pzv1o3o/DGn8o4zQhjsfwozBSjhM2vZgOpUZCaWOBCS7srEyOuuSCbTcmG4K2evA6tq6pnueFWard5HEU4g3O4BA+uoQb3UIcmCEB4hld4cx6dF+fd+Vi2Fpx85hT+yPn8Ad7rjPQ=</latexit>

t
<latexit sha1_base64="wsJU5ViOPixYFF3HTdl+vM3Vknw=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zV6yZm/v2J0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIoVB1/12ciura+sb+c3C1vbO7l5x/6Bh4lQzXmexjHUroIZLoXgdBUreSjSnUSB5MxjeTPLmA9dGxOoORwn3I9pXIhSMorVq2C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmnEFTJJjWl7boJ+RjUKJvm40EkNTygb0j5vW1Q04sbPpoOOyYl1eiSMtX0KydT93ZHRyJhRFNjKiOLALGYT87+snWJ44WdCJSlyxWYfhakkGJPJ1qQnNGcoRxYo08LOStiAasrQ3qZgj+AtrrwMjbOyZ7nmlirXMFMejuAYTsGDc6jALVShDgw4PMELvDr3zrPz5rzPSnPOvOcQ/sj5+AFOMo7B</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="DzF5koUpPwIvXkf31NeVijvAmQI=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7Gy2DNpYJmA9IjrC3mUvW7H2wOyeEkF9gY6GIrT/Jzn/jJrlCE19YeHhnhp15g1RJQ6777RQ2Nre2d4q7pb39g8Oj8vFJyySZFtgUiUp0J+AGlYyxSZIUdlKNPAoUtoPx3bzefkJtZBI/0CRFP+LDWIZScLJWg/rlilt1F2Lr4OVQgVz1fvmrN0hEFmFMQnFjup6bkj/lmqRQOCv1MoMpF2M+xK7FmEdo/Oli0Rm7sM6AhYm2Lya2cH9PTHlkzCQKbGfEaWRWa3Pzv1o3o/DGn8o4zQhjsfwozBSjhM2vZgOpUZCaWOBCS7srEyOuuSCbTcmG4K2evA6tq6pnueFWard5HEU4g3O4BA+uoQb3UIcmCEB4hld4cx6dF+fd+Vi2Fpx85hT+yPn8Ad7rjPQ=</latexit>

t
<latexit sha1_base64="wsJU5ViOPixYFF3HTdl+vM3Vknw=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zV6yZm/v2J0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIoVB1/12ciura+sb+c3C1vbO7l5x/6Bh4lQzXmexjHUroIZLoXgdBUreSjSnUSB5MxjeTPLmA9dGxOoORwn3I9pXIhSMorVq2C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmnEFTJJjWl7boJ+RjUKJvm40EkNTygb0j5vW1Q04sbPpoOOyYl1eiSMtX0KydT93ZHRyJhRFNjKiOLALGYT87+snWJ44WdCJSlyxWYfhakkGJPJ1qQnNGcoRxYo08LOStiAasrQ3qZgj+AtrrwMjbOyZ7nmlirXMFMejuAYTsGDc6jALVShDgw4PMELvDr3zrPz5rzPSnPOvOcQ/sj5+AFOMo7B</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="/rIU2NI623UQfeTNEJGTR7mASLA=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2MpuMmZ1dZs4KYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSKQw6HnfztLyyuraem7D3dza3tnN7+3XTJxqxqsslrFuBNRwKRSvokDJG4nmNAokrweD63Fev+faiFjd4jDh7Yj2lAgFo2itCnbyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjbhCJqkxTd9LsJ1RjYJJPnJbqeEJZQPa402LikbctLPJoCNybJ0uCWNtn0IycX93ZDQyZhgFtjKi2Dfz2dj8L2umGJ63M6GSFLli04/CVBKMyXhr0hWaM5RDC5RpYWclrE81ZWhv49oj+PMrL0LttOhbrniF0hVMlYNDOIIT8OEMSnADZagCAw4P8ATPzp3z6Lw4r9PSJWfWcwB/5Lz9AD/BkDU=</latexit><latexit sha1_base64="DzF5koUpPwIvXkf31NeVijvAmQI=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7Gy2DNpYJmA9IjrC3mUvW7H2wOyeEkF9gY6GIrT/Jzn/jJrlCE19YeHhnhp15g1RJQ6777RQ2Nre2d4q7pb39g8Oj8vFJyySZFtgUiUp0J+AGlYyxSZIUdlKNPAoUtoPx3bzefkJtZBI/0CRFP+LDWIZScLJWg/rlilt1F2Lr4OVQgVz1fvmrN0hEFmFMQnFjup6bkj/lmqRQOCv1MoMpF2M+xK7FmEdo/Oli0Rm7sM6AhYm2Lya2cH9PTHlkzCQKbGfEaWRWa3Pzv1o3o/DGn8o4zQhjsfwozBSjhM2vZgOpUZCaWOBCS7srEyOuuSCbTcmG4K2evA6tq6pnueFWard5HEU4g3O4BA+uoQb3UIcmCEB4hld4cx6dF+fd+Vi2Fpx85hT+yPn8Ad7rjPQ=</latexit>

h
<latexit sha1_base64="OEnV/KOUXA5QOMMT6VCcBFI8eYo=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVZt0C2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPcs1t1S5hpnycATHcAoenEMFbqEKdWCA8AQv8OrcO8/Om/M+K805855D+CPn4wc8Ao61</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="H56/RTwPpg0ymDze1vOX2wxPSmI=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxV6XfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfcsUrlK5gqhwcwhGcgA9nUIIbKEMVGCA8wBM8O3fOo/PivE5Ll5xZzwH8kfP2Ay2RkCk=</latexit><latexit sha1_base64="3P7akWg4H1bIb+3dAs/NcEduJPk=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0H1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHMu4zo</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>

g
<latexit sha1_base64="gx8tA567acsW4Z3BCy3KHdi91CA=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPznHOacP0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDOttx5QaR7LOzNO0I/oQPKQM2qsVR/0iiW37M5EVsFbQKl6+lH/BoBar/jZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl0U40JZSM6wI5FSSPUfjZbdELOrdMnYazsk4bM3N8TGY20HkeB7YyoGerl2tT8r9ZJTXjlZ1wmqUHJ5h+FqSAmJtOrSZ8rZEaMLVCmuN2VsCFVlBmbTcGG4C2fvArNy7JnuW7TuIa58nACZ3ABHlSgCrdQgwYwQHiEZ3hx7p0n59V5m7fmnMXMMfyR8/4D2zGPLA==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="RG/ybrEqARFi0dM5nWieAIPce0Q=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OUnGzM4uM7NCWFJa2VgoYutT5DnsfAZfwsml0MQfBj7+cw5zzh/Egmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0lCiGVRaJSDUCqlFwiVXDjcBGrJCGgcB6MLiZ1OsPqDSP5J0ZxuiHtCd5lzNqrFXptfMFt+hORZbBm0OhdDyufD+ejMvt/GerE7EkRGmYoFo3PTc2fkqV4UzgKNdKNMaUDWgPmxYlDVH76XTRETmzTod0I2WfNGTq/p5Iaaj1MAxsZ0hNXy/WJuZ/tWZiuld+ymWcGJRs9lE3EcREZHI16XCFzIihBcoUt7sS1qeKMmOzydkQvMWTl6F2UfQsV2wa1zBTFo7gFM7Bg0sowS2UoQoMEJ7gBV6de+fZeXPeZ60ZZz5zCH/kfPwAuXaQkg==</latexit><latexit sha1_base64="W4gNAZC6swAe6VgCSPeaMQovT8w=">AAAB6HicbZBNT8JAEIan+IX4hXr0spGYeCKtFz0SvXiExAIJNGS7TGFlu212tyak4Rd48aAxXv1J3vw3LtCDgm+yyZN3ZrIzb5gKro3rfjuljc2t7Z3ybmVv/+DwqHp80tZJphj6LBGJ6oZUo+ASfcONwG6qkMahwE44uZvXO0+oNE/kg5mmGMR0JHnEGTXWao0G1Zpbdxci6+AVUINCzUH1qz9MWBajNExQrXuem5ogp8pwJnBW6WcaU8omdIQ9i5LGqIN8seiMXFhnSKJE2ScNWbi/J3Iaaz2NQ9sZUzPWq7W5+V+tl5noJsi5TDODki0/ijJBTELmV5MhV8iMmFqgTHG7K2FjqigzNpuKDcFbPXkd2ld1z3LLrTVuizjKcAbncAkeXEMD7qEJPjBAeIZXeHMenRfn3flYtpacYuYU/sj5/AHLN4zn</latexit>
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Figure 5.2: Left: Example diagrams of two-loop corrections to C3G̃ arising from the insertion

of CφG̃. Right: A one-loop correction to C4G̃,1 arising from the insertion of CφG̃. The operator

insertions are indicated by black squares.

with an accuracy of 5% using LQCD [87–89], while QCD sum-rule calculations [43,

90–92] can be used to determine the contributions from the down-quark and up-quark

CEDMs with uncertainties of 50%. At present only estimates of the hadronic matrix

element of the dimension-six Weinberg operator exist that rely on either QCD sum

rules [19,94], the VIA [93] or NDA [77]. Since only the QCD sum-rule calculations allow

the systematic analysis of theoretical uncertainties, we will in the following rely on them.

Adopting the QCD sum-rule estimate of Section 3.2, which is plagued by an uncertainty

of 50%, and employing md(µH) = 5.4 · 10−3 GeV and mu(µH) = 2.5 · 10−3 GeV [178],

we obtain(
dn
)

3G̃

e
=
[

1.0
(
1± 0.05

)
+ 8.8

(
1± 0.5

)
− 66.6

(
1± 0.5

)]
C3G̃(mh) · 10−4 GeV , (5.8)

where the first, second and third term corresponds to the dq, d̃q and C3G̃ contribution

in (5.7), respectively. It should be emphasised that in the case that new physics enters

only through the matching correction C3G̃(mh) the relative signs in (5.8) are all fixed,

meaning that the contribution from the dimension-six Weinberg operator necessarily

interferes destructively with both the EDM and CEDM contribution.

5.1.1.2 Dimension-eight contribution

At LO the matching correction to the Wilson coefficient C4G̃,1 proportional to CφG̃
arises from one-loop graphs of the type shown on the right in Figure 5.2. A straight-

forward calculation gives

C4G̃,1(mh) =
αs(mh)

π

1

m2
h

[
1 +

7

120x
+

1

168x2

]
CφG̃(mh) , (5.9)

at the matching scale µ = mh. Higher-order terms in the 1/x expansion change the

matching correction C4G̃,1(mh) by less than a permille, and they are therefore not

included in (5.9).6

6The results for the O(1/x3) and O(1/x4) terms of (5.9) can be found in the LATEX source code of the

paper [20].
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5 Low-energy probes of CP and baryon-number violation

At the dimension-eight level there are three independent CP-violating operators that

can be built from QCD field strength tensors (see equations (2.9) and (2.10) as well as

Refs. [78, 81, 82] for details). While only the operator associated with C4G̃,1 receives a

one-loop matching correction proportional to CφG̃ all three dimension-eight operators

mix under QCD. The two additional CP-violating four-gluon operators correspond to

the Wilson coefficients C4G̃,2 and C4G̃,3 in (2.9). In the basis ~C8 =
(
C4G̃,1, C4G̃,2, C4G̃,3

)T
the one-loop AD matrix then reads [78,81,82]

γ̂8 =


−56 +

8

3
NF + 2β0 24 −36

−38 56 +
8

3
NF + 2β0 −42

−14 12 −14 +
8

3
NF + 2β0

 . (5.10)

Working in the five, four and three flavour theory and using the values of the QCD

coupling constant given earlier leads to the leading-logarithmic approximations

C4G̃,1(µH) ' 6.6C4G̃,1(mh) ,

C4G̃,2(µH) ' −1.9C4G̃,1(mh) ,

C4G̃,3(µH) ' 3.9C4G̃,1(mh) .

(5.11)

Notice that in contrast to (5.7) the Wilson coefficient C4G̃,1 of the dimension-eight

Weinberg operator that is generated at the matching scale gets enhanced by RG run-

ning.

Estimates of the hadronic matrix elements of the dimension-eight CP-violating four-

gluon operators were obtained in Section 3.2 with the help of QCD sum rules. Employ-

ing these results we find(
dn
)

4G̃

e
= −6.1

(
1± 0.8

)
C4G̃,1(mh) · 10−1 GeV3 , (5.12)

which has a theoretical uncertainty of 80%. Note that the sign in (dn)4G̃/e is predicted

in the QCD sum-rule approach and that neglecting all contributions from the two

additional dimension-eight operators in (2.9) would lead to a numerical result that

deviates from (5.12) by less than 5%.

5.1.2 Discussion

To discuss the constraints that nEDM measurements can impose on the CP-violating

dimension-six Higgs-gluon interactions appearing in (2.9), we introduce the dimension-

less Wilson coefficient

CφG̃(mh) = v2CφG̃(mh) . (5.13)
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5.1 CP-violating Higgs-gluon interactions

Combining (5.8) and (5.12) we then find in terms of the new Wilson coefficient the

following expression∣∣∣∣dne
∣∣∣∣ =

∣∣ (1± 0.05) + 8.6 (1± 0.5)− 65.1 (1± 0.5)− 7.5 (1± 0.8)
∣∣

× 6.2
∣∣∣CφG̃(mh)

∣∣∣ · 10−26 cm ,

(5.14)

where the contributions associated to the terms dq, d̃q, C3G̃ and the dimension-eight

Weinberg operators have been kept distinct.

In view of the sizeable hadronic uncertainties of the matrix elements of the operat-

ors of CEDM and Weinberg type and the relative overall sign of the Weinberg-type

contributions, we combine the errors in (5.14) in such a way that our prediction∣∣∣∣dne
∣∣∣∣ = 1.3

∣∣∣CφG̃(mh)
∣∣∣ · 10−24 cm (5.15)

provides a lower absolute limit on the actual size of the C̄φG̃ corrections to dn. Because

our error treatment assumes a cancellation among the numerically dominant contribu-

tions associated to C3G̃, d̃q and the dimension-eight terms, it is conservative. Notice

that if such a cancellation is not at work in practice, predictions for
∣∣dn/e∣∣ can be

obtained that are larger by a factor of about 5 than the upper limit (5.15) but still

consistent within the individual uncertainties quoted in (5.14).

The experimental result presented in equation (2.7) imposes a 95% CL bound on the

magnitude of the nEDM, which, using the lower limit of the only quark EDMs case

in (5.15) translates into ∣∣∣CφG̃(mh)
∣∣∣ < 1.8 · 10−2 . (5.16)

This result should be compared to the bounds obtained in the case of universal

theories which assume that the light-quark Yukawa couplings are SM-like [39] (i.e. κq =

1). For such theories the one-loop diagram on the right-hand side in Figure 5.1 induces

a CEDM for the down and up quark. In agreement with [39], we find the following

expression for the one-loop correction to the CEDMs

d̃q(mh)
∣∣
κq=1

=
3αs(mh)

2π
CφG̃(mh) , (5.17)

at the matching scale µ = mh. Including the contribution (5.17) in the evaluation of

the nEDM, the formula (5.8) turns into(
dn
)
d̃q ,3G̃

e

∣∣∣∣
κq=1

=
[ (

6.9 d̃q(mh) + 1.0C3G̃(mh)
) (

1± 0.05
)

+
(

36.7 d̃q(mh) + 8.8C3G̃(mh)
) (

1± 0.5
)

− 66.6C3G̃(mh)
(
1± 0.5

)]
· 10−4 GeV .

(5.18)

89



5 Low-energy probes of CP and baryon-number violation

Adding the new dimension-six contribution (5.18) to the dimension-eight piece (5.12)

we then obtain the formula∣∣∣∣dne
∣∣∣∣
κq=1

= 6.2
∣∣190.6 (1± 0.05) + 1016.6 (1± 0.5)

− 65.1 (1± 0.5)− 7.5 (1± 0.8)
∣∣ ∣∣∣CφG̃(mh)

∣∣∣ · 10−26 cm ,

(5.19)

In view of the sizeable hadronic uncertainties of the matrix elements in (5.19) and the

relative overall sign of the Weinberg-type contributions, we again combine the errors

in
∣∣dn/e∣∣ in such a way that the final prediction provides a lower absolute limit on the

actual size of the C̄φG̃ corrections to the nEDM. We find∣∣∣∣dne
∣∣∣∣
κq=1

= 3.6
∣∣∣CφG̃(mh)

∣∣∣ · 10−23 cm . (5.20)

Numerically, the result (5.20) implies that∣∣∣CφG̃(mh)
∣∣∣
κq=1

< 6.1 · 10−4 . (5.21)

Notice that the constraint on |CφG̃(mh)| for κq = 1 as given in (5.21) is comparable

to the bounds that have been derived in [39] by using the so-called Rfit strategy, in

which all hadronic matrix elements entering the prediction for the nEDM are varied

within their allowed ranges. This shows that the bound (5.16) obtained in the limit

of vanishing light-quark Yukawa couplings is weaker by a factor of almost 30 than the

95% CL exclusion limit in universal theories with SM-like Yukawa couplings of the light

quarks.

The constraint (5.16) can also be compared to the 95% CL limit

CφG̃(mh) ∈ [−0.13, 0.83] · 10−2 (5.22)

on the dimensionless Wilson coefficient (5.13) that has been obtained in [251] from an

analysis of the azimuthal angle difference ∆φjj between the two jets in h + 2j LHC

events. A comparison of the limits (5.16) and (5.22) on the CP-violating interactions

involving the Higgs boson and gluons in the limit of vanishing light-quark Yukawa

couplings shows that at present the sensitivity of nEDM searches is by roughly an

order of magnitude weaker than the constraining power of the LHC. This is mainly

a result of the conservative treatment of the hadronic uncertainties in (5.14) that led

to (5.15).

In order to obtain an idea of the prospects of the low-energy constraints, one can

assume that a lower bound of ∣∣∣∣dne
∣∣∣∣ < 1.0 · 10−27 cm (5.23)
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5.1 CP-violating Higgs-gluon interactions

can be set at the proposed PSI and LANL nEDM experiments [106, 107]. In such a

case, one arrives at the limit ∣∣∣CφG̃(mh)
∣∣∣ < 8.0 · 10−4 , (5.24)

if one assumes that (5.15) provides a lower absolute limit on the C̄φG̃ corrections to dn,

and one obtains ∣∣∣C̄φG̃(mh)
∣∣∣
κq=1

< 2.8 · 10−5 (5.25)

in the case of SM-like Yukawa couplings, i.e. if (5.20) holds.

The sensitivity study [251] of the pp → h+ 2j process finds on the other hand that

the high-luminosity LHC (HL-LHC) should be able to set a bound of∣∣∣CφG̃(mh)
∣∣∣ < 9.2 · 10−4 . (5.26)

From (5.24), which in a sense represents the worst-case scenario for next-generation

EDM bounds, and (5.26) it is evident that in the future the sensitivity of nEDM

searches can reach the LHC level even if the accuracy of the hadronic matrix elements

is not improved. First-principle calculations of the matrix elements of the CEDMs and

the dimension-six Weinberg operator are possible using existing LQCD methodology,

and considering the efforts by several LQCD groups [95–102], it seems possible that

estimates with uncertainties similar to the current ones can be obtained within the

next five years [103,104]. It remains to be seen which accuracy such computations can

achieve in the next 20 years of LHC running, but it seems to be very likely that the

bound (5.24) can be improved by the end of the HL-LHC run.
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5 Low-energy probes of CP and baryon-number violation

5.2 Proton decay in the GRSMEFT

Most of the existing proton decay searches focus on two-body decay channels. However,

the null results provided by these experiments (cf. [123–125] for comprehensive sum-

maries of the available experimental results) together with the observation that many

higher-dimensional operators violating baryon number by one unit induce multi-body

proton decay modes, make proton decay processes with more complicated final states

interesting search targets for existing and next-generation neutrino experiments like

SK [26], Hyper-Kamiokande (HK) [296], JUNO [297] and DUNE [298]. In this section,

the decay mode p→ π0 e+G with G a graviton is examined. This proton decay chan-

nel is the most relevant mode induced by the dimension-eight interaction (2.21) in the

GRSMEFT (cf. Section 2.4). In the following, the differential decay rate of p→ e+π0G

is computed and the sensitivity of existing and next-generation neutrino experiments

to this proton decay mode is discussed.

The amplitude for the decay p(pp)→ e+(pe)π
0(pπ)G(p) can be written as a suitable

product of a leptonic and hadronic part,

A
(
p→ e+π0G

)
= −2κc /B ε

∗
µρ(p, λ) pσpν v̄

c
e(pe)PR σ

ρσHµν(pp, q)up(pp) . (5.27)

Here, ε∗µρ(p, λ) denotes the conjugate of the polarisation tensor of the graviton with

four-momentum p and polarisation λ. The variable q ≡ pp−pπ = p+pe denotes the four-

momentum transfer from the proton to the neutral pion, and enters A
(
p→ e+π0G

)
through the hadronic tensor Hµν(pp, q). Notice that in order to obtain (5.27) the

gauge of the graviton is chosen such that the polarisation tensor is transverse and

traceless, i.e. the following terms can be omitted in the decomposition of the decay

amplitude (5.27)

pµε∗µρ(p, λ) = 0 , ε∗µµ (p, λ) = 0 . (5.28)

The LCSR results for the hadronic form factors, which are defined in (4.58) and

parametrise Hµν(pp, q), are presented in Section 4.2.3. With the help of the expres-

sions (4.70) to (4.73) the p → e+π0G decay amplitude (5.27) can be calculated. One

first notices that after making use of the on-shell conditions for the graviton
(
cf. (5.28)

)
the contribution of w4 vanishes. This feature can be understood by means of the soft

pion theorem [299, 300]. In fact, in the soft pion limit and recalling that q = pp − pπ
one finds that all terms but the contribution of w4 vanish in the hadronic tensor:

lim
pπ→0

Hµν(pp, q) = Hµν(pp, pp) = iw4PRσ
µνup(pp) . (5.29)
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5.2 Proton decay in the GRSMEFT

However, in the limit pπ → 0 the pion can be removed from the decay amplitude giving

rise to the following relation

lim
pπ→0

〈e+Gπ0(pπ)|L(8)
/B

(0)|p〉 =− i√
2fπ
〈e+G|L(8)

/B
(0)|p〉

+ lim
pπ→0

√
2

fπ
pµπ

∫
d4x eipπx 〈e+G|T

[
JAµ (x)L(8)

/B
(0)
]
|p〉 ,

(5.30)

where JAµ (x) ≡
[
ū(x)γµγ5u(x)− d̄(x)γµγ5d(x)

]
/2 denotes the axial current and the

pion field is related to this current by π0(x) =
√

2 ∂µJAµ (x)/(fπm
2
π). The second term

in (5.30) vanishes unless there are additional poles in the soft pion limit. Such poles

occur if the pion is attached to one of the external lines [300] in the p→ e+G amplitude,

which is formally described by inserting a complete set of intermediate states between

the operators in the time-ordered product. The pion however can only couple to the

external proton line, so pole contributions arise only when the pion is emitted from

the incoming proton. This type of correction thus leads again to the matrix element

of the p → e+G transition, which however satisfies 〈e+G|L(8)
/B

(0)|p〉 = 0, because the

transition is forbidden by angular momentum conservation. As a result the right-hand

side of (5.30) vanishes identically:

lim
pπ→0

〈e+Gπ0(pπ)|L(8)
/B

(0)|p〉 = 0 . (5.31)

Since the form factor w4 itself is non-vanishing it then follows that the associated

Lorentz structure (5.29) does not contribute to the proton decay channel p → e+π0G

at all.

By squaring the amplitude, summing over spins and polarisations and calculating

the phase space integrals the differential decay width can be computed. Note that the

transversality of the graviton
(
see (5.28)

)
has been used to drop unphysical contribu-

tions which violates the gauge symmetry of gravity in the weak field limit as defined

by the transformation (2.19). The gauge symmetry ensures that negative-norm states

cancel out in the sum over polarisations. Therefore the sum has to be constrained to

physical polarisations only by employing [301]

∑
λ

ε∗αβ(p, λ)εγδ(p, λ) =
1

2

(
η′αδη

′
βγ + η′αγη

′
βδ − η′αβη′γδ

)
, (5.32)

with

η′µν ≡ ηµν −
p̄µpν + pµp̄ν

p · p̄
, (5.33)

and p̄ ≡ (p0,−~p) such that p̄2 = 0.
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5 Low-energy probes of CP and baryon-number violation

Neglecting the mass of the positron but keeping the mass of the neutral pion, the

p→ e+π0G width corresponding to the fiducial region of the three-particle phase space

defined by an upper cut on the graviton energy can be written as

Γ
(
p→ e+π0G

)
fid

=
m7
p |c /B|2

128π3M 2
Pl

∫ yfid

0
dy

∫ z1

z0

dz (xπ + y + z − yz − 1)

× (xπ + y + z − 1)2
[
l1 (w1 + w3)2 + l2w

2
2 + l3w2 (w1 + w3)

]
.

(5.34)

Here we have defined y ≡ 2EG/mp and z ≡ 2Ee/mp with EG (Ee) the graviton

(positron) energy in the rest frame of the proton, xπ ≡ m2
π/m

2
p, the boundaries for

the integral over z are given by

z0 = 1− xπ − y , z1 =
1− xπ − y

1− y
, (5.35)

and

l1 = −4y , l2 = y
[
4xπ − (y + z − 2)2 ] , l3 = −4

[
2xπ − (y+ z) (y − 2)− 2

]
. (5.36)

When expressed through the integration variables of (5.34) the scale Q2 that enters the

form factors wn finally takes the following form

Q2 = −q2 = −m2
p

(
xπ + y + z − 1

)
. (5.37)

The GRSMEFT proton decay mode p→ e+π0G experimentally leads to events that

contain a positron, two photons arising from the decay of the neutral pion and missing

energy (Emiss) because the graviton escapes the detector undetected. Such a signature

has to our knowledge not been searched for directly in experiments that study the

possible decays of the proton. As we will show, existing searches that are however

sensitive to p → e+π0G are the inclusive search p → e+X with X an arbitrary final

state and the exclusive search for p→ e+π0. The total inclusive rate p→ e+X can be

obtained by employing yfid = 1− xπ in (5.34). Numerically, we find that

Γ
(
p→ e+π0G

)
=
m7
pΛ4

p |c /B|2

256π3M 2
Pl

, Λp = (99± 13) MeV . (5.38)

Here we have introduced the hadronic parameter Λp, and the normalisation factor

1/(256π3) takes into account the phase-space suppression for a three-body decay. The

uncertainty on Λp is obtained by calculating the minimal and maximal decay width that

can be achieved by considering all possible combinations of the form factor paramet-

erisations (4.70) to (4.73). Notice that since Λp appears in (5.38) to the fourth power

the LCSR prediction for Γ
(
p→ e+π0G

)
has an uncertainty of order 50%. The the-

ory uncertainties of Γ
(
p→ e+π0G

)
are therefore significantly larger than those that
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5.2 Proton decay in the GRSMEFT

plague the GUT predictions for Γ
(
p→ e+π0

)
obtained in both LQCD [217–224] and

LCSRs [21].

Searches for the two-body decay mode p → e+π0 can also be used to set a bound

on the GRSMEFT interaction (2.21), because the cuts that experiments such as SK

impose do not fully eliminate the contributions that arise from p → e+π0G. The

relevant requirements in these experiments are selections on the invariant mass meπ

and the magnitude of the three-momentum peπ of the e+π0 system. In the rest frame

of the proton these quantities can be expressed in terms of the graviton energy as

meπ =
√
mp (mp − 2EG) and peπ = EG. In the latest SK search [122] the definition

of the signal region involves the requirements meπ > 800 MeV and peπ < 250 MeV,

meaning that all p→ e+π0G events that satisfy the meπ selection also pass the peπ cut.

To quantify by how much a lower cut meπ > mcut
eπ reduces the observed p → e+π0G

decay width we introduce the acceptance

A
(
mcut
eπ

)
=

Γ
(
p→ e+π0G

)
fid

Γ (p→ e+π0G)
, (5.39)

where Γ
(
p→ e+π0G

)
fid

is the fiducial decay width (5.34) evaluated setting yfid =

1 −
(
mcut
eπ /mp

)2
and Γ

(
p→ e+π0G

)
is the total inclusive width given in (5.38). In

Figure 5.3 we show our predictions for A
(
mcut
eπ

)
in the range of mcut

eπ that is relevant for

searches for the two-body proton decay mode p→ e+π0 at existing and next-generation

water Cherenkov detectors.

We are now in a position to derive bounds on the Wilson coefficient c /B that multiplies

the dimension-eight operator in (2.21). We begin with the inclusive p → e+X decay.

The currently best proton lifetime limit from p → e+X is unfortunately more than

40 years old. It reads [302]

τp
(
p→ e+X

)
> 0.6 · 1030 yr , (5.40)

and together with (5.38) leads to

|c /B| < (104 GeV)−4 (5.41)

at the 90% CL. It has been pointed out in [124] that with existing data from water

Cherenkov detectors it should be possible to set a significantly better limit on p →
e+X compared to the proton lifetime limit reported in (5.40). An estimate of such

an improved limit can be obtained from the limit of 1.7 · 1032 yr at 90% CL on the

p → e+ + Emiss channel [303] since the latter decay bears close resemblance to the

inclusive p→ e+X mode. In fact, the authors of [124] estimated that with the available

SK data it should be possible to improve (5.40) by around two orders of magnitude.

Note that a factor of 100 improvement on τp (p→ e+X) would push the bound (5.41)

up to (186 GeV)−4.

95



5 Low-energy probes of CP and baryon-number violation

600 650 700 750 800 850 900

10-6

10-5

10-4

0.001

0.010

0.100

meπ
cut [MeV]

A
(m
eπcu
t )

Figure 5.3: Acceptance (5.39) as a function of the cut meπ > mcut
eπ on the invariant mass of

the e+π0 system. The red curve indicates the central prediction, while the red band illustrates

the maximal variations that result from considering all possible combinations of the form factor

parameterisations (4.70) to (4.73) in the fiducial decay width keeping the inclusive decay width

fixed at the central value. See text for further details.

In order to determine the SK sensitivity to the p→ e+π0G signature that derives from

the measurement [303], we need to compute the acceptance (5.39) for mcut
eπ = 800 MeV.

Using the central value of the hadronic parameter Λp as given in (5.38) we find

A (800 MeV) = 2.7 · 10−3 (1± 0.40) . (5.42)

The smallness of the acceptance is compensated by the fact that the 90% CL lower limit

on the lifetime of the proton in p → e+π0 is by more than five orders of magnitude

better than (5.40) since one has [122] (cf. also Section 2.3)

τp
(
p→ e+π0

)
> 2.4 · 1034 yr . (5.43)

Combining (5.38) for Λp = 99 MeV with (5.42) and (5.43) one obtains

|c /B| < (185 GeV)−4 (5.44)

at the 90% CL. Notice that this bound is very close to the limit that has been quoted

above by assuming a factor of 100 improvement of τp (p→ e+X) compared to (5.40)

based on the estimate presented in [124].

It is also straightforward to estimate the sensitivity of HK to the Wilson coefficient

c /B. Running HK for eight years it should be possible to set the following 90% CL
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5.2 Proton decay in the GRSMEFT

bound

τp
(
p→ e+π0

)
> 1.0 · 1035 yr . (5.45)

This limit has been obtained in [296] by considering the same signal region for p→ e+π0

as the latest SK search [122]. Consequently, we can again use (5.38) and (5.42) as well

as (5.45) to arrive at

|c /B| < (222 GeV)−4 . (5.46)

This bound on the Wilson coefficient of the dimension-eight baryon-number violating

operator (2.21) is probably the ultimate limit that can be set with the help of data from

next-generation neutrino detectors, because both JUNO and DUNE are not expected

to reach the HK sensitivity to the p→ e+π0 mode
(
cf. [297,298]

)
.
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6 Conclusions

The matter-antimatter asymmetry of the observable universe implies, under certain

assumptions (cf. Chapter 1), the existence of new physics that violates the conservation

of CP and baryon number. In fact, many theoretical models for BSM physics admit

new sources of CP and baryon-number violation. A wide range of the BSM landscape

related to these fundamental symmetries can be constrained by experimental data with

the help of a suitable EFT, i.e. in a bottom-up approach. If new particles are too heavy

to be produced on-shell in an experiment, their effects on observables at low energies

can be systematically taken into account by effective, higher-dimensional operators that

augment the SM interactions.

This feature was employed in the work at hand to study the implications of cer-

tain CP- and baryon-number-violating interactions in a model-independent way. The

observable consequences of these new interactions — contributions to the nEDM and

proton decay — can be probed experimentally with high sensitivity. An overview of

the relevant operator basis in the EFT approach as well as the corresponding experi-

mental probes was provided in Chapter 2. In particular, it was pointed out that the

theory predictions for the relevant observables rely on the knowledge of the associated

hadronic matrix elements, which cannot be computed perturbatively in QCD. Thus,

predictions for the hadronic parts of the relevant scattering amplitudes by other means

are required. This was addressed subsequently in Chapters 3 and 4 where in particular

the nEDM and proton-decay searches were examined. The results of these two chapters

were used in Chapter 5 to explore the phenomenology of CP-violating Higgs-gluon in-

teractions as well as baryon-number-violating interactions involving gravity. The latter

arise in the GRSMEFT and augment not only the strong and electroweak interactions

of the SM but also GR. The results of Sections 3.2, 4.1, 4.2, 5.1 and 5.2 represent the

main achievements of this work, which were originally presented in [19–22], and they

are now discussed in turn.

First, in Section 3.2, the hadronic matrix elements of dimension-six and dimension-

eight operators of Weinberg type (3.17) that contribute to the nEDM dn were calcu-

lated with the help of QCD sum-rule techniques. Calculations along the same line

of the dimension-four and dimension-five contributions to the nEDM, i.e. the QCD θ

term and CEDMs, were performed in [90–92, 172, 173]. A sum-rule estimate of the
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dimension-six Weinberg operator O6 also exists in literature [94], but this article does

not provide details on the actual computation, which motivates the independent eval-

uation presented in this work. The determination of the hadronic matrix elements of

the dimension-eight term O8 is instead new and provides the first systematic study of

contributions to dn due to CP-violating four-gluon operators. The main results are the

numerical expressions (3.96) and (3.99).

The sum-rule estimates are based on the observation [93,94] that the Weinberg-type

contributions to the nEDM can be obtained by calculating the iγ5 rotation of the nuc-

leon wave function induced by (3.17) and relating it to the corresponding rotation of

the neutron anomalous magnetic moment µn. In this approximation only those dia-

grams are included that factorise into a propagator with a CP-violating mass insertion

and into a part that couples to the external photon field, while non-factorisable ver-

tex corrections are neglected (see Figure 3.1). In addition, contributions from excited

neutron-like states were neglected. These simplifications lead to uncertainties in the

predictions that can be estimated to be of the order of 35% using Borel techniques.

The OPE computation of the dimension-six and dimension-eight sum rules is described

in detail, and includes a discussion of the matching and the appropriate choice of the

neutron-interpolating current. The final analytic expressions for the O6 and O8 contri-

butions to dn are reported in (3.94) and (3.97), respectively, and the result for
∣∣(dn)O6

∣∣
agrees with the findings given in [94]. The hadronic matrix elements of the Weinberg-

type operators turn out to be logarithmically sensitive to the ratio M/ΛQCD of the

Borel mass and the QCD scale. This IR sensitivity provides the dominant theoretical

uncertainty of the final predictions. By varying M/ΛQCD in the range
√

2 · [1, 2] one

finds uncertainties close to 45%, which exceeds the size of the expected effects from

vertex diagrams and excited states. Adding individual errors in quadrature the total

uncertainties of the numerical predictions for (dn/e)O6 and (dn/e)O8 are 50% and 80%.

Sum-rule studies of the θ-term and CEDM contributions to the nEDM [90–92,172,173]

have found uncertainties of a similar magnitude.

While the sum-rule estimates of the dn contributions due to the dimension-six and

dimension-eight operators of Weinberg type (3.17) have sizeable uncertainties, they can

be considered to be more robust than other existing determinations that are based on

NDA [77] or the VIA [93]. In particular, in the sum-rule approach there is no sign

ambiguity between the prediction for dn and the hadronic matrix elements of O6 and

O8 — see for instance [60,67,69,72,75] for EDM studies that allow for both signs of the

O6 contribution. To find out whether the sum-rule estimates are reliable would require

first-principle calculations of the nEDM, which are in principle possible using existing

LQCD methodology. While such calculations have gained significant momentum [95–

102], LQCD simulations involving Weinberg-type operators are challenging [103, 104],
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and it remains to be seen which accuracy such computations can achieve in the near

future. Till then phenomenological studies of hadronic EDMs have to rely on the

predictions (3.96) and (3.99) despite all their limitations.

The sum-rule estimates for the nEDM were employed in Section 5.1 to study the phe-

nomenology of CP-violating Higgs-gluon interactions in BSM scenarios with vanishing

light-quark Yukawa couplings. From the discussion presented in Section 5.1.2 it be can

be concluded that future nEDM searches and LHC measurements are complementary to

each other even in the specific class of new-physics models where the Yukawa couplings

of light quarks are zero. This is an interesting finding because such new-physics real-

isations represent in some sense the worst-case scenario for the low-energy constraints

considered here. The results show furthermore that in a global SMEFT analysis, EDM

constraints can have additional flat or weakly bound directions (cf. Section 2.1) that do

not appear in the case of universal theories considered in [39, 74]. As already emphas-

ised in [39], to resolve unbounded directions in the multi-dimensional space of Wilson

coefficients, high-pT and low-energy constraints on CP-violating couplings between the

Higgs and gauge bosons should be combined into global fits. The nEDM results presen-

ted in this work can be readily used for such a purpose.

Another important result of this work is the prediction for the hadronic matrix ele-

ments of the full set of baryon-number violating dimension-six SMEFT operators (2.13)

from LCSR techniques, which is presented in Section 4.1. These hadronic matrix ele-

ments are needed to predict the rates of the main proton decay modes in GUTs, where

a proton decays into a pseudoscalar meson and an anti-lepton. Specifically, the focus

in this work lies on the decay p → π0e+, and the explicit LCSR expressions for the

relevant form factors are presented in Appendix E, which include the leading contri-

butions in the light-cone expansion, namely the twist-2 and twist-3 pion DAs. We

performed a detailed study of the dependence of the LCSRs on both the unphysical

(i.e. the continuum threshold and the Borel mass) and the physical (i.e. the condens-

ates and the pion DAs) parameters, and discussed the possible impact of twist-4 effects.

This can be used to provide results and estimate uncertainties for the form factors in

the kinematical regime where the momentum transfer q from the proton to the pion

is space-like, i.e. Q2 = −q2 > 0, and lies in the range 0.5 GeV2 ≤ Q2 ≤ 2.5 GeV2.

The LCSR results were then extrapolated to the physical point Q2 ' 0 by means of

both a linear and a quadratic fit, including the spread of predictions in the uncertainty

estimates. The analysis indicates that one of the four sum rules is not reliable, and

therefore only the other three are considered when determining the final predictions

for the physical form factors Wn
ΓΓ′ with n = 0, 1 and ΓΓ′ = RR,LR from the range of

different solutions shown in Figures 4.4 and 4.5.
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6 Conclusions

The final results for Wn
ΓΓ′ can be found in (4.53) and (4.54), and the LCSR results

are compared to the state-of-the-art LQCD predictions [223] in Figure 4.6. The un-

certainties of the LCSR results amount to (25− 40)%, while the total accuracy of the

LQCD form factors is (10 − 15)%. In view of the inherent systematic uncertainties of

LCSRs, it is not clear to which extent possible refinements of the calculations such as

including higher-twist contributions or perturbative corrections would increase the pre-

cision of (4.53) and (4.54). The observed overall agreement between these results and

the latest LQCD form factors demonstrates however that LCSRs can be successfully

applied to the calculations of proton decay matrix elements, and that such computa-

tions can achieve a precision that is better than the alternative methods to estimate

proton decay rates which were developed in the ’80s.

Even LQCD calculations of three-body proton decay processes at arbitrary kinemat-

ics seem to be in reach in the coming years (see [104] for a discussion), but it remains to

be seen which accuracy such computations can initially achieve. Therefore, the LCSR

techniques presented in this work are presently the only available tool for calculating the

form factors that parametrise the hadronic matrix elements of semi-leptonic three-body

proton decays, which is discussed in Section 4.2. While the presented formalism and

the obtained results are general, this work specifically focused on the computation of

the differential decay rate for the process p→ e+π0G with G a graviton. This channel

is the dominant proton decay mode in the GRSMEFT, since the two-body transition

p → e+G is forbidden by angular momentum conservation. Like in Section 4.1 the

LCSR study includes the leading contributions in the light-cone expansion, namely the

twist-2 and twist-3 pion DAs — the explicit expressions can be found in Appendix F

— and a detailed study of the dependence of the obtained LCSRs on all unphysical and

physical parameters was performed. In this way, the uncertainties of the final results

for the form factors were obtained in the kinematical regime where the momentum

transfer q from the proton to the pion is space-like. The LCSR results were then again

extrapolated to the physical regime 0 ≤ q2 ≤ (mp −mπ)2 by means of both a linear

and a quadratic fit, including the spread of predictions in the uncertainty estimates.

The resulting uncertainties turned out to be significantly larger than those that plague

the hadronic matrix elements that are relevant in the GUT case (cf. Section 4.1.3).

The LCSR results for the form factors were used in Section 5.2 to study the sensitivity

of existing and next-generation water Cherenkov detectors in looking for the p→ e+π0G

signature. To this purpose, the rate for p→ e+π0G was calculated differentially in the

energies of the final state particles. Next, the bounds on the amount of dimension-eight

baryon-number violation in the GRSMEFT were derived considering both the inclusive

search for p → e+X [124, 302] and the exclusive search for p → e+π0. It turned out

that the best constraint arises at the moment from the latest SK search for the two-
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body decay mode p → e+π0 [122]. In fact, this search is able to set a 90% CL lower

limit of 185 GeV on the effective mass scale that suppresses the relevant baryon-number

violating GRSMEFT interactions. HK measurements are expected to be able to push

this limit up to 222 GeV.
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A Fixed-point gauge

In the case of QCD the fixed-point or Fock-Schwinger gauge [304, 305] can be defined

without loss of generality for gauge-invariant quantities by

xµGAµ (x) = 0 , (A.1)

where it is sufficient to restrict this choice of gauge to classical gluon fields.

For the gauge choice (A.1) it is easy to show that it is possible to express the

gluon field through the QCD field strength tensor GAµν(x) = ∂µG
A
ν (x) − ∂νG

A
µ (x) +

gsf
ABCGBµ (x)GCν (x) evaluated at x = 0. To derive the sought relation, one notices

first that

GAµ (x) = ∂µ
(
xνGAν (x)

)
− xν∂µGAν (x)

= −xν
(
GAµν(x) + ∂νG

A
µ (x)− gsfABCGBµ (x)GCν (x)

)
= xνGAνµ(x)− xν∂νGAµ (x) ,

(A.2)

where we have employed the gauge condition (A.1) twice and used the anti-symmetry

of GAµν to obtain the final result. Setting xν = αyν with an arbitrary parameter α, one

can then write

xνGAνµ(x) = αyνGAνµ(αy) = GAµ (αy) + αyν
∂

∂(αyν)
GAµ (αy) =

d

dα

(
αGAµ (αy)

)
. (A.3)

Now if one integrates both sides of the above relation over α ∈ [0, 1] and assumes that

GAµ (x) is non-singular at x = 0, one finds

∫ 1

0
dααyνGAνµ(αy) = GAµ (y) . (A.4)

Using a similar assumption for the QCD field strength, one can Taylor expand GAνµ(αy)

around αy = 0 and perform the integration on the left-hand side of (A.4). It follows

that

GAµ (x) =
1

2
xνGAνµ(0) +

1

3
xνxρ∂ρG

A
νµ(0) + . . . , (A.5)

where we have switched back from the variable y to the variable x.
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A Fixed-point gauge

The latter expression can be further simplified by noting that as a result of (A.1),

the partial derivatives in (A.5) can be promoted to covariant derivatives Dµ = ∂µ −
igsG

A
µT

A. In consequence, one has

GAµ (x) =
1

2
xνGAνµ(0) +

1

3
xνxρDρG

A
νµ(0) + . . . , (A.6)

in the fixed-point gauge of QCD. The same result also holds in the case of EM fields

with GAµ replaced by Aµ and GAµν replaced by Fµν .

Finally, notice that due to (A.1) the Taylor expansion of the classical quark field q

can also be formulated in terms of covariant rather than partial derivatives. One has

q(x) = q(0) + xµDµq(0) +
1

2
xµxνDµDν q(0) + . . . . (A.7)
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B OPE for the quark propagator

The free position-space propagator S(0)(x) of a massless quark is easily derived by

taking the Fourier transform of the well-known momentum-space representation

S(0)(x) =

∫
d̄ 4p e−ipx

i/p

p2
=

1

(2π)4

(
−i/∂E

) ∫
d4pE

eipExE

p2
E

, (B.1)

where colour indices are implicit and we have applied a Wick rotation to Euclidean

space using x2 → −x2
E and p2 → −p2

E . The four-dimensional integration measure can

be written as d4pE = p̄3dp̄dΩ4, where the magnitude of the four-dimensional Euclidean

momentum vector has been denoted by p̄ = |pE |. The differential solid angle is given

by ∫
dΩ4 =

∫ 2π

0
dφ

∫ π

0
dθ1dθ2 sin θ1 sin2 θ2 . (B.2)

It follows that dΩ4 = dΩ3 sin2 θ2 and (B.1) hence takes the form

S(0)(x) =
1

4π3
(−i/∂E)

∫ ∞
0
dp̄p̄

∫ π

0
dθ2 sin2 θ2 e

ip̄x̄ cos θ2

=
1

4π3
(−i/∂E)

∫ ∞
0
dp̄p̄

πJ1(p̄x̄)

p̄x̄
=

1

4π2
(−i/∂E)

1

x̄2
=

i/x

2π2x4
.

(B.3)

Here x̄ = |xE |, J1(z) denotes the Bessel function of first kind with index 1 and in the

final step we have rotated back from Euclidean to Minkowski space noting that /xE → /x.

In order to determine the non-perturbative contributions Sq(x) to the quark propag-

ator, one needs to evaluate the correlator
〈
0|T
[
qia(x)q̄jb(0)

]
|0
〉
. Using the expansion of

the classical quark field (A.7), one obtains〈
0|T
[
qia(x)q̄jb(0)

]
|0
〉

=
〈
qia(0)q̄jb(0)

〉
+ . . . = − 1

12
δabδ

ij 〈q̄q〉+ . . . , (B.4)

where the fields of the condensate 〈q̄q〉 are evaluated at x = 0. Notice that the minus

sign in the final result comes from the exchange of the fermion fields and the numerical

prefactor can be determined by contracting the expression in the middle and on the

right with δabδij . Ignoring colour and spinor indices, the expansion (B.4) thus leads to

the expression for Sq(x) as given in (3.42).
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C Fourier transforms

We define the Fourier transform of a function F (p) by

F
[
F (p)

]
=

(
µ2

IR

4πeγE

)−εIR ∫
d̄ 4+2εIRp e−ipx F (p) , (C.1)

where we performed the integration in d = 4+2εIR space-time dimensions with εIR > 0

to regulate the IR divergences that appear in some of the Fourier integrals that were

encountered in Sections 3.2.2.3 and 3.2.3.1. The symbol γE denotes Euler’s constant

and µIR is a mass scale needed to restore the correct dimensionality of (C.1).

In the case that F (p) is polynomial in 1/p2, a simple calculation along the lines of

the computation performed in Appendix B leads to

F

[
1

(p2)k

]
=

i

4kπ2

(
−
µ2

IRx
2

4eγE

)−εIR Γ (2− k + εIR)

Γ (k)

(
x2
)k−2

, (C.2)

where k ∈ N+. The Fourier transforms of type (C.2) relevant for this work are

F
[

1

p2

]
=

i

4π2x2
, (C.3)

F
[

1

p4

]
=

i

16π2

[
1

εIR
− ln

(
−
µ2

IRx
2

4

)]
. (C.4)

Tensor Fourier integrals with a polynomial denominator of the form (p2)k can be

obtained from (C.2) by taking derivatives

F

[
pµpν · · ·

(p2)k

]
=
(
i∂µ
)(
i∂ν
)
· · · F

[
1

(p2)k

]
. (C.5)

This procedure allows us to derive for example

F
[
pµpν
p4

]
= − i

4π2x4

(
xµxν −

gµν
2
x2
)
, (C.6)

a relation that has been used in Sections 3.2.2.3 and 3.2.3.1.

In the sum-rule calculations we also encountered UV divergent Fourier transform-

ations of a function F (x). To regulate UV divergences we work in d = 4 − 2εUV

space-time dimensions with εUV > 0, introduce the mass scale µUV and define

F
[
F (x)

]
=

(
µ2

UVe
γE

4π

)−εUV ∫
d 4−2εUVx eipx F (x) . (C.7)
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C Fourier transforms

If F (x) is a polynomial in 1/x2, it is straightforward to evaluate (C.7). For k ∈ N+

we obtain

F

[
1

(x2)k

]
= − iπ2

4k−2

(
−
µ2

UVe
γE

p2

)−εUV Γ (2− k − εUV)

Γ (k)

(
p2
)k−2

. (C.8)

The Fourier integrals of the form (C.8) that occur in this thesis are

F
[

1

x2

]
= −4iπ2

p2
, (C.9)

F
[

1

x6

]
= − iπ

2p2

8

[
1

εUV
− ln

(
−
µ2

UV

p2

)
− 1

]
. (C.10)

We also encountered Fourier transforms that are both IR and UV divergent. They

are of the type F
[
1/
(
(x2)l

)
F
[
1/
(
(p2)k

)]]
with k, l ∈ N+. Using the result given

in (C.2) and (C.8) these double integrals are readily computed. We find

F

[
1

(x2)l
F

[
1

(p2)k

]]
=

1

4l

(
−

µ2
IR

p2eγE

)−εIR (
−
µ2

UVe
γE

p2

)−εUV

× Γ (2− k + εIR) Γ (k − l − εIR − εUV)

Γ (k) Γ (2− k + l + εIR)

(
p2
)l−k

.

(C.11)

The only Fourier integral of the form (C.11) that is necessary to compute the two-loop

contributions to the OPE correlation functions considered in this work is

F
[

1

x6
F
[

1

p4

]]
=

p2

128
ln

(
−
µ2

IR

p2

)
ln

(
−
µ2

UV

p2

)
+ . . . , (C.12)

where the ellipsis represents terms that vanish after Borel transformation (cf. Sec-

tion 3.1), meaning that these contributions do not enter the analytic expressions (3.94)

and (3.97).
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D Pion DAs

We use the following expressions for the pion DAs including terms proportional to the

pion mass, which have been derived in [200] (and [199] in the chiral limit) with the help

of a conformal expansion. One has

φ(2)(u, µ) = 6uū
[
1 + a2(µ)C

(3/2)
2 (ζ) + a4(µ)C

(3/2)
4 (ζ)

]
, (D.1)

φ(3)
p (u, µ) = 1 +

(
30η3(µ)− 5

2
ρ2
π

)
C

(1/2)
2 (ζ)

(D.2)

+

(
−3η3(µ)ω3(µ)− 27

20
ρ2
π −

81

10
ρ2
πa2(µ)

)
C

(1/2)
4 (ζ) ,

φ(3)
σ (u, µ) = 6uū

[
1 +

(
5η3(µ)− 1

2
η3(µ)ω3(µ)− 7

20
ρ2
π −

3

5
ρ2
πa2(µ)

)]
C

(3/2)
2 (ζ) ,

(D.3)

T (3) (αd, αu, αg, µ) = 360η3(µ)αdαuα
2
g

[
1 +

1

2
ω3(µ) (7αg − 3)

]
, (D.4)

where the expansion in terms of the Gegenbauer polynomials C
(m)
n (ζ) with ζ ≡ 2u− 1

is truncated after n = 4. The hadronic parameters that enter the above definitions

depend on the renormalisation scale µ which we set equal to 1 GeV in our numerical

analysis.

We adopt the numerical values of the two Gegenbauer moments presented in [306],

a2(1 GeV) = 0.17± 0.08 , a4(1 GeV) = 0.06± 0.10 , (D.5)

where the moments are obtained by fitting sum rules for the EM pion form factor to

the experimental data of [307]. For the numerical values of the other parameters we

rely on the sum rules estimates of [243]:

f3π(1 GeV) = (0.45± 0.15) · 10−2 GeV2 , ω3(1 GeV) = −1.5± 0.7 . (D.6)

Using the definition f3π(µ) ≡ fπµπη3(µ) together with (4.51) we then find

η3(1 GeV) = 0.017± 0.006 , (D.7)

where the individual uncertainties are added in quadrature.
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E Analytic results of the LCSRs for

two-body proton decay

In this appendix, we provide the analytic expressions for the QCD correlation functions

that appear on the right-hand side of the LCSRs (4.45) for the two proton decay

p → π0e+ — the integrations over the momentum fractions have to be calculated

numerically. The hat on the functions Π̂QCD,γ
ΓΓ′ indicates that we have subtracted the

contributions of heavy states before taking the Borel transform of the QCD results. We

obtain

Π̂QCD,S
RR =

ifπ

32
√

2

{
m2

0 〈q̄q〉
3

[ ∫ ∆

0
du

φ(2)(u)

ū3M2
e(s̃)

(
Q2 + ū2m2

π − ūM2
)

(E.1)

+
φ(2)(∆)

∆̄
e(s0)

]
− 3µπM

4

π2

∫ ∆

0
du ū φ(3)

p (u) e(s̃)Ẽ2(s̃)

}
,

Π̂QCD,P
RR =

ifπmp

12
√

2

{
M2

8π2

∫ ∆

0
duφ(2)(u) e(s̃)

[ (
Q2 + ū2m2

π

)
Ẽ1(s̃)− 13ūM2Ẽ2(s̃)

]

+
µπm

2
0 〈q̄q〉

4M2

[ ∫ ∆

0
du

φ
(3)
p (u)

ū
e(s̃) +

∆̄M2φ
(3)
p (∆)

Q2 + ∆̄2m2
π

e(s0)

]

+
µπ 〈q̄q〉
3M2

(
1− ρ2

π

) {∫ ∆

0
du

φ
(3)
σ (u)

ū3
e(s̃)

×
[
2ū2M2

(
1− m2

0

12ūM2

)
− ū

(
Q2 + ū2m2

π

)(
1− m2

0

6ūM2

)]

−M2φ(3)
σ (∆) e(s0)

(
1− m2

0

6∆̄M2

)
+

∆̄m2
0M

2

6
(
Q2 + ∆̄2m2

π

) e(s0)
∂

∂∆
φ(3)
σ (∆)

}
(E.2)

− µπ 〈q̄q〉
M2

[ ∫ 1

0
Dαθ (α−∆g)

T (3) (1− αu − αg, αu, αg)
α3

e(s̃g)

×
[
2ūQ2 − 2ūαM2 + (1− 4u)α2m2

π

]
+M2e(s0)

∫ 1

0
du dαg θ (1− ūαg −∆g)

T (3) (1− ūαg −∆g,∆g − uαg, αg)
∆g

(
Q2 + ∆2

gm
2
π

)
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E Analytic results of the LCSRs for two-body proton decay

×
[
2ūQ2 + (1− 4u)∆2

gm
2
π

] ]}
,

Π̂QCD,Q
RR =

ifπmp

12
√

2

{
M2

8π2

∫ ∆

0
du

φ(2)(u)

ū
e(s̃)

×
[
u(Q2 + ū2m2

π)Ẽ1(s̃) + ū(14− 13u)M2Ẽ2(s̃)
]

+
µπm

2
0 〈q̄q〉

4M2

[ ∫ ∆

0
du

uφ
(3)
p (u)

ū2
e(s̃) +

∆M2φ
(3)
p (∆)

Q2 + ∆̄2m2
π

e(s0)

]

+
µπ 〈q̄q〉
3M2

(
1− ρ2

π

) {∫ ∆

0
du

φ
(3)
σ (u)

ū4
e(s̃)

×
[
ζūM2

(
1− m2

0

6M2

1 + u

ζ

)
− uū

(
Q2 + ū2m2

π

)(
1− m2

0

6ūM2

)]

− ∆M2φ
(3)
σ (∆)

∆̄
e(s0)

(
1− m2

0

6∆̄M2

)
+

∆m2
0M

2

6
(
Q2 + ∆̄2m2

π

) e(s0)
∂

∂∆
φ(3)
σ (∆)

}
(E.3)

+
µπ 〈q̄q〉
M2

[ ∫ 1

0
Dαθ (α−∆g)

T (3) (1− αu − αg, αu, αg)
α3

e(s̃g)

×
[
2ūQ2 − 2ūαM2 + α (1 + 2u+ (1− 4u)α)m2

π

]
+

+M2e(s0)

∫ 1

0
du dαg θ (1− ūαg −∆g)

T (3) (1− ūαg −∆g,∆g − uαg, αg)
∆g

(
Q2 + ∆2

gm
2
π

)
×
[
2ūQ2 + ∆g (1 + 2u+ (1− 4u)∆g)m

2
π

] ]}
,

Π̂QCD,T
RR =

ifπm
2
p

2
√

2

{
〈q̄q〉

3

[
−
∫ ∆

0
du

φ(2)(u)

ū
e(s̃)

(
1− m2

0

6ūM2

)
(E.4)

+
m2

0φ
(2)(∆)

6
(
Q2 + ∆̄2m2

π

) e(s0)

]
+
µπM

2

16π2

(
1− ρ2

π

) ∫ ∆

0
duφ(3)

σ (u) e(s̃) Ẽ1(s̃)

}
,

Π̂QCD,S
LR =

ifπ

32
√

2

{
m2

0 〈q̄q〉
3

[ ∫ ∆

0
du

φ(2)(u)

ū3M2
e(s̃)

(
Q2 + ū2m2

π − ūM2
)

+
φ(2)(∆)

∆̄
e(s0)

]
+

4µπM
4

π2

∫ ∆

0
du ū φ(3)

p (u) e(s̃)Ẽ2(s̃)

(E.5)
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+
µπM

2

2π2

∫ 1

0
Dαθ (α−∆g) T (3) (1− αu − αg, αu, αg) e(s̃g)

×

[(
Q2 + α2m2

π

)2
α3M2

− 6m2
π Ẽ1(s̃g)

]}
,

Π̂QCD,P
LR =

ifπmp

12
√

2

{
3M4

4π2

∫ ∆

0
du ū φ(2)(u) e(s̃) Ẽ2(s̃)+

+
µπm

2
0 〈q̄q〉

4M2

[ ∫ ∆

0
du

φ
(3)
p (u)

ū
e(s̃) +

∆̄M2φ
(3)
p (∆)

Q2 + ∆̄2m2
π

e(s0)

]
+

− µπ 〈q̄q〉
3M2

(
1− ρ2

π

) {∫ ∆

0
du

φ
(3)
σ (u)

ū3
e(s̃)

×
[
4ū2M2

(
1− 7m2

0

96ūM2

)
− 2ū

(
Q2 + ū2m2

π

)(
1− 7m2

0

48ūM2

)]

− 2M2φ(3)
σ (∆) e(s0)

(
1− 7m2

0

48∆̄M2

)
+

7∆̄m2
0M

2

24
(
Q2 + ∆̄2m2

π

) e(s0)
∂

∂∆
φ(3)
σ (∆)

}
(E.6)

+
µπ 〈q̄q〉
M2

[ ∫ 1

0
Dαθ (α−∆g)

T (3) (1− αu − αg, αu, αg)
α3

e(s̃g)

×
[
(1− 4u)Q2 − (1− 4u)αM2 + (5− 8u)α2m2

π

]
+M2e(s0)

∫ 1

0
du dαg θ (1− ūαg −∆g)

× T
(3) (1− ūαg −∆g,∆g − uαg, αg)

∆g

(
Q2 + ∆2

gm
2
π

) [
(1− 4u)Q2 + (5− 8u)∆2

gm
2
π

] ]}
,

Π̂QCD,Q
LR =

ifπmp

12
√

2

{
− 3M4

4π2

∫ ∆

0
du ū φ(2)(u) e(s̃) Ẽ2(s̃)

+
µπm

2
0 〈q̄q〉

4M2

[ ∫ ∆

0
du

uφ
(3)
p (u)

ū2
e(s̃) +

∆M2φ
(3)
p (∆)

Q2 + ∆̄2m2
π

e(s0)

]

− µπ 〈q̄q〉
3M2

(
1− ρ2

π

){∫ ∆

0
du

φ
(3)
σ (u)

ū4
e(s̃)

×
[
2ζūM2

(
1− 7m2

0

48M2

1 + u

ζ

)
− 2uū

(
Q2 + ū2m2

π

)(
1− 7m2

0

48ūM2

)]
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− 2∆M2φ
(3)
σ (∆)

∆̄
e(s0)

(
1− 7m2

0

48∆̄M2

)
+

7∆m2
0M

2

24
(
Q2 + ∆̄2m2

π

) e(s0)
∂

∂∆
φ(3)
σ (∆)

}
(E.7)

− µπ 〈q̄q〉
M2

[ ∫ 1

0
Dαθ (α−∆g)

T (3) (1− αu − αg, αu, αg)
α3

e(s̃g)

×
[
(1− 4u)Q2 − (1− 4u)αM2 − (4ū− (5− 8u)α)αm2

π

]
+M2e(s0)

∫ 1

0
du dαg θ (1− ūαg −∆g)

T (3) (1− ūαg −∆g,∆g − uαg, αg)
∆g

(
Q2 + ∆2

gm
2
π

)
×
[
(1− 4u)Q2 − (4ū− (5− 8u)∆g) ∆gm

2
π

] ]}
,

Π̂QCD,T
LR =

ifπm
2
p

2
√

2

{
〈q̄q〉

3

[
2

∫ ∆

0
du

φ(2)(u)

ū
e(s̃)

(
1− 7m2

0

48ūM2

)

− 7m2
0φ

(2)(∆)

24
(
Q2 + ∆̄2m2

π

)
e(s0)

]

− µπM
2

12π2

(
1− ρ2

π

) ∫ ∆

0
duφ(3)

σ (u) e(s̃) Ẽ1(s̃)

(E.8)

− µπ
16π2

∫ 1

0
Dαθ (α−∆g)

T (3) (1− αu − αg, αu, αg)
α2

e(s̃g)

× ζ
(
Q2 + α2m2

π

)}
.

Recall that ζ = 2u−1 and notice that we have used the definitions (4.34), (4.35), (4.38)

and (4.39) to write the QCD correlation functions in a compact form. We have further-

more suppressed the renormalisation scale dependence of the pion DAs. The analytic

expressions for the DAs are collected in Appendix D. Notice that since we have neg-

lected quark-mass effects in (4.20) and (4.21), it would be consistent to set to zero all

terms proportional to m2
π in the formulas (E.1) to (E.8). While these contributions are

in fact numerically small, it turns out that they always improve the agreement between

the LCSR form factors calculated here and the LQCD form factors computed in [223].

We therefore included the m2
π terms in the expressions provided above.
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F Analytic results of the LCSRs for

three-body proton decay

The analytic expressions for the QCD correlation functions that are relevant for the

process p → e+π0G in the GRSMEFT are provided below. The hat on the functions

Π̂QCD
α indicates that the contributions of heavy states were subtracted before taking

the Borel transform of the QCD results. One obtains

Π̂QCD
S =

fπm
2
p

36
√

2

{
〈q̄q〉
M2

[ ∫ ∆
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du

φ(2)(u)

ū2
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− 5m2

0φ
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24ū− 7m2

0

M2

)

+
φ

(3)
σ (∆)

∆̄
(
Q2 + ∆̄2m2
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∫ ∆
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+
72 〈q̄q〉µπ
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Q2 + ū2m2

π

)
Ẽ1(s̃)−

(
2− 5u+ 3u2

)
Ẽ2(s̃)

]
+

9 〈q̄q〉µπ
M2

[ ∫ 1

0
Dαθ (α−∆g)

T (3) (1− αu − αg, αu, αg)
α3

e (s̃g)

×
(

2αū− 2ūQ2

M2
+
αm2

π

M2
(α+ 2u− 3)

)

− e(s0)

∫ 1

0
du dαg θ (1− ūαg −∆g)

T (3) (1− ūαg −∆g,∆g − uαg, αg)
Q2 + ∆2

gm
2
π

×
(

2ūQ2

∆g
+m2

π (3− 2u−∆g)

)]}
,

Π̂QCD
A4

= − fπmp

108
√

2

{
〈q̄q〉µπ
M2

[ (
1− ρ2

π

){∫ ∆

0
du

φ
(3)
σ (u)

ū2
e(s̃)

×
(

6ū+
6
(
Q2 + ū2m2

π

)
− 5m2

0

2ūM2
−
m2

0

(
Q2 + ū2m2

π

)
ūM4

)
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+ φ(3)
σ (∆) e(s0)

(
3− m2

0

∆̄M2
− 7m2

0

2
(
Q2 + ∆̄2m2

π

))

− ∆̄m2
0

Q2 + ∆̄2m2
π

e(s0)
∂

∂∆
φ(3)
σ (∆)

}

+
3m2

0

4

(∫ ∆

0
du

φ
(3)
p (u)

ūM2
e(s̃) +

∆̄φ
(3)
p (∆)

Q2 + ∆̄2m2
π

e(s0)

)]
(F.5)

− 9

8π2

∫ ∆

0
duφ(2)(u) e(s̃)

[(
Q2 + ū2m2

π

)
Ẽ1(s̃) + 3ūM2Ẽ2(s̃)

]
+

9 〈q̄q〉µπ
M2

[ ∫ 1

0
Dαθ (α−∆g)

T (3) (1− αu − αg, αu, αg)
α3

e (s̃g)

×
(

2αū− 2ūQ2

M2
+
α2m2

π

M2

)

− e(s0)

∫ 1

0
du dαg θ (1− ūαg −∆g)

T (3) (1− ūαg −∆g,∆g − uαg, αg)
Q2 + ∆2

gm
2
π

×
(

2ūQ2

∆g
−∆gm

2
π

)]}
,

Π̂QCD
T1

= − fπ

288
√

2

{
〈q̄q〉m2

0

M2

[ ∫ ∆

0
du

φ(2)(u)

ū3
e(s̃)

(
ū− m2

0

M2
ū2 − Q2

M2

)
(F.6)

− φ(2)(∆)

∆̄
e(s0)

]
+

9µπM
2

π2

∫ ∆

0
du ū φ(3)

p (u) e(s̃)Ẽ2(s̃)

}
,

Π̂QCD
T2

=
fπm

2
p

18
√

2

{
〈q̄q〉
M2

[ ∫ ∆

0
du

φ(2)(u)

ū2
e(s̃)

(
3ū− m2

0

M2

)
− m2

0φ
(2)(∆)

Q2 + ∆̄2m2
π

e(s0)

]
(F.7)

+
3µπ
16π2

(
1− ρ2

π

) ∫ ∆

0
duφ(3)

σ (u) e(s̃)Ẽ1(s̃)

}
.

Including the leading pion DAs, i.e. the twist-2 and twist-3 contributions, one further-

more finds that Π̂QCD
T3

= 0 as already discussed in Section 4.2.2. Furthermore, the same

shorthand notations as in Appendix E were employed here.
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