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Abstract

Several fields ranging from the simulation of atoms to galaxy clusters use particle
simulations. These simulations are very compute-intensive and often require the use of
HPC architectures. N-body codes need to be adapted to provide both a good node-level
and multi-node performance, allowing faster executions and bigger simulations, thus
decreasing the time to get simulation results or enabling more accurate simulations.

Good load balancing and proper communication schemes are essential at the multi-
node level. At the node level, choosing the optimal algorithm for the force calculation,
e.g., linked cells or Verlet lists, poses a challenge as their performance depends on the
simulated scenario and the used HPC architecture. Performance optimizations for particle
simulations are an active area of research – our group focusing on the molecular dynamics
code ls1 mardyn. Recently, we concentrated on the vectorization and shared-memory
parallelization of the linked cells algorithm. Other codes using Verlet lists, however, still
outperformed ls1 mardyn for some scenarios. Additionally, only lightly inhomogeneous
scenarios were considered, resulting in bad scalability for strongly inhomogeneous cases.

In this thesis, I employ algorithm and performance engineering to improve ls1 mardyn
further. Its load balancing is enhanced and now even works on heterogeneous computing
systems. Zonal methods and overlapping communication are employed to lift strong
scaling limits. Additionally, I integrated the auto-tuning library AutoPas into ls1 mardyn,
which selects the optimal node-level algorithm for the molecular simulation. This even
allows choosing a different solver algorithm, e.g., for the force calculation, on every MPI
rank. These improvements resulted in speedups of more than 3x for real-world scenarios
and up to 130x for benchmark problems.
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Zusammenfassung

In verschiedenen Bereichen, von der Simulation von Atomen bis hin zu Galaxienhaufen,
werden Teilchensimulationen eingesetzt. Diese Simulationen sind sehr rechenintensiv und
erfordern oft den Einsatz von HPC-Architekturen. N-Körper-Codes müssen so angepasst
werden, dass sie sowohl eine gute Leistung auf Knotenebene als auch auf mehreren Knoten
bieten, was schnellere Ausführungen und größere Simulationen ermöglicht, wodurch die
Zeit bis zum Erhalt von Simulationsergebnissen verkürzt oder genauere Simulationen
ermöglicht werden.

Eine gute Lastverteilung und geeignete Kommunikationsschemata sind auf der Mehr-
knotenebene unerlässlich. Auf der Knotenebene stellt die Wahl des optimalen Algorithmus
für die Kraftberechnung, z.B. Linked-Cells oder Verlet-Listen, eine Herausforderung dar,
da deren Leistung vom simulierten Szenario und der verwendeten HPC-Architektur
abhängt. Leistungsoptimierungen für Partikelsimulationen sind ein aktives Forschungsge-
biet - unsere Gruppe konzentriert sich hierbei auf den Molekulardynamik-Code ls1 mardyn.
Zuletzt haben wir uns auf die Vektorisierung und Shared-Memory-Parallelisierung des
Linked-Cells-Algorithmus konzentriert. Andere Codes, die Verlet-Listen verwenden,
übertrafen ls1 mardyn jedoch weiterhin für einige Szenarien. Außerdem wurden nur leicht
inhomogene Szenarien betrachtet. Für stark inhomogene Szenarien konnten wir jedoch
schlechte Skalierbarkeit beobachten.

In dieser Arbeit setze ich Algorithmus- und Performance-Engineering ein, um ls1 mar-
dyn weiter zu verbessern. Seine Lastverteilung wurde verbessert und funktioniert nun auch
auf heterogenen Rechensystemen. Zonale Methoden und überlappende Kommunikation
werden eingesetzt, um die bisherigen Grenzen in der starken Skalierbarkeit aufzuheben.
Zusätzlich habe ich die Auto-Tuning-Bibliothek AutoPas in ls1 mardyn integriert, die den
optimalen Algorithmus auf Knotebene für die molekulare Simulation auswählt. Damit
ist es sogar möglich, auf jedem MPI-Rank einen anderen Algorithmus, z.B. für die Kraft-
berechnung, zu wählen. Diese Verbesserungen führten zu Geschwindigkeitssteigerungen
von mehr als 3x für reale Szenarien und bis zu 130x für Benchmark-Probleme.
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1 Introduction

1.1 Motivation

Particle simulations are used in many different application areas ranging from the
smallest systems in which atoms are simulated to simulations of cosmological scale that
model entire galaxy clusters. These simulations have in common that they are very
compute-intensive and are thus often performed on High Performance Computing (HPC)
architectures. The efficient execution on HPC platforms enables faster simulations of a
fixed scenario, allows to simulate for longer time frames, and makes it possible to simulate
bigger systems. This enables scientists to get results faster or to generate better results
that are more accurate than before. Over the years many different particle simulation
codes have been developed. These codes have in common that much effort was put
into an efficient execution on different supercomputers. This effort typically includes
algorithm and performance engineering.

Algorithm engineering, hereby, describes changes in the algorithms themselves. At the
start, problems, e.g., performance bottlenecks, are found through the implementation
of the algorithm and applying it to one or more problems. Next, a change to the
algorithm or a switch of the algorithm is performed and its performance is investigated.
Often algorithm engineering is a repeated process and restarts after a problem has been
fixed. Examples for algorithm engineering in particle simulations include the different
particle sorting and neighbor identification (linked cells, Verlet lists, Verlet cluster lists)
algorithms.

Performance engineering is the process of optimizing a specific algorithm for (spe-
cific) hardware and is useful if multiple application areas can use the same algorithm.
Performance engineering typically encompasses things like vectorization or a GPU im-
plementation. Examples for performance engineering include the specific tuning of the
fast Fourier transform to different hardware architectures or the vectorization of different
force kernels for particle simulations.

Algorithm and performance engineering often go hand-in-hand because some algorithms
perform better for specific hardware components than other algorithms, but the algorithm
still has to be optimized. Both algorithm and performance engineering additionally benefit
not only the code on which they were applied, but results and findings can be applied to
other codes as well.

In this thesis, I focus on enhancements through algorithm and performance engineering
that are realized in the code ls1 mardyn [1], which can, likewise, be applied to other
codes.
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1 Introduction

1.2 Previous Work

ls1 mardyn has been previously optimized with respect to both node-level and multi-
node performance. Hereby, Martin Buchholz focused on improvements to the linked
cells algorithm by allowing adaptive refinement of the cells, implemented a first shared-
memory parallelization using OpenMP and Intel’s TBB, and tested various load balancing
techniques, including a k-d tree-based, graph-based, diffusive, and space-filling curve-based
methods [2]. Wolfgang Eckhardt optimized the k-d tree-based approach and implemented
a sliding window-based approach for the linked cells container, which both reduced the
memory footprint and improved the caching behavior [3]. The improvements allowed
setting the world record for the MD simulation with the biggest number of particles
(4.125 · 1012 particles) [4]. Additionally, he implemented a GPU parallelization for ls1
mardyn, which did, however, not show satisfactory results, and he tested the integration
of two libraries for long-range interactions [3]. Nikola Tchipev further improved the
node-level performance of ls1 mardyn. He introduced new intrinsics wrappers which allow
an efficient vectorization of ls1 mardyn on all current Intel CPUs, he further enhanced
the shared-memory parallelization by introducing new coloring schemes that reduced
the number of needed colors from 18 to eight (resp. four) which allowed very efficient
shared-memory parallelization on up to 256 threads. Nikola Tchipev’s work further
allowed extending the previous world record to 2 · 1013 particles [5]. He additionally
implemented a shared-memory and MPI parallel variant of the fast multipole method [6].

1.3 Outline

The main focus of this work lies in improvements of the multi-node performance of ls1
mardyn, especially concerning load balancing for extremely heterogeneous scenarios. I
also present how the strong scaling limits for small, dense scenarios can be lifted through
zonal methods and how overlapping communication can increase the performance further.
Additionally, I demonstrate the integration of AutoPas, a novel auto-tuned node-level
particle simulation library, into ls1 mardyn and present the required adaptions to the
load balancing.

The thesis starts with an overview of the technical background, describing the founda-
tions this thesis builds upon (chapter 2). Next, I present the MD code ls1 mardyn and
its state at the start of this thesis (chapter 3). I continue with the improvements to the
multi-node performance (chapter 4) and present detailed results. The thesis proceeds
with detailing the integration of the AutoPas library into ls1 mardyn and describes the
necessary interface design of the library (chapter 5). Through the integration of AutoPas ,
we show that auto-tuning can be applied to an efficient, grown-up MD code. Finally,
I summarize the work and give an outlook into open questions and possible further
improvements (chapter 6).
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2 Technical Background

2.1 Particle Simulations

Particle or N-body simulations are performed in various fields of research and include
very different scales. While in molecular dynamics these mimic the interactions between
atoms or molecules, in astrophysics n-body simulations enable the study of interactions
between stars or galaxies. Even though these happen on completely different physical
scales, the simulations are mostly identical: In all these fields, the atoms, molecules, or
stars are represented as particles with a position r, a velocity v, and further domain-
specific properties. The interactions between these particles can mostly be represented by
pair-wise interactions, i.e., each particle asserts a force on every other particle and that
force depends only on the properties of the two interacting particles. The resulting force
Fi on a particle i is then the sum of all forces Fij from interactions with other particles

Fi =
∑
j

Fij . (2.1)

This force changes the momentum p and therefore the trajectory of the particles according
to Newton’s second law of motion

ṗ = F = m · a = m · r̈. (2.2)

To apply the resulting acceleration a on the particles without the need for analytical
integration, the time is discretized using time steps and the positions and velocities of
the particles are integrated numerically.

Depending on the scenarios and the area of application, different potentials and thus
forces are used to describe the interactions between the particles.

2.1.1 Molecular Dynamics

Molecular dynamics (MD) simulations are one typical application area for N-body
simulations. They help understand the movement of atoms and molecules and are, e.g.,
applied in chemical engineering, biochemistry, biomedicine, and biophysics. In chemical
engineering, MD helps to understand material properties, s.t., transport properties of
a fluid or the nucleation can be better understood [7]. In biochemistry, MD is used to
research microscopic properties of biomolecules [8] explaining the formation of bonds
between different atoms or the workings of enzymes. One application area of biochemistry
is biomedical engineering in which MD helps in the development of vaccines, most recently
for the SARS-CoV-2 virus [9]. In biophysics, MD can help characterize the structure of
proteins through protein folding [10].

3



2 Technical Background

Figure 2.1: Overview of the five different statistical ensembles. Taken from 1

Ensembles

All these molecular dynamics simulations have in common that an ensemble [11] of
particles is simulated. Hereby mainly three different ensembles are used:

Microcanonical Ensemble (NVE) The microcanonical ensemble corresponds to an adi-
abatic process, i.e., the number of molecules (N), the volume (V), and the energy
(E) of the ensemble are preserved, while no energy (heat) can leave the system.

Canonical Ensemble (NVT) The canonical ensemble is used for processes with a fixed
number of molecules (N), a fixed volume (V), and a fixed temperature (T). This
corresponds to a closed, non-insulated system in a heat bath.

Grand Canonical Ensemble (µVT) The grand canonical ensemble does not use a fixed
number of molecules. Instead, along with the volume (V) and the temperature (T),
the chemical potential µ is fixed allowing for an exchange of molecules with the
environment.

In addition, there exist ensembles with variable volume, namely the Gibbs (isobaric-
isothermal ensemble, NPT) and the NPH ensemble. An overview of the different ensembles
can be found in Figure 2.1

To realize the different ensembles in a molecular dynamics simulation, multiple tools
are necessary. These tools include ways to regulate the temperature of an ensemble, i.e.,
thermostats, ways to fix a chemical potential, e.g., using particle insertion or deletion,
and ways to adapt the volume of a simulation such that the pressure of a system remains
constant (barostats). One possible implementation for a thermostat is described in the
next section. For the other tools, please see [12,13].

1https://en.wikipedia.org/wiki/File:Statistical_Ensembles.png, published under (CC BY-
SA 4.0) https://creativecommons.org/licenses/by-sa/4.0/deed.en
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2.1 Particle Simulations

Thermostats

By making use of the statistical definition of the temperature (Equation 2.3) a thermostat
can fix the temperature T of a system of N molecules.

〈Ekin〉 =
3

2
NkBT , kB . . . Boltzmann’s constant (2.3)

The simplest thermostat, the velocity-scaling thermostat, directly uses Equation 2.3
and enforces the correct temperature by scaling the velocities vi of each particle using:

vi,new =

√
Ttarget

Tcurrent
vi,old. (2.4)

With the definition of the kinetic energy

〈Ekin,new〉 =
∑
i

1

2
miv

2
i,new (2.5)

and utilizing the scaled velocities

=
∑
i

1

2
mi

(
vi,old

√
Ttarget

Tcurrent

)2

(2.6)

=
Ttarget

Tcurrent

∑
i

1

2
miv

2
i,old (2.7)

=
Ttarget

Tcurrent

3

2
NkBTcurrent (2.8)

it is shown that the target temperatur Ttarget is immediately reached:

=
3

2
NkBTtarget. (2.9)

This thermostat enforces the temperature, but (especially small) simulations using them
do not strictly conform to the canonical ensemble [14]. In addition, when simulating a
mixture of multiple molecules, each type of molecule should be thermostated separately
to prevent an agglomeration of the kinetic energy in one of the components [15].

An improved version of the velocity scaling thermostat and an overview of other
thermostats can be found in [14] and [16].

2.1.2 Particle-Pair Potentials

For molecular dynamics, typical interaction potentials include the Lennard-Jones potential,
as well as the forces resulting from Coulomb’s law. In astrophysics, mostly Newton’s law
of universal gravitation is used.
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δ− δ+

instantaneous dipole

δ− δ+ δ− δ+

induced dipole

F
δ− δ+ δ− δ+

Figure 2.2: London Dispersion Interaction. Top Left: Two atoms with their electron cloud.
Top Right: One electron hull fluctuates and thus creates an instantaneous dipole.
Bottom Left: This dipole will then induce another dipole on the neighboring atom.
Bottom Right: The two atoms are attracted to each other.

Coulomb Force

Coulomb’s law [17]

FC = ke
q1q2

r2
(2.10)

describes the force between two point charges in vacuum. The force depends on the
two point charges q1 and q1, the distance r between q1 and q2, and Coulomb’s constant
ke ≈ 8.987 55 · 109 N m2/C.

Lennard-Jones Potential

The Lennard-Jones potential

VLJ = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(2.11)

describes the interaction of two uncharged atoms [18]. It depends on the potential well ε,
the atomic cross-section σ, as well as the distance r between the two atoms. The former
two are material properties and are experimentally determined.

The Lennard-Jones potential is made of two different terms. The attractive part
Vattractive = −4ε

(
σ
r

)6
is a physically accurate term and represents the London dispersion

interaction, i.e., the forces between an instantaneous dipole and a second dipole that is
induced by the first dipole (cf. Figure 2.2). This interaction is part of the Van der Waals
forces. The repulsive portion of the Lennard-Jones potential is an approximation of the
Pauli repulsion, which is a phenomenon from quantum chemistry and opposes a too close
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Name Formula Properties

(explicit) Euler
vi+1 = vi + ai∆t first order
xi+1 = xi + vi∆t

Leapfrog
vi+1/2 = vi−1/2 + ai∆t second order, symplectic, time-reversible
xi+1 = xn + vi+1/2∆t

Velocity Verlet vi+1/2 = vi + ai∆t/2

second order, symplectic, time-reversible(Leapfrog xi+1 = xi + vi+1/2∆t

kick-drift-kick) vi+1 = vi+1/2 + ai+1∆t/2

Table 2.1: Time integration methods for N-body simulations.

overlap of the electron hulls of two atoms. The form of this term is not physically driven,
but instead chosen for ease of computation.

Newton’s law of universal gravitation

Newton’s law of universal gravitation

FG = G
m1m2

r2
, G ≈ 6.674 · 10−11 m3

kg s2 . . . gravitational constant (2.12)

describes the gravitational pull between two point masses [19]. The force depends on the
masses of the two particles, as well as the distance r between the two particles.

Other interactions

For non-rigid molecules in MD there further exist ways to simulate inner degrees of
freedom within a molecule which allow stretching, bending, and torsion of bonds (see,
e.g., [20]). These typically are less compute-intensive compared to nonbonded interactions,
because they happen between a select number of particles, and are therefore not regarded
in this thesis.

Additionally, quantum mechanical simulations can be used to calculate the forces
instead of relying on the empirical Lennard-Jones potential. These quantum mechanical
simulations are, however more compute-intensive than classical molecular dynamics
simulation. To reduce the computational load, there have been approaches that use
machine learning to approximate the quantum mechanical simulations for ab initio
molecular dynamics [21,22].

2.1.3 Time Integration

As previously mentioned the time of an N-body simulation is typically discretized, mostly
in equally distanced time steps and the positions and velocities of all particles are updated
(at least) once in each step. Typical time integration methods are listed in Table 2.1 and
used through all different kinds of N-body simulations. Note that in contrast to other
applications, like earthquake simulations, N-body simulations normally do not make

7
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use of implicit integrators, as they are too expensive to calculate (note that there are
some exceptions [23]). Instead, mostly a variant of the leapfrog or Verlet integration
is used [24, 25]. These methods have the benefits of having symplectic properties, i.e.,
they preserve the energy in a system. The explicit Euler integration does not have this
property and therefore is seldomly used within N-body simulations.

2.2 Short Range Algorithms

In particle simulations, the distinction between long-range and short-range potentials is
crucial, as the algorithms used for these two different potentials differ greatly. In this
section, I first describe the difference between the two classes of potentials and will then
introduce the algorithms specific to short-range potentials on which this thesis focuses.
Efficient algorithms regarding long-range potentials, e.g., the fast multipole method [26]
or the Barnes-Hut method [27] are not discussed in this thesis.

2.2.1 Long-Range vs Short-Range Potentials

While a ”long-range potential is one whose range, the distance of effective influence, is
unbounded or infinite” [28], a short-range potential’s range is bounded. While Mickens
uses some more-or-less arbitrary definition for this range [28], Kabadshow uses [29] a
more precise definition of such a potential based on the boundedness of the integral

I =

∫
u(r)dr. (2.13)

Kabadshow defines a potential u(r) to be a long-range potential if it is slowly decreasing
with increasing distance r and if the integral I does not converge. A potential is a
short-range potential if u(r) decays rapidly with increasing distance r and the integral
I converges. Based on this definition, in Rn long-range potentials decay slower than
1/rp, p ≤ n. This means that both the Coulomb potential, as well as the gravitational
potential, but also dipolar forces, are long-range potentials, while the Lennard-Jones
potential is short-ranged.

2.2.2 Cutoff Radius

In general, the calculation of the forces between N particles is an operation that is in
O
(
n2
)
, where O is the Big O of the Bachmann-Landau notation [30,31]. For short-ranged

potentials, it is, however, clear that the interaction between two far-away particles is
negligible. Typically, a so-called cutoff radius rc is introduced, s.t., a potential between
two particles is assumed to be zero if the distance between the particles is greater than
rc. For the Lennard-Jones potential the cutoff radius is typically chosen to be between
2.5σ and 3.5σ. The potential is further shifted to prevent discontinuities [12]:

VLJ,trunc(r) =

{
VLJ(r)− VLJ(rc) for r ≤ rc

0 for r > rc.
(2.14)
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Figure 2.3: Linked cells algorithm: Particles are sorted into cells. To calculate the forces on
one particle (here marked red) only the forces of particles in the same cell (green
background) or in neighboring cells have to be considered (blue). Particles lying
inside of the cutoff are then marked green. Gray particles are not considered for the
force calculations of the red particle.

For the adequate calculation of the potential energy, long-range corrections are used
[12,13].

2.2.3 Linked Cells

Using the cutoff radius, only the forces between particles within a distance of at most rc

need to be calculated. This allows for efficient O(n) algorithms, one of which is the linked
cells algorithm [32,33], where particles are sorted into equally sized cells (c.f. Figure 2.3).
Forces between particles then only have to be calculated if the particles lie either in the
same cell or if the distance between the two cells is less than the cutoff radius. If the size
of each cell is at least the cutoff radius, then only interactions of particles in neighboring
cells have to be considered.

2.2.4 Verlet Lists

As can be seen in Figure 2.3 a lot of interactions between particles in neighboring cells
are unnecessary as the distance between the particles is bigger than the cutoff radius.
The Verlet list algorithm [34] saves on these wasteful distance calculations by maintaining
a neighbor list, i.e., a list of all particles within a given distance from each other (c.f.
Figure 2.4). This list is typically generated using linked cells. To enable the reusability
of the neighbor list over multiple time steps, the list normally does not only include
particles within the cutoff radius but instead includes also particles lying slightly outside
of the sphere defined by the cutoff radius. This additional distance is normally called
the skin radius rskin. For a physically correct result, the list can remain the same, as
long as the particles that are not in the list do not move closer than the cutoff radius
rc to each other. This is guaranteed, as long as each particle does not move more than
rskin

2 , which is assured for a certain time tsave = rskin
2·vmax

after the last rebuild. Hereby,

9



2 Technical Background

Figure 2.4: Verlet list algorithm: To calculate the forces on one particle (here marked red) only
the forces of particles in its neighbor list, i.e., within the blue sphere (circle) with
radius rc + rskin have to be considered. Particles lying inside of the cutoff are then
marked green. Gray particles are not considered for the force calculations of the red
particle.

vmax = maxi maxτ∈[trebuild,trebuild+tsave] vi(τ) is the maximal velocity of all particles during
the time span.

2.3 HPC Architectures

As particle simulations are very compute-intensive, they are often performed on massively
parallel supercomputers [4, 5, 35, 36] to reduce the execution time of specific simulations,
which allows to get the results of simulations faster or to simulate longer time spans
(assuming a proper parallelization of the code).

Additionally, some simulations can only be executed on big supercomputers as the
simulated domains do not fit into the memory of a small computer and the simulation
results are too big to store on a conventional storage system [4,5].

A typical layout of an HPC system consists of many connected nodes, which each host
at least one CPU (cf. Figure 2.5).

In this section, I give an overview of typically used hardware and concentrate on
aspects relevant to this thesis. For this reason, I will not discuss GPUs in this thesis and
also do not go into details about the used storage systems.

2.3.1 CPU Layout

The design of a CPU can be quite diverse. Typically used CPUs do, however, contain
multiple compute cores, as well as an (L3) cache that is shared between the cores. The
cores additionally include private caches that are smaller in size but faster compared
to the shared cache. On each core, there exists a variety of different units that handle
distinct tasks. For HPC, especially MD, the most relevant units are the floating-point
units (FPU). Traditionally, the FPU is capable of executing a mathematical operation for
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Figure 2.5: Layout of a typical HPC cluster. A typical HPC cluster is made of multiple nodes
that are connected by an interconnect. Each of these nodes consists of multiple
CPUs that share common ressources like a network interface controller (NIC) or
the random-access memory (RAM).

one pair of floating-point values. Nowadays, the FPUs are able to execute these operations
on multiple floating-point values at once by the use of SIMD (single instruction multiple
data) instructions. Additionally, most FPUs are able to execute fused multiply-add
(FMA) operations, where two floating-point values are multiplied and then added to a
third value in one operation. FMA instructions are also included in the possible SIMD
instructions.

SIMD is, however, not the only concept of parallelism on a core. One other form is
instruction-level parallelism in the form of pipelines. Hereby, a single instruction is split
into multiple stages (e.g., fetching, execution, write back) which allows the start of an
instruction after the first stage of the previous instruction finishes.

For multi-core CPUs another form of parallelism, namely task-level parallelism, is
inherent. It describes the execution of multiple processes or threads in parallel and is
made possible using the (almost) independently acting cores of a CPU. Recently, task-level
parallelism has also found its way into the CPU core using simultaneous multithreading
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(SMT, also called hyper-threading). SMT is made possible using superscalar pipelines,
which allow the execution of multiple identical pipeline stages in parallel by providing
multiple identical execution units (e.g., FPUs or load and store units).

In recent years, Moore’s Law, i.e., the doubling of the number of transistors on a
microchip every two years, was challenged because the speed at which transistors shrink
has significantly slowed down. Instead, vendors tend to increase the size of a CPU by
adding more cores to a chip. Intel, e.g., first experimented with their Xeon Phi many-core
architecture and added up to 72 cores with four-way hyperthreading (i.e., 288 hardware
threads) onto a single chip. While this architecture was discontinued, Intel sells server
CPUs with up to 40 cores (80 threads). AMD currently offers CPUs with up to 64 cores
(128 threads) and is rumored to add up to 96 cores (192 threads) on the Genoa server
CPUs in mid-2022 2.

2.3.2 Node Layout

A node consists of one or multiple CPUs, which have to share several different resources.
These include the main memory (RAM), local storage devices, and the network interface
controller.

One important fact regarding the main memory is that it is typically not uniformly
accessible from all CPUs of a multi-socket system with the same speed and latency, as
each memory slot is typically connected to only one CPU/socket. Access to the memory
of another CPU is then still possible, but slower. This effect is called non-uniform memory
access (NUMA) and requires care from a user of an HPC system. NUMA effects are also
present for the shared LLC (last-level cache) because access from a CPU to the cache of
another CPU is slower than access to its cache.

2.3.3 Multi-Node Layout

To enable fast communication between different nodes of an HPC cluster high-performance
networks are used. Typical examples of such networks are Intel’s OmniPath, Mellanox’
(now Nvidia Networking’s) Infiniband, Cray’s Aries network, and Fujitsu’s Torus intercon-
nect. These networks provide lower latencies compared to classical ethernet connections
and enable advanced networking techniques such as remote direct memory access (RDMA),
where a process of one node can directly access the memory of another node.

The different nodes are often arranged and connected in specific ways that provide short
network paths between the nodes, resulting in low latencies. Typically used topologies
are fat-trees (e.g., used in SuperMUC-NG) or torus networks (e.g., used in most Cray
machines and the Japanese supercomputers K and Fugaku) [37,38].

2https://twitter.com/ExecuFix/status/1365981401808580614
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2.4 Parallel Programming Models

2.4.1 Flynn’s Taxonomy

To understand the different parallel programming models, it is first important to un-
derstand Flynn’s taxonomy [39] which categorizes different HPC architectures. Flynn
differentiated based on whether multiple instructions and multiple data were processed in
parallel. If both are processed sequentially, he speaks of SISD (single instruction stream,
single data stream), which actually corresponds to the von Neumann architecture [40].
SIMD (single instruction stream, multiple data streams) describes architectures in which
one instruction is applied to multiple data streams. As previously described, modern
HPC machines typically contain multiple SIMD units that are able to perform a single
mathematical operation on multiple data using one instruction. Very similar to the SIMD
model is the SIMT (single instruction, multiple threads) model, which combines the SIMD
idea with multiple threads and is typically used in GPU architectures. A less common
architecture is the MISD (multiple instruction streams, single data stream) in which
multiple instructions are executed on a single data stream in parallel. This architecture
can typically be used for fault-tolerance, e.g., in-flight control computers. Meanwhile,
almost any general-purpose CPU implements a MIMD (multiple instruction streams,
multiple data streams) architecture, as they are multi-core superscalar processors. Almost
all HPC systems are further classified as MIMD, because they are distributed systems
(the different nodes have their own memory) in which each processor executes its own
instructions on its own data. Thus they execute multiple instructions on different data if
viewed as a whole.

In HPC, MIMD is often further divided into SPMD and MPMD. Hereby, SPMD (single
program, multiple data streams) represents the more popular one, in which multiple
processors execute the same program, but operate on different data. MPMD (multiple
program, multiple data streams), meanwhile, refers to a scenario in which multiple
different programs are executed that operate on different data. A common example of
this is a manager/worker (master/slave) strategy, where one central manager distributes
tasks to multiple different workers.

2.4.2 Registry-Level and Shared-Memory Parallelization

To fully leverage the performance of a compute node, i.e., the shared-memory domain,
most HPC programs provide support for the SIMD units of a modern CPU. Leveraging
SIMD can either be done automatically by the compiler or manually by using intrinsics
or inline assembly, through which the SIMD operations are directly specified. On the
node-level, shared-memory parallelization (MIMD) in the form of threading is often used
to reduce the number of necessary MPI processes, which results in fewer needed messages.
Threading can hereby be implemented through a number of means, by leveraging POSIX
threads (Pthreads)3 (other threading libraries) or by using OpenMP 4. While the former

3https://man7.org/linux/man-pages/man7/pthreads.7.html
4https://www.openmp.org
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Figure 2.6: Example of a race condition. Two threads access a shared variable while both
modify them. The modification of thread 1 will not be applied in the right example.
If both threads, e.g., increase a zero-initialized shared counter by one, the result on
the left is two, while the result on the right is one.

is a simple library, the latter requires code annotation via pragmas and needs to be
supported by the compiler. OpenMP does, however, provide easy means of parallelizing
existing simulation loops and recently gained the ability to encourage a compiler to
vectorize annotated code parts for an efficient use of SIMD units in OpenMP v4.05.
OpenMP also gained support for offloading parts of a simulation to a GPU or other
accelerators in their recent standards6. There additionally exist language standards and
libraries that provide possibilities for vectorization and threading support, like OpenCL,
Cilk, or Kokkos. These often also allow the efficient utilization of GPUs, which can also
be targeted directly by GPU-specific programming languages (e.g., Cuda).

2.4.3 Race Conditions

Race conditions are one of the main problems of shared-memory parallelization [41].
Race conditions can occur if two threads try to access and modify a shared variable. In
the intended scenario (cf. Figure 2.6), one thread first reads the variable, then modifies
it and writes it back to its address. Afterward, the second thread reads the variable,
modifies it, and finally writes it back. Non-intended behavior can occur if the second
thread reads the variable before the first thread wrote it back (cf. Figure 2.6). If the
final result that is stored in a variable depends on the order in which threads access the
variable, one calls this a race condition.

Race conditions can be prevented by the use of locks (mutexes). A mutex can be held
by only one thread at a time. It is, therefore, practical to protect a shared variable using
a mutex. For this purpose, a thread that wants to access and modify a shared variable,
has to lock the mutex. Once it is done, it will unlock the mutex. Afterward, another

5https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
6https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
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thread can acquire the lock and modify the variable. If two threads want to access the
same variable at the same time, only one thread will be able to lock the mutex. The other
thread will have to wait until the lock is released. OpenMP’s critical sections are based
on locks and offer an easy way to prevent races by allowing only one code to execute a
code block.

Another possibility to prevent race conditions is the use of atomics or atomic operations.
The latter are operations that cannot be interrupted by concurrent operations and
thus guarantee correctness. Atomic objects (or atomics) are objects protected against
inconsistencies arising through their parallel access. Atomic objects can be implemented
using locks or lock-free atomic CPU instructions. Atomic instructions are implemented in
the hardware of a CPU and are thus significantly faster compared to the usage of locks.

There also exist other concepts based on locks or atomics to prevent race conditions.
One of those are barriers. A barrier is a point in the program which all threads have to
reach before any is allowed to advance beyond that point. Through a barrier, specific
code blocks can be separated. An example to prevent race conditions through barriers is
allowing access to a shared variable by one thread only before a barrier, while another
thread is only allowed to access the variable after the barrier has been passed.

Small examples showing the different methods are represented in Figure 2.7.

2.4.4 Distributed-Memory Parallelization

On HPC systems, out of SPMD and MPMP, the SPMD programming paradigm is
prevalent. Hereby, at least one process is started for each node. The processes then use
message-based communication to interact, as their memory space is segregated. For this
purpose, an implementation of the MPI (message passing interface) is often used.

On the inter-node level, there also exist other programming models besides message
passing, which use implicit interaction, e.g., the PGAS (partitioned global address space)
model. The PGAS model aims to provide the ease of shared-memory parallelization, in
which no messages have to be explicitly sent, for distributed memory systems. Hereby,
some memory is made available to all processes through a global address space. Access
to that memory requires communication between different processes, which is handled by
the runtime or compiler. Additionally, tasking-based models like actor models exist in
which tasks and their (data) dependencies are specified and then executed in parallel [42].

A comparison of the different parallel programming models can, e.g., be found in [43].

2.5 MPI

The Message Passing Interface (MPI) is the de facto standard for message-passing
in High Performance Computing (HPC). It defines and describes library functions to
send messages between different processes of a distributed memory architecture. MPI
provides an abstraction of the used networks, such as Infiniband, Intel Omnipath, Cray’s
interconnects (Aries, Slingshot), Tofu or Ethernet, allowing for portability and ease-of-use.

A first draft of MPI was presented at the Supercomputing conference in November
1993 [44]. A year later in June 1994, the first version of MPI was published [45]. The
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1 int count {0};

2 auto f = [&count ]{++ count ;};

3 std:: thread t1{f}, t2{f};

(a) Non-protected code that includes a race
condition.

1 std::atomic <int > count {0};

2 auto f = [& count ]{++ count ;};

3 std:: thread t1{f}, t2{f};

(b) Atomic. The shared variable count is pro-
tected because it is atomic.

1 int count {0};

2 std:: mutex m;

3 auto f = [&count ]{

4 std:: lock_guard lock(m);

5 ++count;

6 };

7 std:: thread t1{f}, t2{f};

(c) Mutex and lock. When a thread wants to
modify the variable count, it first acquires
the mutex using std::lock_guard. Once it
is done, std::lock_guard goes out of scope
and releases the mutex.

1 int count {0};

2 // 2 == number of threads.

3 std:: barrier b(2);

4 std:: thread t1 {[&]{

5 ++count;

6 b.arrive_and_wait ();

7 }};

8 std:: thread t2 {[&]{

9 b.arrive_and_wait ();

10 ++count;

11 }};

(d) Barrier. The second thread can modify and
access the shared variable only after the
first thread has modified the variable and
entered the barrier. (Note: std::barrier

was introduced in C++20, but a realization
with OpenMP is also possible.)

Figure 2.7: Different options to prevent races. Here, two threads access and modify the shared
variable count. As two threads increment the shared variable by one, one would
expect the result to be two. In the unprotected scenario (Figure 2.7a), the result
can, however, also be 1.
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second version, adding parallel I/O and remote memory operations, followed soon after
in 1997 [46]. 2012’s MPI-3 adds non-blocking collective operations, as well as additions
to the remote memory functionalities [46]. Non-blocking parallel I/O capabilities were
added in MPI-3.1 along with neighborhood collectives [46]. The most recent version
MPI-4 was approved on June 9, 2021, and includes persistent collective communication,
partitioned communication, a new session model among others [46].

The changes from MPI-4, as well as parallel I/O and neighborhood collectives, are not
discussed in this thesis. Further, we do not provide details on one-sided communication,
as we have tested RDMA in the context of a Master’s thesis [47], but did not find it
feasible due to the excessive synchronization overhead that is required to guarantee
correctness.

2.5.1 P2P Communication

One central building block of MPI is the point-to-point (P2P) communication. For this
communication, one pair of communication partners sends one or multiple messages
between them.

The simplest form of such a communication is the send-receive pattern (note: do
not confuse with MPI_Sendrecv(), where two processes execute both a send and a recv
operation). While one partner sends a message using MPI_Send, the other partner receives
it using MPI_Recv. An example of this communication pattern is depicted in Listing 2.1.
Hereby, the signatures of MPI_Send and MPI_Recv are

int MPI_Send(void* data , int count , MPI_Datatype datatype , int dest ,

int tag , MPI_Comm communicator)

and

int MPI_Recv(void* data , int count , MPI_Datatype datatype , int src ,

int tag , MPI_Comm communicator , MPI_Status* status ).

Hereby, it is important to note that an MPI_Recv can only receive messages from an
MPI_Send if the two calls match, i.e., if they both use the same data type, the same number
of transmitted elements, the same tag, and the same communicator. Additionally, the
destination (dest) of the sending rank has to be the receiving rank and the source (src)
of the receiving rank has to be the sending rank. For MPI_Recv passing MPI_ANY_TAG as tag
and MPI_ANY_SOURCE as source is possible.

MPI_Recv also takes a handle for an MPI_Status. It can be used to check for errors.
Additionally, it can be used to retrieve the tag and source of a message if MPI_ANY_TAG or
MPI_ANY_SOURCE was used.

In contrast to the source and tag, the size of a message has to be known when issuing
an MPI_Recv. It is, however, sometimes not possible to know the size of a message before
receiving it. To get this size dynamically, MPI_Probe can be used. Its signature

int MPI_Probe(int source , int tag , MPI_Comm comm , MPI_Status *status)
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1 #include <iostream >

2 #include <mpi.h>

3
4 int main(int argc , char **argv) {

5 // Initialize MPI

6 MPI_Init (&argc , &argv);

7
8 // Get own rank ID.

9 int myrank;

10 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

11
12 // Get number of processes.

13 int numprocs;

14 MPI_Comm_size(MPI_COMM_WORLD , &numprocs);

15 if (numprocs != 2) {

16 std::cerr << "Please run this code with two processes !\n";

17 return 1;

18 }

19
20 if (myrank == 0) {

21 // Send 42 from rank 0 to rank 1.

22 int myInt = 42;

23 MPI_Send (&myInt , 1 /*count */, MPI_INT , 1 /*dest*/, 1234 /*

↪→ tag*/, MPI_COMM_WORLD);

24 } else if (myrank == 1) {

25 int receivedInt;

26 // Receive one int from rank 0.

27 MPI_Recv (& receivedInt , 1 /*count */, MPI_INT , 0 /* source */,

↪→ 1234 /*tag*/, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

28 std::cout << "Received int " << receivedInt << " from rank 

↪→ 0.\n";

29 }

30
31 MPI_Finalize ();

32 }

Listing 2.1: MPI Send-Recv example. Rank 0 sends an int with value 42 to rank 1. Rank 1
receives that value and prints it to std::cout.
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(a) Broadcast. The data from the root note is
sent to all ranks.

(b) Scatter. The data from the root note is
distributed to all ranks.

(c) Reduce. The data from all ranks is reduced
to the root. Here, a sum operation is shown.

(d) Gather. Inverse operation to scatter. The
data from each rank is collected at the root
node.

Figure 2.8: Overview of typical collective operations in MPI. Here, only operations with a root
(bottom) are shown.

is similar to an MPI_Recv. It does, however, not require a data pointer, a data type,
or a data count as it does not perform the actual receive. MPI_Probe blocks until an
incoming message matches the source and tag and returns an MPI_Status object with
information about the incoming message. Using the returned MPI_Status, MPI_Get_count

and the MPI_Datatype, the actual number of elements to receive can be reconstructed and
an MPI_Recv call can be issued.

2.5.2 Collective Communication

In contrast to P2P communication, collectives use all members of an MPI communicator.
Typical examples are broadcasts (MPI_Bcast), scatters (MPI_Scatter), gathers (MPI_Gather),
and reduction (MPI_Reduce) operations (cf. Figure 2.8). Collective MPI operations
can roughly be grouped into four categories [48]: All-To-All, One-To-All, All-To-One
operations and those that do not fit this scheme (cf. Table 2.2).

7https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node98.htm
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2 Technical Background

Group Contributing to Result Receiving Result Examples

All-To-All All ranks All ranks MPI_Allgather

MPI_Alltoall

MPI_Allreduce

All-To-One All ranks one rank MPI_Gather

MPI_Reduce

One-To-All one rank all ranks MPI_Bcast

MPI_Scatter

Other - - MPI_Scan

MPI_Barrier

Table 2.2: Collective MPI operations grouped by the participating ranks [48]. Depending on
the source, MPI_Barrier can also be viewed as an All-To-All operation7.

One-To-All (e.g. MPI_Bcast) and All-To-One (e.g. MPI_Reduce)) operations either have
exactly one rank that sends data or exactly one rank that receives data. This rank is
called root and specified in the signature of the function call, e.g.,

int MPI_Bcast(void *buffer , int count , MPI_Datatype datatype ,

int root, MPI_Comm comm)

or

int MPI_Reduce(const void *sendbuf , void *recvbuf , int count ,

MPI_Datatype datatype , MPI_Op op, int root, MPI_Comm comm).

Listing 2.2 provides an example using a collective operation to get the global sum of a
value.

MPI’s collective operations can be implemented using multiple P2P operations. Vendors
can, however, provide hand-optimized versions of the collective operations that typically
outperform user-written code. These can, e.g., take the topology of a network into account,
or work directly on the network interface controller using its RDMA capabilities [49–51].
There additionally exist efforts to offload parts of the MPI collectives directly to the
network switches [52,53].

2.5.3 Non-Blocking Communication

Especially with large numbers of processes and ranks, communication can take up a
significant amount of time. One way to circumvent this problem is by overlapping
communication with computation. The idea behind this approach is to hide the cost of
communication by doing meaningful computational tasks while the communication is
taking place. MPI allows this by providing non-blocking variants of their P2P (since MPI
v1) and collective operations (since MPI v3). They are easily recognizable by a prefixed I

to the operation, e.g., MPI_Isend instead of MPI_Send. The I indicates that the call returns
immediately and in contrast to the normal variants will never block. Non-blocking MPI
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2.5 MPI

1 #include <iostream >

2 #include <mpi.h>

3
4 int main(int argc , char **argv) {

5 // Initialize MPI

6 MPI_Init (&argc , &argv);

7
8 // Get own rank ID.

9 int myrank;

10 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

11
12 // Get total number of processes.

13 int numprocs;

14 MPI_Comm_size(MPI_COMM_WORLD , &numprocs);

15
16 // Sum all rank -id’s together.

17 int sumRanks;

18 MPI_Reduce (& myrank /* sendbuffer */, &sumRanks /* recvbuffer */, 1

↪→ /* count*/, MPI_INT , MPI_SUM , 0 /*root*/, MPI_COMM_WORLD);

19
20 if (myrank == 0) {

21 // Check theoretical result.

22 int expectedSum = numprocs * (numprocs - 1) / 2;

23 std::cout << (sumRanks == expectedSum ? "successfull" : "

↪→ wrong") << "\n";

24 }

25
26 MPI_Finalize ();

27 }

Listing 2.2: Example of a collective MPI operation. Here, a reduction operation is used to sum
over the IDs of all ranks. As the root of the collective operation is 0, only the first
rank knows about the result of the operation. If all ranks need to know the result,
MPI_Allreduce should be used instead.
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2 Technical Background

1 #include <iostream >

2 #include <mpi.h>

3
4 int main(int argc , char **argv) {

5 // Initialize MPI

6 MPI_Init (&argc , &argv);

7
8 // Get own rank ID.

9 int myrank;

10 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

11
12 // Get number of processes.

13 int numprocs;

14 MPI_Comm_size(MPI_COMM_WORLD , &numprocs);

15 if (numprocs != 2) {

16 std::cerr << "Please run this code with two processes !\n";

17 return 1;

18 }

19
20 if (myrank == 0) {

21 // Send 42 from rank 0 to rank 1.

22 int myInt = 42;

23 MPI_Request request;

24 MPI_Isend (&myInt , 1 /*count*/, MPI_INT , 1 /*dest*/, 1234 /*

↪→ tag*/, MPI_COMM_WORLD , &request);

25 // do some heavy computation

26 MPI_Wait (&request , MPI_STATUS_IGNORE);

27 } else if (myrank == 1) {

28 int receivedInt;

29 // Receive one int from rank 0.

30 MPI_Request request;

31 MPI_Irecv (& receivedInt , 1 /* count*/, MPI_INT , 0 /* source */,

↪→ 1234 /*tag*/, MPI_COMM_WORLD , &request);

32 // do some heavy computation

33 MPI_Wait (&request , MPI_STATUS_IGNORE);

34 std::cout << "Received int " << receivedInt << " from rank 

↪→ 0.\n";

35 }

36
37 MPI_Finalize ();

38 }

Listing 2.3: MPI Send-Recv non-blocking example. Rank 0 sends an int with value 42 to rank
1. Rank 1 receives that value and prints it to std::cout. This corresponds to
Listing 2.1, but allows for computation to overlap with the communication.
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2.6 Load Balancing

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) Round Robin Distribution. The work items are alternately distributed to each compute
resource.

1 2 1 1 3 3 3 1 2 1 2 0 1 1 2 0 2 0 0 3

(b) Random Distribution. The work items are distributed to a compute resource at random.

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

(c) Block Distribution. The entirety of all work items is split into blocks. Each block is then
assigned to one compute resource.

Figure 2.9: Static load balancing for 20 tasks with equal load onto four compute resources. Each
box resembles one work item. Work items with the same color (or number) are
assigned to the same compute resource.

calls take a request as an argument. This request can be checked for completion (using
MPI_Test) or one can wait for communication to finish (using MPI_Wait).

A typical pattern of using non-blocking calls is to first start a non-blocking communi-
cation (e.g. using MPI_Isend), then do some other computation, after which MPI_Wait is
called (see Listing 2.3).

2.6 Load Balancing

Load balancing is an important part of many parallel multi-node simulation programs
[54–56]. Load balancing describes the distribution of multiple (sub-)tasks of a program,
also called work items, onto multiple compute resources. In general, one differentiates
between static and dynamic load balancing.

For static load balancing, also referred to as mapping or scheduling problem [57–59],
this work distribution is performed only once, at the startup of a simulation. Static load
balancing is possible if the load of each (sub-)task is well known. Examples of static
mapping techniques are round-robin mappings, randomized mappings, or the distribution
of blocks of work (cf. Figure 2.9). Round robin-like approaches are often useful for queues
of unknown length [60, 61]. If the size is known, a block distribution can be used and
often provides an easier distribution of the values. Random distributions can be useful if
the load of the (sub-)tasks varies or no information about them is known.

Dynamic load balancing is required if the load of work items changes over time or is
not known a priori [62,63]. Dynamic load balancing can either be solved using centralized
or decentralized approaches. In contrast to centralized approaches, e.g., a central queue,
decentralized methods, e.g., work-stealing or diffusive load balancing, provide better
scalability as they do not depend on central resources. If the load of each (sub-)task is
known, static load balancing techniques can be used in a repeated fashion producing
dynamic load balancing.

If one wants to distribute data, one first has to define the work items that are assigned
to the different compute resources.
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2 Technical Background

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) Round Robin Distribution. It requires a lot of communication, as neighboring items always
reside on different compute resources.

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

(b) Block Distribution. Little communication is required as neighboring items mostly reside
on the same compute resources.

Figure 2.10: Communication for one dimensional domain partitioning. Here, it is assumed that
only information of the neighboring cells/work items is needed. Arrows indicate
the necessary information exchange between different compute resources.

2.6.1 Domain Partitioning

Often, a simulation is using spatially ordered data, where data is locally connected, e.g.,
in terms of stencil operations, force field evaluations, etc. In that case, the domain
the data resides on should be distributed to the different compute resources in such
a way that close-by data reside on the same compute resource reducing the required
communication. In the one dimensional case, this corresponds to using block distributions
(cf. Figure 2.10). In the multi-dimensional case, multiple domain partitioning algorithms
exist.

2.6.2 Domain Partitioning Algorithms

All domain partitioning (also called spatial decomposition) algorithms have in common
that they split the domain into different subdomains, where each compute resource is
typically assigned one subdomain.

The easiest domain partitioning algorithm splits the domain into equally sized subdo-
mains using a regular rectilinear grid. It ensures equally sized and formed partitions, but
does not provide room for dynamic load balancing.

Other algorithms that can guarantee cubic partitions are bi-partitioning (or bisection)
algorithms. They recursively split the domain into two, until enough partitions for
the number of compute resources exist. Hereby, they create a (potentially unbalanced)
binary tree, where each leaf of the tree corresponds to the subdomain assigned to one
compute resource. By moving the partitioning-planes this algorithm can provide good
load-balancing.

Instead of allowing only bi-partitions, multi-partitioning methods allow splitting the
domain into more than two partitions per step. The multi-section method [64] implements
this behavior. They first create a factorization of the total number N of compute resources
with d factors (d is the dimension), s.t.,

∏d
i=1 ni = N . The domain is then split into d

recursive calls, wherein the i-th call, each partition is split into ni subpartitions.

Space-filling curve-based [65–67] partitioning methods reduce the multi-dimensional
problem into a one-dimensional partitioning problem that is easy to solve [68,69]. One
disadvantage of these methods is the resulting non-cubic subdomains. For this reason,
they are not considered in this thesis.
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2.6 Load Balancing

As an alternative to these approaches, it is possible to generalize the partitioning
problem to a graph-partitioning problem by discretizing the domain into cells. This
allows for relatively easy inclusion of a cost model for the communication. To solve
(graph-)partitioning problems, multiple libraries like (Par)METIS8 or Zoltan9 can be
used.

An overview of the different partitioning methods is shown in Figure 2.11.

The domain partitioning methods differ in their requirements. While the recursive
partitioning methods mostly require a priori knowledge of the load, to properly split the
domain, both the space-filling curve-based approach and the graph partitioning can work
with time measurements of the specific subdomains and work using diffusive methods
or using already known loads [70, 71]. A diffusive approach is also possible based on
the regular partitioning or the recursive multi-partitioning approach [72]. Hereby, the
domain borders are shifted towards the subdomains with a higher load.

Significant differences between diffusive and non-diffusive methods lie in the frequency
and the cost of the rebalancing. Diffusive approaches normally have to be performed
more often. They are, however, mostly cheaper to calculate as they require fewer
communication [71].

A detailed comparison of different domain partitioning methods can, e.g., be found
in [73,74].

2.6.3 Force Decomposition

For the force calculation of a particle simulation, instead of interpreting specific subdo-
mains of a simulation as a work item, one can interpret the calculation of the force between
each particle pair as one work item. If these are then distributed, one often speaks of
force decomposition [75]. This kind of decomposition is favorable if the total number
of particles is small or the cutoff large and a high degree of parallelism is needed [76].
Figure 2.12 provides a matrix view of the force decomposition. One disadvantage of force
decompositions is the higher amount of communication, scaling with O (N/√p), compared
to O (N/p) for spatial decomposition methods [76], here N is the particle number and p
the number of processes.

Domain partitioning algorithms can be interpreted as force decomposition algorithms,
where some matrix entries, i.e., force-calculation pairs are calculated multiple times.

2.6.4 Load Estimation

For simulation domains in which grids are used in combination with a stencil-based
algorithm, the domain can be split into subdomains with an equal number of grid elements
or cells. This guarantees a good load balance as mostly the cost for the calculation
of a subdomain scales linearly with the number of grid elements. Unfortunately, for
particle-based simulations, the cost of the simulation of a cell depends on the number of
particles inside and around that cell and it is not possible to easily split a domain into

8http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
9http://www.cs.sandia.gov/Zoltan/
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2 Technical Background

(a) Regular rectilinear Partitioning. The do-
main is split into equally sized subpartitions
using a regular grid consisting of equally
sized cuboids.

(b) Recursive Bi-Partitioning. The domain
is recursively split into two subdomains.
Lines of the same color represent the differ-
ent levels of the splitting.

(c) Recursive Multi-Partitioning. The domain
is recursively split into multiple subdomains.
Lines of the same color represent the differ-
ent levels of the splitting. The level of the
tree corresponds to the dimension of the
domain.

(d) Space-Filling-Curved-based Partitioning.
The domain needs to be discretized. After-
wards, a space-filling curve is used to find
a good partitioning.

(e) Graph Partitioning. The domain needs to
be discretized. Afterwards, graph parti-
tioning algorithms can be used to split the
domain. Communication costs (lines) can
be incorporated into the splitting.

Figure 2.11: Overview of the different domain partitioning algorithms.

26



2.6 Load Balancing
P

ar
ti

cl
e

Particle

0

0 0

1

2

3

0

1

2

3

0

1

1

1

2

3

0

1

2

3

0

1

2

3

2

2

0

1

2

3

0

1

2

3

0

1

3

3

2

3

0

1

2

3

0

1

2

3

4

4

0

1

2

3

0

1

2

3

0

1

5

5

2

3

0

1

2

3

0

1

2

3

6

6

0

1

2

3

0

1

2

3

0

1

7

7

2

3

0

1

2

3

0

1

2

3

8

8

0

1

2

3

0

1

2

3

0

1

9

9

2

3

0

1

2

3

0

1

2

3

(a) Round Robin Distribution.
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(b) Block Distribution v1.
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(c) Block Distribution v2. In contrast to v1, not all
compute resources need knowledge of all parti-
cles.

Figure 2.12: Matrix view of the force decomposition for 10 particles. A total of 100 interactions
are calculated among these particles which are then assigned to four different
compute resources.
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(a) Full Shell
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Figure 2.13: Zonal methods in 2d.

partitions based on the number of cells. Instead, the particle density has to be taken
into account. For this purpose cost-models can be derived to estimate the cost based on
the particle numbers [2, 77]. In addition to the particle number, it is possible to consider
the cost of communication for the load balancing, which is relatively straightforward for
graph-based partitioners, where it can be specified using the edges of the graph [62]. It
is, e.g., cheaper to split a domain within a low-density region than a high-density region,
because fewer particles have to be communicated. Additionally, it is better to produce
subdomains with a higher volume to surface ratio, because large surface areas imply
more communication.

2.6.5 Zonal Methods

Zonal methods [78] represent a mix of spatial and force decomposition algorithms. Like
domain partitioning methods, each compute resource is assigned a specific subdomain.
But, instead of calculating some particle-pairs multiple times, like in the spatial decom-
position methods, zonal methods communicate values of specific force calculations, like
force decomposition methods. Zonal methods typically consist of so-called home boxes,
i.e., the areas owned by a compute resource, and different imported zones, which make
up the import or halo region.

Two-dimensional and three-dimensional overviews of the different zonal methods are
presented in Figure 2.13, resp. Figure 2.14. A comparison of the sizes of the halo regions
is shown in Table 2.3 and Figure 2.15.
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2.6 Load Balancing

(a) Full Shell (b) Half Shell

(c) Eighth Shell (d) Neutral Territory

Figure 2.14: Zonal methods in 3d. Shown in blue is the home box, while the import region is
red.
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2 Technical Background

Name rI F E C VI lima→0 VI

Full Shell rc 6 12 8 6a2rc + 3πar2
c + 4/3πr3

c
4/3πr3

c

Midpoint rc/2 6 12 8 3a2rc + 3/4πar2
c + 1/6πr3

c
1/6πr3

c

Half Shell rc 3 6 4 3a2rc + 3/2πar2
c + 2/3πr3

c
2/3πr3

c

Eighth Shell rc 3 3 1 3a2rc + 3/4πar2
c + 1/6πr3

c
1/6πr3

c

Neutral Territory rc 4 2 0 4a2rc + 1/2πar2
c 0

Table 2.3: Properties of the import regions of zonal methods in 3d. All values are for their
three-dimensional version, assuming a side length of a for the home box. The radius
of the import region is given by rI and the volume by VI. The volumes for one face
import (F) is Vface = a2rimport, for an edge import (E) Vedge = aπr2import/4 and for
each corner import (C) Vcorner = πr3import/6. See also Figure 2.15. Out of the shown
methods, the neutral territory method is the only method with no lower bound for
the import volume.
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Figure 2.15: Comparison of the sizes of the import regions for different zonal methods. See also
Table 2.3. For relative box sizes a/rc larger than π/8 +

√
9π2 + 96π/24 ≈ 1.216

the midpoint and eighth shell method provide the smallest import region. For
smaller box sizes, the neutral territory method provides the smallest import region.

30



2.6 Load Balancing

(a) Particles in a linked cells algorithm. Ghost
cells (gray) lie outside of the domain of a
process (blue)

(b) Necessary force calculations (blue lines).
The forces between halo cells do not need
to be calculated.

Figure 2.16: Visualization of the full shell method. In a typical MD simulation the forces
between particles only need to be calculated if at least one particle is not a ghost
particle.

Full Shell The full shell method (cf. Figure 2.16) is another name for the normal spatial
decomposition method, where no forces are communicated between different compute
resources. For a correct force calculation, all forces of owned and halo particles thus need
to be calculated. The home box is thus interacted with all halo zones. The import region
of this method is always bigger than a sphere whose radius is the cutoff.

Midpoint Method Using the midpoint method [79], the compute resource an interaction
is calculated on is decided by calculating the midpoint of said interaction. It is then
calculated by the compute resource that owns the midpoint. Because particles that
are interacted on one compute resource have to lie within rcutoff/2 of its subdomain, the
necessary import volume is reduced. Instead of calculating the actual midpoint for each
interaction, it is possible to use a pseudo-midpoint method by interacting only specific
cell-pairs [79]. This, however, requires equally sized cells throughout the entire simulation
domain of all compute resources. The size of the import region of the midpoint method
is one-eighth of the full shell method (cf. Table 2.3).

Half Shell As the name indicates, the half shell method’s import region is halved
compared to the full shell method. Using the half shell method, interactions between
two zones are calculated inside of the compute resource whose home box has the lower x
coordinate (or y coordinate if the x coordinate is equal, or z coordinate if both x and y
coordinates are equal) [78]. Alternatively one can define a three-dimensional index I

I = ix ·Ny ·Nz + iy ·Nz + iz (2.15)
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2 Technical Background

that is calculated based on the one-dimensional indices ix, iyandiz of the grid of boxes
(with Nx, Ny, Nz boxes in the respective dimensions). The interaction then takes place
on the compute resource with the lower three-dimensional index I.

Eighth Shell While the full shell and half shell method only assign an interaction to a
specific compute resource if at least one of the interacting particles lies in its home box,
the eighth shell method also assigns interactions where both particles do not lie inside of
the home box of a process. In the ES method, the compute resource owning the position,
which is given by the element-wise minimum of the two interacting particle positions,
calculates an interaction. In 3d, the import region of this method equals an eighth of the
import region of the full shell method and resembles one corner of a sphere.

Neutral Territory As all previously mentioned methods’ import regions are at least
an eighth of a cutoff sphere, the neutral territory methods were introduced in [80] that
does not have this restriction and, instead, has no lower limit. The neutral territory
method takes the base idea of the eighth shell a step further – most performed pairwise
interactions are calculated on a compute resource on which neither particle resides in its
home box.

For determining on which compute resource the computation of an interaction takes
place, each pair of particles is categorized in one tower and one base atom:

1. First, if the x coordinates of the particles’ home boxes differ, the one lying in the
lower box is the tower atom.

2. Otherwise, if the y coordinates of the home boxes differ, the one lying in the lower
(in y-direction) box is the tower atom.

3. If x and y coordinate of the home boxes are identical and the z coordinates are
different, the one in the lower (in z-direction) box is the plate atom.

4. If all three coordinates are the same, choosing the categorization is unimportant.

An interaction of tower and plate atoms then takes place in the compute resource with x
and y coordinates of the tower and z coordinate of the plate atom.
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3 ls1 mardyn — An Overview

The massively parallel molecular dynamics code ls1 mardyn1,2 is capable of simulating
very large systems of small rigid molecules on HPC clusters [1, 4, 5].

ls1 mardyn allows us to simulate single or multi-centered molecules that consist of one
or multiple sites (Lennard-Jones, charge, dipole, or quadrupole). In addition, support for
the Mie potential [81] (a generalized version of the Lennard-Jones potential) has been
added recently [82].

The simulation of various processes and scenarios from chemical and process engineering
is possible using ls1 mardyn: The program helps understanding the formation of gas
bubbles and other nucleation processes [83–89]. Furthermore, ls1 mardyn is used to better
describe the surface tension of fluids [84, 90–96]. ls1 mardyn can simulate adsorption
processes [97, 98] and the flow through nanoporous membranes [99]. The program is also
used to develop novel long-range correction schemes, e.g., for planar interfaces [94,100]. In
addition, the MaMiCo tool was used to couple ls1 mardyn with mesh-based fluid dynamics
solvers to allow multi-scale simulations [101]. Recently, support for the long-range parts
of the Coulomb potential using the fast multipole method has been added [6].

3.1 Algorithms, Parallelization and Optimizations

To provide good performance and reasonable time-to-solutions for this large variety of
scenarios ls1 mardyn employs efficient algorithms, which are tuned to modern HPC
architectures [1, 4–6,102]. In comparison to other molecular dynamics codes, ls1 mardyn
does not use Verlet lists, but uses linked cells (c.f. subsection 2.2.3) as the underlying data
structure [1]. Since linked cells do not store any neighbor lists, they have a significantly
reduced memory footprint compared to Verlet lists. Using the linked cells algorithm,
ls1 mardyn holds the world record of the largest molecular dynamics simulation since
2013 [4] with a total of four trillion particles. In 2019 we broke this record, again using ls1
mardyn, and were able to simulate a total of twenty trillion atoms [5]. The optimizations,
to enable these and other simulations, can be split into node-level and multi-node-level
optimizations.

3.1.1 Node-Level Optimizations

For an in-depth view of the node-level optimizations, please refer to [6], which discusses
them in great detail.

1Abbreviation for large systems 1: molecular dynamics.
2https://www.ls1-mardyn.de/
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Figure 3.1: Data Layouts: The AoS data layout stores each particle as a structure (e.g., a C++
class). Multiple of these structures are then stored in an array (e.g., a C++ vector).
The SoA data layout does not store particles as structures. Instead, the information
a particle contains is split up into multiple arrays. A combination of these arrays
into one structure is then called SoA.

3.1.1.1 Scalar-Level Optimizations

Data Structures ls1 mardyn stores the cells of the linked cells algorithm within the
so-called LinkedCells container. Each of these cells contains a C++-vector of molecules
which are stored in an Array of Structures (AoS) format (cf. Figure 3.1). Storing the
molecules directly within the cells guarantees data locality when iterating through the
particles of a cell. ls1 mardyn also maintains an SoA storage of the molecules for each
cell. It is needed for an easier vectorization of the force kernel as it provides non-strided
access to memory.

Precision ls1 mardyn is capable of simulating molecular dynamics scenarios in different
floating-point precisions. By default, it uses double precision, i.e., 64-bit for all floating-
point values. In [5] support for single precision (32-bit) floating-point values was added,
reducing the memory requirements by 50%. Using this lower floating-point precision also
for the accumulation of forces and energies can lead to significant precision loss of the
overall simulation [103,104]. As a compromise mixed-precision can be used which provides
speed-ups without too much loss in precision [103,104]. Using mixed-precision, particle
properties, e.g., position and velocity, are stored in single-precision, while accumulated
values, e.g., the force acting on a particle, are stored in double-precision. Support for
mixed-precision was previously added to ls1 mardyn [6].
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SoA-only Storage For the world record from 2019, we implemented further improve-
ments to memory consumption. This included a new reduced memory mode (RMM) for
simulations of single-centered Lennard-Jones molecules. Using RMM, ls1 mardyn does
not use AoS storage. Instead, it saves all information of a particle inside of SoAs. This
reduces the memory footprint by roughly 50% compared to maintaining both AoS and
SoA storage. Maintaining both further requires synchronization overhead between them.
The existence of only one storage eliminates this overhead.

3.1.1.2 Vector-Level Parallelization

The SoA storage enables sequential memory access patterns which is a requirement
for good vectorization. We use self-written intrinsics wrappers for vectorization. In
comparison to auto-vectorization or pragma-based vectorization, these need slightly more
implementation efforts. They do, however, guarantee good vectorization. Our intrinsics
wrappers support all current x86 64 architectures, i.e., they include support SSE3, AVX,
AVX2, AVX512. As of the writing of this thesis, they do not support ARM intrinsics.

3.1.1.3 Shared-Memory Parallelization

ls1 mardyn supports multiple parallelization models for shared memory. It mostly uses
OpenMP for shared-memory parallelism [5, 6, 102]. In addition, [6, 105] describe tests
using the QuickSched library to enable task-based parallelism. In the following, we
shortly describe the parallelization using OpenMP.

ls1 mardyn uses the Newton3 optimization, i.e., forces between two particles are only
calculated once and applied to both particles. Therefore, if two threads calculate forces
on the same particle at the same time, race conditions would occur. To prevent race
conditions, ls1 mardyn uses coloring schemes at the cell-level by employing barriers (cf.
subsection 2.4.3) and supports schemes with eight (c08) or four colors (c04) [5, 102] (cf.
Figure 3.2). In addition, support for a lock-based traversal has been added which uses
a one-dimensional splitting of the domain into equally sized slices [5]. Based on this
partitioning, we will henceforth call it sliced traversal. In comparison to the c08 and
c04 traversals, the sliced traversal does not provide any load balancing but offers less
scheduling overhead. One should therefore only use it for homogeneous scenarios.

3.1.2 Distributed-Memory Parallelization

In addition to the shared-memory parallelization, ls1 mardyn uses domain partitioning
schemes for distributed memory parallelism.

3.1.2.1 Standard Domain Decomposition

The standard domain decomposition (sdd) uses a regular rectilinear mesh to distribute
the domain to the different processes (cf. Figure 3.3). To get a proper distribution of the
processes, ls1 mardyn uses MPI’s MPI_Dims_create in combination with MPI_Cart_create.
MPI_Dims_create first generates a three-dimensional division of N processes into a Cartesian
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3 ls1 mardyn — An Overview

(a) 2-d c06 stencil for one cell. (b) 2-d c04 stencil for one cell.

(c) 2-d c06 stencil over multiple cells. (d) 2-d c04 stencil over multiple cells.

Figure 3.2: Comparison of the 2-dimensional stencils for one cell (top) and multiple cells
(bottom). The 2-d c06 stencil corresponds to the 3-d c18 stencil. The 2-d c04
stencil corresponds to the 3-d c08 stencil. We define the so-called base-step as
the calculation of the interactions within a base-cell and with cells connected by
the same color as the base-cell. This base-step is performed by one thread. The
base-steps of cells with the same color can be executed in parallel.
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(a) Domain using one process. (b) Domain using two processes.

(c) Domain using four processes in an exploded-view. The red cross marks
the same position for all processes.

Figure 3.3: Standard domain decomposition (sdd) for a varying number of processes. One
process calculates the interactions of all cells with the same color, while ghost cells
around a specific domain are marked using patterns. Particles in ghost cells are
only needed for the correct calculation of the particle interactions.
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3 ls1 mardyn — An Overview

(a) Tree of the partition.

(b) Partition of the domain. (c) Partitioning in an exploded-view, also visualizing
ghost cells. Crosses of the same color mark the
same positions on different subdomains.

Figure 3.4: k-d tree based domain decomposition of a domain into five subdomains. The domain
is recursively split along the different colored lines in the order red, green, blue.

grid of n1 × n2 × n3 processes. The function will try to select a balanced distribution of
processes, s.t., n1 ≈ n2 ≈ n3. MPI_Cart_create uses the grid generated by MPI_Dims_create

and creates a new MPI communicator that contains information about the Cartesian
topology.

After the generation of the processor-grid, it is applied to the simulation domain. ls1
mardyn then splits the domain in n1 × n2 × n3 equally sized partitions.

To be able to calculate interactions of particles that belong to different processes, ls1
mardyn exchanges particle information between the processes using MPI. Hereby, ls1
mardyn communicates the information of particles that lie close to the border of one
partition to all processes lying close to that particle. This information is saved in so-called
ghost cells (cf. Figure 3.3).

3.1.2.2 K-D Decomposition

Molecular dynamics simulations often include scenarios with heterogeneous particle
distributions. These can range from lightly inhomogeneous scenarios like droplet formation
and condensation to heavily inhomogeneous scenarios like droplet coalescence and vapor-
liquid-equilibrium simulations [106,107].
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These inhomogeneous particle distributions result in heterogeneous load distributions,
as the local load depends on the local particle density. A partitioning into equally
sized partitions thus generally produces partitions with unequal load. To provide good
performance the domain has to be split into partitions with (almost) equal load. For
this, [2] introduced a k-d tree-based domain partitioning technique. It uses a recursive
bi-partitioning scheme to split the domain (cf. Figure 3.4). [2] also compared k-d tree-
based against diffusive-based, graph-based and space-filling curve-based approaches and
came to the conclusion that the k-d tree-based approach provides the best performance
for ls1 mardyn.

In the context of this thesis the k-d tree-based approach was further optimized. These
optimizations, together with a more in-depth view of the k-d tree-based decomposition
are described in chapter 4.

3.2 Control Flow

The control flow of ls1 mardyn consists out of two phases. First, the simulation is
initialized according to the parameters given by an input file and through the command
line. Next, the actual simulation is carried out through the main simulation loop.
At the beginning of each loop iteration, the initial kick of the (rotational) leapfrog
integrator [108,109] (synchronized form) is performed

v +=
dt

2
· F
m

(3.1)

x += dt · v (3.2)

(+ rotational terms). (3.3)

After the initial kick, the halo particles are exchanged, as they are needed for the following
step, i.e., the force calculation. As they are no longer needed, the halo particles are
removed after the force calculation. The final step of the loop iteration consists of the
drift step of the integrator

v +=
dt

2
· F
m

(3.4)

(+ rotational terms). (3.5)

ls1 mardyn is highly extensible through plugins. They are initialized in the initialization
phase of ls1 mardyn and are repeatedly called in each loop iteration at specific extension
points (cf. Figure 3.5).

3.3 Structure

ls1 mardyn provides a modular design to ease maintenance and extensibility. For this
purpose, the different functionalities of ls1 mardyn are well separated into different classes.

3Taken from the ls1 mardyn documentation and adapted slightly.
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Start new 
iteration

Plugins::
beforeEventNewTimestep(...)

1. balanceAndExchange() – load 
balancing and particle exchange
2. calculateForces()
3. additional Forces (sitewise/Full)

Plugins::
endStep(...)

Plugins::
beforeForces(...)

Plugins::
afterForces(...)

eventForcesCalculated()
v += dt/2 * F / m

eventNewTimestep()
v += dt/2 * F / m
x += dt * v

deleteOuterParticles()
remove Halo molecules

Plugins::
siteWiseForces(...)

Figure 3.5: Overview of the main simulation loop of ls1 mardyn. Highlighted in green are the
different extension points at which plugins are called.3

These classes allow switching the decomposition schemes, s.t., the Cartesian decomposi-
tion, or the k-d tree-based decomposition can be used. Additionally, all plugins inherit
from a common PluginBase class which provides an interface that provides extensibility
for ls1 mardyn. These plugins and also other parts of the code can easily access the
particles stored in a particle container through the means of iterators (introduced in [5,6]).
They hide the inner workings of the particle storage and the used container and were
initially implemented to provide an agnostic way to iterate over both an AoS and an SoA
storage of particles [5]. The flexible structure of ls1 mardyn helped us in extending it
further, e.g., we added a new class for coupling arbitrary load balancers (see section 5.5).

An overview of the different classes is given below.

Molecule The Molecule classes FullMolecule and MoleculeRMM contain the position,
velocity and force information of a molecule. While FullMolecules are normally
stored inside of the ParticleContainer, MoleculeRMM is not actually stored. Instead,
an SoA representation of the molecules is used. MoleculeRMM is used whenever
the Molecules are added to the container or accessed through the iterators.

(Region)ParticleIterator The ParticleIterator and RegionParticleIterator provide an
easy way to access all particles inside of ParticleContainer [6]. [5] introduced
ParticleIterators to provide a uniform interface to access molecules both in normal
and RMM modes.
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ParticleContainer ParticleContainer provides an interface for containers to store and
manage molecules. A ParticleContainer further provides the methods iterator(),
regionIterator(). These methods will generate the appropriate iterator to access the
particles from outside of the ParticleContainer.

LinkedCells The class LinkedCells implements the ParticleContainer interface. It stores
the molecules inside of the cells of the linked cells.

CellPairTraversals The CellPairTraversals are used to define a scheme to iterate over
all pairs of neighboring cells of a LinkedCells container. A short overview of the
different traversals can be found in subsubsection 3.1.1.3.

CellProcessor A CellProcessor defines the interactions between the particles in one or
within a pair of cells. ls1 mardyn mainly implements two different CellProcessors:
The LegacyCellProcessor and the VectorizedCellProcessor. The former is used for
AoS-like access of the particles, while the latter accesses the SoAs of particles. It uses
a hand-written intrinsics wrapper to enable vectorization of the force calculation.

PluginBase ls1 mardyn’s capability for extension is realized by a modular plugin architec-
ture. For this purpose, ls1 mardyn provides the interface PluginBase from which all
plugins inherit. It defines specific entry points which the program calls at different
times during the simulation loop. These entrypoints provide different information
as they resemble different states throughout the simulation (cf. Figure 3.5). There,
e.g., exists steps for adding additional forces and a step that is mainly used for
the output of the simulation. A plugin typically only uses one or two of those
extension points. For a detailed view of the plugin structure in ls1 mardyn, please
refer to [110].

DomainDecompBase ls1 mardyn uses periodic boundary conditions. DomainDecomp-
Base provides the sequential implementation for them. These methods are used if
MPI is not available.

DomainDecompMPIBase This class provides the MPI-parallel particle-exchange meth-
ods for both DomainDecomposition and KDDecomposition.

DomainDecomposition The standard domain decomposition (c.f. Figure 3.3) is imple-
mented in the class DomainDecomposition.

KDDecomposition This class adds the k-d tree based domain decomposition (c.f. Fig-
ure 3.4) to ls1 mardyn.

Simulation The class Simulation orchestrates the entire simulation. It calls the different
classes for input, particle exchange and domain partitioning, force calculation,
output, and the registered plugins.
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4.1 Related Work

For most particle codes, some effort was put into providing good multi-node scalability
through load balancing and various MPI optimizations.

Load balancing in the form of orthogonal recursive bisection methods, like k-d trees,
is used not only in ls1 mardyn but also in other codes such as NAMD [111–113] or
LAMMPS [75]. NAMD , hereby, combines spatial and force decomposition methods by
assigning cells to specific processes, but allowing the calculation of forces between two cells
(called compute) on arbitrary processes. This enables possibilities for load balancing but
also suggests topology-aware placement of these compute objects, which was implemented
in [114]. Besides the bisection method, LAMMPS also provides options to produce
rectilinear grids and generally aims to distribute an equivalent number of (weighted)
particles to each process. A weighting is possible to equally distribute the computational
load instead of the particle number and is needed if, e.g., different particle potentials are
used. LAMMPS provides a wide variety of configurable weighting algorithms ranging
from direct input over the number of neighbors to timing data 1.

GROMACS [115] uses a staggered grid approach, where the partition boundaries of an
initially regular grid are moved in a diffusive-like hierarchical approach, which aims to
work without global communication. A similar approach is also implemented in A Load
Balancing Library [116], which is subject of the work at hand.

FDPS [117] uses a multi-section scheme which allows for non-expensive re-balancing [64].
Like the staggered-grid approach, the multi-section method provides good locality, i.e.,
upon a small change of the load distribution, only a small move of the partition boundaries
is performed, which is often not guaranteed for bisection methods [64].

Some codes provide the ability to combine different spatial partitioning methods. An
implementation of a graph-based partitioner for ESPResSo [118] that combines full
rebalancing with diffusive rebalancing has been showcased in [77]. ESPResSo is also
capable of joined partitioning for multi-physics simulations (e.g., lattice-Boltzmann flow
simulations and MD simulations) [119].

There also exist codes like ms2 [120–123] that use force decomposition instead of
spatial decomposition approaches. These are, however, mostly limited in the maximal
number of particles and provide bad scalability.

Some codes do, however, use zonal methods or neutral territory methods which are a
mixture of spatial and force decomposition methods (cf. subsection 2.6.5). Hereby, the
eighth shell method is the most popular, and is, e.g., used by GROMACS [54]. Some

1https://docs.lammps.org/balance.html, https://docs.lammps.org/fix_balance.html
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codes, like LAMMPS , do not support neutral territory methods, because developers
claim that typically run models would not gain much performance through their use 2.

Support for overlapping communication also varies between the different simulation
codes. While LAMMPS and ms2 provide no real overlapping, GROMACS provides
overlapping of the GPU computations of the non-bonded interactions with the calculations
of the bonded interactions and the communication on the CPU [35]. NAMD supports
overlapping communication through the use of the task-based parallel programming
paradigm Charm++ [124] [112].

4.2 Load Balancing and k-d Decomposition in ls1 mardyn

In the context of this dissertation, ls1 mardyn’s k-d decomposition (kdd) was optimized
and adapted to handle additional use cases that it could not handle before. Among other
optimizations, this includes the handling of heterogeneous compute architectures and
better load estimation.

4.2.1 K-D Decomposition in ls1 mardyn

In ls1 mardyn, the kdd works at cell level, i.e., it splits the domain of size a× b× c into
a regular rectilinear grid of b arc c × b

b
rc
c × b crc c cells and distributes these cells among the

different processes.

For the distribution, ls1 mardyn uses the small class KDNode that stores the recursive
structure of the kdd. Each instance of KDNode stores the area of owned cells, the owning
process, the number of processes assigned to this node or its children, and pointers to
the two children of the node. Using these nodes, the full information of the k-d tree can
be stored and an efficient splitting of the domain can be found.

To calculate a balanced partition, information about the computational load of each
partition is needed. To track the quality of a possible partitioning, the deviation Di of
the assigned load Ci from the optimal load Copt is tracked for each process i.

Ci =
∑

cells j assigned to process i

cj (4.1)

Ctotal =
∑

processes i

Ci (4.2)

Copt =
Ctotal

nprocs
(4.3)

Di = (Ci − Copt)
2 (4.4)

The sum of the deviations over all subdomains Dtotal =
∑

iDi is then used as a measure
for the quality of a partition. In the k-d tree, these subdomains correspond to the leaves
of the entire tree. For the non-leaf nodes of the tree, the sum of the deviations of its

2https://sourceforge.net/p/lammps/mailman/message/34807376/
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children is stored.

Dparent = Dchild,1 +Dchild,2 (4.5)

Applying this formula from the bottom-up to a tree will store the total deviation of
each subtree at the root node of it and the root of the entire tree contains its total load
deviation. If this formula were used exclusively, searching for the best possible subdivision
would require creating all possible and complete subdivisions, as it can only be applied
bottom-up to the tree. To circumvent this requirement, the lower bound inf D for the
deviation is used. It specifies the lowest possible deviation inf Dparent from the optimal
load for an arbitrary node given a number of processes n and the load C assigned to it
(derivation in section A.1). The infimum includes all possible further subdivisions of the
node and all its children.

inf D = n

(
C

n
− Copt

)2

(4.6)

inf D = n (Cavg − Copt)
2 (4.7)

(4.8)

Using this formula, the infimum for a node assuming knowledge of its children is

inf Dparent = n1 (Cavg,child,1 − Copt)
2 + n2 (Cavg,child,2 − Copt)

2 , (4.9)

where n1 and n2 are the number of processes assigned to child 1 and child 2, and
Cavg,child,1 =

Cchild,1

n1
and Cavg,child,2 =

Cchild,2

n2
are the average loads of the two children.

The above formula will henceforth be called quadratic model.
The creation of the tree follows a recursive, parallel scheme and is implemented in

the function decompose(fatherNode). In this function, if only one process is assigned
to fatherNode, i.e., if the node is a leaf, the load deviation from the optimal load is
calculated and the function returns. Otherwise, i.e., if more than one process is as-
signed to fatherNode, possible partitions into two parts are calculated using the function
calculateAllPossibleSubdivisions() and stored in possibleSubdivisions. These subparti-
tions are sorted according to inf Dparent (Equation 4.9).

After the possible subdivisions are calculated, they are further analyzed. Starting
with the subdivision with the lowest inf D, recursive calls to decompose() are issued
for each of the two partitions of the subdivision. Hereby, only processes that are
assigned to a specific partition partake in the recursive call (handled using different MPI
Communicators). After the recursive call returns, the sum of the deviations of the two
partitions is calculated using MPI_Allreduce. If the current subdivision’s load deviation is
lower than a previous subdivision, it is saved as the best subdivision. Further subdivisions
of possibleSubdivisions are tested if their inf Dparent is lower than the one of the best
subdivision. After all subdivisions are calculated, the best subdivision is returned. The
recursion is started with the root node of the tree which contains the entire simulation
domain. Using this recursion, the tree with the lowest overall deviation of the optimal
load is constructed.
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Even with the usage of inf Dparent the total number of possible subdomains is very big
and a few optimizations to reduce its size are used. First, if more than fullSearchThreshold

processes are assigned to fatherNode, instead of calculating multiple subdivisions, the num-
ber of processes is split in half and an appropriate subdomain is assigned to the children
in function calculateAllPossibleSubdivisions(). This is possible, as the high number of
processes guarantees the availability of a good subdivision. Second, fullSearchThreshold

also provides a limit on whether all calculated subdivisions are actually tested. If we are
close to the root node and have enough processes (Nprocs < 2level+fullSearchThreshold) only
the subdivision with the lowest inf D is tested. Typical values of fullSearchThreshold lie
between 3 and 8 (we use a value of 3 in this thesis). The function decompose() is depicted
in algorithm 4.1.

For decompose() to work, the load c has to be known for each cell. The cost c for a cell
is calculated using the empirical formula

c = N2
own +

1

2

∑
neighbor ∈ neighbors

Nown ·Nneighbor, (4.10)

where Nown is the number of particles in the respective cell and Nneighbor the number of
particles in a neighboring cell.

4.2.2 Limitations

During this thesis, a couple of limitations of the algorithm described above have been
revealed and resolved.

1. The algorithm does not incorporate heterogeneous compute systems into the domain
partitioning. This results in a bad load balancing when using clusters with differently
powerful compute elements.

2. The algorithm only works well for slightly inhomogeneous particle distributions,
e.g., for droplet formation scenarios. For very inhomogeneous particle distributions,
a good load balancing cannot be observed.

3. The algorithm does not take multiple particle types into account. This can be
seen in Equation 4.10, where only the particle number, but not the particle type is
considered. If there exist at least two spatially separated groups of particles, where
the calculation of forces is more expensive for one of the particle types, large load
imbalances can arise.

4.2.3 Adaptions for Heterogeneous Compute Systems

4.2.3.1 Motivation

At the time of writing this thesis, most HPC clusters contain large amounts of identical
nodes. However, there exist some clusters which consist of multiple partitions, where
only within a partition the used nodes are identical, while nodes of different partitions
might differ.
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Algorithm 4.1: Parallel algorithm to evaluate the best partitioning. This
algorithm is used by the k-d tree-based decomposition.

1 Function decompose ( fatherNode)
input : fatherNode: a KDNode consisting of the subdomain and the assigned

processes (starting process and numprocs)
output : complete partitioning of fatherNode

2 if fatherNode.numprocs == 1 then
3 fatherNode.calculateDeviation ()
4 return fatherNode

5 // subdividedNodes are sorted by a lower bound for the deviation (infD), from
smallest to biggest.

6 subdividedNodes ← calculateAllPossibleSubdivisions (fatherNode)
7 bestSubdivision ← nullptr
8 bestDeviation ← ∞
9 foreach node in subdividedNodes do

10 if node.infD > bestDeviation then
11 // If the lower bound for the deviation is bigger than the best

measured deviation, we end the loop, as all following subdivision will
also be worse.

12 break

13 // Each process (with MPI rank myrank) only partakes in the
decomposition of one of the children.

14 if myrank in node.child1.processes then
15 node.child1 ← decompose (node.child1)
16 else
17 node.child2 ← decompose (node.child2)

18 // The deviations of the two children are collected using MPI Allreduce.
19 partialAllReduceDeviations ()
20 node.deviation ← node.child1.deviation + node.child2.deviation
21 if node.deviation < bestDeviation then
22 bestSubdivision ← node
23 bestDeviation ← node.deviation

24 return bestSubdivision
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One example of these clusters was CoolMAC3 (see section B.2), which consisted of five
different partitions. Three of these partitions were CPU-only, using Intel’s SandyBridge
architecture (snb), one using AMD’s Bulldozer architecture (bdz), and another using
Intel’s Westmere architecture (wsm). The other two partitions also featured GPUs in
combination with Intel’s SandyBridge CPU architecture. The partition ”nvd” additionally
included NVIDIA Tesla GPUs, while the partition ”ati” included AMD’s FirePro GPUs.

Another example was the SuperMIC, a cluster consisting of multiple nodes, each
containing an Ivybridge Host-CPU and Xeon Phi accelerator cards. To properly leverage
the performance of the accelerators, they should be used in their native mode, i.e., an
entire simulation process should run on the accelerator. To also leverage the Host-CPU,
another MPI process will run on this CPU.

In the case of CoolMAC, nodes of different partitions provide different performance,
while for SuperMIC, MPI processes on the host and on the accelerators have a different
simulation speed.

In general, we model these performances as Pi. If a load balancer simply distributes the
loads evenly without taking the varying performance into account, the different processes
i will take a different amount of time ti for the same work load C.

ti = C/Pi (4.11)

Instead, the load balancers have to take the performance of the different compute resources
into account (cf. Figure 4.1) and assign appropriate loads, here called Ci to the compute
resources, s.t., the computations all take the same amount of time.

ti = Ci/Pi
!

= const (4.12)

4.2.3.2 Implementation

To adapt the algorithm to incorporate the performances of the compute resources correctly,
the formulas for the calculation of the deviations, i.e., Equation 4.4 and Equation 4.9, had
to be adapted (for a derivation, see section A.2) and now incorporate the performances
P of the children of a node and the total mean performance of all ranks (Pavg):

Di =

(
Ci −

Copt · Pi
Pavg

)2

(4.13)

inf Dparent = n1

(
Cavg,child,1 −

Copt · Pavg,child,1

Pavg

)2

+ n2

(
Cavg,child,2 −

Copt · Pavg,child,2

Pavg

)2
(4.14)

(4.15)

3http://www.mac.tum.de/wiki/index.php/MAC_Cluster
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cpu 2

cpu 1

sync sync sync

(a) Equally powerful compute resources. Cpu
1 and cpu 2 provide the same performance
and have to calculate tasks with the same
computational load.

cpu 2

cpu 1

sync sync sync

(b) Differently powerful compute resources with
performance-unaware load balancing. Here,
cpu 1 is twice as powerful as cpu 2. The
load is equally, but – for the performance –
inappropriately distributed.

cpu 2

cpu 1

sync sync sync

(c) Differently powerful compute resources with
performance-aware load balancing. Here, cpu
1 is twice as powerful as cpu 2 and the load
is distributed accordingly.

Figure 4.1: Load balancing for heterogeneous architectures. If the performance of processes
vary, performance-aware load balancing is necessary. In green, the different tasks
are displayed. Every six tasks, synchronization is necessary. This corresponds to the
synchronization after each time step in which neighborhood information is exchanged.
If a process has no work to do and has to wait for the next synchronization step, it
is idling (marked in red). The total load and the total compute power is the same
for each graphic.
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To correctly use these adapted formulas, the performance of each process has to be
known. These could either be input directly by the user of ls1 mardyn or could be
measured directly by the program. We decided to implement the latter and implemented
a means to measure the performance of each process. Hereby, for each process the number
of flops needed for a simulation step is counted and the time needed for one simulation
step is measured. This flop rate is then used as Pi.

4.2.3.3 Results4

Estimation First, a theoretical estimate of the speedup is given. This is needed to
quantitatively evaluate the performance gains. Assuming performance-unaware, but
otherwise perfect load balancing, the time used per simulation loop is limited by the
process with minimal performance.

tunaware =
Ci

minPi
=

Ctotal

nprocs minPi
(4.16)

For performance-aware load balancing, this time is given as

taware =
Ci
Pi

=
Ctotal

Ptotal
. (4.17)

The speedup S is thus given as

S =
tunaware

taware
=

Ptotal

nprocs minPi
=

Pavg

minPi
. (4.18)

The speedup can thus be expected to be large, if the average performance Pavg is much
bigger than the minimal performance minPi. The most extreme case is reached, if
only one process performs significantly worse than all other processes. In that case, the
expected speedup is Smax = Pfastest

Pslowest
.

Clusters We have tested our scenario on CoolMAC and SuperMIC. The former was
an inhomogeneous compute system consisting of five different partitions containing two
generations of Intel CPUs and one generation of AMD CPUs.

In contrast to CoolMAC, SuperMIC’s nodes are all the same and the cluster also
only provides one partition. Instead, the nodes themselves are inhomogeneous, as they
consist of a host CPU and an accelerator (Xeon Phi, Knights Corner), which can both
run simulation code. The individual cores of the host CPU and the accelerator each
have their distinct performance characteristics, as they run at significantly different clock
speeds.

Due to their different types of inhomogeneity, CoolMAC and SuperMIC were thus
perfectly suitable for our experiments.

In addition to CoolMAC and SuperMIC, we performed measurements on CoolMUC2.
As it is, however, not a heterogeneous system, we emulated different performances by
assigning a varying amount of threads to the MPI processes.

For a more detailed description of the clusters, see Appendix B.

4Disclaimer: Some of the presented results have previously been published in [125].
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Scenarios We have tested our new method using three homogeneous scenarios:

LJ-CGG The first chosen scenario consists of single-centered Lennard-Jones-12-6 particles.
They are generated using the cubic grid generator with a density of 0.785, and a
cutoff of 3.5, resulting in around 35 particles per cell. As it is a scenario generated
by a generator, the size of the scenario and the total number of particles can vary
and is indicated when used.

E512k This scenario is a relatively small scenario. It consists of a pre-equilibrated set
of 512 000 rigid ethane molecules (C2H6), which are modeled using two Lennard-
Jones-12-6 sites. The scenario consists of 25 x 25 x 25 cells, resulting in around 37
molecules per cell.

LJBig This scenario is significantly bigger with 344 million single-centered Lennard-Jones
molecules, resembling, e.g., a scenario simulating argon. A total of 200 x 200 x 200
linked cells with around 43 molecules per cell are simulated.

Results We evaluated the developed method using two nodes of CoolMUC2 and the
LJ-CGG scenario. On the first node, one MPI rank was started with one OpenMP thread.
On the second node, we used a variable number of OpenMP threads. That way we can
model huge performance differences between the two ranks ranging from 1x to 28x.

As the performance-unaware method does not consider the performance differences
between the different ranks, it distributes an equal workload to the two ranks. The
slower of the two ranks (using one OpenMP thread), limits the performance of the overall
simulation. We, therefore, observe equal performance independent of the total number of
used OpenMP threads (cf. Figure 4.2).

The performance-aware method, however, properly incorporates the performance ratio
of the different MPI ranks and thus good scalability is observed. Compared to the
experiment run on a single node (pure OpenMP scalability), it provides a bit worse
performance for the smaller of the two scenarios. As the smaller scenario uses 24 x 24
x 24 inner cells and always at least a minimum of two cells in each dimension needs
to be distributed to each process, the smallest possible subdomain has the size of 2 x
24 x 24 cells which corresponds to 1/12 of the simulation domain. The strong scaling
limit of around 12 threads is thus expected. The single-node OpenMP parallelization
(c08) uses a finer-grained parallelization and therefore better scalability is reached for
the small scenario. For the larger scenario, both the single-node parallelization and the
performance-aware load balancing provide equal performance.

We further tested the performance-aware load balancer on CoolMAC (cf. Figure 4.3,
[125]). Using two nodes (1 x AMD Bulldozer, 1 x Intel Sandy Bridge), we observed
that significant speedups could be achieved that lie close to the theoretical maximum.
We noticed that the performance-aware load balancer could introduce performance
degradation if only ranks of a single type are used. This decline is, however, expected as
measurement errors can make equally performant compute resources appear to provide
different performances which result in a bad load balancing. Additionally, the performance
drops were smaller than 10%, showing that the measurements were reasonable. We
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Figure 4.2: Scalability of the performance-unaware and the performance-aware load balancing
for two different scenarios using two nodes of CoolMUC2. For Performance-Aware
and Performance-Unaware, the simulation has been carried out on two nodes, where
the MPI process on the first node is limited to one OpenMP thread and the MPI
process on the second node has a variable number of OpenMP threads ranging
from one to 28. This results in two MPI-ranks with largely varying performances.
The x-Axis always shows the total number of threads used, i.e., 2 threads of the
Performance-Aware or Performance-Unaware load balancing correspond to 2 MPI
ranks, each using 1 OpenMP thread. Single Node is used as comparison and shows
the performance values if only one node is used with a single MPI rank.
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(b) Theoretical speedup (Equation 4.18).
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Figure 4.3: Speedup and theoretical speedup for the E512k scenario on two nodes of CoolMAC.
Shown is the speedup using the performance-aware load balancing compared to a
performance-unaware load balancing in dependence on the number of ranks used on
the two nodes. The performance of the ranks on the Intel Sandy Bridge (SNB) node
is roughly 1.9 times as fast compared to the ranks on the AMD Bulldozer (BDZ)
node. Left graphics taken from [125].

53



4 Multi-Node Optimizations

0 5 10 15 20 25
0

0.5

1

Number of Ranks

P
ar

al
le

l
E

ffi
ci

en
cy

(a) Parallel efficiency.

0 5 10 15 20 25
0

0.5

1

Number of Ranks

Im
b

a
la

n
ce

imbalance of load estimates
actual imbalance

(b) Measured and predicted imbalance.

Figure 4.4: Strong scaling for a droplet coalescence scenario with around 3 million particles
on one node of CoolMUC2 using the default load estimator (Equation 4.10). Bad
scalability is observed. The large deviation from the predicted load imbalance (based
on the load estimates) and the actually measured imbalance shows that a bad load
estimation is causing the limited scalability.

further executed a large simulation (LJBig) on CoolMAC that included a total of 1056
ranks on three different partitions of the cluster (nodes: 15x Intel Sandy Bridge, 8x
AMD Bulldozer, 1x Intel Westmere). For this setup, we observed a speedup of 1.3 for the
performance-aware load balancer, which was a good result compared to the theoretical
speedup of 1.4.

In [125] we went into more details on this topic and further showed speedups on
SuperMIC, which showcased that the load balancer can also account for large performance
differences of 5x.

4.2.4 Better Load Estimation

As noted in subsection 4.2.2 (limitation 2), we observed bad load balancing in ls1 mardyn
when simulations with strongly varying particle densities were executed. One such
scenario is a droplet coalescence simulation, i.e., two neighboring droplets embedded
in a gaseous phase merge together and form a larger droplet. The problematic part
about this simulation is that the particle density in the liquid is about 35 times higher
compared to the gaseous phase and most cells of the simulation are (almost) empty, but
still significantly contribute to the total time needed for the simulation. This effect can,
however, not be appropriately resembled using Equation 4.10, which assumes that empty
cells produce no load. This is, however, not the case and leads to a bad load estimation
and therefore bad load balancing (cf. Figure 4.4).
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(a) Own box. (b) Face neighbors.

(c) Edge neighbors. (d) Corner neighbors.

Figure 4.5: Different box relations for which the vectorization tuner samples the performance/-
time.
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(b) Different load estimations.

Figure 4.6: Load estimation for the vectorization tuner. The tuner generates time measurements
for the force calculation within one cell and with the different neighbors (left). On the
right, the vectorization tuner is compared to the quadratic model and a representative
simulation. The representative simulation contains exactly the given number of
particles per cell and its time measurements only include the force calculation.

4.2.4.1 Vectorization Tuner as Load Estimator

Instead of the quadratic model, we use the output of the vectorization tuner, which
was initially developed to understand the performance characteristics of ls1 mardyn’s
force kernel in the context of [6]. It generates data that describes the time needed
for the force calculation depending on the number of particles within a cell. The
accumulated data additionally considers the relations between cells, i.e., it generates data
for interactions within one cell and for interactions between neighboring cells, which are
further distinguished between face, edge, and corner neighbors (cf. Figure 4.5). Some
drawbacks of this method stem from the implemented sampling, which measures the
time of repeated force evaluations using dummy cells for different numbers of particles.
This measurement thus only includes the time for the actual force calculation and cannot
represent any time spent in other parts of the simulation (e.g., plugin calls). Additionally,
it always reuses the same cells. This might result in deviations from the actual force
calculation because the cells will always be cached during the sampling but not necessarily
during the actual force calculation.

Results When comparing the loads estimated by the quadratic model and the vec-
torization tuner, one can observe that the vectorization tuner assigns more loads to
sparsely populated cells (cf. Figure 4.6). To verify the correctness of these estimates we
performed measurements using a reference simulation. As reference, we simulated 10000
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Figure 4.7: Strong scaling for a droplet coalescence scenario with around 3 Million particles on
one node of CoolMUC2 using the vectorization tuner as load estimator. Better load
balance is observed compared to the default load estimator.

cells which contain a constant number of particles per cell for 100 time steps, and took
time measurements for the force calculation. We then used these measurements as load
estimator.

Using the vectorization tuner reduces the load imbalances by half, thus resulting in
better overall load balancing and parallel efficiency (cf. Figure 4.7).
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4.2.5 Load Estimation via Inverse Problem (MeasureLoad)

We presented another possibility to estimate the load for the cells in [110]. Using it, we
try to estimate the load not based on a reference or dummy problem but, instead, on the
actual problem at hand. Therefore, we measure the time needed for the force calculation
on each rank. We then assume that for each rank I its time TI can be written as

TI =

nmax per cell∑
i=0

nI,i · ti ∀I ∈ {0, ..., nranks} , (4.19)

where nmax per cell is the maximal number of particles per cell, nranks the number of
ranks and nI,i the number of cells with i particles on rank I. If the cell statistics
(nI,i) are known, the time needed for a cell with i particles can be reconstructed. For
the reconstruction, it is advantageous to rewrite the above system of equations in its
matrix-vector form

T = N · t, (4.20)

where T corresponds to the time measurements of entire ranks, N to the cell statistics,
and t to the sought time values for single cells. The reconstruction can only be performed
if enough measurements are performed (nranks ≥ nmax per cell), as otherwise the system
is under-determined. To get positive ti, we use a non-negative least squares algorithm
[126,127] to solve the typically over-determined system.

Additionally, one can include constraints on ti. One such constraint could be that the
time needed for the calculation of the interactions of a cell with more particles should
take longer than that of a cell with fewer particles, i.e, ti > tj if i > j. This constraint
can be implemented by requiring that the vector d

d =
(
t0, t1 − t0, t2 − t1, · · · , tnmax per cell

− tnmax per cell−1

)t
(4.21)

d =



1 0
. . . 0

−1 1
. . .

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1


︸ ︷︷ ︸

C

·t, (4.22)

which can be included into the matrix equation (4.20) using the inverse of the matrix C

T = N · t (4.23)

T = N ·


1 0 · · · 0
...

. . .
. . .

...
. . .

. . . 0
1 · · · 1


︸ ︷︷ ︸

C−1

·d, (4.24)
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Figure 4.8: Load estimation using inverse calculations for the coal-3M scenario on CoolMUC2.
Based on time measurements for entire ranks the time needed for cells with specific
amounts of particles is reconstructed. Shown is the time needed for one cell in
dependence on the number of particles contained within the cell. For comparison,
the runtime of representative simulations is displayed. Those simulations contain
only cells with the specified number of particles.

is component-wise non-negative by solving the equation using a non-negative least-squares
algorithm for d. The values of t can then be reconstructed using t = C−1d.

As the matrix N can be quite ill-conditioned if few cells with specific particle counts
exist, the measured time values can include jumps and sometimes produce unrealistic
timing results (cf. Figure 4.8a). We thus introduced the assumption that the time needed
for the force calculation can be modeled as a quadratic function in dependence on the
particle count i

ti = ai2 + bi+ c (4.25)

and applied it to Equation 4.19. The system of linear equations then becomes

TI =

nmax per cell∑
i=0

nI,i ·
(
a · i2 + b · i+ c

)
∀I ∈ {0, ..., nranks} ,

(4.26)
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where ti can be written as matrix equation t0
...

tnmax per cell

 =

 02 01 00

...
...

...
n2

max per cell n1
max per cell n0

max per cell


ab
c

 . (4.27)

As this assumption, does, however, not hold true for small particle counts (cf. Figure 4.6
and Figure 4.8a, especially for empty cells), we use the quadratic interpolation only for
cells with at least q particles.



t0
...

tq−1

tq
...

tnmax per cell


=



1 0 · · · 0 0 0 0

0
. . .

. . .
...

...
...

...
...

. . .
. . . 0

...
...

...
0 · · · 0 1 0 0 0
0 · · · · · · 0 q2 q 1
...

... (q + 1)2 (q + 1) 1
...

...
...

...
...

0 · · · · · · 0 n2
max per cell nmax per cell 1


︸ ︷︷ ︸

Qpartial



t0
t1
...

tq−1

a
b
c


(4.28)

To ensure increasing time-values, we introduce a helper matrix in a similar fashion
to Equation 4.24 which changes the solution vector to the differences of consecutive
values (ti+1 − ti). We additionally ensure that the quadratic equation evaluated at q
(tquad.,q := aq2 + bq + c) is bigger than tq−1.

t0
t1
...

tq−1

a
b
c


︸ ︷︷ ︸
tpartial

=



1 0 · · · 0 0 0 0

1
. . .

. . .
...

...
...

...
...

. . .
. . . 0

...
...

...
1 · · · 1 1 0 0 0
0 · · · · · · 0 1 0 0
0 · · · · · · 0 0 1 0
1 · · · · · · 1 −q2 −q 1


︸ ︷︷ ︸

Cpartial



t0
t1 − t0

...
tq−1 − tq−2

a
b

tquad.,q − tq−1


︸ ︷︷ ︸

dpartial

. (4.29)

Solving the combined matrix equation

T = N ·Qpartial · Cpartial · dpartial (4.30)

for dpartial using a non-negative least squares algorithm, allows to get the desired solution
tpartial.

We tested this approach using the inhomogeneous droplet coalescence scenario coal-3M
that contains around 3 million particles. In this scenario, two droplets are embedded into
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Figure 4.9: Comparison of the actual performance of the inverse problem (MeasureLoad) and
the vectorization tuner for the coal-3M scenario. For MeasureLoad, three different
variants are displayed that describe different assumptions for the measured time
values (cf. Figure 4.8). increasing indicates that cells with more particles need more
time than cells with fewer particles. quadratic describes that the times for the cells
follow a quadratic dependence based on the particle number. quadratic from 2 only
assumes the quadratic dependence starting with two particles in a cell.

a gaseous phase with a significantly reduced density (cf. Figure 4.10). In Figure 4.8 we
display estimates for the time needed to calculate the interactions of a cell in dependence
on the number of particles within that cell. We observe that the time predictions
using unrestricted non-negative values result in multiple time values to evaluate to
zero. Compared to the unrestricted case, restricting the time values to be increasing,
significantly increases the quality of the solution. However, large jumps can still occur
for large particle counts. Using the quadratic model jumps for high particle counts can
no longer be observed.

Using the load estimation from the inverse problem, we observe a reduction of im-
balances (cf. Figure 4.9) and similar performance values compared to the usage of the
vectorization tuner. We further note that the different restrictions (increasing, quadratic)
do not have a significant influence on the imbalance and parallel efficiency measurements,
even though they heavily influence the prediction for the cell timings. A simple reason
for both the jumps of the predictions and the relatively low influence of bad predictions
can be found in the cell statistics of the coal-3M scenario (cf. Figure 4.10), where mainly
cells with zero, one, eleven, 12 or 13 particles can be found. Only for these cells, sufficient
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specific number of particles. Most cells (≈
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(b) Statistics showing the fraction of particles
stored within cells containing a specific number
of particles. Cells containing 1 or 12 particles
contribute the most particles to the simulation.

Figure 4.10: Cell statistics for the coal-3M scenario.

statistical data exists and the inverse problem can get meaningful results. Therefore, large
jumps can occur for cells with different amounts of particles. However, these incorrect
values will not influence the overall solution much, as they will only slightly change the
predicted load of a subregion, as too few cells are affected by the wrong predictions.

In addition to the small runs on one node, we performed large scale strong-scaling exper-
iments of the coal-3M, coal-25M and coal-200M scenarios on Hazel Hen (cf. Figure 4.11).
We observe that the old pure-quadratic model produces very bad scalability and performs
worse than a simple Cartesian decomposition, whereas the new load estimators perform
reasonably well up to a certain number of nodes. Compared to the old load estimator,
speedups of up to 4.3x and compared to the Cartesian decomposition, speedups of up
to 3x could be observed(for coal-3M). The Cartesian decomposition can outperform the
kdd using one of the new load estimators only for very high node counts. This behavior
is, however, expected, as at some point very precise splittings of the inner droplet are
needed to retain good load balancing and the Cartesian decomposition automatically
uses better partitions in the strong scaling limit. Also note that for the coal-3M scenario
this turning point is at 256 nodes, where only around 500 particles are assigned to each
CPU core. For the larger scenarios, the kdd now performs consistently better than the
Cartesian decomposition.

4.2.6 Load Estimation for Multiple Particle Types

Another problem with the quadratic model for the load estimation occurs when more
than one particle type is used in a simulation and the computational complexity of the
force calculation depends heavily on these particle types. This is the case if the two
particle types are modeled with a varying number of sites or if the sites resemble different
physical properties (Lennard-Jones sites, charges, dipoles, quadrupoles; cf. Figure 4.12).

The quadratic model (Equation 4.10) does not incorporate information about the used
particle model, as it implicitly assumes that the costs for the force calculation between
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Figure 4.11: Strong scaling for droplet coalescence scenarios of different size on Hazel Hen. For
comparison, the Cartesian domain decomposition (sdd) is given.

particles is always the same. This becomes problematic if the two different particle types
are unequally distributed within the physical domain, e.g. if one particle type is more
dominant in one part of the domain and the other particle type in a different part of the
domain.

We have adapted the load estimator in ls1 mardyn to be able to cope with up to two
particle types using the vectorization tuner. Previously, the vectorization tuner measured
the performance for ncell 1 particles in the first cell and ncell 2 particles in a second cell
for ncell 1, ncell 2 ∈ [0, nmax per cell] resulting in (nmax per cell + 1)2 measurements. Hereby,
only particles of one type were inserted. A one-to-one adaption to two particle types
would incorporate measuring the performance for ncell 1, type 1 particles of component one,
resp. ncell 1, type 2 particles of component two, in cell one and ncell 2, type 1, ncell 2, type 2

particles in cell two resulting in significantly more measurements (assuming ncell i, type 1 +
ncell i, type 2 ≤ nmax per cell,

1
4 (nmax per cell + 1)2 · (nmax per cell + 2)2). To reduce the num-

ber of measurements, we assume that the density of both components does not change
much over neighboring cells and that the density change can be neglected for the load esti-
mation. We therefore only measure the performance assuming that both cells contain the
same number of particles for each component, reducing the number of necessary measure-
ments to On2

max per cell. A further increase in components would result in Onncomponents

max per cell

necessary measurements and was therefore not implemented. We additionally note that
using MeasureLoad as load estimator is not feasible for more than one particle type, as
the degrees of freedom for the load estimation are too high for any meaningful results.
Additionally, too many MPI ranks are needed to determine the unknowns.
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Figure 4.12: Load in dependence of the number of particles for argon and carbon dioxide (CO2).
While the argon atoms are modeled using one Lennard-Jones site, each CO2
molecule consists of two Lennard-Jones sites and an additional quadrupole site
at the center, resulting in a longer time to compute the interactions for the CO2
molecules. The x-values for the mix (number of CO2 molecules and argon atoms
is the same) resemble the total number of particles.

Results are presented for the following two scenarios in Figure 4.13.

Arg-CO2 A scenario consisting of both argon and carbon dioxide particles. The argon
particles are modeled using one Lennard-Jones-12-6(LJ) site, while the carbon
dioxide particles are represented by two LJ sites and one quadrupole using the
model from [128].

Arg-C6H12 A scenario using both argon and cyclohexane, where the latter is modeled
using six LJ sites.

Both scenarios include around 1.5M particles in 180k cells with an overall uniform particle
distribution. In the lower 10% of the domain (in x-direction) particles of the second type
(CO2, resp. C6H12) are used instead of argon.

For both scenarios, the imbalances have been reduced by up to 50% and speedups of
up to 2x could be observed compared to the old load estimator.

4.2.7 Fully Heterogeneous Load Balancing

To further test our software, we have run experiments on CoolMAC using its AMD
Bulldozer and Intel Sandy Bridge partitions (cf. Figure 4.14). We can observe that using
the vectorization tuner as load estimator leads to a decrease in the time to solution
of around 50%, i.e., the simulation speed is roughly doubled. This showcases that
our improvements using the vectorization tuner as load estimator are well suited for
heterogeneous simulations using multi-component particle systems on heterogeneous
hardware.
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(b) Load imbalances for the Arg-C6H12 scenario.
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(c) Strong scaling for the Arg-CO2 scenario.
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(d) Strong scaling for the Arg-C6H12 scenario.
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Figure 4.13: Load imbalances and strong scaling for the Arg-CO2 and Arg-C6H12 scenarios
on one node of CoolMUC2 for the kdd using the new (vectorization tuner) and
old load estimator. As comparison results using the standard Cartesian domain
decomposition (sdd) are given.

65



4 Multi-Node Optimizations

sphere 2-comp

0

50

100

150

ti
m

e
to

so
lu

ti
o
n

Old estimator Vectorization Tuner ideal

Figure 4.14: Comparison of the time to solution for two different scenarios on CoolMAC. The
sphere scenario consists of a spherical higher density region in one corner of the
simulation domain and a total of around 4.2 million particles in 350k cells, where
only one particle type (1 centered LJ) is used. The 2-comp scenario is made up of
two different phases (density and particle type), each filling half of the simulation
domain with different densities. In this case, we used argon (1 centered LJ) and
cyclohexane (6 LJ + 1 quadrupole). The sphere scenario was run using 64 processes
on the SNB partition and 128 processes on the BDZ partition, while the 2comp
scenario uses 96, resp. 384 cores. Numerical results taken from [129].

66



4.3 Zonal Methods

4.3 Zonal Methods

4.3.1 Motivation

In MD the easiest and most common way to handle simulations across a distributed
memory system is using domain partitioning methods (cf. subsection 2.6.2) in combination
with the full shell method (cf. subsection 2.6.5). This method is also used in ls1 mardyn.
It does, however, provide a strong scaling limit, i.e., the minimal workload per process is
finite, as the import region is limited to at least a cutoff sphere (cf. subsection 2.6.5).
Each process thus has to import a certain amount of particles, which is a workload that
does not shrink with a decreased home box of a process. To circumvent this limit, we
have implemented and analyzed a couple of zonal methods in this thesis.

4.3.2 Implementation

For the zonal methods, multiple components of ls1 mardyn had to be modified.

Cell Structure The linked-cells structure had to be modified to support cells smaller
than the cutoff. This is required for a sensible application of the midpoint and
neutral territory method and supported only for those methods.

Halo Exchange The different zonal methods provide different import volumes. The
halo exchange had to be modified, to properly support this behavior, as otherwise
unnecessary particles were communicated.

Force Exchange Zonal methods do not calculate forces of particle pairs that span two
different MPI ranks. Instead, the force is calculated on only one process and then
communicated to the processes that require the information.

Traversal Compared to the full-shell method, the import volumes of the zonal methods
are reduced. For the half-shell and eight-shell methods, this allows skipping specific
cell interactions. For the midpoint and neutral-territory methods completely new
ways to traverse the particle cells were necessary, and we thus implemented different
traversals for each of the zonal methods.

For the halo and force exchange, new classes describing the import and export regions
of the zonal methods have been implemented. They are used by the newly created
NeighborAcquirer class. This class uses global communication to determine the necessary
communication partners for the halo, force, and leaving particle exchanges and to specify
the regions from which particles are sent. For that the NeighborAcquirer uses a three-stage
process (cf. Figure 4.15):

1. Each process specifies the regions, for which it needs to know the communication
partner. These regions are then communicated to all other processes. This step
is implemented using one MPI_Allgather to specify the number of desired regions,
followed by an MPI_Allgatherv to send the actually desired regions.
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Figure 4.15: Schematics of the Neighbor Acquirer

2. Each process checks whether it owns parts of the received regions and saves the
overlap(intersection) with its owned area as partners2.

3. The processes send the overlaps to the processes that desire them. The receiving
processes will save those partners as partners1. This step is implemented using one
MPI_Allreduce to first notify each process how many regions it should receive, followed
by P2P communication in the form of MPI_Isend, MPI_Probe and MPI_Recv to send the
actual data. Hereby, the receiving processes query for incoming messages until they
have received as many regions as specified through the reduction operation.

After the neighbor acquisition process, each rank holds two lists of communication
partners. partners1 holds the neighbors that own the desired regions and partners2

contains the neighbors that desire particle data from the rank. If the neighbor acquirer is
called with the import region of a zonal method, partners2 contains the list of neighbors
to which halo particles have to be copied and partners1 contains the list from which
neighbors halo particles are received. For the force exchange, the role of the two lists is
reversed. partners1 now contains the list where to send particles and partners2 contains
the list of particles to receive. The exchange of leaving particles is independent of the
zonal method, as particles can move in any direction. For a correct acquisition of the
required neighbors, the full shell import region has to be used. If knowledge about the
maximal speed of the particles is existent, this region can, however, be significantly
decreased, s.t., the number of communication partners can be reduced (if the size of a
neighbor is smaller than the cutoff radius). For the leaving exchange, partners1 represents
the sending and partners2 the receiving list.

Compared to the previous implementation of the neighbor exchange, we now directly
communicate with the respective neighbors. In the original code, the neighbor commu-
nication contained three steps in which a process always only communicated with its
face-neighbors. This communication pattern is now no longer possible, as a process now
no longer communicates with all face-neighbors. One advantage of the new approach
to directly communicate is the reduction from three steps to now only one step, which
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reduces the time for the communication, as we only communicate small messages and
are mostly latency bound.

Additionally, in the previous implementation, halo and leaving particles were always
sent together to each process. This was possible because the side length of a process was
always guaranteed to be at least 2rcutoff and a particle that enters one process cannot
be in the halo of any other process except the sending one or its neighbors. For zonal
methods, we want to lift the subdomain size requirement and therefore communicate
first the leaving particles and then the halo particles. This way, the subdomain size can
be arbitrarily small.

4.3.3 Results

Once the aforementioned modifications were implemented, we tested them on CoolMUC2
(for the cluster description see section B.1).

First, we checked the performance on a very small example consisting of a cubic domain
with a side-length of slightly more than two cutoff radii (exact factor 7.1

3.5). As ls1 mardyn
restricts its domain to be bigger than two cutoff radii, because of its periodic boundary
conditions, it is almost the smallest possible example that can be simulated. Using this
scenario, the strong scaling behavior of the different methods and their potential gains
can be estimated depending on the particle density.

For small particle densities, zonal methods with fewer cells are beneficial (cf. Fig-
ure 4.16), as having more cells results in overhead due to an increased amount of cells
that have to be traversed during the force calculation. In addition, having more cells
results in fewer particles per cell and thus less potential for vectorization.

However, more cells provide better overall parallelizability, which allows using more
processes for the same simulation, and thus an overall smaller time-to-solution can be
observed when many processes are used. This is especially apparent if the particle density
becomes higher and the overhead of having additional cells shrinks in relation to the
time needed for the actual calculation of the forces.

When comparing the different zonal methods, one can observe that the eighth shell,
half shell, and neutral territory (1 cell per cutoff) methods need roughly half the time
compared to the full shell method if only the time for the force calculation is observed.
Because large enough densities result in a much more compute-intensive force calculation,
the midpoint and neutral territory methods will also outperform the full shell method by
a factor of two if more than one cell per cutoff is used.

The force calculation alone does, however, not provide the complete picture, as other
parts of the simulation, especially, the communication, are influenced by the choice of
the zonal method. This influence is especially visible for a small number of particles (cf.
Figures 4.17, 4.18). On the one hand, the half shell method is not able to outperform
the full shell method. The eighth shell and neutral territory method (1 cell per cutoff),
on the other hand, are able to outperform the full shell method even for relatively
small particle numbers. This difference can be explained, as the latter two methods use
a significantly reduced import region and thus also need to communicate with fewer
neighboring processes.
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Figure 4.16: Strong scalability of the force calculation for different implemented zonal methods
(Full Shell, Eighth Shell, Mid Point, Neutral Territory) using a homogeneous
scenario with fixed domain size (≈ 2 rcutoff) and varying density and number of
ranks. The number behind the zonal method indicates the number of cells per
cutoff. Note that only the time taken for the force calculation is displayed. These
measurements were performed on CoolMUC2.
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Figure 4.17: Strong scalability of the different implemented zonal methods (Full Shell, Eighth
Shell, Mid Point, Neutral Territory) for a homogeneous scenario with fixed domain
size (≈ 2rcutoff) and varying density and number of ranks. The number behind the
zonal method indicates the number of cells per cutoff. These measurements were
performed on CoolMUC2.
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Figure 4.18: Performance of the different implemented zonal methods (Full Shell, Eighth Shell,
Mid Point, Neutral Territory) in dependence of the density for a homogeneous
scenario with fixed domain size (≈ 2 rcutoff). The number behind the zonal method
indicates the number of cells per cutoff. On the top, the absolute time per iteration
is given, while on the bottom the times compared to the full shell method are
provided. These measurements were performed on CoolMUC2.
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The maximal measured speedup could be observed for the scenario with 20k particles.
Hereby, the neutral territory method (4 cells per cutoff, 256 processes) outperforms the
full shell method by a factor of 17.6, as the latter is only able to utilize up to 8 processes.
Note that before this thesis, the full shell method only allowed the usage of 1 process, as
2× 2× 2 cells were required for each process. Thus, compared to the state before this
thesis, a speedup of almost 130x is achieved.

4.3.4 In Short

The eighth shell method is mostly outperforming all other methods and runs up to 2x
faster than the full shell method because no duplicated calculations are performed. Only
for very high particle densities, it is worthwhile to use multiple cells per cutoff radius
and the neutral territory and midpoint method provide a clear advantage as they allow
for deeper parallelization.

4.4 MPI optimizations

In this section, we describe further optimizations regarding the MPI communication,
which include non-blocking collectives and non-blocking p2p communication.

4.4.1 Non-blocking Collectives

One of the main problems using ls1 mardyn in the strong-scaling limit is the repeated
use of collective communications across all MPI processes. These operations imply syn-
chronization points and require a significant amount of time for large-scale simulations in
which many MPI processes partake. To circumvent these restrictions, we have introduced
an easy-to-use way to handle non-blocking collective operations, which is based on the
reuse of values from the previous time step instead of the current values. This reuse is of
course only possible if the communicated values do not change significantly over one time
step. The reuse then allows overlapping collective communications throughout an entire
time step, because the current values are only needed in the next time step. To identify
the correct values from a previous time step, each call to a collective communication is
identified by a unique key, e.g., the calculation of the temperature could use key 20, while
the communication within some plugin could use key 2002. On the first communication
with a specific key, a blocking collective call is performed to get initial values for the
call. The second call to said communication will start a non-blocking communication,
while the values from the first communication are returned. The third and all following
calls will finish the non-blocking calls from the previous time step, return the associated
values and initialize a non-blocking call to the next time step.

To allow these modifications seemlessly, we have restructured the code concerning
the collective operations. Previously, the collective operations were all performed by
the DomainDecompMPIBase class, which handled all functionality common to the
DomainDecomposition (Cartesian decomposition) and KDDecomposition classes, while
the class DomainDecompBase provided a dummy interface for collective communications.
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We have extracted the methods using the strategy design pattern by defining a common
interface for the collective operations (CollectiveCommunicationBaseInterface). We have
further moved the old, blocking communication pattern and the dummy methods into new
classes (CollectiveCommunication and CollectiveCommunicationBase) and implemented
the new, non-blocking behavior in the class CollectiveCommunicationNonBlocking. The
latter stores multiple instances of the class CollectiveCommunicationSingleNonBlocking,
which implements the actual functionality of the overlapped communication and reuses
the behavior of CollectiveCommunication by inheriting from it.

For MPI-parallel programs, either the blocking (CollectiveCommunication) or non-
blocking (CollectiveCommunicationNonBlocking) variants of the collective communication
are then used by DomainDecompMPIBase, which acts as an adapter for the collective
communication and retains the original interface for the collective operations.

A UML-like diagram of the related classes can be found in Figure 4.19.
Speedups through global collectives can be achieved for two reasons. First, load

imbalances within the different phases between two collective operations can be reduced.
And second, communication and computation can be overlapped, thus the time needed
for the global data exchange is hidden behind the computation.

To showcase the first ability to overlap collectives, we created a scenario with an artificial
load imbalance by letting one process sleep before and one after an MPI_(I)Allreduce call.
The corresponding trace can be found in Figure 4.20, in which one can observe that the
length of one time step can be significantly reduced using overlapping collectives, as the
two sleep calls can be overlapped. For this scenario, the load imbalances are exaggerated
for better visualization. In normal use cases, these imbalances are, e.g., introduced by

CPU speed fluctuations Typical CPUs provide frequency scaling. While it is intended
for energy savings, the frequency sometimes is reduced because of overheating of
the system or if the overall system draws too much power. The CPU frequency
is thus not uniform across processes over time and can occur on some processes
before and on some processes after a reduction operation, thus introducing load
imbalances.

Background tasks While background tasks are typically reduced on HPC systems com-
pared to normal workstations, they still exist and can lead to load imbalances as
they can occur on the systems at different times and frequencies.

Different scaling of plugins and force calculation While the force calculation scales lo-
cally with O

(
ρ2
)
, most plugin calls scale with O (ρ) (where ρ is the density). If

the force calculation is perfectly balanced, most likely a load imbalance exists for
the plugins and vice-versa. A common load balancing is not possible if blocking
communication is used. If the plugin or thermostat calls do not need much time
compared to the force calculation, this effect is, however, only small.

The first two reasons typically average out over the long run and are not visible if
averaging is used or if many particles are present on each MPI rank. In the strong scaling
limit, i.e., if the time between different global communication steps is small, the load
imbalances do, however, tend to become visible.
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Figure 4.19: UML-like diagram for classes related to collective communication. DomainDe-
compMPIBase acts as an adapter for the CollectiveCommunicationInterface, which
is realized by either CollectiveCommunication or CollectiveCommunicationNon-
Blocking. The latter uses multiple CollectiveCommunicationSingleNonBlocking
instances that are stored in an std::map and identified using a key.
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Figure 4.20: Comparison of the traces of two simulation runs with and without the use of
overlapping collectives. In this test case, artificial load imbalance is introduced (P0
sleeps before the call to MPI (I)Allreduce and P1 after the call). Using overlapping
collectives, the sleeps can be overlapped and the time for one iteration (distance
between the start of two sleeps) is significantly reduced. The diagonal lines indicate
the collective operations. The load imbalances in this example are chosen very
high (around the time needed for one time step) for better visualization.
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Figure 4.21: Comparison of overlapping and blocking collectives for a scenario of 64 million
benzene molecules, which are generated on a grid. The simulation was executed
on SuperMUC Phase 1 using 2 MPI ranks per node. For 4096 nodes a speedup of
16% could be measured when using overlapping collectives compared to blocking
collectives.
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Figure 4.22: Comparison of macroscopic quantities depending on the start of global overlapping
collectives. This test uses the argon example provided in the ls1 mardyn repository.

In addition to this simple test, we tested the use of overlapping collectives on a
real-world scenario using 64 million benzene molecules (cf. Figure 4.21). This scenario
showcases the second reason for global collective, as we have disabled all plugin calls
and only one collective call is issued in every time step. For this scenario, speedups
could be observed starting with 512 nodes (2% speedup). As blocking collectives tend
to require more time with an increase of processes, these speedups increase with an
increased number of nodes. The highest speedup of 16% could be observed when using
4096 nodes.

The described use of non-blocking collectives can actually change the physical results
because values are used from a previous time step. This can, e.g., change the behavior
of a thermostat. We have therefore checked an exemplary scenario for its change in
global variables (cf. Figure 4.22). We hereby noticed significant deviations if overlapping
collectives are used compared to a simulation without the use of overlapping collectives.
Reasons for this deviation are the initial deviation of the temperature of the system
(2.5 · 10−5) from the target temperature of the thermostat (6 · 10−4) and the sharp
increase of the pressure at the start of the simulation. To prevent these deviations,
we included an adjustable offset that defines after how many time steps overlapping
collectives are allowed in a simulation. Using this offset, no significant deviations from
the actual simulation can be observed. We have therefore shown that ls1 mardyn can use
overlapping collectives and reuse macroscopic values from a previous time step without
significant changes to the simulation. To our knowledge, ls1 mardyn is the first MD code
using overlapping collectives in such a way.
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(a) General ability to overlap the force calcula-
tions.

(b) Ability to overlap when using the c08 (c04 in
2d) base step. Fewer calculations can be over-
lapped, as all calculations that are associated
with a specific base cell are calculated at once.
In this case, only interactions ”belonging” to
one base cell (green) can be calculated.

Figure 4.23: Overview of the ability to overlap the force calculation. Force calculations (lines)
that can be overlapped with the communication are displayed in blue. Force calcu-
lations that depend on the halo cells (gray) or cells at the boundary of the domain
(yellow) are marked in red and cannot be overlapped with the communication.
They can only be calculated after the particles are communicated. At least 4x4x4
cells are required, s.t., any calculations can be overlapped.

4.4.2 Overlapping P2P Communication

Overlapping communication in ls1 mardyn has already been employed for peer-to-peer
communication, i.e., the exchange of particles. Hereby, the communication of particles
is overlapped with their unpacking from the MPI-buffers and their insertion into the
particle container.

We further tested the overlap of p2p communication with the actual force calculation.
Hereby, force calculations that are not affected by the particle exchange routines are
performed while the communication takes place. On the cell-level, force calculations can
only be performed after the particle exchange, if particles are inserted into one of the
partaking cells. If a force calculation includes halo cells, then this force calculation can
only be performed after the particle exchange. Particles that move from one process’s
subdomain to another’s subdomain are, however, also inserted into cells that lie on
the boundary of a process’s subdomain. Force calculations that include those cells are
therefore also not possible to overlap with the communication. A visual representation of
which force calculations can be overlapped and which cannot is displayed in Figure 4.23.

We tested the overlapping p2p communication for the same scenario as in Figure 4.21,
where we did, however, not notice any significant speedup. One reason for this is that for
the p2p communication to become noticeable, the subdomains of each process have to
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Figure 4.24: Time needed for a simulation with 8 MPI ranks in dependence of the latency
between the ranks. The simulated system contains 1.7M single-centered molecules
(LJ-12-6) in 36x36x36 cells. The simulation contains 10 time steps which were
executed on a machine containing an AMD Ryzen 7 3700X 8-core processor.
SemiblockingP2P indicates that the p2p communication is only overlapped with
the unpacking and insertion of the particles, while overlappingP2P means that the
particle exchange is overlapped with the force calculation. A blocking base line for
the P2P communication is not displayed, as the particle exchange in ls1 mardyn
first initiates all send calls (ISend), after which the receive calls are triggered
(IRecv). For blocking communication, the sends and receives would have to be
always matching, which in this case is never worthwhile and also error-prone to
implement.
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be relatively small, s.t., the communication takes a significant amount of time. For very
small subdomains, the ability of overlap is, however, relatively small, as most interactions
can only be calculated after the communication took place, as information of halo or
boundary cells is required for their calculation. One possibility, where the overlap can
be useful is given, is if the fabric is relatively slow and the overlap with the buffer
extraction and particle insertion is not enough for the communications to finish. We,
therefore, continued to investigate under which circumstances speedups can be expected
and tested the p2p communication on a workstation with artificially introduced latency.
To introduce the latency we employed the netem (Network Emulation)5 utility provided in
the Linux kernel using tc qdisc add dev lo root netem delay 1ms. For this delay to become
visible for a program using OpenMPI, it has to be started with the TCP protocol, i.e.
mpirun -mca btl self,tcp, thus disabling the different shared-memory byte transfer layers
(BTL), such as vader or sm, using OpenMPIs modular component architecture (MCA).

The test showed that the overlap of p2p communication with the force calculation is
profitable for high latencies and is not very useful for low-latency networks (cf. Figure 4.24).
This test also showcases the usefulness of overlapping collectives for high-latency networks
in conjunction with overlapping p2p communication.

We can thus conclude that overlapping p2p communication is useful on slow networks,
especially over the internet, as latencies above 1ms are normally not to be expected in
local networks. On local networks, low latencies might also occur if the network is flooded
by messages, as the network switches might take some time to process the requests.

5https://wiki.linuxfoundation.org/networking/netem
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5 Auto-Tuning for ls1 mardyn

5.1 Disclaimer

Most of the results presented in this chapter have previously been published in [130].
The focus of this work is the integration of the AutoPas library into ls1 mardyn and
the required interface design of the library. The actual implementation of the AutoPas
library itself is the work of Fabio Gratl and described in [131,132].

5.2 Motivation

During simulations published in [5], we have shown that, depending on the simulated sce-
narios and the number of used threads, different shared-memory parallelization strategies
(see subsubsection 3.1.1.3) provide better performance when using ls1 mardyn. Figure 5.1
displays this for two scenarios, one with and one without a uniform particle density.

For the heterogeneous scenario, the sliced traversal provides better performance if one
or two threads are used, while the c08 traversal outperforms the sliced traversal if more
than two threads are used. The reason for this behavior lies in the dynamic scheduling of
the c08 traversal, which allows to schedule the computational load evenly throughout the
threads. The sliced traversal instead splits the domain statically into equally sized chunks.
Each thread is then assigned one chunk, providing low-overhead scheduling with better
memory access patterns at the cost of non-existing load balancing. The sliced approach,
therefore, performs better if only one thread is used. Because the particle distribution is
symmetric, the sliced traversal outperforms the c08 traversal for two threads, as it splits
the domain into two subdomains with equal load.

For the homogeneous particle distributions, the sliced traversal will, however, always
outperform the c08 traversal, as the dynamic scheduling cannot provide any benefit.

As most users of ls1 mardyn do not know the details of the implemented traversals
and other algorithms, we have decided to automate the selection of these algorithms. We,
therefore, concluded to extract the force calculation from ls1 mardyn into a new library
called AutoPas. The library allows auto-tuning the traversals and other parameters of
the simulation. Through the extraction into the new library, we were able to enable
auto-tuning not only for ls1 mardyn but also for other short-ranged N-body simulation
codes.
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Figure 5.1: Qualitative comparison of the performance of the c08 and sliced traversal for a
homogeneous and an inhomogeneous scenario. Simulations executed on one node of
SuperMUC Phase 1 using one thread per core. Numerical results taken from [5].

5.3 Related Work

In short-ranged N-body simulations, there exist multiple codes, each targeting one or
more application fields. These simulation packages have in common that they use
some algorithms to calculate the forces between the particles. In almost all codes, the
algorithms are implemented from scratch without relying on an external library, and thus
their implementations, used data structures, and algorithms all look a bit different.

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), a classical
molecular dynamics code, e.g., uses Verlet lists (cf. subsection 2.2.4) as data structure [75],
while GROMACS (Groningen Machine for Chemical Simulations) uses a variant of
neighbor lists that works on clusters of particles [133] (cf. Figure 5.2) thus providing
better mapping to SIMD (vectorization for CPUs) or SIMT units, i.e., GPUs. ls1 mardyn,
in contrast, uses linked cells (cf. subsection 2.2.3) which allows for good vectorization (cf.
subsubsection 3.1.1.1), however at the cost of additional distance calculations compared
to Verlet lists.

In addition to the underlying data structures, the codes provide different implementa-
tions for the force calculation. For the traversal, LAMMPS provides different acceler-
ator packages using CUDA, OpenCL, ROCm/HIP, OpenMP threads, hand-optimized
code, generically optimized code, and code using the KOKKOS library, which promises
performance-portable code 1. GROMACS also provides multiple implementations using
OpenMP, CUDA and OpenCL [134]. In contrast to LAMMPS and GROMACS , ls1
mardyn is not modified to work on GPUs. It does, however, provide multiple different
traversals (c04, c08, sliced) using OpenMP and also provides a parallelization using
Quicksched’s tasking mechanisms [135,136].

All of these options are typically chosen at compile-time or program startup, and the
choice of the correct, most performant parameters is necessary. These parameters might

1https://docs.lammps.org/Speed_packages.html
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cutoff

skin

Figure 5.2: Verlet clusters. Instead of calculating neighbor lists for each particle, multiple
particles are conglomerated into clusters, and lists are constructed for the clusters.
Shown are the cutoff-sphere (red circle) and the cutoff+skin-sphere (blue circle)
around the red particle. For the red cluster, all clusters for which at least one
particle lies within the combined cutoff+skin-sphere (greed) of any particle in the
red cluster are colored green. Particles are colored depending on their relation
to the red particle. If they lie within the cutoff+skin-sphere, they would be in
the interaction list of the red particle for a normal neighbor-list approach and are
colored blue. If they are normally not interacted with the red particle, they are left
uncolored.
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depend not only on the used hardware but also on the simulation setup. For this purpose,
the codes do provide some comfort by choosing and tuning a few things. GROMACS ,
e.g., uses auto-tuning to choose an appropriate load balance between the CPU and GPU2.
Additionally, the codes can detect the used hardware at compile-time and select a few
parameters wisely. Expert knowledge is, however, still required, as many parameters are
not chosen automatically.

There exist some libraries that can help with that problem by providing dynamic
auto-tuning functionalities. One example for such a library is Active Harmony [137],
which uses a server-client infrastructure to explore a search space. Hereby, the clients
will sample specific points of the search space according to the sample points provided
by the server. Libraries, like Active Harmony , are, however, not actively used in MD.

5.4 Design and Implementation

AutoPas is the first library to enable dynamic auto-tuning for particle simulations. We
developed AutoPas to achieve multiple purposes:

� Reducing the expert knowledge that is required to use particle simulation software
most efficiently. This is achieved by auto-tuning over a range of parameters and
choosing the parameters with the best performance automatically.

� Easing the writing of efficient particle codes by providing an easy-to-use library
that automatically produces performant code.

� Enable speedup of existing simulation codes through dynamic auto-tuning by allow-
ing the selection of different algorithms over time or by different (MPI-)processes
of a running simulation.

This is achieved by the dynamic auto-tuning and selection of the following parameters:

Particle Container The particle container handles the storage of particles. We have
implemented containers using linked cells, Verlet lists, and Verlet cluster lists. In
addition, we implemented a direct sum container. It does not perform sorting and
interacts a particle with every other particle. The direct sum container thus offers
worse scalability compared to the other containers.

Traversal The traversal defines how particles are traversed for the force calculation. For
each particle container, a different set of traversals is applicable. The traversals
mainly differ by the way race conditions are circumvented. While some use coloring,
others use locks. An overview of the different traversals is depicted in Table 5.1.

Data Layout The data layout describes the way particles are stored for the force calcu-
lation. We hereby differentiate between SoA and AoS storage (cf. Figure 3.1).

2https://manual.gromacs.org/documentation/5.1/ReleaseNotes/performance.html#

improved-performance-auto-tuning-with-gpus
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5.4 Design and Implementation

Other Parameters In addition to the parameters listed above, AutoPas allows tuning
over some parameters of the traversals. It can decide whether the traversals should
use newton3 for the force calculation, which reduces the number of needed force
calculations by half, but requires proper handling of the parallelization options to
circumvent data races, e.g., by introducing coloring.

We call a combination of the different algorithm parameters configuration.
AutoPas consists of a modular design that enables the dynamic switching of the

different options. This design is also very extensible, s.t., it is easy to add new options
and test them against the existing ones.

For a user of the AutoPas library, this flexibility is hidden behind the autopas::AutoPas

class by applying the facade pattern, s.t., an easy usage can be guaranteed. This class
represents the main interaction point for a user of AutoPas, through which almost all
user interactions with AutoPas are performed. The main interaction points of the class
are:

� The addition of particles via the autopas::AutoPas::addParticle() function.

� Accessing the particles through iterators. For this purpose we provide the functions
autopas::AutoPas::begin() and autopas::AutoPas::getRegionIterator(), which return
iterators that either iterate over all particles, or only those lying in a specific region
of the domain. Using the iterator, particles can also be removed from a container.

� Executing the force calculation using a functor-like object via autopas::AutoPas::

↪→ iteratePairwise(). The functor, hereby, describes the force potential. Currently,
we have implemented one functor describing the Lennard-Jones potential, as well as
two functors that are used for SPH calculations. A user of the library is, however,
free to add further functors.

� Updating the container through autopas::AutoPas::updateContainer(). This function
updates the container by resorting the particles into correct cells. Additionally,
particles that moved outside the container are returned by this function.

In addition, some options to describe the outline of the domain of AutoPas and some
auto-tuning options can be handed to the autopas::AutoPas object after its construction.

The actual auto-tuning process of AutoPas is hidden behind the autopas::AutoPas::

↪→ iteratePairwise() call, in which the force calculation takes place. The behavior of
AutoPas hereby differs depending on whether a good configuration has been found or
not. If one has already been found, AutoPas simply uses the configuration to calculate
the forces. If a good configuration has, however, not been found yet, AutoPas potentially
changes the used configuration. AutoPas will always measure the time needed for the
force calculation using the currently selected configuration. A switch of the configuration
is performed if it has already been measured often enough. Once all configurations
are then tested for performance, the auto-tuning process is stopped, and the best
configuration is selected. The auto-tuning process is then restarted after a certain number
of autopas::AutoPas::iteratePairwise() calls.
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Traversal Advantages Disadvantages DLB CS

ds low overhead for managing
particles

O(n2), bad parallelizability

lc sliced very low scheduling overhead each chunk of work consists of at
least two slices of cells

no XL

lc c01 only one barrier, best
parallelizability

no support for Newton3, bad
caching

yes XS

lc c04 4 barriers, caching, low
scheduling overhead

lower parallelizability than c08 yes M

lc c08 best parallelizability with
Newton3 support

more barriers than c04 yes S

lc c18 many barriers yes S-M

vcl c06 some vectorization support, low
scheduling overhead

potentially too large chunks yes L

vcl sliced no XL

vl list no Newton3 support yes XS

vlc sliced very low scheduling overhead bad for small domains no XL
vlc c18 Newton3 support many barriers yes XS
vlc c01 only one barrier no Newton3 support yes S-M

vvl as built good parallelizability static LB not necessarily accurate partial

Table 5.1: Comparison of the traversals implemented in AutoPas with respect to their advantages
and disadvantages. We further indicate whether dynamic load balancing (DLB) is
supported on the node level or not and give a qualitative indication of the work
chunk size (CS), which is an important characteristic of the traversal. Large chunk
sizes indicate lower scheduling overhead, while small chunk sizes lead to better
parallelizability and are better for small subdomains or if many threads are used.
The traversals are prefixed with the container they are used with, where ds stands
for direct sum and lc for linked cells. The Verlet cluster lists(vcl) container uses
neighbor lists of clusters, while the other containers starting with v use classical
particle-wise Verlet lists. They do, however, differ in the way how the lists are built
and stored. The Verlet list (vl) container stores the neighbor list globally, while the
Verlet list cells (vlc) container stores the lists for each cell of the underlying linked
cells container. The VarVerlet (vvl) container generates the Verlet lists in a parallel
fashion using the c08 traversal. To circumvent race conditions, each thread saves the
particle pairs that it traversed when building the lists. Hereby, the pairs are stored
in separate lists for each color, resulting in eight different lists for each thread. For
the actual force calculation, these lists are then traversed by the same threads that
generated the lists, resulting in a static load distribution that does, however, not
necessarily correspond to the optimal load distribution, as the actual force calculation
is not regarded for the generation. Especially for compute-intensive force kernels, this
load balancing is often incorrect because the generation that includes only distance
calculations is inherently memory-bound (for most systems).
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We further had to decide on a common behavioral interface for all containers and had
to decide between a linked cells-like approach and a Verlet list-like approach to be able to
independently tune different AutoPas objects on different MPI ranks. While the former
is native to the linked cells container, where particles are sorted into the correct cells
and particles moving across cell or domain boundaries have to be handled in every time
step, the latter is native to Verlet list-like containers. For them particles are not moved
between cells in every time step, allowing the reuse of neighbor lists over multiple time
steps. To decide between the two options, we checked the possibility of implementing the
linked cells-like approach for Verlet list containers and the possibility of implementing
the Verlet-like approach for the linked cells container.

Implementing the Verlet-like approach for linked cells is straightforward and can be
achieved by two changes:

� Particles are not moved into the correct cells at every step. This way, particles that
are still owned by a cell can be slightly outside of it (at most by rs/2, where rs is
the skin radius).

� As particles don’t necessarily lie within the boundaries of a cell, distance calculations
between different particles are necessary for the force calculation if the distance
between the cells the particles reside in is less than rc + rs (instead of simply
rc, where rc is the cutoff radius). We implemented this change by increasing the
minimum size of a cell.

Using this approach, the performance of the linked cells is slightly reduced, as more
distance calculations become necessary. Additionally, the increase in cell size is beneficial
if the particle density is low, as the overhead of iterating through cells is reduced.

In contrast, using a linked cells-like approach for Verlet lists requires that particles are
copied to other instances of AutoPas in every time step. Additionally, particles are not
actually removed from an AutoPas instance if Verlet lists are used, as, otherwise, the
neighbor lists could not be reused. The following changes are necessary to implement
this behavior:

� The particle ownership state has to be tracked explicitly. This allows marking
particles that have left the domain of a process as dummy/halo without actually
removing them. This prevents invalidating the used neighbor lists, as the data
structure remains unchanged.

� The force calculation has to be adapted, s.t., particles marked as dummy are not
considered for it.

� Adding a particle vector containing all particles that would have been added while
the neighbor lists are reused. This particle vector has to partake in the force
calculation and, additionally, has to be considered by the iterators.

� And optionally: When the neighbor lists are built, they could include all particle
pairs, where one particle could potentially become an owned particle. This makes it
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possible to add particles that have previously been halo particles as owned particles.
If this change is not implemented, they have to be added to the additional particle
vector, while the old halo particle has to be marked as dummy.

There additionally exists a mixed approach for implementing a linked cells-like interface
for Verlet lists, which, however, is significantly more complicated to implement and
maintain and will thus not be discussed in this work. For details of the mixed approach
please see [130].

Currently, we have implemented a Verlet-like approach in AutoPas , as it allows skipping
MPI communications of leaving particles in most time steps and because it is easier to
maintain. In the future, we will probably switch to a linked cell-like approach, as it allows
the addition of particles in every time step and is thus more flexible with regard to the
Grand Canonical ensemble, in which particles can be added and removed. In addition,
a linked cell-like approach is easier to handle for a user of AutoPas. We are further
thinking about a dynamic tuning of the Verlet skin radius and the rebuild frequency, i.e.,
the frequency at which the neighbor lists are rebuilt. This is, however, only possible if a
linked cell-like interface is chosen, as the rebuild frequency and skin have to be constant
throughout multiple MPI processes for a Verlet-like approach.

5.5 Integration into ls1 mardyn

As we designed AutoPas with an integration into ls1 mardyn at mind, the integration
itself was relatively straightforward. To integrate AutoPas into ls1 mardyn, the following
changes had to be made:

� Create a new molecule class that is compatible with AutoPas and ls1 mardyn. We
have done this by creating a molecule that inherits from autopas::MoleculeLJ which
is a molecule class provided by AutoPas. The new class additionally implements
the common interface for all molecule classes in ls1 mardyn (MoleculeInterface) and
is thus also compatible with ls1 mardyn.

� Replace the used linked cells particle container and the force computation with
AutoPas and its functors. The newly created particle container (AutoPasContainer)
acts as a wrapper (adapter pattern) of AutoPas and also encapsulates the force
calculation. Outside this class, only the particle iterators are needed and no other
functionalities of AutoPas are exposed.

� Replace the used particle iterators with the ones provided by AutoPas. As the
interfaces of the iterators in ls1 mardyn and AutoPas are almost identical, we
simply added a class that inherits from AutoPas’ ParticleIteratorWrapper. Only
the iterator behavior, i.e., an enum that indicates which cells should be included in
the iteration, had to be converted between the behavior used in ls1 mardyn and
AutoPas.

� Adapt the domain decomposition, s.t., it works with AutoPas ’ Verlet-like interface.
Using this interface, particles aren’t moved between different processes at every step.
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Instead, they are only moved before the neighbor lists are rebuilt. Additionally, we
increased the area of communicated halo particles by the skin radius, as they are
needed for a correct assembly of the Verlet lists.

AutoPas further requires a change in the load balancing algorithms used in ls1 mardyn,
as ls1 mardyn’s load balancing algorithms require an a-priori load estimate. The problems
with this estimate are twofold. First, the estimate works on a cell level, i.e., it predicts
the time needed for the computation of a cell in dependence on the number of particles
inside it and its neighboring cells. AutoPas does, however, internally not necessarily
use cells. Additionally, the size of the cells might vary between processes. Second, the
algorithms used within AutoPas can change the time needed for the calculation of a cell.
The load of a cell does not only depend on the cell itself. Instead, it also depends on
the algorithms used by the process that owns the cell. As the algorithm is, however, not
known before a load balancing is made, an a-priori load estimate becomes infeasible to
use with AutoPas.

We, therefore, decided to use diffusive load balancing when using AutoPas. For
this purpose we included A Load Balancing Library (A Load Balancing Library, 3)
into ls1 mardyn. A Load Balancing Library is a library which is developed at the
Forschungszentrum Jülich that provides dynamic domain-based load balancing for particle
simulation codes. In our case, we use A Load Balancing Library ’s staggered grid approach
which implements a diffusive version of the multi-section method (cf. subsection 2.6.2).

To integrate A Load Balancing Library into ls1 mardyn, we have written the wrapper
class ALLLoadBalancer, which implements the new interface LoadBalancer. We have added
the latter, s.t., we can easily add new load balancing libraries to ls1 mardyn. The
LoadBalancer only handles information about the domain and does not know about
particles. To handle the particle exchange, we have created another new class, called
GeneralDomainDecomposition which uses a LoadBalancer for the load balancing.

A Load Balancing Library generates rectilinear partitions whose boundaries can take
arbitrary values bigger than a certain minimal size. When using AutoPas, this does
not pose a problem. Without AutoPas, ls1 mardyn, however, requires that its cells are
aligned on a grid. For this purpose, we have implemented a latching of the domain
boundaries to a given grid, thus allowing the use of A Load Balancing Library even if
AutoPas is not used.

5.6 Results

5.6.1 Node-Level

To showcase some benefits that AutoPas enables, we show performance results of ls1 mar-
dyn with and without AutoPas in Figure 5.3. Additionally, we compare the performance
of the two provided functors LJFunctor and LJFunctorAVX. They both model the same
force field but use different means of vectorization. The LJFunctor uses #pragma omp simd,
while LJFunctorAVX uses intrinsics that guarantee proper vectorization.

3https://gitlab.version.fz-juelich.de/SLMS/loadbalancing
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(a) Using the intrinsics functor (LJFunctorAVX).

0 1 2 3 4 5 6 7 8 9

0

10

20

30

40

50

Density [particles/r3
c ]

T
im

e
[m

s]

LC c08 soa N3
vvl as built aos N3
vcl c06 aos N3 cs 4
vcl sliced aos N3 cs 4
ls1

(b) Using the functor without intrinsics (LJFunctor).

Figure 5.3: Performance of different configurations for a homogeneous scenario (single-centered
LJ) in dependence of the particle density. Shown are the performances of all
configurations that are chosen for some density, as well as the configuration of
AutoPas (LC c08 soa N3) that matches ls1 mardyn’s default behavior (ls1). In this
simulation that has been carried out on one node of CoolMUC2 using 28 threads,
we chose a skin radius of 0.1rc and a rebuild-frequency and sampling interval of
10 time steps. The configurations include linked cells (LC), Verlet lists (vvl), and
Verlet cluster lists (vcl, size of the clusters indicated at the end). Shown is the
time needed for the force calculation only. We additionally created these results for
both Lennard-Jones functors provided by AutoPas , one using intrinsics to guarantee
vectorization and one using OpenMP’s #pragma omp simd.
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First, we describe the results using the intrinsics functor. Hereby, the chosen algorithm
configuration depends on the used particle density. For low densities, algorithms using
Verlet lists provide better performance compared to linked cells, as the latter require
iterating over multiple almost empty cells, which is not worthwhile. For higher densities,
however, linked cells using the SoA data layout provide better performance compared to
Verlet lists, because they allow better vectorization. The Verlet cluster lists provide some
variant in-between linked cells and Verlet lists. They thus tend to provide reasonable
performance for most densities. The performance of the sliced approach for the Verlet
clusters is not as good for this scenario, because the domain is relatively small (≈
(26(rc + rskin))3) for the large number of used threads (28).

If the LJFunctor is used, good vectorization is not achieved and linked cells provide only
around half the performance compared to the intrinsics functor. While the algorithms
using the linked cells data structure perform better than the classical Verlet list approach
(vvl) for high densities, they cannot reach the performance provided by the Verlet cluster
approach and are, therefore, never chosen as the best configuration. The LJFunctor is
thus generally less performant compared to the version using intrinsics.

5.6.2 Multi-Node

We have chosen three different scenarios to analyze the behavior of ls1 mardyn when
using AutoPas on multiple nodes and executed them on SuperMUC-NG.

Spinodal decomposition In this scenario, an equilibrated homogeneously distributed
fluid is rapidly cooled below its critical temperature. Due to this, the fluid contracts
and builds regions of higher and lower density, forming an inhomogeneous scenario.

Exploding liquid This scenario starts with a liquid film that is placed into vacuum. Upon
the start of the scenario, the film rapidly expands and forms two shock fronts with
some filaments and droplets in between.

Droplet coalescence This scenario resembles the process of two neighboring droplets
that merge into one bigger droplet.

All of these scenarios use single-centered Lennard-Jones particles and are visualized in
Figure 5.4. We decided to use these scenarios, as they offer a wide range of problems
ranging from slowly changing scenarios with global inhomogeneity (droplet coalescence)
over faster changing scenarios (spinodal decomposition) to rapidly progressing scenarios
(exploding liquid). These scenarios need different considerations, as the load balancing
for a slowly changing scenario can be almost static, while the load balancing for the
exploding liquid scenario has to be very responsive.

Note that the first two experiments (spinodal decomposition and exploding liquid)
were performed with a version of AutoPas that did not yet include the intrinsics functor
or the Verlet cluster approach. We, therefore, expect further speedups if they were used.

For the droplet coalescence scenario, the current version of AutoPas was used. We
therefore enabled both the intrinsics functor, as well as the Verlet cluster approach.
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(a) Spinodal decomposition scenario.
https://youtu.be/yarl9028dEc

(b) Droplet coalescence scenario.
https://youtu.be/1tlxDapmgbI

(c) Exploding liquid scenario.
https://youtu.be/u7TE5KiSQ08

Figure 5.4: Visualization of the scenarios used for the multi-node experiments when using ls1
mardyn with AutoPas . On the left, the initial setup is shown, while the right shows
the state at the end of the simulation. Previously published in [130].
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5.6 Results

5.6.2.1 Spinodal decomposition

Using the spinodal decomposition scenario, we show that it is possible to use ls1 mardyn
and AutoPas together in an MPI-parallel simulation for a relatively homogeneous scenario.
We hereby restrict AutoPas to use the linked cells container and the SoA data layout
with enabled newton 3 and allow it to only choose between two traversals, the c08, and
the sliced traversal.

The sliced traversal does not provide any internal load balance and provides the biggest
possible work chunks with minimal scheduling overhead. The sliced traversal should thus
be chosen if the particle density within one rank is uniform. If the density is non-uniform
the c08 traversal typically performs better. The c08 traversal should also be chosen if
the domain of each process is relatively small, i.e., if the sliced traversal is unable to split
its domain into equally sized partitions. In a strong scaling scenario, the c08 traversal
should thus be chosen more often than the sliced traversal if more processes are used.
This effect is also driven by the smaller subdomains in which small load imbalances result
in larger relative imbalances within a subdomain compared to bigger subdomains.

We could observe all of these preliminary considerations for the spinodal decomposition
scenario (cf. Figure 5.5). The scenario starts with an (almost) homogeneous particle
distribution and becomes more and more inhomogeneous. This change is perfectly
reflected in the ratio of the chosen traversals. At the start, the sliced traversal is chosen.
With an increasing inhomogeneity, the c08 traversal is chosen more often. In addition, the
hard limits of the sliced traversal regarding the size of the subdomains are visible for the
scenario with 2 million particles and 32 nodes, where the sliced traversal is hardly chosen.
For the larger of the two scenarios, the sliced traversal is, however, still chosen even if 128
nodes are used. For the large scenario and using only 16 nodes, the small inhomogeneities
within a subdomain are averaged out, as the subdomains themselves are big. Therefore,
the sliced traversal is chosen more often in comparison to the measurements with more
nodes, for which the subdomains are smaller and small inhomogeneities become more
relevant.

In comparison to pure ls1 mardyn, using AutoPas can enable a significant speedup of
up to 50% (cf. Figure 5.6). This speedup can, however, mostly be attributed to a force
kernel that is more optimized for single-centered instead of multi-centered molecules.

5.6.2.2 Exploding Liquid

Using the exploding liquid scenario with three MPI processes, we show that the diffusive
load balancing works well together with the auto-tuning of AutoPas.

For this example, we always start a tuning phase after a rebalancing happens. We
further ensure that the rebalancing is only started once the tuning of the previous tuning
phase has ended. This is important to get a load balancing that is adjusted to the
performance of the optimal traversal.

Figure 5.7 shows that for three processes the domain decomposition reacts properly
to the load imbalances, s.t., the time needed on each node is almost identical. We also
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Figure 5.5: Ratio of the chosen traversal for the spinodal decomposition scenario using the
Cartesian decomposition on SuperMUC-NG. For this example, we only allow the
selection of either the sliced or c08 traversal. Numerical results previously published
in [130].
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Figure 5.6: Strong scaling for the spinodal decomposition scenario using the Cartesian decom-
position for ls1 mardyn with and without AutoPas on SuperMUC-NG. For this
example, we only allow the selection of either the sliced or c08 traversal. Numerical
results previously published in [130].
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Figure 5.7: Decomposition and load balancing for the exploding liquid scenario when using the
ALL load balancer on three MPI nodes of SuperMUC-NG. The simulation starts
with equally distributed subdomains. The inner of these subdomains will then
contract due to a load concentration in the middle of the domain (rank1), while the
outer subdomains increase in size. After the contraction of the inner subdomain,
the liquid expands and the inner subdomain follows this expansion.

observe that the load balancer can quickly find a good initial load balancing. For this
example, we start a rebalancing almost immediately after a tuning phase has finished.

Using the exploding liquid scenario, we additionally performed strong-scaling experi-
ments, for which we observe a speedup of up to 43% compared to the pure ls1 mardyn
code (cf. Figure 5.8). In this case, the speedup can mostly be attributed to a better load
balancing, which is able to follow the liquid. Meanwhile, k-d tree-based load balancing
cannot follow the liquid. Instead, a partition is mostly completely changed after a
rebalancing step and all particles have to be exchanged to the new owning process.

The use of AutoPas is, however, not always better. This can be seen when looking at
the Cartesian decomposition. Runs on many nodes that use the Cartesian decomposition
are actually faster when AutoPas is not used (25% faster for 256 nodes). The reason for
this decrease in performance can be partially attributed to the tuning overhead, as some
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Figure 5.8: Strong scaling for the exploding liquid scenario with 8 million particles on SuperMUC-
NG (2 MPI ranks per node). Shown is the behavior with the use of AutoPas (AP)
and without (noAP) and its behavior when using the diffusive load balancing (ALL)
and the k-d tree-based load balancing (kdd). In this simulation, AutoPas uses
5 tuning samples per configuration, which is also the rebuild frequency of the
containers. If ALL is used, a rebalancing is performed every 2500 time steps (resp.
every 1000 time steps for the first 10000 time steps). The entire simulation comprises
100000 time steps. For the kdd, rebalancing is also performed every 10000 time
steps. Numerical results previously published in [130].
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configurations are suboptimal and a time step takes significantly longer when using such a
configuration compared to the pure ls1 mardyn code. Especially the use of non-vectorized
code (configurations using AoS) in the dense region of the domain results in a significant
loss of performance.

Using the diffusive load balancing together with AutoPas does, however, consistently
perform better compared to the original ls1 mardyn code.

5.6.2.3 Droplet Coalescence

The droplet coalescence scenario represents a slower progressing scenario compared to the
exploding liquid or spinodal decomposition scenario. It, therefore, is possible to rebalance
and retune less frequently. We make use of this by setting a rebalancing interval of 20000
time steps. To still get a good initial partition, we start with ten rebalancing steps with
a shorter interval of 1000 time steps allowing to equilibrate the load quickly.

Figure 5.9 shows such a simulation with its domain decomposition at the start of the
simulation and after the initial load balancing phase. First, we observe that the domain
decomposition results in smaller subdomains where the droplet is located (center) and
larger subdomains on the outside of the domain.

We further note that the chosen configurations vary in an almost symmetric way,
in which the low-density regions (corners) are simulated using a Verlet list approach,
while the high-density regions, for which vectorization is beneficial, use linked cells. The
high-density regions, hereby, show a behavior where the c04 traversal is used on bigger
subdomains, while the c08 traversal is used for smaller subdomains, because the c08
traversal uses smaller work items, thus providing better parallelizability, while the c04
traversal uses bigger work items resulting in less scheduling overhead.

When looking at the tuned configurations (cf. Figure 5.10) in dependence on the time,
we notice that, while initially, a relatively large part of the processes use Verlet-like
approaches, they tend to be less favored, after the initial rebalancing phase. The reason
for this is that most processes will partially calculate parts of the droplet for which a
good vectorizability is needed and thus linked cells are more efficient. Hereby, for most
processes, the c04 traversal tends to be the optimal choice.

In Figure 5.11 a comparison of the strong scaling is shown. Hereby the newly introduced
diffusive load balancing is able to outperform the k-d tree-based load balancing by up to
60% (8 nodes) and the Cartesian decomposition by up to 100% (128 nodes). For this
scenario, the use of AutoPas is only beneficial for the overall performance if few nodes are
used. For a large number of processes, using AutoPas can decrease the performance by
up to 30%, assuming no Verlet cluster lists are used. There are multiple reasons for this.
First, AutoPas’ cell-based containers use a larger cell size. This cell size also restricts
the minimal subdomain size which is bigger compared to a simulation without AutoPas
and thus decreases the maximal level of parallelization. When using A Load Balancing
Library on 256 nodes, only around 315 cells can fit into the smallest subdomain, which
corresponds to 13 cells, resp. 250 particles per thread. Second, the iterators implemented
within AutoPas are slower compared to the native iterators of ls1 mardyn and result
in worse performance of the communication. The reason for this slowness is the higher
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Figure 5.9: Domain decomposition and tuning results for the droplet coalescence scenario on
64 processes (32 nodes) of SuperMUC-NG at the start of the simulation (top) and
after an initial rebalancing (bottom) when using diffusive load balancing. Figure
previously published in [130].
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Figure 5.10: Ratio of the selected configurations on 32 processes (16 nodes) of SuperMUC-NG
for the droplet coalescence scenario. The simulation uses diffusive load balancing.
Numerical results previously published in [130].

number of indirections within the iterators that are needed to cope with the different
containers. And third, AutoPas introduces a tuning overhead that arises from iterating
with non-optimal configurations. If this overhead could be eliminated, the use of AutoPas
would be beneficial. This can be seen in Figure 5.11b, where only the performance of the
last 10 time steps is given, for which an optimal configuration has already been selected.
Once the tuning has finished, using AutoPas can provide speedups of up to 50% on 1
node. When using many nodes, only minor speedups are possible.

The force calculation does not become faster if AutoPas is used (cf. Figure 5.12). One
reason for this is the relatively small scenario in which the smallest subdomains quickly
reach the strong scaling limit. We do, however, observe that the average time needed
for the force calculation is significantly (up to 45%) smaller when employing AutoPas.
The use of different algorithms can thus decrease the accumulated time which potentially
reduces energy consumption.

We additionally note that while the Verlet cluster container was quite performant on
the node level, it significantly reduced the performance on the multi-node level. The
main reason for this is that, on the node level, we only looked at the time for the force
calculation and not the entire simulation. For an entire simulation, particle addition and
deletions are, however, problematic for the Verlet cluster list container, because they,
currently, trigger container rebuilds, and thus the entire container is rebuilt more often
than needed. We are, however, working on resolving this bug to allow good performance
of this container for an entire simulation run. If just the force calculation is considered,
the cluster lists do not decrease the performance much and can sometimes even increase
the performance a bit for the Cartesian decomposition. For the diffusive decomposition,
using the cluster lists does, however, still decrease the performance, which indicates that
the load balancing does not work properly when the Verlet cluster lists are used. This
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(a) Average simulation speed for the entire simulation.
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(b) Average simulation speed for the last 10 steps. For AutoPas, the optimal configuration
has already been found.

Figure 5.11: Strong scaling for the droplet coalescence scenario with 3 million particles on
SuperMUC-NG (2 MPI ranks per node). Shown is the behavior with the use
of AutoPas (AP) and without (noAP) and its behavior when using the diffusive
load balancing (ALL), the k-d tree-based load balancing (kdd), and the Cartesian
domain decomposition (sdd). This run uses a list rebuild frequency of 10 time
steps and also uses 10 samples for the tuning for each configuration. For ALL,
initially, 20 rebalancings are performed every 1000 time steps. After this initial
rebalancing phase, a rebalancing is performed only every 20000 time steps. For
kdd, a rebalancing is performed every 20000 time steps. The entire simulation
was performed for 100000 time steps. For AP-ALL and AP-sdd, the Verlet cluster
lists were disabled, as they have not yet been optimized for the entire simulation
cycle and unnecessary rebuilds of their structure are performed, slowing down the
simulation significantly. If +vcl is specified, the cluster lists were enabled.
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can also be seen in Figure 5.12b, where the time needed does not depend on the usage of
the Verlet cluster lists. One possible reason for the poor load balancing might be that
the underlying assumption, that the time needed for the computation should not change
much depending on the selected configuration, is broken because the change is too big.
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(a) Maximum of the time needed by the ranks. This corresponds to the strong scaling because the slowest
rank limits the simulation speed.

100 101 102

10−3

10−2

10−1

Nodes

T
im

e
[s

]

noAP-ALL
noAP-kdd
noAP-sdd
AP-ALL
AP-sdd
AP-ALL +vcl
AP-sdd +vcl

(b) Average of the time needed by the ranks. This corresponds to the optimal time needed if perfect
load balancing were possible.

Figure 5.12: Strong scaling for the droplet coalescence scenario with 3 million particles on
SuperMUC-NG (2 MPI ranks per node). Here, only the time needed for the force
calculation of the last 10 time steps is shown. Otherwise, the same parameters
have been used as in Figure 5.11.
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6.1 Summary

I presented various enhancements regarding the multi-node performance of ls1 mardyn.
First, the load balancing that uses the k-d tree-based decomposition has been enhanced

by providing a precise load estimation. The load balancing can now handle different
particle types, very inhomogeneous particle densities, and even heterogeneous computing
clusters. For a fully heterogeneous scenario on the CoolMAC cluster, we could observe
that the simulation speed has more than doubled.

Second, I have showcased the usage of zonal methods in ls1 mardyn. This allowed
lifting the strong scaling limits that exist for small, but dense scenarios. Using the eighth
shell method, speedups of up to 100% could be observed for realistic scenarios. When
using the neutral territory method, the simulation was sped up by up to 130x (13000%).
This speedup was, however, measured for an unrealistically high density (2500 particles
per r3

cutoff) and should be taken with a grain of salt.
Third, I have enabled overlapping communication within ls1 mardyn. Hereby, overlap-

ping collectives were employed to overlap global communication over an entire time step.
This allowed a speedup of 16% for a large-scale production run. The actual overlap of
the neighbor exchange of particles with the force computation using overlapping P2P
communication, did, however, not show any meaningful improvements compared to the
already existing overlap with the particle extraction. Only for high-latency networks,
speedups could be observed.

In addition, I have integrated the node-level auto-tuned particle simulation library
AutoPas into ls1 mardyn. This integration allows the dynamic selection of the optimal
algorithm configuration for the force calculation and can provide significant speedups
of the force calculation. At the node level, we observed that the time needed for the
force calculation could be halved if AutoPas was used. For the usage of AutoPas in MPI
parallel simulations, I integrated the load balancing library A Load Balancing Library
into ls1 mardyn which enables diffusive load balancing. This diffusive load balancing
can outperform the tree-based partitioning for the droplet coalescence scenario by up
to 60%. The use of AutoPas in MPI parallel simulations can increase performance, as
demonstrated in the exploding liquid scenario. This increase is, however, restricted due
to the tuning-overhead of the exhaustive search. I have shown that the use of AutoPas
and its different algorithm configurations can decrease the resource consumption of the
force calculation by up to 45%.

The shown speedup values can always also be directly translated to a possible increase
of the system size while leaving the required time unchanged (if a simulation was sped
up by X%, an X% bigger simulation can now be simulated as fast as the original scenario
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before the optimizations). This is especially relevant as most HPC clusters restrict the
run-time of jobs and thus indirectly limit the maximal simulation size if no checkpoint-
restart mechanics is used. With the speedup, it is now possible for bigger simulations
to finish within the time limits. Additionally, a speedup is equivalent to a reduction of
needed core-hrs on an HPC system and thus allows more simulation runs for a given
compute budget. If these simulations provide samples (e.g., of rare events or for parameter
identification), a higher accuracy of the sampled process is possible.

6.2 Outlook

While the use of diffusive load balancing in ls1 mardyn already brought good speedups,
it might not be the best choice for the exascale era, as the initial load balancing might
take too long. G. Sutmann proposed a way to circumvent this problem by generating an
underlying load density field and distributing the domain according to it [72]. In FDPS ,
another way to solve this problem is implemented using particle samples and was shown
to scale onto up to 20000 nodes on Sunway TaihuLight [138–140]. Therefore, further load
balancing strategies should be tested and compared. This testing is made relatively easy
because, with the integration of A Load Balancing Library , I designed an interface that
allows the easy addition of other load balancing or partitioning libraries into ls1 mardyn.

Furthermore, we are planning to fully replace the force kernel of ls1 mardyn with
AutoPas. For this purpose, we need to make it possible to use all essential features of
ls1 mardyn with AutoPas. One of the major features that ls1 mardyn supports but is
currently not possible with AutoPas, is the simulation of multi-centered molecules. We,
therefore, intend to adapt AutoPas accordingly. Currently, it is still unclear whether the
efficient support of multi-centered molecules requires a change of the interface or not.
Basic support is, however, possible through a modification of the force functor.

For AutoPas itself, there are a couple of open work items to increase performance and
make it easier to use.

First, we are aiming to integrate the Kokkos library into AutoPas to enable performance
portability and the efficient use of GPUs. In addition, using Kokkos would allow a user of
AutoPas to easily write new force interactions by specifying only the pairwise interaction.
Using Kokkos will most likely change the interface of AutoPas from the provided iterators
to for_each function calls that take a lambda as input. To use AutoPas inside of ls1
mardyn, we would then need to change the usage of ls1 mardyn accordingly.

Second, Fabio Gratl is working on enhancing the auto-tuning to reduce the overhead
of testing bad options. He is working on methods that replace the exhaustive search
(which was used in this work) with other strategies that utilize methods ranging from
Bayesian optimization to linear regression and also include MPI-parallel tuning. We
are further working on enabling tuning for other parameters besides the presented ones.
Among others, these include the chunk size of OpenMP regions and the size of the Verlet
clusters. Especially for the latter, we could already observe that their value can influence
the performance (cf. Figure 5.3). The auto-tuning changes will not change the interface
of AutoPas and are thus transparent to the integration within ls1 mardyn.
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And third, we are thinking of restructuring AutoPas to utilize C++20’s concepts. This
would allow us to significantly shorten possible compilation errors when AutoPas is used
(e.g. in ls1 mardyn), which eases both its maintainability and usability.
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[35] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl. Tackling exascale
software challenges in molecular dynamics simulations with gromacs. In Inter-
national conference on exascale applications and software, pages 3–27. Springer,
2014.

[36] R. Yokota and L. A. Barba. A tuned and scalable fast multipole method as a
preeminent algorithm for exascale systems. The International Journal of High
Performance Computing Applications, 26(4):337–346, 2012.

[37] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.
IEEE transactions on Computers, 100(10):892–901, 1985.

109

http://www.sciencedirect.com/science/article/pii/0021999185900026
http://www.sciencedirect.com/science/article/pii/0021999185900026
http://dx.doi.org/https://doi.org/10.1016/0021-9991(85)90002-6
http://dx.doi.org/https://doi.org/10.1016/0021-9991(85)90002-6
https://doi.org/10.1007/BF00715182
http://dx.doi.org/10.1007/BF00715182
https://link.aps.org/doi/10.1103/PhysRev.159.98
https://link.aps.org/doi/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.159.98


BIBLIOGRAPHY

[38] Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6d mesh/torus interconnect for
exascale computers. Computer, 42(11):36–40, 2009.

[39] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers, C-21(9):948–960, 1972. doi:10.1109/TC.1972.5009071.

[40] J. Von Neumann. First draft of a report on the edvac. IEEE Annals of the History
of Computing, 15(4):27–75, 1993.

[41] R. H. Netzer and B. P. Miller. What are race conditions? some issues and
formalizations. ACM Letters on Programming Languages and Systems (LOPLAS),
1(1):74–88, 1992.

[42] C. Hewitt. Actor model of computation: scalable robust information systems. arXiv
preprint arXiv:1008.1459, 2010.

[43] J. Diaz, C. Munoz-Caro, and A. Nino. A survey of parallel programming models
and tools in the multi and many-core era. IEEE Transactions on parallel and
distributed systems, 23(8):1369–1386, 2012.

[44] The MPI Forum, CORPORATE. MPI: A Message Passing Interface. In Proceedings
of the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing ’93, pages
878––883, New York, NY, USA, 1993. Association for Computing Machinery. URL:
https://doi.org/10.1145/169627.169855, doi:10.1145/169627.169855.

[45] MPI Forum. Mpi: A message-passing interface standard, 1994.

[46] MPI Forum [online]. 2021. URL: https://www.mpi-forum.org/ [last checked
2021-06-15].

[47] A. Schmelz. Optimization of Molecular Dynamics Simulations Using One-Sided
MPI-Directives. Master’s thesis, Technical University of Munich, Jun 2017. URL:
https://mediatum.ub.tum.de/1462220.

[48] A. Skjellum, N. E. Doss, and K. Viswanathan. Inter-communicator extensions to
mpi in the mpix (mpi extension) library. Submitted to ICAE Journal special issue
on Distributed Computing, 1994.

[49] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective commu-
nication operations in mpich. The International Journal of High Performance
Computing Applications, 19(1):49–66, 2005.
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[82] S. Werth, K. Stöbener, M. Horsch, and H. Hasse. Simultaneous description of
bulk and interfacial properties of fluids by the mie potential. Molecular Physics,
115(9-12):1017–1030, 2017.

[83] M. Horsch, J. Vrabec, and H. Hasse. Modification of the classical nucleation theory
based on molecular simulation data for surface tension, critical nucleus size, and
nucleation rate. Physical Review E, 78(1):011603, 2008.

[84] J. Vrabec, M. Horsch, and H. Hasse. Molecular dynamics based analysis of nucleation
and surface energy of droplets in supersaturated vapors of methane and ethane.
Journal of heat transfer, 131(4), 2009.

[85] M. Horsch, Z. Lin, T. Windmann, H. Hasse, and J. Vrabec. The air pressure
effect on the homogeneous nucleation of carbon dioxide by molecular simulation.
Atmospheric research, 101(3):519–526, 2011.

[86] M. Horsch, J. Vrabec, M. Bernreuther, S. Grottel, G. Reina, A. Wix, K. Schaber,
and H. Hasse. Homogeneous nucleation in supersaturated vapors of methane,
ethane, and carbon dioxide predicted by brute force molecular dynamics. The
Journal of Chemical Physics, 128(16):164510, 2008.

[87] S. Grottel, G. Reina, J. Vrabec, and T. Ertl. Visual verification and analysis of
cluster detection for molecular dynamics. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1624–1631, 2007.

[88] M. Horsch, S. Miroshnichenko, and J. Vrabec. Steady-state molecular dynamics
simulation of vapour to liquid nucleation with mcdonald’s dæmon. arXiv preprint
arXiv:0911.5485, 2009.

113

http://dx.doi.org/10.1109/HiPCW.2016.027
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19033160802
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19033160802
http://dx.doi.org/10.1002/andp.19033160802


BIBLIOGRAPHY

[89] K. Langenbach, M. Heilig, M. Horsch, and H. Hasse. Study of homogeneous bubble
nucleation in liquid carbon dioxide by a hybrid approach combining molecular
dynamics simulation and density gradient theory. The Journal of chemical physics,
148(12):124702, 2018.

[90] M. Horsch, H. Hasse, A. K. Shchekin, A. Agarwal, S. Eckelsbach, J. Vrabec, E. A.
Müller, and G. Jackson. Excess equimolar radius of liquid drops. Physical Review
E, 85(3):031605, 2012.

[91] S. Werth, S. V. Lishchuk, M. Horsch, and H. Hasse. The influence of the liquid
slab thickness on the planar vapor–liquid interfacial tension. Physica A: Statistical
Mechanics and its Applications, 392(10):2359–2367, 2013.

[92] M. Horsch and H. Hasse. Molecular simulation of nano-dispersed fluid phases.
Chemical Engineering Science, 107:235–244, 2014.

[93] S. Werth, M. Kohns, K. Langenbach, M. Heilig, M. Horsch, and H. Hasse. Interfacial
and bulk properties of vapor-liquid equilibria in the system toluene+ hydrogen
chloride+ carbon dioxide by molecular simulation and density gradient theory+
pc-saft. Fluid Phase Equilibria, 427:219–230, 2016.

[94] S. Werth, G. Rutkai, J. Vrabec, M. Horsch, and H. Hasse. Long-range correction
for multi-site lennard-jones models and planar interfaces. Molecular Physics,
112(17):2227–2234, 2014.

[95] S. Werth, M. Horsch, and H. Hasse. Surface tension of the two center lennard-jones
plus quadrupole model fluid. Fluid Phase Equilibria, 392:12–18, 2015.

[96] S. Werth, M. Horsch, and H. Hasse. Surface tension of the two center lennard-jones
plus point dipole fluid. The Journal of chemical physics, 144(5):054702, 2016.

[97] M. Horsch, M. Heitzig, C. Dan, J. Harting, H. Hasse, and J. Vrabec. Contact angle
dependence on the fluid- wall dispersive energy. Langmuir, 26(13):10913–10917,
2010.

[98] M. Horsch, C. Niethammer, J. Vrabec, and H. Hasse. Computational molecular
engineering as an emerging technology in process engineering. arXiv preprint
arXiv:1305.4781, 2013.

[99] M. Horsch, J. Vrabec, M. Bernreuther, and H. Hasse. Poiseuille flow of liquid-
methane in nanoscopic graphite channels by molecular dynamics simulation. In
Turbulence Heat and Mass Transfer 6. Proceedings of the Sixth International Sym-
posium On Turbulence Heat and Mass Transfer. Begel House Inc., 2009.

[100] S. Werth, M. Horsch, and H. Hasse. Long-range correction for dipolar fluids at
planar interfaces. Molecular Physics, 113(23):3750–3756, 2015.

114



BIBLIOGRAPHY

[101] P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, and H.-J. Bungartz. Mam-
ico: Software design for parallel molecular-continuum flow simulations. Computer
Physics Communications, 200:324–335, 2016.

[102] N. Tchipev, A. Wafai, C. W. Glass, W. Eckhardt, A. Heinecke, H.-J. Bungartz, and
P. Neumann. Optimized force calculation in molecular dynamics simulations for
the intel xeon phi. In European Conference on Parallel Processing, pages 774–785.
Springer, 2015.
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[124] L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In A. Paepcke, editor, Proceedings of OOPSLA’93, pages
91–108. ACM Press, September 1993.

[125] S. Seckler, N. Tchipev, H.-J. Bungartz, and P. Neumann. Load balancing for
molecular dynamics simulations on heterogeneous architectures. In 2016 IEEE
23rd International Conference on High Performance Computing (HiPC), pages
101–110. IEEE, 2016.

[126] C. L. Lawson and R. J. Hanson. Solving least squares problems. SIAM, 1995.
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[134] S. Páll, A. Zhmurov, P. Bauer, M. Abraham, M. Lundborg, A. Gray, B. Hess, and
E. Lindahl. Heterogeneous parallelization and acceleration of molecular dynamics
simulations in gromacs. The Journal of Chemical Physics, 153(13):134110, 2020.

117

http://dx.doi.org/10.1016/j.jocs.2020.101296
http://dx.doi.org/10.1016/j.jocs.2020.101296


BIBLIOGRAPHY

[135] P. Gonnet, A. B. Chalk, and M. Schaller. Quicksched: Task-based parallelism with
dependencies and conflicts. arXiv preprint arXiv:1601.05384, 2016.

[136] F. A. Gratl. Implementation and evaluation of task-based approaches for molecular
dynamics simulations. Studienarbeit, Technical University of Munich, Apr 2017.

[137] C. Tapus, I.-H. Chung, and J. K. Hollingsworth. Active harmony: Towards
automated performance tuning. In SC’02: Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, pages 44–44. IEEE, 2002.

[138] M. Iwasawa, D. Namekata, K. Nitadori, K. Nomura, L. Wang, M. Tsubouchi, and
J. Makino. Accelerated fdps: Algorithms to use accelerators with fdps. Publications
of the Astronomical Society of Japan, 72(1):13, 2020.

[139] M. Iwasawa, D. Namekata, R. Sakamoto, T. Nakamura, Y. Kimura, K. Nitadori,
L. Wang, M. Tsubouchi, J. Makino, Z. Liu, et al. Implementation and performance
of barnes-hut n-body algorithm on extreme-scale heterogeneous many-core archi-
tectures. The International Journal of High Performance Computing Applications,
34(6):615–628, 2020.

[140] M. Iwasawa, D. Namekata, K. Nomura, M. Tsubouchi, and J. Makino. Extreme-
scale particle-based simulations on advanced hpc platforms. CCF Transactions on
High Performance Computing, pages 1–13, 2020.

[141] T. Wilde, M. Ott, A. Auweter, I. Meijer, P. Ruch, M. Hilger, S. Kühnert, and
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A Derivations

A.1 Lower Bound for Deviation Homogeneous Speed

In this section, a lower estimate for the deviation of an arbitrary node is derived, assuming
homogeneous speed of all processes. For a leaf node, this deviation is defined as the
quadratic deviation from the optimal load Copt assigned to a process.

Di = (Ci − Copt)
2 (A.1)

For a non-leaf node, the deviation is defined as the sum of the deviations of its children.
If recursion is applied, it is the sum of the deviations of all leaf nodes of which the original
node is an ancestor.

D =
∑

i is descendant leaf node

(Ci − Copt)
2 (A.2)

Adding and subtracting the expectation of the cost for the node, i.e.,
E (Ci) =

∑
i is descendant leaf nodeCi leads to (note that Copt is the optimal load considering

all subdomains/nodes).

=
∑

i is descendant leaf node

((Ci − E (Ci))− (Copt − E (Ci)))
2 . (A.3)

=
∑
i

(Ci − E (Ci))
2 − 2(Copt − E (Ci))

∑
i

(Ci − E (Ci))︸ ︷︷ ︸
=0

+
∑
i

(Copt − E (Ci))
2

(A.4)

=
∑
i

(Ci − E (Ci))
2 +

∑
i

(Copt − E (Ci))
2 (A.5)

The minimum of the deviation of one term is thus

inf D = ndescendant leaves (Copt − E (Ci))
2 , (A.6)

where n is the number of descendant leaf nodes of the regarded node. Note that for the
root note Copt = E (Ci) and inf D is therefore zero.

The above formula can be used during the creation of the tree, i.e., for the splitting of
a domain (with total load C and n processes) into two subdomains (with loads C1 and
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C2 and process counts n1 and n2). The minimal deviation for such a splitting is given as

inf D = n1 (Copt − E (C1))2 + n2 (Copt − E (C2))2 (A.7)

= n1

(
Copt −

C1

n1

)2

+ n2

(
Copt −

C2

n2

)2

. (A.8)
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A.2 Lower Bound for Deviation Heterogeneous Speed

Analogously to section A.1, a lower bound can be found for the deviation of a non-leaf
node if performance is considered. Here, the deviation of a leaf node is

Di =

(
Ci −

Pi
Pavg

· Copt

)2

, (A.9)

where Ci is the load assigned to the leaf and Pi is the performance of the associated
process. Pavg is the total average performance of all processes and Copt the optimal
load assigned to a process, assuming all processes have the same performance, i.e.,
Copt = Ctotal

ntotal
, where ntotal is the total number of processes. The deviation of a non-leaf

node is thus

D =
∑

i is descendant leaf node

(
Ci −

Pi
Pavg

· Copt

)2

. (A.10)

using ci := Ci − E (Ci) and pi := Pi − E (Pi)

D =
∑
i

(
E (Ci) + ci −

E (Pi) + pi
Pavg

· Copt

)2

(A.11)

=
∑
i

((
E (Ci)−

E (Pi)

Pavg
· Copt

)
+

(
ci −

pi
Pavg

· Copt

))2

(A.12)

=
∑
i

(
E (Ci)−

E (Pi)

Pavg
· Copt

)2

+
∑
i

(
ci −

pi
Pavg

· Copt

)2

+ 2

(
E (Ci)−

E (Pi)

Pavg
· Copt

)
·
∑
i

(
ci −

pi
Pavg

· Copt

) (A.13)

with E (ci) = 0 and E (pi) = 0 it follows that

D =
∑
i

(
E (Ci)−

E (Pi)

Pavg
· Copt

)2

+
∑
i

(
ci −

pi
Pavg

· Copt

)2

(A.14)

≥
∑
i

(
E (Ci)−

E (Pi)

Pavg
· Copt

)2

(A.15)

= ndescendant leaves ·
(
E (Ci)−

E (Pi)

Pavg
· Copt

)2

. (A.16)

When splitting a node in two subnodes with process counts n1 and n2 and average
performances Pavg,1 and Pavg,2, as well as average loads Cavg,1 and Cavg,2, the lower
bound for D is given as

inf D = n1

(
Copt ·

Pavg,1

Pavg
− Cavg,1

)2

+ n2

(
Copt ·

Pavg,2

Pavg
− Cavg,2

)2

(A.17)

= n1

(
Copt · P1

n1 · Pavg
− C1

n1

)2

+ n2

(
Copt · P2

n2 · Pavg
− C2

n2

)2

. (A.18)
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B Cluster Descriptions

B.1 CoolMUC2

CoolMUC2 is one segment of the Linux Cluster 1 which is hosted at the Leibniz Super-
computing Center (LRZ) in Munich, Germany 2 [141]. It provides 812 dual-socket nodes
and uses Intel Xeon E5-2697 v3 14-core Haswell CPUs. The nodes are water-cooled and
connected with FDR Infiniband.

B.2 CoolMAC

CoolMAC, also called the MAC cluster, was a cluster hosted by LRZ and financed
through the Munich Centre of Advanced Computing 3. The cluster was a multi-purpose
cluster that consisted of five partitions, each hosting different hardware. There were
two large partitions snb and bdz that used Intel SandyBridge, resp. AMD Bulldozer
nodes and two smaller partitions nvd and ati that allowed the usage of Nvidia, resp.
AMD GPUs. Additionally, there was a small partition using Intel Westmere CPUs. An
overview of the different partitions is given below.
Name CPU Nodes Sockets x Cores GPUs per Node

snb Intel SandyBridge-EP
Xeon E5-2670

28 2 x 8 -

bdz AMD Bulldozer
Opteron 6274

19 4 x 16 -

nvd Intel SandyBridge-EP
Xeon E5-2670

4 2 x 8 2 x NVIDIA M2090

ati Intel SandyBridge-EP
Xeon E5-2670

4 2 x 8 2 x AMD FirePro
W8000

wsm Intel Westmere-EX
Xeon E7-4830

2 4 x 8 -

B.3 SuperMUC Phase 1

SuperMUC Phase 1 was hosted at LRZ and consisted of 18 islands that host a total of
9216 nodes. Each node housed two Sandy Bridge-EP Xeon E5-2680 eight-core processors

1https://doku.lrz.de/display/PUBLIC/Linux+Cluster
2https://www.lrz.de
3http://www.mac.tum.de/
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resulting in a total of 147456 cores. The nodes were connected using Infiniband FDR10
in a fat-tree topology.

B.4 SuperMIC

SuperMIC was part of the SuperMUC system and contained 32 nodes. These nodes were
dual-socket systems using Ivy-Bridge E5-2650 v2 processors [142,143]. SuperMIC was
meant for testing Intel Xeon Phi coprocessors cards and hosted two Intel Xeon Phi 5110P
coprocessors per node. The coprocessors were connected using PCIe 2.0. For the node
inter-connect, Infiniband FDR14 was used.

B.5 SuperMUC-NG

SuperMUC-NG is the current HPC system (as of June 2021) at LRZ 4. SuperMUC-NG’s
main compute partition consists of 6336 dual-socket nodes partitioned into 8 islands.
The system uses Intel Skylake Xeon Platinum 8174 CPUs (24 cores), providing a total of
304128 cores.

B.6 Hazel Hen

Hazel Hen was an HPC system at HLRS 5. It consisted of 41 cabinets housing a total of
7712 nodes. Each node hosted two Intel Xeon E5-2680 v3 12-core CPUs. Hazel Hen’s
nodes were connected using Cray’s Aries interconnect.

4https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
5https://www.hlrs.de/systems/cray-xc40-hazel-hen/
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