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Abstract
Background: Studies show that proallergic TH2 cells decrease after successful 
allergen- specific immunotherapy (AIT). It is likely that iatrogenic administration of al-
lergens drives these cells to exhaustion due to chronic T- cell receptor stimulation. 
This study aimed to investigate the exhaustion of T cells in connection with allergen 
exposure during AIT in mice and two independent patient cohorts.
Methods: OVA- sensitized C57BL/6J mice were challenged and treated with OVA, 
and the development of exhaustion in local and systemic TH2 cells was analyzed. In 
patients, the expression of exhaustion- associated surface markers on TH2 cells was 
evaluated using flow cytometry in a cross- sectional grass pollen allergy cohort with 
and without AIT. The treatment effect was further studied in PBMC collected from a 
prospective long- term AIT cohort.
Results: The exhaustion- associated surface markers CTLA- 4 and PD- 1 were signifi-
cantly upregulated on TH2 cells upon OVA aerosol exposure in OVA- allergic compared 
to non- allergic mice. CTLA- 4 and PD- 1 decreased after AIT, in particular on the sur-
face of local lung TH2 cells. Similarly, CTLA- 4 and PD- 1 expression was enhanced on 
TH2 cells from patients with allergic rhinitis with an even stronger effect in those with 
concomitant asthma. Using an unbiased Louvain clustering analysis, we discovered 
a late- differentiated TH2 population expressing both markers that decreased during 
up- dosing but persisted long term during the maintenance phase.
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1  |  INTRODUC TION

Successful allergen- specific immunotherapy (AIT) in allergic airway 
disease effectively reduces symptom and the need for anti- allergic 
rescue medication such as antihistamines or corticosteroids while im-
proving the quality of life in allergic patients.1– 4 The induction of clini-
cal tolerance to allergen is associated with multiple anti- inflammatory 
effects. In parallel to clinical improvement, proallergic TH2 cells have 
been shown to decrease after several years of AIT.5– 7 Given this, 
during AIT, proallergic TH2 cells are chronically exposed to allergens 
administered iatrogenically, and T- cell exhaustion should be consid-
ered as a potential mechanism leading to tolerance induction.8

T- cell exhaustion is characterized by diminished effector func-
tion and sustained expression of inhibitory receptors, such as 
programmed cell death protein- 1 (PD- 1), cytotoxic T- lymphocyte- 
associated antigen- 4 (CTLA- 4), T- cell immunoglobulin-  and mucin- 
domain- containing molecule- 3 (TIM- 3), and lymphocyte activation 
gene- 3 (LAG- 3).9– 12 Engagement of these inhibitory receptors down-
modulates T- cell receptor (TCR) signaling cascades and restricts the 
downstream PI3K/AKT pathway in a nonredundant manner.13– 16 

While functional exhaustion can be partially reversed by blocking 
these receptors using immune- checkpoint inhibitors (ICI),11,16,17 epi-
genetic reprogramming turns the exhausted state into a stable phe-
notype.18,19 Notably, some exhausted T cells retain the expression of 
the transcription factor TCF- 1 and thus their self- renewal potential, 
whereas some do not and are therefore prone to apoptosis and re-
sistance to ICI.20– 22

While CD4+ T- cell exhaustion has been addressed in variable 
chronic infections and autoimmune diseases,11,23,24 its role in the 
context of allergy and AIT is not fully understood. Using murine 
models of asthma, several studies exhibited the role of PD- 1 and 
CTLA- 4 in limiting allergen sensitization25 and allergic airway inflam-
mation.26,27 In addition, it has been reported that allergen- specific 
CD4+ T cells are terminally differentiated and preferentially deleted 
during AIT.6,7 However, the contribution of T- cell exhaustion to 
these observations is uncertain. Upon in vitro stimulation with com-
mon inhalant allergens, CD4+ T cells upregulated PD- 1 and CTLA- 4, 
while PD- 1 but not CTLA- 4 blockade increased their proliferation.28 
Still, it remains largely unknown whether proallergic TH2 cells would 
reach a state of exhaustion upon AIT.
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Conclusions: This study shows that allergen exposure promotes CTLA- 4 and PD- 1 
expression on TH2 cells and that the dynamic change in frequencies of exhausted 
TH2 cells exhibits a differential pattern during the up- dosing versus the mainte-
nance phases of AIT.
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AIT, CTLA- 4, PD- 1, proallergic TH2, T- cell exhaustion

G R A P H I C A L  A B S T R A C T
This study shows that TH2 cells upregulate the exhaustion- associated surface markers CTLA- 4 and PD- 1 upon in vivo allergen exposure in 
OVA- sensitized mice and grass pollen- allergic patients. This upregulation is reduced after AIT, in particular in TH2 cells from local mouse 
lungs and AR patients with concurrent asthma. The transcriptome of allergic mouse lungs shows enhanced expression of both markers.
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We hypothesized that allergen exposure during AIT could render 
TH2 cells functionally exhausted. In this study, we therefore sought 
to determine the development of the exhausted phenotype of TH2 
cells in an AIT mouse model and further to validate the findings in 
grass pollen- allergic patient cohorts.

2  |  MATERIAL S AND METHODS

2.1  |  Animals

Female specific pathogen- free C57BL/6J mice, six weeks of age, 
were purchased from Charles River (Sulzfeld, Germany) and provided 
with food and water ad libitum. The experiment was conducted fol-
lowing German federal guidelines for the use and cares of laboratory 
animals. The study was approved by the Government of the District 
of Upper Bavaria and the Animal Care and Use Committee of the 
Helmholtz Center Munich (55.2- 1- 54- 2532- 50- 2017).

2.2  |  Ovalbumin immunotherapy model

The model has been described earlier.29 Mice were sensitized via 
intraperitoneal injections of 30 μg OVA (Grade V, Sigma- Aldrich, 
Merck, Darmstadt, Germany) in conjunction with 2 mg aluminum 
hydroxide (Imject™ Alum, Thermo Fisher Scientific, Waltham, MA, 
USA) in 200 µL phosphate- buffered saline (PBS) on days 0, 7, 14, 
and 28. Control mice received aluminum hydroxide (2 mg/200 µL 
PBS) only. After sensitization, the AIT group was treated on days 
35, 39, 43, 47, 51, and 55 with subcutaneous injections of OVA 
(500 μg/200 μL PBS), while the rest received sham treatment with 
PBS. All mice were challenged with 1% nebulized OVA for 15 min 
on days 34, 41, and 48 during the immunotherapy phase and on 
days 63, 66, and 69 toward the end of the experiment. All mice 
were euthanized on day 70. After bleeding, bronchoalveolar lav-
age fluid (BALF) was collected and cell counts were reported as 
one of us (AF) and colleagues have previously described.30 The 
online repository contains a detailed description of the analysis 
of immunoglobulins and cytokines in serum and BALF and other 
methods.

2.3  |  Patients and blood samples

Peripheral blood mononuclear cell (PBMC) samples collected from 
a cross- sectional patient cohort were used for ex vivo phenotyping 
of TH2 cells. Forty grass pollen- allergic patients were recruited who 
met the following criteria: at least a two- year history of moderate- 
severe and chronic persistent allergic rhinitis during the grass pol-
len season, as defined by ARIA (Allergic Rhinitis and its Impact on 
Asthma) criteria31; a positive skin prick test wheal >3 mm in diame-
ter; and a grass pollen specific IgE- level above 0.70 kU/l (Table S1). 
Twenty of them received AIT treatment before recruitment. 

Twenty- seven non- allergic individuals without a clinical history of 
chronic rhinosinusitis were recruited as controls. The study was 
approved by the ethics commission of the Technical University of 
Munich (5534/12). After written and informed patient consent and 
in accordance with the Helsinki Declaration, peripheral blood was 
obtained from patients twice, once in (May– July) and once out of 
grass pollen season (October– January). PBMCs were isolated using 
density- gradient centrifugation and cryopreserved until analysis.

To identify exhausted TH2 cell clusters during AIT, we used PBMC 
samples collected in the course of the longitudinal Prospective 
Allergy and Clinical Immune Function Cohort study (PACIFIC, 
EudraCT 2015- 003545- 25).5 Patient characteristics are summarized 
in Table S2. At each time point, eight samples were included for anal-
ysis. Due to patient attrition, samples could not be linked timewise, 
rendering the analysis cross- sectional.

2.4  |  Flow cytometry

Human PBMCs and murine lymphocytes isolated from lungs, 
BALF, and blood were analyzed by flow cytometry, and 100,000 
cells were acquired per sample. Antibodies used are listed in 
Table S3. Cells were incubated with fixable viability dye to ex-
clude dead cells and labeled with antibodies against surface mark-
ers. For intracellular staining, surface- labeled cells were fixed/
permeabilized and then stained with antibodies against intracel-
lular molecules. Cells were stained with isotype antibodies to 
determine the nonspecific binding. For cytokine assay, cells were 
incubated for 4 h in medium containing PMA, ionomycin and 
brefeldin- A (all from Sigma- Aldrich, Merck, Darmstadt, Germany) 
before intracellular staining. The samples were analyzed using a 
BD LSRII Fortessa Flow Cytometer and FlowJo software (Ashland, 
OR, USA).

2.5  |  Louvain cluster analysis and differential 
abundance test

The flow cytometric data (pre- gated in live populations) were ana-
lyzed with scanpy (version 1.5.1) in Python version 3.8. We used the 
FlowCytometryTools package (https://github.com/eyurt sev/FlowC 
ytome tryTools, github version tag 0.5.0) to read the data and sub-
sequently converted them into the anndata (version 0.7.4) format. 
We compensated the data matrix using the numpy (version 1.19.1) 
matrix multiplication function.

We normalized the compensated flow cytometric data using the 
arcsinh- transformation (with cofactor 150) and checked the feasibil-
ity of the normalization by inspecting the data distribution of each 
factor in a histogram. Then, we computed 15 nearest neighbors with 
the scanpy.pp.neighbors function and performed Louvain clustering 
with resolution 2.0.

Finally, we performed hierarchical clustering with the scanpy.
tl.dendrogram function with default parameters (i.e. the Pearson 
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F I G U R E  1  OVA- specific immunotherapy attenuated TH2 response and intrapulmonary eosinophilia in mice. (A) Experimental scheme 
of OVA immunotherapy model. BAL fluid and sera from non- allergic, AAI and AAI + AIT mice were analyzed (n = 8 per group). (B) Total 
BAL cells, eosinophils, macrophages, neutrophils, and lymphocytes on a logarithmic scale. (C) Percentages of eosinophils, macrophages, 
neutrophils, and lymphocytes within the total BAL cells. Levels of IL- 4, IL- 5, and IL- 9 in BAL fluid (D– F) and mouse serum (G– I). Serum levels 
of total IgG1 (J), total IgE (K), and OVA- specific IgE (L). Graphs show means ± SEM. *p ≤ .05; **p ≤ .01; ***p ≤ .001; Mann- Whitney U test. 
Transcriptional analysis of Il4, Il5, Il9, and Il13 in relation to the expression levels of Pdcd1 (M) and Ctla4 (N), categorized as high, intermediate, 
and low groups. AAI, allergic airway inflammation
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correlation) and the “complete” linkage method as implemented in 
the scipy cluster module (scipy version 1.5.2).

We performed Differential Abundance tests for all Louvain 
clusters and merged clusters using the Dirichlet Regression model 
(implemented in the DirichletReg R package; https://epub.wu.ac.
at/4077/) for predefined pairwise comparisons in R (version 3.5.2). 
All p- values were corrected for multiple testing using the Benjamini- 
Hochberg method.

2.6  |  Statistics

GraphPad Prism6 (GraphPad Software, La Jolla, CA, USA) was used 
to perform the statistical analysis. Specifically, Kruskal- Wallis test 
and two- tailed Mann- Whitney U test were used to evaluate statisti-
cal significance (p ≤ .05), where appropriate.

3  |  RESULTS

3.1  |  OVA- specific immunotherapy attenuated 
allergic inflammation in mice

To examine the association of T- cell exhaustion with AIT, we imple-
mented a murine immunotherapy model29 where OVA- sensitized 
mice were subjected to sham treatment or OVA- specific immuno-
therapy, denoted as allergic airway inflammation (AAI) and AAI + AIT 
groups, respectively (Figure 1A). After OVA aerosol challenge, the 
total cell number in the BAL fluid (BALF) increased roughly 40- fold 
in AAI over than in non- allergic mice, while the number decreased 
25- fold after AIT (Figure 1B). While non- allergic mice had a typical 
BAL composition dominated by macrophages, AAI mice displayed a 
typical lung inflammatory pattern, with eosinophils predominating 
(Figure 1C). An extensive decrease of BAL inflammatory infiltrate 
was observed in AAI + AIT, in particular of eosinophils, returning to 
a macrophage- predominant BAL composition.

Furthermore, BALF concentrations of IL- 4 and IL- 5 significantly 
increased in AAI compared to non- allergic mice, while AIT sig-
nificantly reduced the levels of IL- 4, IL- 5, and IL- 9 (Figure 1D– F). 
Similarly, serum levels of IL- 4 were significantly lower in AAI + AIT 
compared to AAI, while there was a tendency toward reductions 
in IL- 5 and IL- 9 (Figure 1G- I). In addition to the type- 2 cytokines, 
secretion of IL- 6, TNF- α, and IL- 17A into BALF, and serum levels of 
IL- 6 were also significantly decreased in AAI + AIT compared to AAI 
(Figure S1). In contrast, the amount of IFN- γ in BALF and serum was 
comparable across groups, while IL- 10 was mostly below detection 
limits (data not shown).

Moreover, AAI showed a 12- fold increase of total IgG1 and 
nearly a 30- fold increase of total IgE compared to non- allergic 
mice (Figure 1J,K). AIT resulted in a further 3- fold increase of 
total IgG1 but did not alter the levels of total IgE compared to 
AAI. OVA- specific IgE was significantly higher in AAI than in non- 
allergic mice and returned to control levels after AIT (Figure 1L).

3.2  |  Transcriptional profiles of allergic mouse 
lungs reveal categories of genes associated with 
allergic inflammation and T- cell exhaustion

In addition, the transcriptome of murine lung homogenates was ana-
lyzed using a whole- genome microarray. Considering the regulatory 
role of CTLA- 4 and PD- 1 on T- cell signaling and their association with 
T- cell exhaustion, the data were first grouped according to their ex-
pression levels and the dose- dependent effect of CTLA- 4 and PD- 1 
expression on other genes was tested (Figure 1M,N). CTLA- 4 and 
PD- 1 showed an expression- level correlation with IL- 4 and IL- 5 (high 
vs. low: p ≤ .05; FC ≥ 1.5), but not with Foxp3 and TGF- β (data not 
shown). Next, the data were grouped per treatment condition and 
a total of 6500 regulated genes in AAI + AIT compared to AAI were 
identified, including 5243 upregulated genes and 1257 downregu-
lated genes (p ≤ .05; FC ≥ 1.5; Figure 2A). AIT augmented expression 
of Gpr35, Sema5a, and IL- 17 cytokine family members, but downreg-
ulated genes associated with allergic inflammation, such as Saa1/3, 
Ccl11, Ccl20, and Cxcl5 (Figure S2A, B; Tables S5 and S6). The mi-
croarray data were further probed using a curated gene expression 
profile of exhausted CD4+ T cells to see whether the cells mirrored 
the exhausted phenotype (Table S4). AAI mouse lung cells enhanced 
the expression of Ctla4, Pdcd1 and several co- stimulatory molecules. 
In contrast, Pilra and Cd244, molecules associated with inhibition of 
TCR signaling, were upregulated after AIT (Figure 2B; Table S7). The 
expression of Havcr2 (TIM- 3), Lag3, and exhaustion- associated tran-
scription factors, Eomes or Prdm1, was comparable across groups 
(data not shown). Consistent with the microarray data, quantitative 
PCR confirmed diminished expression of Ctla4 and Pdcd1 in AAI + 
AIT compared to AAI (Figure 2C,D). On the other hand, gene set en-
richment analysis (GSEA) revealed that AAI mouse lungs expressed 
a terminally differentiated signature comparable to exhausted CD8+ 
T cells (Figure S3A,B). The co- expressed genes associated with Ctla4 
and Pdcd1 were selected from a database of protein- protein interac-
tions,32 based on experimentally determined co- expression, physical 
interactions, functional associations, or knowledge extracted from 
other databases. Comparing AAI and non- allergic mice, it showed 
significant upregulation of CTLA- 4 and PD- 1 but not their ligands 
or associated signaling molecules (Figure 2E). While CTLA- 4 was 
significantly downregulated in the lungs of AAI + AIT compared 
to AAI, the expression of its ligands CD80/86 was also downregu-
lated (Figure 2F). Conversely, the expression of PD- 1 ligands, PD- L1 
(Cd274) and PD- L2 (Pdcd1lg2), was not significantly altered after AIT. 
Although the expression of the signaling molecules Lck and Akt1 
was not significantly modulated, IL- 2 was significantly upregulated 
comparing AAI + AIT with AAI.

3.3  |  Recurrent allergen exposure drives an 
exhausted phenotype of TH2 cells

Given the mixed cell types in the microarray data of the murine 
lung homogenates and the central role of TH2 cells in orchestrating 

https://epub.wu.ac.at/4077/
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type- 2 immune response to allergens, we performed flow cytome-
try to look specifically on activated TH2 cells (Figure 3A; Figure S4). 
Activated TH2 cells were overrepresented in the lungs, BALF, and 
peripheral blood (PB) of AAI mice (Figure 3B– D). The frequency 
of intrapulmonary TH2 cells was significantly lower in AAI + AIT 
compared to AAI (12% ± 0.9% vs. 26% ± 0.9%), whereas TH2 cells 
in the BALF and PB remained comparable between the two groups. 
Additionally, PD- 1 and CTLA- 4 expression on nonregulatory TH2 

cells was higher in AAI (Figure 3E,I). While >75% of local lung and 
BALF TH2 cells expressed PD- 1 in AAI, <33% of TH2 cells expressed 
PD- 1 in non- allergic mice (Figure 3F,G). There were also signifi-
cantly more CTLA- 4+ cells in the lungs and BALF of AAI compared 
to non- allergic mice, with differences up to 50% (Figure 3J,K). After 
AIT, 10– 30% fewer local lung and BALF TH2 cells expressed PD- 1 
and CTLA- 4 compared to AAI. Overall, less than one- third of the 
circulating TH2 cells expressed these markers, with approximately 

F I G U R E  2  Transcriptional profiles of allergic mouse lungs reveal categories of genes associated with allergic inflammation and T- cell 
exhaustion. RNA whole transcriptome microarray analysis of mouse lung 24 h after the last OVA aerosol challenge. (A) Volcano plot 
illustrates differential gene expression comparing AAI + AIT and AAI mice. (B) Differentially expressed genes of AAI + AIT versus AAI mice 
were filtered using an entity list curated from exhausted CD4+ T cells (Table S7). Statistically significant entities (p ≤ .05; FC ≥ 1.5) are 
displayed. Real- time qPCR analysis of the indicated genes, Pdcd1 (C) and Ctla4 (D). *p ≤ .05; **p ≤ .01; ***p ≤ .001; Mann- Whitney U test. 
Co- expressed genes in relation to Pdcd1 and Ctla4 were selected from protein- protein association networks,32 based on experimentally 
determined interactions or computational prediction. The upregulation or downregulation of genes was color- coded according to the 
microarray analysis, comparing AAI versus non- allergic (E) and AAI + AIT versus AAI (F)
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10% differences between AAI and each of the other two groups 
(Figure 3H,L).

Collectively, these data demonstrate that TH2 cells in the lungs 
of AAI mice responded strongly to OVA aerosol challenge and ex-
hibited increased effector functions, yet an exhausted phenotype. 
After AIT, however, the frequency of intrapulmonary TH2 cells de-
creased significantly.

3.4  |  Exhaustion of circulating CRTH2+ TH2 cells is 
more pronounced in patients with allergic asthma in 
pollen season

To verify these findings from the mouse model to grass pollen- 
allergic patients, PBMCs from healthy controls (HC; n = 27), al-
lergic rhinitis patients with grass pollen allergy (AR; n = 20), and 
AIT- treated AR patients (AR + AIT; n = 20; Table S1A and B) were 
isolated. The ex vivo expression of exhaustion- associated surface 
markers on CRTH2+TH2 cells was determined (Figure S5). The fre-
quency of PD- 1+ TH2 cells was significantly higher in AR compared 
to HC (Figure 4B,C). In addition, while the expression of CTLA- 4 was 
enhanced on TH2 cells from AR in season compared to HC (3.6% ± 
0.5% vs. 2.2% ± 0.3%), this expression was revoked by trend upon 
AIT (p = .07; Figure 4E,F). Further, no significant difference was de-
tected in the expression of LAG- 3 or TIM- 3 on TH2 cells (Figure S6). 
In the subsequent subgroup analysis, TH2 cells from allergic asthma 
patients (AA; n = 9) upregulated CTLA- 4 significantly compared to 
HC during pollen flight (Figure 4N), while in AIT- treated individuals 
(AA + AIT; n = 10) the CTLA- 4 expression on TH2 cells was signifi-
cantly lower than in AA patients (2.0% ± 0.3% vs. 3.9% ± 0.5%). This 
latter effect, however, was restricted to patients with concomitant 
asthma (compare Figure 4I,J). On the other hand, PD- 1 was up-
regulated in AR without asthma patients in and out of grass pollen 
season (Figure 4G,H) as well as in AA patients during pollen flight 
(Figure 4L). PD- 1 expression, however, was unchanged by AIT across 
patient groups, and overall the levels appeared higher out of sea-
son than in season. Taken together, in AR patients, upregulation of 
CTLA- 4 on TH2 cells was associated with allergen exposure and con-
comitant asthma, while upregulation of PD- 1 was perennial, albeit 
with seasonal variations.

3.5  |  The frequency of late- differentiated TH2 cells 
reached its base at top dose of AIT

Finally, to examine the treatment effect on exhaustion, flow cy-
tometric analysis was performed using PBMC collected during a 
longitudinal AIT- treated patient cohort study (Figure 5E; Table S2). 
An unbiased graph- based Louvain cluster analysis of flow cyto-
metric cross- sectional data from each time point was performed, 
resulting in 42 clusters (see methods; Figure S7). The cluster dis-
tribution per sample corresponded to the cell- type composition 
per sample. The 42 clusters were merged into ten clusters based 

on the MFI pattern and the relationships in hierarchical clustering 
(Figure 5A; Figure S8). Based on the differential CD45RA expres-
sion in each of the ten clusters, three mother clusters were iden-
tified and assigned to “memory,” “intermediate,” and “immature” 
cells (Figure 5B,C).

Due to the lack of expression of CD45RA and CD27, 
cluster 10 was identified as late- differentiated TH2 cells 
(CD45RA−CD27−CRTH2+IL- 4+) with low- intermediate CD161 
expression (Figure 5B– D), thus resembling a previously re-
ported proallergic TH2 population known as TH2A.6,7 Expressing 
intermediate- level TCF- 1 and KLRG- 1 and high- level IL- 2, this proal-
lergic TH2 population was also positive for exhaustion- associated 
markers CTLA- 4 and PD- 1, denoted as TH2AEX henceforth. Their 
percentage among live PBMCs decreased significantly six hours 
after the last top dose during up- dosing (T4) compared to baseline 
(T0; Figure 5F). Their frequency increased again in the following pol-
len season (T5), rendering it comparable to baseline and remained at 
this level toward the end of the follow- up phase (T9). While the MFI 
of IL- 4 and PD- 1 inside TH2AEX remained relatively stable over AIT, 
we observed a lower MFI of IL- 2 in correspondence to an increase 
of CTLA- 4 at T9 (Figure 5G). Overall, while TH2AEX decreased during 
up- dosing, it maintained its exhausted phenotype and persisted long 
term during AIT.

4  |  DISCUSSION

In the current study, we show that TH2 cells upregulate the 
exhaustion- associated surface markers CTLA- 4 and PD- 1 upon al-
lergen exposure in allergic mice and AA patients and that this up-
regulation is reduced after AIT. In an unbiased cluster analysis, we 
demonstrated that late- differentiated TH2 cells expressing both 
exhaustion markers decreased during up- dosing but were not elimi-
nated by AIT.

The expression of CTLA- 4 and PD- 1on TH2 cells was enhanced 
in AAI compared to their AIT- treated counterparts, implying that 
the exhausted phenotype of TH2 cells was associated with allergen 
exposure, whereas AIT did not render TH2 cells more exhausted. In 
comparison, TH2 cells from AR patients upregulated PD- 1 expres-
sion perennially. Such sustained upregulation is a hallmark of T- 
cell exhaustion9 and associated with epigenetic imprinting.18,19,33 
By contrast, the upregulation of CTLA- 4 was seasonal, indicating 
a more dynamic regulation of its expression and its reactivity to 
allergens. However, in AAI mice and allergic individuals, upregu-
lation of these markers on TH2 cells is not synonymous with de-
velopment of functional deficits. In fact, it has been shown that 
exhausted CD4+ T cells were not functionally inert but could un-
dergo functional adaption.9,34– 37 Indeed, in contrast to the well- 
characterized role of PD- 1 in exhaustion, some previous studies 
show that PD- 1 engagement could enhance TH2 response and 
even exacerbate allergic airway inflammation.38– 40 PD- 1 ligation 
augmented GATA- 3 expression and IL- 4 production in murine 
T cells, while PD- 1 deficiency resulted in lower serum levels of 
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IL- 4 and IL- 13.38 The administration of PD- L2- Fc increased serum 
IgE levels and BAL cell infiltrations in asthmatic mice,39 whereas 
greater airway hyperreactivity and inflammation was observed 
in sensitized PD- L2−/− mice compared with sensitized wild- type 
mice.40

Although the expression of CTLA- 4 and PD- 1 was amplified on 
a transcriptional level in AAI mice and although GSEA provided an-
cillary evidence for T- cell exhaustion, the mixed cell types in mouse 
lungs limit the possibility to delve into expression of exhaustion- 
associated genes specifically in TH2 cells. Meanwhile, the expression 
intensity of CTLA- 4 and PD- 1 showed a dose- dependent relation to 
type- 2 cytokines, revealing no attenuation of effector functions in 
association with these markers.

Given that CTLA- 4 is constitutively expressed on regulatory T 
cells (Tregs) and mediates their immunosuppressive functions,41,42 

we also examine its expression on Tregs and found comparable ex-
pression levels across mouse groups, both locally and systemically 
(data not shown). Thus, upregulation of CTLA- 4 on Foxp3- negative 
TH2 cells in AAI mice in this study was less likely associated with 
its regulatory role on Tregs. Additionally, since we have previously 
studied the dynamic changes of Treg population in AIT- treated grass 
pollen- allergic patient cohort,5 their role in the AIT- treated allergic 
mice was not investigated in more detail.

Upregulation of CTLA- 4 and PD- 1 on circulating TH2 cells 
was even more profound in AA patients as opposed to AR pa-
tients in pollen season, suggesting that, apart from allergen ex-
posure, concurrent asthma could also promote the exhausted 
phenotype. Indeed, previous studies also showed that PD- 1 ex-
pression was significantly higher in AA patients, whereas there 
was no consistent correlation with serum levels of IgE or disease 

F I G U R E  3  Recurrent allergen exposure drives upregulation of PD- 1 and CTLA- 4 on TH2 cells. (A) A representative flow cytometric plot 
shows the gate of GATA- 3+ cells among live memory T helper cells (see complete gating strategy in Figure S4). Frequency of GATA3+ TH2 
cells in the lungs (B), BAL fluid (C), and peripheral blood (D) comparing different mouse groups. Mean fluorescence intensity (MFI) of PD- 1 
(E) and frequency of PD- 1+ cells among nonregulatory TH2 cells in the lungs (F), BAL fluid (G), and peripheral blood (H). MFI of CTLA- 4 
(I) and frequency of CTLA- 4+ cells among nonregulatory TH2 cells in the lungs (J), BAL fluid (K), and peripheral blood (L). Numbers within 
representative overlaying histograms denote MFI values. Graphs show means ± SEM. *p ≤ .05; **p ≤ .01; ***p ≤ .001; Mann- Whitney U test
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severity.43,44 Association between CTLA- 4 polymorphisms and 
serum IgE levels, asthma, and lower pulmonary function has 
been reported.45

In the unbiased cluster analysis, TH2AEX decreased markedly 
during up- dosing, but were not eliminated by AIT, suggesting that the 

effect of AIT was different between the initial and the late stage and 
that these exhausted TH2 cells could persist long term in AIT- treated 
patients. Specifically, TH2AEX fell into the group of mature “memory 
T cells” and were of the effector memory T- cell (TEM) phenotype. 
Previous studies46,47 showed that TEM cells recirculate between 

F I G U R E  4  Exhaustion of circulating CRTH2+ TH2 cells is associated with allergen exposure and more profound in patients with allergic 
asthma. Flow cytometric analysis of CTLA- 4 and PD- 1 expression on circulating CRTH2+ TH2 cells from HC, AR, and AR + AIT groups. 
Representative flow cytometric plots show the gates of PD- 1+ (A) and CTLA- 4+ cells (D) among live CRTH2+ TH2 cells (see complete gating 
strategy in Figure S5). Frequency of PD- 1+ among CRTH2+ TH2 cells out of (=off) pollen season (B) and in pollen season (C). Frequency 
of CTLA- 4+ among CRTH2+ TH2 cells off (E) and in season (F). In subgroup analysis based on concomitant asthma: (G- J) Patients without 
concomitant asthma. Percentage of PD- 1+ cells off (G) and in season (H) and CTLA- 4+ cells off (I) and in season (J). (K– N) Patients with 
concomitant asthma. Percentage of PD- 1+ cells off (K) and in season (L) and CTLA- 4+ cells off (M) and in season (N). Graphs show means ± 
SEM. *p ≤ .05; **p ≤ .01; ***p ≤ .001; Mann- Whitney U test
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blood and nonlymphoid tissue, such as lung and skin. Therefore, it 
is likely that the redistribution of these late- differentiated TH2 cells 
contributes to their persistence in AIT- treated patients. By contrast, 

reduced frequency of TH2 cells after AIT has been reported by 
several studies.5– 7 However, as exemplified in our mouse study, 
AIT significantly reduced the frequency of intrapulmonary but not 
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circulating TH2 cells, implying that AIT affects local and systemic 
TH2 cells differentially. In fact, fate tracing revealed that TH2 cells 
expanded transiently after AIT and persisted in the lungs until sub-
sequent allergen challenge.48 This study implicates that AIT had a 
greater impact on intrapulmonary TH2 cells and that AIT did not 
necessarily drive TH2 cells to exhaustion over time due to chronic 
antigen exposure but rather conditioned them for deletion upon 
secondary exposure. Future studies are warranted to address mech-
anisms that can accelerate this process and thereby shorten AIT 
treatment duration, while maintaining long- term efficacy.

Furthermore, we found that TH2AEX expressed high- level IL- 2, 
despite its exhausted phenotype. However, there was a reciprocal 
decrease of IL- 2 as CTLA- 4 increased in the third follow- up year, im-
plying that IL- 2 production attenuated late in the course of AIT and, 
if AIT extends longer, declining viability might ensue. Conversely, 
while TH2AEX expressed a late- differentiation marker, KLRG1, their 
TCF- 1 expression was not significantly reduced as observed in ter-
minally differentiated T cells.20,21 Since TCF- 1 is associated with 
self- renewal potential, this may partly account for their long- term 
persistence in AIT- treated patients. Notably, TCF- 1 expression in 
CD4+ T cells was associated not only with the progenitor potential, 
but also with the fate decisions49:  for instance, T follicular helper 
cells express a high level of TCF- 1 and sustain greater plasticity,50 
while TCF- 1 and β- catenin can jointly promote GATA- 3 expression 
and inhibit IFN- γ expression.51 Hence, TH2 cells in general appear to 
have higher stemness by default, rendering them also more resistant 
to apoptosis.

In conclusion, this study demonstrates in a mouse model of AIT 
and in two independent patient cohorts that chronic allergen expo-
sure results in higher expression of CTLA- 4 and PD- 1 on TH2 cells 
and that the proallergic TH2 cells with an exhausted phenotype per-
sist long term during AIT, albeit with a reduction during up- dosing. 
The persistence of exhausted TH2 cells may explain the long dura-
tion of AIT treatment required to effectively reduce symptom bur-
den and improve the quality of life for allergic patients.
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