
Vol.:(0123456789)

Algorithmica
https://doi.org/10.1007/s00453-021-00841-8

1 3

Scheduling in the Random‑Order Model

Susanne Albers1 · Maximilian Janke1

Received: 7 November 2020 / Accepted: 21 May 2021
© The Author(s) 2021

Abstract
Makespan minimization on identical machines is a fundamental problem in online
scheduling. The goal is to assign a sequence of jobs to m identical parallel machines
so as to minimize the maximum completion time of any job. Already in the 1960s,
Graham showed that Greedy is (2 − 1∕m)-competitive. The best deterministic online
algorithm currently known achieves a competitive ratio of 1.9201. No deterministic
online strategy can obtain a competitiveness smaller than 1.88. In this paper, we
study online makespan minimization in the popular random-order model, where
the jobs of a given input arrive as a random permutation. It is known that Greedy
does not attain a competitive factor asymptotically smaller than 2 in this setting.
We present the first improved performance guarantees. Specifically, we develop a
deterministic online algorithm that achieves a competitive ratio of 1.8478. The result
relies on a new analysis approach. We identify a set of properties that a random per-
mutation of the input jobs satisfies with high probability. Then we conduct a worst-
case analysis of our algorithm, for the respective class of permutations. The analysis
implies that the stated competitiveness holds not only in expectation but with high
probability. Moreover, it provides mathematical evidence that job sequences lead-
ing to higher performance ratios are extremely rare, pathological inputs. We com-
plement the results by lower bounds, for the random-order model. We show that
no deterministic online algorithm can achieve a competitive ratio smaller than 4/3.
Moreover, no deterministic online algorithm can attain a competitiveness smaller
than 3/2 with high probability.

Keywords Scheduling · Makespan minimization · Online algorithm · Competitive
analysis · Lower bound · Random-order

A preliminary version of this paper has appeared in the 47th International Colloqium on Automata,
Languages and Programming (ICALP), 2020. Work supported by the European Research Council,
Grant Agreement No. 691672, project APEG.

 * Maximilian Janke
 maximilian@janke.tech

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0364-2394
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00841-8&domain=pdf

 Algorithmica

1 3

1 Introduction

We study one of the most basic scheduling problems. Consider a sequence of jobs
J = J1,… , Jn that has to be assigned to m identical parallel machines. Each job Jt
has an individual processing time pt , 1 ≤ t ≤ n . Preemption of jobs is not allowed.
The goal is to minimize the makespan, i.e. the maximum completion time of any
job in the constructed schedule. Both the offline and online variants of this problem
have been studied extensively, see e.g. [4, 11, 14, 19, 21, 34] and references therein.

We focus on the online setting, where jobs arrive one by one. Whenever a job Jt
is presented, its processing time pt is revealed. The job has to be scheduled imme-
diately on one of the machines without knowledge of any future jobs Js , with s > t .
Given a job sequence J , let A(J) denote the makespan of an online algorithm A
on J . Let OPT(J) be the optimum makespan. A deterministic online algorithm
A is c-competitive if A(J) ≤ c ⋅ OPT(J) holds for all J [39]. The best competi-
tive ratio that can be achieved by deterministic online algorithms is in the range
[1.88, 1.9201], see 14, 35. No randomized online algorithm is known that beats
deterministic ones, for general m.

In this paper we investigate online makespan minimization in the random-order
model. Here an input instance/job sequence is chosen by an adversary. Then a ran-
dom permutation of the input elements/jobs arrives. The random-order model was
considered by Dynkin [10] and Lindley [29] for the secretary problem. Over the
last years the framework has received quite some research interest and many fur-
ther problems have been studied. These include generalized secretary problems [2,
3, 13, 28, 29], the knapsack problem [2, 28], bin packing [26], facility location [31],
matching problems [17, 22, 30], packing LPs [27] and convex optimization [20].

We present an in-depth study of online makespan minimization in the random-
order model. As a main contribution we devise a new deterministic online algorithm
that achieves a competitive ratio of 1.8478. After almost 20 years this is the first
progress for the pure online setting, where an algorithm does not resort to extra
resources in handling a job sequence.

1.1 Previous Work

We review the most important results relevant to our work and first address the stand-
ard setting where an online algorithm must schedule an arbitrary, worst-case job
sequence. Graham in 1966 showed that the famous Greedy algorithm, which assigns
each job to a least loaded machine, is (2 − 1

m
)-competitive. Using new determinis-

tic strategies the competitiveness was improved in a series of papers. Galambos and
Woeginger [15] gave an algorithm with a competitive ratio of (2 − 1

m
− �m) , where

�m tends to 0 as m → ∞ . Bartal et al. [4] devised a 1.986-competitive algorithm. The
bound was improved to 1.945 [23] and 1.923 [1]. Fleischer and Wahl [14] presented
an algorithm that attains a competitive ratio of 1.9201 as m → ∞ . Chen et al. [7] gave
an algorithm whose competitiveness is at most 1 + � times the best possible factor, but
no explicit bound was provided. Lower bounds on the competitive ratio of determin-
istic online algorithms were shown in [1, 5, 12, 18, 35, 36]. For general m, the bound

1 3

Algorithmica

was raised from 1.707 [12] to 1.837 [5] and 1.854 [18]. Rudin [35] showed that no
deterministic strategy has a competitiveness smaller than 1.88.

For randomized online algorithms, there is a significant gap between the best
known upper and lower bounds. For m = 2 machines, Bartal et al. [4] presented an
algorithm that achieves an optimal competitive ratio of 4/3. To date, there exists
no randomized algorithm whose competitiveness is smaller than the deterministic
lower bound, for general m. The best known lower bound on the performance of ran-
domized online algorithms tends to e∕(e − 1) ≈ 1.581 as m → ∞ [6, 38].

Recent research on makespan minimization has examined settings where an
online algorithm is given extra resources when processing a job sequence. Specifi-
cally, an algorithm might have a buffer to reorder the incoming job sequence [11,
25] or is allowed to migrate jobs [37]. Alternatively, an algorithm has information
on the job sequence [8, 9, 24, 25], e.g. it might know the total processing time of the
jobs or even the optimum makespan.

In the random-order model only one result is known for makespan minimization
on identical machines. Osborn and Torng [33] showed that Greedy does not achieve
a competitive ratio smaller than 2 as m → ∞ . Recently Molinaro [32] studied online
load balancing with the objective to minimize the lp-norm of the machine loads. He
considers a general scenario with machine-dependent job processing times, which
are bounded by 1. For makespan minimization he presents an algorithm that, in
the worst case, is O(logm∕�)-competitive and, in the random-order model, has an
expected makespan of (1 + �)OPT(J) + O(logm∕�) , for any � ∈ (0, 1] . Göbel et al.
[16] consider a scheduling problem on one machine where the goal is to minimize
the average weighted completion time of all jobs. Under random-order arrival, their
competitive ratio is logarithmic in n, the number of jobs, for the general problem
and constant if all jobs have processing time 1.

1.2 Our Contribution

We investigate online makespan minimization in the random-order model, a sensible
and widely adopted input model to study algorithms beyond the worst case. Spe-
cifically, we develop a new deterministic algorithm that achieves a competitive ratio
of 1.8478 as m → ∞ . This is the first improved performance guarantee in the ran-
dom-order model. The competitiveness is substantially below the best known ratio
of 1.9201 in the worst-case setting and also below the corresponding lower bound of
1.88 in that framework.

A new feature of our algorithm is that it schedules an incoming job on one of
three candidate machines in order to maintain a certain load profile. The best strate-
gies in the worst-case setting use two possible machines, and it is not clear how to
take advantage of additional machines in that framework. The choice of our third,
extra machine is quite flexible: An incoming job is placed either on a least loaded,
a heavily loaded or—as a new option—on an intermediate machine. The latter one
is the (h + 1) st least loaded machine, where h may be any integer with h ∈ �(1) and
h ∈ o(

√
m).

 Algorithmica

1 3

When assigning a job to a machine different from the least loaded one, an algo-
rithm has to ensure that the resulting makespan does not exceed c times the opti-
mum makespan, for the targeted competitive ratio c. All previous strategies in the
literature lower bound the optimum makespan by the current average load on the
machines. Our new algorithm works with a refined lower bound that incorporates
the processing times of the largest jobs seen so far. The lower bound is obvious but
has not been employed by previous algorithms.

The analysis of our algorithm proceeds in two steps. First we define a class of sta-
ble job sequences. These are sequences that reveal information on the largest jobs as
processing volume is scheduled. More precisely, once a certain fraction of the total
processing volume

∑n

t=1
pt has arrived, one has a good estimate on the hth largest

job and has encountered a certain number of the m + 1 largest jobs in the input. The
exact parameters have to be chosen carefully.

We prove that with high probability, a random permutation of a given input of
jobs is stable. We then conduct a worst-case analysis of our algorithm on stable
sequences. Using their properties, we show that if the algorithm generates a flat
schedule, like Greedy, and can be hurt by a huge job, then the input must contain
many large jobs so that the optimum makespan is also high. A new ingredient in the
worst-case analysis is the processing time of the hth largest job in the input. We will
relate it to machine load in the schedule and to the processing time of the (m + 1) st
largest job; twice the latter value is a lower bound on the optimum makespan.

The analysis implies that the competitive ratio of 1.8478 holds with high prob-
ability. Input sequences leading to higher performance ratios are extremely rare. We
believe that our analysis approach might be fruitful in the study of other problems in
the random-order model: Identify properties that a random permutation of the input
elements satisfies with high probability. Then perform a worst-case analysis.

Finally in this paper we devise lower bounds for the random-order model. We
prove that no deterministic online algorithm achieves a competitive ratio smaller
than 4/3. Moreover, if a deterministic online algorithm is c-competitive with high
probability, then c ≥ 3∕2.

2 Strong Competitiveness in the Random‑Order Model

We define competitiveness in the random-order model and introduce a stronger
measure of competitiveness that implies high-probability bounds. Recall that tradi-
tionally a deterministic online algorithm A is c-competitive if A(J) ≤ c ⋅ OPT(J)
holds for all job sequences J = J1,… , Jn . We will refer to this worst-case model
also as the adversarial model.

In the random-order model a job sequence J = J1,… , Jn is given, which may
be specified by an adversary. (Alternatively, a set of jobs could be specified.) Then
a random permutation of the jobs arrives. We define the expected cost / makespan
of a deterministic online algorithm. Let Sn be the permutation group of the inte-
gers from 1 to n, which we consider a probability space under the uniform distribu-
tion, i.e. each permutation in Sn is chosen with probability 1/n!. Given � ∈ Sn , let

1 3

Algorithmica

J
� = J�(1),… , J�(n) be the job sequence permuted by � . The expected makespan of A

on J in the random-order model is Arom(J) = ��∼Sn
[A(J�)] =

1

n!

∑
�∈Sn

A(J�) . The
algorithm A is c-competitive in the random-order model if Arom(J) ≤ c ⋅ OPT(J)
holds for all job sequences J .

We next define the notion of a deterministic online algorithm A being nearly
c-competitive. The second condition in the following definition requires that the
probability of A not meeting the desired performance ratio must be arbitrarily small
as m grows and a random permutation of a given job sequence arrives. The subse-
quent Lemma 1 states that a nearly c-competitive algorithm is c-competitive in the
random-order model.

Definition 1 A deterministic online algorithm A is called nearly c-competitive if the
following two conditions hold.

– Algorithm A achieves a constant competitive ratio in the adversarial model.
– For every 𝜀 > 0 , there exists an m(�) such that for all machine numbers m ≥ m(�)

and all job sequences J there holds ��∼Sn
[A(J�) ≥ (c + �)OPT(J)] ≤ �.

Lemma 1 If a deterministic online algorithm is nearly c-competitive, then it is
c-competitive in the random-order model as m → ∞.

Proof Let C be the constant such that A is C-competitive in the adversarial
model. We may assume that C > c . Given 0 < 𝛿 ≤ C − c , we show that there
exists an m(�) such that, for all m ≥ m(�) , we have Arom(J) ≤ (c + �)OPT(J)
for every job sequences J . Let � = �∕(C − c + 1) . Since A is nearly c-competi-
tive, there exists an m(�) such that, for all m ≥ m(�) and all inputs J , there holds
P�(J) = ��∼Sn

[A(J�) ≥ (c + �)OPT(J)] ≤ � . Set m(�) = m(�) . We obtain

 ◻

3 Description of the New Algorithm

The deficiency of Greedy is that it tends to generate a flat, balanced schedule in
which all the machines have approximately the same load. An incoming large job
can then enforce a high makespan relative to the optimum one. It is thus crucial to
try to avoid flat schedules and maintain steep schedules that exhibit a certain load
imbalance among the machines.

Arom(J) = ��∼Sn
[A(J�)]

≤ (1 − P�(J))(c + �)OPT(J) + P�(J) ⋅ C ⋅ OPT(J)

≤ ((1 − �)(c + �) + �C)OPT(J)

≤ (c + �(C − c + 1))OPT(J)

= (c + �)OPT(J).

 Algorithmica

1 3

However, in general, this is futile. Consider a sequence of m identical jobs with a
processing time of, say, Pm+1 (referring to the size of the (m + 1) st largest job in an
input). Any online algorithm that is better than 2-competitive must schedule these
m jobs on separate machines, obtaining the flattest schedule possible. An incoming
even larger job of processing time pmax will now enforce a makespan of Pm+1 + pmax .
Observe that OPT ≥ max{2Pm+1, pmax} since there must be one machine containing
two jobs. In particular Pm+1 + pmax ≤ 1.5OPT . Hence sensible online algorithms do
not perform badly on this sequence.

This example summarizes the quintessential strategy of online algorithms that are
good on all sequences: Ensure that in order to create a schedule that is very flat, i.e.
such that all machines have high load � , the adversary must present m jobs that all
are large relative to � . In order to exploit this very flat schedule and cause a high
makespan the adversary needs to follow up with yet another large job. But with these
m + 1 jobs, the optimum scheduler runs into the same problem as in the example: Of
the m + 1 large jobs, two have to be scheduled on the same machine. Thus the opti-
mum makespan is high, compensating to the high makespan of the algorithm.

Effectively realizing the aforementioned strategy is highly non-trivial. In fact it is
the central challenge in previous works on adversarial makespan minimization that
improve upon Greedy [1, 4, 14, 15, 23]. These works gave us clear notions of how
to avoid flat schedules, which form the basis for our approaches. Instead of simply
rehashing these ideas, we want to outline next how we profit from random-order
arrival in particular.

3.1 How Random‑Order Arrival Helps

The first idea to profit from random-order arrival addresses the lower bound on
OPT sophisticated online algorithms need. In the literature only the current aver-
age load has been considered, but under random-order arrival another bound comes
to mind: The largest job seen so far. In order for an algorithm to perform badly,
a large job needs to come close to the end of the sequence. Under random-order
arrival, it is equally likely for such a job to arrive similarly close to the beginning
of the sequence. In this case, the algorithm knows a better lower bound for OPT .
The main technical tool will be our Load Lemma, which allows us to relate what a
job sequence should reveal early from an analysis perspective to the actual fraction
of jobs scheduled. This idea does not work for worst-case orders since they tend to
order jobs by increasing processing times.

Recall that the general challenge of our later analysis will be to establish that
there had to be m large jobs once the schedule gets very flat. In classical analyses,
which consider worst-case orders, these jobs appear with increasing density towards
the end of the sequence. In random orders this is unlikely, which can be exploited by
the algorithm.

The third idea improves upon the first idea. Suppose, that we were to modify our
algorithm such that it could handle one very large job arriving close to the end of the
sequence. In fact, assume that it could only perform badly when confronted with h
very large jobs. We can then disregard any sequence which contains fewer such jobs.

1 3

Algorithmica

Recall that the first idea requires one very large job to arrive sufficiently close to the
beginning. Now, as h grows, the probability of the latter event grows as well and
approaches 1. This will not only improve our competitive ratio tremendously, it also
allows us to adhere to the stronger notion of nearly competitiveness introduced in
Sect. 2. Let us discuss how such a modification is possible: The first step is to design
our algorithm in a way that it is reluctant to use the h least loaded machines. Intui-
tively, if the algorithm tries to retain machines of small load it will require very large
jobs to fill them. In order to force these filling jobs to actually be large enough, our
algorithm needs to use a very high lower bound for OPT . In fact, here it uses another
lower bound for the optimum makespan, 2Pt

m+1
 , twice the (m + 1) st largest job seen

so far at time t. Common analysis techniques can only make predictions about Pt
m+1

at the very end of the sequence. It requires very subtle use of the random-order
model to work around this.

3.2 Formal Definition

Formally our algorithm ALG is nearly c-competitive, where c is the unique real root
of the polynomial Q[x] = 4x3 − 14x2 + 16x − 7 , i.e.

Given J , ALG schedules a job sequence/permutation J� = J�(1),… , J�(n) that must
be scheduled in this order. Throughout the scheduling process ALG always main-
tains a list of the machines sorted in non-increasing order of current load. At any
time the load of a machine is the sum of the processing times of the jobs already
assigned to it. After ALG has processed the first t − 1 jobs J�(1),… , J�(t−1) , we also
say at time t, let Mt−1

1
,… ,Mt−1

m
 be any ordering of the m machines according to non-

increasing load. More specifically, let lt−1
j

 denote the load of machine Mt−1
j

 . Then
lt−1
1

≥ … ≥ lt−1
m

 and lt−1
1

 is the makespan of the current schedule.
ALG places each incoming job J�(t) , 1 ≤ t ≤ n , on one of three candidate

machines. The choice of one machine, having an intermediate load, is flexible. Let
h = h(m) be an integer with h(m) ∈ �(1) and h(m) ∈ o(

√
m) . We could use e.g.

h(m) = ⌊ 3
√
m⌋ or h(m) = ⌊logm⌋ . Let1

ALG will assign the incoming job to the machine with the smallest load, the
(h + 1) st smallest load or the ith largest load.

When scheduling a job on a machine that is different from the least loaded one,
an algorithm has to ensure that the resulting makespan does not exceed c∗ times
the optimum makespan, where c∗ is the desired competitiveness. All previous
algorithms lower bound the optimum makespan by the current average machine
load. Algorithm ALG works with a refined lower bound that incorporates the

c =
7+

3
√

28−3
√
87+

3
√

28+3
√
87

6
< 1.8478.

i = ⌈(2c − 3)m⌉ + h ≈ 0.6956m.

1 Note that besides rounding ≈ also hides a small term in o(m).

 Algorithmica

1 3

processing time of the largest job and twice the processing time of the (m + 1) st
largest job seen so far. These lower bounds on the optimum makespan are imme-
diate but have not been used in earlier strategies.

Formally, for j = 1,… ,m , let Lt
j
 be the average load of the m − j + 1 least

loaded machines Mt
j
,… ,Mt

m
 , i.e. Lt

j
=

1

m−j+1

∑m

r=j
lt
r
 . We let Lt = Lt

1
=

1

m

∑t

s=1
ps be

the average load of all the machines. For any j = 1,… , n , let Pt
j
 be the processing

time of the jth largest job among the first t jobs J�(1),… , J�(t) in J� . If t < j , we set
Pt
j
= 0 . We let pt

max
= Pt

1
 be the processing time of the largest job among the first t

jobs in J� . Finally, let L = Ln , Pj = Pn
j
 and pmax = pn

max
.

The value Ot = max{Lt, pt
max

, 2Pt
m+1

} is a common lower bound on the optimum
makespan for the first t jobs and hence OPT(J) , see Proposition 1 in the next sec-
tion. Note that immediately before J�(t) is scheduled, ALG can compute Lt and
hence Ot because Lt is 1/m times the total processing time of the jobs that have
arrived so far.

We next characterize load imbalance. Let

and

The schedule at time t is the one immediately before J�(t) has to be assigned. The
schedule is flat if lt−1

k
< 𝛼Lt−1

i+1
 , i.e. if lt−1

k
 , the load of the kth most loaded machine,

does not exceed Lt−1
i+1

=
1

m−i

∑m

r=i+1
lt−1
r

 , the average load of the m − i least loaded
machines, by a factor of at least � . Otherwise the schedule is steep. Job J�(t) is
scheduled flatly (steeply) if the schedule at time t is flat (steep).

ALG handles each incoming job J�(t) , with processing time p�(t) , as follows. If
the schedule at time t is steep, the job is placed on the least loaded machine Mt−1

m
 .

On the other hand, if the schedule is flat, the machines Mt−1
i

 , Mt−1
m−h

 and Mt−1
m

 are
probed in this order. If lt−1

i
+ p�(t) ≤ c ⋅ Ot , then the new machine load on Mt−1

i

will not violate the desired competitiveness. The job is placed on this machine
Mt−1

i
 . Otherwise, if the latter inequality is violated, ALG checks if a placement on

Mt−1
m−h

 is safe, i.e. if lt−1
m−h

+ p�(t) ≤ c ⋅ Ot . If this is the case, the job is put on Mt−1
m−h

 .
Otherwise, J�(t) is finally scheduled on the least loaded machine Mt−1

m
 . A pseudo-

code description of ALG is given below in Algorithm 1. The job assignment rules
are also illustrated in Figs. 1 and 2.

k = 2i − m ≈ (4c − 7)m ≈ 0.3912m

� =
2(c − 1)

2c − 3
≈ 2.7376.

k i

Fig. 1 A steep schedule. ALG only considers the least loaded machine

1 3

Algorithmica

In the next section we will prove the following theorem, Theorem 1, which
uses the notion from Sect. 2. Lemma 1 then immediately gives the main result,
Corollary 1.

Theorem 1 ALG is nearly c-competitive, with c < 1.8478 defined as above.

Corollary 1 ALG is c-competitive in the random-order model as m → ∞.

4 Analysis of the Algorithm

4.1 Analysis Basics

We present some results for the adversarial model so that we can focus on the true
random-order analysis of ALG in the next sections. First, recall the three common
lower bounds used for online makespan minimization.

Proposition 1 For any J , there holds OPT(J) ≥ max{L, pmax, 2Pm+1} . In particu-
lar, O1 ≤ O2 ≤ … ≤ On ≤ OPT(J).

Proof The optimum makespan OPT(J) cannot be smaller than the average machine
load L for the input, even if all the jobs are distributed evenly among the m machines.
Moreover, the job with the largest processing time pmax must be scheduled non-
preemptively on one of the machines in an optimal schedule. Thus OPT(J) ≥ pmax .
Finally, among the m + 1 largest jobs of the input, two must be placed on the same
machine in an optimal solution. Hence OPT(J) ≥ 2Pm+1 . ◻

k i

Fig. 2 A flat schedule. The three machines considered by ALG are marked for h = 2

 Algorithmica

1 3

For any job sequence J = J1,… , Jn , let R(J) = min{
L

pmax

,
pmax

L
} . Intuitively, this

measures the complexity of J .

Proposition 2 There holds Alg(J) <= max{1 + R(J), c}OPT(J) for any
J = J

1
,… , J

n
.

Proof Let J = J1,… , Jn be an arbitrary job sequence and let Jt be the job that
defines ALG ’s makespan. If the makespan exceeds c ⋅ OPT(J) , then it exceeds
c ⋅ Ot . Thus ALG placed Jt on machine Mt−1

m
 , cf. lines 4 and 5 of the algorithm. This

machine was a least loaded one, having a load of at most L. Hence
ALG(J) ≤ L + pt ≤ L + pmax ≤

L+pmax

max{L,pmax}
⋅ OPT(J) = (1 + R(J)) ⋅ OPT(J) . ◻

Since R(J) ≤ 1 we immediately obtain the following result, which ensures
that ALG satisfies the first condition of a nearly c-competitive algorithm, see
Definition 1.

Corollary 2 ALG is 2-competitive in the adversarial model.

We next identify a class of plain job sequences that we do not need to consider
in the random-order analysis because ALG ’s makespan is upper bounded by c
times the optimum on these inputs.

Definition 2 A job sequence J = J1,… , Jn is called plain if n ≤ m or if R(J) ≤ c − 1 .
Otherwise it is called proper.

Let J = J1,… , Jn be any job sequence that is processed/scheduled in this order.
Observe that if it contains at most m jobs, i.e. n ≤ m , and ALG cannot place a job
Jt on machines Mt−1

i
 or Mt−1

m−h
 because the resulting load would exceed c ⋅ Ot , then

the job is placed on an empty machine. Using Proposition 2 we derive the follow-
ing fact.

Lemma 2 There holds ALG(J) ≤ c ⋅ OPT(J) for any plain job sequence
J = J1,… , Jn.

If a job sequence J is plain (proper), then every permutation of it is. Hence,
given Lemma 2, we may concentrate on proper job sequences in the remainder of
the analysis. We finally state a fact that relates to the second condition of a nearly
c-competitive algorithm, see again Definition 1.

Lemma 3 Let J = J1,… , Jn be any job sequence that is scheduled in this order
and let Jt be a job that causes ALG’s makespan to exceed (c + �)OPT(J) , for some
� ≥ 0 . Then both the load of ALG’s least loaded machine at the time of the assign-
ment as well as pt exceed (c − 1 + �)OPT(J).

1 3

Algorithmica

Proof ALG places Jt on machine Mt−1
m

 , which is a least loaded
machine when the assignment is done. If lt−1

m
 or pt were upper

bounded by (c − 1 + �)OPT(J) , then the resulting load would be
lt−1
m

+ pt ≤ (c − 1 + �)OPT(J) +max{L, pt} ≤ (c − 1 + �)OPT(J) + OPT(J)

= (c + �)OPT(J) . ◻

4.2 Stable Job Sequences

We define the class of stable job sequences. These sequences are robust in that they
will admit an adversarial analysis of ALG . Intuitively, the sequences reveal informa-
tion on the largest jobs when a significant fraction of the total processing volume ∑n

t=1
pt has been scheduled. More precisely, one gets an estimate on the processing

time of the hth largest job in the entire sequence and encounters a relevant number
of the m + 1 largest jobs. If a job sequence is unstable, large jobs occur towards the
very end of the sequence and can cause a high makespan relative to the optimum
one.

We will show that ALG is adversarially (c + �)-competitive on stable sequences,
for any given 𝜀 > 0 . Therefore, the definition of stable sequences is formulated for
a fixed 𝜀 > 0 . Given J , let J� = J�(1),… , J�(n) be any permutation of the jobs. Fur-
thermore, for every j ≤ n and in particular j ∈ {h,m + 1} , the set of the j largest
jobs is a fixed set of cardinality j such that no job outside this set has a strictly larger
processing time than any job inside the set.

Definition 3 A job sequence J� = J�(1),… , J�(n) is stable if the following conditions
hold.

– There holds n > m.
– Once Lt ≥ (c − 1)

i

m
L , there holds pt

max
≥ Ph.

– For every j ≥ i , the sequence ending once we have Lt ≥ (
j

m
+

�

2
)L contains at

least j + h + 2 many of the m + 1 largest jobs in J .
– Consider the sequence ending right before either (a) Lt ≥ i

m
(c − 1)�L holds or

(b) one of the hth largest jobs of J arrives; this sequence contains at least h + 1
many of the m + 1 largest jobs in J .

Otherwise the job sequence is unstable.
Given 𝜀 > 0 and m, let P�(m) be the infimum, over all proper job sequences J ,

that a random permutation of J is stable, i.e.

As the main result of this section we will prove that this probability tends to 1 as
m → ∞.

Main Lemma 1 For every 𝜀 > 0 , there holds lim
m→∞

P�(m) = 1.

P�(m) = inf
J proper

��∼Sn
[J� is stable].

 Algorithmica

1 3

The Main Lemma 1 implies that for any 𝜀 > 0 there exists an m(�) such that,
for all m ≥ m(�) and all J , there holds ��∼Sn

[J� is stable] ≥ 1 − � . In Sect. 4.3 we
will show that ALG is (c + �)-competitive on stable job sequences. This implies
��∼Sn

[ALG(J�) ≥ (c + �)OPT(J)] ≤ � on proper sequences. By Lemma 2 this
probability is 0 on plain sequences. We obtain the following corollary to Main
Lemma 1.

Corollary 3 If ALG is adversarially (c + �)-competitive on stable sequences, for
every 𝜀 > 0 and m ≥ m(�) sufficiently large, then it is nearly c-competitive.

In the remainder of this section we describe how to establish Main Lemma 1. We
need some notation. In Sect. 3 the value Lt

j
 was defined with respect to a fixed job

sequence that was clear from the context. We adopt the notation Lt
j
[J�] to make this

dependence visible. We adopt the same notation for the variables L, Pt
j
 , Pj , ptmax

 and
pmax . For a fixed input J and variable � ∈ Sn , we use the simplified notation
Lt
j
[�] = Lt

j
[J�] . Again, we use the same notation for the variables Pt

j
 and pt

max
.

At the heart of the proof of Main Lemma 1 is the Load Lemma. Observe that
after t time steps in a random permutation of an input J , each job has arrived with
probability t/n. Thus the expected total processing time of the jobs seen so far is
t∕n ⋅

∑n

s=1
ps . Equivalently, in expectation Lt equals t∕n ⋅ L . The Load Lemma proves

that this relation holds with high probability. We set t = ⌊�n⌋.

Load Lemma Given any 𝜀 > 0 and � ∈ (0, 1] , there exists an m(�,�) such that for
all m ≥ m(�,�) and all proper sequences J , there holds

Proof Let us fix a proper job sequence J . We use the shorthand
L̂[𝜎] = L̂[J𝜎] = L⌊𝜑n⌋[J𝜎] and L = L[J].

Let � =
��

2
 . We will first treat the case that we have pmax[J] = 1 and every job

size in J is of the form (1 + �)−j , for some j ≥ 0 . Note that we have in particular
c − 1 ≤ L ≤

1

c−1
 because we are working with a proper sequence. For j ≥ 0 let hj

denote the number of jobs Jt of size (1 + �)−j and, given � ∈ Sn , let h�
j
 denote the

number of such jobs Jt that additionally satisfy �(t) ≤ ⌊�n⌋ , i.e. they are among the
⌊�n⌋ first jobs in the sequence J� . We now have

The random variables h�
j
 are hypergeometrically distributed, i.e. we sample ⌊�n⌋

jobs from the set of all n jobs and count the number of times we get one of the hj
many jobs of processing time (1 + �)−j . Hence, we know that the random variable h�

j

has mean

��∼Sn

������
L⌊�n⌋[J�]

�L[J�]
− 1

�����
≥ �

�
≤ �.

L =
1

m

∞∑

j=0

(1 + 𝛿)−jhj and L̂[𝜎] =
1

m

∞∑

j=0

(1 + 𝛿)−jh𝜎
j
.

1 3

Algorithmica

and variance

In particular,

By Chebyshev’s inequality we have

In particular, by the Union Bound, with probability

we have for all j,

We conclude that the following holds:

In particular, with probability P(m), we have

Hence, if we choose m large enough we can ensure that

�[h�
j
] =

⌊�n⌋
n

hj ≤ �hj

Var[h�
j
] =

hj
�
n − hj

�
⌊�n⌋(n − ⌊�n⌋)

n2(n − 1)
.

Var[h�
j
] ≤ hj ≤ (1 + �)jmL ≤ (1 + �)j

m

c − 1
.

�

[
|||h

�
j
− �hj

||| ≥ (1 + �)3j∕4m3∕4

]
≤ (1 + �)−3j∕2Var[h�

j
]m−3∕2 ≤ (1 + �)−j∕2

m−1∕2

c − 1
.

P(m) = 1 −

∞�

j=0

(1 + �)−j∕2
m−1∕2

c − 1
= 1 −

m−1∕2

�
1 −

√
1 + �

�
(c − 1)

= 1 − O
�
m−1∕2

�

|||h
𝜎
j
− 𝜑hj

||| < (1 + 𝛿)3j∕4m3∕4.

|||L̂[𝜎] − 𝜑L
||| =

||||||

1

m

∞∑

j=0

(1 + 𝛿)−jh𝜎
j
−

𝜑

m

∞∑

j=0

(1 + 𝛿)−jhj

||||||

≤

∞∑

j=0

(1 + 𝛿)−j

|||h
𝜎
j
− hj ⋅ 𝜑

|||
m

<

∞∑

j=0

(1 + 𝛿)−j∕4m−1∕4

=
m−1∕4

(
1 − (1 + 𝛿)−1∕4

) .

|||||
L̂[𝜎]

𝜑L
− 1

|||||
=

|||L̂[𝜎] − 𝜑L
|||

𝜑L
≤

m−1∕4

𝜑(c − 1)
(
1 − (1 + 𝛿)−1∕4

) = O
(
m−1∕4

)
.

 Algorithmica

1 3

So far we have assumed that pmax[J] = 1 and every job in J has a processing time
of (1 + �)−j , for some j ≥ 0 . Now we drop these assumptions. Given an arbitrary
sequence J with 0 < pmax[J] ≠ 1 , let ⌊J⌋ denote the sequence obtained from J by
first dividing every job processing time by pmax[J] and rounding every job size down
to the next power of (1 + �)−1 . We have proven that inequality (1) holds for ⌊J⌋ . The
values L and L̂[𝜎] only change by a factor lying in the interval [pmax, (1 + �)pmax)
when passing over from ⌊J⌋ to J . This implies that

Since L̂[⌊J⌋𝜎] ≤ L[J] we obtain

Combining this with inequality (1) for ⌊J⌋ (and the triangle inequality), we obtain

Thus the lemma follows. ◻

We note that the Load Lemma does not hold for general sequences. A counterex-
ample is a job sequence in which one job carries all the load, while all the other jobs
have a negligible processing time. The proof of the Load Lemma relies on a lower
bound of R(J) , which is c − 1 for proper sequences.

We present two consequences of the Load Lemma that will allow us to prove
that stable sequences reveal information on the largest jobs when a certain process-
ing volume has been scheduled. Consider a proper J . Given J� = J�(1),… , J�(n) and
𝜑 > 0 , let N(�)[J�] be the number of jobs J�(t) that are among the m + 1 largest jobs
in J and such that Lt ≤ �L.

Lemma 4 Let 𝜀 > 0 and � ∈ (0, 1] . Then there holds

Proof Fix any proper job sequence J . For any J� , let N(� + �)[�] = N(� + �)[J�] .
Furthermore, let Ñ

(
𝜑 +

𝜀

2

)
[𝜎] denote the number of the m + 1 largest jobs of J that

appear among the first
⌊(

� +
�

2

)
n
⌋
 jobs in J� . Then we derive by the inclusion-

exclusion principle:

(1)�

[|||||
L̂[𝜎]

𝜑L
− 1

|||||
>

𝜀

2

]
≤ 1 − P(m) ≤ 𝜀.

�����
L̂[J𝜎]

𝜑L[J]
−

L̂[⌊J⌋𝜎]
𝜑L[⌊J⌋]

�����
≤ 𝛿

L̂[⌊J⌋𝜎]
𝜑L[J]

.

�����
L̂[J𝜎]

𝜑L[J]
−

L̂[⌊J⌋𝜎]
𝜑L[⌊J⌋]

�����
≤

𝛿

𝜑
=

𝜀

2
.

�

������
L̂[J𝜎]

𝜑L[J]
− 1

�����
> 𝜀

�
≤ �

������

L̂[⌊J⌋𝜎]
𝜑L[⌊J⌋] − 1

�����
>

𝜀

2

�
≤ 𝜀.

lim
m→∞

inf
J proper

��∼Sn

�
N(� + �)[J�] ≥ ⌊�m⌋ + h + 2

�
= 1.

1 3

Algorithmica

By the Load Lemma the second summand can be lower bounded for every proper
sequence J by a term approaching 1 as m → ∞ . Hence it suffices to verify that this
is also possible for the term

We will upper bound the probability of the opposite event by a term approaching 0
for m → ∞ . The random variable Ñ

(
𝜑 +

𝜀

2

)
[𝜎] is hypergeometrically distributed

and therefore has expected value

Recall that for proper sequences n > m holds. For the second inequality we require
m and hence in also n to be large enough such that 1

n
≤

�

10
 holds. Again, the variable

Ñ
(
𝜑 +

𝜀

2

)
[𝜎] is hypergeometrically distributed and its variance is thus

Note that we have for m large enough:

Hence, using Chebyshev’s inequality, we have

and this term vanishes as m → ∞ . ◻

Lemma 5 Let 𝜀 > 0 and � ∈ (0, 1] . Then there holds

�𝜎∼Sn

�
N(𝜑 + 𝜀)[𝜎] ≥ ⌊𝜑m⌋ + h + 2

�

≥ �𝜎∼Sn

�
Ñ
�
𝜑 +

𝜀

2

�
[𝜎] ≥ ⌊𝜑m⌋ + h + 2 and L

��
𝜑+

𝜀

2

�
n
�

[𝜎] < (𝜑 + 𝜀)L

�

≥ �𝜎∼Sn

�
Ñ
�
𝜑 +

𝜀

2

�
[𝜎] ≥ ⌊𝜑m⌋ + h + 2

�
+ �𝜎∼Sn

�
L

��
𝜑+

𝜀

2

�
n
�

[𝜎] < (𝜑 + 𝜀)L

�
− 1.

�𝜎∼Sn

�
Ñ
�
𝜑 +

𝜀

2

�
[𝜎] ≥ ⌊𝜑m⌋ + h + 2

�
.

E =

⌊(
� +

�

2

)
n
⌋

n
(m + 1) ≥

(
� +

2

5
�

)
(m + 1).

V =

⌊(
� +

�

2

)
n
⌋(

n −
⌊(

� +
�

2

)
n
⌋)

(m + 1)(n − m − 1)

n2(n − 1)
≤ m + 1.

⌊�m⌋ + h + 2 ≤

�
1 +

1

5
�

�
�(m + 1) ≤ E −

��
√
m + 1

5

√
V .

�𝜎∼Sn

�
Ñ
�
𝜑 +

𝜀

2

�
[𝜎] < ⌊𝜑m⌋ + h + 2

�

≤ �𝜎∼Sn

�
E − Ñ

�
𝜑 +

𝜀

2

�
[𝜎] >

𝜀𝜑
√
m + 1

5

√
V

�

≤
25

𝜀2𝜑2(m + 1)

 Algorithmica

1 3

Proof Let us fix any proper sequence J and set

which is a finite set whose size only depends on � and � . Given �̃� ≥ 𝜑 , let u(�̃�) be
the smallest element in Λ greater or equal to �̃� . Then

and if we have

there holds

In particular, in order to prove the lemma it suffices to verify that

The latter is a consequence of applying Lemma 4 to all �̃� ∈ Λ and the Union
Bound. ◻

We can now conclude the main lemma of this section:

Proof of Main Lemma 1 A proper job sequence is stable if the following four proper-
ties hold.

– Once Lt ≥ (c − 1)
i

m
⋅ L we have pt

max
≥ Ph.

– For every j ≥ i the sequence ending once we have Lt ≥
(

j

m
+

�

2

)
L contains at

least j + h + 2 of the m + 1 largest jobs.
– The sequence ending right before Lt ≥ i

m
(c − 1)�L holds contains at least h + 1

of the m + 1 largest jobs.
– The sequence ending right before the first of the h largest jobs contains at least

h + 1 of the m + 1 largest jobs.

By the Union Bound we may consider each property separately and prove that it
holds with a probability that tends to 1 as m → ∞.

Let � = (c − 1)
i

m
 and choose 𝜀 > 0 . By the Load Lemma, for m ≥ m(�,�) ,

after t = ⌊�n⌋ jobs of a proper job sequence J� have been scheduled, there holds
Lt ≤ (c − 1)

i

m
⋅ L with probability at least 1 − � . Observe that � is a fixed prob-

lem parameter so that m(�,�) is determined by � . The probability of any particular

lim
m→∞

inf
J proper

�𝜎∼Sn

�
∀�̃�≥𝜑 N(�̃� + 𝜀)[J𝜎] ≥ ⌊�̃�m⌋ + h + 2

�
= 1.

Λ =
{
1 −

�

2
j ∣ j ∈ ℕ,� ≤ 1 −

�

2
j
}

�̃� ≤ u(�̃�) ≤ �̃� +
𝜀

2

N(�̃� + 𝜀)[J𝜎] < ⌊�̃�m⌋ + h + 2

N
�
u(�̃�) +

𝜀

2

�
[J𝜎] < ⌊�̃�m⌋ + h + 2 ≤ ⌊u(�̃�)m⌋ + h + 2.

lim
m→∞

inf
J proper

�𝜎∼Sn

�
∀�̃�∈ΛN

�
�̃� +

𝜀

2

�
[J𝜎] ≥ ⌊�̃�m⌋ + h + 2

�
= 1.

1 3

Algorithmica

job being among the first t jobs in J� is ⌊�n⌋∕n . Thus pt
max

≥ Ph holds with prob-
ability at least 1 − (1 − ⌊�n⌋∕n)h . Since J� is proper, we have n > m . Furthermore,
h = h(m) ∈ �(1) . Therefore, the probability that the first property holds tends to 1 as
m → ∞.

The second property is a consequence of Lemma 5 with � =
i

m
 . The third prop-

erty follows from Lemma 4. We need to choose the � in the statement of the lemma
to be i

m
(c − 1)� . Finally we examine the last property. In J� we focus on the posi-

tions of the m + 1 largest jobs. Consider any of the h largest jobs. The probability
that it is preceded by less than h + 1 of the m + 1 largest jobs is (h + 1)∕(m + 1) .
Thus the probability of the fourth property not to hold is at most h(h + 1)∕(m + 1) .
Since h ∈ o(

√
m) , the latter expression tends to 0 as m → ∞ . ◻

4.3 An Adversarial Analysis

In this section we prove the following main result.

Main Lemma 2 For every 𝜀 > 0 and m ≥ m(�) sufficiently large, ALG is adversari-
ally (c + �)-competitive on stable job sequences.

Consider a fixed 𝜀 > 0 . Given Corollary 2, we may assume that
0 < 𝜀 < 2 − c . Suppose that there was a stable job sequence J� such that
ALG(J𝜎) > (c + 𝜀)OPT(J𝜎) . We will derive a contradiction, given that m is large.
In order to simplify notation, in the following let J = J

� be the stable job sequence
violating the performance ratio of c + � . Let J = J1,… , Jn and OPT = OPT(J).

Let Jn′ be the first job that causes ALG to have a makespan greater than
(c + �)OPT and let b0 = ln

�−1
m

 be the load of the least loaded machine Mn�−1
m

 right
before Jn′ is scheduled on it. The makespan after Jn′ is scheduled, called the criti-
cal makespan, is at most b0 + pn� ≤ b0 + OPT . In particular b0 > (c − 1 + 𝜀)OPT as
well as pn� > (c − 1 + 𝜀)OPT , see Lemma 3. Let

There holds 𝜆start < 𝜆end . The critical makespan of ALG is bounded by
b0 + OPT < (1 +

1

c−1+𝜀
)b0 = (c + 𝜀)

b0

c−1+𝜀
= (c + 𝜀)2𝜆endb0. Since ALG does not

achieve a performance ratio of c + � on J we have

Our main goal is to derive a contradiction to this inequality.
The impact of the variable Ph:
A new, crucial aspect in the analysis of ALG is Ph , the processing time of the

hth largest job in the sequence J . Initially, when the processing of J starts, we
have no information on Ph and can only infer Pm+1 ≥ �startb0 . The second prop-
erty in the definition of stable job sequences ensures that pt

max
≥ Ph once the load

�start =
c−1

1+2c(2−c)
≈ 0.5426 and �end =

1

2(c−1+�)
≈ 0.5898.

(2)Pm+1 ≤ OPT∕2 < 𝜆endb0.

 Algorithmica

1 3

ratio Lt∕L is sufficiently large. Note that ALG then also works with this estimate
because Ph ≤ pt

max
≤ Ot . This will allow us to evaluate the processing time of

flatly scheduled jobs. In order prove that Pm+1 is large, we will relate Pm+1 and Ph ,
i.e. we will lower bound Pm+1 in terms of Ph and vice versa. Using the relation we
can then conclude Pm+1 ≥ �endb0 . In the analysis we repeatedly use the properties
of stable job sequences and will explicitly point to it when this is the case.

We next make the relationship between Ph and Pm+1 precise. Given 0 < 𝜆 , let
f (�) = 2c� − 1 and given w > 0 , let
g(w) = (c(2c − 3) − 1)w + 4 − 2c ≈ 0.2854 ⋅ w + 0.3044 . We set gb(�) = g

(
�

b

)
b

and fb(w) = f
(

w

b

)
b , for any b > 0 . Then we will lower bound Pm+1 by gb0(Ph) and

Ph by fb0(Pm+1) . We state two technical propositions.

Proposition 3 For 𝜆 > 𝜆start , we have g(f (𝜆)) > 𝜆.

Proof Consider the function

The function F is linear and strictly increasing in � . Hence for the proposi-
tion to hold it suffices to verify that F(�start) ≥ 0 . We can now compute that
F(𝜆start) ≈ 0.04865 > 0. ◻

Proposition 4 For 0 < 𝜀 ≤ 1 , we have g(1 − 𝜀) > 𝜆end.

Note that the following proof determines the choice of our competitive ratio c,
which was chosen minimal such that Q[c] = 4c3 − 14c2 + 16c − 7 ≥ 0.

Proof We calculate that

Recall that Q[c] = 4c3 − 14c2 + 16c − 7 = 0 . For 0 < 𝜀 ≤ 1 we have

Thus we see that g(1 − 𝜀) − 𝜆end > 0 and can conclude the lemma. ◻

F(�) = g(f (�)) − � = (c(2c − 3) − 1)(2c� − 1) + 4 − 2c − �

= (4c3 − 6c2 − 2c − 1)� − 2c2 + c + 5

≈ 0.05446 ⋅ � + 0.01900.

g(1 − �) − �end = (c(2c − 3) − 1)(1 − �) + 4 − 2c −
1

2(c − 1 + �)

=
2(c − 1 + �)(2c2 − 5c + 3 − (2c2 − 3c − 1)�) − 1

2(c − 1 + �)

=
4c3 − 14c2 + 16c − 7 + (4 − 2c)� − 2(2c2 − 3c − 1)�2

2(c − 1 + �)
.

(4 − 2c)𝜀 − (2c2 − 3c − 1)𝜀2 ≈ 0.3044 ⋅ 𝜀 − 0.2854 ⋅ 𝜀2 > 0.

1 3

Algorithmica

4.3.1 Analyzing Large Jobs Towards Lower Bounding P
h
 and P

m+1

Let b > (c − 1 + 𝜀)OPT be a value such that immediately before Jn′ is scheduled at
least m − h machines have a load of at least b. Note that b = b0 satisfies this condi-
tion but we will be interested in larger values of b as well. We call a machine b-full
once its load is at least b; we call a job J a b-filling job if it causes the machine it is
scheduled on to become b-full. We number the b-filling jobs according to their order
of arrival J(1), J(2),… and let t(j) denote the time of arrival of the jth filling job J(j).

Recall that our main goal is to show that Pm+1 ≥ �endb0 holds. To this end we will
prove that the b0-filling jobs have a processing time of at least �endb0 . As there are m
such jobs, the bound on Pm+1 follows by observing that Jn′ arrives after all b0-filling
jobs are scheduled and that its processing time exceeds �endb0 as well. In fact, since
OPT ≥ b0 , we have

We remark that different to previous analyses in the literature we do not solely rely
on lower bounding the processing time of filling jobs. By using the third property of
stable job sequences, we can relate load and the size of the (m + 1) st largest job at
specific points in the time horizon, formally this is done later in Lemma 8.

In the following we regard b as fixed and omit it from the terms filling job and
full. Let � = max{�startb, min{gb

(
Ph

)
, �endb}} . We call a job large if it has a pro-

cessing time of at least � . Let t̃ = t(m − h) be the time when the (m − h) th filling job
arrived. The remainder of this section is devoted to showing the following important
Lemma 6. Some of the underlying lemmas, but not all of them, hold if m ≥ m(�) is
sufficiently large. We will make the dependence clear.

Lemma 6 At least one of the following statements holds:

– All filling jobs are large.
– If m ≥ m(�) , there holds Pt̃

m+1
≥ 𝜆 = max{𝜆startb, min{gb

(
Ph

)
, 𝜆endb}} , i.e. there

are at least m + 1 large jobs once the (m − h)-th filling job is scheduled.

Before we prove the lemma we derive two important implications towards a
lower bound of Pm+1.

Corollary 4 We have Pm+1 ≥ � = max{�startb0, min{gb0

(
Ph

)
, �endb0}}.

Proof Apply the previous lemma, taking into account that b ≥ b0 , and use that there
are m many b0-filling jobs followed by Jn′ . The latter has size at least � by inequal-
ity (3). ◻

We also want to lower bound the processing time of the (m + 1) st largest job at
time t̃ . However, at that time only m − h filling jobs have arrived. The next lemma
ensures that, if additionally Ph is not too large, this is not a problem.

(3)pn� > (c − 1)OPT > 0.847 ⋅ OPT > 𝜆endb0 ≈ 0.5898 ⋅ b0.

 Algorithmica

1 3

Corollary 5 If Ph ≤ (1 − �)b and m ≥ m(�) , the second statement in Lemma 6 holds,
i.e. Pt̃

m+1
≥ 𝜆 = max{𝜆startb, min{gb

(
Ph

)
, 𝜆endb}}.

The proof of the lemma makes use of the fourth property of stable job
sequences. In particular we would not expect such a result to hold in the adver-
sarial model.

Proof We will show that the first statement in Lemma 6 implies the second one if
Ph ≤ (1 − �)b holds. In order to conclude the second statement it suffices to verify
that at least m + 1 jobs of processing time � have arrived until time t̃ . By the first
statement we know that there were m − h large filling jobs coming before time t̃ .
Hence it is enough to verify that h + 1 large jobs arrive (strictly) before the first fill-
ing job J.

To show that there are h + 1 jobs with a processing time of at least Pm+1 before
the first filling job J, we use the last property of stable job sequences. If J is among
the h largest jobs, we are done immediately by the condition. Else J had size at most
Ph ≤ (1 − �)b . Assume J = Jt was scheduled on the machine Mt−1

j
 , for

j ∈ {i,m − h,m} , and let l = lt−1
j

 be its load before J was scheduled. Because J is a
filling job we have

In particular, before J was scheduled, the average load at that time was at least

Again, by the last property of stable job sequences, at least h + 1 jobs of processing
time at least Pm+1 were scheduled before this was the case. ◻

We introduce late and early filling jobs. We later need a certain condition to
hold, namely the ones stated in Lemma 8, in order to show that the early filling
jobs are large. We show that if this condition is not met, the fact that the given job
sequence is stable ensures that Pt̃

m
≥ 𝜆.

Let s be chosen maximal such that the sth filling job is scheduled steeply.
If s ≤ i , then set s = i + 1 instead. We call all filling jobs J(j) with j > i that are
scheduled flatly late filling jobs. All other filling jobs are called early filling jobs.
In particular the job J(s+1) and the filling jobs afterwards are late filling jobs. The
following proposition implies that the fillings jobs after J(m−h) , if they exist, are
all late, i.e. scheduled flatly.

Proposition 5 We have s ≤ m − h if m ≥ m(�).

Proof of Proposition 5 Let h̃ < h and t = t(m − h̃) be the time the (m − h̃) th filling job
J arrived. We need to see that J was scheduled flatly. Assume that was not the case.

l ≥ b − Ph ≥ �b ≥ �(c − 1)OPT .

jl

m
≥

il

m
≥ �

i

m
(c − 1)OPT .

1 3

Algorithmica

We know that for j ≤ m − h̃ we have lt−1
j

≥ b > (c − 1 + 𝜀)OPT . In particular we
have

For the last inequality we need to choose m large enough. If the schedule was steep
at time t, then we had for every j ≤ k

But then the average load at time t − 1 would be:

For the second inequality we need to observe that we have k ≥ (4c − 7)m + 2h and
that the previous term decreases if we decrease k. One also can check that the sec-
ond last term is minimized if h = 0.

But now we have shown Lt−1 > OPT , which is a contradiction. Hence the sched-
ule could not have been steep at time t − 1 . ◻

We need a technical lemma. For any time t, let L
t

s
=

1

m−h−s+1

∑m−h

j=s
lt
j
 be the

average load on the machines numbered s to m − h.

Lemma 7 If L
t(s)−1

s
≥ �−1b holds and m ≥ m(�) then Lt(s)−1 >

(
s

m
+

𝜀

2

)
⋅ L.

This lemma comes down to a mere computation. While being simple at its
core, we have to account for various small error terms. These arise in three ways.
Some are inherent to the properties of stable sequences. Others arise from the
rounding involved in the definition of certain numbers, i in particular. Finally,
the small number h introduces such an error. While all these errors turn out to be
negligible, rigorously showing so is technical. Note that the following proof also
determines our choice of the value i. For larger values the proof would not hold.

Proof of Lemma 7 Let t = t(s) − 1 . We have lt
j
≥ b for j ≤ s − 1 as the first s − 1

machines are full. Considering the load on the machines numbered up to m − h we
obtain

Lt−1
i+1

=
1

m − i

m∑

j=i+1

lt−1
j

>
m − i − h − 1

m − i
(c − 1 + 𝜀)OPT ≥ (c − 1)OPT .

lt−1
j

≥ lt−1
k

≥ �(c − 1)OPT =
2(c − 1)2

2c − 3
OPT .

Lt−1 =
1

m

m∑

j=1

lt−1
j

>
k
2(c−1)2

2c−3
+ (m − h − k)(c − 1)

m
OPT

≥
((4c − 7)m + 2h)

2(c−1)2

2c−3
+ (m − (4c − 7)m − h)(c − 1)

m
OPT

≈ 1.3247 ⋅ OPT .

 Algorithmica

1 3

If s > i + 1 , the schedule was steep at time t = t(s) − 1 and hence

Since lt
k
≥ lt

i
≥ b , the previous inequality holds for s = i + 1 , too, no matter whether

J(s) = J(i+1) was scheduled flatly or steeply. We hence get, for all s ≥ i + 1,

In the above difference, we first examine the first term, which is minimized if
s = i + 1 . With this setting it is still lower bounded by

In the second term of the above difference k

m−i
=

2i−m

m−i
 is increasing in i, where

i ≤ (2c − 3)m + h + 1 . We choose m large enough such that

There holds 𝛼−1 < 0.5 . Thus the second term in the difference is upper bounded by
2hb

m
.
Recall that b > (c − 1 + 𝜀)OPT . Furthermore, 0 < 𝜀 < 2 − c such that

c − 1 + 𝜀 < 1 . Therefore, we obtain

In the previous term we intentionally highlighted three variables. It is easy to check
that if we decrease these variables, the term decreases, too. We do this by setting
� = (4c − 7)m and � = (2c − 3)m (while ignoring the non-highlighted occurrences

Lt
i+1

≥

∑s−1

j=i+1
lt
j
+ (m − h − s + 1)L

t

s

m − i

≥
(s − i − 1)b + (m − h − s + 1)�−1b

m − i

≥ �−1b +
s − i − 1

m − i
(1 − �−1)b −

h

m − i
�−1b

= �−1b +
s − i − 1

m − i

b

2(c − 1)
−

h

m − i
�−1b.

lt
k
≥ 𝛼Lt

i+1
> b +

s − i − 1

m − i

𝛼 ⋅ b

2(c − 1)
−

h ⋅ b

m − i
.

Lt ≥
klt

k
+ (s − k − 1)lt

s−1
+ (m − h − s + 1)L

t

s

m

>

k
(
b +

s−i−1

m−i
⋅

𝛼⋅b

2(c−1)
−

h⋅b

m−i

)
+ (s − k − 1)b + (m − h − s + 1)

(
b −

b

2(c−1)

)

m

=

(
1 +

1

2(c − 1)

(
k

m

s − i − 1

m − i
⋅ 𝛼 −

m − s + 1

m

))
b −

(
k ⋅ h

m(m − i)
+

h ⋅ 𝛼−1

m

)
b.

(
1 −

m − i

2(c − 1)m

)
b >

(
1 −

2(2 − c)

2(c − 1)

)
b ≈ 0.8205 ⋅ b >

3b

4
.

k

m − i
≤

(4c − 7)m + 2(h + 1)

2(2 − c)m − (h + 1)
≤ 1.5.

Lt >
(
c − 1 +

1

2

(
�

m

s − i − 1

m − �
⋅ 𝛼 −

m − �

m
+

s − i + 1

m

)
+

3

4
𝜀 −

2h

m

)
OPT .

1 3

Algorithmica

of i). We also assume that m is large enough such that �
4
≥

3h+2

m
 . Then the previous

lower bound on Lt can be brought to the following form:

Using that i+1
m

< 2c − 3 +
h+2

m
 and evaluating the term in front of s−i−1

m
 we get

The lemma follows by noting that OPT ≥ L . ◻

Lemma 8 If the late filling jobs are large, L
t(s)−1

s
≥ �−1b and m ≥ m(�) , we have

Pt̃
m+1

≥ 𝜆.

Proof Assume that the conditions of the lemma hold. By Lemma 7 we have
Lt(s)−1 >

(
s

m
+

𝜀

2

)
⋅ L. By the third property of stable sequences, at most

m + 1 − (s + h + 2) = m − s − h − 1 of the largest m + 1 jobs appear in the sequence
starting after time t(s) − 1 . However, this sequence contains m − h − s late filling
jobs. Thus there exists a late filling job that is not among the m + 1 largest jobs. As it
has a processing time of at least � , by the assumption of the lemma, Pm+1 ≥ � holds.

Now consider the m + 1 largest jobs of the entire sequence that arrive before
J(s) as well as the jobs J(s+1),… , J(m−h) . There are at least s + h + 2 of the former
and m − h − s of the latter. Thus we have found a set of at least m + 1 jobs arriving
before (or at) time t̃ = t(m − h) . Moreover, we argued that all these jobs have a pro-
cessing time of at least � . Hence Pt̃

m+1
≥ 𝜆 holds true. ◻

We are ready to evaluate the processing time of filling jobs to prove Lemma 6,
which we will do in the following two lemmas.

Lemma 9 Any late filling job’s processing time exceeds max{�startb, gb(Ph)}.

Proof Let j ≥ i + 1 such that J(j) was scheduled flatly. Set t = t(j) − 1
and l = lt

i
 . Because at least i machines were full, we have have

Lt ≥ b ⋅
i

m
≥ (c − 1)

i

m
OPT ≥ (c − 1)

i

m
L . Hence by Definition 3 we have pt

max
≥ Ph.

Let �̃� = max{𝜆startb, gb(Ph)} . We need to show that J(j) has a processing time
strictly greater than �̃� . If we have lt

m−h
< b − �̃� , then this was the case because J(j)

increased the load of some machine from a value smaller than b − �̃� to b. Hence let
us assume that we have lt

m−h
≥ b − �̃� . In particular we have

By the definition of a late filling job, J(j) was scheduled flatly. In particular, it would
have been scheduled on machine Mt

i
 (which was not the case) if any of the following

two inequalities did not hold:

Lt >

(
2c − 3 +

1

2

(
4c − 7

2(2 − c)
⋅ 𝛼 + 1

)
s − i − 1

m
+

h + 2

m
+

𝜀

2

)
OPT

Lt >
(
i + 1

m
+ 1.0666 ⋅

s − i − 1

m
+

𝜀

2

)
OPT >

(
s

m
+

𝜀

2

)
OPT .

Lt ≥
(j − 1)l + (m − j − h + 1)(b − �̃�)

m
.

 Algorithmica

1 3

– pt + l > cpt
max

≥ cPh

– pt + l > cLt

If l ≤ cPh − �̃� held true, we get pt > �̃� from the first inequality. Thus we only need
to treat the case that l > cPh − �̃� held true. We also know that we have l ≥ b , because
the ith machine is full. Hence we may assume that

In order to derive the lemma we need to prove that pt − �̃� > 0 holds. Using the sec-
ond inequality we get

Using that (2c − 3)m + h < i < j − 1 and b − �̃� < b ≤ l hold, the previous term does
not increase if we replace j − 1 by (2c − 3)m + h . The resulting term is

Now let us observe that we have l ≥ b ≥ 2(b − 𝜆startb) ≥ 2(b − �̃�) . Hence the previ-
ous term is minimized if we set h = 0 . We get

As c(2c − 3) − 1 ≈ 0.2584 > 0 the above term does not increase if we replace l by
either value: b or cPh − �̃�.

If we have �̃� = 𝜆startb , we choose l = b and get

The third equality uses the definition of �start . The lemma follows if �̃� = 𝜆startb.
Otherwise, if �̃� = gb(Ph) , we choose l = cPh − �̃� and get

Here the last equality follows from the definition of gb . The lemma follows in the
case �̃� = gb(Ph) . ◻

Lemma 10 If L
t(s)−1

s
< 𝛼−1b holds, the early filling jobs have a processing time of at

least �endb.

l ≥ max{b, cPh − �̃�}.

pt − �̃� > cLt − l − �̃� ≥ c
(j − 1)l + (m − j − h + 1)(b − �̃�)

m
− l − �̃�.

pt − �̃� > c
((2c − 3)m + h)l + (m − (2c − 3)m − 2h + 1)(b − �̃�)

m
− l − �̃�.

pt − �̃� > c
[
(2c − 3)l + (1 − (2c − 3))(b − �̃�)

]
− l − 𝜆.

pt − 𝜆startb > c
[
(2c − 3)b + (1 − (2c − 3))(b − 𝜆startb)

]
− b − 𝜆startb

= (c − 1)b − (1 + 2c(2 − c))𝜆startb

= (c − 1)b − (c − 1)b

= 0.

pt − �̃� > c
[
(2c − 3)(cPh − �̃�) + (1 − (2c − 3))(b − �̃�)

]
− (cPh − �̃�) − �̃�

= (c2(2c − 3) − c)Ph + (c(4 − 2c))b − cgb(Ph)

= 0.

1 3

Algorithmica

Before proving Lemma 10 let us observe the following, strengthening its
condition.

Lemma 11 We have

Proof Let i + 1 ≤ j < s . It suffices to verify that

The second inequality is obvious because for every r the loads lt
r
 can only increase as

t increases. For the first inequality we note that by definition the job J(j) was sched-
uled steeply and hence on a least loaded machine. This machine became full. Thus it
is not among the m − j least loaded machines at time t(j). In particular Lt(j)

j+1
 , the aver-

age over the m − j smallest loads at time t(j), is also the average of the m − j + 1
smallest loads excluding the smallest load at time t(j) − 1 . Therefore it cannot be less
than Lt(j)−1

j
 . ◻

Proof of Lemma 10 Let i < j ≤ s such that J(j) was an early filling job. By Lemma 11
we have Lt(j)−1

j
≤ Lt(s)−1

s
< 𝛼−1b = b −

b

2(c−1)
< b − 𝜆endb . By definition J(j) was

scheduled on a least loaded machine M
t(j)−1
m which had load less than

L
t(j)−1

j
< b − 𝜆endb before and at least b afterwards because it became full. In particu-

lar J(j) had size �endb.
For k < j ≤ i the job J(j) is scheduled steeply because we have by Lemma 11

Thus for k < j ≤ i the job J(j) is scheduled on the least loaded machine Mt(j)−1
m , whose

load lt(j)−1m is bounded by

Hence the job J(j) had a size of at least �endb . We also observe that we have

In particular for 1 ≤ j ≤ k any filling job J(j) filled a machine with a load of at most
max{lt(k)

m
, l
t(k)

i
} = l

t(k)

i
< b − 𝜆endb . Hence it had a size of at least �endb . ◻

We now conclude the main lemma of this subsection, Lemma 6.

Proof of Lemma 6 By Lemma 9, all late filling jobs are large. We distinguish two
cases depending on whether or not L

t(s)−1

s
< 𝛼−1b holds. If it does, all filling jobs are

large by Lemma 10 and the first statement in Lemma 6 holds. Otherwise, the second
statement in Lemma 6 holds by Lemma 8. ◻

L
t(i+1)−1

i+1
≤ L

t(i+2)−1

i+2
≤ …Lt(s)−1

s
.

L
t(j)−1

j
≤ L

t(j)

j+1
≤ L

t(j+1)−1

j+1
.

l
t(j)−1

k
≥ b > 𝛼Lt(s)−1

s
≥ 𝛼L

t(i+1)−1

i+1
≥ 𝛼L

t(j)−1

i+1
.

lt(j)−1
m

≤ L
t(j)−1

i+1
≤ Lt(s)−1

s
< 𝛼−1b = b −

b

2(c − 1)
< b − 𝜆endb.

l
t(k)−1

i
≤ l

t(k+1)−1

i+1
≤ … ≤ l

t(k+(m−i))−1

i+(m−i)
= lt(i)−1

m
< b − 𝜆endb.

 Algorithmica

1 3

4.3.2 Lower Bounding P
h
 and P

m+1

In this section we establish the following relations on Ph and Pm+1.

Lemma 12 There holds Ph > (1 − 𝜀)b0 or Pm+1 ≥ �endb0 if m ≥ m(�).

For the proof we need a way to lower bound the processing time of a job Jt
depending on Pt

m+1
:

Lemma 13 Let Jt be any job scheduled flatly on the least loaded machine and let
b = lt−1

m−h
 be the load of the (h + 1)-th least loaded machine. Then Jt has a processing

time of at least fb(Pt
m+1

).

Proof From the fact that Jt was not scheduled on the (h + 1) th least loaded machine
Mt

m−h
 we derive that pt > c ⋅ Ot − b ≥ c ⋅ Pt

m+1
− b = fb(P

t
m+1

) holds. ◻

Proof of Lemma 12 Assume for a contradiction that we had Ph ≤ (1 − �)b0 . Let
J = Jt be the smallest among the h last b0-filling jobs. Then J has a processing time
p ≤ Ph . We want to derive a contradiction to that. Let b1 = lt−1

m−h
 be the load of the

(m − h) th machine right before J was scheduled. Because this machine was b0-full
at that time we know that b1 ≥ b0 > (c − 1 + 𝜀)OPT holds and it makes sense to
consider b1-filling jobs. Let t̃ be the time the (m − h) th b1-filling job arrived. By
Lemma 6 we have Pt̃

m+1
≥ 𝜆 = max{𝜆startb1, min{gb1

(
Ph

)
, 𝜆endb1}}.

If we have � = �endb1 ≥ �endb0 we have already proven Pm+1 ≥ �endb0
and the lemma follows. So we are left to treat the case that we have
Pt̃
m+1

≥ 𝜆 = max{𝜆startb1, gb1

(
Ph

)
}.

Now we can derive the following contradiction:

For the second inequality, we use the monotonicity of gb1(−) . The third inequality
follows from Lemma 13 and the last one from Proposition 3. ◻

4.3.3 Establishing Main Lemma 2.

Let m ≥ m(�) be sufficiently large. The machine number m(�) is determined
by the proofs of Proposition 5 and Lemma 7, and then carries over to the sub-
sequent lemmas. Let us assume for a contradiction sake that there was a sta-
ble sequence J such that ALG(J) > (c + 𝜀)OPT(J) . As argued in the begin-
ning of Sect. 4.3, see (2), it suffices to show that Pm+1 ≥ �endb0 . If this was not
the case, we would have Ph ≥ (1 − �)b0 by Lemma 12. In particular by Propo-
sition 4 we had gb0

(
Ph

)
= g(1 − 𝜀)b0 > 𝜆endb0. But now Lemma 4 shows that

Pm+1 ≥ max{�startb0, min{gb0

(
Ph

)
, �endb0}} = �endb0.

Pt̃
m+1

≥ gb1

(
Ph

)
≥ gb1(p) ≥ gb1

(
fb1

(
Pt̃
m+1

))
= g

(
f

(
Pt̃
m+1

b1

))
b1 > Pt̃

m+1
.

1 3

Algorithmica

We conclude, by Corollary 3, that ALG is nearly c-competitive.

5 Lower Bounds

We present lower bounds on the competitive ratio of any deterministic online algo-
rithm in the random-order model. Theorem 3 implies that if a deterministic online
algorithm is c-competitive with high probability as m → ∞ , then c ≥ 3∕2.

Theorem 2 Let A be a deterministic online algorithm that is c-competitive in the
random-order model. Then c ≥ 4∕3 if m ≥ 8.

Theorem 3 Let A be a deterministic online algorithm that is nearly c-competitive.
Then c ≥ 3∕2.

A basic family of inputs are job sequences that consist of jobs having an identical
processing time of, say, 1. We first analyze them and then use the insight to derive
our lower bounds. Let m ≥ 2 be arbitrary. For any deterministic online algorithm A,
let r(A, m) be the maximum number in ℕ ∪ {∞} such that A handles a sequence con-
sisting of r(A,m) ⋅ m jobs with an identical processing time of 1 by scheduling each
job on a least loaded machine.

Lemma 14 Let m ≥ 2 be arbitrary. For every deterministic online algorithm A, there
exists a job sequence J such that Arom(J) ≥ (1 +

1

r(A,m)+1
)OPT(J) . We use the con-

vention that 1

∞+1
= 0.

Proof For r(A,m) = ∞ there is nothing to show. For r(A) < ∞ , consider the
sequence J consisting of (r(A,m) + 1) ⋅ m identical jobs, each having a processing
time of 1. It suffices to analyze the algorithm adversarially as all permutations of the
job sequence are identical. After having handled the first r(A,m) ⋅ m jobs, the algo-
rithm A has a schedule in which every machine has load of r(A, m). By the maximal-
ity of r(A, m), the algorithm A schedules one of the following m jobs on a machine
that is not a least loaded one. The resulting makespan is r(A,m) + 2 . The lemma fol-
lows since the optimal makespan is r(A,m) + 1 . ◻

Proof of Theorem 2 Let m ≥ 8 be arbitrary. Consider any deterministic online algo-
rithm A. If r(A,m) ≤ 2 , then, by Lemma 14, there exists a sequence J such that
Arom(J) ≥

4

3
⋅ OPT(J) . Therefore, we may assume that r(A,m) ≥ 3 . Consider the

input sequence J consisting of 4m − 4 identical small jobs of processing time 1 and
one large job of processing time 4. Obviously OPT(J) = 4.

Let i be the number of small jobs preceding the large job in J� . The random vari-
able i takes any (integer) value between 0 and 4m − 4 with probability 1

4m−3
 . Since

r(A,m) ≥ 3 the least loaded machine has load of at least l =
⌊

i

m

⌋
 when the large job

arrives. Thus A(J�) ≥ l + 4 . The load l takes the values 0, 1 and 2 with probability

 Algorithmica

1 3

m

4m−3
 and the value 3 with probability m−3

4m−3
 . Hence the expected makespan of algo-

rithm A is at least

For the last inequality we use that m ≥ 8 . ◻

Proof of Theorem 3 Let m ≥ 2 be arbitrary and let A be any deterministic online
algorithm. If r(A,m) = 0 , then consider the sequence J consisting of m jobs with a
processing time of 1 each. On every permutation of J algorithm A has a makespan
of 2, while the optimum makespan is 1. If r(A,m) ≥ 1 , then consider the sequence J
consisting of 2m − 2 small jobs having a processing time of 1 and one large job with
a processing time of 2. Obviously OPT(J) = 2 . If the permuted sequence starts with
m small jobs, the least loaded machine has load 1 once the large job arrives. Under
such permutations A(J�) ≥ 3 =

3

2
⋅ OPT(J) holds true. The probability of this hap-

pening is m−1

2m−1
 . The probability approaches 1

2
 and in particular does not vanish, for

m → ∞ . Thus, if A is nearly c-competitive, then c ≥ 3∕2 . ◻

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473 (1999)
 2. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applica-

tions. In: Proceedings of 10th International Workshop on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX). Springer, pp. 16–28 (2007)

 3. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Matroid secretary problems. J. ACM 65(6),
1–26 (2018)

 4. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. In:
Proceedings of 24th ACM Symposium on Theory of Computing (STOC), pp. 51–58 (1992)

 5. Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line scheduling. Inf. Process. Lett.
50(3), 113–116 (1994)

 6. Chen, B., van Vliet, A., Woeginger, G.: A lower bound for randomized on-line scheduling algo-
rithms. Inf. Process. Lett. 51(5), 219–222 (1994)

Arom(J) ≥
m

4m − 3
⋅ (0 + 1 + 2) +

m − 3

4m − 3
⋅ 3 + 4 =

6m − 9

4m − 3
+ 4 >

16

3
=

4

3
OPT(J).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Algorithmica

 7. Chen, L., Ye, D., Zhang, G.: Approximating the optimal algorithm for online scheduling problems
via dynamic programming. Asia Pac. J. Oper. Res. 32(01), 1540011 (2015)

 8. Cheng, T., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling with given total process-
ing time. Theor. Comput. Sci. 337(1–3), 134–146 (2005)

 9. Dohrau, J.: Online makespan scheduling with sublinear advice. In: 41st International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM). Springer, pp. 177–188
(2015)

 10. Dynkin, E.: The optimum choice of the instant for stopping a Markov process. Sov. Math. 4, 627–
629 (1963)

 11. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan
scheduling. In: Proceedings of 49th 676 IEEE Annual Symposium on Foundations of Computer Sci-
ence (FOCS). IEEE, pp. 603–612 (2008)

 12. Faigle, U., Kern, W., Turán, G.: On the performance of on-line algorithms for partition problems.
Acta Cybern. 9(2), 107–119 (1989)

 13. Feldman, M., Svensson, O., Zenklusen, R.: A simple O (log log (rank))-competitive algorithm for
the matroid secretary problem. In: Proceedings of 26th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). SIAM, pp. 1189–1201 (2014)

 14. Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3(6), 343–353 (2000)
 15. Galambos, G., Woeginger, G.: An on-line scheduling heuristic with better worst-case ratio than Gra-

ham’s list scheduling. SIAM J. Comput. 22(2), 349–355 (1993)
 16. Göbel, O., Kesselheim, T., Tönnis, A.: Online appointment scheduling in the random order model.

In: Algorithms-ESA 2015. Springer, pp. 680–692 (2015)
 17. Goel, G., Mehta, A.: Online budgeted matching in random input models with applications to

Adwords. SODA 8, 982–991 (2008)
 18. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer

games. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 564–565 (2000)

 19. Graham, R.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581
(1966)

 20. Gupta, A., Mehta, R., Molinaro, M.: Maximizing Profit with Convex Costs in the Random-Order
Model. arXiv preprint arXiv: 1804. 08172 (2018)

 21. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling problems theoreti-
cal and practical results. J. ACM 34(1), 144–162 (1987)

 22. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown distributions. In:
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pp. 587–596
(2011)

 23. Karger, D., Phillips, S., Torng, E.: A better algorithm for an ancient scheduling problem. J. Algo-
rithms 20(2), 400–430 (1996)

 24. Kellerer, H., Kotov, V.: An efficient algorithm for bin stretching. Oper. Res. Lett. 41(4), 343–346
(2013)

 25. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem.
Oper. Res. Lett. 21(5), 235–242 (1997)

 26. Kenyon, C.: Best-fit bin-packing with random order. SODA 96, 359–364 (1996)
 27. Kesselheim, T., Tönnis, A., Radke, K., Vöcking, B.: Primal beats dual on online packing LPs in the

random-order model. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of
Computing, pp. 303–312 (2014)

 28. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions. SODA 5,
630–631 (2005)

 29. Lachish, O.: O (log log rank) competitive ratio for the matroid secretary problem. In: 2014 IEEE
55th Annual Symposium on Foundations of Computer Science. IEEE, pp. 326–335 (2014)

 30. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an approach based on
strongly factor-revealing lps. In: Proceedings of the Forty-Third Annual ACM Symposium on The-
ory of Computing, pp. 597–606 (2011)

 31. Meyerson, A.: Online facility location. In: Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, pp. 426–431 (2001)

 32. Molinaro, M.: Online and random-order load balancing simultaneously. In: Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 1638–1650
(2017)

http://arxiv.org/abs/1804.08172

 Algorithmica

1 3

 33. Osborn, C., Torng, E.: List’s worst-average-case or WAC ratio. J. Sched. 11(3), 213–215 (2008)
 34. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. (2004)
 35. Rudin, J., III.: Improved bounds for the on-line scheduling problem (2001)
 36. Rudin, J., III., Chandrasekaran, R.: Improved bounds for the online scheduling problem. SIAM J.

Comput. 32(3), 717–735 (2003)
 37. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper.

Res. 34(2), 481–498 (2009)
 38. Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Inf. Process. Lett. 63(1),

51–55 (1997)
 39. Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2),

202–208 (1985)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Susanne Albers1 · Maximilian Janke1

 Susanne Albers
 albers@in.tum.de

1 Lehrstuhl für Algorithmen und Komplexität, Institut für Informatik, Technische Universität
München, Boltzmannstr. 3, 85748 Garching, Germany

http://orcid.org/0000-0003-0364-2394

	Scheduling in the Random-Order Model
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Strong Competitiveness in the Random-Order Model
	3 Description of the New Algorithm
	3.1 How Random-Order Arrival Helps
	3.2 Formal Definition

	4 Analysis of the Algorithm
	4.1 Analysis Basics
	4.2 Stable Job Sequences
	4.3 An Adversarial Analysis
	4.3.1 Analyzing Large Jobs Towards Lower Bounding and
	4.3.2 Lower Bounding and
	4.3.3 Establishing Main Lemma 2.

	5 Lower Bounds
	References

