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Abstract Airborne allergenic pollen impact the

health of a great part of the global population. Under

climate change conditions, the abundance of airborne

pollen has been rising dramatically and so is the effect

on sensitized individuals. The first line of allergy

management is allergen avoidance, which, to date, is

by rule achieved via forecasting of daily pollen

concentrations. The aim of this study was to elaborate

on 3-hourly predictive models, one of the very few to

the best of our knowledge, attempting to forecast

pollen concentration based on near-real-time auto-

matic pollen measurements. The study was conducted

in Augsburg, Germany, during four years

(2016–2019) focusing on Betula and Poaceae pollen,

the most abundant and allergenic in temperate cli-

mates. ARIMA and dynamic regression models were

employed, as well as machine learning techniques, viz.

artificial neural networks and neural network autore-

gression models. Air temperature, relative humidity,

precipitation, air pressure, sunshine duration, diffuse

radiation, and wind speed were additionally consid-

ered for the development of the models. It was found

that air temperature and precipitation were the most

significant variables for the prediction of airborne

pollen concentrations. At such fine temporal resolu-

tion, our forecasting models performed well showing

their ability to explain most of the variability of pollen

concentrations for both taxa. However, predictive

power of Betula forecasting model was higher

achieving R2 up to 0.62, whereas Poaceae up to 0.55.

Neural autoregression was superior in forecastingSupplementary Information The online version contains
supplementary material available at (https://doi.org/10.1007/
s10453-021-09699-3).
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Betula pollen concentrations, whereas, for Poaceae,

seasonal ARIMA performed best. The good perfor-

mance of seasonal ARIMA in describing variability of

pollen concentrations of both examined taxa suggests

an important role of plants’ phenology in observed

pollen abundance. The present study provides novel

insight on per-hour forecasts to be used in real-time

mobile apps by pollen allergic patients. Despite the

huge need for real-time, short-term predictions for

everyday clinical practice, extreme weather events,

like in the year 2019 in our case, still comprise an

obstacle toward highly performing forecasts at such

fine timescales, highlighting that there is still a way to

go to this direction.

Keywords Aerobiology � Diurnal pollen

distribution � Dynamic regression � Environmental

health � Neural networks � Time series analysis

Abbreviations

x Periodic term

B Difference operator

d Non-seasonal difference

p Order of the non-seasonal autoregressive

model

q Order of the non-seasonal moving average

model

P Order of the seasonal autoregressive model

Q Order of the seasonal moving average model

u Parameter of non-seasonal autoregressive

model

h Parameter of non-seasonal moving average

model

U Parameter of seasonal autoregressive model

H Parameter of seasonal moving average

model

g Error term following ARIMA process

f Activation function

x Input of a neural network

y Output of a neural network

w Weight of a neural network structure

b Bias

MAE Mean absolute error

RMSE Root mean square error

R2 Coefficient of determination

1 Introduction

Airborne pollen dispersion is part of plant phenology,

following yearly seasonal cycles with the aim of

successful reproduction. While elementary for the

ecosystem, pollen grains are known to be a trigger for

allergic reactions in sensitized individuals (Sofiev and

Bergmann, 2013). The current prevalence of allergic

diseases worldwide remains high, ranging from 15 to

25% (Passali et al. 2018), with industrialized countries

affected more by this negative trend (Pawankar 2014).

The ongoing increase in air temperature and the

overall effect of climate change have been increasing

steadily the abundances of airborne pollen across the

globe and, at the same time, have been shifting earlier

the pollen seasons for several allergenic taxa (Ziska

et al. 2019). The World Allergy Organization has

warned that, because of climate change, plants will be

stressed to flower and pollinate earlier within the year

and in higher amounts, thus increasing the natural

pollen exposure of sensitized individuals and, conse-

quently, increasing the severity of associated symp-

toms (Pawankar 2014).

Being mostly not a life-threatening condition,

pollen allergic symptoms can significantly reduce

health-related quality of life and workplace produc-

tivity of people concerned because of profound

physical and psychological complications (Blaiss

et al. 2018; Devillier et al. 2016; Haanpää et al.

2018). Allergic individuals have several possibilities

to control allergic symptoms, with allergen avoidance

being one of the most effective measures (Glacy et al.

2013). However, since severity of occurring symp-

toms significantly depends on the current concentra-

tion of aeroallergens in the ambient environment

(Bastl et al. 2013), to be effective, allergen avoidance

strategies make sense only if performed when con-

centration of airborne allergenic pollen is high.

Consequently, pollen information provided for exam-

ple via pollen applications to the target population of

allergic individuals might become an important aid in

avoiding exposure to allergenic pollen, and in plan-

ning medication and outdoor activities (Kmenta et al.

2014). As airborne pollen has been identified as a

biological weather parameter, a network of nearly 400

Hirst-type pollen traps is currently monitoring the

airborne pollen in Europe (Berger et al. 2013).

However, for pollen information to be useful for

allergy management, it has to be delivered on time,
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shortly after the measurement took place, to reflect the

actual pollen abundance. Therefore, in order to

provide up-to-date information on pollen concentra-

tion, a more rapid, and preferably instantaneous

technique in pollen monitoring than a conventional

pollen trap of Hirst-type is needed. Automated pollen

monitoring in real time might be a solution covering

this urgent need.

Such novel approaches have been implemented

very rarely, as by Chappuis et al. (2020), who used

data deriving from an automatic pollen monitoring

system. The importance of integrating hourly resolu-

tion pollen measurements to forecasting models and,

even more, using real-time data from novel, automatic

monitoring devices has been suggested and discussed

by Sofiev (2019), highlighting that such an approach

could boost the predictive power of future models. To

be fair, it is also pointed out (and we agree, as our

current results also show) that there is still a way to

reach operational predictions for everyday practice.

Toward the same direction, Geller-Bernstein and

Portnoy (2019) reviewed that automatic, real-time

pollen monitoring information would be valuable for

short-term operational forecasts for allergic individu-

als, which, otherwise, is currently provided via daily

predictive models with no detailed information on the

intradiurnal variation for everyday activities and

planning.

For this reason, the Bavaria State in south Germany

has developed a network based on the automatic

pollen monitoring devices of BAA500 type (Bio

Aerosol Analyzer 500) (Oteros et al. 2019), as

described in more technical detail in (Oteros et al.

2015). The BAA 500 is an automatic system for air

particle collection (among others, pollen and fungal

spores), analysis, and automatic data transmission to a

data bank, with pollen information available three

hours after observation. Automatic pollen monitoring

is a promising tool in pollen season monitoring, as it

provides pollen information nearly up-to-date with a

high sampling rate of up to 8 pollen measurements per

day. The BAA 500 operated in Munich, Germany, was

reported to be a functional pollen monitoring device

with 93.3% of pollen automatically classified by that

device to be correctly identified (Oteros et al. 2015).

Automatic pollen monitoring is a new technique,

which is yet not widely used. At the moment, only few

countries stand out developing innovative monitoring

sites. Among those are Japan (Kawashima et al. 2017),

the USA (Buters et al. 2018), Switzerland (Crouzy

et al. 2016), and Germany, the latter of which has been

operating automatic pollen monitors for the last half

decade.

The circadian pathophysiology of pollen allergy is

well documented already (Nakao et al. 2015), with

symptoms worsening over night or in the early

morning. Because of the lack of real-time, high-

resolution (hourly) pollen measurements, this phe-

nomenon remains poorly researched. Most commonly,

aerobiologists work on daily data, predicting the

pollen concentration for the next day or several days

ahead. The novel automatic pollen monitoring

devices, with the near-real-time pollen data, allow to

go beyond the current state-of-the-art and to develop

reliable short-term pollen predictions. Pollen forecast-

ing at this scale can be the cornerstone of operational

diurnal allergy risk alerts for allergic individuals.

To achieve such operational forecasts, apart from

the real-time, high-resolution pollen data, sophisti-

cated mathematical and statistical tools need to be

employed. Scientific works examining the diurnal

pollen variation in the air only seldom apply deter-

ministic predictive models, narrowing their efforts

down to descriptive methods and correlation analysis

(Chappuis et al. 2020; Fernández-Rodrı́guez et al.

2014; Ščevková et al. 2015). The most common

predictive techniques used so far are linear or nonlin-

ear regressions, with significant steps having been

made the last few years (Nowosad et al. 2018;

Piotrowska, 2012; Ritenberga et al. 2016), and time-

series analysis, based on Box–Jenkins methods

(Garcı́a-Mozo et al. 2014; Ocana-Peinado et al.

2008; Valencia et al. 2019). Also, variables like

meteorological factors are frequently considered, as

they have been proven as significant predictors of

airborne pollen concentrations. Meteorological fac-

tors, such as solar radiation (Iglesias-Otero et al. 2015;

Nowosad et al. 2018), sunshine duration (Mysz-

kowska & Majewska, 2014; Rodrı́guez-Rajo et al.

2006), and air temperature (Howard & Levetin, 2014;

Nowosad et al. 2018; Ščevková et al. 2015), are

positively correlated with airborne pollen concentra-

tions, whereas variables like relative humidity (Ščev-

ková et al. 2015; Makra et al. 2011), and precipitation

(Piotrowska, 2012; Rodrı́guez-Rajo et al. 2006) show

a negative association with airborne pollen abun-

dances. Some articles examined the relationship with
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wind vectors and found them to be of significant

influence (Astray et al. 2010).

Nowadays, novel and more sophisticated forecast-

ing techniques are starting to be employed, as in the

case of machine learning, which is increasingly

gaining scientific interest. Several aerobiological

studies have implemented machine learning algo-

rithms, at various scales of analysis, such as artificial

neural networks (Iglesias-Otero et al. 2015; Puc, 2012;

Valencia et al. 2019), random forests (Nowosad et al.

2018; Zewdie et al. 2019), and support vector machi-

nes (Zewdie et al. 2019).

Each pollen forecasting technique exhibits pros and

cons, and their selection is based on the research

question per case and on data availability and quality.

Therefore, regression analysis allows for inclusion of

co-factors, but neglects the serial autocorrelation of all

variables. On the contrary, Box–Jenkins models

consider the autocorrelation of the dependent variable,

but neglect the effect of other potential co-factors.

Dynamic regression, albeit a statistical approach using

the advantages of both above-mentioned forecasting

techniques (Pankratz, 2012), has been seldom adopted

in airborne pollen forecasting (Ocana-Peinado et al.

2008). Overall, forecasting of pollen concentrations is

challenging due to the data complexity, intense

seasonality with numerous ‘out of season’ zero values,

high skewness and level of irregularity and extreme

outliers. The above are mixed in a double-periodic

pattern, within-day and within-year, with different

factors influencing each periodicity and pollen distri-

bution. The relationships are often nonlinear and the

affecting co-factors usually collinear and sometimes

confounding. This challenge could be answered by

machine learning algorithms, like artificial neural

networks, as they have a high ability to assess complex

relationships (Twomey & Smith, 1995). To ensure the

sound interpretation of the acquired results produced

by the artificial neural network, it then makes sense to

cross-validate the model output with that of ‘conven-

tional’ forecasting techniques, as time series analysis

and dynamic regression.

The aim of the present study was to assess and

forecast the diurnal variability of airborne pollen

concentrations and the development of short-term

predictive models using near-real-time 3-hourly Be-

tula and Poaceae pollen data. Both pollen taxa were

selected because of their high atmospheric abundance

in Bavaria (Oteros et al. 2019), and of their high

prevalence in sensitization rates among the study area

population (Muzalyova et al. 2019). To our best of

knowledge, there is very limited research focusing on

forecasting of diurnal pollen concentrations based on

data provided by automatic pollen measurement

systems. Therefore, this is the first paper using a 3-h

sampling frequency of airborne pollen detected by an

automatic pollen monitoring to develop and compare

different predictive models. Knowledge of variation of

pollen quantity on hourly scale is very important for

people suffering from pollen allergies, as it can help

them to avoid exposure to allergenic pollen. Incorpo-

rating real-time, automatic pollen measurements in

airborne pollen forecasts is expected to dramatically

improve the efficiency of allergy management.

2 Materials and methods

2.1 Data

Pollen data for Betula and Poaceae were acquired by

use of an automatic pollen monitoring device

BAA500, located in Augsburg, Germany. The auto-

matic pollen monitor was situated at the Bavarian

State Office for the Environment (Bayerisches Lan-

desamt für Umwelt—LFU Bayern) (coordinates

48�320 60.2900N, 10�90030.7700E), located in a subur-

ban environment in Augsburg, Germany. The pollen

data were collected in 3-h intervals for the years

2016–2019. Accordingly, each day (24-h period)

encompasses 8 data points beginning with the first

pollen measurement performed at midnight (0.p.m),

and the last performed at 9 p.m. Pollen concentrations

are expressed in grains per m3 with a time step

n corresponding to a 3-h interval. Missing data (8.4%

Table 1 Descriptive statistics of the pollen measurements of

examined taxa (grains per m3)

Betula Poaceae

Mean (SD) 71.9 (138.1) 12.6 (29.7)

Median 30.0 4.0

Min 0 0

Max 1582.0 750.0

Skewness 5.9 10.0

Kurtosis 49.1 181.9
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Betula and 7.8% Poaceae) were imputed based on

regression analysis using 5 data points of the corre-

sponding time period before and after the data gap.

Scattered missing points were imputed by averaging

closest measurement before and after the data gap. The

normal distribution of the data was tested using the

Kolmogorov–Smirnov and Shapiro–Wilk tests, where

it was concluded that the hourly data did not follow a

normal distribution being extremely right-skewed

(Table 1).

Meteorological data were retrieved from the Ger-

man Weather Institute (Deutscher Wetterdienst—

DWD, https://opendata.dwd.de/climate_environment/

CDC/), recorded at the airport of Augsburg (coordi-

nates 48�21057.56400 N, 10�530 34.94400 E), located

approximately 11 km north of LFU. The following

meteorological parameters were available for data

analysis: air temperature [�C], relative humidity [%],

air pressure [hPA], precipitation [mm], sunshine

duration [min], solar radiation [J/cm2], and wind speed

[m/s]. A Spearman correlation test was used to analyze

associations between the examined meteorological

variables. The statistical analysis included the

3-hourly data set from March to September (main

pollen season of Betula and Poaceae) and was per-

formed with the SPSS 25.0 statistical package.

The analysis of the diurnal distribution of pollen

concentrations and development of predictive models

was performed based on pollen data of the main pollen

season for each pollen taxa and each year. Accord-

ingly, the following phenological features were

determined for each available study year: Pollen

Season Start (PSS), Pollen Season Peak (PSP), Pollen

Season End (PSE), Pollen Season Duration (PSD), and

the annual Pollen Integral (PI) in line with (Galan et al.

2017). The PSS was defined in line with European

Aeroallergen Network pollen season definition. Due to

this, the PSS was the first day achieving 5% of the

cumulative daily pollen concentrations over the whole

year. The PSE was determined as a day reaching 95%

of the accumulated daily pollen concentra-

tions throughout the whole pollen season (Bastl

et al. 2018). The PI was specified as the sum of the

daily average pollen concentrations per cubic meter

over the whole year. The PSP was defined as the day

with the highest daily pollen concentration. The

overview of the data used and the development of

the forecasting models is given in Fig. 1.

2.2 Autoregressive integrated moving average

(ARIMA)

ARMA or ARIMA (also known as Box–Jenkins

model) represent a combination of autoregressive

and moving average models (Box et al. 2016). For

modeling of seasonal time series, ARIMA (p, d, q)(P,

D, Q)x is known as multiplicative ARIMA model

(Cowpertwait & Metcalfe, 2009). Due to this, six

parameters, namely p, d, q, P, D, and Q, have to be

determined to be included in the forecasting model.

This step was performed based on the analysis of the

Partial Auto-Correlation Function (PACF) and Auto-

Correlation Function (ACF). The Akaike Information

Criteria (AIC) and the Bayesian Information Criterion

(BIC) were the adjustment criteria used for selection

of the best model for each examined pollen species.

Additional confidence in the best fitting model was

gained by deliberately overfitting the model by

including further parameters and observing increase

in the AIC and BIC. After the best fitting model was

found, the correlogram of the residuals was verified as

white noise.

2.3 Dynamic regression (DR)

A dynamic regression is an extension of a regression

model allowing errors from the regression to contain

autocorrelations (Pankratz, 2012). A dynamic regres-

sion uses advantages of the Box–Jenkins method

modeling the autoregression between successive

observations of the time series and allows for the

inclusion of the external influencing variables like a

conventional regression. Additionally, dynamic

regression can be applied to seasonal data (Harvey &

Scott, 1994) and also allows for lagged effect of the

predictors (Pankratz, 2012). In the present study, the

order of the autoregressive and moving average

components for the dynamic regression modeling

was determined based on the evaluation of the PACF

and ACF. The external predictors were selected based

on backward elimination using Julian day, and 16 lags

(two days) of each available meteorological variable.

Similar to ARIMA, AIC and BIC were used as

adjustment criteria for the best fitting model along

with the significance of the selected parameters.
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2.4 Artificial neural network (ANN)

Artificial neural networks are forecasting methods

based on a simple mathematical model inspired by

information flow in the human brain. A neural network

consists of a system of artificial neurons organized in

layers. A common neural network incorporates an

input, an output layer, as well as one or several

intermediate layers containing so-called hidden neu-

rons. A network can incorporate one to many hidden

layers, and one to many neurons in each. The number

of input neurons is defined by the number of used input

features, and the number of output neurons is defined

by the number of required output. The idea of a neural

network is to model the response variable, represent-

ing the output, based on nonlinear combination of

several input variables. A neuron receives information

from other neuron or from an external influencing

variable and computes a function f based on the

weighted sum of the inputs (Goodfellow et al. 2016).

The output of a neural network structure having three

neurons in the hidden layer shown in Fig. 2 where xj

ARIMA

Dynamic 
regression

Artificial 
neural 

network

Neural 
network 

auto-
regression

3-hourly 
airborne 

pollen data

3-hourly 
meteorological 

pollen data
lagged 3-hourly 
meteorological 

pollen data

lagged 
airborne  
3-hourly 

pollen data

Input Forecasting models Output

Prediction for 
tomorrow of 

airborne pollen 
concentrations on 

a 3-hourly 
resolution

Fig. 1 Process flowchart of the forecasting model development based on 3-hourly data

Fig. 2 Neural network

structure with three hidden

neurons
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represents the input, wij is the weight from neuron j to

neuron i, and b denotes bias. The function f represents

an activation function which determines the output

activity of the neuron. Through the activation func-

tion, the neuron and, thus, the model maps from a

linear input to a nonlinear output. Neural network

development requires a big implementation of models

with different number of neurons in the hidden layer.

Designing an optimal schema involves finding the

structure with the smallest size network (parsimonious

network), which produces optimal errors for trained as

well as untrained cases (Astray et al. 2016). During the

training phase of the model development, bias values

and weights are modified to minimize the error

between outputs produced by the model and target

values using Mean Squared Error Loss function for

linear problems, as given in the preset study.

In the present study, the Julian day of the measure-

ment and available meteorological variables with up to

16 lags of each (up to two-day delay-effect) was used

as input variables for the neural networks developed.

As the pollen data are usually strongly autocorrelated,

the pollen concentrations detected in the previous time

periods reflect this time series and were included as

influencing variables in order to improve the predic-

tion capacity of the neural network. Since measure-

ments of available input parameters were made on

different scales, the parameter were normalized to lie

between 0 and 1 before being imputed to the neural

network.

2.5 Neural network autoregression (NNAR)

Neural network autoregression has a similar theoret-

ical foundation as the ANN explained above. How-

ever, this type of an artificial neural network was

specifically developed for autoregressive time series

and represents a hybrid architecture comprising an

ARIMA model and a neural network (Hyndman &

Athanasopoulos, 2018). Those combined methods are

argued to give better forecasts by taking advantage of

each model’s capability (Taskaya-Temizel & Casey,

2005). Due to its neural network part of architecture, it

is capable of estimating nonlinear relationships, and

due to its underlying ARIMA part, the algorithm

explicitly uses lagged values of the time series as

inputs.

A neural network autoregression is denoted as

NNAR (p, P, k) with p indicating the number of lagged

inputs, P indicating the number of seasonal lagged

inputs, and k representing nodes in the hidden layer.

For example, an NNAR (2, 1, 3)8 uses inputs yt�1, yt�2,

and yt�8, has three neuron in the hidden layer and is

complementary to ARIMA (2,0,0)(1,0,0)8 but without

the restriction on the parameters that ensure

stationarity.

In the present pollen study, the order of p and P was

determined based on the PACF analysis with Julian

day and meteorological variables used as external

influencing variables similar to the deployment of the

ANN. The number of neurons in hidden layer was

established similar to the ANN by a trial and error

process based on the prediction accuracy of several

tested models.

2.6 Model validation

It is a common practice in the data modeling to test the

predictive power of the established forecasting models

on unknown data, not deployed for the fitting process

(Goodfellow et al. 2016). For this purpose, the

available pollen dataset was split into a training and

test datasets as following: the dataset representing the

main pollen season in the last year, 2019, was used for

the test of the developed predictive models, and the

remaining three years of pollen data were applied for

the model fitting and training. The predictive accuracy

and validity of each established forecasting model was

determined based on the comparison of predicted and

observed pollen concentration values. Two accuracy

metrics, namely mean absolute error (MAE) and root

mean squared error (RMSE), were used as criteria for

evaluation of the performance of the established

forecasting models:

MAE ¼
PN

i¼1 ŷi � yij j
N

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 ŷi � yið Þ2

N

s

Generally, the RMSE stronger punishes deviation

between predicted value ŷn and observed variable yn

due to squaring the difference. It is therefore better

suited for modeling on data with strong peak and

outliers (Twomey & Smith, 1995).
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As both introduced accuracy metrics are based only

on error term et, they are therefore scale-dependent

and allow to make comparison between time series

that involve different units. In order to compare the

performance of predictive models based on pollen data

of Betula and Poaceae, the coefficient of determina-

tion R2ð Þ was used. R2 describes the proportion of

variance explained by the model to the total variance

in the data and can be defined using the following

formula:

R2 ¼ 1 �
Pn

i¼1 yi � ŷið Þ2

Pn
i¼1 yi � yð Þ2

All forecasting techniques were implemented in

RStudio, version 1.0.143 using tseries, fpp2, lmtest,

neuralnet libraries.

3 Results

The characteristics of the examined pollen seasons are

outlined in Table 2. The main pollen season of Betula

average started by the end of March (from 15/03 to

8/04), and lasted on average 38 days (SD = 10.2). The

main pollen season of Poaceae average started by the

end of April (from 20/04 to 12/05) and had a

comparably longer duration of 95 days (SD = 12.9).

Considering Betula, the PD of the pollen season

usually occurred shortly after the PSS on the 13th day

of the main pollen season (from 04/04 to 14/04),

whereas the PD of Poaceae was situated closer to the

middle of the main pollen season and occurred on the

40th day (from 03/06 to 09/06) of the main pollen

season. Furthermore, Betula usually had one well-

defined peak, whereas Poaceae was characterized by

several peaks of variable amplitude within the main

pollen season. Generally, the pollen release of Betula

was more intensive in absolute terms, peak values and

also average pollen concentration per time period,

compared to that of Poaceae.

Regarding inter-annual variability, the pollen sea-

son of the year 2018, interestingly, stands out among

analyzed pollen seasons due to the earlier PSS and

PSE for both investigated allergenic species (Table 2).

In particular, the main pollen season of Betula started

already by the beginning of April and lasted for more

than fifty days. The PSS of Poaceae occurred 10 days

earlier of the average date and ended by the middle of

July. Furthermore, the intensity of the Poaceae pollen

seasons was continuously decreasing across examined

years, with 2019 exhibiting the lowest pollen abun-

dance of all years (Fig. 3).

The diurnal distribution of pollen concentrations of

both taxa is depicted in Fig. 4. The pollen load of

Betula was relatively constant during the day with the

highest levels occurring at 3 p.m. Kruskal–Wallis-Test

revealed a significant difference between time periods

(H (7) = 28.590, p\ 0.01). However, due to high

standard deviation and none well-defined diurnal

patterns a post hoc test (Dunn–Bonferroni) revealed

only difference between 12 a.m. and 3 p.m. to be

significant (z = - 3.137, p = 0.048), whereas all

other differences of pollen concentration between

considered time periods were non-significant. On the

contrary, the pollen concentration of Poaceae was

noticeably peaking twice a day at 9 a.m. and 3 p.m.,

with relatively low abundance during the night hours.

The Kruskal–Wallis Test revealed a significant dif-

ference between groups [H (7) = 317.982, p\ 0.01],

and a pairwise comparison showed significant differ-

ences between pollen concentrations measured

between the night hours and early morning (9 p.m.–6

a.m.) and those observed beginning with morning until

evening (9 a.m.–6 p.m.). As pollen concentration of

Poaceae is higher during the warmer parts of the day, it

Table 2 Descriptive statistics of the examined pollen seasons

2016 2017 2018 2019 Average

Betula

API 2,491 3,828 2,121 1,860 2,732 (5,720)

PSS 05/04 30/03 04/03 01/04 27/03 (15/03–8/04)

PSP 12/04 01/04 16/04 09/04 09/04 (04/04–14/04)

PSE 09/05 13/05 24/04 25/04 27/05 (19/05–04/06)

PSD 34 44 51 24 38 (10)

Poaceae

API 2,018 1,490 856 378 1,197 (5,199)

PSS 07/05 11/05 21/04 27/04 01/05 (20/04–12/05)

PSP 07/06 09/06 01/06 08/06 06/06 (03/06–09/06)

PSE 02/08 28/07 18/07 13/08 31/07 (22/07–09/08)

PSD 87 78 107 108 95 (13)

In parenthesis, the range of calendar dates per season feature is

provided, along with the standard deviation for API

API; annual pollen integral, PSS: pollen season start date, PSP:

pollen season peak date, PSE: pollen season end date, PSD:

pollen season duration (in number of calendar days)
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suggests a stronger relationship between airborne

pollen concentrations of this allergenic species and

heat-related meteorological variables like air temper-

ature, sunshine duration, and solar radiation.

Correlogram analysis (Fig. 5) of Betula pollen

concentrations showed a steady decrease with no well-

defined peaks at daily cycle (at 8th lags), concluding

that a seasonal term has to be included in the model.

Inspection of the PACF-correlogram suggested that

choosing one non-seasonal, and none seasonal autore-

gressive and moving average parameters were suffi-

cient. However, due to rising significant correlation

between 5 and 8th lags in the PACF, up to seven non-

seasonal autoregressive and moving average parame-

ters were tested. Correlogram of the Poaceae pollen

data depicts a tendency similar to Betula’s, including a

well-defined seasonality of the data at 8th lags;

however, the decrease across the lags occurs consid-

erably slower in comparison with Betula, presumably

due to the shorter main pollen season duration.

Inspection of the partial autocorrelation function

showed a high significant correlation at lag one.

According to this analysis one non-seasonal, as well

as, up to two seasonal autoregressive and moving

Fig. 3 Boxplots of averaged annual concentrations of Betula and Poaceae pollen, where the horizontal line denotes the median of all

concentrations throughout the year, while the box and vertical lines signify the quartiles 25–75%

Fig. 4 3-hourly average distribution of Betula and Poaceae pollen concentrations over 24 h
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average parameters might be sufficient for the ARIMA

model. However, in order to estimate the effect of

overfitting up to seven, both, autoregressive and

moving average parameters, and one seasonal autore-

gressive and moving average parameters were tested.

The best fitting model for each pollen species was

chosen based on the lowest AIC and BIC statistics.

It is not possible to mention all relevant results of

tested ARIMA model structures in this paper; there-

fore, the structures related singly to the best-fitted

models are presented in Table 4. Thus, the best

ARIMA model of Betula pollen concentration corre-

sponded to ARIMA (7,1,3)(1,1,1)[8] and contained

seven non-seasonal autoregressive and three moving

average parameter, and one of each seasonal

autoregressive and moving average parameter.

Regarding Poaceae, the best fitting model was given

by ARIMA (1,1,2)(1,0,1)[8] and consisted of one non-

seasonal autoregressive parameters, two non-seasonal

moving average parameter, and one of each seasonal

autoregressive and moving average parameter.

Descriptive analysis of the meteorological vari-

ables (Fig. 6) reviled a significant difference between

the years used in the training data set and the year 2019

representing the test data set. Of particular note, the

year 2019 was significantly drier in comparison with

all other considered pollen seasons.

The Spearman’s correlation analysis was used

preliminary to DR development in order to discover

relationships between pollen concentrations and avail-

able meteorological parameters. The results of corre-

lation analysis are given in Table 3. Generally,

correlations were significant in a large number of

cases. As expected, Poaceae pollen concentrations

were strongly related to air temperature, sunshine, and

solar radiation in comparison with Betula pollen

counts. The air pressure was found to be significantly

correlated only to Betula, whereas precipitation and

humidity were negatively related to the pollen con-

centrations of both pollen taxa. No significant rela-

tionship between wind speed and pollen

concentrations was detected.

The order of autoregressive and moving average

parameters in DR was determined based on ACF and

PCF analysis, however, with regard to previous

ARIMA modeling. All available weather data were

imputed in the dynamic regression using up to 16

lagged values representing two days as well as Julian

day of the measurement and tested for significance. A

step-by-step procedure was followed, and a backward

stepwise removal of all non-significant influencing

variables was processed, beginning with the highest

p-value. The best fitting model was determined using

AIC and BIC values along with significance of the

certain influencing variables. The final result depicting

the best fitting model for both pollen taxa can be taken

out of Table 4.

Fig. 5 ACF (autocorrelation function) and PACF (autocorre-

lation function) for Betula (a) and Poaceae (b) pollen data

cFig. 6 Boxplots of averaged annual values of different

meteorological factors, where the horizontal line denotes the

median of all measurements throughout the year, while the box

and vertical lines signify the quartiles 25–75%
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Similar to correlation analysis, air temperature had

a positive significant effect on the airborne pollen

concentrations for both examined pollen species, with

regression coefficient being higher for Betula.

However, multiple lagged time periods of temperature

measurement were found significant for Poaceae,

suggesting airborne pollen concentration of this

species to be more sensitive to air temperature.

Table 3 Correlation coefficients of pollen concentrations and meteorological variables (only training dataset)

T (�C) RH (%) P (mm) AP(hPa) WS (m/s) S (min) R(J/cm2)

Betula

0.248** - 0.238*** - 0.230*** 0.163** 0.018 0.207** 0.208**

Poaceae

0.471** - 0.369** - 0.151** 0.002 0.079 0.370** 0.387**

T: temperature, RH: relative humidity, P: precipitation, AP: air pressure, WS: wind speed, S: sun shine, R: diffuse radiation

Significance levels: 0.001 ***, 0.01 **, 0.05 *

Table 4 Coefficients

obtained for ARIMA and

DR models

Significance levels: 0.001

***, 0.01 **, 0.05 *

ARIMA DR

Betula Poaceae Betula Poaceae

u1 - 0.59*** 0.24*** 0.59*** 0.18***

u2 - 0.38*** - 0.41***

u3 0.53*** 0.51***

u4 0.10 0.07

u5 0.26*** 0.29***

u6 0.09* 0.16***

u7 0.25*** 0.25***

U1 0.17*** 0.92*** 0.17*** 0.88***

h1 0.03 - 0.72*** - 0.07*** - 0.69***

h2 - 0.29*** - 0.26*** - 0.23 - 0.28***

h3 - 0.74*** - 0.84

H1 - 1.00*** - 0.80*** - 1.00** - 0.75***

T 5.47** 2.31***

T1 - 0.97**

T5 0.91***

T8 - 0.74**

P - 71.03***

P1 - 39.20** - 2.77****

P2 55.74*** - 2.15***

AP 12.85**

AP1 - 12.31**

Ljung–Box test

Q�(df) 5.39(4) 48.21(11) 15.71(3) 59.19(15)

p-value 0.24 0.00 0.00 0.00

Goodness-of-fit

R2 0.42 0.38 0.46 0.42
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Precipitation had a substantially greater impact on

pollen abundance for both examined species reflected

in higher calculated parameters with this effect lasting

up to 6 h. Interestingly, the effect of rain occurred

immediately on Betula airborne pollen concentration

and with a delay of three hours on Poaceae. The air

pressure was a significant predictor but only for

airborne Betula pollen. Furthermore, only examined

meteorological variables representing at most 8th lag

were determined as significant predictors of the

airborne pollen concentration, suggesting that only

most current values have an influence on the pollen

levels in the air.

Generally, extension of ARIMA model by meteo-

rological variables has improved the performance of

the predictive models in terms of higher coefficient of

determination (R2); however, this effect was small

despite highly significant relationships.

Statistical results obtained from the ARIMA and

DR analysis were used as a starting point for the setup

of the both neural networks. Particularly, the best

fitting order of the autoregressive parameters served as

a starting framework for definition of the NNAR

structure. Accordingly, for Betula NNAR structure

was defined as NNAR (7,1,k)[8], and NNAR (1,1,k)[8]

for Poaceae. Lagged pollen counts corresponding to

the p and q order of the ARIMA model were also

employed as input features in the ANN. All available

meteorological variables including its lagged values

were deployed as influencing variables in NNAR and

ANN, as well as Julian day of the measurement. The

number of neurons in the hidden layer k for each neural

network was determined iteratively by testing differ-

ent neuron schemas. After the trial-and-error process,

structures providing better results in terms of the

model accuracy were obtained for each of examined

allergenic species, and each neural network used for

data modeling. The final neuron structures, as well as,

goodness-of-fit criteria can be taken out from Table 5.

Interestingly, the best NAAR structure for predicting

Betula airborne pollen counts was given by one

autoregressive non-seasonal component in compar-

ison with ARIMA and DR having the order of 7. The

most important meteorological variables for NNAR

and ANN were Julian day, air temperature, precipita-

tion, and solar radiation, whereas the NNAR predic-

tion of Poaceae pollen levels was dominated singly by

precipitation. It is also remarkable that neural net-

works predicting Betula pollen counts achieved

substantially higher R2 coefficients in training process

in comparison with Poaceae.

The predictive models fitted to the training data set

were applied on the test data set in order to determine

their predictive accuracy. Overall, the ARIMA and

DR could achieve higher coefficients of determination

in the test run in comparison with the training of the

models. Furthermore, ARIMA and DR performed

almost equally well; thus, the deployment of addi-

tional meteorological parameters has not changed the

predictive accuracy significantly.

On the contrary, the high coefficient of determina-

tion achieved when fitting neural networks using

training data were only partly reproduced in the

independent test. The goodness-of-fit of the indepen-

dent model test can be seen in Table 6. The NNAR

produced better predictions for Betula, whereas simple

seasonal ARIMA outperformed all other predictive

methods in forecasting airborne Poaceae pollen con-

centrations. Furthermore, DR exhibited low predictive

power for Poaceae pollen levels. Despite substantially

higher values of RMSE and MAE, forecasting models

predicting Betula pollen concentrations performed

better, achieving R2 in the range between 0.13 and

0.62. On the contrary, predictive models of Poaceae

achieved coefficients of determination between 0.03

and 0.55. The high RMSE and MAE for Betula pollen

concentrations were predetermined by higher intensity

of airborne pollen levels in comparison with Poaceae.

Figure 7 shows the comparison of predicted values

based on four applied modeling techniques and

observed Betula pollen concentrations. The test pre-

diction was made using roughly 25% of the available

data and, in total, consisted of 200 data points. The

figure depicts predictions provided by each of the

tested forecasting models. The black line shows the

observed pollen counts for considered data points, and

the other lines depict prediction made by ARIMA, DR,

NNAR, and ANN. As can be seen, for the hold-out

year 2019, Betula had no single well-defined peak in

this test data set, and the highest pollen level was

achieved closer to the middle of the pollen season. The

salient finding was that in terms of pollen season

occurrence, ARIMA, DR, and NNAR performed

remarkably well; however, they consistently underes-

timated the pollen abundances. Practically, all models’

overall performances were lower than expected,

because of not ever managing to predict the highest

123

Aerobiologia



peak of the season. Noticeably, the test year, 2019, was

the driest one of all examined years (Fig. 6) and,

potentially for this reason with the highest annual

pollen integral of Betula pollen compared to all years

in the study period (Fig. 3). The ANN exhibited the

highest irregularities, by underestimating the first peak

in the overall cluster and overestimating the second

peak, whereas it performed quite well in the lower

concentrations. Furthermore, it is noticeable that ANN

tended either to strongly overestimate, or miss several

peaks inside the season, whereas the NNAR generally

captured this pollen behavior but underestimated it.

Additionally, the DR also showed a tendency to

slightly overestimate the airborne pollen

concentrations.

The test of the established predictive models for

Poaceae pollen concentrations was performed using

the main pollen season 2019 representing roughly one

fourth of the data and contained in total 872 data

points. Figure 8 depicts a representative section of the

observed pollen counts beginning with the start of the

considered pollen season and predicted values using

four forecasting techniques. As shown in the graphical

representation, the observed peaking behavior of

pollen counts was overestimated by all applied

forecasting techniques except for ARIMA.

Additionally, DR showed a tendency to strongly

overestimate the variability of the airborne pollen

concentrations, whereas both neural networks predict

values clearly above the actually observed pollen

concentrations, however, capturing the pollen behav-

ior in terms of its amplitude. This result can be traced

back to the lowest intensity of the Poaceae pollen

season among all examined pollen seasons. ARIMA

describes well the pollen behavior of low pollen

concentrations of low pollen levels, and the ANN

outperformed in forecasting the peaking behavior

beginning with the time period 161.

4 Discussion

In the present study, we elaborated novel, automated,

near-real-time pollen data, on a 3-hourly time resolu-

tion, attempting to predict pollen concentrations on a

diurnal horizon. In contrast to the current tendency to

forecast the start, peak and end of the main pollen

season, here we attempted to define the pollen

concentration after the start of and within the main

pollen season, so as to potentially provide real-time,

operational allergy risk alerts. To achieve this, we used

a variety of statistical techniques, among which time

series analysis and machine learning. Most forecasting

attempts have been using much simpler tools or less

fine time resolution. From an operational and clinical

point of view, allergic patients and their practitioners

actually need the diurnal distribution of air pollen

Table 5 Neural networks

schemas of fitted models
Model R2

Betula

NNAR (1,1,8) 0.74

ANN (13,6,1) 0.91

Poaceae

NNAR(1,1,4) 0.56

ANN (12,8,1) 0.63

Table 6 Prediction capacity of four models with a one-day forecast horizon on a 3-hourly resolution

Betula Poaceae

ARIMA DR NNAR ANN ARIMA DR NNAR ANN

R2

0.56 0.56 0.62 0.13 0.55 0.03 0.29 0.45

RMSE

59.15 59.41 55.76 84.94 3.81 6.86 4.85 4.26

MAE

34.22 37.03 35.50 49.22 2.23 5.33 3.70 3.21

R2: the coefficient of determination, RMSE: Root Mean Square Error, MAE: Mean Absolute Error

cFig. 7 Results of independent test for Betula pollen data (3-

hourly sequence) using 4 forecasting techniques
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abundances every day so as to plan their daily

activities, including exposing (or not) themselves to

expected airborne pollen concentrations and receiving

the appropriate medication.

Considering that sensitization rates to airborne

pollen account up to 25% worldwide (Passali et al.

2018), and pollen allergies comprise according to the

World Allergy Organization one of the emerging

diseases of the century (Pawankar 2014), the above-

mentioned information will undoubtedly be the

cornerstone for the pollen allergen avoidance on a

regular basis, if disseminated operationally. Specifi-

cally in the study area’s country, Germany, almost

15% of adult population are suffering from at least one

allergic disorder (Bergmann et al. 2016), and allergic

individuals account for about 12.6% among German

children (Schmitz et al. 2014). This additionally

highlights the necessity for the elaboration of such

prophylaxis and management toolkits.

This study employed advanced statistical methods,

namely ARIMA, dynamic regression, and machine

learning, such as neural autoregression and artificial

neural network, to predict pollen concentrations of

Betula and Poaceae in Augsburg, Germany. The

mathematical modeling techniques were used by

integrating meteorological factors and past pollen

observations. Such approaches are quite common in

this research area, but not on such a fine, 3-hourly,

timescale.

Among the statistical forecasting techniques

employed in the present study, dynamic regression

considered autocorrelations both with the dependent

pollen data and the values of meteorological variables

and performed better in pollen prediction based on the

training dataset. This finding agrees with Sanchez

et al. (2005), who showed the combination of mete-

orological factors and previous pollen data to yield

better results in pollen forecasting, than using alone

pollen data or meteorological variables (Sánchez

Mesa et al. 2005). In the present study, two meteoro-

logical variables, namely air temperature and precip-

itation, were determined as significant predictors in

DR modeling for both examined pollen species, with

precipitation having a stronger effect on the airborne

pollen concentration. In the current aerobiological

research, the most of pollen forecasting studies apply

some meteorological variables as input parameters.

Among them, air temperature is one of the most

studied meteorological factors which is discovered to

have a significant effect on airborne pollen concen-

trations across different pollen taxa (Garcı́a-Mozo

et al. 2014; Ziello et al. 2012). For example, Howard

and Levetin (2014) used air temperature and precip-

itation to predict pollen concentrations too (Howard &

Levetin, 2014), discovering that temperature was one

of the most significant repressor. Iglesias-Otero et al.

(2015) employed precipitation, sunshine duration, and

humidity, with rainfall being the most sensitive

variable in the predictive model (Iglesias-Otero et al.

2015). These findings agree with our result, showing

the precipitation to have an even stronger impact on

airborne pollen levels. That suggests that rainfall

simply washes out the pollen grains from the air with

this effect lasting for several hours. It is worth pointing

out here that different meteorological and climatic

indices would provide variable predictive capacity to

our developed models, and this is highly relying on the

timescale examined. It is well known, as documented,

i.e., by Damialis et al. (2005) that even by conven-

tional Hirst-type monitoring techniques, wind vectors

and precipitation are the leading determining factors,

with the effects lasting for at least four hours (Damialis

et al. 2005). In the present study, although an

extension of the simple ARIMA model by meteoro-

logical variables provided better results in the training,

the predictive power of ARIMA and DR models were

similar for Betula pollen counts, whereas DR failed in

predicting airborne pollen concentration of Poaceae,

achieving coefficient of determination of only

R2 = 0.03. Furthermore, considering Poaceae pollen

concentrations, the simplest among applied forecast-

ing techniques, namely ARIMA, clearly outperformed

all other models.

Regarding the two machine learning techniques

used for the development of predictive models, neural

autoregression substantially outperformed the artifi-

cial neural network, for Betula pollen data, and

delivered the best predictive power in terms of R2 of

all applied forecasting techniques. On the contrary,

Poaceae was better predicted by ANN. In general, the

forecasting model developed for Betula pollen per-

formed better in terms of obtained coefficient of

determination R2 in independent test, despite higher

cFig. 8 Results of independent test for Poaceae pollen data (3-

hourly sequence) using 4 forecasting techniques
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variation in the data. Possibly, it can be explained by a

shorter main pollen season for Betula and a clearer

pattern of pollen behavior consisting of only one well-

defined peak. Furthermore, it is worth mentioning, that

intensity of the Poaceae pollen season was decreasing

across examined years with 2019 having the lowest

pollen abundance. Also, 2019 was the driest year,

especially in the pollen season of Poaceae, both in

terms of precipitation and relative humidity, which

contributed to it being also the longest pollen season.

Consequently, both applied machine learning tech-

niques were constantly overestimating observed air-

borne pollen counts, especially in the weakly abundant

beginning of the pollen season. An additional inclu-

sion of a parameter reflecting expected intensity of the

pollen season might have an essential effect on the

accuracy of the predictive models. Consequently,

more historical pollen data are obviously needed to

more thoroughly investigate the intensity of the

Poaceae pollen seasons.

Overall, a good predictive performance of simple

seasonal ARIMA model in comparison with advanced

forecasting techniques suggests that the phenology of

the plants, reflected by the lagged pollen concentra-

tions, is the most relevant predictor for the observed

airborne pollen concentration. This insight is also

supported by diurnal pollen concentration patterns

discovered in the present study, especially for

Poaceae, showing significant differences in airborne

pollen concentrations depending on the time period of

the measurement. This finding highlights the impor-

tance of the further, scrupulous investigation of the

diurnal variation of the airborne pollen concentration

and its influencing factors. Investigation of airborne

pollen concentrations on hourly scales represents a

promising research direction, since it accommodates

one of the most urgent/important objectives, namely

that of the delivery of pollen information to people

suffering from pollen-induced allergies. Given that

under ongoing climate change conditions, increasing

and more intense extreme weather events influence the

abundance and seasonality and circadian periodicity

of airborne pollen, developing accurate short-term

forecasts is a real challenge. In our results, this is

highlighted by the fact that the significantly drier year

2019 led to reduced predictive capacity of most

models and signified past pollen records as the most

reliable, in this dataset, predictor of future, on an

hourly scale, pollen concentrations. It is anticipated

that unexpected and extreme weather incidents may be

already causing unpredictable pollen seasons and

diurnal distribution, which is worth to be investigated

more thoroughly.

When developing a forecasting model to notify the

pollen allergic individuals about expected airborne

pollen levels for supporting their pollen allergy

management, one has to keep in mind the needs of

the target population. Allergic individuals might be

hardly interested in pollen forecasting expressed in

absolute values. On the contrary, they might be

interested in notifications of critical pollen values, or

expected symptom severity induced by the airborne

pollen levels. Firstly, this consideration can also affect

the definition of the main pollen, taking into account

pollen thresholds inducing allergic reaction of differ-

ent severity in sensitized individuals (Karatzas et al.

2019). Secondly, there are several studies focusing on

prediction of certain levels of airborne pollen concen-

tration (Brighetti et al. 2014; Castellano-Méndez et al.

2005) or even expected season severity (Sánchez Mesa

et al. 2005). Pollen level inducing an allergic reaction

of a certain severity in allergic individuals might be

variable for different locations due to different

climatic conditions (Weger et al. 2013). The forecast-

ing of critical values might be very useful for allergic

individuals. However, so far, it lacks scientific efforts

in this direction in Germany, and, thus, it lacks

knowledge of pollen thresholds triggering allergic

symptoms in sensitive individuals.

Overall, after comparing the performance of the

four models used here with the actual observed pollen

concentrations, it is concluded that all models had a

satisfactory capacity to predict the timing of pollen

occurrence on a 3-hourly scale, but most of them were

not as well-performing when they had to forecast

highly peaked pollen concentrations. Given the

avowedly short length of the overall examined time

series, as well as the weather peculiarities in the hold-

out year 2019, we consider all models exhibiting

adequate forecasting performance. In similar statisti-

cal approaches on a 2-hourly timescale, only few

researchers, like Chappuis et al. (2020), reported some

significant correlations between hourly pollen con-

centrations and hourly weather variables, most fre-

quently weaker than the ones presented in our work.

Noticeably, Chappuis et al. (2020) also used data

deriving from an automatic pollen monitoring system,

even though from a different manufacturer. Some
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other studies that attempted to predict pollen concen-

trations with weather variables on a diurnal level were

those by Simoleit et al. (2016), also in Germany

(Berlin), who found by rule weaker relationships with

most meteorological factors. Likewise, Rı́os et al.

(2016) in Mexico, and Alba et al. (2000) in Spain also

detected much weaker predictions, almost by rule.

An important limiting factor of the present study is

the volume of the available pollen data. As BAA500

has been operating in Augsburg for only half a decade,

only four complete pollen seasons were available for

the data analysis. Environmental data are known to be

very complex to model due to underlying inter-

relations (Zewdie et al. 2019); hence, the time-series

available for the present research might be too short to

determine the seasonal phenology of examined

species or to identify and characterize anomalous

pollen seasons. In order to realize and to calibrate

forecasting models, long historical series of pollen and

meteorological data are necessary. Furthermore, it is

worth pointing out that the predictive models pre-

sented in this study are based on data provided by an

innovative fully automated pollen monitor, which,

being a novel device, is still undergoing improve-

ments. Although the pollen monitoring has been

reported to show a high accuracy of pollen determi-

nation (Oteros et al. 2015), it has been documented

already that a further improvement of the recognition

algorithm is possible and that, consequently, there is

still a lot of room for increasing the accuracy of pollen

identification in near future (Schiele et al. 2019).

Therefore, we conclude that the key for reliable, short-

term pollen predictions, does not necessarily lie on the

complexity and how sophisticated the applied statis-

tical techniques are, but on the completeness of the

toolkit used toward this purpose, as suggested below:

• good quality of data (reliability)

• long datasets (consistency)

• considerations of the whole multi-factorial design

• pollen autocorrelations

• interaction effects with weather and climatic

parameters

• trends and multi-periodicities (within season

and within the day).
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