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1. Introduction 

Since the middle of the last century, perioperative mortality has halved (Braz, 2009). In 

cardiac surgery a worldwide decline of mortality to 3.9% over the last decades required 

a revision of the European System for Cardiac Operative Risk Evaluation (EuroSCORE) 

(Nashef et al., 2012). Reasons for this favorable trend are improved patient care, better 

surgery and anesthesia techniques, as well as improvements in monitoring (Li, 2009). 

With the introduction of Near Infrared Spectroscopy (NIRS) and quantitative 

electroencephalography (qEEG) since the 1990ies, neuromonitoring has become a new 

focus of investigation to improve not only mortality rate, but also stroke rate, quality of 

anesthesia and outcome (Calderon-Arnulphi et al., 2007; Casati et al., 2005; Douds, 

Straub, Kent, Bistrick, & Sistino, 2014; Harrer et al., 2010; J. M. Murkin, 2009; Ono et 

al., 2012; Rubio et al., 2008; Saidi & Murkin, 2005; Scheeren, Kuizenga, Maurer, Struys, 

& Heringlake, 2019; Subramanian et al., 2016; Thudium, Heinze, Ellerkmann, & Hilbert, 

2018; Zanatta et al., 2013). EEG-based monitoring systems may help to optimize the 

hypnotic level in order to prevent intraoperative awareness as well as excessively deep 

anesthesia (Palanca, Mashour, & Avidan, 2009; Söhle, 2014). The awareness rate is 

given to vary around 0.2 - 2%, and can be 10 times higher in certain disciplines such as 

cardiac surgery (Kertai, Whitlock, & Avidan, 2012). Reducing periods of unnecessarily 

deep anesthesia could reduce patient morbidity, mortality and healthcare costs (Palanca 

et al., 2009). However, interpretation of the raw EEG trace in general, or the assessment 

of calculated processed EEG (pEEG) indices in certain situations, remain difficult for the 

clinician. During general anesthesia distinct patterns can be observed in the EEG 

(Brown, 2010). Besides evaluating the hypnotic level, EEG based monitoring should 

help to monitor cerebral saturation (Rosenthal, 2018; Guerit, 1998; Sun, 2020; Söhle, 

2014). Another technique, the NIRS, should help to detect cerebral ischemia, which 

again is more likely to occur during cardiac surgery. Early detection and intervention can 

help to reduce postoperative cognitive dysfunction, occurring in about 50% of cardiac 

patients, and stroke rate, occurring in 1 - 3% of cardiac patients (Ghosh, Elwell, & Smith, 

2012). Regarding the NIRS technique, thresholds and algorithms for intervention have 

yet to be defined. Combined interpretation of information derived from both, NIRS and 

(processed) EEG, could make patient monitoring more reliable. 
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1.1. Near Infrared Spectroscopy 

1.1.1. Principles of Near Infrared Spectroscopy 

NIRS as a non-invasive, handable method, provides continuous information on cerebral 

oxygen metabolism. The following section should offer basic information about the 

principles and development of NIRS. The mathematical background and details can be 

found in appropriate literature elsewhere (Ghosh et al., 2012; Suzuki, Takasaki, Ozaki, 

& Kobayashi, 1999; Wolf, Ferrari, & Quaresima, 2007). Based on the measurement of 

infrared light transmission through tissue, the concentration of light-absorbing 

molecules, the so-called chromophores, can be determined with the help of the Lambert 

Beer Law. In 1874, first observations of decreasing red light transmission with 

decreasing saturation of human tissue were described (A. Moerman, 2010). Almost a 

century later, in 1977, Jöbsis introduced infrared monitoring of cerebral and myocardial 

oxygen sufficiency and circulatory parameters, which is still fundamental for today's 

NIRS devices (Jobsis, 1977). Traversing from the emitting to the detecting optode in an 

elliptic pathway, light is attenuated primarily by reflectance, scattering and absorption 

effects. Reflection processes, as a function of the angle of light, and scattering 

processes have to be assumed to be nearly constant throughout the measurement. The 

scattering effect depends on the regional tissue composition and decreases with 

increasing wavelength (Ghosh et al., 2012; Jobsis, 1977). The behavior of absorption in 

the near infrared light spectrum (650-950 nm) mainly depends on the concentration of 

chromophores as hemoglobin, bilirubin, cytochrome and water (J. M. Murkin & Arango, 

2009). Consequently, changes in light transmission can be explained by changes in 

chromophore concentrations. To obtain information on tissue oxygen saturation, 

oxygenated and deoxygenated hemoglobin (O2Hb and HHb) are the relevant 

chromophores. One advantage of near infrared light compared to other wavelengths is 

its ability to penetrate skin, skull and muscle easily in order to reach cerebral tissue 

noninvasively and in vivo. Most of the commercial oximeters use wavelengths between 

700 – 850 nm, within which the absorption maxima of O2Hb and HHb are maximally 

separated, whereas the overlap with absorption effects by water is minimal (Ghosh et 

al., 2012; J. M. Murkin & Arango, 2009). Another advantage of near infrared light is the 

decreased scattering effect compared to shorter wavelengths like ultraviolet light 

(Jobsis, 1977). Differential spectroscopy, or the differential pathlength factor method, is 

the easiest way to calculate changes in chromophore concentrations with a modified 
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Lambert Beer Law, integrating the pathlength and scattering factor as constant variables 

(Ghosh et al., 2012; Wolf et al., 2007): 

A =  
I

I°
= ε × c × d × DPF + G  (1) 

With A = light attenuation, I = incident light intensity, I° = detected light intensity, ε = absorption coefficient, 

c = chromophore concentration, d = source–detector distance, DPF = differential path length factor and  

G = scattering losses. 

Another basic methodology utilized in most NIRS devices is the spatial resolution, 

achieved by placing detectors at different distances from the emitting electrode- in terms 

of cerebral monitoring each attached on the patients` forehead (figure 1). Because 

penetration depth of the photons is directly proportional to the source-detector-distance 

and amounts approximately 1/3 of it, one can measure light attenuation as a function of 

source-detector separation and distinguish signals from extracerebral vs. cerebral 

tissue. The spacing of detectors ranges from 1.5 cm to 5 cm, which allows the calculation 

of the tissue oxygen saturation (figure 1) at a depth of up to 1.7 cm by the photon 

diffusion theory (A. Moerman, 2010; J. M. Murkin & Arango, 2009; Suzuki et al., 1999).  

 

Figure 1: Schematic representation of a head with two glued-on NIRS optodes to illustrate the path of the 

near-infrared light (Söhle, 2014). 

 

TOS [%] =  
[O2Hb]

[O2Hb+HHb]
 (2) 

With TOS = tissue oxygen saturation, O2Hb = oxygenated hemoglobin, HHb = deoxygenated hemoglobin. 
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Transcutaneous NIRS reflects hemoglobin saturation of a heterogeneous tissue field 

and within the brain the hemoglobin distribution is assumed to be about 70% venous 

and 30% arterial (J. M. Murkin & Arango, 2009). According to anatomical studies, the 

venous component of the intracerebral vascular system ranges from 2/3 to 4/5 (Van 

Lieshout, Wieling, Karemaker, & Secher, 2003). However, arteriovenous proportioning 

can vary considerably inter- and intra-individually, which is not regarded by fixed 

monitors` set up (Denault André, 2007; Edmonds, 2004; J. M. Murkin & Arango, 2009).  

1.1.2. Development of Near Infrared Spectroscopy 

During the 1980ies NIRS found its first clinical applications in neonatology (Ghosh et al., 

2012). After the first oximeter gained approval from the Food and Drug Administration 

in 1993 (J. M. Murkin & Arango, 2009), its use expanded to monitor the adult brain 

mainly in cardiac and carotid surgery (Ghosh et al., 2012). Since the 2000ies there is 

growing interest in NIRS guided monitoring during non-cardiac surgery as for example 

in critically ill patients, neuro-, trauma- and abdominal-surgery as well as during 

procedures in beach chair position or cardiopulmonary resuscitation (Denault André, 

2007; Nielsen, 2014; Scheeren et al., 2019). Its practicability was also investigated as 

tool for seizure detection (Sokol, Markand, Daly, Luerssen, & Malkoff, 2000), 

neurovascular-coupling and functional brain monitoring (Chiarelli, Zappasodi, Di 

Pompeo, & Merla, 2017; Zeller, Herrmann, Ehlis, Polak, & Fallgatter, 2010), in critical 

care (A. Moerman, 2010) or during high altitude trekking (Hadolt I, 2003). A systematic 

review lists certain non-cardiac surgical procedures that provoke a reduction in NIRS 

determined cerebral oxygenation (Nielsen, 2014). Somatic oxygen saturation of kidney, 

liver, splanchnic tissue and muscle, among others, can also be observed by NIRS 

technology (A. Moerman, 2010; J. M. Murkin & Arango, 2009). Continuous cerebral 

monitoring by NIRS can help to predict outcome and mortality after traumatic brain injury 

or subarachnoid hemorrhage and to reduce perioperative complications (Scheeren et 

al., 2019). Concerning cardiac surgery, it has been estimated that NIRS is utilized in 

about 2/3 of pediatric and 1/4 of adult cardiopulmonary bypass (CPB) procedures in 

North America (J. M. Murkin, 2009) and is even considered as a standard monitor 

(Thudium et al., 2018). It was already suggested to integrate NIRS into standard 

monitoring during general anesthesia (Ghosh et al., 2012). Prior to this, it is necessary 

to define interpretation standards and NIRS derived treatment algorithms uniformly. Until 

now, the most established intervention algorithm based on NIRS monitoring was 
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proposed by Denault and colleagues and is provided in the Appendix (Denault André, 

2007). 

1.1.3. Advantages and challenges of Near Infrared Spectroscopy 

The following table should summarize advantages and challenges NIRS based brain 

monitoring offers: 

PROs (+) CONs (-) 

non-invasive, continuous (Jobsis, 1977) heterogeneity of monitors and algorithms 

(Douds et al., 2014; Ghosh et al., 2012) 

helpful to decrease postoperative stroke risk 

(Douds et al., 2014) 

uncertainty of measured area (Edmonds, 

2004) 

interhemispheric differentiation (A. Moerman, 

2010) 

regional, i.e. frontal lobe (appr. 1,5 cm depth, 

1 cm³) (A. Moerman, 2010; J.M. Murkin, 

2011) 

helpful to decrease multiorgan morbidity and 

mortality (J. M. Murkin et al., 2007) 

fixed arteriovenous ratio (Denault André, 

2007; Edmonds, 2004) 

helpful to decrease time of ventilation, 

hospital- and ICU stay (Douds et al., 2014) 

absolute vs. relative intervention threshold 

(A. Moerman, 2010) 

helpful to decrease number of patients with 

POCD (Slater et al., 2009) 

false positive and negative rate (Denault 

André, 2007; A. Moerman, 2010) 

feasible during non-pulsatile flow (Denault 

André, 2007) 

baseline dependency for interpretation 

(Ghosh et al., 2012; Heringlake, 2011; J.M. 

Murkin, 2011) 

correlates with jugular vein saturation 

(Edmonds, 2004; L.C., 1998; A. Moerman, 

Vandenplas, Bove, Wouters, & De Hert, 

2013; Nagdyman et al., 2008) 

influence of extracranial tissue (Edmonds, 

2004; Ghosh et al., 2012) 

helpful for assessment of cerebral 

autoregulation (Edmonds, 2004; C. Lewis, 

Parulkar, Bebawy, Sherwani, & Hogue, 

2018; Moerman, 2016)  

inter- and intraindividual optical pathlengths 

(Edmonds, 2004) 

helpful for assessment of cerebral blood flow 

and volume (Ferrari, 2004) 

individual tissue composition (A. Moerman, 

2010) 

indicator of balance between O2 supply and 

demand (Zheng et al., 2013) 

artefact due to motion or external light 

(Ghosh et al., 2012; A. Moerman, 2010) 

feasible during hypothermia (down to <25°C) 

(J. M. Murkin, 2009; Wolf et al., 2007) 

cost benefit is questionable (Intensivmedizin, 

2014; Söhle, 2014; Zheng et al., 2013) 

Table 1: Summary of advantages and challenges of NIRS technology. 
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1.2. Electroencephalography 

1.2.1. Principles of Electroencephalography 

Electroencephalography (EEG) is a cheap, non-invasive and continuous monitoring tool 

for the human brain. It offers the opportunity to reflect the simultaneous excitation of 

several cortical pyramidal cells by sensing voltages in the microvolt range (~20 - 150µV) 

(Saidi & Murkin, 2005) over the human scalp. It provides information on cerebral activity 

with high temporal resolution (~1 ms) (Chiarelli et al., 2017) and over a variably large 

area, depending on the number of electrodes. The EEG signal is a non-stationary 

(Asgari, Moshirvaziri, Scalzo, & Ramezan-Arab, 2018) complex signal that can contain 

stationary sequences (Cohen & Sances, 1977; M. Kreuzer, Kochs, Schneider, & Jordan, 

2014). The recorded signal most probably presents a mixture of stochastic and 

deterministic signal components (Faure & Korn, 2001). It may also be considered a 

superimposition of oscillations at different frequencies and different amplitudes (Chiarelli 

et al., 2017), i.e., the EEG activity can be roughly described as the sum of different 

rhythms. Assuming the EEG to be a quasi-periodic oscillation, it can be characterized 

by frequency and amplitude. It was Hans Berger to first record human EEG successfully 

in 1924 and terming frequency related rhythms like the parietooccipital alpha wave 

rhythm (8 - 12 Hz), also known as the ́ Berger’s wave´. Depending on different observed 

frequencies, EEG can be divided into following rhythms (Chiarelli et al., 2017): 

rhythm dominating frequency note 

delta 1 – 4 Hz during sleep in healthy population 

theta  4 – 7.5 Hz during sleep, emotional arousal and 

working memory 

alpha  8 – 12 Hz parietooccipital, eyes closed, awake 

healthy adult 

beta 15 – 30 Hz motor and sensory processing 

gamma 30 – 90 Hz in small brain areas during specific tasks 

e.g. multisensory integration 

Table 2: Classification of electroencephalographic brain rhythm by the frequency (Chiarelli et al., 2017). 

Another approach to quantify the EEG, is the amplitude integrated analysis. Amplitude-

integrated EEG (aEEG) represents the peak-to-peak amplitudes of a 2 - 4 channel raw 

EEG, being defined as the difference between minimum and maximum voltage of one 

wave. During continuous monitoring, the observed voltage minima over a specific period 

are considered as the lower margin (LM [µV]) of the trace, whereas the maxima 
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represent the upper margin (UM [µV]). The difference between lower and upper margin, 

resulting in a bandwidth (BW [µV]), helps to capture the variability of the amplitude 

(O'Reilly, Navakatikyan, Filip, Greene, & Van Marter, 2012). These parameters are used 

to classify electrical background activity, which should provide information about the 

cerebral state (Del Rio et al., 2016). To classify aEEG background activity two methods 

have been established, addressing either the amplitude (table 3) or the voltage (table 4) 

pattern: 

 upper margin aEEG lower margin aEEG 

normal amplitude > 10 µV > 5 µV 

moderately abnormal 

amplitude 

> 10 µV < 5 µV 

suppressed amplitude < 10 µV < 5 µV 

Table 3: Classification of amplitude pattern based on Naqueeb and colleagues (al Naqeeb, Edwards, 

Cowan, & Azzopardi, 1999). 

 voltage pattern 

Flat tracing (FT) 

 

very low voltage < 5 µV mainly inactive 

(isoelectric) 

Continuous extremely low voltage 

(CLV) 

 

very low voltage around 5 µV continuous 

Burst Suppression (BS) periods of very low voltage 

(inactivity) intermixed with burst 

of higher amplitude 

discontinuous 

Discontinuous normal voltage 

(DNV) 

 

voltage is predominantly  

> 5µV 

discontinuous 

Continuous normal voltage (CNV) voltage 10 - 25 (- 50) µV continuous  

Table 4: Classification of voltage pattern based on Hellstrom-Westas and colleagues (Toet MC, 1999). 

Still, the classical aEEG analysis is conducted using the EEG of a wide frequency range. 

To evaluate changes in single frequency bands, we used the computationally similar 

range EEG (rEEG) algorithm (O'Reilly, 2012). Within the context of this thesis, the use 

of the rEEG although representing a quite old method makes sense, because rEEG or 

aEEG were the methods of choice in a combined monitoring of EEG and NIRS (Variane, 

2019; Goeral, 2017; Perez, 2015; Toet, 2006). The rEEG also calculates peak to peak 

voltages but without a fixed passband filter on frequencies < 2 Hz. Like aEEG analyses, 

rEEG also provides the three variables UM, LM and BW [µV], but for the respective 
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frequency range. Beyond aEEG analyses, rEEG allows to regard individual frequency 

bands and helps to avoid underestimation of amplitudes or disregarding the low 

frequencies in the raw EEG (O'Reilly et al., 2012). Hence, rEEG analyses allow to 

investigate the composition of the frequencies in the EEG. Figure 6 in section ´2.4.1. 

Range Electroencephalography´ provides a scheme of rEEG calculation from the raw 

EEG trace. 

Beyond these basic approaches of ´EEG quantification´, there is a broad range of 

analytical tools today, that can be useful in clinical practice. As valid interpretation and 

correct technical application of the raw EEG remains one of the main difficulties, pEEG 

recording has become popular during the last decades (J. Bruhn, Myles, Sneyd, & 

Struys, 2006). The application of the Fourier transformation leads to a presentation of 

the EEG in the frequency domain. The amplitude spectrum is used to calculate the EEG 

power that can be estimated as the squared amplitude of each oscillation. Power ratios, 

derived from the power spectrum, can be used as trend data. So-called ´spectrograms´, 

or density spectral array (DSA), chromatically illustrate the weighting of specific 

frequency bands over the whole time of recording (Foreman B., 2012; Purdon, 

Sampson, Pavone, & Brown, 2015). 

1.2.2. Development of Electroencephalography derived brain monitoring  

Since the discovery of the EEG more than a century ago, it has found its way into many 

clinical disciplines, including neurology, intensive care, neonatology, and anesthesia. In 

the context of perioperative brain monitoring, the EEG is indicative of both, ischemia, 

and level of consciousness. One could observe a change from low-amplitude, high-

frequency signals in awake patients to high-amplitude, low-frequency signals at deeper 

levels of anesthesia (Brown, 2010; Aryeh, 2018; Saidi & Murkin, 2005). Further, an 

electrophysiological reaction to ischemia by general slowing manifested as a decrease 

in amplitude of higher frequencies and an increase in amplitude of lower frequencies, 

has been described (C. Lewis et al., 2018; Foreman B., 2012). Generally, cerebral 

desaturation leads to similar EEG patterns as deepening of the anesthesia (Söhle, 

2014). As mentioned above, the number of sensors varies with the aim of application, 

ranging from 256 for high density arrays with increased spatial resolution (Robinson et 

al., 2017) to frontal 2 - 4 channel EEG in long term recordings or anesthesia monitors 

(Chiarelli et al., 2017). Continuous EEG recording is utilized for seizure detection in the 

intensive care unit and can contribute to seizure and epilepsy characterization (Foreman 

B., 2012). During cardiac and neurological surgery, continuous EEG has frequently been 
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used for more than 50 years to detect reduced oxygen delivery (Foreman B., 2012; C. 

Lewis et al., 2018). Electrophysiological changes are closely tied to cerebral blood flow 

(CBF) (Foreman B., 2012) and therefore considered in vasospasm monitoring after 

subarachnoid hemorrhage (Muniz et al., 2016) or cerebral function assessment after 

cardiac arrest (Drohan et al., 2018; Friberg et al., 2013).  

 

Figure 2: The relationship of Cerebral Blood Flow (CBF) to raw EEG and to cellular response based on 

Foreman et. al (Foreman B., 2012). 

Since the 1990ies, several EEG derived monitors for state of anesthesia assessment 

like the Bispectral Index monitor™ (BIS, Medtronic, Minneapolis, MN), the Entropy 

module (GE Healthcare Technologies, Helsinki, Finland) and the Narcotrend Monitor™ 

(NCT, MonitorTechnik, Bad Bramstedt, Germany) have been developed. Besides 

analysis of the EEG in the spectral domain, each product uses different and partly 

proprietary algorithms, which makes comparison difficult (J. Bruhn et al., 2006). What 

they have in common, is the intention to translate the complex, non-linear EEG signal 

into a dimensionless, linear parameter in order to reflect the state of (un-)consciousness. 

Another proposed aim is to reflect the probability of awareness during general 

anesthesia, which may not have been achieved yet (Pandit & Cook, 2013). Assessing 

the patients’ response to anesthetics may help to reduce the risk for both, unintended 

awareness and for excessively deep anesthesia. Preventing an inadequate level of 
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anesthesia can help to reduce postoperative stress disorder, myocardial infarction, 

stroke and cognitive dysfunction (Shepherd et al., 2013). However, the EEG is 

influenced by many factors, including cerebral desaturation, age, neurological disorder, 

body temperature and relevant comorbidities (Kaiser et al., 2020). In terms of 

perioperative monitoring, electrical and mechanical artifacts as well as the specific 

anesthetic drug influence the EEG additionally (Aryeh, 2018; Levy, 1984; Purdon, 

Pavone, et al., 2015; Purdon, Sampson, et al., 2015; Scheeren et al., 2019). Processed 

EEG monitors were primarily developed to evaluate the anesthetic level rather than to 

detect cerebral ischemia (Söhle, 2014). In terms of monitoring the hypnotic level of 

anesthesia, various task forces recommend using pEEG during total intravenous 

anesthesia, deep hypothermic circulatory arrest (DHCA) and of patients with greater risk 

for intraoperative awareness (Söhle, 2014; Michels P. et al., 2017).  

For specific high-risk populations, such as elderly with greater risk of postoperative 

delirium, a grade ´A´ recommendation for ´depth-of-anesthesia´ monitoring has been 

proposed by the European Society of Anesthesiologists recently (Fahy B.G., 2017). The 

use of intraoperative EEG information is suggested to prevent postoperative 

neurocognitive disorders (Aldecoa et al., 2017; Chan et al., 2020).  

Amplitude integrated EEG recording, indicative for asphyxia and correlating with findings 

in the raw EEG (al Naqeeb, Edwards, Cowan, & Azzopardi, 1999; Del Rio et al., 2016; 

Schettler, 2013), was introduced for adults in the late 1960s and established in 

neonatology throughout the 1980ies (de Vries & Hellstrom-Westas, 2005; Schettler, 

2013). One advantage of aEEG based monitoring is its reliability during mild 

hypothermia (Gluckman et al., 2005; Horan, Azzopardi, Edwards, Firmin, & Field, 2007). 

It has been investigated for assessment of infants with encephalopathy (al Naqeeb et 

al., 1999; Goeral et al., 2015) or outcome and survival prediction after cardiac arrest 

(Drohan et al., 2018; Friberg et al., 2013). In terms of intraoperative brain monitoring, 

the previously mentioned pEEG monitors also regard changes in amplitude in their index 

calculation. However, whether a change of the calculated index is due to a change in 

amplitudes is not obvious. Moreover, whether the change in amplitudes is due to a 

change in anesthesia level, cerebral desaturation, artifacts or any other factor cannot be 

determined so far.  
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1.2.3. Advantages and challenges of Electroencephalography derived brain 

monitoring 

The following table summarizes advantages and challenges EEG based brain 

monitoring offers: 

PROs (+) CONs (-) 

cheap, fast, noninvasive (Chiarelli et al., 

2017) 

interpretation (Foreman B., 2012; C. Lewis et 

al., 2018; Saidi & Murkin, 2005) 

high temporal resolution (Robinson et al., 

2017)  

hypothermia and anesthetics (Saidi & 

Murkin, 2005)  

comparability and reproducibility due to 10-20 

system (Chiarelli et al., 2017; Drohan et al., 

2018) 

sensor placement (Aryeh, 2018) 

specific and early (Foreman B., 2012) for 

brain ischemia (C. Lewis et al., 2018) 

attenuation by pre-existing cortical injury (C. 

Lewis et al., 2018) 

outcome prediction after cardiac arrest 

(Asgari et al., 2018) 

interference with electrical signals and 

cautery (C. Lewis et al., 2018; Schuller P.J. et 

al., 2015) 

feasible for continuous monitoring (Foreman 

B., 2012) 

hypothermia as a confounding factor (C. 

Lewis et al., 2018; Saidi & Murkin, 2005) 

correlative to CBF (Foreman B., 2012; Muniz 

et al., 2016)  

medication as a confounding factor (Aryeh, 

2018; C. Lewis et al., 2018)  

can be quantified (Foreman B., 2012)  proprietary algorithms in EEG based monitors 

(Aryeh, 2018)  

comparison between different brain regions 

possible (Foreman B., 2012) 

muscle activity as a confounding factor (C. 

Lewis et al., 2018) 

tool for state of anesthesia assessment (C. 

Lewis et al., 2018; Palanca et al., 2009)  

influenced by age and comorbidities (Aryeh, 

2018; Matthias Kreuzer et al., 2020, Kaiser et 

al., 2020) 

pEEG monitors easy to interpret (scale from 0 

– 100)  

drug-specific alterations (Scheeren et al., 

2019)  

Table 5: Summary of advantages and challenges of EEG derived brain monitoring. 
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1.3. Combined monitoring 

Since many systemic parameters can influence EEG indices, they should be interpreted 

in conjunction with the raw EEG, possibly supported by the spectrogram as well as blood 

pressure, systemic oxygenation or perfusion pressure (Foreman B., 2012). NIRS and 

EEG technology both provide information about cerebral integrity and function and are 

increasingly used in the perioperative management (Scheeren et al., 2019). Both react 

to ischemia and can be used clinically as continuous, non-invasive, relatively cheap and 

handy tools. The simultaneous application of NIRS and EEG is possible, due to the lack 

of severe electro-optical interference (Chiarelli et al., 2017). However, ischemia and 

anesthesia influence the EEG in a similar way. Therefore, the EEG can only be used as 

an ischemia monitor if the level of anesthesia remains stable and if spontaneous 

electrical activity is maintained (Söhle, 2014). Equally, it may be possible that in terms 

of pEEG analyses, brain ischemia leads to index values outside the target range, 

independent from the current level of anesthesia. In certain surgical settings, such as 

cardiac and thoracic surgery, the patients are exposed to an increased risk of both, 

awareness and cerebral ischemia (Ghosh et al., 2012; J.M. Murkin, 2011; Kertai et al., 

2012). For this reason, extended neuromonitoring with the addition of NIRS is performed 

here. Neither cerebral deoxygenation nor changes in cerebral activation can be 

explained monocausally. Therefore, and since brain oxygenation is probably related to 

brain function, it may be advantageous to interpret intraoperative EEG and NIRS 

measurement together (Caicedo et al., 2016). Also, in terms of autoregulation 

monitoring of the brain, both methods may be useful (Edmonds 2004, Moerman 2016, 

Lewis, Parulkar et al. 2018, Scheeren, Kuizenga et al. 2019). There are indicators that 

the limits of autoregulation are shifted in certain patient groups (Edmonds, 2004; Joshi 

et al., 2010; Ono et al., 2012). It could be helpful to re-evaluate the assumption that the 

oxygen supply to the brain is autoregulated and therefore not in need of monitoring 

during general anesthesia. The current state of research suggests that inhaled 

anesthetic agents can impair cerebral autoregulation in a dose-related manner (Dagal 

& Lam, 2009; Strebel et al., 1995). To assess autoregulation during general anesthesia, 

transcranial Dopplersonography has been recommended (Dagal & Lam, 2009). For 

selective time periods, NIRS-based autoregulation monitoring was described as more 

suitable than Doppler-based autoregulation monitoring (C. Lewis et al., 2018). There are 

already calls for multimodal monitoring (Asgari et al., 2018; Schneider, 2014; Thudium 

et al., 2018) and the combination of EEG and NIRS (Goeral et al., 2017; Perez et al., 
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2015; Scheeren et al., 2019). An animal study indicates that aEEG reflects cerebral 

function consistently and accurately at different cerebral regional O2 saturation levels 

(Dandan, 2008). In line with that, aEEG and NIRS have been proven to be important 

predictors of short-term outcome in hypothermia treated neonates, especially when 

combined (Goeral et al., 2017; Variane, Chock, Netto, Pietrobom, & Van Meurs, 2019). 

Another study supports the bilateral use of BIS and NIRS monitoring for tracking 

changes in CBF during carotid endarterectomy under general anesthesia (Perez et al., 

2015). Hence the physiological mechanism of the link between EEG and NIRS is still 

unclear, more studies are required (Caicedo et al., 2016; Roche-Labarbe, Wallois, 

Ponchel, Kongolo, & Grebe, 2007).  

1.4. Research question 

Interpretation of the raw EEG and integrating this signal into standard monitoring 

remains one of the main difficulties for the user. The idea of using pEEG monitors to 

overcome this challenge, makes it difficult to differentiate between all possible 

influencing factors on the displayed EEG. To optimize EEG-based anesthesia 

monitoring, a differentiation between anesthetic and non-anesthetic related EEG 

changes is crucial. Hence, identifying brain saturation related changes with the help of 

NIRS can help to improve monitoring.  

This doctoral thesis presents results from a pilot investigation regarding the relationship 

between NIRS signal and EEG derived parameters in 307 adult patients undergoing 

cardiac surgery under general anesthesia. Therefore, different relevant EEG parameters 

are regarded, including raw EEG and processed EEG parameters as well as monitor 

related indices. A combination of EEG and NIRS provides both, an electrophysiological 

and metabolic approach to depict brain state. To better understand how NIRS and EEG 

relate to each other as unaffected from certain surgical or anesthesiologic procedures 

as possible, the method of analysis is elaborated in different steps. The relationship 

between NIRS and electrophysiological parameters under general anesthesia in adults 

has not been investigated well yet. Eventually, these analyses could contribute to 

planning future prospective studies, identifying and validating brain saturation-specific 

changes in the EEG. The opportunity due to the large number of cases on the one hand 

and the limitations due to the retrospective, explorative approach on the other hand 

should be noted a priori. The main intention of the thesis was to identify and describe 
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possible associations between NIRS and EEG parameters at controlled conditions. We 

further investigated the influence of temperature on the EEG.  
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2. Material and Methods 

2.1. Data recording 

Intraoperative data from 439 Patients scheduled for cardiac surgery on CPB were 

recorded externally in the Inselspital Bern, Switzerland. The data collection was 

observational without intervention or randomization on anesthesiologic or surgical 

grounds. Patients consent and approval of the ethical committee for collecting and 

analyzing of biosignals was given in written form: ClinicalTrials.gov Identifier: 

NCT02976584; ethics committee of the canton of Bern KEK#210/15. Most procedures 

consisted of coronary artery bypass graft or valve replacement and all were listed and 

weighed according to EuroSCORE II (Nashef et al., 2012), which can be found in the 

appendix. The records include standard monitoring with electrocardiography, 

capnography and respiratory parameters (Primus by Draeger, Luebeck, Germany). 

Further, arterial oxygen saturation, arterial blood pressure with calculated mean arterial 

pressure (MAP) and body temperature (rectal or nasopharyngeal probe) were recorded. 

In terms of Neuromonitoring, bifrontal regional NIRS (NIRO [Hamamatsu Photonics, 

Japan] and few recordings with EQUANOX™ [Nonin Medical Inc, Plymouth, USA] or 

INVOS™ [Somanetics Corp, Minneapolis, USA]) with a sampling rate of 1 Hz and 

bifrontal regional EEG (Narcotrend monitor, Hannover, Germany) at a sampling rate of 

125 Hz were recorded. NIRS and Narcotrend monitors were connected to a Philips 

IntelliVue MP90 anesthesia monitor (Philips Medical Systems, Eindhoven, Netherlands) 

with IntelliBridge modules and data were extracted using the Rugloop II software 

(Demed Medical, Temse, Belgium). All records were time-synchronized and marked 

with timepoints to label start and end of the OP, the period of aortic clamping as well as 

initiation and end of CPB. 

2.2. Data preparation 

Criteria for exclusion were non-Isoflurane general anesthesia or a combination of volatile 

anesthetics. Also, incomplete recordings of end-tidal gas concentration, temperature, 

EEG or NIRS were excluded. ´High´ risk patients and settings were defined as 
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undergoing a re-operation, multiple periods of extracorporal circulation, emergency 

intervention, intraoperative resuscitation or death, sepsis and shock. This ´high´ risk 

cohort was also excluded. It was s not controlled for age specifically, but for any 

analyses the age-adjusted minimum alveolar concentration (aaMAC) was calculated 

from the end-tidal Isoflurane concentration according to Nickalls and colleagues 

(Nickalls & Mapleson, 2003). Finally, 307 patients were selected for analyses.  

Following flow chart helps to illustrate the selection of the patients for our analyses: 

 

Figure 3: Flowchart of patients` selection. 
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2.3. Elaboration of the analysis concept 

To evaluate the impact of NIRS on the EEG parameters, we decided to only include 

EEG parameters derived at controlled conditions such as:  

• recorded before aortic cross-clamping 

• at a temperature above 35°C 

• with the MAP within 50 - 150 mmHg 

• under general anesthesia between 0.6 and 0.8 aaMAC 

because all these factors can significantly influence the EEG. The EEG can be 

influenced by various other factors. These can be patient related (e.g. age, BMI, ethnic, 

neuronal disease, muscle activity, hypoxia, diabetes / cardiac / renal comorbidities) as 

well as procedural related (e.g. mechanical artefact, electrocautery, anesthetic drug, 

deep hypothermic circulatory arrest) and are often difficult to notice (Lewis, 2018; Saidi, 

2005; Scheeren, 2019; Kreuzer, 2020; Kaiser, 2020). In this retrospective approach it is 

even more difficult to define and exclude influencing factors on the EEG in order to 

investigate the relationship to the NIRS signal as precisely as possible. To control for 

likely influences on the EEG within our cohort, the thresholds for temperature, MAP and 

aaMAC were (re-) evaluated.  

2.3.1. Influence of the temperature on the amplitudes of the 

Electroencephalography 

The influence of temperature on the EEG signal was proposed long ago already (Levy, 

1984). Concerning cardiac surgery with the use of CPB, a linear correlation between 

body temperature and peak power as well as between body temperature and peak 

power frequency in the high frequency band has been described for the period of 

rewarming (Levy, 1984). Concerning pEEG monitors, moderate hypothermia (28 - 30°C) 

during CPB reveals lower BIS Indices when compared to mild hypothermia (32 - 34°C) 

(Honan, Doherty, & Frizelle, 2006). Also the NCT index can decline with temperature 

(Dennhardt et al., 2018). In cardiac anesthesia, a weak but statistically significant 

negative correlation between BIS and mixed venous oxygen saturation was observed 

exclusively in hypothermic patients < 34.1°C (Stein, 2010).  Amplitude integrated EEG 

seems to remain feasible for brain monitoring of neonates during Hypothermia down to 

34 - 35°C rectal temperature (Gluckman, Wyatt et al. 2005). Within our cohort, the 
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proposed threshold for temperature influence on the EEG was validated before further 

analyses as presented in figure 4. In accordance with descriptions in the literature, EEG 

changes in amplitudes appeared at a body temperature of ≤ 34°C (Stein, 2010; 

Dennhardt, 2018). 

Figure 4 illustrates pooled data pairs of simultaneously sampled rEEG (UM [µV]) and 

NIRS recording at a sampling rate of 1 Hz for the frequencies in the alpha (8 - 12 Hz), 

beta (12 - 25 Hz), delta (0.5 - 4 Hz) and theta (4 - 8 Hz) range. The period from start of 

recording in the operation room until aortic clamping before initiation of CPB was 

considered. It was controlled for the MAP to be within 50 - 150 mmHg and for the aaMAC 

to be within 0.6 - 0.8. The color codes for the amplitude size of the UM [µV] and 

visualizes a general decline of amplitudes when the patients’ temperature falls below 

35°C. To minimize the influence of temperature, we only included recordings during 

periods with the patients’ temperature of > 35°C for all further analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 
 

Figure 4: Influence of the body temperature on data pairs of NIRS and frontal rEEG in the alpha, beta, 

delta and theta frequency. 
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2.3.2. Influence of the mean arterial pressure on cerebral perfusion 

Electrophysiological changes are closely tied to CBF (Foreman B., 2012). The principle 

of autoregulation states that the CBF can be maintained by cerebral vasoreactivity 

independent from fluctuations of the MAP within the autoregulated MAP range 

(Edmonds, 2004). Consequently, changes in the MAP should not extensively influence 

the EEG, as long as the autoregulation mechanism is intact. However, current state of 

research suggests that the autoregulation limits in certain patient groups deviate 

significantly from the mentioned range of 50 - 150 mmHg (Edmonds, 2004; Scheeren et 

al., 2019). For example, a shift of the lower autoregulation limit to > 66 mmHg was 

observed during CPB (Hori et al., 2014). Moreover, a wide range of MAP at the lower 

limit of autoregulation (LLA) during CPB from 40 to 90 mmHg has been described (C. 

Lewis et al., 2018). A study on 234 patients showed that impaired cerebral 

autoregulation occurred in 20% of patients during CPB (Ono et al., 2012). Intraoperative 

MAP values during CPB could be changed by adjusting pulsatile or non-pulsatile flow 

alone (Tovedal, Thelin, & Lennmyr, 2016). Vasoactive drugs could cause paradoxical 

changes in cerebral oxygen saturation with changes of the MAP. Notably, a paradox 

response of the cerebral oxygen saturation to changes of the MAP could be observed 

exclusively in patients with intact autoregulation (Moerman, 2016). In summary, cerebral 

autoregulation mechanism and CBF monitoring remain complex phenomena (Ferrari, 

2004; Moerman, 2016). In a study by Murkin and colleagues, maintaining MAP above 

50 mmHg was considered as ´best clinical practice´ (J. M. Murkin et al., 2007). Neither 

the definition of the autoregulation range nor the MAP target values should be defined 

by our analyses. Nevertheless, to minimize the risk of autoregulation or MAP 

abnormalities interfering with the NIRS or EEG signal, only the MAP range of 50 - 150 

mmHg and only the period before initiation of CBP were included in the main analyses. 
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2.3.3. Influence of the minimum alveolar concentration on the 

Electroencephalography 

To validate our approach and to illustrate the complex interplay of the recorded 

biosignals, we evaluated data from the whole observed aaMAC range in combination 

with pEEG and NIRS dynamics. 

The pre-analyses of the whole observed aaMAC range should underline the need to 

concentrate only on a defined aaMAC range for more accurate analyses and validate 

our choice of the 0.6 - 0.8 aaMAC. First, this range seems to provide an adequate level 

of anesthesia for this patient group and for this surgical intervention. Second, this range 

provides a low risk of provoking Burst Suppression in the EEG. As a pEEG parameter 

for this investigation we used the NCT index which ranges from 100 (awake) to 0 

(electrical silence) (Kreuer & Wilhelm, 2006). In the EEG, a deepening of anesthesia 

through an increased supply of the gas concentration can look similarly to cerebral 

desaturation. It is therefore recommended to use the EEG for cerebral ischemia 

detection only if the applied anesthetic gas concentration remains unchanged (Söhle, 

2014). The targeted MAC can vary greatly depending on the patient population or the 

type of procedure. Hence, it would be interesting to know if the relation between EEG 

and saturation changes between either constantly high or constantly low gas 

concentration, and if our selected 0.6 - 0.8 aaMAC range seems adequate. This pre-

analysis should help to show if the correlation between pEEG analysis, as integrated in 

the NCT monitor, and the NIRS changes dependent on the aaMAC. For example, if the 

correlation is different at a constant aaMAC of 1.6 compared to a constant aaMAC of 

0.2. In our study, the risk of changes in the aaMAC interfering with the NIRS or EEG 

signal, should be minimized by defining limits of the included aaMAC values. Therefore, 

we used a linear regression model for a wide range of aaMAC values (0.2 - 1.6), to 

evaluate the impact of cerebral desaturation (evaluated with NIRS) on the pEEG 

(evaluated with NCT index).  

The linear regression models for the NCT index versus NIRS (figure 5) revealed a 

dependence of the NCT on NIRS. All values were observed at a body temperature 

>35°C. One graph represents one stable aaMAC, ranging from 0.2 - 1.6 in steps of +0.1. 

The colorbar codes for the aaMAC range from blue (0.2) to dark red (1.6).  
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Figure 5: The influence of the aaMAC on the NCT index with included aaMAC range for the main 

analyses (0.6 - 0.8) explicitly listed next to their corresponding graphs. 

Figure 5 illustrates that the direction of a link between NCT index and NIRS value can 

be reversed comparing either very high or very low aaMAC values within our cohort. For 

the lower aaMAC values the recorded NCT index increased as the NIRS value 

increased, except for one (aaMAC 0.3). Conversely, for the higher aaMAC values the 

NCT index decreased as the NIRS value increased, except for the aaMAC of 1.6. The 

fact that at the highest aaMAC concentration of 1.6 the NCT index fell as the NIRS value 

rose could be due to occurrence of burst suppression in the raw EEG, which was 

undetected by the NCT monitor. Although an examination of the monitor or the 

dependence of the link between index-calculation and NIRS value on the MAC would 

be very interesting, it was not subject of current research. Currently, figure 5 underlines 

the importance of limiting the included aaMAC range to 0.6 - 0.8 in terms of interpreting 

studies on the relation between corresponding NIRS and EEG parameters. This range 

also corresponds to the pronounced intraoperative target MAC for our cohort. 
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2.4. Processed Electroencephalography parameters 

To describe possible changes caused by the saturation status, we applied a set of 

(processed) EEG parameters to the data. Therefore, we investigated whether the EEG 

parameter reacts specifically to the current cerebral saturation. For these analyses, all 

simultaneously occurring NIRS, EEG parameter and aaMAC values of the 307 patients 

were used. As mentioned above, we controlled for the temperature to be > 35°C, the 

MAP to be within the estimated autoregulation range of 50 - 150 mmHg and limited our 

analyses to the 0.6 - 0.8 aaMAC range. 

2.4.1. Range Electroencephalography 

Amplitude integrated EEG (aEEG) is an EEG parameter that is used in combination with 

NIRS already (Goeral et al., 2017). Pursuing to avoid underestimation of amplitudes or 

disregarding low frequencies, rEEG is a recently developed alternative to aEEG 

(O'Reilly, Navakatikyan et al. 2012). It is chosen for our analyses of saturation related 

influence on the adult brain under general anesthesia, where especially lower 

frequencies might be important. Analyzed raw EEG sections are divided into the alpha 

(8 - 12 Hz), beta (12 - 25 Hz), delta (0.5 - 4 Hz) and theta (4 - 8 Hz) frequency range for 

rEEG calculation. This approach aims to investigate whether specific frequencies react 

differently to current cerebral (de)saturation. For example, the EEG alpha frequency is 

described to react early on cerebral ischemia (Söhle, 2014). The alpha frequency is 

predominantly expressed in the frontal brain during general anesthesia and its 

predominance is assumed to be revealed relatively independently from age (Purdon et 

al., 2015).  
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Figure 6: Scheme of the rEEG calculation based on O'Reilly et a (O'Reilly et al., 2012) with 

(A) Exemplary raw EEG signal. (B) Partitioning of EEG signal into adjacent intervals (dashed vertical lines). 

(C) Measurement of EEG amplitude on each adjacent interval. Numerically these values are the difference 

between maximal and minimal value of an interval (dashed horizontal lines). (D) Construction of the 

continuous representation of EEG amplitude. (E) Final continuous amplitude signals superimposed on initial 

EEG signal of 8 seconds. (F) Time compressed rEEG signal of 3 hours. Values of LM and UM are calculated 

as 5th and 95th percentiles of rEEG values (black arrows). 

2.4.2. The Narcotrend index 

The NCT Monitor, originally based on visual assessment of the raw EEG in relation to 

sleep classification, should help to assess state of anesthesia by offering a 

dimensionless, linear NCT index from 100 (awake) to 0 (electrical silence or coma) 

(Kreuer & Wilhelm, 2006). The NCT Monitor performs an automatic real time 

interpretation of 20 seconds raw EEG epochs every 5 seconds. Basis of the 

interpretation algorithm is the visual classification of 1000 raw EEG traces of 20 

seconds. Simplified, the interpretation algorithm of the NCT Monitor can be reduced to 

the following steps: after artifact removal (e.g. electromyographic activity or eye 

movement), qEEG features are calculated from the time (e.g. autoregressive 

parameters) and the frequency (e.g. spectral parameters) domain. After application of 

multivariate classification functions and plausibility checks, the monitor reveals the linear 

index (Schultz A, 2004). 

F 
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Figure 7: Scheme of the Narcotrend classification algorithm (Schultz A, 2004). 

2.4.3. Electroencephalography band power  

Through application of the Fast Fourier Transformation, the EEG can be decomposed 

into its frequency components. To provide information on the frequency components 

and corresponding amplitudes, the so called ´spectrogram´ illustrates the power (on the 

y-axis) by frequency (on the x-axis). The power corresponds to the squared amplitude 

value [µV] and is commonly represented in decibels [dB], defined as 10 times the log 

base 10 of the EEG power in the respective frequency (Purdon, Sampson, et al., 2015). 

To calculate the relative power of a frequency, the absolute band power of the respective 

frequency is divided by the absolute band power of all frequencies or a defined 

frequency range (I. J. Rampil, 1998). Spectral analyses aim to detect subtle changes in 

frequency structure due to anesthetic drug dose or effect (E. R. John, 2005; Purdon, 

Sampson, et al., 2015). Nevertheless, various influences can cause changes in the 

frequency structure of the EEG, which still need to be defined. Early attempts to measure 

electrical brain activity and thus the degree of consciousness used components from 

the power spectrum of the EEG (Gaskell et al., 2017; E. R. John, 2005). Reactions of 

parameters from the power spectrum to changes in cerebral saturation and to changes 

in the degree of consciousness are described. In the late 1990ies an increase in the 
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delta power is described to detect cerebral ischemia (I. J. Rampil, 1998). Current 

research indicates that trends in the power spectrum are related to the level of 

consciousness and that spectral components can serve as markers for the presence of 

consciousness (Choi, Noh, & Shin, 2020; Colombo et al., 2019). Literature suggests, 

that during general anesthesia, the highest power values are found for the slow-delta 

(~1 Hz) and alpha (~ 10 Hz) oscillation (Gaskell et al., 2017; John, 2005; Purdon, 

Sampson, et al., 2015). 

2.4.4. Entropies 

The entropy is related to the amount of ´disorder´ in a system and, in terms of an 

information theoretical context, aims to assess the irregularity, complexity, or 

unpredictability of a signal. Claude Shannon introduced the concept of entropy to 

quantify the information content within a signal and he defined it as: 

H =  - Σ p(i) log p(i)  (3) 

Entropy, according to Shannon C.E., to quantify probabilities of an amount (i) of contributing contents (p) of 

the signal (Shannon, 1948). 

In short, the entropy reflects the shape of a probability distribution of states. The more 

uniformly distributed, the higher the entropy. In the context of anesthesia research, 

different entropies have been introduced. We used the permutation entropy, where the 

information of states is derived directly from the EEG time series (Jordan, 2008) and the 

spectral entropy, where the information of states is derived from the power spectrum (H.  

Viertiö-Oja, 2004). Studies suggest that entropy parameters of the EEG are a useful tool 

to assess anesthetic drug effect by estimating the information content of the EEG 

(Bruhn, 2001). A recent study on age-related changes in the EEG indicates that entropic 

parameters are superior to power spectral density parameters in detecting subtle 

changes in the oscillatory composition of the EEG (Matthias Kreuzer et al., 2020). 

2.4.4.1. Permutation Entropy 

Permutation entropy, introduced by Bandt and Pompe in 2002, corresponds to the 

Shannon Entropy, applied to the regularity of distribution of coded amplitude values in 

the EEG time series (Bandt & Pompe, 2002). Permutation entropy is computed on the 

time-domain of the EEG and quantifies the regularity structure of the neighboring order 



 

27 
 

of amplitude values in time series. Hence, permutation entropy provides information 

about the uniformity of the distribution of ordinal EEG patterns (Matthias Kreuzer et al., 

2020). The more uniformly distributed the patterns of the ranks of neighboring of 

amplitude values is, the higher the permutation entropy. Studies indicate that 

permutation entropy is able to separate wakefulness from unconsciousness and can 

serve as a surrogate of local cortical information processing (Ranft et al., 2016). It is 

considered as a surrogate of cortical information processing 

H  =  - Σ p(π) log p(π)  (4) 

Permutation entropy to reflect the uniformity of distribution of neighboring order of amplitude values on the 

time domain of the EEG (Bandt & Pompe, 2002). 

2.4.4.2. Spectral Entropy 

The spectral entropy is derived from the power spectrum of the EEG. Based on the 

Shannon entropy, the spectral entropy evaluates the shape of the relative power 

spectrum, i.e., it defines the percentual contribution of the power of each frequency to 

the total power in a defined frequency range. The more uniformly distributed the relative 

power spectrum is, the higher the spectral entropy. As the EEG under general 

anesthesia, induced and maintained with common anesthetics, changes from a high 

frequency, low amplitude pattern to one with slow oscillations and high amplitudes, the 

spectrum also changes from a more uniform distribution (high spectral entropy) to a 

more left skewed distribution (low spectral entropy).  

S =  - Σ p(fi) log p(fi)  (5) 

Spectral entropy to reflect the uniformity of contribution of the power of each frequency to the total power 

of the EEG (H.  Viertiö-Oja, 2004). 
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2.5. Statistical analyses 

To describe a possible relationship between the NIRS and the (processed) EEG 

parameter we constructed linear models that describe the relationships between these 

factors under controlled conditions, i.e., within the defined temperature, MAP, and 

aaMAC ranges as well as only for the intraoperative period until clamping. 

Therefore, we used the MATLAB fitlm function and included only one factor (y ~ 1 + x1). 

This factor is represented by different EEG parameters, trying to regard the whole 

spectrum from the older, more basic, to the more current approaches of EEG analyses.  

The MATLAB fitlm properties include information about following coefficient estimates 

for the slope of the graph and the intercept (with the y-axis): estimated coefficient value 

(Estimate), Standard error of the estimate (SE), t-statistic (tStat) and p-value (pValue). 

The t-statistic tests the null hypothesis, that the slope is zero against the alternative that 

it is different from zero, and the p-value is calculated for this t-statistic on 5% significance 

level. A p < 0.05 indicates a significant different slope from zero. Hence it indicates a 

significant increase or decrease of the EEG parameter with NIRS at the 5% significance 

level. 

The MATLAB fitlm properties also include information about following summary 

statistics: the number of observations and the R-squared value. The R-squared value is 

the portion of the total sum of squares explained by the model, and thus suggests the 

portion of variability of the EEG parameter that can be explained by the model. A R-

squared of e.g. 0.02 would suggest that 2% of the EEG variability can be explained by 

the model. 

More information on the MATLAB fitlm function, illustrated with examples, can be found 

on “https://de.mathworks.com/help/stats/linearmodel.html”.  

As the duration of the analyzed period shows a high dispersion within the cohort, mainly 

between 20 and 150 minutes (figure 9), and as EEG variables are not normally 

distributed, the median was calculated individually for each patient instead of presenting 

pooled data as done for the 3D-histograms. This method should avoid overestimating 

individual patients. NIRS values from 30% to 100% were considered in steps of 1%. 

Consequently, it cannot be read out of the figures how long or often each patient reveals 

this certain NIRS value during the analyzed period, but it prevents overemphasis of 

patients with long interventions. 

For the case reports, we compared the patients with ´mild´ desaturation (n = 5) and with 

´severe´ desaturation (n = 4) using a Mann–Whitney U test at a confidence level of 95% 
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together with the area under the receiver operator characteristics curve and 10,000-fold 

bootstrapped 95% CIs as effect size. We used the MATLAB-based MES toolbox for area 

under the receiver operator characteristics curve and 95% CI calculation (Hentschke & 

Stüttgen, 2011). According to the traditional academic point system, area under the 

receiver operator characteristics curve values can be interpreted as ´excellent´ (area 

under the receiver operator characteristics curve between 1 and 0.9); ́ good´ (area under 

the receiver operator characteristics curve less than 0.9, but greater than or equal to 

0.8); ´fair´ (area under the receiver operator characteristics curve less than 0.8, but 

greater than or equal to 0.7); ´poor´ (area under the receiver operator characteristics 

curve less than 0.7, but greater than or equal to 0.6); or ´fail´ (area under the receiver 

opera-tor characteristics curve less than 0.6). For the (normalized) power spectral 

density comparison, we only defined significant results if at least two neighboring 

frequencies showed significant differences between the group with ´mild´ and ´severe´ 

desaturation. This or similar approaches were used earlier (Akeju et al., 2014; Matthias 

Kreuzer et al., 2020). All tests applied were two-tailed tests and we considered p < 0.05 

to be significant. 

2.5.1. Range Electroencephalography and Near Infrared Spectroscopy 

The linear regression model aims to investigate the relationship between rEEG and 

NIRS value. The rEEG signal was first decomposed into alpha (8 - 12 Hz), beta (12 - 

25Hz), delta (0.5 - 4 Hz) and theta (4 - 8 Hz) frequency bands. Whenever one individual 

patient showed a certain saturation during the whole analyzed time period, the 

corresponding rEEG parameter (UM, LM and BW [µV]) was stored in each frequency 

band. In separated linear models, the median of either upper margin, lower margin or 

bandwidth is represented as a function of the corresponding NIRS value. One cross 

represents the median rEEG of one patient, simultaneously observed with a certain 

NIRS value throughout the whole analyzed period but independently from the duration 

of this certain NIRS value. The regarded NIRS values range from 30 - 100% in steps of 

+1%. NIRS values below 30% were not included to avoid falsely low measurements. 

2.5.2. Narcotrend index and Near Infrared Spectroscopy 

The behavior of a pEEG parameter, represented by the NCT index, in relation to the 

current cerebral saturation, evaluated with NIRS, was investigated as well. Since the 

analyzed EEG tracks were recorded with the NCT monitor, a linear model of the NCT 

index and the NIRS value was also calculated for the sake of completeness. It is 
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emphasized that this retrospective research did not venture an assessment of the 

monitor. However, this analysis could provide useful impulses for future studies on the 

behavior of the NCT index in relation to current cerebral saturation, in order to make the 

monitor more applicable. It might even help to clarify whether pEEG monitors are 

capable to detect brain ischemia.  

2.5.3. Spectral Encephalography and Near Infrared Spectroscopy 

Putting the behavior of absolute or relative power in linear relation to the course of 

cerebral saturation can help to identify saturation induced changes of the EEG spectral 

power. Our analyses of absolute and relative band power of the alpha (8 - 12 Hz), beta 

(12 - 25 Hz), delta (0.5 - 4 Hz) and theta (4 - 8 Hz) frequency aim to investigate their 

relationship to cerebral saturation. In separated linear models, the median of either 

absolute or relative power of each frequency band is represented as a function of the 

corresponding NIRS value. One cross represents the median power of the EEG of one 

patient, simultaneously observed with a certain NIRS value throughout the whole 

analyzed period but independently from the duration of this certain NIRS value. The 

regarded NIRS values range from 30 - 100% in steps of +1%. 

2.5.4. Entropy and Near Infrared Spectroscopy 

We also regarded entropic parameters in order to investigate saturation-related changes 

in the EEG from the 0.5 - 30 Hz range. We analyzed permutation entropy (PEn), which 

is calculated directly from the raw EEG, and spectral entropy (SpEn), which is calculated 

from the frequency spectrum of the EEG. More information about the entropy term and 

the mathematical background can be found in corresponding literature (H.  Viertiö-Oja, 

2004).  

2.5.4.1. Permutation Entropy and Near Infrared Spectroscopy 

This linear regression model on PEn and NIRS aims to investigate whether this entropic 

parameter can be influenced by the cerebral saturation. One cross represents the 

median PEn of the EEG of one patient, simultaneously observed with a certain NIRS 

value throughout the whole analyzed period but independently from the duration of this 

certain NIRS value. The regarded NIRS values range from 30 - 100% in steps of +1%. 
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2.5.4.2. Spectral Entropy and Near Infrared Spectroscopy 

The SpEn corresponds to the Shannon Entropy, applied to the power spectrum of the 

EEG. This method is computed on the frequency-domain of the EEG and aims to assess 

brain activity by measuring the regularity of frequency distribution from the power 

spectrum of the EEG (J. Bruhn et al., 2006) and finds implementation in the 

commercially available entropy modules. This linear regression model on SpEn and 

NIRS aims to investigate whether this entropic parameter can be influenced by the 

cerebral saturation. One cross represents the median SpEn of the EEG of one patient, 

simultaneously observed with a certain NIRS value throughout the whole analyzed 

period but independently from the duration of this certain NIRS value. The regarded 

NIRS values range from 30 - 100% in steps of +1%. 

2.6. Exemplary investigations of patients with ´mild´ or ´severe´ 

cerebral desaturation 

We analyzed frontal NIRS and EEG recordings during cardiac surgery under Isoflurane. 

We visually selected 9 patients from the cohort of 307 with a constant decline of cerebral 

saturation, evaluated with NIRS, at stable gas concentration and without the occurrence 

of EEG burst suppression. For this selection we regarded the entire eligible recordings 

from the operation room and not only the recordings before initiation of CPB.  We 

calculated the spectral entropy from a 10 second EEG period including for the 0.24 to 

31.98 Hz range at high (%-NIRS before desaturation) and low (%-NIRS after 

desaturation) saturation within each patient. We defined the desaturation as ´mild´ 

(desaturation not below 50%-NIRS) and ´severe´ (desaturation below 50%-NIRS) and 

noted whether the spectral entropy has increased or decreased during the cerebral 

desaturation for each patient. We further compared the spectral EEG features, i.e. the 

power spectral density (PSD) from a 10 second EEG epoch, between the patients after 

´mild´ and after ´severe´ desaturation. To compare the PSD of both cerebral 

desaturation groups, we calculated the AUC with 95% confidence intervals.  
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3. Results 

 

3.1. Demographics 

Following figures illustrate the patients` demographic variables providing median (□) and 

mean (+) of the male (green) and female (orange) patients. Each spot represents one 

patient.  

Median (with IQR) and mean (with SD) age in the male population was 67 (13) and 

64.75 (11.68), similar to 67 (16) and 64.34 (14.31) within the female. Median (with IQR) 

and mean (with SD) BMI [kg/m²] in the male population was 27.14 (6.22) and 27.81 

(4.66) compared to 25.84 (9.35) and 27.20 (5.82) in the female. The cohort consisted of 

221 (72%) male and 86 (28%) female patients (figure 8). 

 

 

Figure 8: Demographics of 307 cardiac patients for the analyses. 

Only the period from start of recording in the operating room until aortic clamping before 

initiation of CPB was investigated, in order to minimize interventional artefacts or 

uncertainties due to the retrospective approach. For example, at the beginning of the 

CPB the blood circulation is commonly diluted with 1400 - 1600 ml Ringer's solution, 

which leads to a significant drop in cerebral saturation. Not only at initiation but for the 

whole period on CPB the measured NIRS values may differ from those before 

connection to the CPB (Bennett, Weatherall, Webb, Dudnikov, & Lloyd, 2015). Further, 
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the oxygen demand of some patients can be reduced by cooling down the body 

temperature and barbiturate administration, so that unphysiological NIRS values are no 

longer representative for the cohort (C. B. Lewis & Adams, 2020). The duration of the 

investigated period varies within the cohort, ranging from a minimum of 19.8 minutes to 

a maximum of 6 hours and 42 minutes. Median (with IQR) and mean (with SD) time until 

aortic clamping is 69.03 (53.8) and 75.70 (45.56) minutes (figure 9).  

 

 

Figure 9: Duration of analyzed period per patient in minutes. 

3.2. Distribution of Near Infrared Spectroscopy values 

To provide information on the behavior of the NIRS signal during the investigated period, 

the minima, maxima and mean measured NIRS values as well as interhemispheric 

differences were evaluated for each patient. The two separated clouds of data points do 

not differentiate between sex anymore, but between left and right hemisphere. For each 

NIRS value, median (□) and mean (+) are presented. Median (with IQR) and mean (with 

SD) observed maximal NIRS value were 77% (9%) and 77.2% (7.3%) for the left 

hemisphere and 78% (8%) and 77.5% (7.6%) for the right. Median and mean observed 

minimal NIRS value was 64.5% (13%) and 62.4% (11.8%) for the left hemisphere and 

64% (13%) and 62.6% (11.5%) for the right. The median and mean difference between 

maximum and minimum of observed NIRS value was 12% (10%) and 14.8% (10.8%) 

for the left and 13% (11%) and 14.9% (10.2%) for the right hemisphere (figure 10).  
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Figure 10: Maximum, Minimum and the range of NIRS values per patient. 
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Figure 11: Mean NIRS value and interhemispheric difference of the mean for each patient. 

Figure 11 illustrates median (with IQR) and mean (with SD) individual mean NIRS value 

with 71.3% (10.1%) and 71.2% (7.7%) for the left and 72.3% (8.7%) and 71.5% (7.7%) 

for the right hemisphere. Finally, the difference between mean NIRS value observed 

over the left and right hemisphere was calculated to show whether the values are 

distributed symmetrically: the median (with IQR) and mean (with SD) difference was -

0.1% (5.7%) and -0.3% (6%). A calculated difference approximately being zero indicates 

a symmetrical displayed NIRS value for the left and right hemisphere (figure 11).  

3.3. Distribution of the range Electroencephalography 

parameters of the pooled data: 3D-histograms 

Figure 12 shows the 3D-histograms of the rEEG-NIRS-aaMAC for the triplets pooled 

from all patients. For clarity, triplets are only presented if they occurred at least 25 times 

in the data set. The added color bar codes for the number of observations on a 

logarithmic scale. Twelve diagrams are presented for the three main components of the 

rEEG (UM, LM and BW) within the alpha (8 - 12 Hz), beta 12 - 25 Hz), delta (0.5 - 4Hz) 

and theta (4 - 8 Hz) frequency. Because different patients contribute differently to these 

plots, we present the histograms only to give an impression of the data and performed 

statistics on data that was averaged for each patient. 



 

36 
 

The resulting 3D-histograms of the distribution of NIRS, rEEG and aaMAC values in 

pooled manner illustrate the heterogenetic distribution of the biosignals and again, the 

necessity to control for the aaMAC to be within the targeted range of 0.6 - 0.8 for further 

analyses. Each 3D-histogram can be found individually per frequency and per rEEG 

parameter in the appendix on a larger scale. 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 12: Overview of the diagrams of rEEG, NIRS and aaMAC values. 
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3.4. Linear Regression models between Electroencephalography 

parameters and Near Infrared Spectroscopy  

We used the linear regression models for initial investigations regarding a possible 

relationship between the NIRS and the EEG: Therefore, we included the median EEG 

parameter for each NIRS value from each patient (that was recorded within the 

temperature, MAP, and MAC limits). This approach can correct for different intervention 

durations, so that no patient becomes over-emphasized in the data set. But of course, 

not each patient showed each NIRS value, so the number of patients included in the 

analysis for each NIRS value was different. 

3.4.1. Range Electroencephalography and Near Infrared Spectroscopy 

To present the results of the linear model on rEEG and NIRS, we provide three diagrams 

(regarding UM, LM and BW) per frequency range, i.e., for the alpha-, beta-, delta-, and 

theta-band.  

The linear regression model on the relation between alpha frequency rEEG and NIRS 

indicates a statistically significant increase of the UM (p = 0.009) and LM (p < 0.001) 

value (slope +0.11 and +0.09) with increasing NIRS signal. Consequently, the BW did 

not show a significant change with NIRS. Table 6 presents the statistical parameters in 

detail.  
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Figure 13: Linear model on the alpha frequency rEEG and NIRS with linear equation. 

alpha frequency Estimate SE p-value       
(t-stat) 

R-
squared 

number of 
observations 

UM slope 0.11 0.04 0.009 (2.64) 0.005 1334 
       intercept 17.86 3.08    
LM slope 0.09 0.03 <0.001 (3.32) 0.008 1334 
      intercept 8.55 2.03    
BW slope 0.02 0.02 0.348 (0.94) 0.0007 1334 
       intercept 9.31 1.46    

Table 6: Properties of the linear model on the alpha frequency rEEG and NIRS. 

Similar to the findings in the alpha frequency, the linear regression model on the relation 

between beta frequency rEEG and NIRS indicates a statistically significant increase of 

the UM (p = 0.007) and LM (p < 0.001) value (slope: +0.10 and +0.07) with increasing 

NIRS signal. Consequently, the BW did not show a significant change with NIRS. Table 

7 presents the statistical parameters in detail. 
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Figure 14: Linear model on the beta rEEG and NIRS with linear equation. 

beta frequency Estimate SE p-value         
(t-stat) 

R-
squared 

number of 
observations 

UM slope 0.10 0.04 0.007 (2.72) 0.006 1334 
       intercept 9.61 2.73    
LM slope 0.07 0.02 <0.001 (3.95) 0.011 1334 

      intercept 4.50 1.18    
BW slope 0.04 0.03 0.216 (1.24) 0.001 1334 
       intercept 5.11 2.23    

Table 7: Properties of the linear model on the beta rEEG and NIRS. 
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The linear regression model on the relation between delta frequency rEEG and NIRS 

indicates a statistically significant decrease of the UM (p = 0.018) and BW (p < 0.001) 

value (slope: -0.13 and -0.14) with increasing NIRS signal. The change in the LM was 

not statistically significant. In contrast to the increasing alpha and beta rEEG 

parameters, the delta rEEG parameters decreased with increasing NIRS. This suggests 

that the higher frequencies of the EEG react in the opposite way to the current cerebral 

saturation than the lower delta frequency. Table 8 presents the statistical parameters in 

detail. 

. 

 
Figure 15: Linear model on the delta rEEG and NIRS with linear equation. 
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delta frequency Estimate SE p-value        
(t-stat) 

R-
squared 

number of 
observations 

UM slope -0.13 0.05 0.018 (-2.36) 0.004 1334 
       intercept 54.50 3.86    
LM slope 0.01 0.03 0.679 (0.41) <0.001 1334 
      intercept 21.35 2.00    
BW slope -0.14 0.04 <0.001 (-3.99) 0.012 1334 
       intercept 33.14 2.50    

Table 8: Properties of the linear model on the delta rEEG and NIRS. 

The linear regression model on the relation between theta frequency rEEG and NIRS 

indicates a statistically significant increase (p = 0.025; slope: +0.04) of the LM and 

decrease (p = 0.016; slope: -0.04) of the BW value with increasing NIRS signal. The UM 

does not change in a statistically significant way. Table 9 presents the statistical 

parameters in detail.  
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Figure 16: Linear model on the theta rEEG and NIRS with linear equation. 

theta frequency Estimate SE p-value       
(t-stat) 

R-
squared 

number of 
observations 

UM slope 0.002 0.03 0.956 (0.06) <0.001 1334 
       intercept 20.48 1.98    
LM slope 0.04 0.02 0.025 (2.25) 0.004 1334 
      intercept 8.12 1.23    
BW slope -0.04 0.02 0.016 (-2.42) 0.004 1334 
       intercept 12.36 1.10    

Table 9: Properties of the linear model on the theta rEEG and NIRS. 

In summary, the rEEG analyses show, that the relation of EEG changes and NIRS signal 

differ between the four frequency bands and also between the the three main 

parameters of the rEEG within each frequency band. Therefore it is useful to pick out 

specific EEG parameters for future investigation of any saturation related changes in the 

EEG. Regarding our analyses, a statistically significant increase with increasing NIRS 

value was found for following rEEG parameters: UM and LM of the alpha and beta 

frequency- and LM of the theta frequency-rEEG. On the other hand, we found a 

statistically significant decrease with increasing NIRS value for following rEEG 

parameters: UM and BW of the delta frequency- and BW of the theta frequency-rEEG. 

The shift towards lower (r)EEG amplitudes in the higher frequencies and towards higher 

(r)EEG amplitudes in the lower frequencies presents changes towards an EEG 

indicative of a deeper level of anesthesia. However, in this case the EEG change may 

actually be caused by a change in saturation.  
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To supplement and simplify the finding, figure 17 shows the changes in rEEG in a 

schematic fashion: 

 

Figure 17: Scheme of the rEEG changes in the different frequencies with increasing NIRS. 

3.4.2. Narcotrend and Near Infrared Spectroscopy 

The linear regression between the NIRS and NCT indices may reflect the current clinical 

situation as the NCT is used to monitor the patient’s perioperative hypnotic level. The 

linear regression model on the relation between NCT index and NIRS indicates a 

statistically significant increase: NCT index = 0.08 x NIRS + 37.69 (p = 0.049; t-stat = 

1.97; R-squared = 0.002). We observed a few NCT Indices = 99, indicative of either an 

awake patient, or, if the anesthesiologist can confirm the unconsciousness of the patient, 

indicative of undetected burst suppression. Monitoring systems were reported to 

confuse the EEG of the awake state with the EEG of burst suppression (S. M. Hart, 

2009). To avoid this pitfall, we excluded NCT Indices of 99, and then found a regression 

of NCT index = 1.14 x NIRS + 33.34 as displayed in figure 18 and table 10. 
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By visual assessment of the linear model, one sees that the NCT indices, which 

correspond to lower cerebral saturation (NIRS < 40%) were exclusively below 40 after 

removing the NCT Indices = 99. Hence, the NCT index seems to be susceptible to 

changes in oxygen saturation as reflected by NIRS at controlled conditions. 

 

 

Figure 18: Linear model on the NCT index and NIRS with linear equation. 

NCT index Estimate SE p-value       
(t-stat) 

R-
squared 

number of 
observations 

slope 1.14 0.04 0.001 (3.48) 0.007 1659 
intercept 33.34 2.83    

Table 10: Properties of the linear model on the NCT index and NIRS. 
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3.4.3. Spectral analyses and Near Infrared Spectroscopy 

Decomposing the EEG in the four frequency bands, i.e., the alpha, beta, delta and theta 

band, allows the comparison of the frequency components and its amplitudes. In our 

linear model, only the relative power in the alpha frequency band showed a statistically 

significant relationship to the NIRS value. Both, absolute and relative power values 

increased with increasing NIRS, however only the relative power increased (slope 

+0.042) in statistically significant way. Figure 19 presents the corresponding plots for 

only the alpha frequency range while table 11 contains all statistical details for all four 

frequency bands. 

 

Figure 19: Linear model on the absolute and relative power in the alpha frequency range 8 - 12 Hz and 

NIRS with linear equation. 
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Table 11: Properties of the linear model on the alpha, beta, delta and theta band power and NIRS. 

 Estimate SE p-value  
(t-stat) 

R-squared number of 
observations 

alpha frequency      

absolute power      

       slope 0.05 0.03 0.073 (1.80) 0.005 638 
       intercept 12.22 2.13    
relative power      

       slope 0.04 0.02 0.047 (1.99) 0.006 638 
       intercept -13.97 1.51    

beta frequency      

absolute power      

       slope 0.03 0.03 0.456 (0.75) 0.001 638 
       intercept 8.81 2.45    
relative power      

       slope 0.01 0.02 0.543 (0.61) 0.001 638 
       intercept -17.38 1.67    

delta frequency      

absolute power      

       slope 0.003 0.03 0.898 (0.13) <0.001 638 
       intercept 25.23 1.93    
relative power      

       slope -0.01 0.01 0.168 (-1.38) 0.003 638 
       intercept -0.96 0.41    

tetha frequency      

absolute power      

       slope 0.02 0.03 0.441 (0.77) 0.001 638 
       intercept 14.76 2.13    
relative power      

       slope 0.01 0.01 0.421 (0.81) 0.001 638 
       intercept -11.43 1.02    
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3.4.4. Entropy analyses and Near Infrared Spectroscopy 

 

 

Figure 20: Linear model on the permutation entropy (PEn), spectral (SpEn) entropy and NIRS with linear 

equation. 

 
 

Estimate SE p-value        
(t-stat) 

R-
squared 

number of 
observations 

PEn      

       slope -0.0001 <0.001 0.543 (-0.621) <0.001 788 
       intercept 0.76 2.13    
SpEn      

       slope 0.004 0.003 0.117 (1.57) 0.003 788 
       intercept 2.05 0.19    

Table 12: Properties of the linear model on the permutation entropy (PEn), spectral entropy (SpEn) and 

NIRS. 

The linear regression model on the relation between neither PEn nor SpEn and NIRS 

indicates a statistically significant change of the entropic EEG parameters with 

increasing NIRS signal. Although, not significant (p = 0.117), the increase of SpEn, 

which serves as a proxy for a clinically used monitor (Matthias Kreuzer et al., 2020), 

may still add valuable information. 



 

48 
 

3.5. Exemplary Electroencephalography analyses during events 

of desaturation 

For all patients, except for one, with ´mild´ cerebral desaturation (NIRS not below 50%), 

we observed a decrease in SpEn, a parameter behavior also observed with increasing 

anesthetic level. In contrast, we found a SpEn increase for all patients with ´severe´ 

cerebral desaturation (NIRS below 50%). An increase in SpEn can also be indicative for 

an arousal reaction. All these results were obtained at stable gas concentrations during 

constantly decreasing cerebral saturation, evaluated with NIRS. Table 13 presents the 

measured NIRS values before and after the desaturation event with the calculated SpEn 

change from the related 10-second-EEG epochs. Figure 21 presents the extent of 

desaturation (on the left) with the calculated SpEn values from the related EEG epoch 

(on the right) by connected start and end values of the event.  

NIRS high [%] NIIRS low [%] SpEn change 

Desaturation below 50%   

67 37 increase 
66 46 increase 
61 48 increase 
58 49 increase 
Desaturation not below 50%   

67 52 decrease 
68 56 decrease 
66 57 increase 
68 60 decrease 
73 60 decrease 

Table 13: Absolute NIRS value [%] before and after the desaturation event (left) with concomitant SpEn 

change (right) of 9 patients. 

 

 

 

 

 

 

Figure 21: NIRS value before and after the desaturation event (left) with concomitant SpEn value (right) 

from 9 patients. 
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The observation of the spectral EEG features after the desaturation revealed higher 

delta-band power as well as lower alpha- and beta-band power in the patients with 

´severe´ desaturation compared to the patients with ´mild´ desaturation. Before the 

desaturation, the PSD between the ´mild´ and ´severe´ desaturation group were 

comparable. Interestingly, when comparing the PSD after the desaturation, we observed 

a higher delta-band power and lower alpha- and beta-band power in patients with 

´severe´ desaturation. To statistically test the observed difference in the PSD after the 

desaturation between the two groups, we calculated the AUC with 95% confidence 

intervals (table 14). Figure 22 presents the corresponding normalized PSD plots before 

and after cerebral desaturation. 

 

 

 

 

 

 

 

 

 

Figure 22: Power spectral density before (left) and after (right) ´mild´ and ´severe´ desaturation. 
  

frequency AUC 95%- Confidence Interval 

alpha 0.8 [0.4 – 1] 

beta 0.8 [0.4 – 1] 

delta 0.2 [0 – 0-6] 

theta 0.55 [0.15 – 1] 

Table 14: AUC of PSD from 10-second-EEG epoch after ´mild´ vs. after ´severe´ desaturation. 
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4. Discussion of our findings 

4.1. Elaboration of the analysis method 

To conduct pilot investigations regarding saturation related changes of the EEG, a 

controlled setting is crucial since other intraoperative factors like temperature and MAC 

also influence the EEG (Levy, 1984; Söhle, 2014; Stein, 2010). In our pre-analyses we 

found a general decline of amplitudes of the EEG in patients with a temperature below 

34°C. Thus, we only included recordings during temperature > 35°C for further analyses. 

Pre-analyses of the association between NCT index and NIRS revealed both, an 

increase and a decrease of the NCT index with increasing NIRS, dependent on the 

concomitant aaMAC values. For the linear model, we therefore controlled for the aaMAC 

to be within 0.6 - 0.8. The literature suggests that the limits of cerebral autoregulation 

shift in certain patient groups and that disturbed cerebral autoregulation occurs more 

often than expected (Hori et al., 2014; C. Lewis et al., 2018; Ono et al., 2012). If intact 

cerebral autoregulation cannot be guaranteed, changes in the mean arterial pressure 

may be another influencing factor. Retrospectively, we cannot define or exclude 

situations of ´impaired autoregulation´. To reduce the influence of cerebral 

autoregulation mechanisms, we only included data from episodes when the MAP was 

within 50 - 150 mmHg.  

This thesis aims to identify EEG features that are worth further investigations regarding 

cerebral saturation related changes of the EEG in adults under general anesthesia. 

Therefore, we performed the analyses in several steps that build on each other. We 

started with an analysis of the rEEG- a recently developed modification of the aEEG, 

which is already used in combination with NIRS (Toet, Lemmers, van Schelven, & van 

Bel, 2006; Variane et al., 2019; Zhang et al., 2012). Only rEEG is described to provide 

a reasonable estimate of the absolute value of amplitude and to regard lower 

frequencies (O'Reilly et al., 2012). Because both, the change of amplitudes and the low 

frequencies, are of particular interest in anesthesia research, we chose to analyze rEEG 

instead of aEEG. To our knowledge, the rEEG in combination with NIRS has not been 

investigated in adults undergoing general anesthesia yet. Besides rEEG, we wanted to 

analyze EEG parameters, which are being researched in terms of anesthesia 

monitoring. Like the rEEG, the EEG power takes amplitudes into account, and is 

incorporated into our analyses by the PSD and the SpEn. The SpEn is used in 



 

51 
 

commercially available EEG modules already (Matthias Kreuzer et al., 2020). Finally, 

we investigated changes of the permutation entropy, a parameter of strong interest in 

current anesthesia research. Although the EEG and its neurological clinical correlates 

are not linear phenomena, intraoperative monitors provide information derived from the 

raw EEG signal on a linear scale. Likewise, the NIRS signal is displayed on a linear 

scale. Thus, we chose the linear model to find out whether there is an observable 

positive or negative relation between several different EEG parameters and the NIRS 

signal. We assume the linear model to be an appropriate method to begin with analyzing 

the link between different EEG parameters and cerebral saturation in our data set.  

To present our research interest to the international public, we performed an additional 

analysis of individual cases (Klinker S. D., 2020). These cases were selected visually 

and a ´mild´ and ´severe´ desaturation group was defined. The analysis includes the 

SpEn of the EEG, a parameter implemented in commercially available intraoperative 

monitors. It also includes the PSD of the EEG, a parameter integrated in index 

calculation of intraoperative monitors. As our preceding linear model on the rEEG 

revealed saturation related changes of the EEG amplitudes, PSD analysis served as 

another approach to regard EEG amplitudes. Both, the SpEn and the PSD were 

calculated from the raw EEG, which is still considered as ´gold standard´ in monitoring 

brain activity.  

4.2. Integration in the literary context 

The rEEG analyses revealed a link between the cerebral saturation and the amplitudes 

of different EEG frequencies. This finding justifies the use of rEEG not only in pediatrics 

but also in adults undergoing general anesthesia. We found that the change of the EEG 

amplitudes with changing NIRS under controlled conditions is not uniform, i.e. it was 

different within different frequencies and within different parameters of the rEEG. 

Reduced cerebral oxygen delivery is described to result in a decrease in amplitudes of 

higher frequency alpha (8 - 12 Hz) and beta (12 - 20 Hz) waves and an increase in 

amplitudes of lower frequency theta (4 - 8 Hz) or delta (1 - 4 Hz) waves (C. Lewis et al., 

2018). This is also considered as ´general slowing´ of the EEG (Söhle, 2014). As a 

deepening of anesthesia can also result in ´general slowing´, more profound analyses 

of the saturation related changes in amplitudes can be helpful. Our rEEG analyses allow 

a further specification of the changes in amplitudes. In accordance with the literature, 

we observed a decrease of both, the UM and LM, of amplitudes in the alpha and beta 
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frequency with decreasing NIRS signal. In the lower frequencies the bandwidth 

increased with decreasing NIRS signal, as either the UM or the LM changes. Remember 

that we did not define ´cerebral ischemia´ or ´critical desaturation´ for our investigation 

on rEEG changes in relation to cerebral saturation. Our study should instead provide 

information about the median rEEG parameter that occurs with a certain NIRS value 

and reveal possible parameter trends associated with NIRS.  

As we observed an influence of the NIRS level on the amplitudes, and as amplitudes 

are considered in terms of EEG power, we analyzed the absolute and relative power of 

the EEG with the same linear model. As the observed change was different within the 

different frequency bands, we applied the linear model for each frequency separately. 

In literature, decreased power in faster frequency bands (alpha and beta) and increased 

power in slower frequency bands (delta and theta) were described with reduction in brain 

metabolism (Foreman B., 2012). Changes in relative delta power due to cerebral 

ischemia were described for patients receiving propofol (Foreman B., 2012). Moreover, 

changes in relative delta power were described to correlate well with CBF and cerebral 

metabolism during focal ischemia (Foreman B., 2012). In our analyses of the power 

spectrum parameters, we found a statistically significant reduction of relative alpha band 

power with decreasing NIRS value. Concerning relative delta power, we found a non-

significant increase with decreasing NIRS, conversely to what Foreman et al. describe 

about the change of relative delta power. In line with our findings, a review from 1998 

states that an increase of delta band power could represent ischemia in the EEG (Ira J. 

Rampil, 1998). For other frequency bands we could not identify a statistically significant 

change in absolute or relative power. This difference of our findings compared to other 

published results could be explained by the fact that we did not investigate changes in 

relation to ´cerebral ischemia´, but in relation to a certain range of observed NIRS 

values. Most of these observed NIRS values lay in a range in which sufficient cerebral 

oxygenation can be assumed. It is also necessary to differentiate ´changes of cerebral 

metabolism´ from ´changes of the NIRS level´. Hence, our findings may only be 

comparable to the literature in a limited fashion. However, the investigation of individual 

cases of ´mild´ or ´severe´ cerebral desaturation revealed two different ´post-

desaturation´ PSD patterns. In the ´severe´ cerebral desaturation group the delta-band 

power was higher, whereas the alpha- and beta-band power was lower, compared to 

the ´mild´ desaturation group. The electrophysiological change during ´severe´ cerebral 

desaturation corresponds to the concept of general slowing in the raw EEG during 

ischemia. The ´pre-desaturation´ PSD was comparable between both groups. This 

finding suggests that cerebral desaturation can influence PSD analyses. In 1989 



 

53 
 

already, an increase of relative delta and theta power as well as a decrease of relative 

alpha and beta power was described with decreasing regional CBF (Nagata, Tagawa, 

Hiroi, Shishido, & Uemura, 1989). If a reduction in cerebral metabolism is associated 

with the term of ischemia, our definition of cerebral desaturation can be related to it as 

well. Then, our PSD analyses support Foreman`s and Nagata`s description of changes 

of the EEG power.  

The linear model then revealed an increase of the NCT index with increasing NIRS. 

Dennhardt et al. described an inverse correlation of the NCT index and NIRS signal in 

children under sevoflurane anesthesia during CPB (Dennhardt et al., 2018). This 

negative correlation was explained by the fact that they did not control for the 

temperature and that hypothermia alone can decrease the NCT index and increase the 

NIRS value. In our linear model, we only included values observed during normothermia 

(> 35°C) and observed a positive correlation. Besides the NCT monitor, also BIS guided 

monitoring integrates processed EEG analyses for intraoperative monitoring. A study of 

Stein et al. suggests a negative association between the BIS index and mixed venous 

oxygen saturation in adults, which could only be observed during hypothermia < 34.1°C 

(Stein, 2010). In four case reports Couture et al. describe the various possibilities of 

interaction between the cerebral NIRS level and another pEEG index, the Patient State 

index (PSI, Masimo, Irvine). The study describes the change of both signals in the same 

direction as well as in the opposite direction, depending on the cause of the change. 

The related algorithm is provided in the Appendix (Couture, Deschamps, & Denault, 

2019). 

Entropy measures of the EEG may provide information on the state of anesthesia. SpEn 

is implemented in commercially available EEG monitors to reflect the hypnotic level of 

anesthesia (H. Viertiö-Oja, 2004). Perhaps a change in cerebral saturation also 

influences entropic parameters applied to the EEG. We therefore investigated the 

relationship between the SpEn and the NIRS level using the linear model and could not 

observe a statistically significant relationship. However, the investigation of individual 

cases of NIRS decrease, revealed a change in the SpEn. This change was not uniform, 

i.e. the SpEn tended to increase when the NIRS value decreases below 50%, whereas 

the SpEn decreased when the NIRS decrease was not below 50%. Our results suggest 

that the influence on entropic parameters may be biphasic and not captured by linear 

models.  

Finally, we investigated the relationship between PEn and cerebral oxygenation using a 

linear model and could not find a statistically significant relationship. PEn has been 

described as ´state of the art´ parameter to distinguish consciousness from 
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unconsciousness during general anesthesia (Jordan, 2008). PEn is proposed to be 

robust against signal artifacts and is until now mainly used as a ´research parameter´ in 

anesthesia. A prospective study on the effect of sevoflurane anesthesia, evaluated with 

PEn, found a decreased frontal and thalamocortical neuronal connectivity (Ranft et al., 

2016). This study also found reduced anterio-posterior connectivity and reduced cortical 

information processing, evaluated with fMRI. We took this study into account, as it 

investigated the effect of another halogenated ether on the brain and as it investigated 

EEG changes simultaneously to a metabolic parameter. A recent study indicates that 

the PEn can increase with increasing age (Matthias Kreuzer et al., 2020). To regard a 

modern parameter of anesthesia research and to possibly detect a saturation related 

influence, we analyzed the PEn, using our linear model.  

4.3. Proposed mechanisms 

The increase of amplitudes of higher frequencies (alpha and beta) with increased NIRS 

signal could be explained by enhanced intrinsic activity of neurons of the thalamocortical 

circuits (E R. John & Prichep, 2005). This finding could be limited to higher frequencies 

as they are described to react on reduced CBF earlier than lower frequencies (Foreman 

B., 2012). Especially the alpha frequency is described to represent intrinsic 

thalamocortical activity, which may be more susceptible to changes in cerebral 

oxygenation. A change of both, the UM and LM of the rEEG indicates, that both, highly 

and less synchronous oscillations of neurons, may change with cerebral saturation.  

The narrowing of the bandwidth of amplitudes of lower frequencies (delta and theta) 

results from either the decrease of the UM (delta) or increase of the LM (theta). Neural 

oscillatory activity in the delta frequency is described to be generated by deprived 

cortical neurons, whereas theta activity is generated in the limbic system (E. R. John, 

2005). A narrowing in the bandwidth could indicate more regularity of the amplitudes of 

oscillations generated by neurons in the limbic system or in intracortical networks. 

Further, this regularity might be enhanced by a change in cerebral metabolism. The 

change of metabolism may be captured by NIRS. Why exactly the UM or LM or both of 

a certain frequency changes with a change of NIRS, cannot be explained satisfactorily 

by our investigations. However, we assume that rEEG analyses can help to find 

saturation related changes of the EEG under general anesthesia in adults. 

We observed that the magnitude of amplitudes as investigated with the rEEG changed 

with NIRS fluctuations, however, the band power did not, except for alpha. That this 



 

55 
 

finding was limited on the alpha frequency may be explained by increased susceptibility 

towards changes in cerebral saturation compared to other frequency bands (Söhle, 

2014). It may also be related to the median age (67 years) as recent studies indicate an 

influence of age on the alpha frequency. For example, the decrease of power during 

general anesthesia is described to be more obvious in the alpha frequency band than in 

lower frequencies in the elderly (Purdon, Pavone, et al., 2015). Hight et al. could find a 

slowing of alpha oscillation with increasing age (Hight, Voss, Garcia, & Sleigh, 2017). 

Concerning the relative alpha power, no significant impact of age was found in another 

study (Matthias Kreuzer et al., 2020). Another reason for the finding exclusively in the 

alpha frequency could also be the selected period of recordings. We controlled for the 

aaMAC to be within 0.6-0.8, however we can´t ensure that this targeted anesthetic 

concentration has been stable or just been reached. If it has just been reached by 

increasing the anesthetic concentration, an initial increase and subsequent decrease in 

alpha power could have been provoked (Hight et al., 2017).  

The change of amplitudes, or the change of power, may be related to a brain state 

resembling ´cognitive unbinding´ in the anesthetized brain. To investigate this, it would 

be helpful to include oscillations in the y-frequency around 40 Hz, which we did not 

include (Mashour, 2004). Until now only the BIS monitor is suggested to reflect y-band 

desynchronization (Mashour, 2004). 

We could observe a linear relationship between the NCT index and the NIRS signal. 

Like other pEEG monitors, the NCT monitor should help to evaluate adequate level of 

hypnosis. A decreasing anesthetic concentration should lead to an increase in the index. 

A decreasing concentration of the anesthetic could also lead to a decrease in cerebral 

oxygenation - due to an increased cerebral oxygen consumption. On the other hand, a 

reduced effect of the anesthetics could also lead to an increase in the cerebral 

oxygenation and the NIRS level - due to cerebral vasodilatation caused by 

neurovascular uncoupling mechanism or volatile anesthetics. To differentiate between 

the possible scenarios, a combination of pEEG and NIRS, as suggested by Couture et 

al. needs to be further investigated. To improve the evaluation of the anesthetic level by 

EEG monitors, taking the influence of cerebral saturation on the pEEG into account, 

could be useful. To investigate neurovascular uncoupling mechanism through general 

anesthesia, functional imaging or the combination of EEG and functional NIRS could be 

helpful (Chiarelli et al., 2017; Palanca et al., 2009; Palanca et al., 2015). Our approach 

does not allow to draw conclusions on neurovascular mechanisms. 

The investigation of individual cases of NIRS decrease and SpEn revealed a biphasic 

change of SpEn. SpEn tended to increase when the NIRS value decreased below 50%, 
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whereas it decreased when the NIRS decrease was not below 50%. An increase of 

SpEn can also reflect a more profound hypnotic level of anesthesia. In our analyses, the 

SpEn increase might still reflect a more profound hypnotic level, however not due to 

anesthesia but to cerebral desaturation. The increase of the entropy in the spectrum, 

indicative for more irregularity in the EEG, might reflect a state of ´neuronal arousal´ due 

to beginning cerebral desaturation. Another explanation of our finding would be, that 

NIRS decreases due to increased cerebral metabolism, thus due to a decline of the 

hypnotic component of anesthesia. In this case, SpEn indeed reflected this decline of 

hypnosis, however only until a certain extend of desaturation, i.e. only for desaturation 

not below 50% NIRS.  

4.4. Limitations 

Due to the retrospective study design, our results should be interpreted with caution. In 

addition, the data set originates from cardiac surgery. This means that both, the patient-

related comorbidities and the intervention-related risk factors may be above average. 

On the one hand, correlations between EEG parameters and the NIRS level could 

remain undetected, on the other hand, they cannot be automatically transferred to other 

patient groups. To minimize intervention-related distortions of the results, particularly by 

the CPB, we have included only the period before initiation of CPB. At the same time, 

this means that we cannot display and analyze the entire general anesthetic. We only 

included isoflurane anesthesia, however the chosen agent for providing general 

anesthesia itself could affect EEG frequency bands and amplitudes (Purdon, Sampson, 

et al., 2015). Another limitation of EEG interpretation could be the fact that we did not 

control for age, which can also influence the EEG (Matthias Kreuzer et al., 2020; Purdon, 

Pavone, et al., 2015), nor for the predominance of male patients. Maybe our linear model 

does not capture a certain relationship, because it is not linear, or because the 

relationship would refer to specific sequences of the recording. Due to the retrospective 

approach of the investigation, we chose to present the median observed EEG parameter 

during the whole analyzed period. This means, we did not account for specific events, 

limited on short sequences of the analyzed period. For example, in the linear model on 

entropic features of the EEG, we could not observe a statistically significant relationship 

for neither PEn nor SpEn and the NIRS signal. However, in the analyses of specific 

cases we indeed observed an interesting link between the NIRS signal and the SpEn. 

Because of the assumed limitations, we did not analyze further entropic parameters, like 
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the approximate entropy with the linear model. Another limitation of our study is that we 

cannot verify the basis of the delivered NIRS value. It depends on many factors, i.e. 

local oxygen extraction and metabolism or the cerebral blood flow, which again depends 

on many factors, i.e. CO2 content, anesthetics, MAP or vasoreactive processes. 

Therefore, we cannot contribute to the debate on a relative or absolute NIRS threshold 

for intervention. We also did not intend to define or analyze ´cerebral ischemia´ which 

might make a comparison with other studies on the NIRS signal difficult. 

4.5. Relevance of our analyses 

With our analyses we could show that NIRS determined cerebral saturation seems to 

influence the EEG. Current EEG-based monitoring is kind of a one-fits-all-approach. 

There is wide agreement that monitors should consider patient or procedural related 

differences, such as age, cognitive status, anesthetic drug, and metabolic differences. 

These differences might play a significant role in computing and developing specific 

EEG algorithms, i.e. specific for the level of anesthesia or cerebral saturation. Already 

in 1998, Rampil nicely expressed, that the aim of EEG quantification should be to find 

the ´needle´ in the ´electric haystack´, the respective parameter that helps to evaluate 

certain pharmacological or physiological mechanism (Ira J. Rampil, 1998). In search for 

the ´needle´, various parameters of the EEG have been investigated. Metaphorically 

spoken, if you want to find the needle to evaluate ´level of anesthesia´, you should try 

to exclude any other influences on this needle. Equally, if you want to find the needle to 

evaluate ´cerebral ischemia´. Figure 23 helps to illustrate different objectives and 

interconnections in the context of analyzing the ´EEG haystack´. In 2020 a research 

group in Gothenburg has published their study protocol for developing a method to 

detect cerebral ischemia in unconscious patients by analyzing changes in heart rate 

variability, the NIRS signal and the EEG (Block et al., 2020). Future, prospective studies 

are required to answer if and how cerebral saturation influences different parameters of 

the EEG. For any investigation of saturation related changes in the EEG, we recommend 

to control for the temperature and the anesthetic drug concentration. We suggest that 

rEEG analyses can help to find saturation related EEG changes under general 

anesthesia in adults. In terms of rEEG analyses, we emphasize the need to separate 

between the frequency bands. We further suggest to include high frequency ranges, like 

the y-band. The impact of cerebral saturation on the amplitudes of the EEG may also 

play a role in analyses of the power, the peak frequency or the approximate entropy. In 
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terms of entropy analyses, the influence of cerebral saturation might be subtle, non-

linear and depend on the dynamic of the NIRS change, i.e. the extend or temporal 

course. Even if it was retrospective, not controlled and within a cardiac patient cohort, 

which might be exposed to higher intraoperative risk, we found saturation related 

changes of the EEG. These changes could possibly influence EEG based evaluation of 

level of anesthesia. For more profound analyses of cerebral saturation related influences 

on specific EEG parameters we suggest to conduct prospective, randomized controlled 

studies in a representative patient cohort, i.e. not cardiac patients. 

 

 

 

Figure 23: Illustration of the objectives and connections in the context of EEG analyses. 
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