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Abstract
The finite cell method (FCM) and isogeometric analysis (IGA) promise to improve the
interoperability of computer-aided design (CAD) and computer-aided engineering (CAE).
In addition, local refinement can be used to efficiently resolve small-scale features. The
computational framework composed of these three technologies constitutes a promising
approach suitable for sophisticated engineering designs.

This combination presents some unresolved issues, such as the difficulty of introducing
the framework into existing finite element software, the implementation efficiency, and the
inapplicability of some standard procedures (e.g., the calculation of reaction forces).

The goal of this thesis is to develop several technologies that address these problems.
In particular, a multi-level Bézier extraction is proposed to facilitate the integration of
locally-refined isogeometric analysis into existing implementations. The approach intro-
duces a set of basis functions independent of the refinement level and common to each
element. Algorithms for mesh refinement and coarsening are presented, and their complex-
ity is analyzed. These algorithms operate only through univariate operators to leverage
the tensor-product structure. This approach is combined with the sum factorization in
a framework suitable for matrix-free iterative solvers. It is shown how local refinement
can mitigate issues specific to the FCM and trimming. Namely, the unphysical coupling
between the sides of a thin hole and the overconstraining induced by weak boundary
conditions are discussed. Finally, a method is developed to compute the conservative
reactions on trimmed locally-refined meshes subject to weak boundary conditions. The
technique is explained by a variational argument and applied to the trimmed FCM with
basis functions that are not defined on “nodes”. The proposed approach shows the su-
perconvergence characteristics typical of the classic procedure for untrimmed meshes and
nodal shape functions.

The applicability of the proposed methods is demonstrated through various numerical
examples. These include trimmed linear Kirchhoff-Love shells defined by CAD models and
a three-dimensional geometry defined by a detailed STL file with smooth wavy boundaries
and several internal cavities.

This work proposes several techniques that favor the applicability and efficiency of
locally-refined isogeometric finite cell analyses, streamlining the design-through-analysis
process.
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Zusammenfassung
Die Finite-Zellen-Methode (FCM) und die isogeometrische Analyse (IGA) versprechen,
die Interoperabilität von Computer-Aided Design (CAD) und Computer-Aided Engineer-
ing (CAE) zu verbessern. Darüber hinaus können kleinskalige Merkmale mithilfe lokaler
Verfeinerung effizient aufgelöst werden. Ein aus diesen drei Technologien zusammenge-
setztes Framework stellt einen vielversprechenden Ansatz dar, der sich für komplexe Kon-
struktionen eignet. Diese Kombination wirft jedoch einige Probleme auf, wie z. B. die
Schwierigkeit der Einbindung des Frameworks in bestehende Finite-Elemente-Software,
die Effizienz der Implementierung und die Unanwendbarkeit einiger Standardverfahren
(z. B. zur Berechnung von Reaktionskräften).

Ziel dieser Arbeit ist es, mehrere Technologien zu entwickeln, die diese Probleme
adressieren. Insbesondere wird eine Multi-Level Bézier-Extraktion vorgeschlagen, um
die Integration der lokal verfeinerten isogeometrischen Analyse in bestehende Implemen-
tierungen zu erleichtern. Die Methode führt einen Satz von Basisfunktionen ein, die
für jedes Element gleich sind, unabhängig von der lokal verfeinerten Basis. Es werden
Algorithmen zur Netzverfeinerung und -vergröberung vorgestellt und ihre Komplexität
analysiert. Diese Algorithmen basieren ausschließlich auf univariaten Operatoren, um
die Tensorproduktstruktur zu nutzen. Zudem werden diese Algorithmen mit der Sum-
menfaktorisierung in einer Weise kombiniert, die für matrixfreie iterative Löser geeignet
ist. Es wird gezeigt, wie die lokale Verfeinerung spezifische Probleme der FCM und des
Trimmens entschärfen kann. Diskutiert werden die unphysikalische Kopplung zwischen
den Seiten eines schmalen Lochs und die durch schwache Randbedingungen induzierte
übermäßige Restriktion der Lösung. Schließlich wird eine Methode entwickelt, um die
Reaktionen auf getrimmten lokal verfeinerten Netzen mit schwachen Randbedingungen
zu berechnen. Die Technik wird durch ein Variationsargument erklärt und auf die FCM
angewendet, unter Verwendung getrimmter Basisfunktionen, die nicht knotenbasiert sind.
Dieser Ansatz zeigt die Superkonvergenzeigenschaften, die für das klassische Verfahren mit
ungetrimmten Netzen und knotenbasierten Formfunktionen typisch sind.

Die Anwendbarkeit der vorgeschlagenen Methoden wird anhand verschiedener
numerischer Beispiele demonstriert, einschließlich getrimmter linearer Kirchhoff-Love-
Schalen, die durch CAD-Modelle definiert sind, und eines dreidimensionalen linearen
Wärmeleitungsproblems, bei dem die Geometrie durch eine detaillierte STL-Datei mit
glatten wellenförmigen Rändern und mehreren internen Hohlräumen definiert ist.

In dieser Arbeit werden mehrere Techniken vorgeschlagen, welche die Anwendbarkeit
und Effizienz lokal verfeinerter isogeometrischer Finite-Zellen-Analysen verbessern.



Acknowledgements
The journey to this dissertation has been a period of fundamental personal change and
growth in many aspects. I have been helped by many along the way, and I would like to
take a moment to thank them.

I would like to warmly thank my doctoral supervisors (in alphabetical order), Prof.
Ernst Rank and Prof. Alessandro Reali, for their constant support, guidance, and (sci-
entific and non-scientific) advice. They always showed a great deal of trust that gave me
the freedom to follow the research direction of my preference, creating an enjoyable and
productive environment.

I feel that Prof. Rank always believed in me. Since we first met at the Ferien-
akademie, he offered me to join his group as a research assistant and suggested I take a
Ph.D. position later. I would not have written this dissertation if it were not for him.

Prof. Reali or, as I usually call him, Ale, created a very informal relationship from
the beginning that made me able to speak to him about virtually anything. I could get
extensive scientific advice from him and his network and enjoy the time together. Such
an environment made me benefit more from his supervision and also enjoy this journey.
He also created the opportunity to visit the University of Texas at Austin, an experience
that I will never forget.

My special thanks go to Dr. Stefan Kollmannsberger, who always advised and par-
ticipated in my research. He continuously transmitted a lot of generosity, humanity, and
warmth. He is a crucial ingredient in creating a good team and a friendly atmosphere.

My special appreciation and gratitude go to Prof. Thomas J.R. Hughes, whom I
visited at the University of Texas at Austin. The stimulating scientific input and constant
supervision significantly contributed to my favorite part of this dissertation. I enjoyed a
lot his hospitality and my stay in Austin.

I would also like to thank Prof. Giancarlo Sangalli for several scientific discussions
on various topics. I highly appreciate his feedback and interest in my work.

Thanks to Prof. Andreas Schröder for being part of my Ph.D. committee after having
already supervised and examined my masters thesis some years ago.

I also thank Prof. Bletzinger for chairing the examination committee. His humor
created a very comfortable atmosphere on the day of my Ph.D. thesis defense.

It was great to share this journey with my colleagues and friends at the Chair for
Computation in Engineering, Chair of Computational Modeling and Simulation and TU
Hamburg: Nils, Mohamed, Chris, Bobby, Lisa, John, Philipp, Nina, László, Ralf, Alex P.,
Alex B., Alex M., Paul, Katrin, Nevena, Jing, Benjamin, Jimmy, Tim, Jan, Ann, Vijaya,
Leon, Oz, Simon, Tino, Robert, Ali, Prof. André Borrmann, Vasiliki, Hanne, Lars, André,
Mahan, and Wadhah. Thanks for bearing with me. I have tested the patience of many
of you several times :)

Special thanks to my new adventure companions, Nina and László, for being so close
over the last year. Nina pushed and helped me a lot in finalizing this dissertation. Also,
thank you for the happiness provided in the form of cakes and coffee :)

I had a great time also at my “second university” in Pavia, where I shared several
months with the CompMech group: Alice, Lorenzo, Giorgione, Simone, Marghe, Alberto,
Giulia, Vale, Rodrigo, Alex, Michele, Laura, Kayal, Max, Alessia, Guillermo, Isabella,



iv

Stefania, Gianluca, Valeria, and Sonia. Thank you for the friendly hospitality and mood.
It was great to share my stay in Austin with some of the students and visitors of

Prof. Thomas J.R. Hughes: René, Jeff, Hiroshi, Kendrick, Baidoo, Deepesh (it was fun to
prove you that I really cannot play ping pong), Lulin (I had nice time sharing the office
and having lunch with you everyday), Michael and Tyler (it was nice to see you training
for the pizza challenge, kayaking the Colorado river, talking for hours and hours about
the football rules, and hanging out in Austin and Munich).

Special thanks to Luca and Massimo: we have always had a ton of fun at all confer-
ences we attended together, be it Cetraro or New York. Thank you for being a magnet
for crazy episodes like having questionable bets with some professors at night, making an
opera singer sing at a conference dinner, or intense karaokes. Of course, I was the normal
one among the three of us :D

Thanks to Ondina for constantly transmitting a good mood and making fun of Luca
with me all the time.

Thanks to my international friends in Munich for all the good times, greek food,
pizzas, weddings, and fun: Omero, Sha, Christina, Odyx, Alex, Silva, and Dennis.

Thanks to my good old friends from lovely Cavallino–Treporti: Lola, Bea, Carry,
Elisa, Flaviano, Giuly, il Salso, il Don, and Anna. They always give me the best mood
and endless laughs when I am back “home”. A special thanks to Alice and Nicoló, who
cooked with me through video calls nearly every Friday over the last years of the Ph.D.
You just fill my life with life, no matter how far apart we can be.

My appreciation also goes out to my family, who has given me all the freedom and
support to make my own choices.

A special word of thanks to the late Prof. Massimo Tarallo. He was my most influ-
ential professor who transmitted a lot of knowledge and a mathematical way of thinking.

And my warmest and loveliest thanks go to my Principessa. Sometimes, it has been
a rocky ride, but you were unconditionally there for me, armed with a lot of patience
and, most of all, love (and further necessary patience). You are my biggest support and
strength.

Davide D’Angella
Munich, February 2022



Contents

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Isogeometric analysis 5
2.1 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Non-uniform rational B-splines . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Multivariate geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Kronecker product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Isogeometric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1.1 Knot insertion . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1.2 Degree elevation . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1.3 k-refinement . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Standard Bézier extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.1 Element-local Bézier extraction . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Multivariate Bézier extraction . . . . . . . . . . . . . . . . . . . . . 16

3 Hierarchical B-splines 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Function hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Hierarchical B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Truncated hierarchical B-splines . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Multi-level Bézier extraction 25
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Representation of nested spaces . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 The multi-level extraction operator . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Extraction of hierarchical B-splines . . . . . . . . . . . . . . . . . . . . . . 32

4.5.1 Element extraction of hierarchical B-splines . . . . . . . . . . . . . 33



vi Contents

4.6 Extraction of truncated hierarchical B-splines . . . . . . . . . . . . . . . . 34
4.6.1 Element extraction of truncated hierarchical B-splines . . . . . . . . 34

4.7 The multi-level Bézier extraction . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Extension to higher dimensional spaces . . . . . . . . . . . . . . . . . . . 36
4.9 Extraction of hierarchical NURBS . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 Extension to other sequences of nested spaces . . . . . . . . . . . . . . . . 37

4.10.1 Outlook: the multi-level extraction for degree elevation . . . . . . . 38

5 Algorithms for the multi-level Bézier extraction 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Construction of univariate knot insertion refinement operator . . . . . . . . 42
5.3 Extraction of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Extraction of hierarchical B-Splines . . . . . . . . . . . . . . . . . . 46
5.3.2 Cost comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Extraction of truncated hierarchical B-splines . . . . . . . . . . . . . . . . 51
5.4.1 Efficient multiplication by Kronecker product . . . . . . . . . . . . 51
5.4.2 Extraction of truncated hierarchical B-splines . . . . . . . . . . . . 55
5.4.3 Cost comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Projection of DOFs for refinement . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Projection of DOFs for mesh coarsening . . . . . . . . . . . . . . . . . . . . 58

5.6.1 Standard Bézier projection . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.2 Modified Bézier projection . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7.1 Traveling Heat Source . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7.2 Finite-strain J2 elastoplasticity . . . . . . . . . . . . . . . . . . . . 66

6 Local refinement for the finite cell method and trimming 71
6.1 Trimming through the finite cell method . . . . . . . . . . . . . . . . . . . 71
6.2 The finite cell method for trimmed Kirchhoff-Love shells . . . . . . . . . . 74

6.2.1 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Motivation to local refinement . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Thin holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 Weak constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.3 Localized deformations . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.1 A trimmed adaptive example . . . . . . . . . . . . . . . . . . . . . 82
6.4.2 B-Rep analysis with weak constraints . . . . . . . . . . . . . . . . . 83

7 Reactions on trimmed locally-refined meshes 87
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 The strong form of the model problem . . . . . . . . . . . . . . . . . . . . 93
7.4 The weak form for strong boundary conditions . . . . . . . . . . . . . . . . 93

7.4.1 The Galerkin form . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.5 The weak form for weak boundary conditions . . . . . . . . . . . . . . . . 94
7.6 The trimmed-domain Galerkin form . . . . . . . . . . . . . . . . . . . . . . 95



7.7 Conservative reactions to strong boundary conditions . . . . . . . . . . . . 95
7.7.1 Reactions for the Galerkin form . . . . . . . . . . . . . . . . . . . . 97

7.8 Conservative reactions for trimmed meshes . . . . . . . . . . . . . . . . . . 99
7.8.1 Reactions for the Galerkin form . . . . . . . . . . . . . . . . . . . . 100

7.9 Conservative reactions for bases not forming a partition of unity . . . . . . 100
7.9.1 Reactions for hierarchical B-splines . . . . . . . . . . . . . . . . . . 101
7.9.2 Reactions for integrated Legendre polynomials . . . . . . . . . . . . 102

7.10 2D benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.11 Façade element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.12 Trimmed Kirchhoff-Love shell example . . . . . . . . . . . . . . . . . . . . 106

8 Matrix-free approach to locally-refined finite cell analyses 111
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Sum factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 Sum factorization for local refinement . . . . . . . . . . . . . . . . . . . . . 115
8.4 Sum factorization for trimmed meshes . . . . . . . . . . . . . . . . . . . . 116

8.4.1 Moment fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.4.2 Trimmed moment fitting . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5 Stiffness matrix (heat conduction) . . . . . . . . . . . . . . . . . . . . . . . 119
8.5.1 Lagrange factorization . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.6 Enforcement of penalty boundary conditions . . . . . . . . . . . . . . . . . 124

9 Conclusion 127
9.1 Summary of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.1.1 The multi-level Bézier extraction . . . . . . . . . . . . . . . . . . . 127
9.1.2 Algorithms for the multi-level Bézier extraction . . . . . . . . . . . 127
9.1.3 Hierarchical local refinement of trimmed isogeometric finite cell

analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.1.4 Reactions on trimmed locally-refined meshes . . . . . . . . . . . . . 129
9.1.5 Matrix-free approach to locally-refined finite cell analyses . . . . . . 129

9.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A Algorithms for the knot insertion refinement operators 131

B Parametric definition of the elastoplastic perforated plate 133

Bibliography 134



viii LIST OF FIGURES

List of Figures

3.1 Example of hierarchical B-spline functions. The knots of each level are
marked by red crosses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Example of element mesh and (truncated) hierarchical B-spline basis. The
elements are marked by the thick red lines on the horizontal axes. B(l)

a is
composed of the colored or dotted functions. B(l)

− is composed of the dotted
functions. B(l)

+ is composed of the dashed functions. B(l)
= is composed of

the solid non-gray functions. The solid gray functions are inactive. . . . . . 20
3.3 The function N

(1)
6 of the example in Figure 3.2 (left, dashed blue) and

its truncation (right, dashed blue) expressed in terms of the finer functions
(from left to right): N

(2)
10 , N

(2)
11 , N

(2)
12 , and N

(2)
13 (dotted gray and solid orange). 22

4.1 Hierarchical B-spline basis local to the element Ωe3 = (0.25, 0.375) (cf.
Figure 3.2), expressed as a linear combination of standard functions in B(2)

with support on Ωe3 or of Bernstein polynomials. . . . . . . . . . . . . . . 27
4.2 Example of hierarchical B-splines of a different order. The knots of each

level are marked by red crosses. . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Comparison of the algorithms to construct the local knot-
insertion refinement operators for 11 bisections of Ξ =
(−1, −1, −1, −1, −0.8, 0.3, 1, 1, 1, 1), for p = 3. The parallel Oslo
algorithm (Algorithm 5.4) is executed on four processors. . . . . . . . . . . 46

5.2 Minimum percentage of saved multiplications. This lower bound is ob-
tained using the pessimistic assumption nf = (p + 1)D. An increase in p
quickly renders Algorithm 5.5 effective also for higher nl. . . . . . . . . . . 50

5.3 Run-time comparison of Algorithms 5.6 and 5.7. The processes were pinned
to a single core of a Intel(R) Xeon(R) CPU E5 processor with a fixed
frequency of 2.90 GHz. The values are obtained as average run-time of
106 computations. The compilation was performed through the commands
icc -xHost -O3 -ansi-alias (icc version 15.0.0) and g++ -ffast-math
-O3 -march=native -funroll-loops (g++ version 4.9.0). . . . . . . . . . 56

5.4 Setup of the traveling heat source example. . . . . . . . . . . . . . . . . . . 64
5.5 Solution (left) warped along z-axis (warping factor 2 10−5) and mesh (right). 65
5.6 Solution for the traveling heat source example compared with the analytical

solution in space and time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



LIST OF FIGURES ix

5.7 The number of DOFs is kept bounded over time by the dynamic refinement
and coarsening around the moving heat source. . . . . . . . . . . . . . . . 67

5.8 Geometry and mesh of the elastoplastic perforated plate. . . . . . . . . . . 69
5.9 Von Mises, equivalent plastic strain and load-displacement curve obtained

on the elastoplastic perforated plate. . . . . . . . . . . . . . . . . . . . . . 70

6.1 Fundamental concept of the finite cell method. . . . . . . . . . . . . . . . . 72
6.2 Illustration of the locally-refined elements (black lines) and integration do-

mains (red lines) in the patch parameter space and their mapping to phys-
ical space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Influence of marking parameter γ on the refinement. The cut cells are
highlighted in blue, whereas the elements marked for refinement after per-
forming Algorithm 6.1 with γ = 0, 1, 2, respectively, are colored in red. . . 78

6.4 Thin-hole example. The discretization of a complex trimmed geometry
creates an unphysical coupling between the sides of thin holes. . . . . . . . 79

6.5 Thin-hole example. Displacement and number of DOF. . . . . . . . . . . . 80
6.6 Meshes obtained by local refinement and local tensor-product refinement

produced by Algorithm 6.1 with γ = p = 2 and lmax = 5. . . . . . . . . . . 80
6.7 Example of overconstraining induced by weak boundary conditions on trim-

ming curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.8 Overconstraining on trimming curves can be resolved by local refinement. . 82
6.9 Geometry specifications and representation of the trimming operation in

Rhino used to create the two trimmed holes, defined as the intersection
between two cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.10 Mesh, displacement magnitude, and Von Mises stress obtained after 6 it-
erations of the adaptive loop, marking parameter γ = 0.2. The solution is
obtained with cubic hierarchical NURBS. . . . . . . . . . . . . . . . . . . . 84

6.11 Convergence of the error in displacement and energy obtained with cu-
bic hierarchical Non-Uniform Rational B-Splines (NURBS) and marking
parameter γ = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.12 Rolex Learning Center example. The geometric model, the actual build-
ing, and the numerical solution of the roof subject to its self-weight. The
solution is obtained using cubic hierarchical NURBS with k = 5 refinement
levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.13 Rolex Learning Center example. Zoom on the solution in the proximity of
a trimming curve. Weak boundary conditions and geometric features are
efficiently resolved by local refinement. . . . . . . . . . . . . . . . . . . . . 86

7.1 Portion of façade element [Mungenast, 2017b]. . . . . . . . . . . . . . . . . 89
7.2 Boundary conditions and solution example for the façade element. . . . . . 90
7.3 Flux across the Dirichlet boundary Γ1, internal energy, and equilibrium for

a sequence of bisected meshes. . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Solution field, mesh, and reactions for trimmed meshes. The reactions are

depicted as red arrows in the x-direction located at the control points. . . . 101
7.5 Example of coefficients (circled numbers) for computing the reactions with

bases that do not form a partition of unity. . . . . . . . . . . . . . . . . . . 103



x LIST OF FIGURES

7.6 2D benchmark. Geometry, analytical solution, and mesh example. . . . . . 105
7.7 2D benchmark. Energy error and flux errors for direct fluxes (dashed lines)

and conservative fluxes (solid lines). . . . . . . . . . . . . . . . . . . . . . . 106
7.8 2D benchmark. Equilibrium error and improved convergence in the flux

error obtained by the penalty method. . . . . . . . . . . . . . . . . . . . . 107
7.9 Façade element example. Total flux and equilibrium error for the direct

fluxes (dashed lines) and conservative fluxes (solid lines). . . . . . . . . . . 108
7.10 Trimmed Kirchhoff-Love shell example. . . . . . . . . . . . . . . . . . . . . 109



LIST OF TABLES xi

List of Tables

5.1 Number of linear combinations needed to produce the element-local knot-
insertion operators. s is the number of non-empty knot spans in the fine
knot vector Ξ(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Comparison between the number of floating-point multiplications for eval-
uating (5.4) and (5.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Comparison between the number of floating-point multiplications for Equa-
tion (4.8) and algorithms 5.5 and 5.9. . . . . . . . . . . . . . . . . . . . . . 49

5.4 Example of values for φHB(p, D, (p + 1)D). . . . . . . . . . . . . . . . . . . 50
5.5 Comparison between the number of floating-point multiplications for the

direct full matrix multiplication and Algorithms 5.6 and 5.7 assuming iR ∈
R(p+1)×(p+1), i = 1 . . . D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Example of values for φT HB(p, D, (p + 1)D). . . . . . . . . . . . . . . . . . 57
5.7 Traveling Heat Source example: time saved in extracting the functions

through Algorithm 5.5 instead of direct extraction CeBe for an explicitly
constructed extraction operator Ce. . . . . . . . . . . . . . . . . . . . . . . 67

5.8 Finite J2 elastoplastic material parameters as in Hubrich and Düster [2019]. 68
5.9 Finite-strain J2 elastoplasticity example: time saved in extracting the func-

tions through Algorithm 5.5 instead of direct extraction CeBe for an ex-
plicitly constructed extraction operator Ce. . . . . . . . . . . . . . . . . . 69

6.1 Comparison of the error in the energy norm and z-displacement at point A
against the number of DOFs for tensor product and local refinements. . . . 82

7.1 The traditional algorithm for computing the reactions on conforming
meshes of nodal partition-of-unity finite elements [Bathe, 2007; De Borst
et al., 2012; Hughes, 2000; Hughes et al., 2000; Kohnke, 2009; Siemens PLM
Software Inc, 2014]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Traditional algorithm to compute the reactions viewed as testing the weak
and Galerkin form with a specific test function. . . . . . . . . . . . . . . . 99

7.3 Algorithm for computing the reactions on trimmed meshes with partition-
of-unity shape functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Algorithm for computing the reactions on trimmed meshes. The basis
functions do not need to form a partition of unity. . . . . . . . . . . . . . . 102



xii LIST OF TABLES

8.1 Comparison between the number of floating-point multiplications for eval-
uating Algorithms 8.4 and 8.5 assuming the same number of quadrature
points n̂q and basis functions n̂f is used in each parametric direction. . . . 122



1

Chapter 1

Introduction

1.1 Motivation
Modern production technologies allow today’s engineering designs to be less constrained
by the manufacturing process and primarily driven by functionality. As a result, sim-
ulation engineers must deal with objects with increasingly sophisticated shapes defined
by nature-inspired parts, overhangs, dents, irregular holes, smooth curved boundaries,
or multiple porous regions. The transformation of these complex computer-aided de-
signs (CAD) into models suitable for analysis represents one of the most time-consuming
activities in computer-aided engineering (CAE).

The finite cell method (FCM) and isogeometric analysis (IGA) were introduced to improve
interoperability between CAD and CAE. The former method does not require a geometry-
conforming computational mesh, eliminating the time-consuming and error-prone mesh
generation step. The latter uses the CAD description directly as a computational mesh,
unifying the models used for design and analysis.

An additional difficulty is that complex geometries often lead to small-scale solution fea-
tures, such as stress concentrations or singularities. The accuracy can be efficiently in-
creased by reducing the element size only in these regions of interest. The mesh-refinement
process is considerably eased by allowing so-called hanging nodes, i.e., nodes belonging
to one element but not to one of its neighbors. This approach is usually referred to as
local refinement. This work considers a straightforward refinement formulation based on
multiple levels defining increasingly finer basis functions. This approach is referred to as
multi-level or hierarchical refinement.

The finite cell method, isogeometric analysis, and local refinement can be combined,
creating a powerful and accurate framework that tightens the design-through-analysis
loop. Although this combination has been successfully applied in several examples, some
crucial issues remain unresolved:

• The implementation of local refinement is unconventional, making it challenging to
implement this approach in existing software.

• Naive implementations of local refinement may be inefficient.



2 1. Introduction

• The framework is unconventional, making some standard procedures inapplicable
(e.g., the calculation of reaction forces).

1.2 Objectives
This thesis aims to develop several supporting technologies to alleviate the above prob-
lems, and to favor the use of the described computational framework in modern engineer-
ing practice. In particular, the objectives of this work are to:

• Propose a strategy that brings the multi-level local refinement closer to traditional
finite element implementations.
This goal requires aligning the hierarchical definition of element shape functions
with the classical definition of standard basis functions common to all elements.

• Formulate several algorithms to efficiently perform common mesh-adaptivity op-
erations in combination with the multi-level definition of basis functions. These
operations should include the shape function evaluation, projection of degrees of
freedom for refinement and coarsening, and evaluation of matrix-vector multiplica-
tions for matrix-free iterative solvers.
The goal is to define procedures for performing these operations and study their
cost as a function of the number of spatial dimensions, the number of refinement
levels, and the polynomial order of the basis functions.

• Provide algorithms and theoretical understanding in the calculation of reaction
forces using the described computational framework.
The absence of the standard concept of “nodes” on the domain boundary and the
application of boundary conditions in a “weak sense” preclude the use of standard
procedures. The goal is to formulate suitable algorithms for the computation of
reaction forces retaining the same convergence rates as the classical approach.

1.3 Outline
The coming chapters formally define the computational framework and address the ob-
jectives described above. Their content can be summarized as follows:

• Chapter 2ab defines the B-splines and NURBS basis functions, a common ingredi-
ent in CAD geometry descriptions. These functions are also used for the numerical
analysis, following the isogeometric methodology. The Kronecker product and its
properties are briefly reviewed. Successively, this chapter introduces the Bézier ex-
traction: a technique that facilitates the implementation of IGA in existing software
(without local refinement).

aThis chapter is based on D’Angella et al. [2018]. The main scientific research as well as the textual
elaboration of the publication was performed by the author of this work. Part of the text of this chapter
is taken in an adjusted version from D’Angella et al. [2018].

bThis chapter is based on D’Angella and Reali [2020]. The main scientific research as well as the
textual elaboration of the publication was performed by the author of this work. Part of the text of this
chapter is taken in an adjusted version from D’Angella and Reali [2020].
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• Chapter 3ab defines the considered multi-level local refinement suitable for isogeo-
metric discretizations. In particular, the hierarchical B-splines and their truncated
variant are discussed.

• Chapter 4a proposes an extension of the Bézier extraction to (truncated) hierar-
chical B-splines. The core idea is first introduced for one-dimensional geometries
and then extended to higher-dimensional domains. The approach is discussed at
both global and element-local levels. The generalization of the method to other
refinement schemes is finally outlined.

• Chapter 5ab proposes an approach for evaluating the shape functions and pro-
jecting the degrees of freedom for refinement and coarsening. A modified Bézier
projection scheme is proposed to leverage the local tensor-product structure. The
algorithms are tested in a transient and in a non-linear three-dimensional example.

• Chapter 6cd discusses the use of local refinement in combination with IGA and
FCM to mitigate two issues: the unphysical coupling across thin holes and the
overconstraining induced by the weak boundary conditions. The application of the
computational framework is illustrated in two shell numerical examples.

• Chapter 7 presents the theoretical and algorithmic foundations for the computation
of reaction forces on immersed boundaries subject to weak boundary conditions.
The proposed approach is also suitable for basis functions that are not based on the
concept of “nodes” and do not form a partition of unity. The method is tested on a
simple 2D benchmark, a shell example, and a three-dimensional complex geometry
defined by smooth wavy boundaries and several internal cavities.

• Chapter 8 combines the algorithms presented in Chapter 5 into a framework suit-
able for matrix-free iterative solvers. The approach uses the multi-level Bézier ex-
traction and moment-fitting quadrature to exploit the present tensor structure. The
application of penalty boundary conditions is finally discussed.

• Chapter 9bc summarizes the main results and outlines possible future research
directions.

Part of the research presented in this thesis has been published in several scientific papers.
The proposed Bézier extraction for multi-level refinement was first presented in D’Angella
et al. [2018]. The related algorithms were introduced in D’Angella et al. [2018]; D’Angella
and Reali [2020]. The use of local refinement to mitigate the unphysical coupling and weak
overconstraining was jointly published in Coradello et al. [2020b], where the main scientific
research and the textual elaboration of the publication have been equally developed in
close collaboration between the first two authors, Luca Coradello and Davide D’Angella.

c This chapter is based on Coradello et al. [2020a]. The main scientific research and the textual
elaboration of the publication have been equally developed in close collaboration between the first two
authors Luca Coradello and Davide D’Angella. Parts of Coradello et al. [2020a] has been included in the
dissertations of both first two authors.

d Part of the text of this chapter is taken in an adjusted version from Kollmannsberger et al. [2020],
a publication co-authored by the author of this work.
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Chapter 2

Isogeometric analysis

This chapter reviews the essentials of geometric modeling through NURBS and its use
in isogeometric analysis [Cottrell et al., 2009; Hughes et al., 2005]. These notions are
explained following closely Cottrell et al. [2009]; Lyche and Morken [2008]; Piegl and Tiller
[1995], establishing the context within which the main contributions of this dissertation
are developed. The chapter concludes by introducing the Bézier extraction [Borden et al.,
2011]: a concept that is generalized for hierarchical refinement in a new contribution
elaborated in Chapter 4.

2.1 B-splines
The univariate B-spline functions of degree p are defined through a non-decreasing se-
quence of real numbers

Ξ = (ξ1, ..., ξm+p+1), ξi ≤ ξi+1, i = 1...m + p. (2.1)
The quantities ξi are called knot values, or knots, and Ξ is referred to as knot vector.
Note that the same knot value can be repeated multiple times. A knot value is said to
have a multiplicity equal to k when repeated for a total number k of times. The interval
[ξi, ξi+1) is called the ith knot span, and it has zero length when ξi = ξi+1. The vector of
distinct knot values

Ξ̆ = (ξ̆1, ..., ξ̆m̆+1), (2.2)

is obtained from Ξ by reducing all multiplicities to one. Namely, Ξ̆ represents the non-
degenerate knots spans.

The knot vector Ξ defines m B-spline functions {Np
i }i=1...m through the Cox-de Boor

recursion formula

Np
i (ξ) = ξ − ξi

ξi+p − ξi

Np−1
i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Np−1

i+1 (ξ) . (2.3)

The recursion terminates for B-splines N0
i of degree p = 0, i.e., step functions on the

half-open knot interval [ξi, ξi+1)

N0
i (ξ) =

{
1 ξi ≤ ξ < ξi+1,

0 otherwise.
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When the quotient 0/0 occurs in Equation (2.3), it is defined to be equal to zero.

Note that from their definition, the B-splines are piecewise polynomials defined on the
whole real line, and they assume non-zero values only within the interval given by the
extremal knot values (ξ1, ξm+p+1). If a knot value is repeated k times, k ≥ 1, then the B-
spline functions have p−k continuous derivatives at that location, while they are infinitely
differentiable everywhere else. In the following, only knot vectors where the first and last
knot are repeated p + 1 times are considered

Ξ = (a, ..., a︸ ︷︷ ︸
p+1

, ξp+2, ..., ξm, b, ...b︸ ︷︷ ︸
p+1

). (2.4)

Such knot vectors are referred to as open or clamped. Without loss of generality, it is
defined (a, b) = (−1, 1).

A B-spline curve F : [−1, 1] → Rmg in an mg-dimensional space can be defined by some
coefficients {P i}i=1...m, P i ∈ Rmg referred to as control points. The value F (ξ) for a
parametric location ξ ∈ R is defined by the linear combination

F (ξ) =
m∑
i

Np
i (ξ)P i.

In the following chapters, such linear combination will be often expressed in matrix no-
tation as

F (ξ) = P > N p(ξ),

where

N p(ξ) = (Np
1 (ξ), ..., Np

m(ξ))> , (2.5)
Pij = [P i]j . (2.6)

2.2 Non-uniform rational B-splines
The B-spline functions defined in the previous section can be generalized to NURBS, al-
lowing to represent a broader class of geometric objects such as conic sections. NURBS are
nowadays the de-facto industry standard in the design and exchange of digital geometries.

The pth-degree NURBS basis functions R̄
p(ξ) are defined by an open knot vector Ξ =

(ξ1, ..., ξm+p+1) and some weights w ∈ Rm. Specifically,

R̄p
i (ξ) = wi

w> N p (ξ) Np
i (ξ) , (2.7)

where N p is composed of the B-splines defined by the knot vector Ξ, as described in the
previous section.
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A NURBS curve F : [−1, 1] → Rmg is constructed by a linear combination of NURBS
basis functions

F (ξ) = P > R̄
p(ξ),

for some m × mg coefficient matrix P , indicated as P ∈ Rm×mg .

Note that the NURBS basis functions are a generalization of the standard B-splines, as
their definition coincides when the weights are all equal to one (or any other constant
value). Moreover, the following properties hold

R̄p
i (ξ) ≥ 0, ∀i, p, and ξ ∈ [−1, 1] (non-negativity),

R̄p
i (ξ) = 0, ∀ξ 6∈ [ξi, ξi+p+1] (local support),

R̄p
1(−1) = R̄p

m(1) = 1, ∀p (interpolatory endpoints),
m∑

i=1

R̄p
i (ξ) = 1, ∀ξ ∈ [−1, 1] (partition of unity).

See Piegl and Tiller [1995] for a comprehensive review.

An efficient way to represent NURBS curves is to use homogeneous coordinates. The
idea is to represent a rational geometry in mg coordinates as a B-spline geometry in an
(mg + 1)-dimensional space. Given some control points {P i} and non-zero weights {wi},
the curve F (ξ) =

∑
i P i R̄p

i (ξ) can be transformed into homogeneous coordinates P̊ i as

P̊ i = (wiP i, wi)>. (2.8)

For example, in three dimensions, P i has three coordinates P i = (xi, yi, zi)>, and its
homogeneous representation reads

P̊ i = (wixi, wiyi, wizi, wi)>. (2.9)

The original coefficients P i can be recovered through the following map

Ψ
(

P̊ i

)
= Ψ

(
(xi, yi, zi, wi)>)

=
{

( xi

wi
, yi

wi
, zi

wi
)> if wi 6= 0

(xi, yi, zi)> otherwise.

Using the coefficients in homogeneous coordinates, the four-dimensional representation of
F becomes

F̊ (ξ) =
∑

i

P̊ i Np
i (ξ). (2.10)

Note that F̊ is defined as a linear combination of B-splines Np
i instead of rational functions

R̄p
i .
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The rational curve F can be obtained from F̊ through the map Ψ(·) as

Ψ
(

F̊
)

= Ψ
(∑

i

P̊ i Np
i

)
=
∑

i

P i
wi

w> N p (ξ) Np
i (ξ)

=
∑

i

P i R̄p
i (ξ)

= F .

When there is no ambiguity, the superscript p is dropped in the following sections to ease
the notation.

2.3 Multivariate geometries
Given a multi-index i = (i1, ..., iD), the D-variate B-spline function Ni can be defined as
the tensor-product of univariate B-spline functions. In particular, let

dΞ =
(

dξ1, ..., dξdm+dp+1
)

, 1 ≤ d ≤ D, (2.11)

be the knot vector in the dth parametric direction. As explained in the previous section,
such a knot vector defines the B-spline functions dNid

, id = 1, ..., dm, of degree dp.

The D-variate B-spline function Ni(ξ) at a location ξ = (ξ1, ..., ξD) is defined as the
tensor-product

Ni(ξ) =
D∏

d=1

dNid
(ξd) . (2.12)

Multivariate geometric objects can be obtained as a linear combination of the basis
functions Ni. In particular, given some coefficients P i and the parametric domain
Ω̂ = [−1, 1]D, a D-variate B-spline geometry F (ξ) : Ω̂ → Rmg is obtained as

F (ξ) =
∑

i

Ni(ξ) P i. (2.13)

Multivariate NURBS functions {R̄i(ξ)} with weights {wi} are defined as

R̄i(ξ) = Ni(ξ) wi∑
j Nj(ξ) wj

. (2.14)

As for B-splines, NURBS geometries are obtained by linear combinations of some coeffi-
cients P i

F (ξ) =
∑

i

R̄i(ξ) P i. (2.15)
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In general, each function R̄i(ξ) cannot be obtained as a tensor-product of univariate
functions. However, NURBS geometries F̊ in homogeneous coordinates follow a tensor
structure induced by the B-splines

F̊ (ξ) =
∑

i

Ni(ξ) P̊ i. (2.16)

2.4 Kronecker product
The tensor-product nature of multivariate B-spline geometries confers a precise structure
to linear operators operating on control points or B-spline functions. Given the matrix
representations of some linear operators defined in each parametric direction, the tensor
product operator is often represented as the Kronecker product of these matrices.

Given a matrix Y ∈ Ry1×y2 , and given X ∈ Rx1×x2 , the Kronecker product Y ⊗ X is the
block matrix

Y ⊗ X =


Y11X Y12X . . . Y1y2X

Y21X Y22X . . . Y2y2X
... ...

Yy11X Yy12X . . . Yy1y2X

 ∈ Rx1y1×x2y2 .

The block structure of this operation confers various important properties to the Kro-
necker product. The identities relevant in this work are:

Z ⊗ (Y ⊗ X) = (Z ⊗ Y ) ⊗ X (associativity), (2.17)
Y ⊗ X = (Y ⊗ Ix1) (Iy2 ⊗ X) (compatibility), (2.18)
Y ⊗ X = K(y1, x1) (X ⊗ Y ) K(x2, y2) (pseudo-commutativity), (2.19)

(A ⊗ B) (C ⊗ D) = (A B) ⊗ (C D) (mixed-product), (2.20)

where A, B, C, D, Z are arbitrary real matrices of compatible dimensions, Ia ∈ Ra×a is
the identity matrix, and Ka,b ∈ Rab×ab is the (perfect shuffle) permutation matrix

Ka,b
ij = δi, (j mod a)b+(j div a)

= δ(i mod b)a+(i div a), j ,

where δ is the Kronecker delta, while j div a = bj/ac and j mod a = j − abj/ac denote
the (positive) integer division and remainder operator, respectively, and bxc is the greatest
integer less than or equal to x. Further details can be found in, e.g., Fernandes et al. [1998];
Loan [2000] and references therein.

2.5 Isogeometric analysis
In the previous sections, NURBS and B-splines were introduced in their natural geo-
metric context. These concepts are now used to define both the computational domain



10 2. Isogeometric analysis

(mesh) and the discrete solution space’s basis functions. The connection between geome-
try and analysis is naturally furnished by the isoparametric concept: the same set of basis
functions describe both the solution space and the geometry.

This approach is compelling for computational domains that are described by NURBS
geometries, as suitable solution spaces can be constructed on the exact geometry. When
the domain of interest is not described exactly by NURBS geometries, isogeometric anal-
ysis [Cottrell et al., 2009; Hughes et al., 2005] can be combined with the finite cell method
[Düster et al., 2008, 2017], retaining the geometric exactness. This approach is discussed
in Chapters 6–8. Other techniques such as multi-patch coupling are not considered in this
work.

Let F (ξ) : Ω̂ → Ω ⊂ Rmg be a D-variate NURBS geometry identified by some control
points P i ∈ Rmg . As in the previous sections, F (ξ) is defined as

F (ξ) =
∑

i

R̄i(ξ) P i.

The functions R̄i are also used as basis functions defining the discrete solution space. In
the parametric domain Ω̂, the solution field ûh : Ω̂ → Rms is described as

ûh(ξ) =
∑

i

R̄i(ξ) di,

for some degrees of freedom di ∈ Rms . The solution field in the physical space Ω is
obtained as

uh = ûh ◦ F −1.

Note that the solution field uh has the smoothness induced by the NURBS basis functions
R̄i.

2.5.1 Refinements

While the computational domain is exactly represented, it might be desirable to enrich
the solution space to increase the accuracy of the simulation results. To this end, basis
functions suitable for numerical analysis are obtained by “refining” the functions describ-
ing the geometry. The refinement can be performed while leaving the geometry and its
parametrization unchanged. NURBS functions naturally furnish three main approaches
to refinement:

• knot insertion,
• degree elevation, and
• k-refinement.
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2.5.1.1 Knot insertion

Given a NURBS curve F̊ =
∑m

i=1 NiP̊ i defined on the knot vector

Ξ = (ξ1, ..., ξm+p+1),

the objective is to describe the same curve in a different basis determined by a knot vector

Ξ̃ = (ξ̃1, ..., ξ̃m̃+p+1)

obtained by adding knots to Ξ. Namely, each knot ξi in Ξ is also present in Ξ̃. This
inclusion is indicated by Ξ ⊂ Ξ̃. Note that the knot multiplicities in Ξ̃ are at least the
multiplicities in Ξ.

Let {Ñi} be the B-splines functions defined on the knot vector Ξ̃. Since Ξ ⊂ Ξ̃, the same
inclusion holds in the respective B-spline spaces:

span {Ni} ⊂ span
{

Ñi

}
, (2.21)

as both are piecewise-polynomial spaces of the same order, and each Ñi has a number of
continuous derivatives at the knots that is less or equal than the same number for Ni.
The function spaces’ inclusion in Equation (2.21) implies that the curve F̊ =

∑m
i=1 NiP̊ i

admits the representation

F̊ (ξ) =
m̃∑

i=1

Ñi Q̊i, (2.22)

for some control points {Q̊i}. The representations in terms of the functions {Ñi} or {Ni}
are expressions of the same curve, maintaining the geometry and its parametrization
unchanged. The knot-insertion procedure determines the coefficients {Q̊i} associated
with this change of basis.

If only a single knot ξ̄ ∈ [ξk, ξk+1) is inserted at the (k + 1)th position, i.e.,

Ξ̃ = (ξ̃1 = ξ1, ..., ξ̃k = ξk, ξ̃k+1 = ξ̄, ξ̃k+2 = ξk+1, ..., ξ̃m+p+2 = ξm+p+1),

an explicit formula for the coefficients {Q̊i} can be obtained from Equation (2.3). Namely,

Q̊i = αiP̊ i + (1 − αi)P̊ i−1, (2.23)

where

αi =


1 if i ≤ k − p,

ξ̄−ξi

ξi+p−ξi
if k − p < i ≤ k,

0 if i > k.

(2.24)

When more than one knot is added to Ξ, this procedure can be iterated to insert an
arbitrary number of knots, one at a time.
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Equation (2.23) shows that the knot insertion is a linear operation. Therefore, it can be
expressed in matrix form as

Q̊ = R>P̊ , (2.25)

where

Q̊ij =
[
Q̊i

]
j
, (2.26)

P̊ij =
[
P̊ i

]
j
. (2.27)

The operator R is referred to as the knot-insertion operator.

In D-variate spaces defined by the knot vectors

dΞ =
(

dξ1, ..., dξdm+dp+1
)

, d = 1, ..., D, (2.28)

knots can be inserted in the knot vector dΞ for each parametric direction d, yielding the
univariate knot-insertion operators {dR}d=1,...,D. In order to use a unified matrix notation,
the refined control points {Q̊i}, with multi-index i = (i1, ..., iD), can be arranged in a
matrix Q̊. Specifically, the multi-index i can be identified by the scalar index i = i(i)
following the canonical tensor-product order

i = i1 + 1m(i2 + 2m(...iD−1 + D−1m iD)). (2.29)

The matrix Q̊ is defined as

Q̊ij = Q̊i(i),j =
[
Q̊i

]
j
. (2.30)

The knot-insertion operator for the tensor-product geometry is the tensor product of the
univariate operators

Q̊ =
(

DR ⊗ ... ⊗ 1R
)>

P̊ . (2.31)

2.5.1.2 Degree elevation

The degree elevation is a procedure similar to knot insertion in the sense that a given
curve is expressed in the coordinates of a finer space. In the case of knot insertion, the
finer space consists of “more functions,” while in the case of degree elevation, it consists
of higher-order functions.

Specifically, given an open-knot vector

Ξp = (t1, ..., t1︸ ︷︷ ︸
p+1

, t2, ..., t2︸ ︷︷ ︸
r2

, ..., ts−1, ..., ts−1︸ ︷︷ ︸
rs−1

, ts, ..., ts︸ ︷︷ ︸
p+1

),
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with associated pth-degree basis functions N p, a function space including span {Np
i } is

generated by the knot vector Ξp obtained by raising all multiplicities by one, that is

Ξp+1 = (t1, ..., t1︸ ︷︷ ︸
p+2

, t2, ..., t2︸ ︷︷ ︸
r2+1

, ..., ts−1, ..., ts−1︸ ︷︷ ︸
rs−1+1

, ts, ..., ts︸ ︷︷ ︸
p+2

).

The B-splines defined by Ξp+1 possess the same smoothness as the functions N p but are
of degree p + 1. Given a NURBS curve F̊ = (N p)>P̊

p, the nestedness condition

span {Np
i } ⊂ span

{
Np+1

i

}
(2.32)

implies the existence of some control points P̊
p+1, such that

(N p)>P̊
p = F̊ = (N p+1)>P̊

p+1
. (2.33)

Explicit algorithms to determine the coefficients P̊
p+1 from P̊

p are given in, e.g., Piegl
and Tiller [1995].

2.5.1.3 k-refinement

Knot insertion and degree elevation do not commute. For example, consider the knot
vector

Ξ = (−1, −1, 1, 1).

Inserting one knot ξ = 0 and, afterwards, elevating the degree, yields

Ξ̃ = (−1, −1, −1, 0, 0, 1, 1, 1).

Instead, performing the knot insertion after the degree elevation gives

Ξ̃ = (−1, −1, −1, 0, 1, 1, 1).

The first knot-vector generates functions that are C0 at ξ = 0, while the second knot-vector
generates functions that are C1 at the same location.

The k-refinement is the procedure obtained by first elevating the degree and then insert-
ing new knots. This approach produces functions that have the maximum smoothness
dictated by the underlying geometry.

2.6 Standard Bézier extraction
The isogeometric approach presented in Section 2.5 shows a few differences compared to
standard finite element implementation. Considering every non-degenerate knot span as
a finite element, one crucial difference is that the shape functions are not the same for
each element. In particular, a knot vector can contain different multiplicities, defining
different element basis functions while keeping the element boundaries unchanged. In this
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sense, it is not possible to adopt the standard implementation strategy based on defining
a set of standard basis functions on a reference space shared by all finite elements. This
difference makes it harder to integrate isogeometric analysis into an already-existing finite
element code. The Bézier extraction is proposed in Borden et al. [2011] to mitigate these
difficulties and, in this section, its main ideas and properties are reviewed, following closely
Borden et al. [2011]; Piegl and Tiller [1995].

Consider a univariate knot vector

Ξ = (ξ1, ..., ξm+p+1)

with an associated vector N composed of pth-degree B-spline basis functions. Let

F̊ (ξ) = P̊
>

N (ξ)

be a NURBS geometry defined by the homogeneous control points P̊ ∈ Rm×(mg+1), mg

being the number of components of each control point. The Bézier decomposition of F̊
into piecewise Bézier curves is obtained by raising to p the multiplicity of each internal
knot in Ξ. This operation can be done by inserting new knots in Ξ, as explained in
Section 2.5.1.1. This way, the same spline F̊ can be represented in terms of the Bernstein
polynomials B, as

F̊ (ξ) = Q̊
>

B(ξ).

Increasing the knot repetition is a linear operation, i.e., the Bernstein control points Q̊
can be obtained as a linear combination of the B-spline control points P̊ . The matrix E
representing this operation is called the Bézier extraction operator. In particular, E is
such that

Q̊ = E>P̊ . (2.34)

This operator can also be used to obtain the dual relation, i.e., to express the B-spline
functions N as a linear combination of Bernstein polynomials B. Indeed,

P̊
>

N = F̊

= Q̊
>

B

=
(

P̊
>

E
)

B (Equation (2.34))

= P̊
> (EB) .

The arbitrarity of P̊ yields the dual relation

N = EB. (2.35)
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2.6.1 Element-local Bézier extraction
Relations (2.34) and (2.35) can be restricted to a single element Ω̃e in the knot-vector
parameter space. Namely, Ω̃e is defined by a non-degenerate knot span Ω̃e = [ξe

1, ξe
2], for

some distinct knot values ξe
1 < ξe

2 in Ξ. In particular, the element-local relations read

Q̊e = (Ee)>P̊ e, (2.36)
N e = EeBe, (2.37)

where N e and Be are column vectors consisting of N and B functions having support on
element Ω̃e, respectively. P̊ e and Q̊e are the control points associated with the functions
N e, Be, respectively. Ee is obtained from E by selecting the rows corresponding to func-
tions in N e and columns associated with functions in Be. The localization of operators is
further discussed in Chapter 4. Throughout this dissertation, the superscript e indicates
element-local matrices.

The element functions N e(ξ) and Be(ξ) are defined for any ξ ∈ Ω̃e. The functions Be(ξ)
are the same for each element Ω̃e up to a coordinate change. In particular, it is possible
to obtain Be(ξ) from the Bernstein polynomials B(ξ̂) defined on a reference interval
Ω̂ = [a, b], i.e.,

Bi(ξ̂) =
(

p

i − 1

)
(b − ξ̂)p−(i−1)(ξ̂ − a)i−1

(b − a)p
, i = 1, ..., p + 1,

where(
p

i − 1

)
= p!

p!(i − 1)! .

Without loss of generality, it is assumed Ω̂ = [−1, 1] to facilitate Gaussian quadrature.

Given the mapping from reference space to the parametric element F̃ e : Ω̂ → Ω̃e, such
that F̃ e(Ω̂) = Ω̃e, it holds

Be
(

F̃ e(ξ̂)
)

= B(ξ̂).

Therefore, the element basis functions N e(F̃ e(ξ̂)) = N e(ξ̂) defined on the reference space
Ω̂ can be expressed through Bernstein polynomials B(ξ̂) as

N e(ξ̂) = EeB(ξ̂). (2.38)

Equation (2.38) defines the element shape functions N e from a set of element-independent
Bernstein polynomials B defined on a common reference space Ω̂.

Equation (2.36) determines a set of element control points defining a direct mapping
F e : Ω̂ → Ωe from the reference space Ω̂ to the physical space Ωe. Specifically,

F e(ξ̂) = (Q̊e)>B(ξ̂).
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In summary, the Bézier extraction operator defines a set of basis functions B on a reference
space Ω̂ common to each element. It also determines the control points to obtain a
direct geometric mapping to the (unchanged) geometry of the problem through the same
functions B. This operator furnishes a strategy that is one step closer to traditional
finite element implementations based on a common reference space. The only additional
step required consists of applying the transformation Ee given in Equation (2.38). This
modification can be confined to shape-function evaluation subroutines.

2.6.2 Multivariate Bézier extraction
In D-variate domains, E, N , and B are a tensor product of D univariate operators
obtained as described in the previous section. For example, for D = 2, it holds

N = 2N ⊗ 1N ,

B = 2B ⊗ 1B,

where the left superscript indicates the parametric direction. Using Equation (2.35) in
each direction yields

2N ⊗ 1N =
(2E 2B

)
⊗
(1E 1B

)
, (2.39)

=
(2E ⊗ 1E

) (2B ⊗ 1B
)

. (2.40)

Namely, the fundamental relations Equations (2.35) and (2.37) hold also for tensor product
functions N and B, in which the extraction operator E is the tensor product of the
univariate extraction operators. Also Equations (2.34) and (2.36) hold for control points
of compatible size. Using the same notation as in [Thomas et al., 2015], such a reverse
Kronecker product is denoted by

E =
D⊙

i=1

iE = DE ⊗ D−1E ⊗ ... ⊗ 2E ⊗ 1E.

For example, in three dimensions, the above expression corresponds to

E =
3⊙

i=1

iE = 3E ⊗ 2E ⊗ 1E.



Chapter 3

Hierarchical B-splines

The previous chapter introduced isogeometric analysis, illustrating the tensor-product
structure of both the geometry and the solution field. This property can become a disad-
vantage when approximating fields featuring localized phenomena, such as singularities
or stress concentrations. For example, inserting a knot in one parametric direction pro-
duces not only new functions with support in the proximity of desired areas but also new
functions along the whole extent of the remaining parametric directions. This effect is
undesirable, as it precludes local refinement.

This chapter reviews one approach to local refinement based on the definition of B-splines
on multiple levels with increasingly smaller support. The final set of basis functions
describing the discrete solution space comprises functions belonging to different levels,
allowing to introduce refined functions only where needed. This technique, named hi-
erarchical B-splines (HB), is presented in, e.g., Forsey and Bartels [1988]; Greiner and
Hormann [1997]; Kraft [1997]; Vuong et al. [2011]. The current chapter completes the
preliminaries for the new contributions elaborated in the following chapters.

3.1 Introduction
Adaptivity has become a fundamental topic of research in isogeometric analysis. Different
techniques are being currently developed, including T-Splines (see, e.g., Bazilevs et al.
[2010]; Beirão da Veiga et al. [2012]; Beirão da Veiga et al. [2013]; Li and Scott [2012];
Li et al. [2012]; Scott et al. [2012, 2011]), LR-Splines (see, e.g., Dokken et al. [2013]),
hierarchical T-splines (see, e.g., Evans et al. [2015]), and hierarchical B-splines (HB)
(see, e.g., Forsey and Bartels [1988]; Greiner and Hormann [1997]; Kraft [1997]; Vuong
et al. [2011]). This strategy has been recently improved under the name of truncated
hierarchical B-splines (T HB) [Giannelli et al., 2016, 2012], aiming to recover the partition
of unity property and enhance the bandwidth granted by standard hierarchical B-splines.

The hierarchical B-splines and their truncated variant are based on a hierarchical defi-
nition of functions subdivided into multiple levels, as described in the following sections
following closely Giannelli et al. [2016]; Hennig et al. [2016].
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Figure 3.1: Example of hierarchical B-spline functions. The knots of each level are marked
by red crosses.

3.2 Function hierarchy
Let

V(0) ⊂ V (1) ⊂ · · · ⊂ V (L) (3.1)

be a sequence of nested B-spline spaces defined on a D-variate parametric domain Ω ⊂ RD.
Each space V(l) is assumed to have a finite dimension denoted by dim(V(l)). It is spanned
by the pth-degree B-spline basis, B(l), identified by the knot vectors

dΞ(l) = (dξ
(l)
1 , . . . , dξ

(l)
dm(l)+p+1), 1 ≤ d ≤ D, 0 ≤ l ≤ L.

Note that the degree p is the same for all parametric directions. The nested nature of
the spaces V(l) implies that the knot vectors are also nested, i.e., dΞ(l) ⊂ dΞ(l+1) (see
Section 2.5.1.1).

Figure 3.1 shows an example consisting of three nested knot vectors together with the
associated B-spline functions. In particular, note that each level-l knot value is also
present in every knot vector of a higher level. The base level (l = 0) is referred to as
coarse level, while the others are called finer levels.

Among these B-splines defined on different levels, it is of interest to identify a suitable
set of functions

H ⊂
L⋃

l=0

B(l)
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used as basis functions for both analysis and geometry description. The choice for H is
driven by some areas of interest, where finer functions should be activated to selectively
increase the resolution of the space.

To this end, Ω is partitioned into a finite subdomain set T = {Ωe}e=1,...,ne composed of
nonempty knot spans of any level. Specifically, given the set Q(l) of nonempty knot spans
defined by the level-l knot vectors {dΞ(l)}d=1,...,D, the multi-level mesh can be identified
by any set

T ⊂
⋃

l

Q(l), (3.2)

such that

Ω =
⋃

Ωe∈T

Ωe, (3.3)

where Ωe denotes the closure of Ωe. Figure 3.2 shows a possible choice for T in the
knot-span hierarchy considered in Figure 3.1.

The set of level-l elements is denoted by

T (l) = T ∩ Q(l), (3.4)

and let Ω(l) be their domain, i.e.,

Ω(l) =
⋃

Ωe∈T (l)

Ωe. (3.5)

To identify a suitable choice of hierarchical basis functions, let

Ω(l)
+ =

L⋃
l∗=l+1

Ω(l∗),

Ω(l)
− =

l−1⋃
l∗=0

Ω(l∗),

be respectively the finer and coarser domains with respect to the lth level. In the example
given in Figure 3.2, these domains consist of the following intervals

Ω(0) = [−1, 0], Ω(1) = [0, 0.25], Ω(2) = [0.25, 1],
Ω(0)

+ = [0, 1], Ω(1)
+ = [0.25, 1], Ω(2)

+ = ∅,

Ω(0)
− = ∅, Ω(1)

− = [−1, 0], Ω(2)
− = [−1, 0.25].

Based on the partition T , the basis functions H can be defined through the set B(l)
a of

functions with support on some elements, i.e.,

B(l)
a =

{
N ∈ B(l) : supp(N) ∩ Ω(l) 6= ∅

}
⊂ B(l).
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Figure 3.2: Example of element mesh and (truncated) hierarchical B-spline basis. The
elements are marked by the thick red lines on the horizontal axes. B(l)

a is composed of the
colored or dotted functions. B(l)

− is composed of the dotted functions. B(l)
+ is composed

of the dashed functions. B(l)
= is composed of the solid non-gray functions. The solid gray

functions are inactive.

See Figure 3.2 for an example. To identify a subset of linearly independent functions, B(l)
a

is divided into the sets

B(l)
− =

{
N ∈ B(l)

a : supp(N) ∩ Ω(l)
− 6= ∅

}
(overlapping coarser elements),

B(l)
+ =

{
N ∈ B(l)

a : supp(N) ∩ Ω(l)
+ 6= ∅

}
\ B(l)

− (overlapping finer elements),

B(l)
= =

{
N ∈ B(l)

a : supp(N) ⊂ Ω(l)} (overlapping same-level elements).
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These subsets are illustrated in Figure 3.2. The above definitions are used in the following
sections to define the hierarchical B-spline basis and its truncated variant.

3.3 Hierarchical B-splines
The hierarchical B-splines basis [Kraft, 1997; Vuong et al., 2011] H = HB is defined as

HB =
L⋃

l=0

HB(l), (3.6)

where

HB(l) =
(

B(l)
= ∪ B(l)

+

)
.

Namely, HB is the set of B-splines of each level l whose support covers only elements of
level l∗ ≥ l and at least one level-l element (see Figure 3.2). It was proven in Vuong et al.
[2011] that the hierarchical B-splines are linearly independent.

3.4 Truncated hierarchical B-splines
The truncated hierarchical B-spline basis (T HB) [Giannelli et al., 2012] is similar to the
hierarchical B-splines, with the main difference being that the functions whose support
covers finer elements are shrunk. This approach generates a basis that spans the same
space as the hierarchical B-splines [Giannelli et al., 2012] but is composed of functions
that

• have smaller support,
• form a partition of unity, and
• have superior stability properties.

The above properties are all desirable in the context of numerical simulations. See Gian-
nelli et al. [2012, 2013] for further details.

The truncation concept is based on the following definition.

Definition 3.4.1: Truncation operator [Giannelli et al., 2012]
Let τ ∈ V (l), and let

τ =
∑

N∈B(l+1)

c
(l+1)
N (τ) N, c

(l+1)
N ∈ R , (3.7)

be its representation with respect to the finer basis B(l+1) of V(l+1). The truncation of τ
with respect to the level l + 1 is defined as

trunc(l+1)(τ) =
∑

N∈B(l+1),

supp(N)∩Ω(l+1)
− 6=∅

c
(l+1)
N (τ) N.
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Figure 3.3: The function N
(1)
6 of the example in Figure 3.2 (left, dashed blue) and its

truncation (right, dashed blue) expressed in terms of the finer functions (from left to
right): N

(2)
10 , N

(2)
11 , N

(2)
12 , and N

(2)
13 (dotted gray and solid orange).

Namely, the truncation is based on the finer-basis representation, keeping only the con-
tribution of basis functions whose support overlaps coarser elements. Figure 3.3 shows
a graphical representation of this procedure. Note that the finer-level representation in
Equation (3.7) is always well-defined, as V(l) ⊂ V (l+1).

The truncated hierarchical B-spline basis is obtained by a recursive application of the
truncation defined in Definition 3.4.1, as described in the following definition.

Definition 3.4.2: Recursive truncation operator [Buffa and Giannelli, 2016]
Let τ ∈ V (l). The recursive truncation of τ is defined as

Trunc(l+1) (τ) = trunc(L) (trunc(L−1) (. . . trunc(l+1) (τ) . . .
))

.

Similarly, the recursive truncation of the set B(l) is the set of truncated functions

Trunc(l+1) (B(l)) =
{

Trunc(l+1) (N) : N ∈ B(l)
}

.

The truncated hierarchical B-splines’ definition is similar to the one of hierarchical B-
splines, with the difference being that active functions with support partly on finer ele-
ments are (recursively) truncated

T HB =
⋃

l

T HB(l) , (3.8)

where

T HB(l) = B(l)
= ∪ Trunc(l+1)

(
B(l)

+

)
= Trunc(l+1)

(
HB(l)

)
.
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Figure 3.2 shows an example of a truncated hierarchical B-spline basis compared to the
standard hierarchical B-splines. Note that the truncated functions spanning multiple
levels have smaller support compared to their un-truncated counterpart.
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Chapter 4

Multi-level Bézier extraction

Chapter 2 introduced the Bézier extraction for isogeometric analysis (without local refine-
ment) as a way to ease its implementation in already-existing software. In Chapter 3, it
was noted that the tensor-product structure of NURBS patches precludes local refinement.
The hierarchical B-splines were presented as a possible way to overcome this difficulty.

In this chapter, the concept of Bézier extraction is generalized to any hierarchical re-
finement based on a sequence of nested function spaces. The proposed strategy shows
properties analogous to the standard Bézier extraction, bringing the local refinement one
step closer to traditional finite element implementations. Particular focus is devoted to
hierarchical B-splines and their truncated variant. However, the proposed strategy is not
limited to these approaches, and further generalizations are briefly discussed.

4.1 Introduction
In the literature, several works moving along similar research lines can be found.

In Garau and Vázquez [2016], a similar approach is applied globally following a level-wise
strategy, where the active entries of the system matrices are computed in a standard
way for each level. Each level’s system matrix is successively transformed to produce
the entries in the hierarchical B-spline basis. One advantage of this approach is that no
connectivity information is needed.

Another similar global approach can be found in Hennig et al. [2016], where the active
entries of the system matrices are computed with the standard basis of each hierarchical
level. Consecutively, the obtained matrices are inserted into a diagonal block-matrix that
is ultimately transformed into the hierarchical system. In Hennig et al. [2016]; Vuong
[2014], the Bézier extraction is applied level-wise in a standard fashion.

A very similar concept is outlined in Evans et al. [2015]; Lorenzo et al. [2017]; Scott et al.
[2014], where the hierarchical functions are constructed from the Bernstein polynomials.
Here, the truncation is not considered, and the presentation is specific to the considered
basis functions.
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A similar strategy is presented in Apprich et al. [2014]; Bornemann and Cirak [2013], but
it is restricted to the overlay of uniform knot-vectors obtained by bisection. In particular,
it is not permitted to have knot repetitions, precluding the use of open-knot vectors or
reduced-continuity bases. Moreover, the approach does not extend to truncated hierar-
chical B-splines. Additionally, the method of Bornemann and Cirak [2013] presents the
same restrictions as in Kraft [1997], i.e., refinements on the boundary are not allowed.

This dissertation proposes an element-local approach aiming at easing the introduction
of local refinement into already-existing software. This approach preserves the “element”
concept used in standard finite-element implementations. The proposed approach retains
the same properties making the traditional Bézier extraction an effective strategy. The
method is defined in a general setting, separating the multi-level extraction from the
standard Bézier extraction, setting a more general independent framework applicable to
any sequence of nested spaces. The method can be combined with the traditional Bézier
extraction, obtaining an extraction for the (truncated) hierarchical B-splines. There is
no restriction on the knot vectors’ multiplicities, allowing open-knot vectors or reducing
the continuity in the finer levels. The method can also be combined with other kinds
of standard polynomial functions, such as Lagrange polynomials, integrated Legendre
polynomials, or the standard B-splines.

4.2 Basic idea
Consider the hierarchical B-spline basis depicted in Figure 3.2 and the level-two element

Ωe3 = (0.25, 0.375)

marked by the gray overlay box. The hierarchical B-splines restricted to Ωe3 can be
obtained by a linear combination of the single-level functions in B(2) with support on
Ωe3 . Namely, the element-local hierarchical basis of Ωe3 is a linear combination of the
standard B-Splines defined by the level-two knot vector Ξ(2). This concept is illustrated
in Figure 4.1.

This representation is valid for each level-l element Ωe: the element-local hierarchical basis
can be represented on Ωe as a linear combination of standard level-l B-spline functions
in B(l). This concept will be further explained later in the section. Note that the B-
spline basis B(l) belongs to the same level l as the element Ωe. As shown in Figure 4.1,
this linear operation can be represented by a matrix local to each element called the
multi-level extraction operator.

Intuitively, such an operator flattens the multi-level hierarchy of functions into a sequence
of elements equipped with a single-level basis. This benefit will become even more appar-
ent when the multi-level extraction is combined with the Bézier extraction [Borden et al.,
2011], as shortly discussed in Section 4.7 and illustrated in Figure 4.1. The multi-level
Bézier extraction operator offers a classical finite element point of view on the hierarchical
overlay of functions, giving each element the same set of functions in a reference space
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Figure 4.1: Hierarchical B-spline basis local to the element Ωe3 = (0.25, 0.375) (cf. Fig-
ure 3.2), expressed as a linear combination of standard functions in B(2) with support on
Ωe3 or of Bernstein polynomials.

that can generate the hierarchical basis. This representation can simplify the hierarchical-
refinement implementation in already-existing finite element software.

This hierarchical-refinement representation can be defined not only for nested spline spaces
produced by knot insertion, as the one considered in Figure 3.2, but it holds in a more
general sense for every sequence of nested spaces V(0) ⊂ V(1) ⊂ · · · ⊂ V(L). In partic-
ular, different basis functions and different kind of refinements can be considered, e.g.,
(anisotropic) spline knot insertion, (anisotropic) spline degree elevation, (anisotropic) C0-
continuous linear polynomial and h-FEM refinement, or (anisotropic) C0-continuous high-
order polynomials and hp-FEM refinement (see, e.g., Di Stolfo et al. [2016]).

4.3 Representation of nested spaces
The core assumption in the formulation of the multi-level extraction operator is that the
locally-refined basis functions are defined on nested function spaces. This assumption is
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met in the case of HB and T HB, among others.

Let V(0) ⊂ V(1) ⊂ · · · ⊂ V(L) be a sequence of nested function spaces, with B(l) being a
(non necessarily B-spline) basis for V(l), m(l) = dim(V(l)), and N (l) be the column vector
composed of the m(l) functions in B(l) in some fixed order. The spaces’ nestedness implies
that if τ ∈ V(l1), then τ ∈ V(l2) for any l2 ≥ l1. Therefore, there exists a linear operator
represented by a matrix R(l1,l2) ∈ Rm(l1)×m(l2) , such that

N (l1) = R(l1,l2)N (l2), l1 ≤ l2. (4.1)

The operator R(l1,l2) is referred to as refinement operator.

Furthermore, since τ ∈ V (l1), τ can be written as τ = (N (l1))>P (l1) for some coefficients
P (l1). Moreover, since τ belongs as well to V(l2), τ = (N (l2))>P (l2) for some coefficients
P (l2). Therefore, it holds

(N (l2))>P (l2) = τ = (N (l1))>P (l1) = (N (l2))>(R(l1,l2))>P (l1). (4.2)

Equation (4.2) implies

(N (l2))>
{

P (l2) − (R(l1,l2))>P (l1)
}

= 0,

and the linear independence of N (l2) yields the dual relation

P (l2) = (R(l1,l2))>P (l1). (4.3)

Equations (4.1) and (4.3) generalize Equations (2.35) and (2.34), respectively.

4.4 The multi-level extraction operator
Let us consider a hierarchical basis H = (H1, .., Hm)> composed of functions taken from
the level bases B(l), 0 ≤ l ≤ L, i.e.

H = (N (0)
1 , .., N

(0)
m(0) , .., N

(L)
1 , .., N

(L)
m(L))>.

Since each Hk = N
(l)
i ∈ B(l) for some level l and index i, it follows from Equation (4.1)

that each element Hk of H can be written as linear combination of basis functions N
(L)
j

in B(L)

Hk = N
(l)
i =

dim
(
B(L))∑

j=1

R
(l,L)
ij N

(L)
j .

Assembling all rows i of R(l,L) corresponding to each hierarchical function Hk into a matrix
M , we obtain a representation of an operator mapping the finest-level functions N (L) to
the hierarchical basis H

H = M N (L).
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The operator M is referred to as multi-level extraction operator. It is a generalization of
the refinement operator R(l,L), as it maps the functions of a single level to the hierarchical
basis.

The multi-level extraction operator can be formally defined through the following two
auxiliary definitions:

Definition 4.4.1: Restriction of a set of functions to a subdomain
Given Ω, let A = {N1, . . . , Nm} be a set of scalar functions Ni : Ω → R. Given a
subdomain Q ⊂ Ω, the restriction restr(A, Q) of A to Q is

restr (A, Q) = {N ∈ A : supp(N) ∩ Q 6= ∅} .

Namely, it is the subset of functions with support on Q.

Definition 4.4.2: Restrictions of a refinement operator
Let

B(0) = {N
(0)
1 , . . . , N

(0)
m(0)},

B(1) = {N
(1)
1 , . . . , N

(1)
m(1)}

be sets of functions N
(l)
i : Ω → R. Let N (l) = (N (l)

1 , . . . , N
(l)
m(l))> be a vector composed of

all functions in B(l), l ∈ {0, 1}. Let R(0,1) be a real m(0) × m(1) matrix such that

N (0) = R(0,1)N (1).

Then, given A(0) ⊂ B(0), A(1) ⊂ B(1), the restriction restr(R(0,1), A(0), A(1)) of R(0,1) to
A(0) and A(1) is the |A(0)| × |A(1)| submatrix obtained by selecting the rows with indices
r1, . . . , r|A(0)| and columns with indices c1, . . . , c|A(1)| such that N

(0)
ri ∈ A(0) and N

(1)
cj ∈ A(1),

1 ≤ i ≤ |A(0)|, 1 ≤ j ≤ |A(1)|.

Namely, restr(R(0,1), A(0), A(1)) is the submatrix composed of rows associated with func-
tions of A(0) and columns associated with functions of A(1).

The row and column restrictions are defined as

rowr(R(0,1), A(0)) = restr(R(0,1), A(0), B(1)),
colr(R(0,1), A(1)) = restr(R(0,1), B(0), A(1)).

The multi-level extraction operator can be defined according to the following definition:

Definition 4.4.3: The multi-level extraction operator
Let

V(0) ⊂ V (1) ⊂ · · · ⊂ V (L)

be a sequence of nested subspaces defined on a domain Ω. Let B(l) be a basis of V(l)

and N (l) a column vector of functions in B(l). Furthermore, let R(l1,l2) be the refinement
operator such that

N (l1) = R(l1,l2)N (l2), l1 ≤ l2.
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Given H ⊂
⋃

l B(l) (e.g., H = HB or H = T HB), let

H(l) = H ∩ B(l)

be the level-l functions in H.

The global multi-level operator M is defined as the matrix

M =


rowr

(
R(0,L), H(0)

)
...

rowr
(

R(0,L), H(L)
)
 .

Furthermore, given an element subdomain Ωe ⊂ Ω of level le, the local multi-level extrac-
tion operator M e is defined as

M e =

Re,(0,le)

...
Re,(le,le)

 , Re,(l,le) = restr
(

R(l,le), He,(l), Be,(le)
)

where He,(l) = restr(He,(l), Ωe), and Be,(l) = restr(B(l), Ωe).

Namely, M e is the submatrix obtained from M by selecting the rows and columns asso-
ciated with functions having support on Ωe.

The global multi-level extraction operator M is simply obtained by joining the rows of
the operators R(l,L), l = 0, . . . , L, associated with the hierarchical basis H. It allows
representing the target basis H in terms of the standard functions of the finest level.
Indeed, denoting by H(l) the column vector of functions in H(l) sorted consistently with
rowr(R(0,L), H(0)), it holds

H =

H(0)

...
H(L)

 =

 rowr(R(0,L), H(0)) N (L)

...
rowr(R(L,L), H(L)) N (L)


=

 rowr(R(0,L), H(0))
...

rowr(R(L,L), H(L))

N (L)

= M N (L).

Furthermore, for 0 ≤ l ≤ L, one can map N (l) to the hierarchical functions up to level l
through a multi-level extraction operator M (l).H(0)

...
H(l)

 =

rowr(R(0,l), H(0))
...

rowr(R(l,l), H(l))

N (l) = M (l) N (l).
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The multi-level operator M provides the dual relation analogous to Equation (4.3). In-
deed, using the same reasoning as in Chapter 4 and section 4.3, it holds

(N (L))>
{

P (L) − M>P (H)
}

= 0,

for coefficients P (H) and P (L) such that H>P (H) = N>P (L). The linear independence
of (N (L))> yields

P (L) = M> P (H), (4.4)

The local multi-level extraction operator M e associated with a level-le element Ωe is ob-
tained by extracting the smallest sub-matrix affecting Ωe, i.e., selecting rows and columns
corresponding to functions with support on Ωe. It allows representing the local basis He

in terms of the standard level-le functions. In particular, letting He,(le) and N e,(le) be
appropriate column vectors of functions in He,(le) and Be,(le), respectively, it holds

He(x) =

He,(0)(x)
...

He,(le)(x)

 =

Re,(0,le) N e,(le)(x)
...

Re,(le,le) N e,(le)(x)


=

Re,(0,le)

...
Re,(le,le)

N e,(le)(x)

= M e N e,(le)(x), ∀x ∈ Ωe. (4.5)

Note that M e maps the functions N e,(le) belonging to the same level le as the element.

The dual relation (4.4) also holds locally. In particular,

P e,(le) = (M e)>P e,(He) (4.6)

for some coefficients P e,(He), and P e,(le), such that (He)>P e,(He) = (N e,(le))>P e,(le) on
Ωe.

Equation (4.6) can be used for translating degrees of freedom (for the solution descrip-
tion) or control points (for the geometry description) between the local hierarchical basis
He and the single-level basis N e,(le). A similar interpretation can be drawn for the cor-
responding global operation in Equation (4.4). The above relations generalize the local
and global version of the properties of the Bézier extraction given in Equations (2.35) and
(2.34) and in Borden et al. [2011].

In the following sections, the multi-level extraction operator’s general definition is applied
to the (truncated) hierarchical B-splines.
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4.5 Extraction of hierarchical B-splines
The multi-level extraction can be applied to the hierarchical basis H = HB associated
with a sequence of nested spline spaces

V(0) ⊂ V (1) ⊂ · · · ⊂ V (L)

of fixed degree p obtained by knot insertion. Let B(l) be the B-spline basis of V(l). Then
the refinement operator R(l1,l2) in Equation (4.1) is known from the literature (see, e.g.,
Boehm [1985]), and it is referred to as the knot-insertion operator.

Its entries can be calculated by standard knot-insertion techniques such as Boehm’s or
Oslo’s algorithm [Boehm, 1985]. For example, the following picture shows the operator
R(0,2) for Figure 3.2

R(0,2) = 1
16



16 12 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 9 11 10 6 3 1 0 0 0 0 0 0 0 0 0 0
0 0 1 3 6 10 12 12 10 6 3 1 0 0 0 0 0 0
0 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0
0 0 0 0 0 0 0 0 0 0 1 3 6 10 11 9 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 12 16
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14 N

(2)
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(2)
16 N

(2)
17

N
(0)
0

N
(0)
1

N
(0)
2

N
(0)
3

N
(0)
4

N
(0)
5

B(2)

B(0)
H(0)

According to Definition 4.4.3, the global multi-level extraction operator M (L) is obtained
by joining the rows of the operators R(l,L), l = 0, . . . , L, associated with the hierarchical
B-splines basis functions, as illustrated below.

R(0,2) =
1
16

1612 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 9 11 10 6 3 1 0 0 0 0 0 0 0 0 0 0
0 0 1 3 6 10 12 12 10 6 3 1 0 0 0 0 0 0
0 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0
0 0 0 0 0 0 0 0 0 0 1 3 6 10 11 9 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 12 16



R(1,2) =
1
16


16 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 12 12 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 12 12 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 12 12 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 12 12 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 12 12 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 4 12 12 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 12 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 16



R(2,2) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 M (2) = 1
16


1612 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 9 11 10 6 3 1 0 0 0 0 0 0 0 0 0 0
0 0 1 3 6 10 12 12 10 6 3 1 0 0 0 0 0 0
0 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0
0 0 0 0 0 0 0 0 0 0 4 12 12 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16


B(2)

The highlighted rows of R(0,2) correspond to the functions HB(0) = {N
(0)
1 , ..., N

(0)
4 }, the

highlighted row of R(1,2) is associated with HB(1) = {N
(1)
6 }, and the highlighted rows of

R(2,2) correspond to HB(2) = {N
(2)
12 , N

(2)
13 , . . . , N

(2)
17 }.

A similar picture can be drawn for M (1), as shown below.
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R(0,1) = 1
4

[ 4 2 0 0 0 0 0 0 0 0
0 2 3 1 0 0 0 0 0 0
0 0 1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1 0 0
0 0 0 0 0 0 1 3 2 0
0 0 0 0 0 0 0 0 2 4

]

R(1,1) =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



M (1) = 1
4

[
4 2 0 0 0 0 0 0 0 0
0 2 3 1 0 0 0 0 0 0
0 0 1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1 0 0
0 0 0 0 0 0 4 0 0 0

]
B(1)

4.5.1 Element extraction of hierarchical B-splines

The global multi-level extraction operator M (le) can be localized to each level-le element
Ωe by selecting the rows and columns associated with functions with support on Ωe. Note
that the multi-level extraction operator is always of the same level le as the element.
Considering again the example in Figure 3.2, the element can be constructed as in the
following picture.

M (0) =
[ 11 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]

M (1) = 1
4

[
4 2 0 0 0 0 0 0 0 0
0 2 3 1 0 0 0 0 0 0
0 0 1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1 0 0
0 0 0 0 0 0 4 0 0 0

]

M (2) = 1
16


16 12 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 9 11 10 6 3 1 0 0 0 0 0 0 0 0 0 0
0 0 1 3 6 10 12 12 10 6 3 1 0 0 0 0 0 0
0 0 0 0 0 0 1 3 6 10 12 12 10 6 3 1 0 0
0 0 0 0 0 0 0 0 0 0 4 12 12 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16



M e0 =
[

1 0 0
0 1 0
0 0 1

]
M e1 =

[
1 0 0
0 1 0
0 0 1

]
M e2 = 1

4

[
3 1 0
1 3 3
0 0 4

]
M e3 = 1

16

[
3 1 0
12 12 10
4 12 12
0 0 16

]
M e4 = 1

16

[
1 0 0
12 10 6
12 12 4
0 16 0
0 0 16

]

M e5 = 1
16

[
10 6 3
12 4 0
16 0 0
0 16 0
0 0 16

]

M e6 = 1
16

[
6 3 1
4 0 0
16 0 0
0 16 0
0 0 16

]

M e7 = 1
16

[
3 1 0
16 0 0
0 16 0
0 0 16

]
M e8 = 1

16

[
1 0 0
16 0 0
0 16 0
0 0 16

]

Note that the operator M e3 is the same as the one previously shown in Figure 4.1. The
localization of the multi-level extraction operator is analogous to the Bézier extraction
operator’s localization discussed in Borden et al. [2011].
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4.6 Extraction of truncated hierarchical B-splines
Following [Giannelli et al., 2016, 2012], it can be deduced directly from Definitions 3.4.1
and 3.4.2 that for the truncated basis, the refinement operators trunc(R(l,l+1)) of con-
secutive levels can be obtained from the standard knot insertion operators R(l,l+1) (see
Section 4.5) as follows[

trunc
(

R(l,l+1)
)]

ij
=
{

R
(l,l+1)
ij if N

(l+1)
j ∈ B(l+1) ∧ supp(N (l+1)

j ) ∩ Ωl+1
− 6= ∅,

0 otherwise.

The truncated refinement operators across multiple levels Trunc(R(l1,l2)), l2 ≥ l1, can be
defined recursively as follows

Trunc(R(l1,l2)) =


I if l2 = l1,
trunc

(
R(l1,l1+1)

)
if l2 = l1 + 1,

trunc
(

R(l1,l1+1)
)

Trunc
(

R(l1+1,l2)
)

otherwise,

where I is the identity matrix of size |B(l2)| × |B(l2)|.

The global and local multi-level extraction operators for the truncated hierarchical B-
splines are obtained by Definition 4.4.3 using the refinement operators trunc(R(l1,l2)).

4.6.1 Element extraction of truncated hierarchical B-splines
Note that the local truncated operator Trunc(Re,(l1,l2)) of a level-le element Ωe can also be
defined constructively directly by recursive truncation of local operators Re,(l,l+1) between
consecutive levels. Namely,[

trunc
(

Re,(l,l+1)
)]

ij
=
{

R
e,(l,l+1)
ij if N

(l+1)
j ∈ Be,(l+1) ∧ N

(l+1)
j ∩ Ωl+1

− 6= ∅,
0 otherwise.

Trunc(Re,(l1,l2)) =


I if l2 = l1,
trunc

(
Re,(l1,l1+1)

)
if l2 = l1 + 1,

trunc
(

Re,(l1,l1+1)
)

Trunc
(

Re,(l1+1,l2)
)

otherwise,
(4.7)

For example, considering again Ωe3 in Figure 3.2, Re3,(1,2) and Re3,(0,1) can be seen directly
as submatrices of the operators shown in Section 4.5:

Re3,(0,1) = 1
4

[1 0 0
3 3 1
0 1 3

]
Re3,(1,2) = 1

4

[3 1 0
1 3 3
0 0 1

]

trunc
(

Re3,(0,1)
)

= 1
4

[1 0 0
3 0 0
0 0 0

]
trunc

(
Re3,(1,2)

)
= 1

4

[3 1 0
1 3 0
0 0 0

]
After computing the recursively-truncated local refinement operators
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Trunc(Re3,(2,2)) = I =
[

1 0 0
0 1 0
0 0 1

]
,

Trunc(Re3,(1,2)) = trunc
(

Re3,(1,2)
)

= 1
16

[
12 4 0
4 12 0
0 0 0

]
,

Trunc(Re3,(0,2)) = trunc
(

Re3,(0,1)
)

trunc
(

Re3,(1,2)
)

= 1
16

[
3 1 0
9 3 0
0 0 0

]
,

the multi-level extraction operator can be assembled the usual way

M e3 = 1
16

[
3 1 0
9 3 0
4 12 0
0 0 16

]
Note that the recursion in Equation (4.7) shows an alternative direct way to compute
M e = M e,(l)

M e,(1) = J e,(1),

M e,(l+1) =
[

M e,(l) Trunc
(

Re,(l,l+1)
)

J e,(l+1)

]
, l = 1, . . . , le − 1

where J e,(l) is a matrix that selects the element active functions of level l

J
e,(l)
ij =

{
1 if H

e,(l)
i = N

e,(l)
j ,

0 otherwise.

For example, for element Ωe3 :

J e3,(0) =
[
1 0 0
0 1 0

]
J e3,(1) = [0 1 0] J e3,(2) = [0 0 1]

M e3,(0) =
[
1 0 0
0 1 0

]
M e3,(1) = 1

4

[1 0 0
3 0 0
0 4 0

]
M e3,(2) = 1

16

3 1 0
9 3 0
4 12 0
0 0 16


The algorithm is the local version of the one presented in [Garau and Vázquez, 2016, 2018],
showing that the same algorithm can build local operators. If the truncation operator
Trunc(·) is removed, the above algorithm can be used to define the local multi-level
extraction operators for the hierarchical B-splines through local computations.

4.7 The multi-level Bézier extraction
The multi-level extraction operator M e can be combined with the Bézier extraction op-
erator Ee defined in Section 2.6.1, as depicted in Figure 4.1. This combination creates a
direct map Ce from a standard set of reference basis functions B to the hierarchical basis
He

He = M eN e,(le)

= M eEeB

= CeB. (4.8)
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Similarly, given some coefficients P e, the coefficients Qe such that B>Qe = (He)>P e

can be obtained as

Qe = (Ce)>P e. (4.9)

The reference basis functions B are the same for every element, allowing the hierarchical
refinement to be handled in a very similar way to standard finite element implementations.
A direct geometric mapping in terms of the Bernstein functions can be obtained through
the control points Qe in Equation (4.9).

Note that the Bézier extraction is based on Bernstein polynomials, as they naturally
arise from the knot repetition procedure. However, any other polynomial basis can be
employed, such as the Lagrange polynomials, combining the multi-level operator with the
Lagrange extraction presented in Schillinger et al. [2016].

It should be noted that the hierarchical refinement introduces a non-constant number of
degrees of freedom per element. For example, consider element e0 (3 DOFs) and element e4
(5 DOFs) in Figure 3.2. Although the multi-level Bézier extraction can significantly ease
the introduction of hierarchical refinement in standard finite element implementations, the
existing code should still allow for element matrices of non-constant size when assembling
the system matrices. This requirement seems to be inherent to the method.

4.8 Extension to higher dimensional spaces
The previous sections’ definitions are directly valid also for multi-dimensional spaces.
In particular, the assumption in Section 4.3 is also met for higher-dimensional spaces.
Namely, there exists a refinement operator R(l1,l2) between the spaces V(l1) and V(l2) that
can be used to define the multi-level extraction, as in Section 4.4.

For tensor-product spaces, the refinement operator R(l1,l2) can be computed as the Kro-
necker product of the univariate refinement operators. Moreover, according to Section 4.4,
just some rows of R(l1,l2) are needed. Therefore, the Kronecker product can be limited to
the necessary rows. The same structure also applies for the element-localizations Re,(l1,l2).
However, Chapter 5 proposes a strategy where the tensor-product operators do not need
to be explicitly constructed.

It is worth noting that the hierarchical basis H is, in general, not of tensor-product struc-
ture. Therefore, there is no possibility of applying the multi-level extraction operator to
each parametric direction and constructing H by taking the tensor product of (extracted)
univariate functions. Leveraging the tensor product is not possible even for the local basis
defined on an element’s reference space. Such optimization is possible with the standard
Bézier extraction for non-hierarchical meshes [Borden et al., 2011], but it does not apply
directly to hierarchical refinement. However, a strategy to leverage the tensor structure
is proposed in Chapter 5.
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4.9 Extraction of hierarchical NURBS
The extraction of (truncated) hierarchical B-splines can be extended to a hierarchical
definition of NURBS functions through homogeneous coordinates. In particular, let

F̊ =
∑

i

P̊
(0)
i N

(0)
i (4.10)

be a NURBS geometry defined by the base-level B-splines, N (0), and by the control
points P̊

(0) in homogeneous coordinates with respect to the weights w(0). By standard
knot-insertion, F̊ can be written in terms of a hierarchical basis H∑

i

P̊
(H)
i Hi = F̊ =

∑
i

P̊
(0)
i N

(0)
i (4.11)

according to the usual relations

N (0) = LH , (4.12)

P̊
(H) = L>P̊

(0)
. (4.13)

Equation (4.13) indicates that the hierarchical weights w(H) associated with the hierar-
chical basis H are obtained as

w(H) = L>w(0). (4.14)

Similarly, F̊ can be written in terms of the finest level L

F̊ =
∑

i

P̊
(L)
i N

(L)
i , (4.15)

with

H = MN (L), (4.16)

P̊
(L) = M>P̊

(H)
. (4.17)

Therefore, the hierarchical B-splines H can be obtained by multi-level extraction of the
finest level B-splines, as defined in Equations (4.16) and (4.17) and described in Sec-
tion 4.5. The hierarchical NURBS functions representing the original geometry are ob-
tained through the weights w(H) as

R̄i = w
(H)
i Hi∑

j w
(H)
j Hj

. (4.18)

4.10 Extension to other sequences of nested spaces
In general, the multi-level extraction operator can be constructed for every sequence of
nested spaces. Indeed the nestedness assumption ensures the existence of the refinement
operator R(l1,l2): the fundamental component of the definitions in Section 4.4.
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The construction of the refinement operator R(l1,l2) depends on the specific refinement
procedure. In the previous sections, the whole approach was exemplified for the classical
(truncated) hierarchical B-splines produced by knot insertion. In this case, R can be
computed by standard knot insertion techniques, and Chapter 5 shows a few algorithms
to construct the univariate element-localized refinement operators.

Other examples of refinement strategies defined on nested spaces are (anisotropic) C0-
continuous linear polynomial and h-FEM refinement, or (anisotropic) C0-continuous high-
order polynomials and hp-FEM refinement (see, e.g., Di Stolfo et al. [2016]; Zander et al.
[2016, 2015]). The following section shows a further example in the context of degree
elevation.

4.10.1 Outlook: the multi-level extraction for degree elevation
The refinement operator R(l1,l2) for degree elevation can be constructed using standard
degree-elevation techniques (see, e.g., Lee and Park [2000]; Piegl and Tiller [1995]).

For example, consider the B-splines N (0) of degree p(0) = 2 and N (1) of degree p(1) = 3,
respectively defined by the open knot vectors

Ξ(0) = (−1, −1, −1 − 0.5, 0, 0.75, 1, 1, 1),
Ξ(1) = (−1, −1, −1, −1, −0.5, −0.5, 0, 0, 0.75, 0.75, 1, 1, 1, 1).

Figure 4.2 shows the corresponding B-splines’ overlay, together with a possible choice
for the hierarchical functions H . For this example, the refinement operator R(0,1) and
multi-level extraction operator M (1) are defined as in the following picture.

R(0,1) = 1
60

[60 20 0 0 0 0 0 0 0 0
0 40 50 10 0 0 0 0 0 0
0 0 10 50 52 12 0 0 0 0
0 0 0 0 8 48 45 5 0 0
0 0 0 0 0 0 15 55 40 0
0 0 0 0 0 0 0 0 20 60

]
M = 1

60


60 20 0 0 0 0 0 0 0 0
0 40 50 10 0 0 0 0 0 0
0 0 10 50 52 12 0 0 0 0
0 0 0 0 8 48 45 5 0 0
0 0 0 0 0 0 60 0 0 0
0 0 0 0 0 0 0 60 0 0
0 0 0 0 0 0 0 0 60 0
0 0 0 0 0 0 0 0 0 60


Instead, the local operators read as follows.

M = 1
60


60 20 0 0 0 0 0 0 0 0
0 40 50 10 0 0 0 0 0 0
0 0 10 50 52 12 0 0 0 0
0 0 0 0 8 48 45 5 0 0
0 0 0 0 0 0 60 0 0 0
0 0 0 0 0 0 0 60 0 0
0 0 0 0 0 0 0 0 60 0
0 0 0 0 0 0 0 0 0 60

 M e0 =
[

1 0 0
0 1 0
0 0 1

]
M e1 =

[
1 0 0
0 1 0
0 0 1

]
M e2 = 1

60

[
52 12 0 0
8 48 45 5
0 0 60 0
0 0 0 60

]
M e3 = 1

60

[
45 5 0 0
60 0 0 0
0 60 0 0
0 0 60 0
0 0 0 60

]

Note that M e0 and M e1 are composed of three columns, while M e2 and M e3 have four
columns. This difference corresponds to the fact that the e0 and e1 belong to the 0th
level, where B(0) has degree p(0) = 2, while e2 and e3 belong to level 1, having cubic basis
functions.
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ξ
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Figure 4.2: Example of hierarchical B-splines of a different order. The knots of each level
are marked by red crosses.
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Chapter 5

Algorithms for the multi-level Bézier
extraction

Chapter 4 formulated the multi-level extraction operator for local refinement based on any
sequence of nested spaces, focusing on its application to (truncated) hierarchical B-splines.
The primary motivation for developing these approaches is to perform local refinement
that cannot be obtained by tensor products. On the other hand, such a tensor-product
structure could be leveraged to formulate efficient extraction algorithms. This chapter
attempts to conciliate these two aspects by proposing an approach where:

• the univariate extraction-operators are computed once for each parametric direction
and hierarchical level,

• the following operations are formulated using only the univariate operators, without
explicitly constructing and storing the full tensor-product operator:

– extraction of functions,
– degree-of-freedom projection for refinement, and
– degree-of-freedom projection for coarsening (modified Bézier projection).

5.1 Introduction
In the literature, tensor factorization is combined with extraction and projection of de-
grees of freedom (DOFs) for meshes that are not hierarchically refined. In the original
Bézier extraction publication [Borden et al., 2011], basis functions are extracted in each
parametric direction of a (non-hierarchically refined) patch. In Thomas et al. [2015], the
projection of DOFs between two (non-hierarchically refined) tensor-product patches is
performed through a sequence of univariate multiplications where possible, but a Kro-
necker product is ultimately computed. In this chapter, the tensor-product structure is
further exploited through algorithms to multiply by a Kronecker matrix without explicitly
computing the Kronecker product. Extraction and projection are extended to hierarchi-
cal refinement in several works [Apprich et al., 2014; Bornemann and Cirak, 2013; Evans
et al., 2015; Garau and Vázquez, 2018; Hennig et al., 2018, 2016; Lorenzo et al., 2017;
Scott et al., 2014; Vuong, 2014], but tensor-product factorization is not discussed. In
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[Bressan and Mokriš, 2017], a general function extraction framework is presented for vari-
ous local refinement strategies. The function-extraction algorithms proposed in this work
can be seen as an iterative version of their approach. However, the projection of DOFs is
not discussed in Bressan and Mokriš [2017]. The projection of DOFs for mesh refinement
proposed in this work can be seen as an iterative version of the algorithms developed in
Garau and Vázquez [2018]. Finally, the spline evaluation presented in Giannelli et al.
[2016] can be seen as a DOF projection to the most refined level and a particular case of
the DOF projection algorithm between two hierarchical meshes.

This work focuses on the element point of view to facilitate the implementation of local
refinement in already-existing software. If the code design allows it, leveraging the whole
patch tensor-product structure (instead of looping over the knot spans) further increases
efficiency (see, e.g., Calabrò et al. [2019]; Calabrò et al. [2017]; Hiemstra et al. [2019];
Sangalli and Tani [2018]). However, combining this approach to local refinement and
trimming is still an active area of research.

5.2 Construction of univariate knot insertion refine-
ment operator

This section proposes a few general procedures to construct the knot-insertion operators.
These algorithms are inspired by Lyche and Morken [2008]; Piegl and Tiller [1995] and
are expressed in the MATLAB-like syntax [MATLAB, 2019].

Each pair (V(1), V(2)) of univariate nested B-spline spaces, V(1) ⊂ V (2), is defined by some
knot vectors

Ξ(l) = (ξ(l)
1 , . . . , ξ

(l)
m(l)+p+1), l ∈ {1, 2}. (5.1)

The nestedness condition V(1) ⊂ V(2) implies Ξ(1) ⊂ Ξ(2). The local knot insertion oper-
ators {Re,(1,2)}e=0...ne can be computed from Ξ(1) and Ξ(2) by well-known knot-insertion
algorithms. In particular, {Re,(1,2)} can be constructed column-wise by the Oslo algo-
rithm Boehm [1985]; Lyche and Morken [2008], or row-wise by the Boehm’s method
Boehm [1985]; Lyche and Morken [2008].

Algorithm 5.1 shows a version of the Oslo algorithm using vector operations, while Al-
gorithm 5.2 presents its scalar version. The latter is suitable for traditional procedural
programming languages. These algorithms can be combined to construct the element-local
knot-insertion operators {Re,(1,2)}, as summarized in Algorithm 5.3.

Analogously, Boehm’s method can be repeatedly used to produce the operators {Re,(1,2)},
as shown in Algorithm A.1. The main loop runs once through the knots of the knot vector
Ξ(1) and the new knots to be inserted. The associated multiplicities are cached to handle
the overlapping columns between operators.

Oslo’s algorithm computes the knot-insertion operator’s entries through a direct formula
based on the coarse and fine local knots. Such an explicit formula features no data de-
pendencies between the computation of different columns, and, therefore, Algorithm 5.3
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Algorithm 5.1: oslo1 (vector version).
Input: p: spline degree

Ξ(1) = (ξ(1)
1 , . . . , ξ1

m(1))>: coarse knot vector
Ξ(2) = (ξ(2)

1 , . . . , ξ
(2)
m(2))>: fine knot vector

i: fine knot index such that 1 ≤ i ≤ m(2) − p − 1
j: coarse knot index such that ξ

(1)
j ≤ ξ

(2)
i < ξ

(1)
i+1

Output: b: vector of knot insertion coefficients
1 b = 1
2 for k = 1 . . . p do

3 t1 =
(

ξ
(1)
j+1−k, . . . , ξ

(1)
j

)>

4 t2 =
(

ξ
(1)
j+1, . . . , ξ

(1)
j+k

)>

5 w =
(

ξ
(2)
i+k − t1

)
./ (t2 − t1) // ./ is the entrywise (Hadamard) division

6 b =
[

(1 − w). ∗ b

0

]
+
[

0
w. ∗ b

]
// .∗ is the entrywise (Hadamard) product

7 end

Boehm Oslo bs2bs
p(p + 1)(m(2) − m(1)) 1

2p(p + 1)m(2) p(2p + 1)s

Table 5.1: Number of linear combinations needed to produce the element-local knot-
insertion operators. s is the number of non-empty knot spans in the fine knot vector
Ξ(2).

is suitable for parallelization. A possible parallel version is presented in Algorithm 5.4.
Instead, Algorithm A.1 inserts one knot at a time from left to right and overwrites interme-
diate coefficients. This iterative procedure features inherent data dependencies between
computations of the same row’s coefficients, but different rows could be computed in par-
allel. However, this is not within the scope of this work. It should also be noted that
Algorithm A.1 is numerically more stable, as just convex combinations are used, while
Algorithms 5.1 and 5.2 can also perform non-convex combinations.

The core operations to construct the knot-insertion operators are linear combinations of
coefficients, and their count is listed in Table 5.1. The table also compares the Algorithm
bs2bs presented in Casciola and Romani [2007]. Algorithm 5.3 (Oslo) results to be
more efficient than Algorithm A.1 (Boehm) if m(2) > 2m(1), i.e., if the number of knots
(excluding the last p + 1 repeated knots) is at least doubled from one level to the next.
Therefore, Algorithm 5.3 is preferred in this work, as this condition is met in the typical
case of refinement by bisection. Algorithm bs2bs is better than Algorithm 5.3 if the
number s of non-empty spans in the fine knot vector Ξ(2) is quite smaller than m(2). In
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Algorithm 5.2: oslo1 (scalar version).
Input: p: spline degree

Ξ(1) = (ξ(1)
1 , . . . , ξ

(1)
m(1))>: coarse knot vector

Ξ(2) = (ξ(2)
1 , . . . , ξ

(2)
m(2))>: fine knot vector

i: fine knot index, such that 1 ≤ i ≤ m(2) − p − 1
j: coarse knot index, such that ξ

(1)
j ≤ ξ

(2)
i < ξ

(1)
i+1

Output: b = (b1, . . . , bp+1)>: vector of knot insertion coefficients
1 bp+1 = 1
2 for k = 1, . . . , p do

3 w2 = ξ
(1)
j+1−ξ

(2)
i+k

ξ
(1)
j+1−ξ

(1)
j+1−k

4 bp−k+1 = w2 bp−k+2
5 for a = 2, . . . , k do
6 w1 = w2

7 w2 = ξ
(1)
j+a−ξ

(2)
i+k

ξ
(1)
j+a−ξ

(2)
j−k+a

8 bp−k+a = (1 − w1) bp−k+a + w2 bp−k+a+1
9 end

10 bp+1 = (1 − w2) bp+1
11 end

particular, Algorithm bs2bs performs fewer combinations than Algorithm 5.3 if

2(1 + p

p + 1)s < n2. (5.2)

Therefore, such an algorithm can be preferable when Ξ(2) has high multiplicity.

Considering the typical case of refinement by bisection, Figure 5.1 compares the number
of linear operations used by the presented algorithms when bisecting 11 times the knot
vector

Ξ = (−1, −1, −1, −1, −0.8, 0.3, 1, 1, 1, 1). (5.3)

The open-knot vector multiplicities indicate that it defines B-splines of degree p = 3. The
parallel Oslo algorithm (Algorithm 5.4) is executed on four processors. The presented
algorithms have the same asymptotic cost, but the Oslo algorithm gives a lower number
of operations. Note that Figure 5.1b shows that the parallel Oslo algorithm distributes
the number of combinations uniformly among the processors as the number of inserted
knots increases.

The multi-level extraction operator M e can be computed by composing rows of the re-
finement operators Re,(l1,l2), as described in Sections 4.4, 4.5.1, and 4.6.1.
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Algorithm 5.3: Element knot insertion operators using Oslo algorithm
Input: p: spline degree

Ξ(1) = (ξ(1)
1 , . . . , ξ

(1)
m(1))>: coarse knot vector

Ξ(2) = (ξ(2)
1 , . . . , ξ

(2)
m(2))>: fine knot vector

Output: ne: number of non-empty knot spans
Re,(1,2) = Re, e = 1, . . . , ne : local element operators

1 j=p+1
2 i=1
3 e=1
4 while i≤ m-p-1 do
5 mult=1
6 while ξ

(2)
i+mult == ξ

(2)
i do

7 mult = mult + 1
8 end
9 lastj = j

10 while ξ
(1)
j+1 ≤ ξ

(2)
i do

11 j = j+1
12 end
13 if e > 1 then
14 offs = j-lastj
15 Re ( 1:p+1-offs, 1:p+1-mult ) = Re−1 ( 1+offs:p+1, 1+mult:p+1 )
16 end
17 for t= p+2-mult, . . . , p+1 do
18 Re (:, t) = oslo1(p, Ξ(1), Ξ(2), i, j )
19 i = i+1
20 end
21 e = e+1
22 end
23 ne = e − 1

5.3 Extraction of functions
Iterative algorithms for the extraction of element basis functions can be formulated using
the following basic identities. The element-local refinement operator Re,(l, l+1) maps fine
functions to coarse functions (see Equation (4.1))

N e,(l) = Re,(l, l+1) N e,(l+1), l = 0 . . . le − 1. (5.4)

The operators {Re,(l, l+1)} can be constructed explicitly using the algorithms presented in
section 5.2. Furthermore, the standard level-le Bézier extractor Ee converts the Bernstein
polynomials to the B-splines of level le, as defined in Borden et al. [2011] and analogous
to Equation (2.37)

N e,(le) = Ee Be. (5.5)
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Figure 5.1: Comparison of the algorithms to construct the local knot-insertion refinement
operators for 11 bisections of Ξ = (−1, −1, −1, −1, −0.8, 0.3, 1, 1, 1, 1), for p = 3. The
parallel Oslo algorithm (Algorithm 5.4) is executed on four processors.

5.3.1 Extraction of hierarchical B-Splines

An efficient implementation of the above basic operations leverages the tensor structure
of both N e,(l+1) =

⊙D
i=1

iN e,(l+1) and the operators Re,(l, l+1) =
⊙D

i=1
iRe,(l, l+1) and

Ee, as presented in [Borden et al., 2011]. By recursive application of the mixed-product
property, Equations (2.20) and (5.4) can be written in D dimensions as [Borden et al.,
2011]

N e,(l) = Re,(l, l+1) N e,(l+1)

=
(

D⊙
i=1

iRe,(l, l+1)

) (
D⊙

i=1

iN e,(l+1)

)

=
D⊙

i=1

(
iRe,(l, l+1) iN e,(l+1)

)
. (5.6)

This way, the computational cost of Equation (5.4) is reduced, as summarized in Table 5.2.
Here, the matrices are not assumed to be sparse, as they are local to each element. Note
that the table does not include the cost of Kronecker products in (5.6), as it equals the
cost for computing N e,(l+1) =

⊙D
i=1

iN e,(l+1).

Based on Equations (5.5) and (5.6), the extraction of functions can be formulated it-
eratively, as in Algorithm 5.5. This formulation allows using the optimized form (5.6)
also in combination with hierarchical refinement. Algorithm 5.5 can be considered as the
iterative version of the algorithm presented in Bressan and Mokriš [2017].
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Algorithm 5.4: Element knot insertion operators (parallel
Input: p: spline degree

Ξ(1) = (ξ(1)
1 , . . . , ξ

(1)
m(1)): coarse knot vector

Ξ(2) = (ξ(2)
1 , . . . , ξ

(2)
m(2)): fine knot vector

ithread: thread index (starting from 1)
nthreads: total number of threads

Output: Re, e = 1, . . . , ne : local element operators
1 chunk = floor((m(2)-2(p+1)+1)/nthreads)
2 rem = mod(m(2)-2(p+1)+1,nthreads)
3 knstart = max( (ithread-1)chunk, 0 ) + min(ithread-1, rem)+1
4 knend = 2 p+ ithread * chunk + min(ithread, rem)+1
5 while knend-knstart+1 ≥ 2(p+1) and ξ

(2)
knstart+p+1 == ξ

(2)
knstart+p do

6 knstart = knstart+1
7 end
8 while knend-knstart+1 ≥ 2(p+1) and ξ

(2)
knend-p-1 == ξ

(2)
knend-p do

9 knend = knend-1
10 end
11 if knend-knstart+1 < 2(p+1) then return
12 Ξ = ( ξ

(2)
knstart,. . . ,ξ(2)

knend )
13 cf=p+1; rf=1; e=1
14 while rf ≤ knend-knstart-p do
15 mult=1
16 while ξ

(2)
knstart-1+rf+mult == ξ

(2)
knstart-1+rf do mult = mult+1

17 lastcf = cf
18 while ξ

(1)
cf+1 ≤ ξ

(2)
knstart-1+rf do cf = cf+1

19 if e>1 then
20 offs = cf-lastcf
21 Re( 1:p+1-offs, 1:p+1-mult ) = Re−1( 1+offs:p+1, 1+mult:p+1 )
22 end
23 while ξ

(1)
cf+1 ≤ ξ

(2)
knstart-1+p+1 do cf = cf+1

24 for t= 1, ..., p+1-mult do
25 Re(1:p+1, t) = oslo1(p, Ξ(1), Ξ, cf, rf, ithread)
26 rf=rf+1
27 end
28 for t= p+2-mult, ..., p+1 do
29 Re(:, t) = oslo1(p, Ξ(1), Ξ, cf, rf)
30 rf=rf+1
31 end
32 e=e+1
33 end
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no. multiplications construction of Re matrix multiplication

direct evaluation of (5.4)
D∑

i=2
(p + 1)2i (p + 1)2D

evaluation of (5.6) 0 D(p + 1)2

Table 5.2: Comparison between the number of floating-point multiplications for evaluating
(5.4) and (5.6).

Algorithm 5.5: extract. Extraction of hierarchical B-splines.
Input: le: level of element e

le,c: level of coarsest active function with support on e
iBe: Bernstein polynomials, i = 1 . . . D
iEe: Level Bézier extractors, i = 1 . . . D
iRe,(l): Refinement operators, i = 1 . . . D, l = le,c + 1 . . . le

Output: He: local hierarchical functions
1 iN e,(le) = iEe iBe, i = 1 . . . D

2 compute the level-le active functions as tensor product of iN e,(le) and insert them
into He

3 for l = le, . . . , le,c + 1 do
4 iN e,(l−1) = iRe,(l) iN e,(l), i = 1 . . . D

5 compute the level-(l − 1) active functions as tensor product of iN e,(l−1) and
insert them into He

6 end

5.3.2 Cost comparison

In this section, the cost of function extraction is analyzed. Following Borden et al. [2011];
Cottrell et al. [2009], shape-function routines based on Bézier extraction are considered
in the form that takes a single integration point as an argument.

Table 5.3 compares the number of multiplications needed by Algorithm 5.5 to the direct
extraction CeBe for an explicitly constructed extraction operator Ce. Here, nl = le −
le,c +1 is the number of hierarchical levels active on the element e, le,c is the coarsest level
of the active functions with support on element e, and nf is the total number of functions
active on element e. The cost cost(Ce) for constructing the extraction operator Ce is
considered separately, as Ce might be cached and recomputed only when the discretization
changes, although this strategy is memory demanding.

The iterative algorithm (Algorithm 5.5) performs fewer multiplications than Equa-
tion (4.8), if

cost(CeBe) > cost(Algorithm 5.5), (5.7)
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tensor product matrix multiplication construction of Ce

Equation (4.8)

D∑
i=2

(p + 1)i

(for B =
D⊙

i=1

iB)
nf (p + 1)D cost(Ce)

Algorithm 5.5
(HB)

nf (D − 1)
(for Ha =

D∏
i=1

iN)
nl D(p + 1)2 0

Algorithm 5.9
(T HB)

D∑
i=2

(p + 1)i

(for N e,(le) =
D⊙

i=1

iN e,(le))

(nl − 1)D(p + 1)D+1

+D(p + 1)2 0

Table 5.3: Comparison between the number of floating-point multiplications for Equa-
tion (4.8) and algorithms 5.5 and 5.9.

with

cost(CeBe) = nf (p + 1)D +
D∑

i=2

(p + 1)i,

cost(Algorithm 5.5) = nlD(p + 1)2 + nf (D − 1).

From Inequality 5.7 it is clear that the advantage in using Algorithm 5.5 grows exponen-
tially with D and polynomially with p, while it decays linearly with nl (see Figure 5.2).

It is of main interest to identify when the iterative algorithm is advantageous for practical
values of D and p. From Inequality 5.7, one deduces

cost(CeBe) > cost(Algorithm 5.5) ⇐⇒ nl < φHB(p, D, nf ) (5.8)

where

φHB(p, D, nf ) = nf
(p + 1)D − D + 1

D(p + 1)2 + (p + 1)D−1 − 1
pD

. (5.9)

Since it must hold nf ≥ (p + 1)D, the following sufficient condition is obtained

nl < φHB(p, D, (p + 1)D) =⇒ cost(CeBe) > cost(Algorithm 5.5). (5.10)

That is, the iterative algorithm is convenient, at least as long as the number nl of active
levels on every single element is not too high. Table 5.4 shows some values of φHB for
low D and p values, showing that in 3D, the algorithm is virtually always of practical
advantage, even for low spline orders. The advantage is even more significant for higher
dimensions, e.g., space-time computations. For 2D analyses and low p, φHB might reach
practical values of nl. It should be noted, however, that:

• Inequality 5.10 is just a sufficient condition, but not necessary,
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D
2 3 4

p

2 4.5 26.3 178.8
3 8.0 84.3 1017.3
4 12.5 207.0 3895.3
5 18.0 430.3 11647.8
6 24.5 798.3 29389.8

Table 5.4: Example of values for φHB(p, D, (p + 1)D).
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Figure 5.2: Minimum percentage of saved multiplications. This lower bound is obtained
using the pessimistic assumption nf = (p + 1)D. An increase in p quickly renders Algo-
rithm 5.5 effective also for higher nl.

• the quantity cost(Ce) was ignored so far.

The assumption nf = (p + 1)D represents the worst-case scenario in which the advan-
tage of using the iterative algorithm is lowest. However, for meaningful hierarchical
refinements, the number of active functions, nf , should grow together with the number
of active levels, nl. In case Ce is computed once in a pre-processing step and cached in
memory, it must be recomputed whenever the discretization changes. Such computation
increases the cost by a term of order at least O(p2D). Note that the iterative algorithm
additionally spares the storage of Ce.

The efficiency of the proposed algorithms can be ensured by using admissible meshes
[Bracco et al., 2019; Buffa and Giannelli, 2016; Carraturo et al., 2019]. Namely the number
of levels nl containing active basis functions with support on any element is limited by a
chosen parameter. The computational costs can be improved further if the shape function
routine computes the basis functions at all integration points simultaneously.
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5.4 Extraction of truncated hierarchical B-splines
One particular aspect of the truncated hierarchical B-splines is that each basis function
is not the tensor product of univariate functions, contrarily to the hierarchical B-splines.
This property inhibits the use of Equation (5.6) and Algorithm 5.5. Nevertheless, the
refinement operator’s tensor-product structure can still be leveraged in Equation (5.4).
To this end, a suitable algorithm was proposed in Fernandes et al. [1998] and can be
explained using the matrix multiplication compatibility property of Equation (2.18), as
detailed in the next section.

5.4.1 Efficient multiplication by Kronecker product
Given two matrices, X ∈ Rx1×x2 and Y ∈ Ry1×y2 , the product (Y ⊗ X) P can be written
as

(Y ⊗ X) P = (Y ⊗ Ix1) (Iy2 ⊗ X) P .

Thanks to the block-diagonal structure of Iy2 ⊗X, the multiplication (Iy2 ⊗ X) P can be
implemented as a sequence of standard multiplications. Moreover, if X and Y are square
matrices, the multiplications can be done in place. In particular, such multiplication takes
the following block-diagonal form

P̃ = (Iy2 ⊗ X) P =


X

X
. . .

X





P1
...

Px2

Px2+1
...

P2x2
...

P(y2−1)x2+1
...

Py2x2



.

Such operation can be implemented as a sequence of standard multiplications by the
univariate matrix X as

P̃ (1 : x1, :)= X P (1 : x2, :),
P̃ (x1 + 1 : 2x1, :)= X P (x2 + 1 : 2x2, :),

...
P̃ ((y2 − 1)x1 + 1 : y2x1, :)= X P ((y2 − 1)x2 + 1 : y2x2, :).

Here a MATLAB-like [MATLAB, 2019] syntax is used, where P (a : b, :) indicates a P sub-
matrix composed of rows a, a + 1, . . . , b and all the columns of P . The term (Y ⊗ Ix1)
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scatters the entries of Y , and its effect can be implemented as a sequence of strided
multiplications

P̂ = (Y ⊗ Ix1) P̃

=



Y11
Y11

. . .
Y11

Y12
Y12

. . .
Y12

...

Y1y2
Y1y2

. . .
Y1y2

Y21
Y21

. . .
Y21

Y22
Y22

. . .
Y22

...

Y2y2
Y2y2

. . .
Y2y2

... ...
Yy11

Yy11

. . .
Yy11

Yy12
Yy12

. . .
Yy12

...

Yy1y2
Yy1y2

. . .
Yy1y2





P1
P2
...

Px1

Px1+1
Px1+2

...
P2x1

...
P(y2−1)x1+1
P(y2−1)x1+2

...
Py2x1



.

Such operation can be implemented as the following sequence of strided univariate mul-
tiplications

P̂ (1 : x1 : (y1 − 1)x1 + 1, :)= Y P̃ (1 : x1 : (y2 − 1)x1 + 1, :),
P̂ (2 : x1 : (y1 − 1)x1 + 2, :)= Y P̃ (2 : x1 : (y2 − 1)x1 + 2, :),

...
P̂ (x1 : x1 : y1x1, :)= Y P̃ (x1 : x1 : y2x1, :),

where P (a : s : b, :) indicates a P sub-matrix composed of rows a, a + s, a + 2s, ..., b
and all the columns of P . The above consideration can be generalized to compute the
multiplication by a Kronecker product of an arbitrary number of matrices, as published in
[Fernandes et al., 1998] for square matrices iR ∈ Rni×ni , i = 1 . . . D. A formatted version
with adjusted notation is shown in Algorithm 5.6. All matrices are assumed to be dense,
requiring the memory to store

n2
1 + ... + n2

D + 2(n1n2...nD)

values. An alternative algorithm and a generalization to rectangular matrices are given
in the following section.

Alternative algorithm

The term Iy2 ⊗ X can be implemented as a sequence of multiplications with contiguous
memory access. Instead, the term (Y ⊗ Ix1) that induces a scattering of Y elements
and, consequently, a strided memory access. The latter multiplication can be improved
utilizing the pseudo-commutativity property (2.19). The multiplication by a Kronecker
product can be written as a sequence of multiplications in the form I ⊗ X followed by a
perfect shuffle.
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Algorithm 5.6: kron_mult. Kronecker multiplication algorithm [Fernandes et al.,
1998].

Input: iR ∈ Rni×ni , i = 1 . . . D
P ∈ Rn1 n2 ... nD×1

Output: Q =
(

DR ⊗ . . . ⊗ 2R ⊗ 1R
)

P .
1 nleft = n2 n3 . . . nD

2 nright = 1
3 for i = 1 . . . D do
4 base = 0
5 for k = 1 . . . nleft do
6 for j = 1 . . . nright do
7 start = base+j
8 end = start+nright (ni − 1)
9 P ( start : nright : end, : ) = iR P ( start : nright : end, : )

10 end
11 base = base + ni nright
12 end
13 nleft = nleft / nmin{i+1,D}
14 nright = nright ni

15 end
16 Q = P

For example, in two dimensions, it holds

(Y ⊗ X) P = (Y ⊗ Ix1) (Iy2 ⊗ X) P

= K(y1, x1) (Ix1 ⊗ Y ) K(x2, y2) (Iy2 ⊗ X) P .

Similarly, in three-dimensions one obtains

(Z ⊗ Y ⊗ X) P = (Z ⊗ Y ⊗ Ix1) (Iz2y2 ⊗ X) P

...
= K(z1, x1y1) (Ix1y1 ⊗ Z)

K(y1, x1z2) (Ix1z2 ⊗ Y )
K(x1, y2z2) (Iy2z2 ⊗ X) P .

A generalization to an arbitrary number of dimensions is given in Algorithm 5.7. The
proposed algorithm differs from Algorithm 5.6 in that it is more compact, and the strided
access in the rows of P is removed. Algorithm 5.7 can improve the cache efficiency
and vectorization, and enable the use of standard matrix multiplication libraries. For
completeness, a generalization to rectangular matrices is given in Algorithm 5.8. In this
case, the multiplication by the Kronecker product of the matrices {iR ∈ Rri×ci}i=1...D via
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Algorithm 5.7: kron_mult. Kronecker multiplication algorithm with contiguous
memory access in P .

Input: iR ∈ Rni×ni , i = 1 . . . D
P ∈ Rn1 n2 ... nD×1

Output: Q =
(

DR ⊗ . . . ⊗ 2R ⊗ 1R
)

P .
1 size = n1 n2 . . . nD

2 for i = 1 . . . D do
3 stride = size / ni

4 for j = 0 . . . stride-1 do
5 T ( i : stride : size, : ) = iR P ( j ni + 1 : (j + 1) ni, : )
6 end
7 swap( T , P )
8 end
9 Q = P

no. multiplications construction of
(

DR ⊗ . . . ⊗ 2R ⊗ 1R
)

matrix multiplication

full matrix
D∑

i=2
(p + 1)2i (p + 1)2D

Algorithm 5.6 0 D(p + 1)D+1

Algorithm 5.7 0 D(p + 1)D+1

Table 5.5: Comparison between the number of floating-point multiplications for the direct
full matrix multiplication and Algorithms 5.6 and 5.7 assuming iR ∈ R(p+1)×(p+1), i =
1 . . . D.

Algorithm 5.8 costs
D∑

d=1

(
d∏

i=1

ri

)(
D∏

j=d

cj

)
.

If the matrices have the same number nr of rows and the same number nc of columns in
each parametric direction, i.e., {iR ∈ Rnr×nc}i=1...D, Algorithm 5.8 costs

nrn
D
c + n2

rn
D−1
c + ... + nD

r nc.

Cost comparison

Table 5.5 compares the costs of the Kronecker matrix’s construction and multiplication
to the cost of the equivalent operation performed through Algorithms 5.6 and 5.7. Both
iterative algorithms present the same number of multiplications, which is lower than the
standard multiplication. Moreover, these algorithms entirely avoid the cost of an explicit
Kronecker product.
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Algorithm 5.8: kron_mult. Kronecker multiplication algorithm for rectangular
matrices with contiguous memory access in P .

Input: iR ∈ Rri×ci , i = 1 . . . D
P ∈ Rc1 c2 ... cD×1

Output: Q =
(

DR ⊗ . . . ⊗ 2R ⊗ 1R
)

P .
1 stride = c2 c3 . . . cD

2 for i = 1 . . . D do
3 size = stride ri

4 for j = 0 . . . stride-1 do
5 T ( i : stride : size, : ) = iR P ( j ci + 1 : (j + 1) ci, : )
6 end
7 swap( T , P )
8 stride = size / cmin{i+1,D}
9 end

10 Q = P

Despite Algorithms 5.6 and 5.7 performing the same number of multiplications, they differ
in the order of computations and memory access. A run-time comparison is plotted in
Figure 5.3, where two different implementations are compared for some values of D and
p. It can be observed that the considered implementation of Algorithm 5.7 almost always
performs better than the implementation of Algorithm 5.6. However, these results can
differ for different compilers and hardware.

5.4.2 Extraction of truncated hierarchical B-splines
The procedure to multiply by a Kronecker matrix described in Algorithm 5.7 can be
used for the iterative extraction of the truncated hierarchical B-splines, as shown in Al-
gorithm 5.9. Here, the same notation as in Giannelli et al. [2016] is used, where Xe,(l)

denotes a diagonal matrix with ones corresponding to the level-l element active functions
of and zeros corresponding to non-active functions. Namely,

Xe,(l) = diag(x(l)
i )i∈I(l) , (5.11)

where

x
(l)
i =

{
1 if i ∈ I(l)

∗ ,

0 otherwise,

and I(l) is the set of multi-indices i of all level-l functions with support on element e,
while I(l)

∗ ⊂ I(l) is the subset of indices corresponding to the element active-functions.
Note how the truncation is not performed on the columns of the tensor-product operator⊙D

i=1
iRe,(l), but its effect is obtained by setting to zero the active functions in N e,(l).

This operation is represented by the term (I − Xe,(l)) N e,(l) and corresponds to the
definition of truncation in Section 3.4.
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Figure 5.3: Run-time comparison of Algorithms 5.6 and 5.7. The processes were pinned to
a single core of a Intel(R) Xeon(R) CPU E5 processor with a fixed frequency of 2.90 GHz.
The values are obtained as average run-time of 106 computations. The compilation was
performed through the commands icc -xHost -O3 -ansi-alias (icc version 15.0.0)
and g++ -ffast-math -O3 -march=native -funroll-loops (g++ version 4.9.0).

A similar algorithm starting from the tensor-product Bernstein polynomials is given in
Algorithm 5.10. This procedure will be used in Chapter 8.

5.4.3 Cost comparison
The number of multiplications in the procedure to extract the truncated hierarchical
B-splines, Algorithm 5.9, is summarized in Table 5.3. The condition for Algorithm 5.9
to perform fewer multiplications than the direct approach of explicitly constructing the
extraction operator (as in Equation (4.8)) is

nl < φT HB(p, D, nf ) = 1 + nf (p + 1)D − D(p + 1)2

D(p + 1)D+1 . (5.12)

Therefore, the following sufficient condition holds
nl < φT HB (p, D, (p + 1)D

)
=⇒ cost(CeBe) > cost(Algorithm 5.9), (5.13)

with the assumption nf = (p + 1)D and neglecting cost(Ce). Table 5.6 shows some
exemplary values for φT HB, indicating an upper bound for nl significantly lower than
the bound obtained for hierarchical B-splines. Nevertheless, the algorithm can be useful
for practical p, D, and nl values. As in the case of hierarchical B-splines, note that
the estimates are pessimistic, the iterative algorithms additionally spares the explicit
computation and storage of Ce, and nl can be kept bounded by using admissible meshes
[Bracco et al., 2019; Buffa and Giannelli, 2016; Carraturo et al., 2019].

5.5 Projection of DOFs for refinement
During mesh adaption in a non-linear transient analysis, it is necessary to project the
solution from one mesh to another. In case the refined solution space includes the coarse
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Algorithm 5.9: extract_thb. Extraction of truncated hierarchical B-splines.
Input: le: level of element e

le,c: level of coarsest active function with support on e
iBe: Bernstein polynomials, i = 1 . . . D
iEe: Level Bézier extractors, i = 1 . . . D
iRe,(l): Refinement operators, i = 1 . . . D, l = le . . . le,c + 1
Xe,(l): Active function matrix

Output: He: local hierarchical functions
1 iN e,(le) = iEe iBe, i = 1 . . . D

2 N e,(le) =
⊙D

i=1
iN e,(le)

3 insert active functions from N e,(le) into He

4 for l = le, . . . , le,c + 1 do
5 N e,(l−1) = kron_mult

(
{iRe,(l)} , (I − Xe,(l)) N e,(l)

)
6 insert active functions from N e,(l−1) into He

7 end

D

2 3 4

p

2 2.17 3.89 7.71
3 2.75 6.27 16.98
4 3.30 9.29 32.24
5 3.83 12.97 54.99
6 4.36 17.31 86.74

Table 5.6: Example of values for φT HB(p, D, (p + 1)D).

one, it is possible to express exactly the old solution in terms of the new basis. In our
case, this is done through the relations dual to Equations (5.4) and (5.5)

P e,(l+1) = (Re,(l, l+1))> P e,(l), l = 0 . . . le − 1, (5.14)
Qe = (Ee)> P e,(le). (5.15)

The control points P e,(l+1) are the N e,(l+1)-representation of the spline defined by the
coefficients P e,(l) in the basis N e,(l). Similarly, Qe denotes the Bernstein basis’ control
points representing the spline defined by the coefficients P e,(le) in the basis N e,(le). In
particular,

(P e,(l+1))>N e,(l+1) = (P e,(l))>N e,(l) (5.16)
(Qe)>Be = (N e,(le))>P e,(le). (5.17)

See also Borden et al. [2011]; Lyche and Morken [2008]; Piegl and Tiller [1995], among
others.
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Algorithm 5.10: extract_thb_tp. Extraction of truncated hierarchical B-splines
starting from tensor-product Bernstein polynomials.

Input: le: level of element e
le,c: level of coarsest active function with support on e
Be: Tensor-product Bernstein polynomials
iEe: Level Bézier extractors, i = 1 . . . D
iRe,(l): Refinement operators, i = 1 . . . D, l = le . . . le,c + 1
Xe,(l): Active function matrix

Output: He: local hierarchical functions
1 N e,(le) = kron_mult ({iEe} , Be)
2 insert active functions from N e,(le) into He

3 for l = le, . . . , le,c + 1 do
4 N e,(l−1) = kron_mult

(
{iRe,(l)} , (I − Xe,(l)) N e,(l)

)
5 insert active functions from N e,(l−1) into He

6 end

Equations (5.14) and (5.15) multiply Kronecker operators to matrices that do not possess
a tensor-product structure. To exploit Algorithm 5.7’s efficiency, the projection of DOFs
can be formulated as in Algorithm 5.11: a local iterative version of the algorithms in Garau
and Vázquez [2018] based on Equations (5.14) and (5.15). In the projection algorithms, the
element control points P e,coarse to be projected are subdivided into levels. Specifically,
let {N

e,(l)
i }

i=1,...,n
e,(l)
f

be the level-l functions with support on the element Ωe, and let

{Ñ
e,coarse,(l)
k }

k=1,...,n
e,(l)
a

⊂ {N
e,(l)
i }i be the subset of active functions on the coarse mesh.

Moreover, let a(k) be the association from active indices to level indices. Namely,

Ñ
e,coarse,(l)
k = N

e,(l)
a(k) , k = 1, ..., ne,(l)

a .

Let P̃
e,coarse,(l)
k denote the control point in P e,coarse associated with the active function

Ñ
e,coarse,(l)
k . The control points P e,coarse,(l) ∈ Rn

e,(l)
f ×mf in Algorithm 5.11 are defined as

P
e,coarse,(l)
ij =


[
P̃

e,coarse,(l)
k

]
j

if i = a(k) for some 1 ≤ k ≤ n
e,(l)
a ,

0 otherwise.

The symbols Xcoarse,e,(l) and Xfine,e,(l) denote the active function matrices on the coarse
and fine mesh, respectively, as defined in Equation (5.11).

Algorithm 5.11 coincides with the spline-evaluation algorithm given in Giannelli et al.
[2016] when projecting the degrees of freedom to the finest level (see Algorithm 5.12).

5.6 Projection of DOFs for mesh coarsening
During mesh coarsening, the fine-mesh solution is not representable exactly on the coarse
mesh, but a suitable projection of the DOFs can retain good approximations. To perform a
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Algorithm 5.11: coarse_to_fine. DOFs projection algorithm.
Input: le: level of element e

le,c: level of coarsest active function of coarse mesh with support on e
P coarse,e,(l): Coarse mesh control points, l = le . . . le,c + 1
Xcoarse,e,(l): Coarse mesh active function matrix, l = le . . . le,c + 1
Xfine,e,(l): Fine mesh active function matrix, l = le . . . le,c + 1
iRe,(l): Refinement operators, i = 1 . . . D, l = le . . . le,c + 1

Output: P fine,e,(l): Fine control points, l = le . . . le,c + 1
1 P e = P coarse,e,(le,c)

2 P fine,e,(le,c) = Xfine,e,(le,c) P e

3 for l = le,c + 1, . . . , le do

4

(HB) P e = (Re,(l))>(I 9 Xfine,e,(l91))P e + P coarse,e,(l)

= kron_mult
(

{(iRe,(l))>}, (I 9 Xfine,e,(l91))P e
)

+ P coarse,e,(l)

(T HB) P e = (I 9 Xcoarse,e,(l))(Re,(l))>P e + P coarse,e,(l)

= (I 9 Xcoarse,e,(l))kron_mult
(

{(iRe,(l))>}, P e
)

+ P coarse,e,(l)

5 P fine,e,(l)= Xfine,e,(l) P e

6 end

local L2-projection without explicitly integrating, assembling, and solving a linear system
of equations, the Bézier projection [Lorenzo et al., 2017; Thomas et al., 2015] is employed.
This section shows how a modification of the original formulation allows leveraging the
tensor structure through the previous sections’ algorithms.

5.6.1 Standard Bézier projection
Following closely Lorenzo et al. [2017]; Thomas et al. [2015], the Bézier projection is
introduced utilizing the Gramian matrix Gp of the Bernstein polynomials Bp

i (ξ) of degree
p and index i ∈ {1, ..., p + 1} defined on the reference interval [−1, 1]

Gp
ij =

1∫
−1

Bp
i (ξ) Bp

j (ξ) dξ i, j = 1, 2, ..., p + 1.

The above integral can be computed in closed form (see [Doha et al., 2011; Thomas et al.,
2015]). In D dimensions with polynomial degrees p = (p1, . . . , pD), Gp has a tensor-
product structure

G = Gp = GpD ⊗ . . . ⊗ Gp1 . (5.18)

Let BI,p be the Bernstein polynomials of degree p defined on the interval I = (a, b) ⊂ R

BI,p
i (ξ) =

(
p

i − 1

)
(b − ξ)p−(i−1)(ξ − a)i−1

(b − a)p
.



60 5. Algorithms for the multi-level Bézier extraction

Algorithm 5.12: coarse_to_finest. Specialization of Algorithm 5.11 for project-
ing to the finest level.

Input: le: level of element e
le,c: level of coarsest active function with support on e of the coarse mesh
P coarse,e,(l): Coarse mesh control points, l = le . . . le,c + 1
Xcoarse,e,(l): Coarse mesh active function matrix, l = le . . . le,c + 1
iRe,(l):Refinement operators, i = 1 . . . D, l = le . . . le,c + 1

Output: P e: Fine control points.
1 P e = P coarse,e,(le,c)

2 for l = le,c + 1, . . . , le do

3

(HB) P e = (Re,(l))>P e + P coarse,e,(l)

= kron_mult
(

{(iRe,(l))>} , P e
)

+ P coarse,e,(l)

(T HB) P e = (I 9 Xcoarse,e,(l))(Re,(l))>P e + P coarse,e,(l)

= (I 9 Xcoarse,e,(l))kron_mult
(

{(iR(l))>}, P e
)

+ P coarse,e,(l)

4 end

Let A(J,I) be the linear operator such that [Farouki and Neff, 1990; Thomas et al., 2015]

BI,p = (A(J,I))>BJ,p. (5.19)

Namely, A(J,I) is the operator expressing the Bernstein polynomials BI,p defined on the
interval I as linear combination of Bernstein polynomials BJ,p defined on another interval
J = (ã, b̃) ⊂ R. The entries of such matrix can be computed according to the formula
[Farouki and Neff, 1990; Thomas et al., 2015]

A
(J,I)
jk =

min{j,k}∑
i=max{1,j+k−p+1}

BI,j91
i (b̃) BI,p9j91

k9i (ã) j, k = 1, 2, ..., p + 1.

Algorithm 5.13: coarse_to_Bernstein. Specialization of Algorithm 5.11 for pro-
jecting to finest level Bernstein representation.

Input: le: level of element e
le,c: level of coarsest active function of coarse mesh with support on e
P coarse,e,(l): Coarse mesh control points, l = le . . . le,c + 1
Xcoarse,e,(l): Coarse mesh active function matrix,l = le . . . le,c + 1
iRe,(l): Refinement operators, i = 1 . . . D, l = le . . . le,c + 1
iEe: Level Bézier extraction operators, i = 1 . . . D

Output: Qe: Bernstein control points.
1 P e = coarse_to_finest(le , le,c , P coarse,e,(l) , Xcoarse,e,(l) , { iRe,(l) } )
2 Qe = (Ee)>P e = kron_mult

(
{(iEe)>} , P e

)
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Similarly to Gp, A(J,I) has a tensor-product structure A(J,I) = A(JiD
,IiD

) ⊗ . . . ⊗A(Ji1 ,Ii1 ),
for the Cartesian-product intervals I = Ii1 × ... × IiD

and J = Ji1 × ... × JiD
.

Finally, let Le be the transmission refinement operator introduced in [Lorenzo et al.,
2017]. Such operator can be obtained by knot insertion techniques consistent with the
global knot insertion operation such that it satisfies the relation

N e,(le,c) = LeHe (5.20)
= LeCeBe. (5.21)

Such operator maps the hierarchical functions He to the coarse single-level functions
N e,(le,c). Its effect can be obtained by an iterative algorithm similar to Algorithm 5.9.
See Lorenzo et al. [2017] for further details.

The local L2-projection from the source (fine) elements {Ωej }j=1...nc to the parent (coarse)
element Ωe can be computed explicitly through the Bézier formulation [Lorenzo et al.,
2017]

Qej = (Cej )>P ej (Bézier control values on Ωej ),

Qe =
nc∑

j=1

vol(Ωej )
vol(Ωe) G(A(e,ej))−>G Qej (Bézier control values on Ωe),

P e = (Le)> (LeCe)−> Qe (spline control values on Ωe), (5.22)

where (A(e,ej))−> maps the Bernstein polynomials defined on the element-ej local coordi-
nates to the Bernstein polynomials defined on the local coordinates of the coarse element
e (cf. Lorenzo et al. [2017]; Thomas et al. [2015]).

Equation (5.22) gives an expression for the fine control points’ projection to the coarse
element e. Projections performed on neighboring elements will yield different projected
local values for shared global control points. The global control value P A of the Ath
hierarchical function, HA, is obtained by averaging the element-local control point values
P ek(HA) produced by the Bézier projection local to each element Ωek contained in the
support of HA.

In particular, let E(HA) be the set of elements indices such that for any ek ∈ E(HA),
element Ωek is contained in the support of HA, i.e., Ωe ∩ supp(HA) 6= ∅. The final global
projection is obtained by a weighted sum of the element control point values of elements
with index in E(HA)

P A =
∑

ek∈E(HA)

ωek(HA) P ek(HA)

where ωek(HA) is the weight

ωek(HA) = βek(HA)∑
e′

k∈E(HA)
βe′

k(HA)
,

βek(HA) =
∫

Ωek

HA dΩ.
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In Thomas et al. [2015], it is presented an approximation to the weights ωek(HA) for
meshes that are not hierarchically refined. In particular, when the parametric element
span Ω̂ek is proportionally similar to the physical element Ωek , the weights can be ap-
proximated by computing the integrals in the parametric domain Ω̂ek . Such an estimate
allows calculating the weights in terms of integrals of Bernstein polynomials∫ b

a

Bp
i (ξ) dξ = b − a

p + 1 . (5.23)

These integrals can be transformed to B-spline integrals through the Ath row Cek
Aj of the

element extraction operator Cek , giving the following approximation to the averaging
weights

ωek(HA) ≈ β̂ek(HA)∑
ek

′∈E(HA)
β̂ek

′(HA)
,

β̂ek(HA) = γ

∫
Ω̂ek

HA dΩ (5.24)

= vol(Ω̂ek)
p+1∑
j=1

Cek
Aj, (5.25)

where

γ =
D∏

i=1

(pi + 1) (5.26)

See Lorenzo et al. [2017] for further details.

5.6.2 Modified Bézier projection
The Bézier projection (5.22) is based on the Kronecker matrices A and G, while the
operators Cej , Ce, and Le do not possess the tensor-product structure. Following the
previous arguments, the implementation strategy uses Algorithm 5.7 to perform the mul-
tiplications by Kronecker matrices and Algorithms 5.11 and 5.13 to compute the effect of
(Cej )> and (Le)>, respectively. However, these algorithms cannot be used to calculate
the effect of (LeCe)−>.

To avoid an explicit computation, an alternative formulation of Equation (5.20) can be
obtained through the operators A and E. In particular, it holds

N e,(le,c) = EecBec ,

= Eec(A(e,ec))>Be. (5.27)

The linear independence of Be allows deducing from Equations (5.20) and (5.27) the
following identity

LeCe = Eec(A(e,ec))>.
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Algorithm 5.14: Modified Bézier projection algorithm.
Input: le, lej : level of element e, ej, respectively

le,c, lej ,c: level of coarsest active function with support on e, ej respectively
P ej : Control points of children in fine mesh
Xcoarse,e,(l): Coarse mesh active function matrix, l = le . . . le,c + 1
Xfine,e,(l): Fine mesh active function matrix, l = le . . . le,c + 1
iRe,(l): Refinement operators, i = 1 . . . D, l = le . . . le,c + 1
iEe: Level Bézier extraction operators, i = 1 . . . D

Output: P e: Parent element control points, l = 0 . . . N − 1.
1 for each child element ej do
2 Qej = coarse_to_Bernstein

(
lej , lej ,c, P ej , Xfine,ej ,(l), {iRej ,(l)}, {iEej }

)
3 end
4 Qe =

∑
ej

vol(Ωej )
vol(Ωe) kron_mult

(
{ (iA(e,ej))−> iG }, {Qej }

)
5 P ec = kron_mult

(
{ (iEec)−> iA(ec,e) iG(−1) }, Qe

)
6 P e = coarse_to_fine

(
le, le,c, P ec , Xcoarse,e,(l), Xfine,e,(l), {iRe,(l)}

)

This relation allows to modify the standard Bézier projection to implement the effect of
(LeCe)−> without explicitly computing Le, Ce, and the inverse of their product, but
through Algorithm 5.7, as shown in Algorithm 5.14. Note that multiplications of small
univariate matrices are performed for each parametric direction, and the result is used as
input for Algorithm 5.7.

The approximated averaging quantities β̂e(HA) of Equation (5.25) can be generalized to
hierarchically-refined meshes and computed through Algorithms 5.5 and 5.9. Indeed, for
uniform polynomial degree p, the weights β̂e(HA) can be calculated simultaneously for all
element hierarchical functions He as

β̂e(He) = γ

∫
Ω̂e

He dΩ,

= γ

∫
Ω̂e

CeBe dΩ,

= γ Ce
D⊙

i=1

∫
iΩ̂e

iBe dΩ,

= Ce
D⊙

i=1

vol(iΩ̂e) 1,

where 1 ∈ Rp+1 is a vector of ones and iΩ̂e is the interval in the ith parametric direction
composing the parametric domain: Ω̂e = 1Ω̂e × ... × DΩ̂e. The weight β̂e(HA) can be
computed by Algorithm 5.5 for the hierarchical B-splines and by Algorithm 5.9 for the
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0.050.05

(a) Geometric setup [m].

Specific heat (hc) 600J/(kg ◦C)
Density (ρ) 7820kg/m3

Heat conductivity (k) 29W/(m ◦C)
Heat power (Q) 5083W
Source speed (v) 5mm/s
Source radii rx 15mm
Source radii ry 10mm
Source radii rz 2mm
Number of time steps 200
Total time 20s

(b) Parameters.

Figure 5.4: Setup of the traveling heat source example.

truncated basis

β̂e,HB(He) = extract(le, le,c, {vol(iΩe)1}, {iEe}, {iRe,(l)}),
β̂T HB,e(He) = extract_thb(le, le,c, {vol(iΩe)1}, {iEe}, {iRe,(l)}, {Xe,(l)}).

5.7 Numerical Examples
The run-time of the proposed algorithms is compared with an explicit extraction-operator
construction through two numerical examples. The first measures the performance of a
linear transient computation with dynamic mesh refinement and coarsening, while the
second shows similar results on a non-linear example with a static pre-refined mesh.

5.7.1 Traveling Heat Source
Consider the example of a moving heat source presented in Kollmannsberger et al. [2018],
where a 3D ellipsoidal heat source travels at a constant speed through a rectangular
plate Ω with a constant thickness (see Figure 5.4a). This process is modeled by the heat
equation

ρc
∂T

∂t
− ∇ · (k ∇T ) = q, on Ω,

where the (constant) material parameters are listed in Figure 5.4b, and q is defined as

q(x, y, z, t) = 6
√

3Q

π
√

πrxryrz

exp
(

−3 x̃2

r2
x

− 3 ỹ2

r2
y

− 3 z̃2

r2
z

)
, (5.28)

x̃ = x − vt, ỹ = y, z̃ = z − 0.02 being the coordinates shifted to the center of the heat
source traveling with velocity v in the positive x-direction Kollmannsberger et al. [2018].
A no-flux boundary condition is applied on all faces of the plate.
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(a) Temperature t = 0.1 s. (b) Mesh t = 0.1 s.

(c) Temperature at t = 10 s. (d) Mesh at t = 10 s.

(e) Temperature at t = 20 s. (f) Mesh at t = 20 s.

Figure 5.5: Solution (left) warped along z-axis (warping factor 2 10−5) and mesh (right).

The problem is solved using the backward Euler time integration scheme on a 4 × 4 × 2
grid with p = 2 and 5 hierarchical B-spline refinement levels around the moving heat
source to capture the steep gradients. The mesh and corresponding solution are shown in
Figure 5.5.

An analytical solution is available on an infinite domain [Fachinotti et al., 2011]. Assuming
the boundary influence is negligible over the chosen time interval, Figure 5.6 compares
the analytical solution to the obtained numerical temperature. Figure 5.7 shows that the
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(a) Temperature over time at (x, y, z) =
(0.05, 0, 0.2).
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(b) Temperature on the line x ∈ [−0.05, 0.1],
(y, z) = (0, 0.02) at t = 20 s.

Figure 5.6: Solution for the traveling heat source example compared with the analytical
solution in space and time.

local refinement keeps the number of DOFs bounded over time.

The CPU time of a C++ implementation of Algorithm 5.5 is compared to a direct extrac-
tion CeBe for an explicitly constructed extraction operator Ce. The measured time in-
cludes the matrix multiplication and tensor-product operations listed in Table 5.3, includ-
ing the Bernstein polynomials’ evaluation. The measurements are taken on an Intel(R)
Xeon(R) CPU E5 CPU with a fixed frequency of 2.90 GHz for the first 25 time steps and
p ∈ {2, 3, 4}. Note that the time for constructing the extraction operator Ce is ignored.
The performance is evaluated according to the amount of time saved by Algorithm 5.5,
calculated as

time_saved = (1 − time(Algorithm 5.5)
time(CeBe) )%, (5.29)

and the reduction factor, according to the formula

reduction_factor = time(CeBe)
time(Algorithm 5.5) . (5.30)

The results are summarized in Table 5.7.

5.7.2 Finite-strain J2 elastoplasticity
This chapter is concluded with a finite-strain elastoplastic example. Since the adopted
plasticity model is standard in the literature, it is introduced as briefly as possible. For a
more detailed explanation, see, e.g., de Souza Neto et al. [2009]; Igelbüscher et al. [2019];
Korelc and Stupkiewicz [2014]; Simo and Hughes [1998]; Simo and Miehe [1992]; Wriggers
and Hudobivnik [2017].
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Figure 5.7: The number of DOFs is kept bounded over time by the dynamic refinement
and coarsening around the moving heat source.

p time_saved reduction_factor

2 60.8% 2.5
3 92.5% 13
4 96.8% 31

Table 5.7: Traveling Heat Source example: time saved in extracting the functions through
Algorithm 5.5 instead of direct extraction CeBe for an explicitly constructed extraction
operator Ce.

In the following, a multiplicative decomposition of the deformation gradient F = F eF p

is assumed, and the elastic deformation is characterized by an energy function

Ψ = λ

4 (I3 − 1 − ln I3) + µ

2 (I1 − 3 − ln I3) ,

where λ and µ are the Lamé constants, and I1 and I3 are the first and third invariant
of the elastic left Cauchy-Green tensor. The elastic region is defined by the classical von
Mises yield criterion

f (τ , ᾱ) =
√

3
2 dev[τ ] : dev[τ ] − K(ᾱ) ≤ 0,

where dev[τ ] is the deviatoric Kirchhoff stress, ᾱ is the equivalent plastic strain, and
K(ᾱ) is the nonlinear hardening function

K(ᾱ) = σ0 + (σ∞ − σ0)(1 − e−δᾱ) + Hᾱ, (5.31)

with initial stress σ0, saturation stress σ∞, hardening exponent δ, and linear hardening
coefficient H.
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Lamé’s first parameter (λ) 110,743MPa
Shear modulus (µ) 80,194MPa
Initial yield strength (Y0) 450.0MPa
Saturation strength (Y∞) 715.0MPa
Linear hardening parameter (H) 129.24MPa
Hardening exponent (δ) 16.93

Table 5.8: Finite J2 elastoplastic material parameters as in Hubrich and Düster [2019].

The evolution of the equivalent plastic strain is governed by ∂tᾱ = γ for a consistency
parameter γ subject to the Kuhn-Tucker and consistency conditions

γ ≥ 0, (5.32)
f ≤ 0, (5.33)

γf = γ ∂tf = 0. (5.34)

This example consists of a perforated plate subject to uniaxial tension (see Figure 5.8a).
The geometry is defined by the open-knot vectors and control points given in Appendix B.
Symmetry boundary conditions are applied on the planes at x = 100mm, y = 0mm,
z = 0mm. The boundary at y = 200mm is uniformly displaced by 9.5mm in the y-
direction. The displacement increments are shown in Figure 5.9c.

The problem is solved with the material parameters listed in Table 5.8 on a static mesh
obtained by degree elevation on the base geometry to obtain a uniform degree p = 2. Suc-
cessively, 10, 20, and 1 equispaced knots are inserted in x, y, and z-direction, respectively.
The base mesh is pre-refined with two refinement levels around the plastification area
and four refinement levels around the necking area, as shown in Figures 5.8b and 5.8c.
The mesh is of admissibility class one, namely functions belonging to at most two con-
secutive hierarchical levels can be active on each element Bracco et al. [2019]; Buffa and
Giannelli [2016]; Carraturo et al. [2019]. Figures 5.9a and 5.9b show the von Mises stress
and equivalent plastic strain ᾱ after the last displacement step. Figure 5.9c shows the
load-displacement curve.

As in the previous section, the CPU time of a C++ implementation of Algorithm 5.5 is
compared to a direct extraction CeBe for an explicitly constructed extraction operator
Ce. The measured time includes the matrix multiplication and tensor-product operations
listed in Table 5.3, including the Bernstein polynomials’ evaluation. The measurements
are taken on an Intel(R) Xeon(R) CPU E5 CPU with a fixed frequency of 2.90 GHz
for the first 6 displacement steps. Note that the time for constructing the extraction
operator Ce is ignored. The amount of time saved by Algorithm 5.5 is measured as in
Equations (5.29) and (5.30), yielding the results in Table 5.9.
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p time_saved reduction_factor

2 63.9% 2.8
3 90.1% 10.1

Table 5.9: Finite-strain J2 elastoplasticity example: time saved in extracting the functions
through Algorithm 5.5 instead of direct extraction CeBe for an explicitly constructed
extraction operator Ce.

xy
z

(a) Geometric setup [mm].

(b) Mesh. (c) Mesh around necking area.

Figure 5.8: Geometry and mesh of the elastoplastic perforated plate.
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(a) Final von Mises stress on deformed
geometry (warping factor 1).

(b) Final plastified area (ᾱ > 0).
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(c) Load-displacement curve.

Figure 5.9: Von Mises, equivalent plastic strain and load-displacement curve obtained on
the elastoplastic perforated plate.



Chapter 6

Local refinement for the finite cell
method and trimming

The previous chapters introduced a local refinement formulation suitable for B-splines and
NURBS shape functions. In this chapter, the hierarchical NURBS are combined with the
finite cell method (FCM) [Düster et al., 2008, 2017; Parvizian et al., 2007]: a traditionally
high-order finite-element approach that is based on meshes that are not fitted to the
domain boundary.

In standard finite elements, local refinement is classically used to efficiently resolve small-
scale solution characteristics, obtaining an accuracy similar to a uniform refinement, but
using fewer degrees of freedom. This chapter shows that, additionally, it can mitigate
FCM-specific difficulties such as

• the unphysical coupling between the sides of a thin hole and
• the overconstraining induced by weak boundary conditions.

6.1 Trimming through the finite cell method
Finite cell analyses are based on meshes that are not conforming to the physical domain
Ω. Namely, Ω is contained (or “immersed”) in a larger domain Ωfict that can be triv-
ially discretized. For example, Ωfict can consist of the smallest axis-aligned bounding box
containing Ω. In this case, Ωfict can be meshed by a regular Cartesian grid of elements,
resulting in element faces not matching the physical boundary ∂Ω (see Figure 6.1). In-
stead, ∂Ω can “cut” the elements in an arbitrary manner, requiring additional effort to
capture the characteristics of the original geometry Ω and retain the physics of the ac-
tual problem. However, this approach avoids the time-consuming and error-prone mesh
generation process, shortening the design-though-analysis loop and enabling the analysis
of complex topologies demanded by modern design and manufacturing technologies.

The finite cell method can be used in combination with various shape functions, such
as Lagrange or integrated Legendre polynomials (see, e.g., Düster et al. [2008, 2017];
Parvizian et al. [2007]), and NURBS (see, e.g., [Coradello et al., 2020b; Hoang et al., 2017;
Ruess et al., 2013; Schillinger et al., 2012c, 2016, 2012d; Verhoosel et al., 2015]). The finite
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(a) Domain Ω. (b) Cartesian mesh of the small-
est axis-aligned bounding box
Ωfict containing Ω.

Figure 6.1: Fundamental concept of the finite cell method.

cell method enables the direct numerical analysis of various geometrical models, such as
point cloud domains (see, e.g., Kudela et al. [2020]), constructive solid geometry (CSG)
(see, e.g., Wassermann et al. [2017]), flawed volumetric computer-aided designs (CAD)
(see, e.g., Wassermann et al. [2019]), and shell models based on boundary representations
(B-Rep) (see, e.g., Breitenberger et al. [2015]; Coradello [2016]; Coradello et al. [2020b];
Guo et al. [2018]), and computed tomography scans (CT) (see, e.g., Elhaddad et al. [2018];
Korshunova et al. [2021a,b, 2020]; Yang et al. [2012a,b]). This approach is also suited to
parallelism and distributed computations (see, e.g., Jomo et al. [2019, 2017]).

The finite cell method has been applied successfully to various problems of engineering
relevance, such as thermoelasticity (see, e.g., Zander et al. [2012]), thermo-elasto-plasticity
(see, e.g., Özcan et al. [2019]), additive manufacturing processes (see, e.g., Carraturo
et al. [2020]), geometrical nonlinearities (see, e.g., Schillinger [2012]; Schillinger et al.
[2012a,b]), contact mechanics (see, e.g., Bog et al. [2015, 2018]), explicit and implicit
elastodynamics (see, e.g., Elhaddad et al. [2015]; Joulaian et al. [2014]), bio-mechanics
(see, e.g., Elhaddad et al. [2018]; Ruess et al. [2012]; Verhoosel et al. [2015]; Yang et al.
[2012a,b]), elastoplasticity (see, e.g., Abedian et al. [2013b, 2014]; Taghipour et al. [2018]),
topology optimization (see, e.g., Cai et al. [2014]; Parvizian et al. [2011]), finite-strain
problems (see, e.g., Garhuom et al. [2020]), brittle fracture (see, e.g., Hug et al. [2020];
Nagaraja et al. [2019]), quality assurance of additively manufactured products (see, e.g.,
Korshunova et al. [2021a,b, 2020]), cohesive fracture (see, e.g., Zander et al. [2017]), and
foamed materials (see, e.g., Heinze et al. [2018, 2015]).

In its basic form, the finite cell method is based on a weak problem defined on the domain
Ω

find u ∈ S(Ω)
such that a(w, u)Ω = l(w)Ω ∀w ∈ W(Ω), (F)
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where S(Ω) and W(Ω) are the trial and test spaces, respectively, while a(w, u)Ω and
l(w)Ω represent the bilinear and linear forms modeling the physics of the problem. The
subscript refers to the integration domain Ω. For example, for Poisson’s problem, these
forms can be defined as

a(w, u)Ω = (∇w, ∇u)Ω =
∫
Ω

∇w · ∇u dΩ, (6.1)

l(w)Ω = (w, f)Ω =
∫
Ω

w f dΩ, (6.2)

for some function f : Ω → R. This weak form is further discussed in Chapter 7.

The finite-dimensional subspaces for the finite cell method can be defined using a fictitious
domain Ωfict containing the physical domain Ω ⊂ Ωfict. The domain Ωfict can be chosen of
a shape that can be trivially meshed (see Figure 6.1). A suitable finite-dimensional space
Wh(Ωfict) is defined on such a mesh. For example, Wh(Ωfict) can be spanned by a finite
number of NURBS or piecewise polynomials defined on a parameter space Ω̂fict combined
with the geometrical mapping Ωfict = F (Ω̂fict) (see Section 2.5). It is assumed that the
functions in Wh(Ωfict) have non-empty support on Ω, namely

supp
(
wh
)

∩ Ω 6= ∅, ∀wh ∈ Wh(Ωfict). (6.3)

A discrete subspace for Problem (F) can be defined as

Wh(Ω) = span
{

wh
∣∣
Ω : wh ∈ Wh(Ωfict)

}
, (6.4)

determining the following Galerkin finite cell problem

find uh ∈ Wh(Ω),
such that a(wh, uh)Ω = l(wh)Ω, ∀wh ∈ Wh(Ω). (6.5)

Note that the bilinear and linear forms are still defined on Ω (see, e.g., Equations (6.1)
and (6.2)). Specifically, the integrals are computed on the physical domain Ω and not
on Ωfict. However, since the basis functions are defined on Ωfict, it can be convenient to
express the integrals over Ω in terms of integrals over Ωfict through a domain-indicator
function α : Ωfict → [0, 1]

α(x) =
{

1 if x ∈ Ω,

0 otherwise.
(6.6)

For example, Equation (6.1) can be written as

a(wh, uh)Ω = (∇wh, ∇uh)Ω, (6.7)
= (∇wh, α∇uh)Ωfict . (6.8)

The domain-indicator function α penalizes the value of the integrand outside the physical
domain, recovering the physics of the problem. However, a discontinuity is introduced in
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the integrands, requiring non-standard integration rules to retain accuracy (cf., e.g., Abe-
dian et al. [2013a]; Breitenberger et al. [2015]; Hubrich et al. [2017]; Joulaian et al. [2016];
Kudela et al. [2015, 2016]; Marussig and Hughes [2018]; Müller et al. [2013]; Parvizian
et al. [2007]; Rank et al. [2012]). See Marussig and Hughes [2018] for a comprehensive
review.

This immersed approach can result in very ill-conditioned system matrices when some
basis functions have a tiny portion of their support belonging to the physical domain
(see, e.g., de Prenter et al. [2017]). One possible way to stabilize the problem is to modify
the definition of α to

α(x) =
{

1 if x ∈ Ω,

ε otherwise,
(6.9)

for a small value 0 < ε � 1. This modification corresponds to solving a perturbed weak
problem

find u ∈ S(Ω)
such that a(w, u)Ω + ε a(w, u)Ωfict\Ω = l(w) ∀w ∈ W(Ω). (6.10)

This approach introduces a modeling error of order O(
√

ε) in the energy norm (see Dauge
et al. [2015]; Stolfo et al. [2019]).

6.2 The finite cell method for trimmed Kirchhoff-
Love shells

The weak formulation of the Kirchhoff-Love shell problem with weak boundary conditions
reads as follows (see., e.g., Apostolatos et al. [2015]; Cirak [2006]; Coradello et al. [2020b];
Guo and Ruess [2015]; Herrema et al. [2019]; Kiendl et al. [2009])

find u ∈ H2(Ω),
such that a(w, u) + bdisp(w, u) + brot(w, u) = l(w), ∀w ∈ H2(Ω), (6.11)

where a(w, u) is the bilinear form representing the internal work

a(w, u) =
∫
Ω

ε(w) : N (u) dΩ +
∫
Ω

κ(w) : M(u) dΩ.

The symbols ε and κ denote the membrane and bending strain tensors, respectively, while
N and M are the in-plane stress and bending moment. Following the FCM approach ex-
plained in Section 6.1, this bilinear form can be defined on a trivially-meshable embedding
domain Ωfict

a(w, u) =
∫

Ωfict

ε(w) : αN (u) dΩ +
∫

Ωfict

κ(w) : αM (u) dΩ,
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where α is defined in Equation (6.6). A stabilized problem can be obtained by approxi-
mating α by Equation (6.9).

The term l(w) is the linear functional representing the external work of a volumetric body
load f and the traction t over the boundary Γt ⊂ ∂Ω

l(w) =
∫
Ω

w · f dΩ +
∫
Γt

w · t dΓ.

For simplicity, only zero external bending moments are considered. The term bdisp(w, u)
penalizes a displacement different than g on the boundary Γg ⊂ ∂Ω

bdisp(w, u) =
∫
Γg

βdisp w · (u − g) dΓ,

where βdisp ∈ R is a user-defined penalty parameter. Finally, the term brot(w, u) penalizes
the normal rotations on the boundary Γθ ⊂ ∂Ω

brot(w, u) =
∫
Γθ

βrot (n · Φ(w)) (Φ(u) · n) dΓ,

where βrot ∈ R is a user-defined penalty parameter, the symbol n represents the outward
in-plane normal to the boundary Γθ, and Φ(u) = a3(u) − A3 denotes the angle between
the shell normal in its undeformed (A3) and deformed (a3(u)) configuration after applying
the deformation u. See Guo and Ruess [2015]; Herrema et al. [2019] for a detailed review.

Following Herrema et al. [2019], given the Young’s modulus E, Poisson’s ratio ν, thickness
t, and the smallest-element size h, the penalty parameters are scaled as

βdisp = β̄
Et

h(1 − ν2) (6.12)

βrot = β̄
Et3

12h(1 − ν2) , (6.13)

where the common parameter β̄ ∈ R is user-defined.

6.2.1 Numerical integration
The shell geometry Ω is assumed to be described by a NURBS patch, as in standard
CAD models based on B-Reps. In particular, the geometry is defined by a mapping
F relating the patch parameter space Ω̂ to the shell domain Ω = F (Ω̂). For shells
represented by surfaces in three-dimensional space, the parameter space is assumed to be
two-dimensional, as shown in Figure 6.2. Accurate numerical integration of the system
matrices is obtained following Rank et al. [2011], where quadrature rules are constructed
in the parameter space Ω̂. Specifically, the trimming curves are defined in Ω̂, allowing
to accurately integrate trimmed elements through the definition of boundary-conforming
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(a) Patch parameter space. (b) Mapping from parametric to physical space. Only the
elements intersecting the physical domain are shown.

Figure 6.2: Illustration of the locally-refined elements (black lines) and integration do-
mains (red lines) in the patch parameter space and their mapping to physical space.

integration subdomains, as described in Kudela et al. [2015, 2016]. The method can treat
complex trimming curves including sharp features and handles directly B-Rep models
produced by standard CAD software such as Rhinoceros5, in the spirit of a design-through-
analysis workflow. This approach is applied to isogeometric trimmed shells analysis in,
e.g., Breitenberger et al. [2015]; Coradello [2016]; Coradello et al. [2020b]; Guo et al.
[2018].

6.3 Motivation to local refinementc

The use of hierarchical NURBS for the analysis of trimmed geometries is motivated by
the following arguments:

• removal of unphysical coupling between the sides of a thin hole;
• increased accuracy close to trimming boundaries subject to weak constraints;
• efficient approximation of localized deformations.

6.3.1 Thin holes
When the trimming curves define holes that are “thin” compared to the geometry knot
spans, the support of a basis function intersected with the physical domain Ω may be
disconnected and composed of several disjoint sub-domains. For example, Figure 6.4b
shows the support of a function with two disjoint physical sub-domains. This configuration
creates an artificial coupling between the two sides of the hole, generally resulting in an
unphysical mechanical response. These spurious effects become particularly severe when
the local behavior of the structure is strongly determined by the geometry of the hole,
as is often the case for complex models. A similar observation can be found in Zander
[2017].

5www.rhino3d.com
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Algorithm 6.1: Refinement towards trimming curves
Input: lmax: maximum refinement level

Γ: trimming curve
γ: refinement width parameter

1 for l = 1 . . . lmax do
2 for each level-l active element e

(l)
î

and multi-index î cut by Γ do
3 for each level-l active element e

(l)
i and multi-index i do

4 if ‖i − î‖∞ ≤ γ then
5 mark e

(l)
î

for refinement
6 end
7 end
8 end
9 refine marked elements

10 end

For instance, consider the setup illustrated in Figure 6.4a, where the geometry is modeled
via a trimmed NURBS surface of degree p = 2, exported from the Rhinoceros software
together with a set of 32 trimming curves. This geometry features two internal thin
holes described by trimming curves presenting sharp features. For the analysis, clamped
boundary conditions are applied to the outer boundary of the violin via the penalty
method, as described in Section 6.2, and a line load F = (0, 0, 100)> is applied to the
reentrant tip of the f-hole. When adopting as computational mesh the same NURBS
patch defining the geometry (as exported from Rhinoceros), this numerical experiment
yields an unphysical response. The maximum displacement is attained towards the center
of the geometry (see Figure 6.4c obtained with β̄ = 10) instead of the reentrant tip, as
expected from engineering intuition.

To mitigate this issue, locally-refined hierarchical NURBS can substitute functions hav-
ing large support with functions having smaller support. In particular, the unphysical
coupling is necessarily removed when no support is composed of disconnected physical
subdomains. To this end, let us consider the refinement procedure presented in Algo-
rithm 6.1. The marking parameter γ represents the extension of the refinement area in
the proximity of a given trimming curve Γ. Figure 6.3 shows the effects of the different
choices γ = 0, 1, 2.

When using hierarchical NURBS, setting γ ≥ p assures that only finest-level functions
have support on the trimming curve. By comparing the size of the finest-level knot spans
and the size of the hole, one can obtain the value for lmax that removes all functions with
disconnected supports.

For the current example, Algorithm 6.1 can refine the computational mesh towards the
internal f-hole. The decoupling is obtained for γ = p = 2 and lmax = 5, yielding the
qualitatively correct response shown in Figure 6.4d, where the maximum deflection occurs
at the reentrant tip. Figure 6.5a shows the z-displacement at point A located at one of the



78 6. Local refinement for the finite cell method and trimming
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(a) Active cut cells.
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(b) γ = 0.
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(c) γ = 1.
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(d) γ = 2.

Figure 6.3: Influence of marking parameter γ on the refinement. The cut cells are
highlighted in blue, whereas the elements marked for refinement after performing Al-
gorithm 6.1 with γ = 0, 1, 2, respectively, are colored in red.

geometrical kinks of the trimmed boundary (see Figure 6.4b). A sudden improvement in
accuracy is obtained for lmax = 5, while smaller values yield inaccurate results induced by
the unphysical coupling. Figure 6.5a also compares the described locally-refined solution
to the solution obtained by a tensor-product refinement constructed by Algorithm 6.1
with γ = 0 (local tensor-product refinement), where the marked elements are refined
using the classic knot-insertion procedure (see Section 2.5.1.1) instead of local refinement.
The meshes corresponding to local refinement and local tensor-product refinements are
depicted in Figures 6.6a and 6.6b, respectively.

Additionally, Figure 6.5a shows the convergence of a standard uniform tensor-product
refinement obtained by recursively bisecting every knot span (uniform tensor-product
refinement). Figures 6.5a and 6.5b show that all strategies converge towards a reference
value for the displacement obtained from an overkill solution. Local refinement achieves
a level of accuracy comparable to uniform refinement using substantially fewer degrees of
freedom.

It is observed in Coradello et al. [2020b] that an adaptive procedure driven by the error
estimator introduced in Coradello et al. [2020a] automatically removes the unphysical
coupling for a simple example. Further research is needed to investigate the robustness
of this approach.

6.3.2 Weak constraints
When imposing weak boundary conditions on a trimming curve, it can happen that the
finite element space is not capable of both accurately satisfy the boundary conditions
and approximate the numerical solution in the proximity of the trimming boundary. For
complicated geometries or high penalty parameters βdisp and βrot, some elements will be
over-constrained.

To illustrate this effect, consider the setup depicted in Figure 6.7a, where a uniformly-
distributed vertical load F = (0, 0, −100)> is applied on the top surface. Clamped bound-
ary conditions are enforced with a penalty term (β̄ = 106) on the internal curves featuring
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E = 105

ν = 0.0, t = 2
F = (0, 0, 100)>

xy
z

(a) Applied boundary conditions: clamped
boundary (red wire) and distributed load (ar-
rows).

A

(b) Example of basis function support cov-
ering both sides of a thin hole (p = 2 and
maximum continuity).

(c) Unphysical solution obtained from a di-
rect analysis of the CAD model.

(d) Local refinement around the trimming
curve removes the unphysical coupling.

Figure 6.4: Thin-hole example. The discretization of a complex trimmed geometry creates
an unphysical coupling between the sides of thin holes.

kinks and areas of high curvature. Figures 6.7b and 6.7c show that the displacement and
stress are artificially low on the elements cut by the trimming curve, spuriously following
the element boundaries.

Given a fixed mesh, an optimal choice for the penalty parameter β can mitigate the
described problem. See de Prenter et al. [2018] for a discussion on this matter in the
context of Nitsche’s method. If it is unknown how to choose β optimally, mesh refinement
can improve the accuracy in both interior and boundary terms by enlarging the finite
element space and intersecting the curve with smaller elements, generally yielding simpler
intersections. This way, small geometric features induced by the trimming curves can
be selectively resolved. For instance, Figures 6.7d and 6.7e show the solution and Von
Mises stress distribution produced by Algorithm 6.1 with γ = p = 2 and lmax = 5. This
example qualitatively demonstrates the capability of local refinement to reduce the over-
constraining effects linked to the weak imposition of Dirichlet-type boundary conditions.

Figure 6.8 compares the resultant Von Mises stress for different meshes. Figure 6.8b shows
the solution obtained through a uniform mesh of 38 607 DOFs. The mesh is chosen to
have a number of DOFs similar to the locally-refined mesh in Figures 6.7e and 6.8a, which
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Figure 6.5: Thin-hole example. Displacement and number of DOF.

(a) Locally-refined mesh. (b) Local tensor-product mesh.

Figure 6.6: Meshes obtained by local refinement and local tensor-product refinement
produced by Algorithm 6.1 with γ = p = 2 and lmax = 5.

has 36 225 DOFs. As a reference, Figure 6.8c shows the solution obtained by an overkill
mesh with 4 026 378 DOFs. The locally-refined mesh does not have artificially low stress
on the constrain curve, similarly to the overkill solution.

6.3.3 Localized deformations
The example given in Figures 6.4a and 6.4d produces a localized deformation that needs to
be adequately resolved. The local refinement strategy employed to remove the unphysical
coupling in Section 6.3.1 gives an approximation comparable to uniform refinement but
with a considerable reduction in DOFs (see Figures 6.5a and 6.5b). Table 6.1 shows
the energy and z-displacement errors with respect to the following reference values Ẽ ≈
0.2211, ũz ≈ 7.268 · 10−3. These values are extracted from an overkill solution defined on
a uniformly-refined mesh obtained by lmax = 5 recursive bisection steps.
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E = 105

ν = 0.0, t = 2
F = (0, 0, −100)>

xy
z

(a) Boundary conditions: clamped (red wire)
and distributed load (arrows).

(b) Displacement magnitude (logarith-
mic scale) on the unrefined mesh.

(c) Von Mises stress on the unrefined
mesh.

(d) Displacement magnitude (logarith-
mic scale) on a locally-refined mesh.

(e) Von Mises stress on a locally-refined
mesh.

Figure 6.7: Example of overconstraining induced by weak boundary conditions on trim-
ming curves.

This numerical experiment confirms that local refinement can accurately and efficiently
capture local quantities (such as the solution at point A) as well as global quantities (the
energy of the system) comparable to the tensor product refinement. Note that, in this
particular example, ∼ 5 times fewer DOFs are required to achieve similar accuracy.
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(a) Von Mises on a locally-
refined mesh as in Figure 6.7e.

(b) Von Mises on a uniformly-
refined mesh such that the
number of DOFs is similar to
Figure 6.8a.

(c) Von Mises on an overkill
mesh.

Figure 6.8: Overconstraining on trimming curves can be resolved by local refinement.

num. DOFs energy error z-displ. error at A
(1 − Eh

Ẽ
)% (1 − uh

z

ũz
)%

tensor product ref. 193 359 2.07% 1.72%
local ref. 37 215 2.88% 2.29%

Table 6.1: Comparison of the error in the energy norm and z-displacement at point A
against the number of DOFs for tensor product and local refinements.

6.4 Numerical Examplesc

This chapter concludes with two numerical examples that show the applicability of the
proposed workflow to the locally-refined analysis of trimmed surfaces. All the geome-
tries used in the following examples have been created in the commercial CAD software
Rhinoceros and exported in the STEP file format [ISO 10303-11:1994, 1994].

6.4.1 A trimmed adaptive example
The first example deals with a geometry created by the intersection of two cylinders, as
shown in Figure 6.9. Such a geometry is taken from an example presented in Casquero
et al. [2017]. Note that the two trimmed holes are symmetric to the diagonal of the cylin-
der. The two circular ends of the cylinder on the xz-plane are subject to no-displacement
boundary conditions. A unit point load F = (0, 0, −1)> is applied on the surface middle
point (see Figure 6.9). The Young modulus and Poisson’s ratio parameters are chosen as
E = 5 · 107 and ν = 0.0, respectively. The shell thickness is set equal to t = 0.1.

The L∞-norm of the displacement gradient is used as a simple indicator for adaptively
refining the mesh. In particular, given a user-defined threshold γ ∈ (0, 1), one element Ωe

is marked for refinement if

||∇uh||L∞(Ωe) > γ max
Ω̃e

||∇uh(Ω̃e)||L∞(Ω̃e),

http://www.rhino3d.com
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xy
z

(a) Geometry definition in Rhino. (b) Trimming boolean operation.

Figure 6.9: Geometry specifications and representation of the trimming operation in Rhino
used to create the two trimmed holes, defined as the intersection between two cylinders.

where the maximum is taken over all elements Ω̃e of the mesh. Additionally, the elements
adjacent to the supports are always marked for refinement. Despite the simplicity of this
error indicator, numerical experiments show that it behaves well in driving an adaptive
simulation for the problem at hand, capturing the main characteristics of the solution
(see Figure 6.10).

Figure 6.11 shows the convergence of the internal energy and z-displacement under the
point load on a series of refined meshes. The reference solution consists of an overkill
solution obtained on a uniformly-refined mesh with 2 603 682 DOFs, p = 3.

Figure 6.10b shows the reparameterized integration cells in the proximity of one of the
trimming curves. Note that the reparameterized integration is used on trimmed elements
belonging to different hierarchical levels. Often, the local refinement simplifies the inter-
sections between the trimming curve and the elements, yielding fewer intersection cases
to be handled.

6.4.2 B-Rep analysis with weak constraints
The following example concerns the simulation of a simplified model of the Rolex Learning
Center rooftop (see Figure 6.12a), the campus library at the École Polytechnique Fédérale
de Lausanne (see Figure 6.12b).

The structure is modeled by a trimmed NURBS surface of degree p = 3 composed of
20 × 20 knot spans. A planar map of the building has been used to trace all the major
structural holes. The roof is supported by pillars modeled by 150 cylinders arranged in
a 15 × 10 Cartesian fashion into the model (those falling outside of the physical domain
have been discarded). Their intersection with the surface is used to impose homogeneous
displacement boundary conditions (β̄ = 103). This simplified design may not correspond
to the actual placement of the pillars. The material parameters are chosen as E =
40 · 109, ν = 0.15, and t = 0.2 for the Young modulus, Poisson ratio, and shell thickness,
respectively. Note that the purpose of this example is not to model the static state of the
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(a) Hierarchical mesh. (b) Reparameterized integration subdomains
(red edges).

(c) Displacement magnitude. (d) Von Mises stress.

Figure 6.10: Mesh, displacement magnitude, and Von Mises stress obtained after 6 iter-
ations of the adaptive loop, marking parameter γ = 0.2. The solution is obtained with
cubic hierarchical NURBS.

roof comprehensively but rather to provide an illustrative example of the implemented
framework with a complex geometrical model.

The roof is subjected to a body load F = (0, 0, −2 · 103)>, resulting in the displacement
field is depicted in Figure 6.12c, where k = 5 hierarchical-refinement levels are used to
increase the resolution around the pillars and trimming curves. A close-up of the solution
in the vicinity of a trimming curve for a coarse uniform tensor-product mesh and a locally-
refined mesh is depicted in Figure 6.13. This example motivates the use of local refinement
to selectively resolve the small-scale features of the problem (the pillars). It is also shown
how all relevant information needed to impose boundary conditions can be taken directly
from the CAD model in the spirit of a complete design-through-analysis workflow.



6.4. Numerical Examples 85

103 104 105 106

10−2

10−1

100

101

102

Number of DOFs

D
isp

la
ce

m
en

t
Er

ro
r

(1
−

u
h z

u
z
)%

local refinement
uniform tensor-product
refinement

(a) Error in the z-displacement under the point
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(b) Error measured in the energy norm.

Figure 6.11: Convergence of the error in displacement and energy obtained with cubic
hierarchical NURBS and marking parameter γ = 3.

x
y

z

(a) B-Rep model (b) Aerial photo (source: Wikipedia)

(c) Displacement magnitude.

Figure 6.12: Rolex Learning Center example. The geometric model, the actual building,
and the numerical solution of the roof subject to its self-weight. The solution is obtained
using cubic hierarchical NURBS with k = 5 refinement levels.

https://en.wikipedia.org/wiki/Rolex_Learning_Center
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(a) Displacement plot on a coarse mesh. (b) Displacement plot on a locally-refined mesh.

(c) Displacement plot on a coarse mesh (loga-
rithmic scale).

(d) Displacement plot on a locally-refined mesh
(logarithmic scale).

Figure 6.13: Rolex Learning Center example. Zoom on the solution in the proximity of a
trimming curve. Weak boundary conditions and geometric features are efficiently resolved
by local refinement.



Chapter 7

Reactions on trimmed locally-refined
meshes

The finite element method is classically based on nodal Lagrange basis functions defined
on conforming meshes. In this context, total reaction forces are commonly computed
from the so-called “nodal forces”, yielding higher accuracy and convergence rates than
reactions obtained from the differentiated primal solution (“direct” method).

The finite cell method (FCM) was introduced in the previous chapter as a direct approach
to numerical simulation of trimmed geometries. However, body-unfitted meshes preclude
the use of classic nodal reaction algorithms.

This chapter shows that the direct method can perform particularly poorly for immersed
methods. Instead, conservative reactions can be obtained from equilibrium expressions
given by the weak problem formulation, yielding the superior accuracy and convergence
rates typical of nodal reactions.

This approach is also extended to basis functions not based on the concept of nodes, such
as the (truncated) hierarchical B-splines introduced in Chapters 2 and 3.

7.1 Introduction
In many practical applications, the goal of finite-element analyses is to approximate spe-
cific physical quantities of interest. These data are often derived from the primal solution,
such as in the case of total reaction forces or fluxes. Such quantities are often the most
relevant data in engineering design and analysis.

The evaluation of fluxes and forces derived from the primal finite-element solution has
been investigated for conforming meshes in several literature contributions. For example,
in Akira [1986]; Barrett and Elliott [1987]; Brezzi et al. [2001]; Carey [1982]; Carey et al.
[1985]; Gresho et al. [1987]; Hughes et al. [1987]; Hughes [2000]; Hughes et al. [2000];
Oshima et al. [1998] the flux is obtained through a modified variational problem with an
additional auxiliary field corresponding to the normal flux over the Dirichlet boundary.
Such an approach amounts to a mere post-processing step, and the resulting flux will



88 7. Reactions on trimmed locally-refined meshes

fulfill equilibrium in a global or local sense. This technique, referred to as conservative
or consistent, is proven in the above references to be more accurate and achieve higher
convergence orders than the “direct” approach of differentiating the primal solution. In
Melbø and Kvamsdal [2003], reactions on mesh boundaries (subject to strong boundary
conditions) are obtained for the Stokes flow through a variational interpretation similar
to the one discussed in this work. In van Brummelen et al. [2011], similar formulas for the
reactions on (conforming) mesh boundaries are studied, focusing on coupled problems.
In the mentioned publications, the reactions are computed on Dirichlet-boundaries of
meshes conforming to the computational domain. In Bazilevs and Hughes [2007], this
approach is extended to computing reactions on (conforming) mesh boundaries subject to
weak boundary conditions. In Bazilevs et al. [2012]; Kamensky et al. [2017]; Kamensky
[2016]; Wu et al. [2017], consistent forces on immersed boundaries are considered on the
fluid–structure coupling interface based on an augmented Lagrangian formulation.

In this work, the conservative reactions are reviewed for conforming meshes subject to
strong boundary conditions. This approach is then extended to non-conforming trimmed
meshes, where the boundary of the geometry does not match the element boundaries. In
particular, the total reaction flux is computed on boundaries subject to weak boundary
conditions, such as the penalty [Babuška, 1973] and the symmetric Nitsche’s [Nitsche,
1971] methods. The computation of the total fluxes for conforming meshes is viewed as
testing a variational form with specific test functions, serving as “extraction functions”
in the framework of Babuška and Miller [1984]. Namely, the reactions are obtained by
the expression of equilibrium given by the weak form, yielding a total flux in global
equilibrium with the other fluxes and data of the problem. Reactions are observed to
converge with rates two times higher than the energy-norm error for Nitsche’s method
on a trimmed two-dimensional benchmark with a smooth solution. This phenomenon
is often referred to as superconvergence [Babuška and Miller, 1984; Hughes et al., 2000;
Szabó and Babuška, 2011; Wahlbin, 1995]. The same convergence rates are obtained for
the penalty method, provided that the penalization parameter is suitably scaled.

Moreover, it is shown how this approach can be generalized to bases that do not form a
partition of unity and are not based on the concept of “node”. For example, this approach
is valid for hierarchical B-splines.

The structure of the chapter is as follows. Section 7.2 motivates the conservative approach
in computing the reactions. A three-dimensional trimmed example with a complex geom-
etry defined by a Standard Triangle Language (STL) file is considered, showing that the
direct method can perform particularly poorly for immersed meshes, as the weak bound-
ary conditions indirectly constrain also the gradient of the solution. Section 7.7 explains
how the standard way to compute the reactions can be interpreted as testing a variational
form with specific test functions. This point of view serves as a basis to compute conser-
vative reactions on trimmed bases not forming a partition of unity in Sections 7.8 and 7.9.
In Section 7.10, it is shown that the method is superconvergent and approximates with
higher accuracy the total flux in a smooth two-dimensional problem for both penalty and
Nitsche’s methods. In Section 7.11, the method is shown to give consistent results for
both penalty and Nitsche’s methods in the considered three-dimensional trimmed exam-
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(a) Outer surface. (b) Internal structure.

(c) STL file describing the geometry. (d) Non-conforming computational mesh.

Figure 7.1: Portion of façade element [Mungenast, 2017b].

ple. Finally, Section 7.12 shows how this approach can be applied to compute reaction
tractions for isogeometric analysis of trimmed Kirchhoff-Love shells.

7.2 Motivation

Consider the portion of façade element [Mungenast, 2017b] shown in Figure 7.1a. Its
design takes advantage of the production freedom offered by additive manufacturing tech-
nologies to combine the aesthetics of wavy surfaces with functionalities such as insulation,
ventilation, load transfer, and shading (cf. Mungenast [2017a,b]). These functionalities
lead to a geometry featuring a complex internal structure and detailed external surfaces
(cf. Figure 7.1b). The geometry is described by a fine STL file (courtesy of Dr. Moritz
Mungenast), as displayed in Figure 7.1c. Note that the STL file does not define a compu-
tational geometry directly suitable for traditional methods based on conforming meshes.

The objective is to compute the total heat flux across the structure induced by a temper-
ature difference on two opposite faces. The following Laplace’s equation and boundary
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(a) Boundary conditions: u =
0 on the blue surface (Γ0) and
u = 1 on the red surface (Γ1).

(b) Temperature. (c) Heat-flux magnitude on the
cross-section.

Figure 7.2: Boundary conditions and solution example for the façade element.

conditions serve as a model problem

−∇ · (κ∇u) = 0 in Ω, (7.1)
u = 0 on Γ0, (7.2)
u = 1 on Γ1, (7.3)

κ∇u · n = 0 on ∂Ω \ (Γ0 ∪ Γ1). (7.4)

Here, Ω ⊂ R3 denotes the domain defined by the façade element, Γ0 ⊂ ∂Ω, and Γ1 ⊂ ∂Ω,
Γ0 ∩ Γ1 = ∅, denote the left and right boundaries highlighted in Figure 7.2a, κ ∈ R3×3

denotes the conductivity tensor, and n the outward unit boundary normal. Following the
finite cell approach introduced in the previous chapter, a finite element simulation model
is constructed without the need to build a conforming mesh, a potentially time-consuming
step in the total simulation pipeline [Cottrell et al., 2009; Hughes et al., 2005]. The geome-
try Ω is immersed in a larger rectangular cuboid Ωfict that can be straightforwardly meshed
by a Cartesian element grid. Figure 7.1d shows an example of elements intersecting the
physical domain Ω. Since the boundaries Γ0 and Γ1, in general, do not coincide with a
subset of element faces, but they are immersed in the elements, a strong imposition of the
temperature boundary conditions would significantly deteriorate the accuracy. Instead,
these boundary conditions are imposed weakly (cf., e.g., Ruess et al. [2013]; Schillinger
et al. [2012c]), as explained in detail in Section 7.5. Figures 7.2b and 7.2c show the tem-
perature and heat flux obtained with B-spline basis functions of order p = 2 and κ being
the identity matrix. The boundary conditions are applied using Nitsche’s method with
stabilization parameter γ = 10(p + 1)2/h (cf. Equation (7.17) and Antolin et al. [2019];
Johansson et al. [2019]), where h denotes the mesh size, as explained in Section 7.5.
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A question now arises about the way to accurately compute the total flux from the
trimmed finite element solution. Once a numerical solution uh for the problem of Equa-
tions (7.1)–(7.4) is obtained, the conventional way for conforming finite elements with
Lagrange shape functions and subject to strong boundary conditions can be summarized
as in Table 7.1. It is not clear how the conventional procedure can be used for trimmed

Let η(Γ0) be the set of nodes on Γ0.

1. For each node A ∈ η(Γ0) associated with the nodal shape function NA,
compute the internal nodal flux

qA =
∫
Ω

∇NA ·
(
κ∇uh

)
dΩ,

and the external nodal flux

qe
A =

∫
Ω

NAf dΩ +
∫
Γh

NAh dΓ.

2. The reaction r on Γ0 is obtained by summing the nodal fluxes of
all nodes located on Γ0, minus the known external fluxes

r =
∑

A ∈ η(Γ0)

qA − qe
A.

Table 7.1: The traditional algorithm for computing the reactions on conforming meshes
of nodal partition-of-unity finite elements [Bathe, 2007; De Borst et al., 2012; Hughes,
2000; Hughes et al., 2000; Kohnke, 2009; Siemens PLM Software Inc, 2014].

meshes with non-nodal shape functions, as there are no nodes and the boundary is im-
mersed in the element domains.

Since the numerical solution uh defines a numerical flux κ∇uh for every spatial location
x ∈ Ω (uh is assumed to be at least continuous), it is, in particular, possible to integrate
numerically κ∇uh · n over Γ1. However, total fluxes computed in this way can have poor
accuracy. Figure 7.3a shows that different total fluxes are obtained for Nitsche’s method
with stabilization parameter γ = 10(p + 1)2/h (cf. Equation (7.17) and Antolin et al.
[2019]; Johansson et al. [2019]) and the penalty method with penalization parameter β =
102/hp (cf. Equation (7.15)), where h denotes the mesh size, as explained in Section 7.5.
Although the two methods yield different total fluxes, Figure 7.3b shows that the internal
energy converges to the same value.

Moreover, if the numerical flux is integrated over Γ0 and Γ1, the obtained values are
similar but not in perfect equilibrium. Such a difference is displayed in Figure 7.3c, where
the relative error between the two fluxes is computed as

e(qh
0 , qh

1 ) =
∣∣∣∣1 − qh

0
−qh

1

∣∣∣∣ , (7.5)
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Figure 7.3: Flux across the Dirichlet boundary Γ1, internal energy, and equilibrium for a
sequence of bisected meshes.

where qh
0 and qh

1 represent the integrated flux κ∇uh · n defined by the numerical solution
uh over Γ0 and Γ1, respectively. Namely,

qh
i =

∫
Γi

κ∇uh · n dΓ, i ∈ {0, 1}. (7.6)

This example indicates that integrating the numerical flux does not use all information
contained in the finite element solution. Indeed, the underlying variational principle finds
a solution that fulfills equilibrium in a global and local (element) sense [Bathe, 2007;
Hughes et al., 2000]. Therefore, this information is contained in the solution, and the
remaining of the chapter is devoted to the development of a strategy to accurately extract
it.

This chapter lays out an explanation for computing the total flux and reaction forces
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based on equilibrium considerations, generalizing the traditional approach to
• non-nodal shape functions that do not necessarily form a partition of unity,
• trimmed meshes.

Moreover, the proposed approach seems robust concerning the different methods for im-
posing the weak boundary conditions, in the sense that penalty and Nitsche’s methods
will converge to the same total-flux value.

7.3 The strong form of the model problem
Let Ω ⊂ RD be a bounded Lipschitz domain with disjoint Dirichlet and Neumann bound-
aries Γg, Γh, respectively, such that Γg ∪ Γh = ∂Ω, Γg ∩ Γh = ∅. The strong form of the
heat conduction problem reads

−∇ · (κ ∇u) = f in Ω, (7.7)
u = g on Γg, (7.8)

κ ∇u · n = h on Γh, (7.9)

where κ ∈ RD×D is the thermal-conductivity tensor, h : Γh → R is the prescribed flux,
g : Γg → R is the prescribed temperature, f : Ω → R is the volumetric heat supply, and
n ∈ RD is the vector normal to the boundary.

7.4 The weak form for strong boundary conditions
Given the set of trial functions Sg,Γg(Ω) and the test space W0,Γg(Ω),

Sg,Γg(Ω) = {u ∈ H1(Ω) | u = g on Γg}, (7.10)
W0,Γg(Ω) = {w ∈ H1(Ω) | w = 0 on Γg}, (7.11)

the weak form of the problem reads

find u ∈ Sg,Γg(Ω)
such that a(w, u) = l(w) ∀w ∈ W0,Γg(Ω). (W)

Here, a(w, u) and l(w) denote the classic bilinear and linear forms

a(w, u) = (∇w, κ∇u)Ω, (7.12)
l(w) = (w, f)Ω + (w, h)Γh

, (7.13)

7.4.1 The Galerkin form
Problem (W) can be rewritten with homogeneous Dirichlet boundary conditions by lifting
g to Ω. In particular, let gΩ ∈ H1(Ω) be such that gΩ|Γg

= g. Then, u0 = u − gΩ belongs
to W0,Γg(Ω) and Problem (W) can be stated as

find u0 ∈ W0,Γg(Ω)
such that a(w, u0) = l(w) − a(w, gΩ) ∀w ∈ W0,Γg(Ω).
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The Galerkin form of Problem (W) with a finite-dimensional subspace Wh
0,Γg

(Ω) ⊂
W0,Γg(Ω) and an approximation gh to gΩ reads

find uh ∈ Wh
0,Γg

(Ω) ⊂ W0,Γg(Ω),
such that a(wh, uh) = l(wh) − a(wh, gh), ∀wh ∈ Wh

0,Γg
(Ω). (G)

7.5 The weak form for weak boundary conditions
In case the temperature boundary conditions are applied weakly, these are not incorpo-
rated in the solution and test spaces. Instead, an additional term aw(·, ·) associated with
the energy of the constraint violation is added as follows

find u ∈ H1(Ω)
such that a(w, u) + aw(w, u) = l(w) ∀w ∈ H1(Ω). (w)

The term aw(w, u) can assume different forms depending on the weak-boundary approach.
For the penalty method [Babuška, 1973] with a penalty parameter β ∈ R, aw(w, u) =
aβ(w, u) will be defined as

aβ(w, u) = (w, β(u − g))Γg̃ . (7.14)

Typically, when using finite-element shape functions of polynomial order p, β is a mesh-
dependent parameter scaled with hp to retain the expected convergence rates [Utku and
Carey, 1982]

β = β̄
1
hp

, (7.15)

where β̄ ∈ R is a user-specified parameter, often dependent on the material parameters.

For the symmetric Nitsche’s method [Nitsche, 1971] with stabilization parameter γ ∈ R,
aw(w, u) = aγ(w, u) is defined as

aγ(w, u) = −(κ∇w · n, u − g)Γg − (w, κ∇u · n)Γg + (w, γ(u − g̃))Γg . (7.16)

In this work, γ is scaled as in the original publication Nitsche [1971]

γ = γ̄
1
h

. (7.17)

For immersed methods, better estimates for γ can be obtained by solving a global or
element-local generalized eigenvalue problem (cf., e.g., de Prenter et al. [2018]; Griebel
and Schweitzer [2003]). Similar estimates through generalized eigenvalue problems are also
employed for variationally-consistent patch coupling (cf., e.g., Apostolatos et al. [2014];
Embar et al. [2010]; Hansbo [2005]; Harari and Grosu [2015]; Hu et al. [2018]; Jiang et al.
[2015]; Nguyena et al. [2013]; Ruess et al. [2014]).
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7.6 The trimmed-domain Galerkin form
Following Section 6.1, the trimmed Galerkin form is defined through a simple domain Ωfict

containing the physical domain Ω ⊂ Ωfict and a finite-dimensional subspace Wh(Ωfict) ⊂
H1(Ωfict). The trimmed Galerkin form of Problem (w) can be formulated as

find uh ∈ Wh(Ω),
such that a(wh, uh) + aw(wh, uh) = l(wh), ∀wh ∈ Wh(Ω)., (g)

where

Wh(Ω) = span
{

wh
∣∣
Ω : wh ∈ Wh(Ωfict)

}
. (7.18)

7.7 Conservative reactions to strong boundary con-
ditions

In this section, the traditional way to compute the reactions is interpreted as testing
a weak problem with specific test functions. This point of view will allow generalizing
the computation of the reactions to trimmed domains and to bases that do not form a
partition of unity. This interpretation is inspired by Brezzi et al. [2001]; Hughes et al.
[2000] and similar to the argumentation therein. However, in this work, the focus is on
obtaining the (integrated) total reaction flux instead of a “pointwise” approximation of
the normal flux by a function defined on the boundary.

A conservative way to compute the reactions can be derived by considering a problem
compatible with the mixed problem in Equations (7.7)–(7.9). Namely, other than the
temperature boundary condition u = g on Γg, the compatible reaction flux r is assumed
to exist and is prescribed on Γg. The flux r is such that the condition u = g is retained on
Γg. The remaining data of the problem κ, f , and h are unchanged. For elastic problems,
this corresponds to prescribing the forces that would enforce the displacement conditions.

In particular, let us consider the following boundary-value problem with compatible con-
ditions on Γg

−∇ · (κ ∇u) = f in Ω, (7.19)
u = g on Γg, (7.20)

κ ∇u · n = r on Γg, (7.21)
κ ∇u · n = h on Γh. (7.22)

For simplicity, the data κ, f , r, g, h, and the boundary ∂Ω are assumed to be “smooth
enough” for the following manipulations to hold. Given a solution u∗ ∈ H2(Ω) for the
mixed problem of Equations (7.7)–(7.9), it will also be a solution for the problem of Equa-
tions (7.19)–(7.22) with r = (κ ∇u∗ · n)|Γg

. Indeed, u∗ satisfies Equations (7.19), (7.20),
and (7.22), as they are the same as Equations (7.7)–(7.9). Moreover, Equation (7.21) is
trivially satisfied by the definition r = (κ ∇u∗ · n)|Γg

.
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Following standard variational arguments, one can formulate a weak form by multiplying
Equation (7.19) by a test function w belonging to a test space chosen to be W = H1(Ω)
and integrating over Ω. This yields the following weak form

find u ∈ Sg,Γg(Ω),
such that a(w, u) = l(w) + (w, r)Γg , ∀w ∈ W = H1(Ω). (R)

Note that the test space consists of the whole H1(Ω) function space, not requiring the
test functions to be zero on any part of the boundary. In particular, the boundedness
of Ω ensures that the constant w = 1 belongs to the test space W = H1(Ω). Testing
Problem (R) with w = 1 assures global equilibrium

0 =
∫
Ω

f dx +
∫
Γh

h dx +
∫
Γg

r dx. (7.23)

A solution u∗ ∈ H2(Ω) for the original weak Problem (W) will also solve the strong form
in Equations (7.19)–(7.22) and the compatible Problem (R).

Moreover, since W0,Γg(Ω) is a closed subspace of H1(Ω), then H1(Ω) admits the direct-sum
representation [Rudin, 1991; Salsa, 2016]

H1(Ω) = W0,Γg(Ω) ⊕ W0,Γg(Ω)⊥.

Namely, each w ∈ H1(Ω) admits a (unique) representation w0 + wg, with w0 ∈ W0,Γg(Ω)
and wg ∈ W0,Γg(Ω)⊥. Following Bazilevs and Hughes [2007]; Hughes [2000]; Hughes et al.
[2000], the arbitrarity of w0 + wg = w ∈ H1(Ω) in Problem (R) implies the arbitrarity of
w0 and wg, allowing to reformulate the problem as

find u ∈ Sg,Γg(Ω)
such that a(w0, u) = l(w0), ∀w0 ∈ W0,Γg(Ω), and (7.24)

a(wg, u) = l(wg) + (wg, r)Γg , ∀wg ∈ W0,Γg(Ω)⊥. (7.25)

Equation (7.24) is precisely the original variational form for strong boundary conditions
in Problem (W). Therefore, if the compatible weak Problem (R) has a solution, this will
also be the solution of the original Problem (W). Assuming the latter problem to have a
unique solution in Sg,Γg(Ω), this will identify the solution to the former problem.

Consequently, given an appropriate reaction flux r that makes the variational form in
Problem (R) compatible with the original weak form in Problem (W), the conventional
way to compute the reactions for conforming meshes can be interpreted as testing the
variational form in Problem (R) with appropriate test functions. The total flux computed
in this way will naturally satisfy the equilibrium expression given by the variational form.
Specifically,

1. given a solution u∗ ∈ Sg,Γg(Ω) for the original weak Problem (W),
2. assume that there exists an r ∈ L2(Γg) such that the variational form in Problem (R)

holds for u = u∗.
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3. Then, the unknown total flux
∫

Γg
r dΓ is obtained by testing the compatible varia-

tional form in Problem (R) with a function wg ∈ H1 such that wg|Γg
= 1.

4. The obtained total flux
∫

Γg
r dΓ will be in global equilibrium with the other fluxes,

as the compatible variational form in Problem (R) also holds for w = 1 ∈ H1,
yielding the global equilibrium in the sense of Equation (7.23).

Indeed, inserting wg in Problem (R) yields∫
Γg

r dΓ = (wg, r)Γg

= a(wg, u∗) − l(wg), (7.26)

where the term a(wg, u∗) − l(wg) can be evaluated for known wg and u∗.

The test function wg defines the linear functional Rwg(u) associated with the reactions
and defined as

Rwg(u) = a(wg, u) − l(wg). (7.27)

Note that such a functional is defined not only when r ∈ L2(Γg), but it is continuous for
any u ∈ H1(Ω), and l belongs to H1(Ω)∗, the dual space of H1(Ω).

Similarly, the reactions on multiple disjoint Dirichlet boundaries {Γi
g}i=1...nb

, such that

Γg =
nb⋃

i=1

Γi
g, (7.28)

can be computed by means of test functions wi
g such that wi

g

∣∣
Γi

g
= 1, wi

g

∣∣
Γj

g
= 0 for i 6= j.

7.7.1 Reactions for the Galerkin form
Employing the classical nodal finite element method (cf., e.g., Bathe [2007]; Hughes [2000];
Hughes et al. [2000]; Strang [1973]), the space Wh

0,Γg
(Ω) in the Galerkin Problem (G) is

commonly based on a discretization that partitions Ω into a finite number of elements
{Ωe}e=1..ne

Ω =
ne⋃

e=1

Ωe.

Following Hughes [2000]; Hughes et al. [2000], let η = {1, 2, . . . , nd} be the set of indices
of the associated nodes N = {xA}A∈η ⊂ Ω and ηg = {A : xA ∈ Γg} ⊂ η be the
subset containing indices of nodes lying on Γg. Given the linear-independent nodal shape
functions {NA}A∈η, where NA is associated with node xA, the space spanned by {NA}A∈η

admits the direct-sum decomposition

span{NA}A∈η = span{NA}A∈η\ηg︸ ︷︷ ︸
Wh

0,Γg
(Ω)

⊕ span{NA}A∈ηg . (7.29)
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The functions {NA}A∈η\ηg are a basis for the space Wh
0,Γg

(Ω), while {NA}A∈ηg are com-
monly used to define gh

gh =
∑
A∈ηg

gh
ANA. (7.30)

The discrete linear system of equations takes the form

Kd = F , (7.31)

where

KAB = a(NA, NB), A, B ∈ η,

FA = l(NA), A ∈ η.

Equation (7.31) can be partitioned into the blocks associated with the nodes identified
by η \ ηg and ηg[

K00 K0g

K>
0g Kgg

][
d0

dg

]
=
[

F 0

F g

]
,

where

[K00]AB = a(NA, NB), A, B ∈ η \ ηg,

[K0g]AB = a(NA, NB), A ∈ η \ ηg, B ∈ ηg,

[Kgg]AB = a(NA, NB), A, B ∈ ηg.

The upper blocks yield the traditional problem for d0 with strong boundary conditions
corresponding to Problem (G)

K00d0 = F 0 − K0gdg. (7.32)

The lower blocks correspond to the nodal forces associated with the reactions.

The computation of the reactions viewed as testing the variational form as in Equa-
tion (7.26), corresponds in the discrete case to testing the Galerkin form in Problem (G)
with a wh

g ∈ span{NA}A∈ηg such that wh
g

∣∣
Γg

= 1. For the discrete matrix system of
equations, this corresponds to a left-multiplication by a coefficient vector representing the
coordinates of wh

g in the basis {NA}A∈ηg . In the case of the considered nodal partition-of-
unity basis {NA}, this takes the form[

0...0 1...1
]{[K00 K0g

K>
0g Kgg

][
d0

dg

]
−

[
F 0

F g

]}
=
[
0...0 1...1

] [0
r

]
, (7.33)

where the top block vanishes, as d0 solves Equation (7.32), and r represents the nodal
reactions. Similarly, given a boundary portion Γ0 ⊂ Γg, if it is possible to construct a
test function wh

g,0 ∈ span{NA}A∈ηg such that wh
g,0
∣∣
Γ0

= 1 and wh
g,0
∣∣
Γg\Γ0

= 0, then the
reaction can be obtained by multiplication with a vector composed of the coordinates
wh

g,0 in the basis {NA}A∈ηg . This corresponds to the traditional algorithm in Table 7.1, as
summarized in Table 7.2.
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Continuous (Equation (7.26)) a(wg, u) − l(wg)

Discrete (Equation (7.33))
[
0...0 1...1

]
K00 K0g

K>
0g Kgg

d0

dg

−

F 0

F g


Algorithm (Table 7.1)

∑
A∈ηg

∫
Ω

∇NA ·
(
κ∇uh

)
− NAf dΩ −

∫
Γh

NAh dΓ

Table 7.2: Traditional algorithm to compute the reactions viewed as testing the weak and
Galerkin form with a specific test function.

7.8 Conservative reactions for trimmed meshes
Interpreting the total reaction as testing the weak form with specific test functions serves
as a basis to obtain total conservative reactions on trimmed meshes. In the case of weak
boundary conditions, the test space in Problem (w) naturally consists of the whole H1(Ω),
containing elements w such that w|Γg

= 1. Therefore, it is not necessary to consider a
compatible problem including the reactions. Instead, motivated by the principle of virtual
work in Problem (w), the weak boundary condition term represents the normal flux action
on the test functions with trace on Γg. In particular, given a wg ∈ H1 such that wg|Γg

= 1,
the total flux can be computed by evaluating either side of

a(wg, u) − l(wg) = −aw(wg, u). (7.34)

Note that the total flux computed as in Equation (7.34) is in the form of the extraction
expressions studied in Babuška and Miller [1984]. For the Nitsche’s method in Equa-
tion (7.16), this is further supported by the fact that it is variationally consistent. Namely,
assuming enough regularity, integrating by parts, and using the arbitrarity of the test func-
tions, the original strong form in Equations (7.7)–(7.9) is recovered. Therefore, a weak
solution u∗ ∈ H2 for Problem (w), with the weak boundary-condition term as in Equa-
tion (7.16), will also solve both the compatible strong form in Equations (7.19)–(7.22)
with r = (κ ∇u∗ · n)|Γg

and the associated weak form in Problem (R). The reactions can
be computed as in Equation (7.26).

For the penalty method [Babuška, 1973], the weak form in Problem (w), with the weak
boundary-condition term as in Equation (7.14), corresponds to the following perturbed
strong form

−∇ · (κ ∇u) = f in Ω, (7.35)
κ ∇u · n + β(u − g) = 0 on Γg, (7.36)

κ ∇u · n = h on Γh. (7.37)

From Equation (7.36), it follows that (1, κ ∇u · n)Γg = −(1, β(u − g))Γg = −aβ(wg, u) =
a(wg, u) − l(wg) is a natural approximation to the flux on Γg.
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Given the shape functions {NA}, let η̃(Γ0) = {A : NA|Γ0
6= 0} be the set of indices

of shape functions with non-zero trace on Γ0. It is assumed NA|Γg\Γ0
= 0 ∀A ∈ η̃(Γ0).

1. For each A ∈ η̃(Γ0), compute the discrete fluxes

qA =
∫
Ω

∇NA ·
(
κ∇uh

)
dΩ, qe

A =
∫
Ω

NAf dΩ −
∫
Γh

NAh dΓ.

2. The reaction r on Γ0 is obtained by summing the fluxes of
shape functions with non-zero trace on Γ0

r =
∑

A ∈ η̃(Γ0)

qA − qe
A.

Table 7.3: Algorithm for computing the reactions on trimmed meshes with partition-of-
unity shape functions.

7.8.1 Reactions for the Galerkin form

In order to compute the total flux on a disjoint portion of the boundary Γ0 ⊂ Γg for
partition-of-unity bases on trimmed domains, one strategy can be to define a function
wh ∈ Wh(Ω) that is one in a neighborhood of Γ0, and has zero trace on Γg \ Γ0. In
particular, the function wh, such that wh

∣∣
Ωe

= 1 for each element Ωe cut by Γ0, will also
be such that wh

∣∣
Γ0

= 1, even for a complex boundary Γ0 that cannot be interpolated
exactly by the shape functions.

Algorithmically, the only necessary modification to the procedure in Table 7.1 is to sum
the fluxes qA associated with functions NA with non-zero trace on Γ0 and zero trace on
Γg \ Γ0. An example is shown in Figure 7.4, where standard reactions on nodal linear
shape functions are visually compared to the trimmed-mesh reactions with linear and
quadratic B-splines shape functions (cf. Hughes et al. [2005]). Note that in Figure 7.4c
the first two columns of control points are needed to compute the reactions, as these are
the linear functions with support on the constrained boundary. In Figure 7.4d the first
three columns of control points have to be considered for computing the reaction, as the
basis functions’ support grows with the order. This procedure can be summarized as in
Table 7.3.

7.9 Conservative reactions for bases not forming a
partition of unity

Equations (7.26) and (7.34) are already in a general form, suitable for bases that do not
form a partition of unity. Using the same ideas as in Section 7.8, the strategy is to define
a test function wh that is one on each cut element. With the reasonable assumption that
the basis functions {NA} can represent constants, let cA ∈ R be the coefficient associated
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Γg

g = 0
Γh

h = y

x

y 1

1

(a) Geometry description. (b) Strong boundary conditions,
linear elements.

(c) Nitsche’s method, linear el-
ements, stabilization parameter
γ = 100.

(d) Nitsche’s method, quadratic
B-splines, stabilization parameter
γ = 100.

Figure 7.4: Solution field, mesh, and reactions for trimmed meshes. The reactions are
depicted as red arrows in the x-direction located at the control points.

with the shape function NA, such that∑
A

cANA = 1 on Ω. (7.38)

The computation of the reactions can be summarized as in Table 7.4, where the sum in
Table 7.3 is generalized to a weighted sum of fluxes associated with basis functions with
non-zero trace on Γ0. Note that for partition-of-unity bases, it holds cA = 1 for any A.
In this case, the procedure in Table 7.4 is the same as the one in Table 7.3.

7.9.1 Reactions for hierarchical B-splines
For hierarchical B-splines, the coefficients {cA} can be obtained by projecting onto the
hierarchical mesh the coefficients representing the function one on the base level. Since
the standard B-splines form a partition of unity [Piegl and Tiller, 1995], the base-level
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Given the shape functions {NA}, let η̃(Γ0) = {A | NA|Γ0
6= 0} be the set of indices

of shape functions with non-zero trace on Γ0. It is assumed NA|Γg\Γ0
= 0 ∀A ∈ η̃(Γ0).

Let {cA} ⊂ R be the coordinates of 1 in the basis {NA}, as in Equation (7.38).

1. For each A ∈ η̃(Γ0), compute the discrete fluxes

qA =
∫
Ω

∇NA ·
(
κ∇uh

)
dΩ, qe

A =
∫
Ω

NAf dΩ −
∫
Γh

NAh dΓ

2. The reaction r on Γ0 is obtained by a weighted sum of fluxes associated with
shape functions with non-zero trace on Γ0

r =
∑

A ∈ η̃(Γ0)

cA (qA − qe
A).

Table 7.4: Algorithm for computing the reactions on trimmed meshes. The basis functions
do not need to form a partition of unity.

coefficients are all equal to one. Let ce be the vector of coefficients {cA} associated with
functions with support on the element Ωe, then ce can be obtained as follows

ce = Ce1, (7.39)

where 1 is a vector of ones and Ce is the element hierarchical extraction operator (see
Chapter 4 and Lorenzo et al. [2017]; Scott et al. [2014]). Algorithmically, this projection
can be performed as described in Chapter 5. See Figure 7.5a for an example of values for
the coefficients {CA}.

7.9.2 Reactions for integrated Legendre polynomials
The basis functions used in the p-version of the finite element method do not form a
partition of unity. Given an order p, such univariate basis is defined in the interval [−1, 1]
as [Szabó and Babuška, 1991]

ξ̂1(r) = 1
2 (1 + r) (7.40)

ξ̂2(r) = 1
2 (1 − r) (7.41)

ξ̂i(r) = Pi−1(r) i = 2, 3, . . . , p + 1, (7.42)

where ξ̂1(r) and ξ̂2(r) are the classical linear shape functions, while Pi−1 is defined by an
integral expression of the Legendre polynomials Li

Pi(r) =
√

2i − 1
2

r∫
−1

Li−1(t) dt = 1√
4i − 2

(Li(r) − Li−2(r)) i = 2, 3, . . . .
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(a) Coefficients for a hierarchical B-spline basis.

1 1

0

0

(b) Coefficients for the integrated-
Legendre basis [Szabó and
Babuška, 1991] of order p = 3.

Figure 7.5: Example of coefficients (circled numbers) for computing the reactions with
bases that do not form a partition of unity.

Since the linear shape functions form a partition of unity ξ̂1 + ξ̂2 = 1 on [−1, 1], the re-
maining high-order functions ξ̂i, i ≥ 3, will have a zero coefficient. See Figure 7.5b for an
example. Similarly, for a basis obtained by the tensor product of the univariate basis in
Equations (7.40)–(7.42), the coefficients will be the tensor product of the univariate coef-
ficients. Namely, the linear shape functions will have coefficient one, while the remaining
high-order functions will have a zero coefficient. This section agrees with the extraction
of nodal forces presented in Babuška and Miller [1984]; Szabó and Babuška [2011].

7.10 2D benchmark
In this section, a smooth problem involving a flux induced by a temperature difference
on a curved geometry is considered. In two dimensions, a simple benchmark can be
formulated on a quarter of annulus Ω with inner and outer radii r1 and r2, respectively
(cf. Figure 7.6a). In particular, let us consider

−∇ · (κ ∇u) = 0 in Ω =
{

x ∈ (0, r2)2 : r1 < ‖x‖ < r2
}

,

u = 2 ln (r1) on Γ0 = {x ∈ ∂Ω : ‖x‖ = r1},

u = 2 ln (r2) on Γ1 = {x ∈ ∂Ω : ‖x‖ = r2},

κ ∇u · n = 0 on ∂Ω \ (Γ0 ∪ Γ1),

where κ is the identity matrix. The analytical solution of the problem is the harmonic
function (cf. Figures 7.6b and 7.6c)

u = 2 ln ‖x‖.

Note that the data of the problem do not specify any external flux. The global equilibrium
only assures that the flux across the Dirichlet boundary Γ0 balances the flux across Γ1.
However, such total flux cannot be obtained directly from the source term or the boundary
conditions.
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The domain Ω is immersed in a Cartesian mesh of the bounding box Ωfict = (0, r2)2.
One mesh example is shown in Figure 7.6d, along with the reparameterized integration-
domains used to resolve the discontinuity in the integrands, as explained in Kudela et al.
[2015, 2016]. The problem is solved with both Nitsche’s and penalty methods, as in
Equations (7.14) and (7.16), with parameters β̄ = 102 (cf. Equation (7.15)) and γ̄ =
10(p + 1)2 (cf. Equation (7.17)), similarly to Antolin et al. [2019]; Johansson et al. [2019].
The immersed analysis is compared to the solution obtained by a conforming NURBS
mesh with similar element size h and strong Dirichlet boundary conditions.

The energy error of the numerical solution uh is computed with respect to the bilinear
form a(·, ·) of the original problem without weak boundary conditions. In particular, the
error

e(uh) =
√

1
2 a(u − uh, u − uh) (7.43)

for the conforming mesh is shown in Figure 7.7a to have a similar convergence behavior
for both Nitsche’s and penalty methods. The conservative fluxes qc

0, qc
1 are computed

on the boundaries Γ0 and Γ1 according to Table 7.3. The direct fluxes are numerically
integrated as follows

qh
i =

∫
Γi

κ∇uh · n dΓ, i ∈ {0, 1}. (7.44)

Figures 7.7c and 7.7d show the relative flux error

ei(q) =

∣∣∣∣∣∣∣1 − q∫
Γi

κ∇u · n dΓ

∣∣∣∣∣∣∣ . (7.45)

for both the direct fluxes ei(qh) (dashed lines) and for the conservative ones ei(qc) (solid
lines). Note that the conservative reactions yield more accurate results than the direct
approach and show an apparent convergence to the analytical total flux. Nitsche’s method
yields convergence rates that are two times higher than the strain-energy error rates,
similarly to those obtained with the conforming mesh (cf. Figures 7.7b and 7.7d). This
phenomenon is often referred to as superconvergence [Babuška and Miller, 1984; Hughes
et al., 2000; Szabó and Babuška, 2011; Wahlbin, 1995]. These rates of convergence are
not attained by the penalty method, as shown in Figure 7.7c. Indeed, the penalty method
accurately computes the reactions of a perturbed problem, and the penalty parameter is
scaled with hp. Instead, if the penalty parameter is scaled as β = β̄/h2p, the same rates
of convergence as the conforming mesh and Nitsche’s method are attained, as shown in
Figure 7.8a.

The equilibrium error

e(q0, q1) =
∣∣∣∣1 − q0

−q1

∣∣∣∣ (7.46)
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Ωfict

Γg2

Γg1

r1

r2

x

y

r1 = 1
4

r2 = 1

(a) Geometry description. (b) Analytical solution u.

(c) x-component u,x of the
analytical flux.

(d) Example of computa-
tional mesh. The diago-
nal lines show the integra-
tion domains [Kudela et al.,
2015].

Figure 7.6: 2D benchmark. Geometry, analytical solution, and mesh example.

is shown in Figure 7.8b for both direct fluxes e(qh
0 , qh

1 ) (dashed lines) and conservative
fluxes e(qc

0, qc
1) (solid lines). Note that the conservative fluxes are in equilibrium up to

small numerical inaccuracies that grow as the condition number with order O(h−2). The
direct-flux equilibrium error is several orders of magnitude higher than the one for the
conservative fluxes.

7.11 Façade element
The conservative reactions applied to the model problem for the façade element introduced
in Section 7.2 yield a total flux converging to the same value for both Nitsche’s and
penalty methods. This behavior does not seem to hold for the direct approach: compare
Figures 7.9a and 7.9b to Figures 7.3a and 7.3c.
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Figure 7.7: 2D benchmark. Energy error and flux errors for direct fluxes (dashed lines)
and conservative fluxes (solid lines).

7.12 Trimmed Kirchhoff-Love shell example
The presented reaction computation can be extended to the weak form of the Kirchhoff-
Love shell problem with weak boundary conditions introduced in Section 6.2.

In the following, the parameter β̄ in Equations (6.12) and (6.13) is chosen as β̄ = 103,
since in Herrema et al. [2019] this value is shown to be suitable for various examples in
the context of multi-patch penalty coupling.

Following the reasoning of the previous sections, the ith reaction component, ri, cor-
responding to the traction on Γg is computed by testing the variational form with a
test function wg,i ∈ H2 such that wg,i

i

∣∣
Γg

= 1, wg,i
j

∣∣
Γg

= 0 for j 6= i and such that
(Φ(wg,i) · n)|Γθ

= 0. In particular, given a known displacement field u∗ ∈ H2, the ith
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Figure 7.8: 2D benchmark. Equilibrium error and improved convergence in the flux error
obtained by the penalty method.

component of the total reaction can be computed by evaluating either side of the following
equation

a(wg,i, u∗) − l(wg,i) = −bdisp(wg,i, u∗). (7.47)

The same strategy as in Sections 7.8 and 7.9 can be applied to the present case to evaluate
the reactions on trimmed geometries with bases that do not form a partition of unity. The
global equilibrium is confirmed in the example shown in Figure 7.10a. The edges of the
circular hole on the left (blue curves) are clamped, while a traction t = (0, 0, 1)> is applied
on the straight boundary marked in Figure 7.10a (red arrows).

The geometry is described by a B-spline patch stored in a STandard for the Exchange of
Product model data (STEP) file format [ISO 10303-11:1994, 1994]. A (trimmed) compu-
tational mesh is obtained for numerical analysis by k-refinement on the geometric patch,
as described in Cottrell et al. [2009]; Hughes et al. [2005]. The STEP file also contains
the trimming curves in the parametric space of the B-spline patch, allowing to define
accurate shell integration rules following Kudela et al. [2015], as explained in Coradello
et al. [2020b]; Rank et al. [2011].

The problem is solved with an initial (trimmed) B-spline patch of uniform degree p = 3.
The elements intersecting the physical domain Ω are shown in Figure 7.10a. Figure 7.10b
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Figure 7.9: Façade element example. Total flux and equilibrium error for the direct fluxes
(dashed lines) and conservative fluxes (solid lines).

shows the displacement magnitude on the deformed geometry. The problem is also
solved with hierarchical B-splines with several refinement levels. The elements cut by the
clamped boundary are recursively refined up to a refinement level l. Additionally, some
elements totally outside the physical domain are refined to ensure that the finest-level hi-
erarchical functions are activated, as explained in Coradello et al. [2020a]. Specifically, for
each cut-element Ωe marked for refinement, it is also marked for refinement each element
Ω̃e ∈ Ωfict \ Ω contained in the support of basis functions of element Ωe. See Coradello
et al. [2020a] for details. A graded mesh is obtained by enforcing a mesh-admissibility
class equal to one [Bracco et al., 2019; Buffa and Giannelli, 2016]. Namely, each element
can have active basis functions belonging to at most two consecutive levels. Details can
be found in Bracco et al. [2019]; Buffa and Giannelli [2016]; Carraturo et al. [2019]. Fig-
ure 7.10c shows the mesh obtained after l = 5 recursive refinements, along with the von
Mises stress around the clamped hole.

The basis functions having non-zero trace on the clamped edge belong to the hierarchical-
refinement levels l and l − 1. These functions do not form a partition of unity, and the
reaction tractions are computed as described in Section 7.9.1. The mesh and discrete
reactions for l ∈ {0, 2, 5} are shown in Figures 7.10e–7.10g. Figure 7.10d shows the
relative equilibrium error of the reaction traction r on the clamped edge with the applied
external traction t computed as follows

e(r, t) = ‖r − t‖2

‖t‖2
. (7.48)
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t = (0, 0, 1)>

(a) Initial mesh, and boundary condi-
tions: clamped edges (blue curves) and dis-
tributed traction (red arrows).

(b) Displacement magnitude.

(c) Von Mises stress around clamped hole.
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Figure 7.10: Trimmed Kirchhoff-Love shell example.
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Chapter 8

Matrix-free approach to
locally-refined finite cell analyses

Chapter 5 introduced some algorithms to extract the (truncated) hierarchical B-splines
and project the DOFs during mesh refinement and coarsening. In this chapter, these algo-
rithms are combined to multiply a vector by the finite element system matrix, formulating
a matrix-free framework combining

• local refinement,
• trimming through the finite cell method, and
• sum factorization.

8.1 Introduction
In the context of solving a linear system of equations Kx = f , the term “matrix-free”
refers to an iterative solution procedure accessing matrix K only through matrix-vector
products Kv for different search directions v. The product Kv is computed implicitly
without storing matrix K explicitly. This approach becomes of particular advantage,
or even necessary, for large systems whose explicit storage is too expensive in memory
requirements.

Consider, for example, the conjugate-gradient iterative solver given in Algorithm 8.1. The
only use of matrix K is to compute the matrix-vector products Kx0 and Kpj. Therefore,
if it is possible to obtain Kv without storing K in memory, its storage can be spared
altogether.

In finite element analysis, the system matrix K is generally obtained by assembling indi-
vidual element matrices Ke

K =
∑

e

(Ae)>Ke Ae, (8.1)

where Ae are zero-one assembly matrices that map global degrees of freedom to element-
local degrees of freedom. Equation (8.1) allows to compute the matrix-vector product
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Algorithm 8.1: Conjugate gradient algorithm to solve Kx = f starting from an
initial solution guess x0 [Saad, 2003].
1 r0 = f − Kx0
2 p0 = r0
3 j = 0
4 Loop
5 αj = (rj ,rj)

(Kpj ,pj)

6 xj+1 = xj + αjpj

7 rj+1 = rj − αjKpj

8 if rj+1 is sufficiently small then
9 exit loop

10 end
11 βj = (rj+1,rj+1)

(rj ,rj)
12 pj+1 = rj+1 + βjpj

13 j = j + 1
14 End Loop

Kv (without explicitly storing K) as

Kv =
∑

e

(Ae)>Ke Aev

=
∑

e

(Ae)>Ke ve, (8.2)

where ve = Aev. Storing all element matrices Ke usually is not a beneficial solution, as it
would require more memory than an explicit sparse representation of K. The disadvan-
tage is particularly pronounced for isogeometric analysis and high-continuity approaches,
as the location maps of neighboring elements present significant overlaps. Alternatively,
the element matrices Ke could be recomputed on the fly. However, this can result in very
high run-time. A further expansion of Equation (8.2) in terms of the quadrature of Ke

allows for a more efficient hybrid approach, as shown in the next section.

8.2 Sum factorization
The element matrix Ke is typically obtained by numerical integration, i.e., as a weighted
sum

Ke ≈
nq∑

q=1

Ke(ξq) wq

over the integration points ξq and weights wq. In the remaining of this chapter, the
superscript e is dropped to favor readability.

Assuming that
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Assumption 1 the integration points ξq have a tensor-product structure, and
Assumption 2 the shape functions have a tensor-product structure,
typical finite-element matrices will exhibit a specific structure that can be leveraged to ob-
tain efficient algorithms. These assumptions will be formally defined later in this section.
A strategy using these properties was first introduced with the name of sum factoriza-
tion for spectral finite elements in Orszag [1980]. Successively, this approach was applied
to high-order C0 finite elements (see, e.g., Melenk et al. [2001]) and isogeometric anal-
ysis (see, e.g., Antolin et al. [2015]). In this work, an element-by-element assembly is
considered, favoring standard finite element implementations. Higher efficiency can be
achieved when sum factorization is combined with weighted quadrature for the whole el-
ement patch, as presented in Calabrò et al. [2019]; Calabrò et al. [2017]; Hiemstra et al.
[2019]; Sangalli and Tani [2018]. However, weighted quadrature for trimming and local
refinement is still an active area of research.

The sum factorization is first exemplified in a matrix form for the mass matrix, following
closely Sangalli and Tani [2018] and their notation. Consider the element parameter
space Ω̂ = [0, 1]D. Given a parametric direction d ∈ {1, ..., D}, the dnf univariate element
basis functions are denoted by dN̂i(ξ), i = 0...dnf − 1. For a multi-index i = (i1, ..., iD),
Assumption 2 means that element basis functions N̂i(ξ) at ξ = (ξ1, ..., ξD)> admit the
decomposition

N̂i(ξ) = 1N̂i1(ξ1) ... DN̂iD
(ξD).

Assumption 1 means that the integration points are arranged in a Cartesian grid. Namely,
given the dnq univariate locations dξq, q = 0...dnq − 1, the full set of integration points
can be written as

ξq = (1ξq1 , ..., DξqD
)>. (8.3)

In the following, the multi-index i will be often identified by the scalar index i according
to the usual tensor-product order

i = i1 + 1nf (i2 + 2nf (...iD−1 + D−1nf iD)).

Following the isoparametric paradigm, the element domain Ω is obtained from a mapping
F

Ω = F (Ω̂), with F =
∑

i

N̂i P i,

for some control points P i. The global basis functions are therefore defined as

Ni = N̂i ◦ F −1.

The Galerkin mass matrix M is defined as

Mij =
∫
Ω

ρ(x) Ni(x) Nj(x) dx (8.4)

=
∫
Ω̂

g(ξ) N̂i(ξ) N̂j(ξ) dξ (8.5)
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Algorithm 8.2: Mass matrix-vector multiplication (element-local version of the
algorithm presented in Sangalli and Tani [2018]).

Input: dB ∈ Rdnq×dnf , d = 1 . . . D
G ∈ Rnq×nq

v ∈ Rnf

Output: r = M̃v =
(

DB> ⊗ ... ⊗ 1B>)G
(

DB ⊗ ... ⊗ 1B
)

v.
1 w1 =

(
DB ⊗ ... ⊗ 1B

)
v // using Algorithm 5.7 or 5.8

2 w2 = Gw1 // straightforward, as G is diagonal

3 r =
(

DB> ⊗ ... ⊗ 1B>)w2 // using Algorithm 5.7 or 5.8

where ρ(x) is the material density, g(ξ) = det(J) ρ(x(ξ)), and J is the Jacobian of F .
Numerical integration over the quadrature points ξq and weights wq, q = 1...nq, yields

Mij ≈ M̃ij =
nq∑

q=1

g(ξq) N̂i(ξq) N̂j(ξq) wq. (8.6)

The tensor structure of the quadrature is best shown in matrix form. Consider the matrix
B, Bqj = N̂j(ξq), and the diagonal matrix G, Gqq = g(ξq)wq. Equation (8.6) can be
formulated as

M̃ = B>GB. (8.7)

When both Assumption 1 and Assumption 2 are fulfilled, the tensor structure is trans-
ferred to B, giving

B =
(

DB> ⊗ ... ⊗ 1B>) , (8.8)

where dBqj = dN̂j(dξq) and dξq, q = 1...dnq are the integration points in the dth parametric
direction. Therefore, Equation (8.7) becomes

M̃ =
(

DB> ⊗ ... ⊗ 1B>)G
(

DB ⊗ ... ⊗ 1B
)

. (8.9)

This structure reveals that the multiplication M̃v can be performed through Algo-
rithms 5.7 and 5.8 introduced in Section 5.4.1, as outlined in Algorithm 8.2. The number
of multiplications in Algorithm 8.2 when using n̂f basis functions and n̂q integration points
in each parametric direction can be verified to be

2
(
n̂qn̂

D
f + n̂2

qn̂
D−1
f + ... + n̂D

q n̂f

)
+ n̂D

q . (8.10)

When n̂f 6= n̂q, the cost can be written as

2n̂f n̂q

n̂D
f − n̂D

q

n̂f − n̂q

+ n̂D
q . (8.11)
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8.3 Sum factorization for local refinement
Unfortunately, Assumption 2 is generally not satisfied when using local refinement. For
some bases, each function can be written as a product of univariate functions. For exam-
ple, this fact holds for hierarchical B-splines (see Section 3.3) or the multi-level hp-basis
presented in Zander [2017]; Zander et al. [2016, 2015, 2017]. However, the element basis is
not a full tensor-product of univariate functions. For some other bases, even single basis
functions are not a product of univariate functions. See, e.g., the truncated hierarchical
B-splines introduced in Section 3.4. In both cases, Equation (8.7) cannot be written as
Equation (8.9), inhibiting the use of Algorithm 8.2.

The multi-level extraction operator introduced in Chapter 4 relates the (global or element-
local) locally-refined basis to a reference space with standard basis functions that can be
chosen to form a full tensor product. In this case, after a vector v is transformed to the
reference space, the sum factorization can be applied precisely as before. Afterward, the
result has to be transformed back to the space spanned by the locally-refined basis.

In particular, recalling relations Equations (4.8) and (4.9), the element extraction operator
C can map some reference basis functions {sj(ξ)}j=1..ns (as the Bernstein polynomials) to
the locally-refined hierarchical basis {hj(ξ)}j=1..nh

. Similarly, its transpose can translate
the coefficients with respect to the basis {hj(ξ)} to the coefficients with respect to the
basis {sj(ξ)}. Let S and H be the matrices composed of standard and locally-refined
functions collocated at the integration points, respectively. Specifically, let Sqj = sj(ξq)
and Hqj = hj(ξq). Operator C relates H and S as follows

H = S C>. (8.12)

Assuming Assumption 1 and Assumption 2 hold for the standard functions {sj(ξ)} and
integration points {ξq}, S admits the following tensor decomposition analogous to Equa-
tion (8.8)

S =
(

DS> ⊗ ... ⊗ 1S>) . (8.13)

The multiplication M̃v can be written as

M̃v = H>GHv

= CS>GSC>v

= C
(

DS> ⊗ ... ⊗ 1S>)G
(

DS ⊗ ... ⊗ 1S
)

C>v. (8.14)

Equation (8.14) can be evaluated exploiting the tensor product, as shown in Algorithm 8.3
for (truncated) hierarchical B-splines. The transformation from Bernstein polynomials
dS to B-splines dN can be done in each parametric direction separately (dN = dE dS,
d = 1...D). The cost for n̂s basis functions and n̂q integration points in each parametric
direction reads (see Equation (8.10), Algorithms 5.10 and 5.13)

2(nl − 1)Dn̂D+1
s + Dn2

snq + 2
(
n̂qn̂

D
s + n̂2

qn̂
D−1
s + ... + n̂D

q n̂s

)
+ n̂D

q , (8.15)

where nl is the number of refinement levels having at least one active function.
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Algorithm 8.3: Mass matrix-vector multiplication for locally refined bases, accord-
ing to Equation (8.14).

1 w1 = C>v // using Algorithm 5.13

2 w2 =
(

DS ⊗ ... ⊗ 1S
)

w1 // using Algorithm 5.7 or 5.8
3 w3 = Gw2 // straightforward, as G is diagonal

4 w4 =
(

DS> ⊗ ... ⊗ 1S>)w3 // using Algorithm 5.7 or 5.8
5 r = Cw4 // using Algorithm 5.10

8.4 Sum factorization for trimmed meshes
As introduced in Section 6.1, accurate computations on trimmed meshes require non-
standard integration rules for cut elements (see., e.g., Abedian et al. [2013a]; Breiten-
berger et al. [2015]; Hubrich et al. [2017]; Joulaian et al. [2016]; Kudela et al. [2015, 2016];
Marussig and Hughes [2018]; Müller et al. [2013]; Parvizian et al. [2007]; Rank et al.
[2012]). See Marussig and Hughes [2018] for an extensive review. Many of these ap-
proaches define quadrature rules based on locations that are not arranged in a Cartesian
grid, violating Assumption 1 and precluding the tensor structure in Equation (8.9). Ex-
amples of these integration rules are adaptive quadratures based on quadtrees or octrees
(see, e.g., Parvizian et al. [2007]; Rank et al. [2012]), and boundary-conforming integration
subdomain methods (see, e.g., Breitenberger et al. [2015]; Kudela et al. [2015, 2016]).

8.4.1 Moment fitting
The moment fitting equations can be used to define quadrature rules with locations ar-
ranged in a Cartesian grid [Müller et al., 2013].

In particular, given the integrands {f̂j}j=1...m, the moment fitting approach aims at con-
structing a quadrature rule over a domain Ω̂ with n integration points {ξi}i=1...n and
weights {wi}i=1...n. The approach is based on the moment fitting equations

n∑
i

f̂j(ξi) wi =
∫
Ω̂

f̂j(ξ) dξ, j = 1...m. (8.16)

In matrix notation, Equation (8.16) reads


f̂1(ξ1) f̂1(ξ2) ... f̂1(ξn)
f̂2(ξ1) f̂2(ξ2) ... f̂2(ξn)

... ... ...
f̂m(ξ1) f̂m(ξ2) ... f̂m(ξn)




w1

w2
...

wn

 =



∫̂
Ω

f̂1(ξ) dξ∫̂
Ω

f̂2(ξ) dξ

...∫̂
Ω

f̂m(ξ) dξ


. (8.17)
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It is possible to solve Equation (8.17) for both {ξi}i=1...n and weights {wi}i=1...n, resulting
in a non-linear problem. In this work, the integration points {ξi}i=1...n are fixed at the
locations of the standard Gauss-Legendre quadrature rule, as in Hubrich et al. [2017];
Joulaian et al. [2016], yielding a linear problem for the unknown weights {wi}i=1...n. For
polynomial integrands, a smart choice for the functions {f̂j}j=1...m is the Lagrange poly-
nomials with nodes at the integration points {ξi}i=1...n with m = n [Hubrich and Düster,
2019]. In particular, let the points {ξi}, with multi-index i = (i1, ..., iD), 1 ≤ id ≤ dnq,
be the Cartesian product of the univariate integration points {dξi}i=1...dnq

in the para-
metric directions d = 1...D. The univariate Lagrange polynomials {d`j(ξ)}j=1...dnq

in each
parametric direction d are defined on the nodes {dξi}i=1...dnq

as

d`j(ξ) =
dnq∏
i=1
i 6=j

ξ − dξi

dξj − dξi

. (8.18)

The integrands are defined as the tensor product Lagrange polynomials

f̂j(ξ) = `j(ξ) = 1`j1(ξ1)...D`jD
(ξD). (8.19)

The interpolation property of the chosen basis

`j(ξi) =
{

1 if i = j,

0 otherwise,

makes the matrix in Equation (8.17) the identity, yielding the direct solution


w1

w2
...

wn

 =



∫̂
Ω

`1(ξ) dξ∫̂
Ω

`2(ξ) dξ

...∫̂
Ω

`n(ξ) dξ


. (8.20)

The integrals on the right-hand side of Equation (8.20) can be computed through surface
integrals [Hubrich et al., 2017; Joulaian et al., 2016; Müller et al., 2013] or any volumetric
quadrature rule defined on locations not necessarily following a Cartesian structure. Note
that the drawback of this approach is that to integrate functions of order 2p (as the
entries of a mass matrix), 2p+1 integration points per parametric directions are necessary
(instead of the p + 1 points needed by the standard Gaussian quadrature). Moreover, the
quadrature weights do not form a tensor product.

8.4.2 Trimmed moment fitting
According to the introduction to trimmed analyses of Section 6.1, the physical geometry
Ω is immersed into a fictitious domain Ωfict, Ω ⊂ Ωfict, typically of a topology that is



118 8. Matrix-free approach to locally-refined finite cell analyses

trivial to mesh (e.g., the smallest bounding box containing the physical domain Ω, or the
shape of an untrimmed patch coming from a computer-aided design (CAD) file). The
finite element mesh is defined on Ωfict, and each element domain can contain parts of Ωfict

and Ω. Given the (discontinuous) domain-indicator function α(x) : Ωfict → [0, 1]

α(x) =
{

1 if x ∈ Ω,

0 otherwise,

integrals over the physical geometry Ω can be expressed as integrals over Ωfict∫
Ω

f(x) dx =
∫

Ωfict

α(x)f(x) dx, (8.21)

for a suitable integrand f : Ωfict → R. The moment-fitting approach can be applied to
define quadrature rules on Ωfict to compute integrals over Ω. In particular, given the
geometric mapping F , such that Ωfict = F (Ω̂fict), integration rules can be obtained by
solving the system


f̂1(ξ1) f̂1(ξ2) ... f̂1(ξn)
f̂2(ξ1) f̂2(ξ2) ... f̂2(ξn)

... ... ...
f̂m(ξ1) f̂m(ξ2) ... f̂m(ξn)




w1

w2
...

wn

 =



∫
Ω̂fict

α̂(ξ)f̂1(ξ) dξ∫
Ω̂fict

α̂(ξ)f̂2(ξ) dξ

...∫
Ω̂fict

α̂(ξ)f̂m(ξ) dξ


, (8.22)

for some integration points {ξi}i=1...n ⊂ Ω̂fict and weights {wi}i=1...n. Here, α̂ and f̂
denote α ◦ F , f ◦ F , respectively. Note that the integration points are distributed in the
parametric fictitious domain.

The mass matrix entries are defined as

Mij =
∫
Ω

ρ(x) Ni(x) Nj(x) dx,

=
∫

Ωfict

α(x) ρ(x) Ni(x) Nj(x) dx.

=
∫

Ω̂fict

gα(ξ) N̂i(ξ) N̂j(ξ) dξ. (8.23)

The coefficient function gα(ξ) now includes the domain indicator function gα(ξ) =
α̂(ξ)ρ̂(ξ) det(J), where J is the Jacobian of F and ρ̂ = ρ ◦ F .

Given the polynomial orders {pd}d=1...D of the basis functions {dN̂i}d=1...D, the moment
fitting equations in Equation (8.22) can be solved to accurately integrate the mass matrix
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with n = m = (2p1 + 1)...(2pD + 1) through the Lagrange polynomials, as explained in
the previous section.

The resulting moment-fitting weights wq can be used to integrate the mass matrix in the
form given by Equation (8.9), where the diagonal matrix G, Gqq = ρ̂(ξq) det(J)wq, does
not include α, as this information is condensed in the moment-fitting weights wq.

8.5 Stiffness matrix (heat conduction)
In the previous sections, the evaluation of the matrix-vector product Mv was exemplified
for the mass matrix M . In this section, the multiplication by heat-conduction stiffness
matrices is discussed following Sangalli and Tani [2018]. Classical elastostatics can be
treated similarly, as described in Antolin et al. [2015]; Hiemstra et al. [2019].

Given a conductivity law κ, the Galerkin stiffness matrix K ∈ Rnf ×nf for heat conduction
can be written in the following form [Sangalli and Tani, 2018]

Kij =
∫
Ω

∇Ni(x)>κ(x)∇Nj(x) dx

=
∫
Ω̂

∇N̂i(ξ)>κ̂(ξ)∇N̂j(ξ) dξ

=
D∑

r=1

D∑
s=1

∫
Ω̂

∂N̂i(ξ)
∂ξr

κ̂rs(ξ) ∂N̂j(ξ)
∂ξs

dξ,

where κ̂(ξ) = J−>κ(x(ξ))J−1 det(J). The numerical quadrature over the integration
points {ξq}q=1...nq and weights {wq}q=1...nq can be written as follows

Kij ≈ K̃ij =
D∑

r=1

D∑
s=1

nq∑
q=1

∂N̂i(ξq)
∂ξr

κ̂rs(ξq)
∂N̂j(ξq)

∂ξs

wq,

resulting in the matrix form

K̃ =
D∑

r=1

D∑
s=1

B>
,rκ̂rsB,s.

The matrices B,s ∈ Rnq×nf and the diagonal matrix κ̂rs ∈ Rnq×nq are defined as

[B,s]qj = ∂N̂j

∂ξs

(ξq),

[κ̂rs]qq = κ̂rs(ξq) wq.
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Algorithm 8.4: Stiffness matrix-vector multiplication [Sangalli and Tani, 2018].
Input: dB,r ∈ Rdnq×dnf , d, r = 1 . . . D

κ̂rs ∈ Rnq×nq , r, s = 1 . . . D
v ∈ Rnf

Output: r = K̃v.
1 r = 0
2 for s=1,...,D do
3 w1 =

(
DB,s ⊗ ... ⊗ 1B,s

)
v

4 for r=1,...,D do
5 w2 = κ̂rs w1

6 w3 =
(

DB>
,r ⊗ ... ⊗ 1B>

,r

)
w2

7 r = r + w3
8 end
9 end

If Assumption 1 and Assumption 2 hold, the tensor structure is transferred to B,r, yielding

K̃ =
D∑

r=1

D∑
s=1

(
DB>

,r ⊗ ... ⊗ 1B>
,r

)
κ̂rs

(
DB,s ⊗ ... ⊗ 1B,s

)
=

D∑
r=1

(
DB>

,r ⊗ ... ⊗ 1B>
,r

) D∑
s=1

κ̂rs

(
DB,s ⊗ ... ⊗ 1B,s

)
, (8.24)

with

dB,r =
{

dB′ if r = d,
dB otherwise.

Here, dB is defined as in Equation (8.9), while dB′ is the matrix of derivatives dB′
qj =

dN̂ ′
j(dξq). According to Equation (8.24), the multiplication K̃v can be computed as

summarized in Algorithm 8.4. The cost for n̂f basis functions and n̂q integration points
in each parametric direction becomes

(D + D2)
(
n̂f n̂D

q + n̂2
f n̂D−1

q + ... + n̂D
f n̂q

)
+ D2n̂D

q .

This strategy can be used in combination with local refinement after transforming the
locally-refined basis to a reference tensor-product space. Moreover, it can be combined
with immersed methods based on a tensor-product integration rule, as explained in Sec-
tions 8.3 and 8.4. Note that often the element mesh for immersed methods is a regular
grid (see, e.g., Düster et al. [2017]; Parvizian et al. [2007]). In this case, the elements are
axis-aligned regular cuboids, making the Jacobian J a diagonal matrix. If the conductiv-
ity κ is also diagonal (or isotropic), then κ̂rs will be zero for r 6= s, and the two nested
loops in Algorithm 8.4 can be reduced to one single loop.
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8.5.1 Lagrange factorization
A further optimization introduced in Kronbichler and Kormann [2019] can be integrated
into Algorithm 8.4. In particular, let dL be such that

dB′ = dL dB.

This is possible as long as dnq ≥ dnf and dB has full column rank. For polynomial
bases, dL can be generated from the Lagrange polynomials d`j(ξ) (see Equation (8.18))
defined on the nodes given by the same integration points {dξq}q=1...dnq

used to evaluate
dBqj = dN̂j(dξq). In particular, dL can be chosen as

dLiq = d`′
i(dξq).

The multiplication by the stiffness matrix can be expanded as (see Equation (8.24))

K̃v =
D∑

r=1

(
DB>

,r ⊗ ... ⊗ 1B>
,r

) D∑
s=1

κ̂rs

(
DB,s ⊗ ... ⊗ 1B,s

)
v (8.25)

=
(

DB> ⊗ ... ⊗ 1B>){ . . .

D∑
r=1

(
DI>

,r ⊗ ... ⊗ 1I>
,r

) D∑
s=1

κ̂rs

(
DI ,s ⊗ ... ⊗ 1I ,s

)} (
DB ⊗ ... ⊗ 1B

)
v,

(8.26)

where

dI ,r =
{

dL if r = d,

I otherwise.

For example, for D = 2, isotropic conductivity, and diagonal Jacobian, Equation (8.26)
becomes

K̃ =
(2B′ ⊗ 1B

)>
κ̂11

(2B′ ⊗ 1B
)

+
(2B ⊗ 1B′)>

κ̂22
(2B ⊗ 1B′)

=
(2B ⊗ 1B

)> {
(2L ⊗ I

)>
κ̂11

(2L ⊗ I
)

. . .

+
(
I ⊗ 1L

)>
κ̂22

(
I ⊗ 1L

)
}
(2B ⊗ 1B

)
.

Note that in multiplication
(

DI ,s ⊗ ... ⊗ 1I ,s

)
v, only the matrix in the parametric direc-

tion s is different from the identity matrix. Therefore, if all parametric directions have
the same number n̂q of quadrature points, the cost of this operation is n̂D+1

q . The cost of
Algorithms 8.4 and 8.5 is summarized in Table 8.1, assuming the same number of quadra-
ture points n̂q and basis functions n̂f is used in each parametric direction. Under this
assumption, it is worth using Equation (8.26) in three dimensions when

1 > φ(n̂q, n̂f ) = cost [Algorithm 8.5]
cost [Algorithm 8.4]

=
2n̂3

f + 2n̂2
f n̂q + 2n̂f n̂2

q + 12n̂3
q + 9n̂2

q

12n̂3
f + 12n̂2

f n̂q + 12n̂f n̂2
q + 9n̂2

q

.
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Algorithm 8.5: Stiffness matrix-vector multiplication with Lagrange factorization.
Input: dB,r ∈ Rdnq×dnf , d, r = 1 . . . D

dL ∈ Rdnq×dnq , d
κ̂rs ∈ Rnq×nq , r, s = 1 . . . D
v ∈ Rnf

Output: r = K̃v.
1 t = 0
2 w1 =

(
DB ⊗ ... ⊗ 1B

)
v // using Algorithm 5.7

3 for s=1,...,D do
4 w2 =

(
DI ,s ⊗ ... ⊗ 1I ,s

)
w1 // using Algorithm 5.7 in one direction

5 for r=1,...,D do
6 w3 = κ̂rs w2 // straightforward, as κ̂rs is diagonal

7 w4 =
(

DI>
,r ⊗ ... ⊗ 1I>

,r

)
w3 // using Algorithm 5.7 in one direction

8 t = t + w4
9 end

10 end
11 r =

(
DB> ⊗ ... ⊗ 1B>) t // using Algorithm 5.7

no. multiplications
cost[Algorithm 8.4] (D + D2)

(
n̂f n̂D

q + n̂2
f n̂D−1

q + ... + n̂D
f n̂q

)
+ D2n̂D

q

cost[Algorithm 8.5] 2
(
n̂f n̂D

q + n̂2
f n̂D−1

q + ... + n̂D
f n̂q

)
+ (D + D2)n̂D+1

q + D2n̂D
q

Table 8.1: Comparison between the number of floating-point multiplications for evaluating
Algorithms 8.4 and 8.5 assuming the same number of quadrature points n̂q and basis
functions n̂f is used in each parametric direction.

This condition holds when
n̂q

n̂f

<
1
18

(
5 + (5(646 + 27

√
489)) 1

3 + (5(646 − 27
√

489)) 1
3

)
≈ 1.64671, (8.27)

and for D = 3, n̂q = n̂f = p + 1, the number of multiplications will tend to be halved for
increasing p

φ = 2(p + 1) + 1
4(p + 1) + 1 → 1

2 , p → ∞. (8.28)

Note that Equation (8.27) shows that this factorization is not advantageous for three-
dimensional cut elements integrated with the linear moment fitting approach (see Sec-
tion 8.4), where normally n̂q = 2p + 1, n̂f = p + 1, giving n̂q/n̂f > 1.64671 for p > 1. This
approach is of advantage for untrimmed elements, where n̂q = n̂f = p + 1.

Further efficiency can be obtained for problems where the mass and stiffness matrices
are summed together. In this case, the Lagrange factorization allows factoring out the
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Algorithm 8.6: Stiffness matrix-vector multiplication with Lagrange factorization
for diagonal conductivity and Jacobians. MATLAB’s colon notation is used to indi-
cate sub-matrices [MATLAB, 2019].

Input: dB,r ∈ Rdnq×dnf , d, r = 1 . . . D
dL ∈ Rdnq×dnq , d
κ̂ss ∈ Rnq×nq , s = 1 . . . D
v ∈ Rnf

Output: r = K̃v.
1 t = 0
2 w1 =

(
DB ⊗ ... ⊗ 1B

)
v

3 nleft = 2nq
3nq . . . Dnq

4 nright = 1
5 for s = 1 . . . D do
6 for k = 0 . . . nleft-1 do
7 for j = 1 . . . nright do
8 start = k ns nright +j
9 end = start+nright (ni − 1)

10 ix = (start : nright : end)
11 t( ix, : )= t( ix, : )+iL> κ̂ss( ix, ix ) iL v( ix, : )
12 end
13 end
14 nleft = nleft / nmin{i+1,D}
15 nright = nright ni

16 end
17 r =

(
DB> ⊗ ... ⊗ 1B>) t

common terms
(

DB ⊗ ... ⊗ 1B
)
. Indeed, adding Equations (8.9) and (8.26) yields

K̃ + M̃ =
(

DB> ⊗ ... ⊗ 1B>){G + . . .

D∑
r=1

(
DI>

,r ⊗ ... ⊗ 1I>
,r

) D∑
s=1

κ̂rs

(
DI ,s ⊗ ... ⊗ 1I ,s

)} (
DB ⊗ ... ⊗ 1B

)
.

Note also that in the case of diagonal conductivity law κ and diagonal Jacobians, the two
loops in Algorithm 8.5 can be reduced to one single loop, as κ̂rs = 0 for r 6= s. For example,
see Algorithm 8.6, where the multiplications by

(
DI>

,s ⊗ ... ⊗ 1I>
,s

)
and

(
DI ,s ⊗ ... ⊗ 1I ,s

)
are performed simultaneously for each parametric direction.
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8.6 Enforcement of penalty boundary conditions
The application of displacement penalty boundary conditions adds to the system matrix
a term of the form (see Equation (7.14))

Tij =
∫
Γ

β Ni(x) Nj(x) dx, (8.29)

The costs can be reduced by combining the multiplication by the penalty term in Equa-
tion (8.29) and the multiplication by the stiffness matrix given in Equation (8.24). The
surface integrals in Equation (8.29) are of the form∫

Γ

f dx, (8.30)

where the integrand f : Ω → R, Γ ⊂ Ω ⊂ RD, is sufficiently smooth. Note that f is not
defined only on Γ, but also on a volume Ω in RD enclosing Γ. The moment fitting approach
introduced in Section 8.4 can be adapted to integrate this kind of surface integrals with
integration points distributed in the parameter space Ω̂ (with Ω = F (Ω̂) for some mapping
F ) [Müller et al., 2013]. In particular, given the fixed locations {ξi}i=1...n ⊂ Ω̂, xi = F (ξi),
the weights {wi}i=1...n are obtained by solving the system


f1(x1) f1(x2) ... f1(xn)
f2(x1) f2(x2) ... f2(xn)

... ... ...
fm(x1) fm(x2) ... fm(xn)




w1

w2
...

wn

 =



∫
Γ

f1 dΓ∫
Γ

f2 dΓ
...∫

Γ
fm dΓ


. (8.31)

For polynomial integrands, the weights can be computed directly as integrals of the La-
grange polynomials, as explained in Section 8.4.

This approach factorizes together terms of the element system matrices and boundary
conditions. Specifically, let {ξi}i=1...n ⊂ Ω̂ be a fixed set of integration points forming
a tensor product of the univariate integration points {dξq}q=1...dnq

in each parametric
direction d = 1...D. Moreover, let {wv

i }i=1...n be the weights obtained by solving Equa-
tion (8.17) with locations {ξi}i=1...n to compute the (volumetric) integrals in the element
system matrix, and let {ws

i }i=1...n be the weights obtained by solving Equation (8.31)
on the same locations {ξi}i=1...n to compute the (surface) integrals over Γ. Numerical
integration of Equation (8.29) can be written in matrix form as

T ≈ T̃ =
(

DB> ⊗ ... ⊗ 1B>)Gs
(

DB ⊗ ... ⊗ 1B
)

, (8.32)

where Gs is a diagonal matrix containing the surface integration weights, Gs
qq = βws

q,
and dBqj = dN̂j(dξq) is the usual collocated matrix, as defined in Equation (8.9). Equa-
tion (8.32) can be combined with Equation (8.26) to compute the element stiffness matrix
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including the penalty term

K̃ + T̃ =
(

DB> ⊗ ... ⊗ 1B>){Gs + . . .

D∑
r=1

(
DI>

,r ⊗ ... ⊗ 1I>
,r

) D∑
s=1

κ̂v
rs

(
DI ,s ⊗ ... ⊗ 1I ,s

)} (
DB ⊗ ... ⊗ 1B

)
,

(8.33)

where κ̂v
rs contains the volumetric weights {wv

q }i=q...n

[κ̂v
rs]qq = κ̂rs(ξq) wv

q . (8.34)

Note that using a quadrature rule defined in the volume Ω to compute the surface integrals
in Equation (8.31) allows writing K̃ and T̃ in terms of the same matrices dB, that can
be factored out in Equation (8.33). For problems involving mass and stiffness matrices,
the evaluated shape function dB can be factored out of the sum K̃ + M̃ + T̃ .

This approach can be used with hierarchically refined bases using the extraction operators
C and the tensor-product reference basis matrices S = DS ⊗ ...⊗ 1S (see Equations (8.8),
(8.12), and (8.14)). In this case, K̃ + T̃ takes the form

K̃ + T̃ = C
(

DS> ⊗ ... ⊗ 1S>){Gs + . . .

D∑
r=1

(
DI>

,r ⊗ ... ⊗ 1I>
,r

) D∑
s=1

κ̂v
rs

(
DI ,s ⊗ ... ⊗ 1I ,s

)} (
DS ⊗ ... ⊗ 1S

)
C>.

(8.35)

Equation (8.35) can be evaluated as in Algorithm 8.7.
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Algorithm 8.7: System matrix (stiffness and penalty term) matrix-vector multipli-
cation.
1 w1 = C>v // using Algorithm 5.13

2 w2 =
(

DS ⊗ ... ⊗ 1S
)

w1 // using Algorithm 5.7 or 5.8
3 w3 = Gsw2 // straightforward, as Gs is diagonal
4 for s=1,...,D do
5 w4 =

(
DI ,s ⊗ ... ⊗ 1I ,s

)
w2 // using Algorithm 5.7 in one direction

6 for r=1,...,D do
7 w5 = κ̂rs w4 // straightforward, as κ̂rs is diagonal

8 w6 =
(

DI>
,r ⊗ ... ⊗ 1I>

,r

)
w5 // using Algorithm 5.7 in one direction

9 w3 = w3 + w6
10 end
11 end
12 w7 =

(
DS> ⊗ ... ⊗ 1S>)w3 // using Algorithm 5.7 or 5.8

13 r = Cw7 // using Algorithm 5.10



Chapter 9

Conclusion

9.1 Summary of the research
This thesis aims to develop several technologies supporting the computational frame-
work composed of the finite cell method, isogeometric analysis, and hierarchical local
refinement. In particular, this work provides the contributions discussed in the following
subsections.

9.1.1 The multi-level Bézier extraction
It is presented a formulation that brings multi-level local refinement closer to traditional
finite element implementations.

In particular, the hierarchical basis functions are viewed as a linear combination of a set
of standard functions common to each element. These reference functions also define a
direct isoparametric geometric mapping from a reference parameter space to the element
domain. The only modification required in a standard finite element implementation
based on a common reference space is a linear transformation.

The multi-level Bézier extraction exhibits the same properties as the original Bézier ex-
traction. Therefore, this approach facilitates integrating hierarchical isogeometric local
refinement into existing classical implementations by offering the same advantages as the
original Bézier extraction. However, the software must be able to handle element matrices
of different sizes.

The approach is presented focusing on its application to (truncated) hierarchical B-splines
and NURBS. However, the method is valid for any sequence of nested spaces, and its
application to degree elevation is outlined.

9.1.2 Algorithms for the multi-level Bézier extraction
It is formulated an approach for (truncated) hierarchical B-splines in which

• the univariate extraction-operators are computed once for each parametric direction
and hierarchical level.
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• The following operations are formulated using only the univariate operators, without
explicitly constructing and storing the full tensor-product operator:

– extraction of functions,
– degree-of-freedom projection for refinement, and
– degree-of-freedom projection for coarsening (modified Bézier projection).

These operations are formulated by iterative algorithms through the refinement hierarchy,
exploiting the level tensor-product structure.

Algorithms for constructing the univariate multi-level extraction operators are formulated
based on standard knot-insertion techniques such as the Boehm and Oslo methods. Their
algorithmic complexity is studied and compared.

In the case of mesh coarsening, a leveraging of the tensor-product structure is achieved by
modifying the Bézier projection, where the product of rectangular operators is substituted
by the product of square Kronecker operators. The algorithmic complexity of the proposed
algorithms is studied, and the advantage over the explicit computation of the extraction
operator is estimated.

The proposed approach is compared with an explicit computation of the extraction op-
erator in both a linear transient and a nonlinear example. For cubic shape functions,
the extraction time is reduced by a factor of 13 and 10, respectively. The quartic basis
functions yield a reduction factor equal to 31.

9.1.3 Hierarchical local refinement of trimmed isogeometric fi-
nite cell analyses

Local refinement is classically used to efficiently resolve small-scale features. This work
additionally shows that the considered hierarchical refinement can be used to mitigate
FCM-specific difficulties such as

• the unphysical coupling between the sides of a thin hole and
• the overconstraining induced by weak boundary conditions.

The local refinement process defined by (truncated) hierarchical B-splines and NURBS
replaces basis functions having large support with functions having smaller support. This
effect allows removing the unphysical coupling of the numerical solution between two
disconnected sides of thin holes, which can occur in the analysis of trimmed geometries.

Moreover, a numerical example shows how local refinement enriches the solution space
in small regions following trimming curves immersed in the computational mesh. This
procedure can mitigate the over-constraining effects caused by trimming curves subject
to penalty boundary conditions.

The use of local refinement is demonstrated through various shell examples where the
trimmed geometry includes sharp features, kinks, and small-scale details. The geometries
are defined by files exported in the standard STEP format [ISO 10303-11:1994, 1994].
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These examples demonstrate that the proposed strategy for local refinement can favor
the direct analysis of B-Rep models, streamlining the design-through-analysis loop.

9.1.4 Reactions on trimmed locally-refined meshes
Locally-refined isogeometric finite cell analysis presents several differences compared to the
standard finite element method. In the context of reaction forces, the relevant differences
include:

• the isogeometric functions are not based on a “nodal” definition typical of the classic
Lagrange finite elements,

• the boundary is generally immersed in the computational mesh and is subject to
weak boundary conditions,

• the hierarchical B-splines do not form a partition of unity.

These differences make the classic methods for calculating the “nodal forces” inapplicable.

This thesis shows how the standard algorithm to compute the reactions can be interpreted
as testing a variational form with specific test functions. This view serves as a basis for
calculating the conservative reactions from solutions described by trimmed bases that
do not form a partition of unity and are not defined by “nodes”. It is shown that the
equilibrium information can be extracted from the finite element solution to obtain a total
reaction that balances the known forces. The proposed strategy is formulated in a general
framework and then applied to the finite cell method in combination with (truncated)
hierarchical B-splines and integrated Legendre (p-FEM) basis functions.

The approach is shown to be superconvergent and approximates with higher accuracy the
total flux in a smooth two-dimensional problem for both penalty and Nitsche boundary
conditions.

The applicability of the method is demonstrated on a trimmed linear Kirchhoff-Love shell
example and a three-dimensional linear heat-conduction problem, where the geometry is
defined by a detailed STL file with smooth wavy boundaries and several internal cavities.

9.1.5 Matrix-free approach to locally-refined finite cell analyses
The multi-level Bézier extraction algorithms are finally combined to formulate procedures
for multiplying a vector by the finite element system matrix. These procedures are used
to develop a framework suitable for matrix-free iterative solvers combining

• local refinement,
• trimming through the finite cell method, and
• sum factorization.

The sum factorization is enabled by using a tensor-product basis functions common to all
elements and using tensor-product quadrature rules for the finite cell method. The first
ingredient is offered naturally by the developed multi-level Bézier extraction.



130 9. Conclusion

The procedure is explained for the mass and stiffness matrices. A Lagrange factorization
reduces the cost of penalty boundary conditions.

Finally, the complexity of the proposed algorithms is studied in terms of the number of
floating-point multiplications.

9.2 Future research
The methods developed in this thesis were demonstrated through simple examples aiming
at providing a proof of concept. Further possible research directions include:

• The discussed local refinement is valid for any sequence of nested spaces. These
include discretizations composed of refined functions with lower continuity and of
higher order. A simple benchmark with varying continuity across the refinement
levels can be found in Kollmannsberger et al. [2020]. A similar study including
multiple polynomial orders could be performed on selected benchmarks including
singularities and stress concentrations.

• The multi-level Bézier extraction operator can enable pre-integration (see Yang
et al. [2012a,b]) for local refinement. Indeed, the developed approach attributes
to each element a common set of basis functions that can be pre-integrated. The
locally-refined element matrices can be obtained by extraction of the pre-integrated
matrices.

• The presented matrix-free framework focused only on the matrix-vector multiplica-
tion needed by iterative solvers. However, appropriate preconditioners are necessary
to reduce the number of iterations needed for convergence. One possible research di-
rection is to formulate matrix-free algorithms for the Schwarz-type preconditioners
developed in de Prenter et al. [2019a,b]; Jomo et al. [2019]. These preconditioners
have shown to be effective for large high-order finite cell analyses.

• The matrix-free algorithms should be tested on parallel distributed-memory systems
for large-scale examples. This investigation would further assess the benefit of the
approach for practical examples.
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Algorithms for the knot insertion
refinement operators

Algorithm A.1: Element Knot Insertion Operators (using Boehm’s method).
Input: p: spline degree

Ξ(1) = (ξ(1)
1 , . . . , ξ

(1)
m(1)): coarse knot vector

Ξ = (ξ1, . . . , ξm): new knots to be inserted
Output: ne: number of non-empty knot spans

Re = Re,(1,2), e = 1, . . . , ne : local element operators
Ξ(2) = (ξ(2)

1 , . . . , ξ
(2)
m(2)): fine knot vector

1 i = p + 1; k = p + 1; j = 0; e = 1
2 for k = 1 . . . p + 1 do
3 ξ

(2)
k = ξ

(1)
k

4 end
5 R1 = I;
6 while i < m(1) or j < m
7 nmv(e) = 0; om = 1
8 while i + 1 + om ≤ m(1) and ξ

(1)
i+1 == ξ

(1)
i+1+om do

9 om = om + 1
10 end
11 while j < m and ξj+1 ≤ ξ

(1)
i+1

12 nm = 0
13 while j+1+nm≤m and ξj+1 == ξj+1+nm do
14 nm = nm + 1
15 end
16 nmv(e) = nm

17 if ξj+1 == ξ
(1)
i+1 then

18 omv(e) = om
19 else
20 omv(e) = 0
21 end
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1

2

3 for r = 0, . . . , nm-1 do
4 Re+1 (p+1-omv(e),p+1-nm-omv(e)+r+1)=1
5 for l=0, . . . , -r+1 do
6 α = (ξ(1)

i+p+l - ξj+1)/(ξ(1)
i+p+l - ξ

(2)
k+l)

7 ind2=p+1+l+r-nm-omv(e)
8 Re+1(:,ind2)= α Re+1(:,ind2-1) + (1-α) Re+1(:,ind2)
9 end

10 for l=-r,. . . ,-p+1 do
11 α = (ξ(1)

i+p+l - ξj+1)/(ξ(1)
i+p+l - ξ

(2)
k+l);

12 ind2=p+1+l+r;
13 Re(:,ind2)= α Re(:,ind2-1) + (1-α) Re(:,ind2);
14 end
15 Re+1(1:p+1-omv(e),1:p+1-nm-omv(e))=
16 Re(1+omv(e):p+1,omv(e)+nm+1:p+1);
17 ξ

(2)
k+1 = ξj+1;

18 k=k+1;
19 j=j+1;
20 end
21 if omv(e) == 0 then
22 e = e+1;
23 nmv(e) = 0;
24 end
25 end
26 if i < m(1) then
27 for t=0 . . . om-1 do
28 ξ

(2)
k+1 = ξ

(1)
i+1

29 Re+1(p+1-t,p+1-t)= 1;
30 k = k + 1; i = i + 1;
31 end
32 omv(e)=om;
33 Re+1(1:p+1-omv(e),1:p+1-nmv(e)-omv(e))=
34 Re(1+omv(e):p+1,omv(e)+nmv(e)+1:p+1)
35 e = e+1
36 end
37 end
38 for f = e-1,. . . ,2 do
39 Rf−1(1+omv(f-1):p+1,2+nmv(f-1)+omv(f-1):p+1)=
40 Rf (1:p+1-omv(f-1),2:p+1-nmv(f-1)-omv(f-1))
41 end
42 ne = e − 1
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Parametric definition of the
elastoplastic perforated plate

The geometry of the numerical example given in Section 5.7.2 consists of a NURBS patch
defined by the open-knot vectors

xΞ = (−1, −1, −1, 0, 0, 1, 1, 1), (B.1)
yΞ = (−1, −1, 1, 1), (B.2)
zΞ = yΞ, (B.3)

and control points

P =



40 0 0 1
40 60(

√
2 − 1) 0 (1 + 1/

√
2)/2

100 − 60/
√

2 60/
√

2 0 1
100 − 60(

√
2 − 1) 60 0 (1 + 1/

√
2)/2

100 60 0 1
0 0 0 1
0 100 0 1
0 200 0 1
50 200 0 1
100 200 0 1
40 0 10 1
40 60(

√
2 − 1) 10 (1 + 1/

√
2)/2

100 − 60/
√

2 60/
√

2 10 1
100 − 60(

√
2 − 1) 60 10 (1 + 1/

√
2)/2

100 60 10 1
0 0 10 1
0 100 10 1
0 200 10 1
50 200 10 1
100 200 10 1



. (B.4)
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