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Abstract—Spiking neural networks offer the potential to
drastically reduce energy consumption in edge devices. Un-
fortunately they are overshadowed by today’s common analog
neural networks, whose superior backpropagation-based learning
algorithms frequently demonstrate superhuman performance on
different tasks. The best accuracies in spiking networks are
achieved by training analog networks and converting them. Still,
during runtime many simulation time steps are needed until
they converge. To improve the simulation time we evaluate two
inference optimization algorithms and propose an additional
method for error minimization. We assess them on Residual
Networks of different sizes, up to ResNet101. The combination
of all three is evaluated on a large scale with a RetinaNet on
the COCO dataset. Our experiments show that all optimization
algorithms combined can speed up the inference process by a
factor of ten. Additionally, the accuracy loss between the original
and the converted network is less than half a percent, which is
the lowest on a complex dataset reported to date.

Index Terms—spiking neural networks, conversion, object
detection, residual networks, neuromorphic computing

I. INTRODUCTION

Neural networks find their way into a growing number of ap-
plications with restricted power budgets. Their computational
advantage has been demonstrated in many areas. Ranging
from sensor data processing in edge devices to artificial
intelligence (AI)-backed decision processes of autonomous
vehicles, the networks have to evaluate large amounts of data
and consume as little energy as possible. A further reduction
of the consumed energy can result in longer battery life times
of edge devices or an increased range of electrical vehicles.

To reduce the overall energy consumption of the networks,
current research directions are twofold: developing new net-
work architectures and optimizing the hardware running the
network itself. A third direction, which gained traction in the
recent past, is the utilization of biologically inspired neurons to
realize the networks. Instead of continuous-valued activation
functions, these neurons communicate via short all-or-nothing
pulses and leverage time as the main information carrier.
This has shown to provide a superior computational power
compared to standard activation functions in analog neural net-
work (ANN) [22]. Additionally, these spiking neural networks
(SNN) promise an ultra-low powered hardware feasibility due
to their simple integrate-and-fire computations.

Neuromorphic hardware is the silicon realization of SNNs.
While still being in an early phase of research, there are
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multiple different chips available for research, e.g. Loihi by
Intel [4], TrueNorth by IBM [23] and SpiNNaker [27]. In
the future these and many other realizations will be available
for real-world applications. Neuromorphic Hardware has the
chance to revolutionize how neural networks are deployed
today. By mimicking the neurons in the brain on a silicon chip
they only consume energy when spikes are emitted between
each other. The most optimistic estimates range anywhere
between 101−105 times less energy consumption compared to
classical computing [29]. To that level is a long way to go, but
today’s research hardware already shows an energy reduction
of 4x [1].

Although SNNs show promising advantages compared to
ANNs, they are not widely used in applications yet. One
reason behind that is the large controversy about learning
algorithms for SNNs. Many supervised and unsupervised,
often biologically inspired learning rules, like spike-timing-
dependent plasticity [3], are still under active research. Back-
propagation, the common learning algorithm in ANNs, is now
slowly adopted to the field of SNNs. Because of the time
dependency of spiking neurons it is not possible to use their
derivative, so a pseudo derivative has to be used [25]. However,
best-in-class results on popular benchmarks have been reached
using methods which directly convert pre-trained ANNs into
SNNs [38].

Accordingly, using conversion-based methods combines the
best of both worlds: using the superior training algorithm
in ANNs and porting the resulting weights to SNNs for the
deployment in neuromorphic hardware. Early effort, however,
showed a large loss after conversion, because the standard
activation function back then, sigmoid, did not translate well
to the firing frequency of a spiking neuron [28]. Since the use
of rectified linear units (ReLU) [24] as activation function,
things have changed. Because both the activation of ReLU as
well as the firing rate of leaky integrate-and-fire (LIF) neuron
increase linearly with their input, only a negligible conversion
loss occurs after replacement [2]. In regards of performance,
converted SNNs have been the most successful [38].

Still, there remains a gap in performance between the
original and the converted network. Additionally, due to the
temporal characteristics of SNNs, the optimal result during
inference is reached after a certain convergence time. Since
the spikes emitted by the different neurons have to propagate
through the network, this inference time grows with the depth
of the overall network.
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Accordingly, to apply conversion to large, state-of-the-art
ANN, the time to converge towards the optimal output during
inference needs to be reduced. In time constrained applica-
tions, this directly leads to an improved network performance
if the full convergence can be reached during the given
evaluation time.

In this work, we present a novel solution and evaluate
two methods to decrease inference time. After giving a short
overview over related work, we introduce three modifications
for current conversion methods. Subsequently, we demonstrate
their impact on the conversion accuracy and inference time on
the small CIFAR10 benchmark dataset [16]. Finally, we show
the joint result of all modifications on the Microsoft Common
Objects in Context (COCO) dataset [20]. The resulting mean
average precision (mAP) of 30.09 marks the best performing
spiking object detection to our knowledge so far. Additionally,
our approach reduces the accuracy loss between the original
and the converted network to under half a percent, which
undercuts previous work for large datasets.

II. RELATED WORK

A. Object Detection

Object detection describes the task of localizing and clas-
sifying objects within an image. They can be categorized
into two classes: single-step and two-step detectors. A good
overview was created by Zhao et al. [43]. Two-step detectors
consists of a region proposal step to extract areas with pos-
sible objects, and a subsequent classification step to evaluate
the content. One-step detectors combine the regression and
classification task into a single neural network and output the
bounding boxes with corresponding class probability at the
same time. Object detection cannot be evaluated by accuracy,
since there are infinitely many true negatives. Instead the mean
average precision is used.

Residual Networks. ResNets are a special architecture for
deep convolutional neural network (CNN) proposed by He et
al. [7]. Because of the good performance, ResNet-like archi-
tectures have become the defacto standard for CNN. Many
architectures following the same design principle have been
presented since then, the most mentionables being ResNeXt
[41], DenseNet [10], Inception-v4 [35], MobileNetV3 [8]
and EfficientNet [36]. He et al. proposed in their work
ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152
with the number depicting the number of layers of the network.
ResNets consists of multiple residual blocks with inherent
shortcut connections. That enables the network to ignore layers
which are not beneficial.

RetinaNet. RetinaNet is a one-step object detection architec-
ture with a feature pyramid network (FPN) [18] and trained
with focal loss [19], which significantly improves the perfor-
mance . RetinaNet consists of four subnetworks: a residual
network (ResNet) extracts features from the input image by
generating feature maps, an FPN combines feature maps
of different resolutions in order to have semantically rich
feature maps of low and high resolution and two networks for

classification and bounding box regression. Similar working
one-step object detectors include SSD [21], YOLOv2 [30] and
YOLOv3 [31] and EfficientDet [37].

B. Conversion

In earlier work many different conversion approaches have
been showed. Rueckauer et al. [32] presented a theoretical
basis which explained the underlying mechanism and different
spiking implementations of ANN operators like max-pooling,
batch normalization [12] and an improved version of the
softmax mechanism by Nessler et al. [26]. This work marked
the foundation for subsequent research, for what reason we
refer to these collective methods as the basic conversion.

For the conversion from ANN to SNN, the spike rate r(t)
can be calculated from the the ReLU activation a of the
original network, as showed in the supplementary material by
Rueckauer et al. [32]:

r(t) = armax −
V (t)− V (0)

tVthr
(1)

with V (t) being the membrane potential and Vthr the firing
threshold. As pointed out by Diehl et al. [5], the spiking
neuron, in contrast to ReLU, has an upper bound determined
by the maximum spike rate rmax. Therefore the weights of
the ANN have to be normalized to fit into the spike frequency
range. Because this approach ensures that the maximum firing
rates are never exceeded, single outliers can drastically de-
crease weights and thus increase inference time of the network.
Rueckauer et al. [32] proposed to discard extreme outliers
by using robust normalization where only the pth percentile
of the total activity distribution per layer is used. The best
results could be achieved with values for p in the range
[99.0, 99.999]. Kim et al. [14] further improved this method
and introduced channel-wise normalization, which led to an at
least 2.3x increased inference speed on object detection dataset
by normalizing each channel individually.

Another approach for spiking object detection where in-
troduced by Hu et al. [9], who showed conversion methods
for ResNets. Xiao et al. [40] and Kerapdiseh et al. [13]
showed biologically plausible learning algorithms for object
recognition. Recently, Wu et al. [39] introduced Progressive
Tandem Learning, a layer-wise learning framework with an
adaptive training scheduler for rapid pattern recognition.

III. METHOD

During inference of a spiking network the input signal takes
multiple time steps to pass through the network. The initially
created output mainly results from highly activated neurons
and gets influenced by more and more neurons the longer the
simulation runs. During this transient phase the accuracy starts
significantly reduced and converges to its maximum over time.
Depending on number of layers and neurons, many time steps
need to be calculated before an accurate prediction can be
made from the resulting output.

Our goal is to reduce the necessary inference time to a
minimum. Therefore we evaluate the optimization methods
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(a) Biased quantization (b) Unbiased quantization

Fig. 1: Overview of the biased and unbiased quantization methods in spiking neural networks

voltage clamping by Rueckauer et al. [32] and channel-wise
normalization by Kim et al. [14]. Furthermore we propose un-
biased quantization, a method to reduce the error in converted
networks.

Voltage Clamping. To improve performance during the tran-
sient phase Rueckauer et al. [32] proposed to clamp the
membrane potential for each layer l in the network for the
first N time steps by N(l) = d · l, with d being the delay
between lifting the clamp from consecutive layers. With this
additional neurons can accumulate spikes from previous layers
and therefore include signals from neurons with slower firing
frequency which increases the overall accuracy in the output
signal. The authors found a clamping delay of d = 10 for
Inception-V3 sufficient, it did however not significantly change
the accuracy on VGG16. d introduces another hyperparameter
which will be further evaluated in this work.

Channel-Wise Normalization. The basic conversion method
used layer-wise normalization, where the channels within
a feature map are collectively normalized. Kim et al. [14]
remarked that there is a large discrepancy between the max-
imum activation of the channels within a feature map of
a convolutional neural network. Therefore, they propose to
normalize each channel individually. The weights and biases
are normalized with

W l
i,j ←−W l

i,j

λl−1
i

λlj
and blj ←−

blj
λlj

(2)

with λkc being the pth percentile of the cth channel in the
kth layer. The authors utilize the 99.9th percentile for the
normalization, but this method also introduces another hyper-
parameter which needs additional adjustment.

Unbiased Quantization. With rate encoding, the continuous
activation of an analog neuron is quantized. The basic con-

version rounds the activation down to the nearest quantization
step. As a result, if the activations are uniformly distributed,
the quantization error is biased by 1

2t (see figure 1a). Youse-
fzadeh et al. [42] proposed a hysteresis quantization of the
ReLU activation function before conversion, which results in
evening out the error. We suggest to initialize the membrane
potential of the SNNs neurons with 1

2Vthr which will unbias
the quantization error. Accordingly, the error is on average
zero and the spike rate uniformly under- and overestimates
the corresponding activation of the ANN (see figure 1b).

The quantization error e1i (t) in the first hidden layer can be
calculated with the spike rate r1i (t) (see equation 1) and the
activation a1i of the corresponding ANN neuron with an initial
potential V 1

i (0) = 0:

e1i (t) = |a1i − r1i (t)|

=

∣∣∣∣a1i − (a1i − V 1
i (t)

tVthr

)∣∣∣∣
=

∣∣∣∣V 1
i (t)

tVthr

∣∣∣∣
(3)

With the activation a1i > 0 it is reasonable to assume that 0 <
V 1
i (t) < Vthr. Thus the quantization error has an upper limit

of e1i (t) <
1
t . If the neurons membrane potential is instead

initialized with 1
2Vthr the bound is halved:

e1i (t) =

∣∣∣∣a1i − (a1i − V 1
i (t)− 1

2Vthr

tVthr

)∣∣∣∣
=

∣∣∣∣V 1
i − 1

2Vthr

tVthr

∣∣∣∣ < 1

2t

(4)

The same applies to deeper layers. The spike rate rli(t) of
a layer l > 1 can be calculated as follows:

rli(t) =

Ml−1∑
j=1

W l
i,jr

l−1
j (t) + rmaxb

l
i −

V l
i (t)− V l

i (0)

tVthr
(5)
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With rmax = 1, the quantization error results as follows:

eli(t) =
∣∣ali − rli(t)∣∣ =

∣∣∣∣∣
Ml−1∑

j=1

W l
i,ja

l−1
j + bli


−

Ml−1∑
j=1

W l
i,jr

l−1
j (t) + bli −

V l
i (t)− V l

i (0)

tVthr

 ∣∣∣∣∣
=

∣∣∣∣∣∣
Ml−1∑
j=1

W l
i,je

l−1
j (t) +

V l
i (t)− V l

i (0)

tVthr

∣∣∣∣∣∣

(6)

The quantization error for V l
i (0) = 0 is then limited by:

eli(t) =

∣∣∣∣∣∣
Ml−1∑
j=1

W l
i,je

l−1
j (t) +

V l
i (t)

tVthr

∣∣∣∣∣∣
<

∣∣∣∣∣∣
Ml−1∑
j=1

W l
i,je

l−1
j (t) +

1

t

∣∣∣∣∣∣
(7)

If the neurons membrane potential is initialized with 1
2Vthr,

the maximal error the neuron adds due to the quantization is
halved.

eli(t) =

∣∣∣∣∣∣
Ml−1∑
j=1

W l
i,je

l−1
j (t) +

V l
i (t)− 1

2Vthr

tVthr

∣∣∣∣∣∣
<

∣∣∣∣∣∣
Ml−1∑
j=1

W l
i,je

l−1
j (t) +

1

2t

∣∣∣∣∣∣
(8)

Initializing SNNs with this method centers the error and thus
results in a more accurate prediction in less simulation time.
In addition it does not introduce any further hyperparameters.

IV. EXPERIMENTS

For a small scale evaluation of each of the three different
optimization methods and their joint combination, we train
four ResNets (ResNet18 to ResNet101) on CIFAR10 [16].
This classification dataset contains 60,000 images of size
32×32×3 pixels, categorized into 10 classes. The training set
consists of 50,000, and the test set of 10,000 images. Since
CIFAR10 does not contain a validation dataset, we use the last
5,000 images of the training set for this purpose. Therefore,
the training set is reduced to its first 45,000 images.

In order to get an unbiased result, we separately evaluate
unbiased normalization, voltage clamping as well as channel-
wise normalization on the validation set. Then the determined
best performing hyperparameters are collectively assessed on
the test set.

To evaluate the effectiveness of the methods on a larger
scale, we convert a RetinaNet with a ResNet18 as backbone
to an SNN and assess its performance on the 2017 COCO
dataset by Microsoft [20]. COCO is a dataset for object
detection, segmentation, and captioning. It contains roughly
118,000 training, 5,000 validation, and 41,000 test images
with three RGB channels, totaling approximately 164,000

images. The objects are categorized in 80 classes. The images
have various resolutions ranging from 72×51 to 640×640
pixels and varying aspect ratios of up to 6:1. Due to the
network’s high computational complexity, the performance is
only assessed on the 5,000 validation images. All optimization
methods are jointly applied in this last experiment.

For simplicity we use potential encoding for the output
layer [32], where the softmax is calculated on the membrane
potential of the last layer. All SNNs are evaluated for 1,000
time steps.

A. Evaluation of the Optimization Methods

First we compare the unbiased quantization, the channel-
wise normalization and the voltage clamping with the hy-
perparameter value d = [1, 2, 3]. In this step we keep the
normalization to the 99.9th percentile, as this was proposed
in the work by Kim et al. [14]. Subsequently, we examine the
normalization parameters and check whether the 99.9th per-
centile is optimal in this application, too. Because Rueckauer
et al. [32] reported that percentiles in the range [99, 99.999]
perform the best for the layer-wise normalization, we evaluate
the values [99, 99.9, 99.99, 99.999, 100] for the channel-wise
normalization collectively with the other two methods in the
best configuration found in the previous experiment. Addi-
tionally to the simulation of the converted SNNs, the ReLU1
performance of the normalized ANNs are computed. For this,
all ReLU activation functions are replaced with the ReLU1
function. Similar to the SNN’s normalized spike frequency
response, this clips all activations between 0 and 1. The result
gives insight of how much the accuracy drop can be attributed
to the clipping and how much to the quantization errors
of the SNN. Additionally, the ReLU1 performance should
give a theoretical, approximate upper bound on the SNN
performance. After assessing the previous experiments on the
validation set of CIFAR10, we evaluate the best determined
configuration on the test dataset to get an unbiased result.

Training of the ResNets. Because of the small size of only
32×32 pixels, the ResNets have to be slightly adapted. The
first convolution is changed to a 3x3 convolution with a
stride of 1 and the max pooling layer is removed. Further,
the number of channels is halved for all convolutions. The
networks are trained for 50+100n epochs with n = [1, 2, 3, 4]
for ResNet18, ResNet34, ResNet50, and ResNet101. We use
stochastic gradient descent (SGD) with a batch size of 128,
an initial learning rate of 0.1, momentum of 0.9 and a weight
decay of 0.0005 during training. The learning rate is divided by
10 after 50n and 25+75n epochs. The images are normalized
with the per-channel mean and standard deviation such that
each channel has a mean of 0 and a standard deviation of 1.
We augment the data as described be He et al. [7] and Lee
et al. [17] by zero-padding the images with 4 pixels on each
side and then randomly cropping 32x32 pixels. Additionally
each image is flipped horizontally with a probability of 50%.

Conversion of the ResNets. Since the converted activations of
the ReLU after the element wise addition of the residual block
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Fig. 2: Inference of the different optimization methods for ResNets of different sizes on the CIFAR10 dataset.

ResNet18 ResNet34 ResNet50 ResNet101
Percentile SNN ReLU1 SNN ReLU1 SNN ReLU1 SNN ReLU1

99 92.24% 92.24% 92.42% 92.42% 92.84% 92.86% 92.66% 92.66%
99.9 93.71% 93.70% 94.26% 94.24% 94.71% 94.70% 95.01% 95.04%

99.99 93.85% 93.82% 94.40% 94.38% 94.78% 94.80% 95.27% 95.24%
99.999 93.80% 93.76% 94.40% 94.44% 94.74% 94.80% 95.28% 95.24%

100 93.87% 93.78% 94.35% 94.44% 94.78% 94.82% 95.25% 95.26%
ANN 93.78 94.40 94.82 95.26

TABLE I: Accuracy for the channel-wise normalization combined with unbiased quantization and voltage clamping for different
percentiles as well as their corresponding ReLU1 activation. For the spiking networks the average accuracy of the last 100
time steps is given.

should not exceed rmax, the residual blocks of the ResNets
need to be normalized in a specific manner. Both, the main
paths and the shortcuts, are normalized with their activations
as described by Hu et al. [9].

B. Large Scale Evaluation

As presented in IV-A a reasonable percentile for the
channel-wise normalization can be picked before conversion
by computing the mAP of the ReLU1 with different values.

Training of RetinaNets. Our analog RetinaNet is trained
slightly differently compared to the original work by Lin et
al. [19]. Instead of SGD we use Adam [15] as optimizer with
a batch size of 14, an initial learning rate of 0.0001, a weight
decay 0.00001 and the hyperparameters set to β1 = 0.9,
β2 = 0.999, and ε = 10−8. The network is trained for a
total of 90,000 iterations, after 60,000 and 80,000 iterations
the learning rate is divided by 10. In contrast to the original
paper the weight introduced by the focal loss is considered as
a constant in the derivation step.

During training the shorter size of an image is randomly
rescaled somewhere between 640 to 896 pixels. The batch of
14 images must all have the same resolution, therefore, all
images are randomly zero-padded appropriately. Additionally,
the images are horizontally flipped with a probability of 50%.

Conversion of RetinaNet. For the conversion of the FPN,
additional considerations need to be made. The weights of
the FPN have to be adapted due to the normalization in
the backbone. The four convolutions that receive the feature
maps C3, C4, or C5 as input need to denormalize them.
The activation of the 3x3 convolution after C5 has to be

normalized for the subsequent ReLU. That activation then gets
denormalized again by the following 3x3 convolution. After
denormalizing P6 all pyramid feature maps are consistent
and continue to the subsequent regression and classification
subnetwork.

Because convolution and nearest neighbor upscaling are
both linear functions, any combination of these two functions
will result in a linear function. Therefore, all computations of
the Feature Pyramid Network, except ReLU, can be condensed
into their subsequent weights.

C. Results

Figure 2 shows the comparison of our proposed unbiased
normalization, the channel-wise normalization with the 99.9th

percentile and the voltage clamping with d = [1, 2, 3] to a
baseline SNN. These three optimization methods all reach
roughly the same accuracy and converge more quickly than
the baseline spiking ResNet. Because of the size of the neural
networks and the simplicity of the CIFAR10 dataset, we
achieve lossless conversion for ResNet18 and ResNet34. The
baseline spiking ResNet50 and ResNet101 do not converge
within 1,000 time. However, at the end of the simulation their
classification accuracy is still increasing. It is to assume that
they would also converge to the accuracy of the original ANN.

Results of individual methods. Voltage clamping shows the
biggest improvement of the tested methods on all the ResNets
in term of inference time even though the network needs the
number of layers multiplied by d time steps before it produces
the first output. The different values for the hyperparameter d
make no large difference. For d = 1 the network needs slightly
more time steps to converge, whereas d = 3 needs three
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Fig. 3: Accuracy of the three optimization methods on the
CIFAR10 dataset for a ResNet18.

ResNet 18 34 50 101
ANN 94.19% 94.67% 95.11% 94.92%
Basic 94.13% 94.41% 94.59% 93.45%
Extended 94.22% 94.61% 95.12% 94.95%

TABLE II: Resulting accuracies for the original ANN, the
basic and the extended conversion. For the spiking networks
the average accuracy of the last 100 time steps is given.

times longer to produce its first output, but then converges
at a higher rate. For the following experiments we use d = 1
since the difference in accuracy can be neglected and higher
values would delay the output generation for too long.

The second best improvement could be obtained with the
unbiased quantization. It alone can more than halve the
inference time compared to the baseline SNN. Although it
converges slower than the voltage clamping method, it does not
introduce another hyperparameter. Thus it can be implemented
with no expense.

The channel-wise normalization makes the least difference,
especially for smaller networks. Although it converges to the
same accuracy as the other methods, it is just barely faster
than the baseline ResNet18. For deeper networks the bigger
difference is made by this more fine grained normalization
and it performs more comparable to the other methods. For
the ResNet101 it results in an even slightly faster inference
than the unbiased quantization.

Since all optimization methods benefit the inference time,
we further investigate the hyperparameter p for the channel-
wise normalization in combination with the other two ap-
proaches. The results of the final accuracies for the SNNs,
calculated by the average accuracy of their last 100 time steps,
as well as the corresponding ReLU1 activation can be found
in Table I.

The 99th percentile performed the worst for both the SNN

Fig. 4: mAP of the three optimization methods on the COCO
dataset for a converted RetinaNet with a ResNet18 as back-
bone, as well as the corresponding ANNs mAP.

and the ANN, converging to a lower accuracy compared
to the other methods of 1.5 to 2.5 percentage points. The
99.9th percentile also converges to a slightly lower accuracy
compared to the networks normalized with a higher percentile,
which is most noticeable for the ResNet101. The 99.99th,
99.999th and the 100th percentile normalization converge for
all ResNets to the same accuracy as the ANN with just little
noise in difference. The 100th percentile however needs nearly
twice as long to fully converge. Hence if inference speed is
relevant, tuning the hyperparameter should be considered.

The ReLU1 accuracy is very close to the SNN’s perfor-
mance. Consequently it can be used as a predictor to evaluate
different percentiles before conversion. It also suggest that
the primary reason for accuracy difference is the clipping of
activations and not the quantization errors of the SNN.

Extended Conversion. For the combination of the three
optimization methods, we evaluate the best configuration on
the CIFAR10 test set. That is unbiased quantization, channel-
wise normalization with the 99.99th percentile and voltage
clamping with d = 1. We refer to this as extended conversion
and compare it to the basic conversion.

Our approach performs significantly better compared to the
basic conversion. We achieve approximately a tenfold speed
increase on ResNet18 (see figure 3) with only 56 time steps
until it crosses the 94% bar whereas the basic conversion needs
roughly 600 steps to do so. The basic spiking ResNet101
does not even fully converge in the 1,000 time steps of the
simulation, whereas the extended conversion still needs less
than 150 time steps.

For ResNet34, and ResNet50 a noticeable accuracy loss can
be found from the basic conversion to the original ANN. Using
the extended conversion the converted networks reach the same
accuracy as the ANN. Thus, the conversion for simple datasets
like CIFAR10 is lossless. The resulting accuracies at the end
of the simulation can be found in table II.

For the large scale evaluation of the extended conversion
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Network Dataset ANN SNN Loss
Diehl et al. (2015) [5] 3-layer CNN MNIST 99.14% 99.10% <0.1%
Stromatias et al. (2017) [34] 2-layer CNN MNIST 98.30% 98.32% <0.1%
Hu et al. (2018) [9] ResNet8 MNIST 99.59% 99.59% <0.1%
Yousefzadeh et al. (2019) [42] 4-layer CNN MNIST 99.21% 99.19% <0.1%
Cao et al. (2014) [2] 3-layer CNN CIFAR10 79.12 % 77.43% 2.14%
Hunsberger, Eliasmith (2015) [11] 5-layer CNN CIFAR10 85.97% 83.54% 2.43%
Rueckauer et al. (2017) [32] 9-layer CNN CIFAR10 91.91% 90.85% 1.06%
Hu et al. (2018) [9] ResNet44 CIFAR10 92.85% 92.37% 0.52%
Sengupta et al. (2019) [33] ResNet34 CIFAR10 89.10% 87.46% 1.84%
Han et al. (2019) [6] VGG16 CIFAR10 93.63% 93.63% <0.1%
This work ResNet18 CIFAR10 94.19% 94.22% <0.1%
This work ResNet34 CIFAR10 94.67% 94.61% <0.1%
This work ResNet50 CIFAR10 95.11% 95.12% <0.1%
This work ResNet101 CIFAR10 94.92% 94.95% <0.1%
Hu et al. (2018) [9] ResNet44 CIFAR100 70.18% 68.56% 1.62%
Han et al. (2019) [6] VGG16 CIFAR100 71.22% 70.93% 0.29%
Rueckauer et al. (2017) [32] VGG16 ImageNet 63.9% (84.9%) 49.6% (81.6%) 22.4% (3.8%)
Rueckauer et al. (2017) [32] Inception-V3 ImageNet 76.1% (93.0%) 74.6% (92.0%) 2.0% (1.0%)
Sengupta et al. (2019) [33] ResNet34 ImageNet 80.69% (89.69%) 65.47% (86.33%) 18.18% (3.75%)
Kim et al. (2019) [14] YOLO PascalVOC 53.01% 51.83% 2.23%
Kim et al. (2019) [14] YOLO COCO 26.24 mAP 25.66 mAP 2.21%
This work RetinaNet COCO 30.21 mAP 30.09 mAP 0.40%

TABLE III: Overview of Conversion Losses of Different Network Architectures and Datasets.

with a RetinaNet we computed the ReLU1 mAP for different
percentiles to determine the hyperparameter of the channel-
wise normalization. The 99.999th performed the best with an
mAP of 30.16, the 99.99th came close with 29.68 and the
99.9th performed the worst with a mAP of only 26.75. This
demonstrates that a general value cannot be recommended and
needs to be chosen for every application individually. The
ReLU1 performance can be very well used for assessing an
appropriate value.

In the experiment with 1,000 simulation time steps, the
original ANN reaches an mAP of 30.21 and the converted
SNN 30.09 (see figure 4). This corresponds to an absolute
difference of just 0.12 or 0.40%.

V. DISCUSSION

In this work we introduced unbiased quantization, a simple
method to reduce the quantization error caused by the con-
version of continuous activation functions to spike rates. We
showed that this method greatly improves the inference time
of converted SNNs. Additionally, we analyzed our method
jointly with other recent modifications, namely channel-wise
normalization and voltage clamping, for the conversion of
ANNs to SNNs.

With optimized hyperparameters, the converted SNNs con-
verge approximately ten times faster than networks using
the basic conversion method on the CIFAR10 dataset. Ad-
ditionally, the the conversion loss is reduced to a neglectable
minimum. As shown in table III, the lossless conversion has
only been demonstrated on the much simpler MNIST dataset
so far.

A spiking RetinaNet using the extended conversion achieved
an mAP of 30.09 with a hardly noticeable loss of 0.4% com-
pared to the original ANN on the COCO dataset. Additionally
to the higher mAP and lower conversion loss, our converted
network converges much faster compared to Spiking-YOLO

by Kim et al. [14]. In our simulation of 1,000 time steps,
the spiking RetinaNet converges after 600 time steps whereas
Spiking-YOLO was simulated for 8,000 time steps and needed
roughly 3,000 time steps to reach convergence. Because differ-
ent ANN architectures were evaluated, the overal mAP can not
be directly compared. Though, the conversion loss introduced
by the extended conversion is considerably lower.

In summary, the three methods from the extended con-
version should be implemented to achieve the best results.
For small networks, however, the channel-wise normalization
can be omitted. Though, its usage adds an additional hyper-
parameter, the normalization percentile, which needs careful
consideration to obtain the best performing result. Possible
values of the hyperparameter can be examined by using the
ReLU1 activation before conversion at lower expense. The
voltage clamping is very important whenever a fast execution
is desired. A small value for the hyperparameter d should
then be chosen. Because of the simplicity of implementation
and effectiveness on all spiking networks, we recommend
unrestricted use of the unbiased quantization in SNNs.
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