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Abstract

A geometric construction of one-factorisations of complete graphs Kq(q−1) is

provided for the case when either q = 2d + 1 is a Fermat prime, or q = 9. This
construction uses the affine group AGL(1, q), points and ovals in the Desarguesian
plane PG(2, q2) to produce one-factorisations of the complete graph Kq(q−1).

Mathematics Subject Classifications: 05C70, 51E21, 05B25

1 Introduction

Let Kn be the complete graph with an even number n of vertices. A one-factor is a
set of edges of Kn such that every vertex of Kn meets exactly one of its edges. A one-
factorisation of Kn is a partition of its edge set into n− 1 disjoint one-factors.

One-factorisations of complete graphs have been studied in connection with Steiner
triple systems and—more generally—Design theory [22]. They also have practical applic-
ations such as scheduling single round robin tournaments.

The systematic study of one-factorisations begun with the pioneering work of Rosa,
Mendelsohn, Wallis and others; see for instance [4, 5, 6, 7, 13, 16, 17, 20, 22]. In some re-
cent papers [10, 14, 18], Gy. Kiss, G. Korchmáros and the authors used geometry in order
to set up a procedure for the construction of (possibly new) families of one-factorisations
based on nice geometric objects. The idea of using geometry for the construction of fac-
torisations dates back to 2001 when it was first exploited on multigraphs; see for instance
[1, 9, 11, 15, 19]. In this paper, we construct one-factorisations from ovals in a Desar-
guesian projective plane of odd square order, the order of which is either 92, or the square
of a prime of the form 2d + 1.

Our notation and terminology are standard. In particular, the term partial one-
factorisation stands for a set of one-factors of Kn such that no two of them share an
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edge. Obviously, any subset of one-factors in a one-factorisation of Kn is a partial one-
factorisation. Background on one-factorisations of complete graphs is found in [21], and
[17]. For a detailed account on ovals in finite projective planes; see [8].

The main result of this paper is a (mostly geometrical) construction of one-factorisations
of the complete graph Kq(q−1), where q = 2d + 1 is a prime power.

Theorem 1. Let q = 2d + 1 be a prime number. Let Σ ∼= AGL(1, q) be the affine
group represented by its sharply transitive action on the points of an oval C in PG(2, q2) \
PG(2, q). There exists a one-factorisation

F = {F1, F
′
1, . . . F q(q−3)

2

, F ′q(q−3)
2

, S1, . . . , Sq−1, R1, . . . , Rq}

of the complete graph Kq(q−1) such that

• the union Fi ∪ F ′i corresponds to a Σ–orbit of length q(q − 1), for i = 1, . . . , q(q−3)
2

;

• Si corresponds to a Σ–orbit of length q(q−1)
2

, for i = 1, . . . , q − 1;

• Ri corresponds to a set consisting of points in Σ-orbits of length q(q− 1) and points
in PG(2, q) that are external to C, for i = 1, . . . , q.

Theorem 2. Let q = 9 and Σ ∼= AGL(1, q) the affine group represented by its sharply
transitive action on the points of an oval C in PG(2, 81) \ PG(2, 9). Then there exists a
one-factorisation

F = {F1, F
′
1, . . . F27, F

′
27, L1, . . . , L8, R1, . . . , R9}

of the complete graph K72 such that

• the union Fi ∪ F ′i corresponds to a Σ–orbit of length 72, for i = 1, . . . , 27;

• Li corresponds to a vertical line in PG(2, 81), for i = 1, . . . , 8;

• Ri corresponds to a set with 32 points in Σ-orbits of length 72 and 4 points on the
vertical line X = 0 in PG(2, 81), for i = 1, . . . , 9.

Note that if q = 2d + 1 is a prime power, then either q = 9, or q is a so-called Fermat
prime, where d is a power of 2. Although number theoretic implications are out of the
scope of this paper, it is worth mentioning that only finitely many Fermat primes are
known, and whether Fermat primes form a finite or an infinite family is still an open
question.

The case q prime (Theorem 1) is dealt with in Section 3, and the special case q = 9
(Theorem 2) is considered in subsection 4.2.
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2 Preliminaries

For an odd prime power q = ph, let Ω be an oval in the projective plane π = PG(2, q2)
and π0 = PG(2, q) a Baer subplane of π such that π0 ∩ Ω 6= ∅. From [12, Lemma 4] we
know that

• |π0 ∩ Ω| = q + 1 and Ω0 = π0 ∩ Ω is an oval of π0.

• every line of π0 meets Ω at some point, and those missing Ω0 are secants to Ω,

• no point of π0 is internal to Ω.

There are exactly q2(q2+1)
2

points of PG(2, q2) which are external to Ω, each of them
lying on two tangents to Ω. We denote the set of all external points to Ω with E(Ω).

Let S be a set of points in PG(2, q2) and T be a set of tangents to Ω. Then S is said
to have the tangent property with respect to T if and only if for every ` ∈ T the condition
|` ∩ S| 6 1 holds. Remark that this definition generalises the notion of tangent property
introduced in [14].

The action of the group PGL(2, q) on Ω yields two orbits: one of them is Ω0 itself,
while the other is Ω∗ = Ω \ Ω0. We call real tangents the tangents to Ω at points in Ω0,
and complex tangents the others.

Our aim is to construct a geometric one-factorisation of the complete graph Kn, with
n = q2 − q, whose vertices are represented by the points, and edges by the chords of Ω∗.
Following to [14], we are looking for a partition of the points of E ′ = E(Ω)\π into subsets

consisting of q2−q
2

points, each of them with the tangent property, henceforth with respect
to the set of complex tangents to Ω.

Consider an affine frame where the oval Ω is a parabola C of affine equation

Y = X2

in AG(2, q2). One can label the affine points P (ξ,ξ2) in AG(2, q2) with the corresponding
element ξ ∈ GF(q2) and denote it with Pξ. Then, the equation of the tangent to Ω at one
of its points Pξ is

Y = 2ξX − ξ2.

Hence, the points of E ′ are in one-to-one correspondence with pairs {ξ1, ξ2}, where ξ1, ξ2 ∈
GF(q2) \GF(q). Namely, the pair {ξ1, ξ2} corresponds to the external point

(
ξ1+ξ2

2
, ξ1ξ2

)
and vice versa.

One can look at the action of the affine group Σ ∼= AGL(1, q) on the points of C and
E ′ realised in the following way. For a ∈ GF(q), define the map ϕa as

ϕa(x, y) = (x+ a, y + 2ax+ a2)

and the group Φ = 〈ϕa | a ∈ GF(q)〉. Similarly, for λ ∈ GF(q) \ {0}, define

ψλ(x, y) = (λx, λ2y)
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and the group Ψ = 〈ψλ | λ ∈ GF(q) \ {0}〉. Then let

Σ = 〈ϕaψλ | a ∈ GF(q), λ ∈ GF(q) \ {0}〉.

It is not hard to see that Σ = Ψ n Φ ∼= AGL(1, q), and its action on the points of C in
AG(2, q2) \ AG(2, q) is sharply transitive. Furthermore, the group Σ partitions the set
E ′ in Σ–orbits of length n = q(q − 1) or n/2 = q(q − 1)/2, which are called long and
short orbits, respectively; see Lemma 5 for a formal proof. Note that the notion of long
and short orbit is consistent with the notion of short and long edges used in the usual
constructions with starters; see for instance [2].

A geometric characterisation of the points of E ′ and the Σ–orbits is provided by the
following sequence of lemmas.

Lemma 3. Every external point in E ′ belongs to a unique parabola Ct of affine equation
Y = X2 − t, where t = s2 is a nonzero square in GF(q2).

Proof. Let Pξ1(ξ1, ξ
2
1) be a point of C, where ξ1 ∈ GF(q2) \ GF(q). The tangent to C at

Pξ1 has affine equation
tξ1 : Y = 2ξ1X − ξ2

1 .

The intersection tξ1 ∩ Ct is constituted by points of type (x, x2 − t), where x is such that
(x − ξ1)2 = t. Thus, t = s2 must be a nonzero square and the points of intersection are
the points (ξ1 − s, ξ2

1 − 2sξ1), (ξ1 + s, ξ2
1 + 2sξ1).

Lemma 4. Let Ct be an external parabola. Then the following hold:

1. ϕa(Ct) = Ct, for all a ∈ GF(q);

2. ψλ(Ct) = Cλ2t, for all λ ∈ GF(q) \ {0}.
Lemma 5. The group Σ partitions the set E ′ in Σ–orbits of length either q(q − 1), or
q(q−1)

2
. Furthermore, the following hold:

1. short Σ-orbits have the tangent property, i.e. they correspond to one-factors;

2. long Σ-orbits have the 2-tangent property, that is, every tangent to C at a point Pξ,
for ξ ∈ GF(q2) \GF(q), intersects a Σ-orbits in exactly two points.

Proof. Let P ( ξ1+ξ2
2
, ξ1ξ2) ∈ E ′ be the intersection of the tangents tξ1 and tξ2 , where

ξ1, ξ2 ∈ GF(q2) \GF(q) and ξ1 6= ξ2.
Let σ = ψλ ◦ ϕa ∈ Σ be such that σ(P ) = P. Then λ(ξ1 + a) = ξ2, λ(ξ2 + a) = ξ1

and this implies that either σ = 1Σ, or σ = ψ−1 ◦ ϕa and ξ1 + ξ2 = −a. The latter case
occurs only when PΣ is a short orbit and every short orbit contains some point of the
form (0,−t), where t 6= 0 is a square in GF(q2).

Since the group AGL(1, q) is transitive on the elements of GF(q2) \ GF(q), every
complex tangent intersects a Σ-orbit PΣ in at least one point. Furthermore, there are
q(q − 1) complex tangents and every point of PΣ is on at most two tangents.

Then, since the length of a short orbit is q(q−1)
2

, every complex tangent intersects it
in exactly one point. Similarly, the length of a long orbit is q(q − 1) and every complex
tangent must intersect it in exactly two points.
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Finally, the following lemma is needed for the proof in the next section.

Lemma 6. Let n be a positive integer. There exist 2n distinct integers

0 6 x1, . . . , xn, y1, . . . , yn 6 2n

such that xi − yi = i, for all i = 1, . . . , n.

Proof. For k = 1, . . . , dn
2
e, take the pairs

p
(l)
k = [n− k + 1, k − 1];

and for k = dn
2
e+ 1, . . . , n, take the pairs

p
(r)
k = [n+ k, 2n− k + 1].

Note that, if n is even (resp. odd) then the pairs p
(l)
k produce all even (resp. odd)

differences:
n− 2k + 2, for k = 1, . . . ,

⌈n
2

⌉
.

Similarly, if n is even (resp. odd) the pairs p
(r)
k produce all odd (resp. even) differences:

2k − n− 1, for k =
⌈n

2

⌉
+ 1, . . . , n.

The result follows.

3 Proof of Theorem 1

In this section, we provide a construction for q = 2d + 1, q prime. We start from the
partition of E ′ in Σ-orbits. By Lemma 5, the short orbits have the tangent property
and there is nothing to prove. Furthermore, each long orbit has the 2-tangent property
and can be partitioned into polygons—that is, cycles in the underlying graph—where two
vertices are adjacent if and only if the corresponding points are on the same tangent line.
If the number of vertices is even, then we can colour the vertices with two colours—red
and green—and each of these good orbits produces two one-factors.

Let P ( ξ1+ξ2
2
, ξ1ξ2) be a point in a long orbit and σ = ψλ◦ϕa be such that ξ2 = λ(ξ1+a).

Then the polygon that contains P has exactly k = |σ| vertices and it can be represented
by the following ordered sequence of pairs:

[{ξ1, σ(ξ1)}, {σ(ξ1), σ2(ξ1)}, . . . , {σk−1(ξ1), ξ1}].

The condition q = 2d + 1 implies that PΣ is a “good orbit” if and only if λ 6= 1. Then k
is even and the polygon can be easily coloured as follows:

G ={{ξ1, σ(ξ1)}, {σ2(ξ1), σ3(ξ1)}, . . . , {σk−2(ξ1), σk−1(ξ1)}},
R ={{σ(ξ1), σ2(ξ1)}, {σ2(ξ1), σ3(ξ1)}, . . . , {σk−1(ξ1), ξ1}}.
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Note that, if PΣ is a long orbit and the order of σ is even, then P is necessarily on a conic
Ct, where t = s2 and s ∈ GF(q2) \GF(q). In this case, it can be easily checked that every
orbit PΦ has the tangent property.

The orbits that split into polygons with an odd number of vertices cannot be coloured
with two colours and are called bad orbits. These orbits exist because of the subgroups of
Σ of odd order. If q is a prime number such that q = 2d + 1, then each of the bad orbits
is the union of exactly (q − 1) q-gons. Each of these q-gons corresponds to a set of pairs
of the type

{{x, x+ b}, {x+ b, x+ 2b}, . . . , {x− b, x}},
where x ∈ GF(q2) \ GF(q) and b ∈ GF(q) \ {0}. From a simple counting argument, we
can also note that there are exactly q−1

2
bad orbits.

Every point P in a bad orbit must lie on a conic Ct, where t = s2 and s ∈ GF(q) \ {0},
and the union of all bad orbits is equal to the disjoint union of all sets E ′∩Ct. Furthermore,
unlike the previous case, the orbit PΦ does not have the tangent property.

Let w be a primitive element of GF(q2). Then, each of the sets E ′ ∩ Ct can be further

partitioned in (q−1)
2

pairs of q-gons as follows:

E ′ ∩ Ct = {(x, x2 − t) | x ∈ GF(q2) \GF(q)}

=

(q−1)/2⋃
λ=1

Pλw,t ∪ P−λw,t =

(q−1)/2⋃
λ=1

Pλw,t ∪ Pλwq ,t,

where every orbit Px,t = (x, x2 − t)Φ is one the q-gons embedded in Ct. Note that every
set E ′ ∩ Ct is a q(q − 1)-arc and has the 2-tangent property.

Take the short orbit O0 corresponding to the pairs {{x, xq} | x ∈ GF(q2) \GF(q)}. In
the remainder of this section we show how to replace a point from each q-gon contained
in E ′ ∩ Ct with a point from O0 so that two q(q−1)

2
-sets with the tangent property are

obtained.
Let t = s2 for s ∈ GF(q) \ {0}, and P := (x+ s, x(x+ 2s)), Q := (xq + s, xq(xq + 2s))

be the points corresponding to the pairs {x, x+2s}, {xq, xq +2s}. The points P,Q belong
to two paired q-gons Pλw,t, Pλwq ,t, where

Pλw,t = [P, P1 = ϕ2s(P ), . . . , Pq−1 = ϕ(2s)q−1(P )],

Pλwq ,t = [Q,Q1 = ϕ2s(Q), . . . , Qq−1 = ϕ(2s)q−1(Q)].

We replace P,Q, that is, the pairs {x, x + 2s}, {xq, xq + 2s}, with two points R1, R2 =
ϕ2s(R1) from O0, where R1 and R2 correspond to the pairs {x, xq}, {x + 2s, xq + 2s},
respectively. In affine coordinates, we have

R1 :=

(
x+ xq

2
, xq+1

)
, R2 :=

(
x+ xq

2
+ 2s, (x+ 2s)q+1

)
.

Then, we can colour R1, R2 and the remaining points of the q-gons with two colors G
(green) and R (red) as follows:

G = {R1, P1, P3, . . . , Pq−2, Q1, Q3, . . . , Qq−2},
R = ϕ2s(G) = {R2, P2, P4, . . . , Pq−1, Q2, Q4, . . . , Qq−1};
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see Figure 1. Note that in our argument we heavily used the fact that (x+2s)q = xq +2s.

R1R2

P2Pq−2

P1Pq−1

Q1Qq−1

Q2Qq−2

Q

P

Figure 1: A pair of q-gons embedded in Ct

We want to use this strategy for all q−1
2

conics Ct, for t = s2 and s ∈ GF(q) \ {0}.
We have a total of (q−1)2

2
q-gons in bad orbits. For each pair of q-gons Pλw,t, Pλwq ,t we

need to be able to find two suitable points R1, R2, corresponding to two pairs of the type
{x, xq}, {x + 2s, xq + 2s}. There seems to be enough points, more precisely, there are
q(q−1)

2
of them in O0. However, we have to make sure that once we use two points R1, R2,

they are not used with any other q-gon.
The orbit O0 can be partitioned in the disjoint union of sets π0∩Cr, for r = z2 ∈ GF(q)

and z ∈ GF(q2) \ GF(q). Note that zq = −z. By Lemma 6, for every t = s2, with
s ∈ GF(q), we can find ut, vt such that vt − ut = 2s and |

⋃
t

{ut, vt}| = q − 1.

Let π0 ∩ Cr be one of these sets from O0. The points from Cr

R1(ut, u
2
t − r), R2(vt, v

2
t − r),

corresponding to the pairs {ut+z, ut−z} = {ut+z, ut+zq}, {vt+z, vt−z} = {vt+z, vt+zq},
can be used to replace the points from Ct

P (vt + s+ z, (vt + s+ z)2 − t), Q(vt + s+ zq, (vt + s+ zq)2 − t),

corresponding to the pairs {ut + z, vt + z}, {ut + zq, vt + zq}. Remark that the points P,Q
lie on two paired q-gons, say Pλw,t ∪ Pλwq ,t = Pz,t ∪ Pzq ,t. Furthermore, Cr can be written
as C

λ
2
r
, for λ 6= ±1, and the points

R1(ut, u
2
t − r), R2(vt, v

2
t − r) ∈ Cr

replace two points in Ct that must be in a different pair of q-gons. This completes the
proof.
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4 Examples

In 4.1 we illustrate the construction in Section 3 for the case q = 5. We obtain a partition
into 10-sets with the tangent property that corresponds to a (rigid) 1-factorisation of the
complete graph with 20 vertices K20.

In 4.2 we consider the special case q = 9, which is obtained by a slight modification
of the main construction.

4.1 Case q = 5

Let w be a primitive element of GF(25) such that w2 = w + 3.
Consider the conic C of equation Y = X2 in PG(2, 25). There are twelve Σ-orbits: 5

short orbits, 5 good (long) orbits, and 2 bad (long) orbits. The points in bad orbits are
contained in the conics

C1 : Y = X2 − 1, C4 : Y = X2 − 4.

The conic C1 contains the following four pentagons:

Pw,1 = [(w,w15), (w15, 1), (w17, w3), (w22, w16), (w2, w8)],

Pw5,1 = [(w5, w3), (w3, 1), (w13, w15), (w14, w8), (w10, w16)],

P2w,1 = [(w7, w5), (w4, w7), (w21, 2), (w8, w11), (w23, w)],

P2w5,1 = [(w11, w), (w20, w11), (w9, 2), (w16, w7), (w19, w5)].

The conic C4 contains the following four pentagons:

Pw,2 = [(w,w17), (w17, w13), (w2, w23), (w15, 3), (w22, w19)],

Pw5,2 = [(w5, w13), (w13, w17), (w10, w19), (w3, 3), (w14, w23)],

P2w,2 = [(w7, w3), (w21, 4), (w23, w15), (w4, w4), (w8, w20)],

P2w5,2 = [(w11, w15), (w9, 4), (w19, w3), (w20, w20), (w16, w4)].

The short orbit O0 can be written as the disjoint union

O0 = (π0 ∩ C2) ∪ (π0 ∩ C3),

where
π0 ∩ C2 = {(0, 3), (1, 4), (2, 2), (3, 2), (4, 4)}

and
π0 ∩ C3 = {(0, 2), (1, 3), (2, 1), (3, 1), (4, 3)}.

Take u1 = 4, v1 = 3, u2 = 2, v2 = 0. Note that u1 − v1 = 1 and u2 − v2 = 2. Then we
can consider the following pairs of points from O0:

(i) (3, 2), (4, 4);
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(ii) (3, 1), (4, 3);

(iii) (0, 3), (2, 2);

(iv) (0, 2), (2, 1).

The points from the pairs (i) and (ii) will be used to replace points from the conic C4,
while the points from the pairs (iii) and (iv) will be used to replace points from C1.

The points R1 := (4, 4), R2 := (3, 2) = ϕ4(R1) correspond to the pairs {w14, w22},
Note that w22 + 4 = w and w14 + 4 = w5, hence R1 and R2 replace the points

P := (w2, w23), Q := (w10, w19),

from the pentagons Pw,2, Pw5,2 and corresponding to the pairs {w,w22},
{w5, w14}, respectively. Similarly, the points R′1 := (4, 3), R′2 := (3, 1) correspond to
the pairs {w19, w23}, {w4, w20} and replace the points P ′ := (w7, w3), Q′ := (w11, w15)
from the pentagons P2w,2, P2w5,2.

Then, following the procedure from Section 3, we obtain two 10-sets F1 = G,F2 = R
with the tangent property:

G = {R1, ϕ2(P ), ϕ4(P ), ϕ2(Q), ϕ4(Q), R′1, ϕ2(P ′), ϕ4(P ′), ϕ2(Q′), ϕ4(Q′)},
R = ϕ4(G).

Following the same procedure, we can replace the points (w2, w8) ∈ Pw,1 and (w10, w16) ∈
Pw5,1 with (0, 3) and (2, 2); then the points (w7, w5) ∈ P2w,1 and (w11, w) ∈ P2w5,1 with
(0, 2) and (2, 1). We obtain two further 10-sets F3,F4 with the tangent property:

F3 ={(0, 3), (w,w15), (w17, w3), (w5, w3), (w13, w15),

(0, 2), (w4, w7), (w8, w11), (w20, w11), (w16, w7)},
F4 =ϕ2(F3).

Another four 10–sets with the tangent property consist of the following short orbits:

F5 = (0, w2)Σ, F6 = (0, w4)Σ, F7 = (0, w8)Σ, F8 = (0, w10)Σ.

The five (long) good orbits

O1 = (w, 2)Σ, O2 = (w,w)Σ, O3 = (w,w8)Σ, O4 = (w,w14)Σ, O5 = (w,w19)Σ

split into polygons with an even number of edges.
The orbit O1 splits into five quadrangles:

Q1 = [(w, 2), (w16, w11), (w14, w22), (w21, w17)],

Q2 = [(w2, w22), (w4, w11), (w13, 2), (w9, w17)],

Q3 = [(w3, w5), (w7, 3), (w22, w23), (w20, w10)],

Q4 = [(w5, w16), (w11, w4), (w17, w16), (w23, w4)],

Q5 = [(w8, w10), (w10, w23), (w19, 3), (w15, w5)].
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Then, O1 can be partitioned into two 10-sets F9 and F10 with the tangent property:

F9 = {(w, 2), (w14, w22), (w2, w22), (w13, 2), (w3, w5),

(w22, w23), (w5, w16), (w17, w16), (w8, w10), (w19, 3)},
F10 = {(w16, w11), (w21, w17), (w4, w11), (w13, 2), (w7, 3),

(w20, w10), (w11, w4), (w23, w4), (w10, w23), (w15, w5)}.

In the same way, the orbits O2, O3, O4 and O5 split into quadrangles and produce the
following 10-sets with the tangent property:

F11 = {(w,w), (w5, w5), (w2, w21), (w10, w9), (w3, 4),

(w15, 4), (w8, w9), (w16, w21), (w14, w21), (w22, w9)},
F12 = {(w4, w21), (w20, w9), (w7, w13), (w11, w17), (w9, 1),

(w21, 1), (w13, w), (w17, w5), (w19, w13), (w23, w17)},
F13 = {(w,w8), (w13, w8), (w2, w19), (w3, w), (w4, w2),

(w11, 3), (w5, 2), (w22, w14), (w10, w14), (w17, 2)},
F14 = {(w7, w20), (w19, w20), (w16, w2), (w23, 3), (w14, w19),

(w15, w), (w8, w7), (w9, w13), (w20, w7), (w21, w13)},
F15 = {(w,w14), (w3, w9), (w2, 1), (w5, w23), (w7, w2),

(w9, w21), (w4, w14), (w16, w14), (w13, w14), (w15, w9)},
F16 = {(w8, 4), (w11, w11), (w19, w2), (w21, w21), (w14, 1),

(w17, w23), (w10, w2), (w22, w2), (w20, 4), (w23, w11)},
F17 = {(w,w19), (w10, 1), (w2, w10), (w14, w10), (w3, w21),

(w17, w22), (w5, w22), (w15, w21), (w11, w10), (w21, w9)},
F18 = {(w9, w9), (w23, w10), (w8, w22), (w20, w22), (w4, 4),

(w19, w7), (w7, w7), (w16, 4), (w13, w19), (w22, 1)}.

The last 10-set F19 is uniquely determined by the previous ones:

F19 = {(1, 3), (1, 4), (w2, w23), (w2, w8), (w7, w3), (w7, w5),

(w10, w16), (w10, w19), (w11, w), (w11, w15)}.

Note that all points removed from pentagons in C1 and C4 are in F19. A direct computation
with Magma [3] shows that the corresponding 1-factorisation of the complete graph K20

is rigid, that is, its only automorphism is the trivial one.

4.2 Case q = 9 (Theorem 2)

Let w be a primitive element of GF(81) such that w4 = w3 + 1. Note that every nonzero
element of GF(9) is a power of w10, that is, w10 is a primitive element of GF(9).

Consider the conic C of equation Y = X2 in PG(2, 81). There are 40 Σ-orbits: 9
short orbits, 27 good (long) orbits, and 4 bad (long) orbits. The points in bad orbits are
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contained in four conics Cr : Y = X2 − r, where r = 1, 2, w20, w60. We need to adjust the
construction from Section 3 because 9 is not a prime, the bad orbits split into 96 triangles
(24 triangles from each bad orbits) and we do not have enough points in a unique short
orbit. We provide an alternative construction that overcomes this difficulty.

The points on the 9 short orbits can be rearranged in the following 36-sets—again
with the tangent property:

Li = E ′ ∩ `i, i = 0, 1, . . . , 8,

where `0 is the vertical line of equation X = 0 and `i is the vertical line of equation
X = w10i for i = 1, . . . , 8.

The sets L1, . . . , L8 give rise to the first eight one-factors F1, . . . , F8. The points in
L0 will be used, together with all the points from bad orbits, to form nine one-factors
F9, . . . , F17.

The set L0 can be partitioned into nine Ψ-orbits:

S1 = (0, w2)Ψ, S2 = (0, w4)Ψ, S3 = (0, w6)Ψ,
S4 = (0, w8)Ψ, S5 = (0, w10)Ψ, S6 = (0, w12)Ψ,
S7 = (0, w14)Ψ, S8 = (0, w16)Ψ, S9 = (0, w18)Ψ.

Each of these Ψ-orbit is a 4-set with the tangent property.
Similarly, we can partition the points on bad orbits into Ψ-orbits

O1 = (w,w25)Ψ, O2 = (w2, w3)Ψ, O3 = (w3, w75)Ψ,
O4 = (w4, w74)Ψ, O5 = (w5, w70)Ψ, O6 = (w6, w9)Ψ,
O7 = (w7, w6)Ψ, O8 = (w8, w23)Ψ, O9 = (w9, w65)Ψ,
O10 = (w11, w64)Ψ, O11 = (w12, w62)Ψ, O12 = (w13, w21)Ψ,
O13 = (w14, w)Ψ, O14 = (w15, w50)Ψ, O15 = (w16, w61)Ψ,
O16 = (w17, w48)Ψ, O17 = (w18, w27)Ψ, O18 = (w19, w16)Ψ,
O19 = (w21, w18)Ψ, O20 = (w22, w31)Ψ, O21 = (w23, w54)Ψ,
O22 = (w24, w69)Ψ, O23 = (w25, w60)Ψ, O24 = (w26, w13)Ψ,
O25 = (w27, w35)Ψ, O26 = (w28, w78)Ψ, O27 = (w29, w2)Ψ,
O28 = (w31, w7)Ψ, O29 = (w32, w47)Ψ, O30 = (w33, w32)Ψ,
O31 = (w34, w37)Ψ, O32 = (w35, w20)Ψ, O33 = (w36, w26)Ψ,
O34 = (w37, w29)Ψ, O35 = (w38, w39)Ψ, O36 = (w39, w63)Ψ.

Note that each of these Ψ-orbit is a 8-set with the tangent property.
We can construct nine 36-sets with the tangent property, each constructed as the union
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of four orbits Oi and one orbit Sj. For instance, we can take:

F9 = S1 ∪O1 ∪O6 ∪O9 ∪O25,

F10 = S2 ∪O2 ∪O3 ∪O11 ∪O36,

F11 = S3 ∪O7 ∪O18 ∪O21 ∪O33,

F12 = S4 ∪O17 ∪O26 ∪O31 ∪O35,

F13 = S5 ∪O12 ∪O14 ∪O27 ∪O29,

F14 = S6 ∪O8 ∪O15 ∪O24 ∪O30,

F15 = S7 ∪O4 ∪O10 ∪O23 ∪O32,

F16 = S8 ∪O5 ∪O16 ∪O19 ∪O20,

F17 = S9 ∪O13 ∪O22 ∪O28 ∪O34.

Note that the sets F1, . . . , F17 are left invariant by the group Ψ and cover all points in
bad and short orbits. The last 54 one-factors can be obtained from good orbits using the
construction from Section 3.

The full automorphism group of the one-factorisation so obtained can be easily com-
puted with the aid of Magma [3]. It should be noticed that many of the good orbits
split into two one-factors in several different ways, and thus produce different automorph-
ism groups. Nevertheless, supported by some experiments, we expect the resulting one-
factorisations to be rigid. For a matter of space, we are not providing all the details about
this.
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[5] P. J. Cameron and G. Korchmáros. One-factorizations of complete graphs with a
doubly transitive automorphism group. Bull. London Math. Soc., 25(1):1–6, 1993.

the electronic journal of combinatorics 27(1) (2020), #P1.37 12



[6] J. H. Dinitz and D. R. Stinson. Some new perfect one-factorizations from starters in
finite fields. J. Graph Theory, 13(4):405–415, 1989.

[7] A. Hartman and A. Rosa. Cyclic one-factorization of the complete graph. European
J. Combin., 6(1):45–48, 1985.

[8] J. W. P. Hirschfeld. Projective Geometries over Finite Fields. Oxford Mathemat-
ical Monographs. The Clarendon Press, Oxford University Press, New York, second
edition, 1998.

[9] Gy. Kiss. One-factorizations of complete multigraphs and quadrics in PG(n, q). J.
Combin. Des., 10(2):139–143, 2002.

[10] Gy. Kiss, N. Pace, and A. Sonnino. On circular–linear one-factorizations of the
complete graph. Discrete Math., 342(12):Art. 11162, 2019.

[11] Gy. Kiss and C. Rubio-Montiel. A note on m-factorizations of complete multigraphs
arising from designs. Ars Math. Contemp., 8(1):163–175, 2015.
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