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Abstract

Deep learning and variational analysis have revolutionized various
fields of science and engineering, for example the processing of 2D images.
In this thesis, we take on the challenge of transferring this enormous suc-
cess to areas of application in which geometric and high-dimensional data
structures play a central role. We propose methods for predicting prop-
erties of proteins using data structures such as four-dimensional arrays
containing evolutionary statistics, and for diffusion-weighted magnetic res-
onance imaging (diffusion MRI), which uses six-dimensional images.

One of the central questions in biology is to determine the structure
and function of molecules such as specific proteins. The first method pre-
sented here predicts information about the three-dimensional structure of
proteins, namely physical contacts between their amino acid residues. We
derive a neural-network architecture from hypothetically meaningful bio-
logical features that the network might learn to extract. This approach,
combined with end-to-end trained processing of rich evolutionary statis-
tics, directly outperforms state-of-the-art methods. The second group of
methods presented in this thesis predicts the function of molecules from
their three-dimensional structure. Our method focuses on features of the
structure that are responsible for how the molecule in question can in-
teract with other molecules, namely the electron density and electrostatic
potential fields. These fields are used directly as input to a neural net-
work that is trained to predict the function of molecules. We also propose
multi-channel representations that make it easier for the neural network to
distinguish different amino acid types and hence structural patterns. Our
methods achieve state-of-the-art results on small molecules and promis-
ing results on proteins. This indicates that neural networks can learn
how electron density and electrostatic potential dictate the interactions
between molecules.

Furthermore, we solve various challenges associated with diffusion MRI.
Diffusion MRI provides unique information about the microstructure of
living tissue, and thus is valuable for diagnosis, but so far its clinical
application has been limited by long scan time requirements. Our deep-
learning-based methods for diffusion MRI extract information from the
images in an optimized way, and thus allow to reduce the scan duration
by a factor of twelve. We also propose variational methods that use all
raw measurements of a scan to reconstruct the image, instead of treat-
ing each image slice and each diffusion direction separately. By using
synergies between neighboring slices and diffusion directions, our method
considerably improves the quality of reconstructed images.





Zusammenfassung

Deep Learning und Variationsrechnung haben zahlreiche Teilgebiete
der Wissenschaft und Technik revolutioniert, beispielsweise die Verarbei-
tung von 2D-Bildern. In dieser Dissertation übertragen wir diese Erfolge
in Anwendungsbereiche, in denen geometrische und hochdimensionale Da-
tenstrukturen eine zentrale Rolle spielen. Wir stellen Methoden vor, die
Proteineigenschaften aus Datenstrukturen wie vierdimensionalen Arrays
von Evolutionsstatistiken vorhersagen, sowie Methoden für diffusionsge-
wichtete Magnetresonanztomographie (Diffusions-MRT), welche sechsdi-
mensionale Bilder verwendet.

Eine der zentralen Fragestellungen in der Biologie ist es, die Struktur
und Funktion von Molekülen wie beispielsweise bestimmten Proteinen zu
ermitteln. Die erste hier vorgestellte Methode sagt Informationen über die
dreidimensionale Struktur von Proteinen vorher, und zwar physikalische
Kontakte zwischen ihren Aminosäureresten. Wir leiten eine Architektur
für neuronale Netze aus hypothetisch sinnvollen biologischen Merkmalen
her, die das Netz lernen könnte zu extrahieren. Dieser Ansatz, kombiniert
mit Ende-zu-Ende trainierter Verarbeitung von aussagekräftigen Evolu-
tionsstatistiken, liefert direkt bessere Ergebnisse als bisherige Methoden.
Die zweite Gruppe von Methoden, die wir in dieser Dissertation vorstel-
len, sagt die Funktion von Molekülen aus ihrer dreidimensionalen Struk-
tur vorher. Das Hauptaugenmerk liegt dabei auf bestimmten Merkmalen
der Struktur, die dafür verantwortlich sind, wie das jeweilige Molekül mit
anderen Molekülen interagieren kann. Diese Merkmale sind die Elektro-
nendichte und das durch Partialladung bedingte statische elektrische Feld.
Diese Felder werden direkt als Eingabe für ein neuronales Netz verwendet,
welches trainiert wird, die Funktion von Molekülen vorherzusagen. Wir
stellen auch Mehrkanalrepräsentationen vor, die es dem Netz erleichtern,
Aminosäuretypen und deshalb auch strukturelle Muster zu unterscheiden.
Unsere Methoden erreichen Spitzenergebnisse bei kleinen Molekülen und
vielversprechende Ergebnisse bei Proteinen. Dies deutet darauf hin, dass
neuronale Netze lernen können, wie Elektronendichte und das elektrische
Feld die Interaktionen zwischen Molekülen diktieren.

Darüber hinaus lösen wir mehrere Probleme im Bereich Diffusions-
MRT. Diffusions-MRT liefert einzigartige und wertvolle Information über
die Mikrostruktur von lebendem Gewebe und ist deshalb wertvoll für Dia-
gnostik, doch die klinische Anwendung war bisher durch lange Scanzeiten
beschränkt. Unsere auf tiefen neuronalen Netzen basierenden Methoden
für Diffusions-MRT extrahieren Information aus den Bildern auf eine op-
timierte Art und Weise und erlauben deshalb, die Scanzeit um den Faktor
zwölf zu verkürzen. Wir stellen auch eine Variationsmethode vor, die alle
rohen Messungen eines Scans verwendet, um das Bild zu rekonstruieren,
statt jede Bildschicht und jede Diffusionsrichtung getrennt zu behandeln.
Durch die Verwendung von Synergien zwischen benachbarten Bildschich-
ten und Diffusionsrichtungen ist unsere Methode in der Lage, die Qualität
der rekonstruierten Bilder deutlich zu verbessern.
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1 Introduction
Deep learning and variational analysis have revolutionized the field of computer
vision, particularly the processing of 2D images. For example, in classifying pho-
tographs from the ImageNet dataset, methods based on deep learning have been
ahead of other methods by a large margin ever since 2012, currently reaching
an accuracy of over 90% [Pham et al., 2020]. Also methods based on variational
analysis rather than machine learning provide good solutions to many difficult
ill-conditioned and ill-posed problems, see [Bredies and Lorenz, 2011, Vese and
Le Guyader, 2015]. They do not require any training data and are often the
best choice when training data are costly to obtain or contain biases that are
difficult [Mehrabi et al., 2019, Du et al., 2020] to deal with. Additionally, varia-
tional methods also allow solving inverse problems by using our knowledge of the
forward mapping (the mapping we aim to invert) in a straightforward manner.

The challenge we take on here is to transfer this enormous success of deep
learning and variational methods to new areas with complex geometric and
high-dimensional data structures. We have developed appropriate methods for
magnetic resonance imaging (MRI), particularly diffusion MRI, which uses six-
dimensional images (with mutually informative values living on curved sub-
manifolds of R6 such as R3×S2), and for proteins, which can have various data
structures associated with them, such as four-dimensional arrays (containing
information about coevolution of amino acids within a protein, defined for all
pairs of protein-chain positions and all pairs of amino acid types).

1.1 Outline of this Thesis
This thesis is structured as follows. We list our contributions in Section 1.2
and describe good practices for inventing new methods in Section 1.3. Section 2
describes the theoretical background: magnetic resonance imaging (MRI) and
diffusion MRI in Section 2.1, proteins in Section 2.2, deep learning in Section 2.3,
and variational analysis on Riemannian manifolds in Section 2.4. This is followed
by the four publications included in this cumulative dissertation in Section 3 and
by conclusions in Section 4.
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1.2 Our Contributions
This cumulative thesis consists of the following four publications (included as
Section 3):

[Golkov et al., 2016b] Golkov, V., Skwark, M. J., Golkov, A., Dosovitskiy, A.,
Brox, T., Meiler, J., and Cremers, D. (2016b). Protein contact prediction
from amino acid co-evolution using convolutional networks for graph-valued
images. In Annual Conference on Neural Information Processing Systems
(NIPS), Barcelona, Spain.

[Golkov et al., 2020b] Golkov, V., Skwark, M. J., Mirchev, A., Dikov, G.,
Geanes, A. R., Mendenhall, J., Meiler, J., and Cremers, D. (2020b). 3D
deep learning for biological function prediction from physical fields. In In-
ternational Conference on 3D Vision (3DV). c© 2020 IEEE. Reprinted with
permission.

[Golkov et al., 2016a] Golkov, V., Dosovitskiy, A., Sperl, J. I., Menzel, M. I.,
Czisch, M., Sämann, P., Brox, T., and Cremers, D. (2016a). q-Space deep
learning: Twelve-fold shorter and model-free diffusion MRI scans. IEEE
Transactions on Medical Imaging, 35. c© 2016 IEEE. Reprinted with per-
mission.

[Golkov et al., 2015b] Golkov, V., Portegies, J. M., Golkov, A., Duits, R., and
Cremers, D. (2015b). Holistic image reconstruction for diffusion MRI. In
Computational Diffusion MRI. Springer. Reprinted/adapted by permission
from Springer Nature Customer Service Centre GmbH: Springer Nature:
Computational Diffusion MRI (Proceedings of the 2015 MICCAI Workshop),
Editors: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. COPY-
RIGHT 2016

During the doctoral studies, also the following publications have been created:

[Aljalbout et al., 2018] Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M.,
and Cremers, D. (2018). Clustering with deep learning: Taxonomy and new
methods. arXiv preprint arXiv:1801.07648.

[Della Libera et al., 2019] Della Libera, L., Golkov, V., Zhu, Y., Mielke, A.,
and Cremers, D. (2019). Deep learning for 2D and 3D rotatable data: An
overview of methods. arXiv preprint arXiv:1910.14594.

[Do et al., 2018] Do, B. T., Golkov, V., Gürel, G. E., and Cremers, D. (2018).
Precursor microRNA identification using deep convolutional neural networks.
In bioRxiv preprint.

[Dosovitskiy et al., 2015] Dosovitskiy, A., Fischer, P., Ilg, E., Haeusser, P.,
Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., and Brox, T.
(2015). FlowNet: Learning Optical Flow with Convolutional Networks. In
IEEE International Conference on Computer Vision (ICCV).
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[Fabbro et al., 2020] Fabbro, G., Golkov, V., Kemp, T., and Cremers, D.
(2020). Speech synthesis and control using differentiable DSP. arXiv preprint
arXiv:2010.15084.

[Golkov et al., 2020a] Golkov, V., Becker, A., Plop, D. T., Čuturilo, D.,
Davoudi, N., Mendenhall, J., Moretti, R., Meiler, J., and Cremers, D. (2020a).
Deep learning for virtual screening: Five reasons to use ROC cost functions.
arXiv preprint arXiv:2007.07029.

[Golkov et al., 2015a] Golkov, V., Dosovitskiy, A., Sämann, P., Sperl, J. I.,
Sprenger, T., Czisch, M., Menzel, M. I., Gómez, P. A., Haase, A., Brox, T.,
and Cremers, D. (2015a). q-Space deep learning for twelve-fold shorter and
model-free diffusion MRI scans. In Medical Image Computing and Computer
Assisted Intervention (MICCAI), Munich, Germany.

[Golkov et al., 2014a] Golkov, V., Menzel, M., Sprenger, T., Haase, A., Cre-
mers, D., and Sperl, J. (2014a). Semi-joint reconstruction for diffusion MRI
denoising imposing similarity of edges in similar diffusion-weighted images. In
International Society for Magnetic Resonance in Medicine (ISMRM) Annual
Meeting.

[Golkov et al., 2013a] Golkov, V., Menzel, M., Sprenger, T., Menini, A., Cre-
mers, D., and Sperl, J. (2013a). Corrected joint SENSE reconstruction,
low-rank constraints, and compressed-sensing-accelerated diffusion spectrum
imaging in denoising and kurtosis tensor estimation. In ISMRM Workshop
on Diffusion as a Probe of Neural Tissue Microstructure.

[Golkov et al., 2013b] Golkov, V., Menzel, M., Sprenger, T., Menini, A., Cre-
mers, D., and Sperl, J. (2013b). Reconstruction, regularization, and quality
in diffusion MRI using the example of accelerated diffusion spectrum imaging.
In 16th Annual Meeting of the German Chapter of the ISMRM.

[Golkov et al., 2014b] Golkov, V., Menzel, M., Sprenger, T., Souiai, M., Haase,
A., Cremers, D., and Sperl, J. (2014b). Direct reconstruction of the average
diffusion propagator with simultaneous compressed-sensing-accelerated diffu-
sion spectrum imaging and image denoising by means of total generalized
variation regularization. In International Society for Magnetic Resonance in
Medicine (ISMRM) Annual Meeting.

[Golkov et al., 2014c] Golkov, V., Menzel, M., Sprenger, T., Souiai, M., Haase,
A., Cremers, D., and Sperl, J. (2014c). Improved diffusion kurtosis imaging
and direct propagator estimation using 6-D compressed sensing. In Organi-
zation for Human Brain Mapping (OHBM) Annual Meeting.

[Golkov et al., 2014d] Golkov, V., Sperl, J., Menzel, M., Sprenger, T., Tan,
E., Marinelli, L., Hardy, C., Haase, A., and Cremers, D. (2014d). Joint
super-resolution using only one anisotropic low-resolution image per q-space
coordinate. In Computational Diffusion MRI. Springer.
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[Golkov et al., 2013c] Golkov, V., Sprenger, T., Menini, A., Menzel, M., Cre-
mers, D., and Sperl, J. (2013c). Effects of low-rank constraints, line-process
denoising, and q-space compressed sensing on diffusion MR image reconstruc-
tion and kurtosis tensor estimation. In European Society for Magnetic Reso-
nance in Medicine and Biology (ESMRMB) Annual Meeting.

[Golkov et al., 2013d] Golkov, V., Sprenger, T., Menzel, M., Cremers, D., and
Sperl, J. (2013d). Line-process-based joint SENSE reconstruction of diffusion
images with intensity inhomogeneity correction and noise non-stationarity
correction. In European Society for Magnetic Resonance in Medicine and
Biology (ESMRMB) Annual Meeting.

[Golkov et al., 2013e] Golkov, V., Sprenger, T., Menzel, M., Tan, E., King, K.,
Hardy, C., Marinelli, L., Cremers, D., and Sperl, J. (2013e). Noise reduc-
tion in accelerated diffusion spectrum imaging through integration of SENSE
reconstruction into joint reconstruction in combination with q-space com-
pressed sensing. In International Society for Magnetic Resonance in Medicine
(ISMRM) Annual Meeting.

[Golkov et al., 2016c] Golkov, V., Sprenger, T., Sperl, J. I., Menzel, M. I.,
Czisch, M., Sämann, P., and Cremers, D. (2016c). Model-free novelty-based
diffusion MRI. In IEEE International Symposium on Biomedical Imaging
(ISBI), Prague, Czech Republic.

[Golkov et al., 2018a] Golkov, V., Swazinna, P., Schmitt, M. M., Khan, Q. A.,
Tax, C. M. W., Serahlazau, M., Pasa, F., Pfeiffer, F., Biessels, G. J., Lee-
mans, A., and Cremers, D. (2018a). q-Space deep learning for Alzheimer’s
disease diagnosis: Global prediction and weakly-supervised localization. In
International Society for Magnetic Resonance in Medicine (ISMRM) Annual
Meeting.

[Golkov et al., 2018b] Golkov, V., Vasilev, A., Pasa, F., Lipp, I., Boubaker,
W., Sgarlata, E., Pfeiffer, F., Tomassini, V., Jones, D. K., and Cremers, D.
(2018b). q-Space novelty detection in short diffusion MRI scans of multi-
ple sclerosis. In International Society for Magnetic Resonance in Medicine
(ISMRM) Annual Meeting.

[Gómez et al., 2015] Gómez, P., Sprenger, T., López, A., Sperl, J., Fernandez,
B., Molina-Romero, M., Liu, X., Golkov, V., Czisch, M., Saemann, P., Men-
zel, M., and Menze, B. (2015). Using diffusion and structural MRI for the
automated segmentation of multiple sclerosis lesions. In International Society
for Magnetic Resonance in Medicine (ISMRM) Annual Meeting.

[Haeusser et al., 2018] Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., and
Cremers, D. (2018). Associative deep clustering - training a classification net-
work with no labels. In Proc. of the German Conference on Pattern Recog-
nition (GCPR).
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[Kukačka et al., 2017] Kukačka, J., Golkov, V., and Cremers, D. (2017). Regu-
larization for deep learning: A taxonomy. arXiv preprint arXiv:1710.10686.

[Menini et al., 2015] Menini, A., Golkov, V., and Wiesinger, F. (2015). Free-
breathing, self-navigated RUFIS lung imaging with motion compensated
image reconstruction. In International Society for Magnetic Resonance in
Medicine (ISMRM) Annual Meeting.

[Menzel et al., 2015] Menzel, M., Sprenger, T., Tan, E., Golkov, V., Hardy, C.,
Marinelli, L., and Sperl, J. (2015). Robustness of phase sensitive reconstruc-
tion in diffusion spectrum imaging. In International Society for Magnetic
Resonance in Medicine (ISMRM) Annual Meeting.

[Müller et al., 2021a] Müller, P., Golkov, V., Tomassini, V., and Cremers,
D. (2021a). Rotation-equivariant deep learning for diffusion MRI. arXiv
preprint.

[Müller et al., 2021b] Müller, P., Golkov, V., Tomassini, V., and Cremers, D.
(2021b). Rotation-equivariant deep learning for diffusion MRI (short version).
In International Society for Magnetic Resonance in Medicine (ISMRM) An-
nual Meeting.

[Naeyaert et al., 2020] Naeyaert, M., Aelterman, J., Audekerke, J. V., Golkov,
V., Cremers, D., Pižurica, A., Sijbers, J., and Verhoye, M. (2020). Acceler-
ating in vivo fast spin echo high angular resolution diffusion imaging with an
isotropic resolution in mice through compressed sensing. Magnetic Resonance
in Medicine, 85(3):1397–1413.

[Naeyaert et al., 2021] Naeyaert, M., Golkov, V., Cremers, D., Sijbers, J., and
Verhoye, M. (2021). Faster and better HARDI using FSE and holistic re-
construction. In International Society for Magnetic Resonance in Medicine
(ISMRM) Annual Meeting.

[Pasa et al., 2019] Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., and Pfeiffer,
D. (2019). Efficient deep network architectures for fast chest X-ray tubercu-
losis screening and visualization. Scientific Reports, 9(1):6268.

[Peeken et al., 2017] Peeken, J., Knie, C., Golkov, V., Kessel, K., Pasa, F.,
Khan, Q., Seroglazov, M., Kukačka, J., Goldberg, T., Richter, L., Reeb, J.,
Rost, B., Pfeiffer, F., Cremers, D., Nüsslin, F., and Combs, S. (2017). Estab-
lishment of an interdisciplinary workflow of machine learning-based radiomics
in sarcoma patients. In 23. Jahrestagung der Deutschen Gesellschaft für Ra-
dioonkologie (DEGRO).

[Schuchardt et al., 2019] Schuchardt, J., Golkov, V., and Cremers, D. (2019).
Learning to evolve. arXiv preprint arXiv:1905.03389.

[Sperl et al., 2014] Sperl, J., Sprenger, T., Tan, E., Golkov, V., Menzel, M.,
Hardy, C., and Marinelli, L. (2014). Total variation-regularized compressed
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sensing reconstruction for multi-shell diffusion kurtosis imaging. In Interna-
tional Society for Magnetic Resonance in Medicine (ISMRM) Annual Meet-
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[Sperl et al., 2013] Sperl, J., Tan, E., Sprenger, T., Golkov, V., King, K., Hardy,
C., Marinelli, L., and Menzel, M. (2013). Phase sensitive reconstruction in
diffusion spectrum imaging enabling velocity encoding and unbiased noise
distribution. In International Society for Magnetic Resonance in Medicine
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[Sprenger et al., 2013] Sprenger, T., Fernandez, B., Sperl, J., Golkov, V., Bach,
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ment of compressed-sensing-accelerated diffusion spectrum imaging using a
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1.3 Good Practices for Inventing New Methods
In this section, we briefly outline a few techniques we used to invent new suc-
cessful methods.

1.3.1 Analysis of Requirements

A useful step in the creation of methods is to formulate the requirements for
an ideal method, for example intuitively in words, or even to formalize them
mathematically. Subsequently, some (out of possibly many) algorithms that
satisfy these requirements can be formulated, in some cases they can be even
formally derived from the formalized requirements.

For example, in [Schuchardt et al., 2019], we formulated the requirements
for fair treatment of different parts of the input, formalized the requirements
as equivariance (see Section 2.3.2) under permutations of data along certain
dimensions of the input, and subsequently used the most general affine neural
networks that fulfill these requirements in combination with common nonlinear-
ities that also fulfill these requirements.

As another example, in [Golkov et al., 2016b] (included here as Section 3.1),
we hypothesized what biological features that are useful for the final goal can
be extracted at each processing stage. The number of hypothetically meaning-
ful processing stages of features building upon each other provided an estimate
for the ideal number of neural-network layers. The location of lower-level in-
formation about these hypothetical features provided an estimate of the ideal
receptive field size for each neural-network layer. The number of these hypo-
thetical features provided an estimate of the ideal number of channels/filters in
each neural-network layer. Moreover, we also identified biological reasons for
a requirement for equivariance under translations. Together with the common
practice of using the most general trainable affine mappings followed by popular
nonlinearities (as seen in the majority of network layers nowadays), all require-
ments fully dictated our neural-network architecture. This architecture worked
immediately well, outperforming state-of-the-art methods, and further hyper-
parameter tuning did not considerably improve the results, i.e. our hypothesis
based on domain knowledge directly yielded successful network hyperparame-
ters. For details about neural networks in general, see Section 2.3.

1.3.2 Analysis of Weaknesses

A similar technique is to identify the weaknesses and failure cases of existing
algorithms. Weaknesses can be considered as non-fulfillment of requirements,
i.e. the procedure can be similar to the one described in Section 1.3.1. Moreover,
the weaknesses and the techniques to overcome them might have analogs in
existing literature from other fields.

For example, when analyzing existing algorithms that process diffusion MRI
data (see Section 2.1 for details about diffusion MRI), we noticed the following
“red flags”:
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• Large datasets with valuable information existed, but that information
was not being used while processing small datasets.

• Most processing steps were handcrafted, i.e. probably suboptimal rather
than jointly optimized to work together well.

A good practice in such cases is to use machine learning in order to make
use of the valuable information present in existing data. More specifically, so-
called end-to-end training of deep neural networks allows to jointly optimize
all feature-extraction stages to work together optimally. This is what we did
in [Golkov et al., 2016a, Golkov et al., 2016c, Golkov et al., 2018a, Golkov et al.,
2018b, Vasilev et al., 2019, Swazinna et al., 2019, Müller et al., 2021a] with
many benefits such as the shortening of the scan time by a factor of twelve,
which strongly improves patient comfort and reduces costs.

As another example, we noticed that most image reconstruction methods for
diffusion MRI treat each diffusion-encoded image from the same scan indepen-
dently, without making use of the strong correlations and potential synergies
between these different parts of the scan. That additional information has the
potential to improve the imperfect signal-to-noise ratio and even the image reso-
lution. Therefore, we used several measurements with different diffusion weight-
ings in a joint optimization procedure to improve each other’s resolution and
signal-to-noise ratio [Golkov et al., 2014d, Golkov et al., 2015b]. Particularly
in [Golkov et al., 2015b] (included herein as Section 3.4), we mathematically
formulated advanced prior knowledge about the geometrical properties of the
data and used it to improve the signal-to-noise ratio and resolution.

1.3.3 Data Flow between Mappings

Visualizing the data flow within existing algorithms can help to invent new
algorithms. There are different ways to visualize data flow. The following main
categories of “visual languages” for data flow can be distinguished, depending on
how mappings (i.e. data-processing steps) and variables (i.e. data) are visualized:

• A node (e.g. rectangle) represents a mapping. An arrow represents a
variable and connects outputs of some mappings to inputs of subsequent
mappings.

• A node (e.g. rectangle) represents a variable. An arrow represents a map-
ping and connects the input variables of that step to its output variables.
See for example Fig. 1 in [Golkov et al., 2016a] (included here as Sec-
tion 3.3)

• Some nodes (e.g. rectangles) represent variables, other nodes (e.g. rectan-
gles of a different color) represent mappings. An arrow represents data
flow and connects a mapping to its output variables, or input variables of
a mapping to that mapping.

• We are working on a publication about an advanced visual language for
data flow (and for other things) with “syntactic sugar”.
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Arrows can merge or branch to represent usage of several variables as inputs to
one mapping, or usage of one variable as input to several mappings.

If several algorithms share some mappings or variables, these algorithms can
be combined into one diagram without visualizing these mappings or variables
redundantly. For example, see Fig. 1 in [Golkov et al., 2016a], where several
algorithms are shown in one diagram. If some mappings or variables are not
identical but similar, the differences can be abstracted from, so that the algo-
rithms can be combined into one diagram.

To invent new methods, these data-flow diagrams can be modified, for ex-
ample by adding/replacing arrows. This corresponds for example to finding new
combinations of inputs and outputs (and thus streamlining the data processing
and/or using synergies between variables).

Due to the progress of deep learning methods and availability of training
data, an important trend is to replace a handcrafted (hence suboptimal) map-
ping (or especially a sequence of several) by one direct mapping performed
by a neural network, which is more optimal due to end-to-end training and
goal-oriented (see [Golkov et al., 2020a]) cost functions. For an example of
introducing new learning methods into data-flow diagrams, see the green ar-
rows in Fig. 1 in [Golkov et al., 2016a]. More specifically, a trend is to make
classical processing steps deeper (have more processing steps / network layers),
wider (have more features / channels), trainable (have additional parameters
with respect to which a data-driven objective function is being optimized), have
nonzero gradients (for example by smoothing the mapping, or more generally
replacing the cost function by one that hat has nonzero gradients and pos-
sibly highly nonlinear but still strong correlation with the original one [Yan
et al., 2003]) for compatibility with gradient-based optimization of the previ-
ous/current/subsequent processing steps, and/or to train several trainable pro-
cessing steps jointly (especially train all of them end-to-end). For example,
classical optimization algorithms (not to be confused with the “outer loop” of
optimization that trains the neural network) can be combined with recurrent
or feed-forward networks by using supervised learning or reinforcement learning
for improving the update steps, or using an optimization procedure as a layer in
a larger neural network [Andrychowicz et al., 2016, Li and Malik, 2017, Adler
and Öktem, 2017, Moeller et al., 2019, Mensch and Blondel, 2018, Amos and
Kolter, 2017].

A special case of this trend is to use the architecture of classical methods as
inspiration for the neural-network architecture of new methods, for example by
choosing a neural-network architecture for which it is easy to learn to do what
the classical method does. Alternatively, the neural-network weights can be
initialized by hand such that the network initially does (almost) exactly what
the classical method does. If the gradient is zero in that case because such
weights are exactly at a saddle point of the loss landscape, i.e. training cannot
progress, then slight noise can be added to the network weights without affecting
the output much, in order to break the symmetry. Then the network training
can start from there. An alternative to such handcrafted initialization is to pre-
train the neural network to do approximately what the classical method does,
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and then fine-tune on another training objective.

1.3.4 Data Flow between Data Domains

A variable carries certain information. Mapping/associating the value of the
variable to some “high-level representation” (for example an intuitive formula-
tion of the information content in words) of that information can be referred to
as the “meaning” of that variable; the result of this mapping can be referred to
as the “meaning” of that given value of the variable.

Irrelevant low-level details of the information are discarded by this mapping.
Thus, several values can have the same meaning. A meaning shared by several
values is similar to the concept of a macro-state in physics, i.e. the grouping
of several of the possible states of a system into a set based on some high-level
similarity.

A variable can take on values from a set of possible values. This set can
be referred to as the domain of the mappings that take this variable as input.
One can also consider the mathematical space in which this set lives. However,
unlike the mathematical definitions of domain and space, in fields such as image
processing and machine learning, these terms can be additionally associated
with the “meaning” of the variable. For example, domain adaptation refers to
not only adapting to a different set of possible variable values, but also “shifting
the meaning” to the new set. Another example are the terms k-space from MRI
and q-space from diffusion MRI. They refer not only to the mathematical space
(R2, R3) in which the variable lives, but also to the meaning of the variable,
i.e. k-space data represents the frequencies of the MRI image, q-space data
represents the relationship between diffusion measurement vectors and signal
decay.

Thus, a variable can be associated with its domain/space (accompanied by
the “meaning” of the variable). Each step (mapping) of the data-processing
pipeline thus maps a variable from some domain to a variable from a possibly
different domain. This data flow between domains can be visualized. A rectangle
can represent a domain, an arrow can represent a mapping.

Some spaces can be meaningfully decomposed into subspaces whose product
spans the entire space. For example, raw measurements in diffusion MRI can be
considered as separately acquired 3D k-spacemeasurements for each coordinate
in 3D q-space, or as data in six-dimensional k×q-space where joint information
along all dimensions is used. The joint k×q-space can be visualized as a rect-
angle containing two smaller rectangles – one for k-space and one for q-space.
Separate processing is visualized as arrows that leave/enter the smaller rectan-
gles, whereas processing that uses joint information in the 6D product space
is visualized as arrows that enter/leave large rectangles. An example of this is
Fig. 1 in [Golkov et al., 2013b]. The same can be summarized as a table. See
Fig. 1 here for a comparison of the two visualizations.

When acquiring all data has disadvantages, acquiring partial but comple-
mentary data and using joint information can be a good approach. For example,
in [Golkov et al., 2014d] we use different parts of k-space for different q-space
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Figure 1: Data flow between data domains (Fourier space k, physical space x,
diffusion-encoding space q) in diffusion MRI visualized as a diagram (left) and
as a table (right). Standard reconstruction maps k-space to x-space for each
q-space coordinate independently, i.e. it does not use valuable information con-
tained in other q-space coordinates. On the other hand, holistic reconstru-
tion [Golkov et al., 2015b] uses all the information from joint k × q-space to
produce the output in x × q-space, i.e. it uses synergies between the measure-
ments along all dimensions. Our analysis of existing methods in terms of data
flow between data domains [Golkov et al., 2013b] inspired the creation of meth-
ods with better data flow and better results [Golkov et al., 2014d, Golkov et al.,
2015b, Golkov et al., 2016a, Golkov et al., 2018a].

coordinates.

1.3.5 General Formulations of Methods

It is worthwhile to find a general formulation/formula whose special cases are
existing methods. This allows systematically creating more special cases and
systematically searching the space of methods for the best methods. See for
example Table 1 in [Duran et al., 2016].

Getting an overview and finding common patterns can be facilitated by
bringing existing formulas into similar forms with consistent variable names.
See for example Figure 4 in [Goldluecke et al., 2012], Table 6.1 in [Couprie,
2011], and Table 2 in [Aja-Fernández et al., 2009].

Tables of Method Properties A specific way to systematize methods is
to identify the atomic properties of existing methods (possibly by decomposing
some properties as far as possible into several independent sub-properties) and
list the properties for each method in a table (one method per row, one property
per column). For example, see Tables 1–2 in [Kukačka et al., 2017], Tables 1–4
in [Della Libera et al., 2019], Table II in [Justesen et al., 2019], Table 1 in [Tewari
et al., 2020], Figs. 2–3 in [Poorman et al., 2020].

Subsequently, new combinations of existing properties can be created in
a straightforward manner. By using this technique, we created a clustering
method that outperformed state-of-the-art methods, see Table 1 in [Aljalbout
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et al., 2018]. Another example where a new combination of existing properties
yielded a new successful method is Table 1 in [Tzeng et al., 2017].

Information about impossible combinations of method properties can also be
added to such a table, namely by filling in the conflicting/incompatible method
properties in the respective columns, putting wildcards (e.g. “Any” or “*”) into
the other columns, and writing “Not possible because ...” in the header column.

An alternative to a table of binary properties of methods is a Venn diagram
or an Euler diagram of methods, for example Fig. 2 in [Tay et al., 2020]. For
additional examples of alternative visualizations, see [Vegas et al., 2009].

Some properties, or combinations of properties, can have advantages in cer-
tain situations. This allows identifying which methods have an optimal combina-
tion of properties, or whether such methods are yet to be created. For an exam-
ple where advantages/disadvantages are marked, see Tables 1–4 in [Della Libera
et al., 2019].

A table of method properties can be considered an ontology (in the sense of
information science), but is often called taxonomy to avoid confusion with the
term ontology from philosophy.

1.3.6 Family Trees of Methods

In the strict sense, a taxonomy is a family tree (of methods). Such a visualization
can help gain an overview of which methods inherited what properties from
which other methods, and what properties contributed to good results. Arrows
(indicating kinship relations) and methods can be annotated with the properties
of methods, for example via additional text or colors. An example is Fig. 4
in [Justesen et al., 2019].
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2 Theoretical Background

2.1 MRI and Diffusion MRI
Magnetic resonance imaging (MRI) is an imaging technique that noninvasively
measures millimeter-resolved 3D maps of various physical properties (such as
water content or diffusivity) inside of objects and living beings. These mea-
surements are based on various physical phenomena. Section 2.1.1 describes
the physical phenomenon of nuclear magnetic resonance. Based on that, Sec-
tion 2.1.2 explains basic techniques used in MRI, which yield 3D images based
on properties of (biological) tissue such as water content and nuclear relaxation
times. Section 2.1.3 explains basic techniques used in diffusion MRI, which yield
6D images of diffusion, i.e. 3D statistics of water self-diffusion for each 3D voxel
of the object. Section 2.1.4 describes how an effect called the spin echo is used
to improve the signal-to-noise ratio in diffusion MRI.

In these sections, the term gradient is used not in the sense of a derivative,
but in its more mundane sense, namely a spatial gradient, i.e. a scalar field whose
derivative is nonzero, and in our case equal in all points of the imaged volume.

2.1.1 Magnetic Resonance

In a strong constant magnetic field (like the field maintained by an MRI scan-
ner), the nuclear spins (intrinsic angular momenta of atomic nuclei) exhibit
precession (i.e. their orientation rotates, like the axis of an evenly wobbling
spinning top or gyroscope) with the so-called Larmor frequency around the
magnetic field direction. The Larmor frequency is proportional to the magnetic
field strength.

The applied magnetic field is slightly modified locally due to magnetic sus-
ceptibility andmagnetic moments of the electrons surrounding the atomic nuclei.
The distribution of electron density around a nucleus depends on the chemical
structure of the molecule. Thus, nuclei of the same isotope but with differ-
ent chemical surroundings perceive a slightly different magnetic field strength.
Therefore, they also have slightly different Larmor frequencies. This shift of the
Larmor frequency due to chemical surroundings is referred to as the chemical
shift. The most abundant species in living tissue are the hydrogen nuclei of
water molecules. Thus (and due to having nonzero spin), they provide a strong
signal and are most often used in MRI (i.e. it is their Larmor frequency that is
used in the pulses described in the following).

At equilibrium, the spins have a very slight tendency to be aligned with
the magnetic field direction, resulting in a very slight net magnetization in
that direction. An electromagnetic pulse with the Larmor frequency flips the
net magnetization away from the direction aligned with the field. This effect
is called magnetic resonance. The pulse is a radiofrequency pulse because the
Larmor frequency in MRI is within the radiofrequency spectrum. A pulse whose
duration achieves a flip of the net magnetization by 90◦ is called a 90◦ pulse (or
an excitation pulse because it brings the net magnetization out of its equilibrium
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state). A signal can then be measured with a receiving radiofrequency coil
(which may be the same coil that was used to emit the radiofrequency pulse).

For a more detailed overview of magnetic resonance and a refutation of
common misconceptions about it, see [Hanson, 2008].

2.1.2 Magnetic Resonance Imaging

The transversal magnetization (the component of the net magnetization of spins
that is perpendicular to the background magnetic field lines) rotates with the
Larmor frequency and thus provides a measurable radiofrequency signal. This
signal can be represented as a scalar: the magnitude of the radiofrequency wave
and, if the signal is represented as a complex scalar rather than a real scalar,
the phase of the wave. In order to obtain a 3D image, i.e. to measure the
contributions from different parts of the object (e.g. due to different amount of
water in different parts) rather than just one scalar for the entire object, several
techniques are typically used in sequence, namely rotating the spins away from
their equilibrium state only in a part of the object, then dephasing these spins
in many different ways in order to measure many Fourier components of the
spatial distribution of the spins, and then repeating these steps for a different
part of the object. Details are described in the following.

An MRI scanner has additional electromagnetic coils that can be switched
on to modify the magnetic field. By adding a weak linear magnetic field gradient
(i.e. a field strength whose equidistant level sets are equidistant planes within the
scanner, with several millitesla per meter) to the strong magnetic field (which
is constant in space, at several tesla), the Larmor frequency in different slices of
the volume (level sets of the magnetic field strength) becomes different. Thus,
a radiofrequency pulse with a narrow frequency band rotates only the spins in
a narrow slice of the volume, whose Larmor frequency corresponds to the pulse.

Subsequently, linear magnetic field gradients are applied in different direc-
tions perpendicularly to the selected slice, so that the spins dephase in a struc-
tured manner and their contributions to the signal become weighted by 2D
cosine waves of different 2D directions and frequencies. Applying certain linear
magnetic field gradients (thus changing the dephasing of spins and the direc-
tions and frequencies of the 2D cosine wave) and measuring the signal is repeated
many times. The obtained measurements correspond to a Fourier transform of
the 2D image of the selected slice. This process is repeated for each slice, with
short delays in which the spins of the previously measured slice relax, which is
outlined in the following paragraph.

The longitudinal magnetization (net magnetization parallel to the constant
magnetic field) and the transversal magnetization (net magnetization perpen-
dicular to the constant field) both return to their equilibrium states at different
rates that depend on the local physical tissue properties. This is referred to as
relaxation.

To reconstruct the 2D image of each slice, the inverse Fourier transform can
be used. Alternatively, reconstruction algorithms can be used that suppress the
measurement noise by taking advantage of prior knowledge about typical im-
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ages. Such prior knowledge can be formulated mathematically as regularization
terms [Knoll et al., 2011], also leveraging synergies between different slices and
image contrasts [Golkov et al., 2015b] (presented here as Section 3.4), or learned
from datasets [Zhu et al., 2018].

For an in-depth discussion of MRI, see [Brown et al., 2014].

2.1.3 Diffusion MRI

Water in biological tissue exhibits (self-)diffusion, i.e. the water molecules move
randomly, colliding with each other and with other types of molecules. The
statistics of this diffusion are affected by restrictions and hindrances that the
water molecules encounter, such as membranes, organelles, large molecules, as
well as subtle molecular interactions that contribute to effects such as viscosity.
Thus, diffusion statistics contain unique valuable information about the tissue
microstructure.

A group of MRI techniques called diffusion MRI provides a unique way to
measure certain statistics of diffusion, and thus to non-invasively obtain unique
information about the tissue microstructure. Many diseases, such as neurode-
generative diseases, affect the tissue microstructure and the measurable diffusion
statistics. Diffusion MRI thus enables a more precise diagnosis and more tar-
geted treatment.

Making the measured signal strongly dependent on the diffusion works as
follows. After the excitation pulse, a relatively strong linear magnetic field gra-
dient is applied in the direction in which the diffusion should be measured. This
creates a spatial gradient in the Larmor frequencies of the spins, i.e. the spins
dephase. After this first diffusion-encoding gradient is switched off, a certain
amount of time is allowed to pass, during which most of the measured diffusion
happens. Then, another, opposite gradient is used. This second diffusion-
encoding gradient reverses the dephasing effect of the first diffusion-encoding
gradient for spins that did not change their position. On the other hand, for
molecules that moved much, the effects of the two gradients on their phase do
not cancel each other out in general. These spins are not in phase with the spins
that did not move much, and thus the overall signal is weaker.

How much diffusion affects the diffusion-weighted signal depends on the
value b of the diffusion weighting, which in turn depends on the strength G
of the diffusion-encoding gradients (in millitesla per meter), their durations δ,
and the time ∆ between their beginnings. For simplified transitions between
“on” and “off” states of the gradients, the diffusion weighting is

b = γ2G2δ2
(

∆− δ

3

)
, (1)

where γ ≈ 2.675 rad/s/T is the gyromagnetic ratio of the hydrogen nucleus.
Usually G is modified to achieve different b-values during the same scan, whereas
∆ and δ are kept constant.

Note that the gradients mentioned in Section 2.1.2 also create a diffusion
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weighting, but a relatively weak one, due to their smaller magnitude and dura-
tion [Pipe, 2014].

Diffusion can be quantified by comparing the diffusion-weighted signal (im-
age intensity) S with the non-diffusion-weighted signal S0. If the b-value is too
low, the diffusion-weighted signal is similar to S0, and similar in all diffusion-
encoding directions. If the b-value is too high, the signal is similar to zero, and
similar in all directions. In both cases, the measurement noise prevents an ac-
curate quantification of the diffusivity and of any kind of diffusion anisotropy.
Diffusion is best quantified at intermediate b-values, such as 1000 s/mm2 in bio-
logical tissue, where the signal is different from S0 and from 0, and – if the tissue
microstructure is anisotropic – considerably different in different directions.

The direction and weighting of the diffusion encoding can be expressed as
a vector in diffusion-encoding space (q-space), where the direction of the vec-
tor corresponds to the diffusion direction and its length is proportional to

√
b.

Usually a few dozen q-space coordinates are sampled during a scan.
Diffusion MRI is richly illustrated and described in Chapters 1–3 of [Mori,

2007]. It is also described in detail in [Johansen-Berg and Behrens, 2013, Jones,
2010]

2.1.4 The Spin Echo in Diffusion MRI

The aforementioned diffusion time ∆ is relatively long (many milliseconds).
The transversal magnetization decays during that time due to relaxation. This
causes the signal to drop, whereas the considerable thermal noise in the mea-
surements remains the same. In other words, the signal-to-noise ratio (SNR)
drops. To prevent a low SNR, a radiofrequency pulse between the excitation
pulse and the signal readout is used that flips the magnetization by 180◦. This
causes spins that dephased due to field inhomogeneity before the 180◦ pulse to
rephase after it. The reason for the rephasing is the following. Spins that saw a
slightly stronger field due to field inhomogeneity precessed slightly faster than
other spins and were “ahead” of other spins in terms of phase; the 180◦ pulse
flips them such that they are “behind” other spins in terms of phase and grad-
ually catch up with the other spins because the other spins still precess more
slowly due to the largely unchanged field inhomogeneity. When the rephasing is
complete (i.e. after the same amount of time as the dephasing time between the
90◦ pulse and the 180◦ pulse), the signal reaches another peak, called the spin
echo. This is when signal readout is performed in order to ensure the highest
possible SNR before the signal decays again.

The 180◦ pulse not only inverts the dephasing caused by the field inhomo-
geneity, but also inverts the dephasing caused by the first diffusion-encoding
gradient (which was applied before the 180◦ pulse). Therefore, the second
diffusion-encoding gradient must be applied in the same direction as the first
one (and not in the opposite direction as in the case described in Section 2.1.3
without a 180◦ pulse) in order to rephase the non-diffusing spins.

Apart from the described sequence of radiofrequency pulses and (pulsed)
gradients, myriads of other pulse sequences are possible, yielding different im-
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age contrasts. For an in-depth introduction, see [Bernstein et al., 2004]. No-
table recent examples are random pulse parameters [Ma et al., 2013] and pulse
sequences optimized to make the loud vibration of coils sound like music for
improved patient comfort [Ma et al., 2016].
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2.2 Proteins
Proteins are molecules and molecular complexes that are among the main build-
ing blocks of life. Different proteins carry out a multitude of functions related
to metabolism, reproduction, signal transduction, repair, immune response, de-
velopment and maintenance of body structure, motion, and more. Proteins play
a central role in processes of life as well as many diseases. Understanding their
function is essential.

The structure of a molecule dictates how the molecule can spatially interact
with other molecules physically and chemically, i.e. the structure dictates the
function. Therefore, inferring the structure of proteins is a central problem in
biology and medicine.

2.2.1 Protein Structure

A protein chain is a molecule that consists of any long sequence of amino acid
residues. There are 20 main types of amino acid residues. Their linear arrange-
ment in the chemical structure of the protein chain is called the sequence of the
protein or its primary structure.

Physically, a protein chain has many freely rotatable chemical bonds, i.e.
degrees of freedom for its 3D structure. Due to Brownian motion (random col-
lisions with other molecules), parts of the molecule rotate against each other.
Depending on relative positions between atoms, van der Waals forces (e.g. at-
traction due to opposite partial charges) act between them, making certain con-
formations (3D arrangements of the molecule) more energetically stable than
others. In this dynamic process, the molecule tends to stay in energetically
stable conformations, as it is much more difficult to undo them through Brow-
nian motion at moderate temperatures. Immediately after and even as early as
during its synthesis, a protein chain begins this “folding” process.

The local 3D arrangement of residues that are neighbors in the primary
structure is referred to as the secondary structure. In other words, a local seg-
ment of the sequence may fold into a so-called secondary-structure element,
for example a helix. There are several types of helices with different tight-
ness (about 3.0 residues per helical turn in 310-helices, about 3.6 residues per
turn in α-helices, and about 4.1 residues per turn in π-helices) and handedness
(most of the naturally occurring helices are right-handed). This classification of
secondary-structure elements is based on the angles (φ, ψ) of the chemical bonds
in the protein backbone (i.e. between the amino acid residues). For example,
the backbone angles φ and ψ within an α-helix are very roughly −60◦ and −45◦,
respectively. A typical helix is about a dozen residues long. However, for ex-
ample the yeast protein Bud6 (PDB ID 3okq) contains an α-helix that is 79
residues long. The other common secondary-structure element apart from the
α-helix is the β-strand. A β-strand is structurally stable if it forms a so-called
β-sheet together with other β-strands.

Overall, the secondary-structure elements of one or several protein chains
fold together into a global, energetically stable 3D conformation. For each
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protein chain, the global 3D structure is called the tertiary structure. If several
protein chains form a stable 3D structure together, it is called the quaternary
structure.

The term protein may refer either to one protein chain, or to a structural
complex consisting of several protein chains.

Most (but not all) natural proteins have a unique stable energy well that is
easily accessible by the random folding process. This is referred to as Anfinsen’s
dogma. Some exceptions exist, such as fold-switching [Porter and Looger, 2018].
Even after folding, and even if the structure is stable, the bonds of the molecule
remain in constant motion, varying slightly around the energy minimum due to
Brownian motion. In other words, the stable energy well is not infinitely nar-
row, i.e. due to incessant random collisions with other molecules such as water
molecules, the atoms within each molecule are incessantly moving, most of them
only slightly and in an elastic manner, maintaining their rough location relative
to each other. See for example the videos in the Supplementary Information of
[Bock et al., 2013] for a comparison of such random motion of the atoms on a
nanosecond scale and the slower stochastic transitions between slightly different
folds throughout the functional cycle of the molecular complex on a microsecond
scale.

2.2.2 From DNA to Protein

The main steps in the creation of a protein from the gene that codes for it are
the following:

DNA
Tran-

scription−−−−−→ pre-mRNA
Splicing
etc.−−−−−→ Mature

mRNA

Trans-
lation−−−−→ Nascent

protein

Posttranslational
modifications−−−−−−−−−−−→ Protein

Each processing step is catalyzed by specific biomolecules. In the following,
we describe only the main products of each step, rather than the catalysts and
byproducts.

First, the gene is transcribed from the DNA into a so-called precursor mes-
senger RNA (also called precursor mRNA or pre-mRNA). This primary tran-
script molecule consists of a sequence of nucleotides that is complementary in
terms of base pairing to the template DNA strand of the respective gene. This
complementarity means that each cytosine base in the DNA is transcribed into a
guanine base in the RNA, and analogously guanine to cytosine, thymine to ade-
nine, and adenine to uracil (note that the uracil is rare in DNA, whereas thymine
is rare in RNA). Also note that not only pre-mRNA is transcribed from DNA,
but also noncoding RNA (ncRNA) that take on a multitude of functions [Cech
and Steitz, 2014].

The pre-mRNA then undergoes posttranscriptional modifications that turn
it into a mature mRNA. A modification that can influence the protein sequence
in several different ways is splicing, i.e. the removal of non-coding regions (in-
trons) from the pre-mRNA. A large percentage of genes yield RNA that has
several splicing variants, i.e. splicing of the respective pre-mRNA sequence can
happen in more than one way, in general yielding different protein sequences.
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This is referred to as alternative splicing. While the number of splicing variants
can be moderate for most genes, a gene of the “fruit fly” Drosophila potentially
has up to 38000 splicing variants [Schmucker et al., 2000]. The resulting cell
surface proteins (produced in neurons) can be used to distinguish individual
neurons from each other. This is thought to contribute to guiding the neuronal
connectivity [Schmucker et al., 2000, Neves et al., 2004]. Other posttranscrip-
tional modifications are capping and polyadenylation – chemical reactions that
add extensions to the two ends of the RNA molecule. The result of all these
modifications is a mature mRNA.

The mature mRNA is translated into a protein chain according to the genetic
code, i.e. each triplet of consecutive bases in the mRNA is either translated into
a certain amino acid type out of 20 or terminates the chain. For example, the
nucleotide base triplet uracil–cytosine–uracil codes for the amino acid serine,
whereas uracil–adenine–adenine is one of the three stop codons, i.e. it terminates
the translation. Note that insertions or deletions of bases in the RNA sequence
(for example due to DNA mutations or alternative splicing) whose length is not
a multiple of 3 cause a shift of the reading frame (subdivision of the mRNA
sequence into coding triplets), such that an entirely different protein sequence
is produced.

There are many mechanisms by which the aforementioned steps are regulated
depending on the location (tissue type), time, and environmental conditions.
Very different species share many of their genes, i.e. reuse similar “building
blocks” (biomolecules). Many differences between species are due to differences
in the regulation of gene expression (i.e. when which “building blocks” are created
in what amounts) rather than merely due to differences between genes that code
for biomolecules.
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2.3 Deep Learning
Machine learning (ML) is a large and successful family of heavily dataset-driven
algorithms. Instead of processing each sample of data (stand-alone piece of data)
independently in a handcrafted hard-wired way like many other algorithms do,
ML algorithms use entire datasets of samples to adjust the rules of their behavior
towards each sample. This allows them to process each sample more optimally,
if additional information which is valuable for the processing of this sample is
contained in some of the other samples.

2.3.1 Supervised Learning and Generalization

One of the most popular settings of ML is supervised learning. In supervised
learning, a training set consisting of samples is given. Each such training sample
number i consists of an input xi ∈ X (from some set X called the input feature
space) and an output target ti ∈ Y (from some set Y called the output feature
space). The goal is to find a mapping f that satisfies the property f(xi) ≈ ti
for many of the training samples (xi, ti) as well as additional properties called
inductive bias, detailed below. In other words, the training set provides examples
of what approximately f should output for certain inputs. After optimizing the
mapping f to match the training set, f is applied to a test set, i.e. samples for
which only inputs but no ideal outputs are known. For test samples that are
not in the training set, the mapping f should output values that are in certain
ways consistent with the training set, i.e. generalize well to previously unseen
samples. Which properties of f are considered as good generalization depends
on the application at hand. Some properties can be hardwired by limiting the
search for f to candidates that have these properties. Other properties can be
approximated by choosing a search procedure that is likely to find an f that
fulfills these properties to a large extent. These “hard” and “soft” constraints on
f are also called inductive bias. For details, see [Kukačka et al., 2017].

For a more formal description of good generalization, one can assume that
data samples come from an unknown probability distribution P over the product
space X × Y . The goal of supervised learning is then to find a mapping f :
X → Y such that for most inputs x ∈ X which have relatively high probability
density according to (the marginal of) P , the output f(x) is close to a high-
density region of the conditional (given x) probability distribution of the data
over Y .

If the mapping f is probabilistic, it is called a generative model and usually
tries to model the entire distribution (conditional distribution given the con-
ditioning variable x). More often though, the mapping f is deterministic. In
that case, if several output values are similarly valid for a given input, some
compromise value is used.

Failures to perform well on test samples can be roughly divided into two
categories: underfitting and overfitting. In the case of underfitting, the model
performs badly on training samples and on test samples. A common reason for
underfitting is that the family of models over which the search for f happens
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consists of models that are too simple for the dataset, or that the search proce-
dure fails to discover models that are good at least on the training set, let alone
the test set. An example is when too little time is allotted to the search. In the
case of overfitting, the model performs well on training samples, but badly on
test samples. A common reason for overfitting is that the family of models is
too large and the models are too complicated, i.e. models that perform well on
the training set offer too many inappropriate possibilities of what to output for
test samples, rather than only a few appropriate possibilities. For an overview
of techniques that improve the results, see [Kukačka et al., 2017].

The term feature can have two meanings: a dimension of a feature space
(each sample has a value; for example each tree has a height), or a subset
of a feature space (each sample either belongs to that subset, i.e. has that
feature, or not; for example each tree either has a height and thickness such
that it withstands a certain wind speed without breaking, or not). These two
meanings of the term “feature” can be to a certain extent considered two sides
of the same coin, because feature extractors (for example layers of a neural
network) can map (low-level) features such as tree height and thickness into a
different feature space in which one of the dimensions describes (higher-level)
features such as wind-endurance of a tree.

2.3.2 Popular Neural-Network Architectures

The term artificial neural network, often simply neural network (NN), nowadays
can refer to almost any mapping fw with parameters w. These parameters are
the optimization variables in a “training” procedure that seeks to optimize some
loss function. Neural networks are an important subfield of machine learning.

Network of Layers A neural network fw can be decomposed into a directed
acyclic graph of “intermediate” mappings called layers, for example

fw(x) ≡ f (5)w

(
f (4)w

(
f (2)w (x)

)
, f (3)w

(
f (1)w (x), f (2)w (x)

))
(2)

with layers f (1)w to f (5)w , where not necessarily each of the parameters w influ-
ences each layer. This decomposition of fw into layers is not unique, it can
be performed in many ways, but usually only one or a few ways are chosen.
An example of several competing decompositions is that some publications and
programming frameworks consider dropout (setting random features to zero [Sri-
vastava et al., 2014]) and/or nonlinearities as standalone layers, whereas others
consider them as part of the layer that performs the preceding affine mapping.

Features that are the outputs of some layer and the inputs of subsequent
layers (rather than outputs of the neural network) are referred to as latent
features.

The graph representation of so-called recurrent neural networks can be drawn
with cycles, or alternatively “unrolled” into a directed acyclic graph.

The success of neural networks stems from the fact that, even though each
layer performs a simple mapping (for example an affine mapping followed by
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a simple nonlinear function), there are many layers, i.e. all layers together can
learn to perform quite complicated mappings, and all of them are usually trained
jointly (end-to-end) to optimize some final goal, which is defined using all avail-
able (training) data. Over the training iterations, all layers are iteratively im-
proved to work optimally with each other.

Multilayer Perceptrons The most famous classical NN architecture is the
multilayer perceptron (MLP): a function composition (i.e. the graph of layers is
a directed path, i.e.

fw = f (L)
w ◦ f (L−1)w ◦ · · · ◦ f (2)w ◦ f (1)w , (3)

where L is the number of layers) of so-called fully connected layers. A fully
connected layer number ` performs an arbitrary affine mapping followed by a
simple nonlinear function, i.e. it has the form

f
(`)

W (`),b(`)
(x) = s(`)

(
W (`)x+ b(`)

)
(4)

with trainable weight matrix W (`), trainable bias vector b(`), and a fixed non-
linearity s(`)(·).

The Terms “Neural”, “Network”, “Weights” Multilayer perceptrons and
similar NN architectures have coined the terms “neural network” and “weights”.
Interestingly, these terms are less appropriate for some newer NN architectures,
but are still in use for historical reasons. A fully connected layer has a graphical
interpretation as a network of neurons, see Fig. 2.

However, in some newer layer types, identification of individual neurons is
more difficult or less commonly done; or biological neural networks are not the
primary inspiration for their low-level structure. The term “neural network” is
nonetheless used for many types of parametric mappings.

On the other hand, the term “network” has seen an increase in importance.
MLPs have a dense network of connections within each layer (hence the term
“neural network”) but a very simple network of connections between layers.
Newer architectures have a more complicated network of connections between
layers, for example due to skip-connections [Ronneberger et al., 2015, He et al.,
2016, Huang et al., 2017] or parallel processing paths [Szegedy et al., 2016,
Szegedy et al., 2017].

In MLPs, most of the trainable parameters (W but not b) are multiplied by a
layer’s inputs, i.e. they weight the layer’s inputs. For this historical reason, the
term “weights” is often extended to trainable parameters that are used differently
than for weighting the inputs.

Equivariance An important family of properties of neural network layers is
equivariance (and its special cases invariance and same-equivariance). Intu-
itively, invariance of a mapping f (e.g. of a neural network) means that apply-
ing certain transformations to the input of f does not affect the output. This
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Figure 2: Graphical interpretation of a fully connected layer (formula on the
left) as a network of neurons (right). The input is the feature vector (1, 2, 3)T ,
the connections (red) of the three respective input neurons (blue) to the two
output neurons (green) have associated weights (red). The activation of each
output neuron is the respective bias value (orange) plus a weighted sum of the
inputs. A nonlinearity (not shown) would further modify the activations before
they serve as input to the next layer. Similar biological neural networks have
inspired the usage of such artificial neural network architectures and coined the
term “artificial neural network”.

is useful for example if objects in images should be detected well, regardless
of their location and orientation, i.e. with invariance under spatial shifts and
rotations. Same-equivariance means that applying certain transformations to
the input of f changes the output via the same transformation. For example,
rotating the input rotates the output in the same way, which is useful in applica-
tions such as image segmentation. More generally, equivariance of f means that
applying some transformation φg to some input x causes the output to change
via a certain corresponding transformation ψg that does not depend on x:

Definition 1. A function f : X → Y is equivariant under a group G (with
some group actions φ and ψ of G that transform X and Y , respectively) if

f(φg[x]) = ψg[f(x)] ∀g ∈ G ∀x ∈ X, (5)

where φg is the action of g on X, i.e. a transformation (for example rotation) of
the input of f , and ψg is the action of g on Y , i.e. an “associated” (via the same
g) but possibly different transformation (for example linear transformation) of
the output of f . The usage of g ∈ G to associate ψg with φg is important
for correct composition of several transformations. For example, if φg is a 180◦
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rotation, i.e. φgφg is the identity mapping, then ψgψg should also be the identity
mapping.

Definition 2. A special case of equivariance is same-equivariance [Dieleman
et al., 2016], when Y = X and ψ = φ. In some sources, same-equivariance is
called equivariance, and what we call equivariance is called covariance.

Definition 3. A special case of equivariance is invariance, when ψ is the
identity, e.g. when rotating the input of f has no influence on the output.

Invariance and same-equivariance are not the only types of equivariance
that are common in deep learning. Some network layers possess an equivari-
ance where in general ψg 6= φg (unlike same-equivariance), but where there are
nonetheless as many different group actions ψg as there are different group ac-
tions φg (like in same-equivariance; unlike invariance, where all ψg are equal).
Using the example where φg are rotations of images, such an equivariance en-
sures that spatial features are detected equally well regardless of their orienta-
tion, but nonetheless information about their orientation is not discarded (unlike
in the case of invariance) and can be used by the following neural network lay-
ers to assess the relative orientation of several features to each other, or their
absolute orientation. For example, convolutions with so-called steerable filter
banks possess an equivariance where φg are 2D spatial rotations of the input
and ψg represent not only the corresponding rotations of the output but also
a corresponding rotation of the feature-space coordinate system, i.e. a certain
linear reweighting of the image channels.

Note that invariant mappings discard information about which transforma-
tion φg was applied to the input. Even if the entire network is overall invariant,
it is often better to discard information about φg in late layers than in early
ones, in order to be able to assess the relative orientations between intermediate-
level features in intermediate layers. Thus, oftentimes the first many layers are
equivariant, and the last ones are invariant, all with compatible transformations
(group actions), making the network overall invariant.

Note that terms like “equivariant under rotations” usually imply that φg are
spatial rotations for the input layer, but not necessarily for every layer; rather,
the abstract group G is the rotation group SO(n), whereas the group actions
are not always simple spatial rotations.

If the content of a rectangular image is rotated (and/or translated), the
“field of view” changes, i.e. features that used to be in the corners disappear
and new features appear in the corners. This has caused some confusion as to
how rectangular images can be processed in a rotation-equivariant way. The
explanation is this: An output value of the neural network is only affected if the
change of features is within its receptive field and the network has not learned
from data that such a feature change should be irrelevant for the output. For
example, if the network has learned from data that the detection of cats should
be unaffected by the presence of clouds in other parts of the image, then a cloud
appearing in the corner due to rotating the camera will not affect the detection
of a cat in the image.
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Similarly, if two input features are rotated relatively to each other, an out-
put value changes only if both input features are within its receptive field and
the network has not learned that such a relative rotation should be processed
equivariantly.

For details about equivariant neural networks, see [Della Libera et al., 2019,
Cohen et al., 2019, Weiler and Cesa, 2019, Kondor and Trivedi, 2018] and re-
sources available from https://e3nn.org/#.

Layer Types An overview of popular types of neural-network layers is given
in Table 1. Layers should be chosen such that the overall network architec-
ture (not only some of the layers) has properties that are appropriate for the
dataset/application at hand, such as equivariance under certain transformations.

The overall architecture is equivariant if each layer f (`) is equivariant with
the same group actions ψ(`)

g at the output (see Definition 1) as the group actions
φ
(`+1)
g at the input of the subsequent layer f (`+1), i.e. φ(`+1)

g = ψ
(`)
g for all g ∈ G.

This can be shown by applying Eq. (5) twice as follows:

f (`+1) ◦ f (`) ◦ φ(`)

= f (`+1) ◦ ψ(`) ◦ f (`)

= f (`+1) ◦ φ(`+1) ◦ f (`)

= ψ(`+1) ◦ f (`+1) ◦ f (`).

(6)

Receptive Field The receptive field is the part of the input that influences a
given output value. For example, in a pixels-to-pixels convolutional network, not
necessarily all input pixels influence each output pixel. The receptive field size
depends on the filter sizes of the layers and on the number of layers. Choosing
an appropriate receptive field size is an important step in network architecture
design. It should be chosen such that it contains the features that are relevant
for the respective output pixel, but not too much more, in order to avoid having
to learn from data that far-away features are irrelevant.

Convolutional Layers Convolutional layers (see Table 1) provide equivari-
ance under translations (i.e. under spatial shifts) and locality of feature ex-
traction (i.e. their receptive field is box-shaped) for numerical data defined on a
regular grid. Translation-equivariance is useful when features should be detected
equally well regardless of their location (spatial position). Locality of feature
extraction is useful when features should be detected equally well regardless of
what other features are present at other locations (beyond the receptive field).
For example:

• An object in a photograph should be detected equally well regardless of
its location in the photograph (translation-equivariance) and regardless
of the presence of other objects elsewhere in the photograph (locality of
feature extraction).
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Layer type Operation Important properties
Fully connected layer Affine mapping with

trainable parameters W, b
followed by hardwired
nonlinearity s(·):
s(Wx+ b)

Can approximate arbitrary
function if layer has enough
neurons (but many neurons
may cause overfitting if
training set is limited)

Convolutional layer Discrete multi-channel
convolution with trainable
filters, addition of trainable
bias values, hardwired
nonlinearity: Eq. (7)

- Same-equivariance under
translations (spatial
shifts)
- Along dimensions with
filter size 1: specifically
permutation-
equivariance

- Locality of feature
extraction (box-shaped
receptive field)

Global pooling along
certain dimensions

Aggregationa of values
along one or several array
dimensions

Invariance under
permutations along pooled
dimensions

Local pooling Aggregationa of values over
a local neighborhood

Invariance under certain
slight spatial distortions
(certain slight changes of
spatial locations of
features) and certain slight
changes of feature values,
see [Kukačka et al., 2017]

Random noise such as
batch normalizationb or
dropout

Modify feature values, for
example set random entries
to zero, or scale each
channel to have a certain
mean and variance across
the batch

Throughout the training
iterations, prevents
overfitting certain feature
configurations

a Typical aggregation functions are maximum, average, or sum.
b Batch normalization is random because the composition of the batches is random.

Table 1: Common types of neural-network layers and the properties that they
have by design or that emerge through training. Layers with certain properties
can be chosen depending on the project goals.

• A musical motif in a spectrogram should be detected equally well regard-
less of when it is played (equivariance under translations along the time
dimension), of how its pitch is transposed (equivariance under translations
along the frequency dimension), of what is played before and after it (lo-
cality along the time dimension), and of what is played in other registers
(locality along the frequency dimension).

• A sequence pattern in a protein sequence should be detected equally
well regardless of where in the protein sequence it appears (translation-
equivariance) and of what other patterns appear elsewhere (locality).

For these and other useful properties of data processing methods, see the scale-
space axioms for example in Chapter 5.1.1 of [Bredies and Lorenz, 2011].

The inputs and outputs of convolutional layers are feature maps represented
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as multi-channel arrays, i.e. arrays with a “channels dimension” and d ∈ N
“spatial” (or temporal) dimensions. Examples include d = 1 for sequence data
such as audio waveforms, protein sequences, or text, d = 2 for images or audio
spectrograms, d = 3 for videos or 3D volumes, and d = 4 for sequences of
volumetric data. The trainable parameters of a convolutional layer are the bias
values and the entries of the kernels. There is one kernel for each output channel
and one bias value for each output channel. Each kernel has the same number
of channels as the input of the layer. The inputs, kernels, and outputs have
the same number d of “spatial” dimensions. The size of the kernel along the
“spatial” dimensions corresponds to the size of the receptive field of the layer.

The output y of a convolutional layer is computed as follows from its input x,
kernels w and bias values b:

yk,i1,...,id = s


 ∑

c,j1,...,jd

wk,c,j1,...,jdxc,i1−j1,...,id−jd + bc


 , (7)

where k is the output channel and thus also the index of the kernel that produces
that output channel, (i1, . . . , id) are the coordinates in the output feature map,
c enumerates all input channels and thus also the channels of the kernels as well
as the bias values, and (j1, . . . , jd) enumerate all coordinates in the kernel.

In other words, the convolutional layer performs a multi-channel discrete
convolution of the input with the filters.

Padding Padding is the practice of extending spatial data beyond its borders
by fake data, for example by zeros. When the mapping is “pixels-to-pixels” and
the receptive field is larger than 1, then the output would have a reduced field
of view compared to the input. If the field of view should not be so reduced (for
example because the user requires predictions for every single pixel), padding
can be used. In other cases and some programming frameworks, using padding
can be more convenient than not using it.

However, the main problems with padding are:

1. Every layer whose input feature map gets padded (and all subsequent
layers) have to jointly learn what to output for all likely arrangements of
real and fake input data.

2. They might also have to learn to distinguish fake from real data, if the
two can look similar and this distinction is important.

Learning these things in addition to the main learning goals is difficult, it
may require a slightly better network architecture, and/or worsen the results of
the main learning goals. The solutions and remedies to these problems are:

• By avoiding padding when possible, both aforementioned problems can be
avoided.
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• A slight remedy to the second problem is to introduce an additional chan-
nel that informs the neural network which data are fake [Golkov et al.,
2016b].

• A slight remedy to the first problem is to pad only the input rather than
the feature maps in each layer [Golkov et al., 2016b]. Then the fake data
that the network would have to learn to deal with is only in the input,
and not different in every layer.

– If all padding values are equal, explicitly redundantly storing them in
memory is a waste of memory. This can be avoided by storing unique
values only once. More specifically, features that are obtained from
real data or a mixture of real and fake data can be stored explicitly,
whereas features that are obtained from fake data are equal in all
pixels and can be stored only once (one value per channel), rather
than redundantly in many padded pixels.

Nonlinearities Many layer types, for example most of the fully connected
layers and convolutional layers, often consist of an affine mapping with trainable
parameters, followed by an elementwise nonlinearity, i.e. a simple nonlinear
R→ R function applied independently to each entry of the array.

Historically, nonlinearities were used that are differentiable everywhere, for
fear of incompatibility with gradient-based optimization. However, nonlineari-
ties that are differentiable almost everywhere (but not everywhere) can actually
be successfully used as well, because reaching the null set on which they are not
differentiable has probability zero in case of infinite precision, and probability
almost zero in case of finite precision. Moreover, even if that null set is reached,
some value like zero or a subderivative can be used in place of the derivative, or
the sample can be skipped. After a training step on this or other samples, the
differentiable regions are almost certainly attained again.

Another historical misconception was to use nonlinearities whose output was
limited to a small interval, for example ]0, 1[ in the case of the sigmoid nonlin-
earity or ]−1, 1[ in the case of the hyperbolic tangent. These functions saturate
without reaching the value 1 nor above. This restriction was motivated by an
overreliance on the inspiration from biological neural networks. In artificial
neural networks, monotonic nonlinearities with limited output intervals in some
cases caused gradients to be too small for effective gradient-based optimization,
and limited the expressivity of the neural network (see the argument around
Eq. (9) below).

Letting go of these two historical assumptions (differentiablity everywhere
and limited output values) paved the way for the currently most successful non-
linearities, such as the rectified linear unit (ReLU) [Fukushima, 1980, Hahnloser
et al., 2000, Jarrett et al., 2009, Nair and Hinton, 2010, Glorot et al., 2011]

ReLU(z) = max{0, z} (8)

and similar ones. The ReLU is one of the simplest nonlinear functions imagin-
able, and it works remarkably well.
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An important difference between saturating nonlinearities (such as the sig-
moid) and non-saturating ones (such as the ReLU) is that the latter extrapolate
differently (affinely, without saturating) into regions of feature space that are
not covered by training samples, which appears to contribute to better results
in practice. Moreover, the ReLU (and similar nonlinearities) can approximate a
larger variety of functions well. This is evidenced by the fact that a few ReLUs
can approximate a sigmoid well [Kukačka et al., 2017] (with small integrated
squared error and small integrated absolute error), for example

sigm(x) ≈ ReLU(x+ 0.5)− ReLU(x− 0.5), (9)

and thus ReLUs can also approximate functions that sigmoids can approximate,
whereas a finite number of sigmoids cannot approximate a ReLU with finite
error.

2.3.3 Appropriate Representations for Data Types

The goal of neural networks is to “disentangle” the information that is “entan-
gled” (present, but not obvious) in the (input) features. If we can do a part of
this task well, we usually should. For example, there are many ways to repre-
sent the same information as inputs to a neural network, and we should choose
representations from which it is easy for the given network architecture to learn
to extract relevant information, and difficult to learn to extract irrelevant infor-
mation. So the choices of data representations and of network architecture are
important for good results and should match each other well. The similarity
of the high-level meanings of variable values should be ideally reflected by a
proportional similarity of their numerical values in the chosen representation.

For example, categorical variables are usually one-hot encoded. This encod-
ing indicates that no two categories are a priori more similar to each other than
any other two.

Another example is the representation of angles. To avoid the problem
that 0◦ and 359◦ have a very similar meaning in some given application but
very different values, the sine and cosine of the angle (i.e. two features) can
be used as the representation instead of the number of degrees. At the neural
network input, this representation is partially redundant, but redundancy at
inputs is not a problem, especially when no new dimensions of overfittable irrel-
evant features/noise are introduced (as would for example be the case when the
resolution of images is too high for the goals, so that the neural network might
overfit unimportant fine details). At the neural network output, this representa-
tion of angles is ambiguous, because a neural network imperfectly approximates
the optimal input-output mapping, i.e. the predicted sine and cosine will not
correspond to the same angle. This, however, can be easily solved by projecting
the output onto the set of valid representations of angles, e.g. by normalizing
the output vector to unit length. An important aspect here is that this pro-
jection is simple, i.e. the neural network can approximately “foresee” it in the
sense that the predicted sine and cosine values will be only slightly modified by

30



the projection if the network has been trained to try to produce sine and cosine
values that are approximately compatible with each other.

Thus, in cases where inputs with a similar meaning should produce outputs
with a similar meaning (as is often the case), neither the aforementioned input
representation nor the output representation and projection would be the cause
of problems such as sudden jumps in the input-output mapping.

2.3.4 How to Design Neural-Network Architectures

When designing a neural-network architecture for solving some problem, in-
spiration can be taken from architectures that perform well on similar prob-
lems/datasets. For example, if appropriate, an existing successful architecture
can be tried first, and then hyperparameter search can start from the optimum
that has been determined for that similar dataset.

Another approach, particularly if the problem at hand has not yet been
solved by neural networks, is to design the architecture from scratch. To do
this, we found the following steps to be useful:

1. Formulate (hypothetical) features that might be possible and meaningful
to extract from data in words.

2. Formulate (hypothetical) meaningful/possible information flow between
the aforementioned features, i.e. which latent features can be extracted
from which input features or from which other latent features, and which
output features can be extracted from which latent features.

3. Choose data structures/representations that are appropriate (see Sec-
tion 2.3.3) for storing the aforementioned features.

4. Define additional application-specific constraints that the neural network
should fulfill, for example equivariance under certain transformations and
usual success ingredients such as using layers consisting of a learned affine
mapping followed by a simple nonlinearity. Many successful neural net-
works work like this, for example fully connected layers are affine followed
by a simple nonlinearity, without any constraints; convolutional layers are
affine followed by a simple nonlinearity, with the additional constraints of
translation-equivariance and locality of feature extraction.

5. Design a neural-network architecture that offers the information flow from
step 2 between the data structures from step 3 (and not too much other
information flow) and fulfills the properties from step 4.

For examples of this approach, see [Golkov et al., 2016b] (included here as
Section 3.1) and [Schuchardt et al., 2019].
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2.3.5 Machine-Learning Tasks and Loss Functions

Formally, training a neural network for the ML task of supervised learning, i.e.
tuning the trainable parameters w of a neural network f such that for each
training input xi the output of f is similar (in terms of some dissimilarity
metric d) to the corresponding output target ti, corresponds to the following
optimization problem:

minimize
w

1

|D|
∑

(xi,ti)∈D
d (fw(xi), ti) +R(. . . ), (10)

where D is the training set consisting of training samples (xi, ti), and R is an
additional regularization term that may depend on w, the output of f , some
derivatives thereof, and/or similar things [Kukačka et al., 2017]. This optimiza-
tion problem is also referred to as empirical risk minimization.

While supervised learning (as described in Section 2.3.1) is a very popular
and straightforward ML task, it is by far not the only one. Many other ML
tasks (i.e. abstract goals) exist, for example:

• Semi-supervised learning: like supervised learning, but additional samples
are available that are neither labeled (i.e. do not have known output tar-
gets) nor are in the test set. Valuable information about the distribution of
data in input-feature space X can be used. For example, entire “islands” of
data in input-feature space (all with the same label) can be classified cor-
rectly based on only one labeled sample, if the unlabeled samples provide
sufficient information about the shape of the “island”.

• Clustering with an unknown number k of clusters, i.e. assigning each sam-
ple from a dataset to one of k clusters (i.e. unlabeled classes freely defined
by the algorithm) while also determining an optimal number k. Typical
goals some or all of which are formulated in one way or another within
the algorithm include:

– Samples within each cluster should be similar to each other in some
way, for example in terms of some similarity metric in some latent
feature space.

– Samples from different clusters should be dissimilar from each other.
– Each cluster should contain neither too few nor too many samples.
– The number k of clusters should be neither too small nor too large.

• Clustering with a known number k of clusters: like above, but without
the need to find an optimal k automatically. See for example our survey
and new methods in [Aljalbout et al., 2018].

• Novelty detection: A dataset labeled as the “normal” class is given. In
the test dataset, samples should be classified as “normal” and “abnormal”
(different from “normal”). See for example our new methods based on
variational autoencoders in [Vasilev et al., 2019].
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• Outlier detection: None of the samples are labeled. An “abnormal” minor-
ity (the outliers) and a “normal” majority should be distinguished, usually
based on the outliers having more extreme feature values or rare combi-
nations of features.

• Domain adaptation without target-domain labels: similar to supervised
learning, but the test set has a different distribution in input-feature
space than the training set, for example the “source domain” (training
set inputs) are drawings, whereas the “target domain” (test set inputs) are
photographs.

• Similarity learning: Labels are given for pairs of samples rather than for
individual samples. Usually some form of (symmetric) (dis-)similarity
measure should be learned for these pairs.

• Implicit density estimation: A model is trained to randomly produce sam-
ples that are not necessarily the same as in a given dataset, but from the
same overall distribution.

• Explicit density estimation: As above, but also with the ability to explic-
itly formulate the entire distribution and not only draw individual samples
from it.

These are only a few examples. Each setting can have a combination of non-
default properties, such as labels missing for some training samples or entire
classes, input features partially missing for some samples or for entire classes,
the requirement to continuously produce results before all training samples have
been processed (online learning), or the ability to actively query labels for certain
samples (active learning).

Each ML task has a variety of specific algorithmic formulations, often as
closed-form optimization problems in the form of training a neural network
end-to-end with special cost functions. Each formulation of an ML task has
its own advantages and disadvantages. None of the formulations is universally
perfect for all possible datasets.

2.3.6 Training Procedure

The loss function in deep learning can have the form of Eq. (10) for supervised
learning or other forms tailored to other machine-learning tasks such as the
ones listed in Section 2.3.5 and/or to specific datasets (for example by using
intermediate features in certain application-specific ways for goals such as op-
timizing perceptual similarity between images). Such loss functions are usually
optimized using stochastic gradient descent, i.e. gradient descent on alternating
random subsets (batches) of the training dataset D.

“Something in between minimization and maximization” is also possible. In
gradient-based optimization, a stop-gradient operator, see [van den Oord et al.,
2017, Golkov et al., 2020a, Chen and He, 2020], or more generally a gradient-
reversal layer [Ganin and Lempitsky, 2015] with some λ value can be used. This
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does not strictly correspond to solving an optimization problem, but rather cre-
ates a dynamical system [Jin et al., 2020] or variational inequality [Gidel et al.,
2019], as for example in some formulations of generative adversarial networks.

2.3.7 Regularization

Using the example of supervised learning and similar machine-learning tasks
that take the form of Eq. (10), several components of a deep learning algorithm
can be identified that influence its results:

• the data set D,

• the neural network architecture f ,

• the dissimilarity metric d,

• the regularization term R(. . . ),

• the optimization algorithm.

Each of these components can be modified to improve the results. This can be
referred to as regularization in its general sense. For an overview of regulariza-
tion techniques in deep learning, see our survey [Kukačka et al., 2017].

It is interesting to note that some regularization techniques can be considered
from the perspective of more than one of the five aforementioned categories. For
example, dropout [Srivastava et al., 2014] (i.e. randomly setting some features to
zero) can be considered a stochastic building block of the network architecture f ,
or alternatively as a modification of the optimization algorithm such that the
current weights are projected to a subspace of weight space, an optimization
step is performed in that subspace, and then the weights previously discarded
by the projection are restored [Kukačka et al., 2017].

Overfitting can be considered as the extraction of irrelevant features and
wrongful assignment of meaning to them based on spurious (coincidental) corre-
lations present in the training set. Early stopping, i.e. stopping the training after
some time, for example when the performance on a validation dataset (dataset
with given labels, but excluded from the training set) starts decreasing, can
prevent overfitting. This can be attributed to some spurious correlations being
more rare in the training set than relevant ones, which requires the learning
of the spurious ones to take more time, and/or to a choice of an appropriate
network architecture which learns to extract irrelevant features more slowly or
not at all.

2.3.8 Inspecting What the Network has Learned

During iterations of improving the neural-network architecture, it might be help-
ful to inspect what the current architecture learns in practice and compare that
to the hypothetical features that were expected as per Section 2.3.4. Moreover,
applications such as computer vision that are visually accessible can provide
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valuable general intuition about neural networks for work with applications
that are visually less accessible.

A large neural network learns a high-dimensional and complex mapping.
This mapping is difficult to fully visualize and interpret. Instead, certain aspects
of this mapping can be visualized individually. Examples include (see also [Grün
et al., 2016, Seifert et al., 2017]):

• Visualizing all latent feature maps that the network produces for one given
test sample, as well as weights [Harley, 2015].

• Visualizing samples from a dataset that cause the strongest activations of
a certain neuron [Zeiler and Fergus, 2014, Bau et al., 2017].

• As above, with additional interactive visualization of the neurons that
have the strongest-weighted connections to a certain neuron1.

• Generating input samples that maximize the activation of a certain neu-
ron [Simonyan et al., 2013].

• Given an input sample, generating other input samples that produce sim-
ilar latent features in a certain layer. This partially reveals what informa-
tion about input samples is maintained in those layers, and what infor-
mation is lost. There are several approaches that produce quite different
results due to the different ways how they formulate the goals (a compar-
ison can be found in [Dosovitskiy and Brox, 2016]):

– formulation as an inverse problem using data-consistency in latent
feature space [Mahendran and Vedaldi, 2015],

– formulation as another neural network that is trained to achieve data-
consistency in input feature space [Dosovitskiy and Brox, 2016],

– formulation as another neural network that is trained to achieve data-
consistency in input feature space and in latent space, as well as to
mimic the probability distribution of realistic samples [Dosovitskiy
and Brox, 2016].

• Visualizing how strongly which input features influenced the output for a
given test sample. The influence of each feature on the output depends on
the current values of the other features, and features are not independent
in the dataset. There are various ways how these relationships between
input features can be taken into account, for example:

– “neutralizing” (replacing by some placeholder value) several features
which (due to their neighborhood in space) might strongly correlate,
and visualizing how strongly that influences a certain output neu-
ron [Zeiler and Fergus, 2014],

1http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html
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– visualizing which (infinitesimal) modifications of all input features
would most strongly influence a certain output neuron [Zeiler and
Fergus, 2014, Springenberg et al., 2014],

– choosing a network architecture such that the prediction is a sum of
contributions from all image regions, so that the contributions can be
mapped in space [Zhou et al., 2016] and similar techniques [Selvaraju
et al., 2017].

Apart from visualizations, also statistical analysis is possible, for example of
correlations between features or between quality metrics, also across different
networks [Nguyen et al., 2020].
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2.4 Riemannian Manifolds and Variational Analysis on
Them

Many successful image-processing methods consider images as defined on a spa-
tially continuous domain and not only their discretization to pixels. These
methods often yield better results than entirely discrete methods, as shown for
example by [Klodt et al., 2008, Nieuwenhuis et al., 2013]. In [Golkov et al.,
2015b] (included here as Section 3.4), we use the advantages of spatially contin-
uous treatment of images as well as synergies between all six data dimensions
to improve the reconstruction of diffusion MRI data from raw measurements.

In diffusion MRI, in many cases each 2D diffusion-weighted image is recon-
structed from measured data individually. However, the measurements contain
noise, causing the results of the reconstruction to be imperfect. Additional in-
formation about the true noise-free image intensities is partially contained in
the measurements performed for neighboring diffusion weightings (q-space co-
ordinates) as well as neighboring z-slices, which have different random noise
values but similar true intensity values.

The true image intensities are similar at points with the same physical-
space coordinate, same diffusion weighting, and a similar (not same) diffusion
direction. In other words, the derivatives of the true image along spherical shells
in q-space are mostly small.

Similarly, the true image intensities are similar at points with the same q-
space coordinate and a similar (not same) physical-space coordinate. In other
words, the derivatives of the true image along the physical space are mostly
small. This fact is used more often for derivatives along the x- and y-dimension
(because they are entangled in the measurements via the Fourier transform)
than along the z-direction.

Similarly, in each 3D spatial voxel, the values of the so-called orientation
distribution function (ODF, a function in each voxel that maps each possible
diffusion direction to a real-valued relative strength of diffusion in that direction,
see for example [Lin et al., 2003]) are similar for similar diffusion directions. In
other words, the derivatives of the ODF along the sphere on which it is defined
are small.

In [Golkov et al., 2015b], we therefore propose regularization terms that
keep all aforementioned derivatives small, ensuring noise reduction and synergies
along all six data dimensions, while a data-consistency term ensures that the
reconstructed image is consistent with the raw measurements.

The resulting overall cost function can be optimized using a primal-dual
hybrid gradient optimization method for nonlinear operators [Valkonen, 2014],
which is a modification of a popular method for linear operators [Pock et al.,
2009].

In the following, we describe central basic mathematical constructs used in
our work. For details, see [Golkov et al., 2015b] (included here as Section 3.4).
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2.4.1 Derivatives and Integrals on Manifolds

An n-dimensional manifold is a topological space that in a neighborhood around
each point is homeomorphic to the n-dimensional Euclidean space. For details
about manifolds and the topics mentioned below, see for example [Kühnel, 2015,
do Carmo, 2015, Spivak, 1999].

A scalar field on a manifold M is a function M → K, where K is a field
(not to be confused with the term “scalar field”) like R or C.

A differentiable manifold is a manifold equipped with a so-called differen-
tiable atlas, i.e. a collection of so-called charts (local coordinate systems) that
cover the entire manifold such that the transition maps ϕj ◦ ϕ−1i between all
pairs (ϕi, ϕj) of charts are differentiable.

A tangent space TpM at a point p of an n-dimensional differentiable man-
ifold M is an n-dimensional real vector space with a certain correspondence
between objects on the manifold and objects in the tangent space. One of the
ways to formalize this correspondence is to define TpM as the vector space of all
possible velocity vectors at p of differentiable curves on M that pass through p.

A vector field on a manifold M is a function that maps each point p ∈M to
a vector from the respective tangent space TpM .

A Riemannian manifold is a differentiable manifold equipped with an inner
product (the Riemannian metric) on the tangent space at each point. The Rie-
mannian metric induces geometric notions on manifolds such as angles, lengths,
and curvature. Angles and lengths induce the notion of volume, i.e. measure.
The measure can in turn can be used to compute integrals of scalar functions
on the manifold.

The gradient of a scalar function f on a Riemannian manifoldM is a certain
vector field on that manifold. Each vector of this vector field points in the
direction of steepest ascent on f . The vector length gives the rate of change of
f for a unit length in that direction. Note that the definition of lengths uses
the Riemannian metric.

Without a Riemannian metric, there is no notion of lengths of vectors, i.e. no
unit-length vectors for comparing the rate of change of f in different directions,
so there is no gradient. However, there is still a total differential, i.e. a covector
field on M in which the covector at each point p outputs the rate of change of
f along each vector. With a Riemannian metric, a covector can be associated
with the direction of the unit-length vector with which it produces the largest
output, but without a Riemannian metric, a covector cannot be associated with
such a direction.

Given a Riemannian manifold M , the Sobolev space Hm,p(M) is, intuitively,
the vector space of functions on M whose derivatives up to the m-th one (in-
cluding the “0-th derivative”, i.e. the function itself) exist and are p-integrable.
For p = 2, we write Hm(M) = Hm,p(M). For details about this generalization
of Sobolev spaces to Riemannian manifolds, see [Hebey, 1996]. In [Golkov et al.,
2015b] (included here as Section 3.4), our images are from H2(R3 × S2). We
denote the coordinate along the first three dimensions of R3×S2, i.e. along R3,
by y ∈ R3, and the space of the derivatives ∇yU along the first three dimen-
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sions of our aforementioned images U by H1(R3 × S2,R3), where the latter R3

indicates that ∇yU consists of three partial derivatives: one along each of the
three first dimensions.

The formal definitions of some of the aforementioned mathematical objects
use some charts (local coordinate systems) on the manifold for constructing the
objects, but eventually yield objects that are independent of the choice of charts
and can be dealt with (reasoned about, visualized) without any particular charts
in mind. Our descriptions above therefore focused on their final form and the
intuition and intentions behind it, without the temporary charts used during
their construction.

2.4.2 Convex Conjugate and Convex Biconjugate

In [Golkov et al., 2015b] (included as Section 3.4 here), we use the so-called
convex biconjugate and a technique called completing the square to rewrite ‖x̂‖2
as follows:

‖x̂‖2 = sup
ŷ
〈x̂, ŷ〉 − 1

4
‖ŷ‖2 . (11)

In the following, we show the details of this reformulation.
The convex conjugate f∗ (also known as the Legendre–Fenchel transform) of

a real-valued function f(x̂) is defined as

f∗(ŷ) = sup
x̂
〈ŷ, x̂〉 − f(x̂). (12)

In our case, we choose f(x̂) = ‖x̂‖2, and therefore its convex conjugate is

f∗(ŷ) = sup
x̂
〈ŷ, x̂〉 − f(x̂) = sup

x̂
〈ŷ, x̂〉 − ‖x̂‖2 . (13)

This can be rewritten using a technique called completing the square, i.e. bring-
ing a part of the expression into the form ‖a‖2−2 〈b, a〉 and adding + ‖b‖2−‖b‖2:

f∗(ŷ) = sup
x̂
〈ŷ, x̂〉 − ‖x̂‖2

= sup
x̂
−
(
‖x̂‖2 − 〈ŷ, x̂〉

)

= sup
x̂
−
(
‖x̂‖2 − 2

〈
ŷ

2
, x̂

〉)

= sup
x̂
−
(
‖x̂‖2 − 2

〈
ŷ

2
, x̂

〉
+

∥∥∥∥
ŷ

2

∥∥∥∥
2

−
∥∥∥∥
ŷ

2

∥∥∥∥
2
)
.

(14)
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Note that ‖a− b‖2 = ‖a‖2 − 2 〈b, a〉+ ‖b‖2, i.e. in our case
∥∥∥∥x̂−

ŷ

2

∥∥∥∥
2

=

〈
x̂− ŷ

2
, x̂− ŷ

2

〉

=

〈
x̂− ŷ

2
, x̂

〉
+

〈
x̂− ŷ

2
,− ŷ

2

〉

= 〈x̂, x̂〉+

〈
− ŷ

2
, x̂

〉
+

〈
x̂,− ŷ

2

〉
+

〈
− ŷ

2
,− ŷ

2

〉

= ‖x̂‖2 − 2

〈
ŷ

2
, x̂

〉
+

∥∥∥∥
ŷ

2

∥∥∥∥
2

,

(15)

which allows to rewrite Eq. (14) as follows:

f∗(ŷ) = sup
x̂
−
(
‖x̂‖2 − 2

〈
ŷ

2
, x̂

〉
+

∥∥∥∥
ŷ

2

∥∥∥∥
2

−
∥∥∥∥
ŷ

2

∥∥∥∥
2
)

= sup
x̂
−
(∥∥∥∥x̂−

ŷ

2

∥∥∥∥
2

−
∥∥∥∥
ŷ

2

∥∥∥∥
2
)
.

(16)

The term −
∥∥∥x̂− ŷ

2

∥∥∥
2

is nonpositive, its supremum 0 is attained at x̂ = ŷ
2 .

Therefore,

(
‖x̂‖2

)∗
= f∗(ŷ) = sup

x̂

∥∥∥∥
ŷ

2

∥∥∥∥
2

=

∥∥∥∥
ŷ

2

∥∥∥∥
2

. (17)

According to the Fenchel–Moreau theorem, if a function f is convex and
lower semi-continuous, then it is equal to its own convex biconjugate f∗∗ (i.e.
the convex conjugate of its convex conjugate). In our case, f(x̂) = ‖x̂‖2 is
continuous (hence lower semi-continuous) and convex, hence equal to its convex
biconjugate:

‖x̂‖2 =
(
‖x̂‖2

)∗∗
. (18)

By combining Eqs. (18), (17), and (12), we get

‖x̂‖2 (18)
=
(
‖x̂‖2

)∗∗ (17)
=

(∥∥∥∥
ŷ

2

∥∥∥∥
2
)∗

(12)
= sup

ŷ
〈ŷ, x̂〉 −
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ŷ

2

∥∥∥∥
2

.
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3 Papers

3.1 Protein Contact Prediction from Amino Acid Co-Evo-
lution Using Convolutional Networks for Graph-Val-
ued Images

In the following paper, we use deep learning for predicting information about
the structure of proteins from a rich representation of the information we can
extract about their evolutionary history.

Some mutations of proteins leave their structure and function largely unaf-
fected. Therefore, many different versions (homologs) of each protein exist in
different organisms, and, in the case of gene duplication, several homologs exist
in the same organism. For a given protein sequence, so-called homology search
algorithms can identify its homologs in protein-sequence databases and align
their sequences into a multiple sequence alignment.

Some amino acids of a protein are in physical contact with each other, with
van der Waals forces acting between them and maintaining the overall structure
of the protein. If one of two amino acids residues that form a contact mutates
and this mutation makes the contact less stable, there is an evolutionary pressure
on the other amino acid residue to mutate such that the contact becomes more
stable again. Thus, the latter mutations are favored by natural selection and
are likely to be encountered. In other words, the two amino acid residues co-
evolve. The statistics of this amino acid co-evolution can be inferred using direct
coupling analysis algorithms.

Due to this relationship between protein structure and amino acid co-
evolution statistics, it is possible to predict the former from the latter. We
propose using rich direct co-evolution statistics (without handcrafted subopti-
mal preprocessing) and deep learning for this purpose. A contact map, i.e. a
matrix that for all pairs of protein positions indicates whether there is a physical
contact, is used as the output target for each protein.

We design the neural network architecture based on our domain knowledge
about the requirements: detecting protein motifs equally well regardless of their
location in the sequence and of motifs at other locations; detecting secondary-
structure elements and physical contacts between them (including the relative
orientation between secondary-structure elements that are in physical contact).

Our processing pipeline, which is optimized on a training set rather than
handcrafted suboptimally, outperforms existing state-of-the-art methods.

The author of this dissertation contributed substantially to the content of
the paper, in particular concerning parts of the idea, parts of the code, neural
network training, and writing parts of the paper.
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Abstract

Proteins are responsible for most of the functions in life, and thus are the central
focus of many areas of biomedicine. Protein structure is strongly related to pro-
tein function, but is difficult to elucidate experimentally, therefore computational
structure prediction is a crucial task on the way to solve many biological questions.
A contact map is a compact representation of the three-dimensional structure of a
protein via the pairwise contacts between the amino acids constituting the protein.
We use a convolutional network to calculate protein contact maps from detailed
evolutionary coupling statistics between positions in the protein sequence. The
input to the network has an image-like structure amenable to convolutions, but ev-
ery “pixel” instead of color channels contains a bipartite undirected edge-weighted
graph. We propose several methods for treating such “graph-valued images” in a
convolutional network. The proposed method outperforms state-of-the-art methods
by a considerable margin.

1 Introduction

Proteins perform most of the functions in the cells of living organisms, acting as enzymes to perform
complex chemical reactions, recognizing foreign particles, conducting signals, and building cell
scaffolds – to name just a few. Their function is dictated by their three-dimensional structure, which
can be quite involved, despite the fact that proteins are linear polymers composed of only 20 different
types of amino acids. The sequence of amino acids dictates the three-dimensional structure and
related proteins share both structure and function. Predicting protein structure from amino acid
sequence remains a problem that is still largely unsolved.

1.1 Protein structure and contact maps

The primary structure of a protein refers to the linear sequence of the amino acid residues that
constitute the protein, as encoded by the corresponding gene. During or after its biosynthesis, a
protein spatially folds into an energetically favourable conformation. Locally it folds into so-called
secondary structure (α-helices and β-strands). The global three-dimensional structure into which the
entire protein folds is referred to as the tertiary structure. Fig. 1a depicts the tertiary structure of a
protein consisting of several α-helices.
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Protein structure is mediated and stabilized by series of weak interactions (physical contacts) between
pairs of its amino acids. Let L be the length of the sequence of a protein (i.e. the number of its amino
acids). The tertiary structure can be partially summarized as a so-called contact map – a sparse L×L
matrix C encoding the presence or absence of physical contact between all pairs of L amino acid
residues of a protein. The entry Ci,j is equal to 1 if residues i and j are in contact and 0 if they are
not. Intermediate values may encode different levels of contact likeliness.

We use these intermediate values without rounding where possible because they hold additional
information. The “contact likeliness” is a knowledge-based function derived from Protein Data
Bank, dependent on the distance between Cβ atoms of involved amino acids and their type. It has
been parametrized based on the amino acids’ heavy atoms making biophysically feasible contact in
experimentally determined structures.

(a) Tertiary structure (b) Contact map (c) Variants of contact (d) Co-evolution statistics

Figure 1: Oxymyoglobin (a) and its contact between amino acid residue 6 and 133. Helix–helix
contacts correspond to “checkerboard” patterns in the contact map (b). Various variants of the contact
6/133 encountered in nature (native pose in upper left, remaining poses are theoretical models) (c)
are reflected in the co-evolution statistics (d).

2 Methods

The proposed method is based on inferring direct co-evolutionary couplings between pairs of amino
acids of a protein, and predicting the contact map from them using a convolutional neural network.

2.1 Multiple sequence alignments

As of today the UniProt Archive (UniParc [1]) consists of approximately 130 million different protein
sequences. This is only a small fraction of all the protein sequences existing on Earth, whose number
is estimated to be on the order of 1010 to 1012 [2]. Despite this abundance, there exist only about
105 sequence families, which in turn adopt one of about 104 folds [2]. This is due to the fact that
homologous proteins (proteins originating from common ancestors) are similar in terms of their
structure and function. Homologs are under evolutionary pressure to maintain the structure and
function of the ancestral protein, while at the same time adapting to the changes in the environment.

Evolutionarily related proteins can be identified by means of homology search using dynamic
programming, hidden Markov models, and other statistical models, which group homologous proteins
into so-called multiple sequence alignments. A multiple sequence alignment consists of sequences
of related proteins, aligned such that corresponding amino acids share the same position (column).
The 20 amino acid types are represented by the letters A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y.
Besides, a “gap” (represented as “–”) is used as a 21st character to account for insertions and deletions.

For the purpose of this work, all the input alignments have been generated with jackhmmer, part
of HMMER package (version 3.1b2, http://hmmer.org) run against the UniParc database released
in summer 2015. The alignment has been constructed with the E-value inclusion threshold of 1,
allowing for inclusion of distant homologs, at a risk of contaminating the alignment with potentially
evolutionarily unrelated sequences. The resultant multiple sequence alignments have not been
modified in any way, except for removal of inserts (positions that were not present in the protein
sequence of interest). Notably, contrary to many evolutionary approaches, we did not remove columns
that (a) contained many gaps, (b) were too diverse or (c) were too conserved. In so doing, we emulated
a fully automated prediction regime.
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2.2 Potts model for co-evolution of amino acid residues

Protein structure is stabilized by series of contacts: weak, favourable interactions between amino acids
adjacent in space (but not necessarily in sequence). If an amino acid becomes mutated in the course
of evolution, breaking a favourable contact, there is an evolutionary pressure for a compensating
mutation to occur in the interacting partner(s) to restore the protein to an unfrustrated state. These
pressures lead to amino acid pairs varying in tandem in the multiple sequence alignments. The
observed covariances can subsequently be used to predict which of the positions in the protein
sequence are close together in space.

The directly observed covariances are by themselves a poor predictor of inter-residue contact. This
is due to transitivity of correlations in multiple sequence alignments. When an amino acid A that
is in contact with amino acids B and C mutates to A’, it exerts a pressure for B and C to adopt to
this mutation, leading to a spurious, indirect correlation between B and C. Oftentimes these spurious
correlations are more prominent than the actual, direct ones. This problem can be modelled in terms
of one- and two-body interactions, analogous to the Ising model of statistical mechanics (or its
generalization – the Potts model). Solving an inverse Ising/Potts problem (inferring direct causes
from a set of observations), while not feasible analytically, can be accomplished by approximate,
numerical algorithms. Such approaches have been recently successfully applied to the problem of
protein contact prediction [3, 4].

One of the most widely-adopted approaches to this problem is pseudolikelihood maximization for
inferring an inverse Potts model (plmDCA [3, 5]). It results in an L× L× 21× 21 array of inferred
evolutionary couplings between pairs of the L positions in the protein, described in terms of 21× 21
coupling matrices. These coupling matrices depict the strength of evolutionary pressure at particular
amino acid type pairs (e.g. histidine–threonine) to be present at this position pair – the higher the
value, the more pressure there is. These values are not directly interpretable, as they depend on the
environment the amino acids are in, their propensity to mutate and many other factors. So far, the best
approach to obtain scores corresponding to contact propensities was to compute the Frobenius norm
of individual coupling matrices rendering a contact matrix, which then has been subject to average
product correction [6]. Average product correction scales the value of contact propensity based on
the mean values for involved positions and a mean value for the entire contact matrix.

As there is insufficient data to conclusively infer all the parameters, and coupling inference is
inherently ill-posed, regularization is required [3, 5]. Here we used l2 regularization with λ = 0.01.

These approaches to reduce each 21 × 21 coupling matrix to only one value discard valuable
information encoded in matrices, consequently leading to a reduction in expected predictive capability.
In this work we use the entire L× L× 21× 21 coupling data J in their unmodified form. The value
Ji,j,k,l quantifies the co-evolution of residue type k at location i with residue type l at location j. The
L× L× 21× 21 array J serves as the main input to the convolutional network to predict the L× L
contact map C.

The following symmetries hold: Ci,j = Cj,i and Ji,j,k,l = Jj,i,l,k∀i, j, k, l.

2.3 Convolutional neural network for contact prediction

The goal of this work is to predict the contact Ci,j between residues i and j from the co-evolution
statistics Ji,j,k,l obtained from pseudolikelihood maximization [3]. Not only the local statistics
(Ji,j,k,l)k,l for fixed (i, j) but also the neighborhood around (i, j) is informative for contact determi-
nation. Particularly, contacts between different secondary structure elements are reflected both in the
spatial contact pattern, such as the “checkerboard” pattern typical for helix–helix contacts, cf. Fig. 1b
(the “i” and “j” dimensions), as well as in the residue types (the “k” and “l” dimensions) at (i, j)
and in its neighborhood. Thus, a convolutional neural network [7] with convolutions over (i, j), i.e.
learning the transformation to be applied to all w × w × 21× 21 windows of (Ji,j,k,l), is a highly
appropriate method for prediction of Ci,j .

The features in each “pixel” (i, j) are the entries of the 21 × 21 co-evolution statistics
(Ji,j,k,l)k,l∈{1,...,21} between amino acid residues i and j. Fig. 1d shows the co-evolution statistics
of residues 6 and 133, i.e. (J6,133,k,l)k,l∈{1,...,21}, of oxymyoglobin. These 21 · 21 entries can be
vectorized to constitute the feature vector of length 441 at the respective “pixel”.
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The neural network input J and at its output C should have the same size along the convolution
dimensions “i” and “j”. In order to achieve this, the input boundaries are padded accordingly (i.e.
by the receptive window size) along these dimensions. In order to help the network distinguish the
padding values (e.g. zeros) from valid co-evolution values, the indicator function of the valid region
(1 in the valid L×L region and 0 in the padded region) is introduced as an additional feature channel.

Our method is based on pseudolikelihood maximization [3] and convolutional networks, plmConv for
short.

2.4 Convolutional neural network for bipartite-graph-valued images

The fixed order of the 441 features can be considered acceptable since any input–output mapping
can in principle be learned, assuming we have sufficient training data (and an appropriate network
architecture). However, if the amount of training data is limited then a better-structured, more
compact representation might be of great advantage as opposed to requiring to see most of the
possible configurations of co-evolution. Such more compact representations can be obtained by
relaxing the knowledge of the identities of the amino acid residues, as described in the following.

The features at “pixel” (i, j) correspond to the weights of a (complete) bipartite undirected edge-
weighted graph K21,21 with 21 + 21 vertices, with the first disjoint set of 21 vertices representing the
21 amino acid types at position i, the second set representing the 21 amino acid types at position j, and
the edge weights representing co-evolution of the respective variants. Thus,B = (Ji,j,k,l)k,l∈{1,...,21}

is the biadjacency matrix of this graph, i.e. A =

(
0 B
BT 0

)
is its adjacency matrix. The edge

weights (i.e. entries of B) are different at each “pixel” (i, j).

There are different possibilities of passing these features (the entries of B) to a convolutional network.
We propose and evaluate the following possibilities to construct the feature vector at pixel (i, j):

1. Vectorize B, maintaining the order of the amino acid types;

2. Sort the vectorized matrix B;

3. Sort the rows of B by their row-wise norm, then vectorize;

4. Construct a histogram of the entries of B.

While the first method maintains the order of amino acid types, all others produce feature vectors that
are invariant to permutations of the amino acid types.

2.5 Generalization to arbitrary graphs

In other applications to graph-valued images with general (not necessarily bipartite) graphs, similar
transformations as above can be applied to the adjacency matrix A. An additional useful property
is the special role of the diagonal of A. Node weights can be included as additional features, and
accordingly reordered.

There has been work on neural networks which can process functions defined on graphs [8, 9, 10, 11].
In contrast to these approaches, in our case the input is defined on a regular grid, but the value of the
input at each location is a graph.

2.6 Data sets

The Critical Assessment of Techniques for Protein Structure Prediction (CASP) is a bi-annual
community-wide experiment in blind prediction of previously unknown protein structures. The
prediction targets vary in difficulty, with some having a structure of homologous proteins already
deposited in the Protein Data Bank (PDB), considered easy targets, some having no detectable
homologs in PDB (hard targets), and some having entirely new folds (free modelling targets). The
protein targets vary also in terms of available sequence homologs, which can range from only a few
sequences to hundreds of thousands.

We posit that the method we propose is robust and general. To illustrate its performance, we have
intentionally trained it on a limited set of proteins originating from CASP9 and CASP10 experiments
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and tested it on CASP11 proteins. In so doing, we emulated the conditions of a real-life structure
prediction experiment.

The proteins from these experiments form a suitable data set for this analysis, as they (a) are varied
in terms of structure and “difficulty”, (b) have previously unknown structures, which have been
subsequently made public, (c) are timestamped and (d) they have been subject to contact prediction
attempts by other groups whose results are publicly available. Therefore, training on CASP9 and
CASP10 data sets allowed us to avoid cross-contamination. We are reasonably confident that any
performance of the method originates from the method’s strengths and is not a result of overfitting.

The training has been conducted on a subset of 231 proteins from CASP9 and CASP10, while the
test set consisted of 89 proteins from CASP11 (all non-cancelled targets). Several proteins have been
excluded from the training set for technical reasons: lack of any detectable homologs, too many
homologs detected, or lack of structure known at the time of publishing of CASP sets. The problems
with the number of sequences can be alleviated by attempting different homology detection strategies,
which we did not do, as we wanted to keep the analysis homogeneous.

2.7 Neural network architecture

Deep learning has strong advantages over handcrafted processing pipelines and is setting new perfor-
mance records and bringing new insights in the biomedical community [12, 13]. However, parts of the
community are adopting deep learning with certain hesitation, even in areas where it is essential for
scientific progress. One of the main objections is a belief that the craft of network architecture design
and the network internals cannot be scientifically comprehended and lack theoretical underpinnings.
This is a false belief. There are scientific results to the contrary, concerning the loss function [14] and
network internals [15].

In the present work, we design the network architecture based on our knowledge of which features
might be meaningful for the network to extract, and how.

The first layer learns 128 filters of size 1× 1. Thus, 441 input features are compressed to 128 learned
features. This compression enforces the grouping of similar amino acids by their properties. Examples
of important properties are hydrophobicity, polarity, and size. Some of the most relevant parts of
the input information “cysteine (C) at position i has a strongly positive evolutionary coupling with
histidine (H) at position j” (cf. Fig. 1d) is that the amino acids co-evolving have certain hydrophilicity
properties; that both are polar; and that the one at position i is rather small and the one at position
j is rather large; etc. One layer is sufficient to perform such a transformation. Note that we do not
handcraft these features; the network learns feature extractors that are optimal in terms of the training
data. Besides, compressing the inputs in this optimal way also reduces the number of weights of the
subsequent layer, thus regularizing the model in a natural way, and reducing the run time and memory
requirements.

The second layer learns 64 filters of size 7× 7. This allows to see the context (and end) of the contact
between two secondary structure elements (e.g. a contact between two β-strands). In other words,
this choice of the window size and number of filters is motivated by the fact that information such
as “(i, j) is a contact between a β-strand at i and a β-strand at j, the arrangement is antiparallel, the
contact ends two residues after i (and before j)” can be captured from a 7× 7 window of the data,
and well encoded in about 64 filters.

The third and final layer learns one filter (returning the predicted contact map) with the window size
9×9. Thus, the overall receptive window of the convolutional network is 15×15, which provides the
required amount of context of the co-evolution data to predict the contacts. Particularly, the relative
position (including the angle) between two contacting α-helices can be well captured at this window
size. At the same time, this deep architecture is different from having, say, a network with a single
15× 15 convolutional layer because a non-deep network would require seeing many possible 15× 15
configurations in a non-abstract manner, and would tend to generalize badly and overfit. In contrast,
abstraction to higher-level features is provided by preceding layers in our architecture.

We used mean squared error loss, dropout 0.2 after input layer, 0.5 after each hidden layer, one pixel
stride, no pooling. The network is trained in Lasagne (https://github.com/Lasagne) using the Adam
algorithm [16] with learning rate 0.0001 for 100 epochs.
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3 Results

To assess the performance of protein contact prediction methods, we have used the contact likeliness
criterion for Cβ distances (cf. Introduction), but the qualitative results are not dependent on the
criterion chosen. We have evaluated predictions both in terms of Top 10 pairs that are predicted most
likely to be in contact. It is estimated that in a protein one can observe L to 3L contacts, where L
is the length of the amino acid chain. Thus we have also evaluated greater numbers of predicted
contacts. We have assessed the predictions with respect to the sequence separation. It is widely
accepted that it is more difficult to predict long-range contacts than the ones separated by few amino
acids in the sequence space. At the same time, it is the long-range contacts that are most useful for
restraining the protein structure prediction simulations [17]. Maintaining the order of amino acid
types (feature vector construction method #1) yielded the best results in our case, which we focus on
exclusively in the following.

(a) PPV for our approach vs. plmDCA20 and
MetaPSICOV

(b) PPV for discussed methods as a function of con-
tact definition

Figure 2: Method performance. Panel (a): prediction accuracy of plmConv (Y-axis) vs plmDCA
and MetaPSICOV (X-axis, in red and yellow, respectively); lines: least square fit, circles: individual
comparisons. Panel (b): prediction accuracy, depending on contact definition. X-axis: Cβ distance
threshold for amino acid pair to be in contact.

plmConv yields more accurate predictions than plmDCA. We compared the predictive perfor-
mance of the proposed plmConv method to plmDCA in terms of positive predictive value (PPV) at
different prediction counts and different sequence separations (see Table 1 and Fig. 2a). Regardless
of the chosen threshold, plmConv yields considerably higher accuracy. This effect is particularly
important in context of long-range contacts, which tend to be underpredicted by plmDCA and related
methods, but are readily recovered by plmConv. The notable improvement in predictive power is
important, given that both plmDCA and plmConv use exactly the same data and same inference
algorithm, but differ in the processing of the inferred co-evolution matrices. We posit that this may
have longstanding implications for evolutionary coupling analysis, some of which we discuss below.

plmConv is more accurate than MetaPSICOV, while remaining more flexible. We compared
our method to MetaPSICOV [18, 19], a method that performed best in the CASP11 experiment.
We observed that plmConv results in overall higher prediction accuracy than MetaPSICOV (see
Table 1 and Fig. 2a). This holds for all the criteria, except for the top-ranked short contacts.
MetaPSICOV performs slightly better at the top-ranked short-range contacts, but they are easier to
predict, and less useful for protein folding [17]. It is worth noting that MetaPSICOV achieves its
high prediction accuracy by combining multiple sources of co-evolution data (including methods
functionally identical to plmDCA) with predicted biophysical properties of a protein (e.g. secondary
structure) and a feed-forward neural network. In plmConv we are able to achieve higher performance,
by using (a) an arbitrary alignment and (b) a single co-evolution result, which potentially allows for
tuning the hyperparameters of (a) and (b) to answer relevant biological questions.
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Separation Method Top 10 L/10 L/5 L/2 L
MetaPSICOV 0.797 0.761 0.717 0.615 0.516

All plmDCA 0.598 0.570 0.525 0.435 0.356
plmConv 0.807 0.768 0.729 0.663 0.573

MetaPSICOV 0.754 0.683 0.583 0.415 0.294
Short plmDCA 0.497 0.415 0.318 0.229 0.178

plmConv 0.724 0.654 0.581 0.438 0.320
MetaPSICOV 0.710 0.645 0.559 0.419 0.302

Medium plmDCA 0.506 0.438 0.355 0.253 0.180
plmConv 0.744 0.673 0.583 0.428 0.304

MetaPSICOV 0.594 0.562 0.522 0.436 0.339
Long plmDCA 0.536 0.516 0.455 0.372 0.285

plmConv 0.686 0.651 0.616 0.531 0.430
Table 1: Positive predictive value for all non-local (separation 6+ positions), short-range, mid-range
and long-range (6 − 11, 12 − 23 and 24+ positions) contacts. We demonstrate results for Top 10
contacts per protein, as well as customary thresholds of L/10, L/5, L/2 and L contacts per protein,
where L is the length of the amino acid chain.

Figure 3: Positive predictive value for described methods at L contacts considered as a function of the
information content of the alignment. Scatter plot: observed raw values. Line plot: rolling average
with window size 15.

plmConv pushes the boundaries of inference with few sequences. One of the major drawbacks
of statistical inference for evolutionary analysis is its dependence on availability of high amounts of
homologous sequences in multiple sequence alignments. Our method to a large extent alleviates this
problem. As illustrated in Fig. 3, plmConv outperforms plmDCA accross all the range. MetaPSICOV
appears to be slightly better at the low-count end of the spectrum, which we believe is due to the way
MetaPSICOV augments the prediction process with additional data – a technique known to improve
the prediction, that we have expressly not used in this work.

plmConv predicts long-range contacts more accurately. As mentioned above, it is the long-range
contacts which are of most utility for protein structure prediction experiments. Table 1 demonstrates
that plmConv is highly suitable for predicting long range contacts, yielding better performance across
all the contact count thresholds.

T0784: a success story. One of the targets in CASP11 (target ID: T0784) was a DUF4425 family
protein (BACOVA_05332) from Bacteroides ovatus (PDB ID: 4qey). The number of identifiable
sequence homologs for this protein was relatively low, which resulted in uninterpretable contact map
obtained by plmDCA. The same co-evolution statistics used as input to plmConv yielded a contact
map which not only was devoid of the noise present in plmDCA’s contact map, but also uncovered
numerous long-range contacts that were not identifiable previously. The contact map produced by
plmConv for this target is also of much higher utility than the one returned by MetaPSICOV. Note in
Fig. 4c how MetaPSICOV prediction lacks nearly all the long-range contacts, which are present in
the plmConv prediction.
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(a) Structure
(b) Contact maps predicted by our
method vs. plmDCA

(c) Contact maps predicted by our
method vs. MetaPSICOV

Figure 4: An example of one of CASP11 proteins (T0784), where plmConv is able to recover the
contact map, which other methods cannot. True contacts (ground truth) marked in gray. Predictions
of respective methods are marked in color, with true positives in green and false positives in red.
Predictions along the diagonal with separation of 5 amino acids or less have not been considered in
computing positive predictive value and have been marked in lighter colors in the plots.

4 Discussion and Conclusions

In this work we proposed an entirely new way to handle the outputs of the co-evolutionary analyses
of multiple sequence alignments of homologous proteins. We demonstrated that this method is
considerably superior to the current ways of handling the co-evolution data, able to extract more
information from them, and consequently greatly aid protein contact prediction based on these data.
Contact prediction with our method is more accurate and 2 to 3 times faster than with MetaPSICOV.

Relevance to the field. Until now, the utility of co-evolution-based contact prediction was limited
because most of the proteins that had sufficiently high amount of sequence homologs had also their
structures determined and available for comparative modelling. As plmConv is able to predict high-
accuracy contact maps from as few as 100 sequences, it opens a whole new avenue of possibilities
for the field. While there are only a few protein families that have thousands of known homologs
but no known structure, there are hundreds which are potentially within the scope of this method.
We postulate that this method should allow for computational elucidation of more structures, be it
by means of pure computational simulation, or simulation guided by predicted contacts and sparse
experimental restraints.

plmConv allows for varying prediction parameters. One of the strengths of the proposed method
is that it is agnostic to the input data, in particular to the way input alignments are constructed and to
the inference parameters (regularization strength). Therefore, one could envision using alignments
of close homologs to elucidate the co-evolution of a variable region in the protein (e.g. variable
regions of antibodies, extracellular loops of G protein–coupled receptors etc.), or distant homologs
to yield structural insights into the overall fold of the protein. In the same way, one could vary
the regularization strength of the inference, with stronger regularization allowing for more precise
elucidation of the few couplings (and consequently contacts) that are most significant for protein
stability or structure from the evolutionary point of view. Conversely, it is possible to relax the
regularization strength and let the data speak for itself, which could potentially result in a better
picture of the overall contact map and give a holistic insight into the evolutionary constraints on the
structure of the protein in question.

The method we propose is directly applicable to a vast array of biological problems, being both
accurate and flexible. It can use arbitrary input data and prediction parameters, which allows the end
user to tailor it to answer pertinent biological questions. Most importantly, though, even if trained
on the heavily constrained data set, it is able to produce results exceeding in predictive capabilities
those of the state-of-the-art methods in protein contact prediction at a fraction of computational effort,
making it perfectly suitable for large-scale analyses. We expect that the performance of the method
will further improve when trained on a larger, more representative set of proteins.
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3.2 3D Deep Learning for Biological Function Prediction
from Physical Fields

Determining the biological function of molecules such as proteins or small drug-
like compounds is a central question in biology and pharmacology. Knowing the
physical processes and chemical reactions in which molecules are involved helps
to understand biological and pathological processes and to develop cures.

The three-dimensional structure of a molecule dictates how the molecule can
interact with other molecules, i.e. its function. Therefore, our aim is to predict
the biological function of molecules from their structure.

More specifically, the electron density and electrostatic potential field of a
molecule dictate the attractive and repulsive forces (and thus the interactions)
between the molecule in question and other molecules. Therefore, we estimate
these two physical fields on a voxel grid and use them as input to a deep neu-
ral network to predict the function of the respective molecule. Thus, unlike
previous methods, which use handcrafted features, our method uses the raw
physical information and lets the neural network learn to extract features that
are optimal for the task at hand.

Due to the quantum-mechanical intractability of the exact electron density
of molecules, we use an approximation of the electron density, namely Gaussian
kernels around the atom centers with the van der Waals radii as the band-
width [Bernstein and Craig, 2010]. This is a quite good approximation espe-
cially for the electron-density values around the molecular surface, which dictate
interactions with other molecules.

For proteins, we propose a new representation of three-dimensional structure,
namely the usage of separate image channels for the electron density of different
amino acid types and atom types. This allows the neural network to easily
distinguish the amino acid types and atom types without having to learn to
infer them from nuances of the structure.

To compute an estimation of the electrostatic potential field of small
molecules, we estimate the partial charges using the Gasteiger–Marsili PEOE
algorithm [Gasteiger and Marsili, 1978]. For proteins, we do not use the elec-
trostatic potential field, because algorithms for computing partial charges of
large molecules are error-prone, and because amino acid types largely dictate
the partial charges and can be inferred from the electron density.

We propose various computational speed-ups for different sizes of molecules
and datasets, for example keeping the dataset in GPU memory and comput-
ing randomly rotated physical fields on the fly with GPU acceleration, or pre-
computing the physical fields into files and randomly rotating them with GPU
acceleration.

Our convolutional networks achieve results comparable to the state of the
art on small molecules, and promising results on proteins. This indicates that
neural networks are indeed capable of extracting valuable information contained
in electron density and electrostatic potential fields.

Our input representations are also compatible with modern rotation-invariant
neural networks.
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Abstract

Predicting the biological function of molecules, be it pro-
teins or drug-like compounds, from their atomic structure
is an important and long-standing problem. The electron
density field and electrostatic potential field of a molecule
contain the “raw fingerprint” of how this molecule can fit to
binding partners. In this paper, we show that deep learning
can predict biological function of molecules directly from
their raw 3D approximated electron density and electro-
static potential fields. Protein function based on Enzyme
Commission numbers is predicted from the approximated
electron density field. In another experiment, the activ-
ity of small molecules is predicted with quality compara-
ble to state-of-the-art descriptor-based methods. We pro-
pose several alternative computational models for the GPU
with different memory and runtime requirements for differ-
ent sizes of molecules and of databases. We also propose
application-specific multi-channel data representations.

1. Introduction
Recent developments in experimental techniques for life

sciences allow for studying a vast array of properties and
characteristics of biologically relevant molecules. We can
elucidate structures of proteins and small molecules, their
composition (in terms of amino acid sequences and atoms),
abundance and localization in the cells, to name just a few
such traits. Most of these experimental efforts serve one
purpose though – uncovering the function the molecule car-
ries out in the living organism. Both for proteins and small
molecules, the function can be described in terms of the ef-
fect that the molecule has on its interaction partners. This
can in turn be expressed in terms of spatial interactions,
such as the lock-and-key model of ligand affinity or enzyme
specificity (based on spatial complementarity).

While elucidating the structures of biomolecules be-
comes easier, experimental function annotation remains
elusive. According to UniProtKB, out of over 74 million
proteins in the database just 89 thousand have experimen-
tally determined function, 393 thousand have been labelled

with a function by a human expert and only ∼ 12% (9 mil-
lion) have been annotated in any form, be it by human or by
a computer algorithm.

Analogously, PubChem (one of the largest databases of
drug-like molecules and their bioactivity assays) contains
over 93 million compounds, but only 1.2 million experi-
mental assays in which one or more of the compounds have
been tested against one of ∼ 10 thousand protein targets or
∼ 20 thousand gene targets. Bearing in mind that a single
compound can act on multiple targets and a single protein
can be a target of many compounds, it is evident that this
database is far from being comprehensive.

1.1. Non-structure-based function prediction

While the function is dictated by structure, it is not al-
ways necessary to know the full, atomic structure of the
compound to be able to infer the function. For example,
protein function prediction methods use numerous sources
of information in combination. In addition to the amino
acid sequence (primary structure), one can use evolution-
ary information (homologs of known function), sequence
information inferred from genome (genomic context), gene
co-expression, proteomic assays (including protein-protein
interaction), as well as data from genetic assays and clinical
observations [Jiang et al., 2016].

1.2. Structure-based function prediction

1.2.1 Related work

There are many possibilities to represent information about
molecule structure, and to feed it into a function prediction
method.

For quantitative structure-activity relationship (QSAR)
modeling, chemical structures are often numerically en-
coded with hand-made descriptors that describe chemi-
cal properties, topology or atomic connectivity, and spa-
tial geometry of the molecule [Sliwoski et al., 2014].
Scalar descriptors include molecular properties, such as
molecular weight and the octanol-water partition coefficient
(LogP). Topological descriptors encode the connectivity
of the molecule, examples of which include substructure-
matching schemes and bond distance histograms such as
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2D autocorrelation functions [Sliwoski et al., 2016]. Geo-
metrical descriptors include radial distribution and 3D au-
tocorrelation functions which calculate histograms of in-
teratomic distances within a molecule, or encoding coef-
ficients of the spherical harmonics which best describe the
shape of the molecule [Baumann, 2002, Wang et al., 2011].
Topological and geometrical descriptors are often weighted
by atomic properties such as partial charge or polarizability
to describe the spatial and topological distributions of these
properties as well. Most of descriptors either do not re-
quire a three-dimensional conformation of the molecule, or
else a single low-energy conformation is used for their cal-
culation. Four-dimensional descriptors have also been de-
scribed which aim to encode some dynamical properties of
molecules, such as multiple conformations [Andrade et al.,
2010], in addition to the properties described above.

For proteins, on the other hand, approaches to represent-
ing the structure are two-fold, either coordinate-based or
topology-based. The first ones denote the positions of all
the amino acids in Cartesian space, either by coordinates
of atoms or of pseudoatoms (larger entities representing a
group of atoms). Coordinate-based representations are im-
mediately interpretable, as they comprise sufficient infor-
mation to easily position all the objects in three-dimensional
space. The functional relationships within the protein,
though, are better captured by representations taking into
account the mutual proximity of the objects (amino acids,
atoms. . . ). Such approaches have been widely adopted in
the field, ranging from directly enumerating distances be-
tween bodies (often within a certain cutoff), through enu-
merating the bodies that are in spatial proximity (in contact,
within a certain distance threshold) according to a certain
metric, to purely neighborhood-based measures (such as the
ones dictated by Voronoi tesselation) [Dupuis et al., 2005].
Through these measures it is straightforward to tell which
bodies (atoms, amino acids. . . ) interact, but exceedingly
difficult to reconstruct the original structure, if the original
distances have not been preserved.

The method most similar to ours – using 3D represen-
tations directly as inputs to the neural network – is Atom-
Net [Wallach et al., 2015]. Its details and differences to our
method are described below in Section 1.2.3.

1.2.2 Motivation for proposed structure-based method

At a microscopic level, the electromagnetic force governs
interactions between molecules of any shape or size and in
particular it is responsible for the binding affinities of small
molecules to proteins or for enzyme function. A classical
description of molecular structure usually differentiates two
major subsets of electromagnetic interactions, namely elec-
trostatic forces (often described by an electrostatic poten-
tial) and van der Waals or steric interactions [Israelachvili,

Figure 1: Four of 70 z-slices from the two-channel 70×70×
70 × 2 representation of an active M1 muscarinic receptor
agonist (from dataset PubChem SAID 1798): approximated
electron density field (top; darker means denser) and elec-
trostatic potential field (bottom; positive potential in blue,
negative in red, darker means higher magnitude). These
physical fields characterize how this molecule can spatially
fit to other molecules (binding partners). We thus propose
using these fields directly as input to the 3D convolutional
network.

2011]. Electrostatic forces are longer-range attractive or
repulsive effects which are a result of charge imbalances
between atoms. They establish partial positive and neg-
ative charges in different regions of the molecular struc-
ture. Van der Waals interactions are a shorter-range effect
which may be either attractive, due to transient dipoles in
the electron clouds, or repulsive, due to an overlap of the
electron clouds of molecules. Van der Waals effects are
therefore determined by the electron-dense regions around
a molecule which effectively determine its shape and play
an important role in determining binding interactions. Vari-
ations of electrostatic potential and electron densities are
often used to computationally describe molecular interac-
tions at a classical level, such as in molecular dynamics
calculations [Salomon-Ferrer et al. (2013), Brooks et al.,
1983, Alper and Levy, 1989]. Together these two properties
make up a majority of what two interaction partners “see” of
each other. In other words, electron density (or its estimate)
and electrostatic potential are major determining factors of
the molecular function. This is why we propose using these
fields directly as inputs to the function prediction method.

The common theme in existing methods that predict
function from structure is that they extract handcrafted fea-
tures from structural information. Such transformations dis-
card part of the information contained in the original data,
very likely to the detriment of subsequent analysis. Lessons
learned from the success of deep learning in numerous ar-
eas of application [Krizhevsky et al., 2012, Golkov et al.,
2016, Wang et al., 2017] consistently indicate that deep
learning can deal with the entire known raw information and
learn the data transformation that is optimal for the task at
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Figure 2: Eight z-slices of approximate protein electron density field in a 21-channel representation. The backbone and
each residue type have individual channels (shown using hues from RasMol’s shapely color scheme for residues and black
for backbone) for the electron density (darker means denser) of respective atoms. This novel protein-specific multi-channel
representation helps the neural network to distinguish the amino acid types directly.

hand. The multi-layer (deep) data transformations applied
to the raw data are optimized jointly in view of the final
goal (such as classification), formulated as the cost function
of the neural network. The output error is back-propagated
through all neural network layers, i.e. optimizes the trans-
formations at all layers. In most cases, such automatically
optimized transformations strongly outperform handcrafted
ones. We therefore explore the deep learning approach to
molecular function prediction.

1.2.3 Differences between AtomNet and proposed
method

A similar method is AtomNet [Wallach et al., 2015]. It
uses various 3D grid representations of small molecules for
bioactivity prediction. The main differences between Atom-
Net and our approach are the following:
• AtomNet requires a 3D co-complex of the molecule in

question with its binding target, whereas our method uses
the shape of the molecule alone.

• The version of AtomNet that uses the enumeration of
atom types in a 3D grid only implicitly provides the
information about the possibilities for physical interac-
tions with other molecules, whereas our representation
of the molecule via its approximate electron density and
electrostatic potential 3D grids is a rawer, more direct
representation of how other molecules “perceive” the
molecule in question, and in what ways they can phys-
ically interact. Besides, the enumeration of atom types
in a discrete grid without anti-aliasing introduces impre-
cisions, partially discarding information about the exact
relative positions of the atoms, whereas the usage of anti-
aliasing for atom enumeration or the voxel-wise estima-
tion of electron density and electrostatic potential are un-
affected by discretization-based imprecisions. Our pre-
liminary experiments indicated that our precise represen-
tation yields better results than the discretized one.

• The version of AtomNet that uses handcrafted chemi-
cal descriptors such as SPLIF [Da and Kireev, 2014],
SIFt [Deng et al., 2004], or APIF [Pérez-Nueno et al.,
2009] brings along the aforementioned disadvantages of
handcrafted features, whereas we provide the entire phys-

ical information required to extract relevant chemical and
physical properties.

• Besides small molecules, we also present protein func-
tion prediction using 3D deep learning, demonstrating the
robustness of our approach.

• The network architecture of our approach differs from
the one of AtomNet in the following ways: (a) it con-
tains max-pooling layers, thus encouraging the learning
of invariances (cf. below); (b) our network has more con-
volutional layers. The overall architecture is based on the
work of [Simonyan and Zisserman, 2015].

2. Methods

Input representation Electron density of a molecule can-
not be easily computed based on the coordinates alone,
but can be approximated based on the positions of atoms
and their van der Waals radii. Approximate electron den-
sity and electrostatic potential are calculated on a Cartesian
grid. For small-molecule experiments, the field of view is
35 Å×35 Å×35 Å at a resolution of 0.5 Å, i.e. 71×71×71
voxels. An example is shown in Fig. 1. For protein experi-
ments, the field of view is 127 Å× 127 Å× 127 Å at a res-
olution of 2 Å, i.e. 64 × 64 × 64 voxels, for low-resolution
experiments, and a resolution of 1 Å, i.e. 128 × 128 × 128
voxels, for high-resolution experiments.

The approximate electron density used herein is emphat-
ically not the true, noisy one measured by X-ray crystallog-
raphy or electron microscopy. The experimental data can
be used directly, but this remains to be the subject of future
research. Instead, we use an estimate of the idealized elec-
tron density obtained from the atom coordinates. The elec-
tron density is estimated using a Gaussian kernel around the
atom center with the van der Waals radius as its bandwidth
[Bernstein & Craig, 2010].

The electrostatic potential of small molecules is esti-
mated by computing the partial charges of the atoms us-
ing the Gasteiger–Marsili PEOE (partial equalization of or-
bital electronegativities) algorithm [Gasteiger and Marsili,
1978].

Experiments with proteins on the other hand were per-
formed using approximated electron density only, without
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Figure 3: We propose three versions of the pipeline, addressing different needs. The all-GPU pipeline (a) is appropriate if the
molecule database fits into GPU memory, for example in the case of small molecules. The large-database pipeline (b) can be
applied to the study of proteins; its bottleneck is the slow computation of 3D maps. To circumvent this bottleneck, the fast
large-database pipeline (c) precomputes the 3D maps only once (dashed lines).

electrostatic potential, for several reasons. Firstly, the com-
putation of partial charges for proteins requires employ-
ing one of several non-trivial algorithms, all of which are
fraught with substantial degree of error. Secondly, individ-
ual amino acid types have a paramount effect on the partial
charges, and amino acid types can be inferred from the ap-
proximated electron density alone. Thus, due to the limited
vocabulary of structural motifs in proteins, “electrostatic
motifs” can be learned from “electron density motifs”.

To additionally simplify the recognition of structural mo-
tifs and to make use of the limited vocabulary of amino
acid residues, we propose an alternative multi-channel in-
put representation. Instead of computing the approxi-
mated electron density of the entire protein in a Cartesian
64 × 64 × 64 voxel grid (or 128 × 128 × 128 for high-
resolution experiments), we separate the atoms by the 20
amino acid residue types they belong to and calculate the
approximated electron density (Gaussian kernel) 3D maps
for each residue type separately, yielding 20 channels, i.e. a
64×64×64×20 array. An additional channel is used for the
electron density of backbone atoms, the 21 channels thus
summing up to the overall approximated electron density.
This representation can be considered a generalization of

one-hot encoding of categorical variables. These 21 chan-
nels are shown in Fig. 2. Furthermore, one additional chan-
nel is used for hydrogen atoms due to their role in hydrogen
bonds, influencing molecular function, and a complemen-
tary channel for heavy-atom electron density, the two lat-
ter channels also summing up to the overall approximated
electron density. Finally, another channel holds the approx-
imated electron density for all atoms, providing three-fold
redundancy, but also a disentangled information representa-
tion amenable to learning relevant deep feature extractors.
The overall input size is thus 64× 64× 64× 24. The three
spatial dimensions are used for 3D convolutional layers, and
the fourth dimension represents the channels, i.e. the voxel-
wise features.

We encourage rotation-invariance by training, i.e. by us-
ing data augmentation, in this case random rotations and
translations of the molecule when creating the Cartesian
grid of the physical fields. This trains the neural network
to produce similar output for a certain molecule regardless
of its position and orientation in space. Furthermore, data
augmentation prevents overfitting and facilitates generaliza-
tion, since unimportant (“overfittable”) features such as a
specific orientation of the molecule (and associated local
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“voxel value motifs”) are never repeated during training,
whereas structural invariants relevant for predicting molec-
ular function are maintained.

Input computation pipeline Where possible, we perform
computations on the GPU – not only the deep learning train-
ing, but also the computation of the inputs (3D maps). In
our implementation with Lasagne and Theano software li-
braries, data generation and data augmentation are seam-
lessly integrated into the processing as “layers” of the neu-
ral network.

In cases of large molecules and/or large numbers of
molecules, the database may not fit into GPU memory.
We therefore propose different pipelines with the molecule
database in the GPU memory (Fig. 3a) or CPU memory
(Fig. 3b–c). Moreover, the computation of 3D maps is a
bottleneck in case of large molecules. Thus, we also pro-
pose a pipeline where the 3D maps are pre-computed in
one orientation, stored in a file, and rotated for purposes
of data augmentation during training (Fig. 3c), resulting
in slight interpolation artifacts, but retaining the important
physical information. We use the all-GPU pipeline (Fig. 3a)
for QSAR and the fast large-molecule pipeline (Fig. 3c) for
protein function prediction.

Neural network architecture Protein function is dictated
by the shape of the active site (as represented in the physical
3D maps), as well as the folds (evolutionary families) and
relative positions of the domains of the protein. The overall
structure of active sites and domains can be inferred from
local structural motifs and their higher-level global com-
position. The method should therefore have the following
properties:

1. Translation-covariance of low-level feature extraction
2. Locality of low-level feature extraction
3. Hierarchical feature extraction from localized and sim-

ple to larger and more abstract
4. Rotation-invariance

The first three points are ensured by employing convolu-
tional neural networks. The fourth point is taken care of by
random rotations during training.

The neural network architecture is closely based on a
design practice popularized by [Simonyan and Zisserman,
2015], proposing the usage of very small convolutional fil-
ters, achieving certain receptive window sizes through in-
creased depth of the network (allowing more elaborate data
transformations) rather than large filters. Pooling layers in-
crease the receptive window size; they encourage (but do
not enforce) the learning of invariance to slight distance
changes, slight translations and slight rotations; and they
contribute to a higher level of feature abstraction, model
regularity (generalizability) and computational tractability.
We use the VoxNet implementation [Maturana and Scherer,
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Figure 4: Schematic of the neural network architecture used
in most experiments, with visualized activations (feature
maps) after training. Only a fraction of slices and channels
is shown (with consistency across layers). The outputs do
not have to sum up to 1 because one sample can belong to
several classes (and therefore sigmoid rather than softmax
was used as the nonlinearity in the output layer).

2015a, Maturana and Scherer, 2015b] of 3D convolutional
filters of size 3 × 3 × 3, interspersed with 3D pooling lay-
ers of size 2 × 2 × 2, analogously to 2D operations in the
work of [Simonyan and Zisserman, 2015]. The network
architecture and activation maps are shown in Fig. 4. In
hidden layers, we use the leaky rectified linear unit [Maas
et al., 2013] defined as LReLU(z) = max{0.01z, z}. The
network has an output unit for each predicted class. The
output nonlinearity is the sigmoid σ(z) = 1/(1+exp(−z))
(rather than the softmax function common in classification),
so that molecules with several functions can be modeled
in a straightforward manner by setting several output tar-
gets to 1 for the same sample (where 0 or 1 represents class
membership). The corresponding loss (objective) function
for C classes is the binary cross-entropy between predic-
tions y and respective targets t, summed for all classes:∑C

c=1−tc log yc − (1 − tc) log(1 − yc). Training is per-
formed using Adam [Kingma and Ba, 2015], learning rate
10−4, mini-batch size 2, 4 or 8 for different resolutions and
GPUs, and early stopping. Results were similar (not shown)
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with dropout, batch normalization, skip-connections.

Data For protein experiments, we use the Enzyme Struc-
tures Database,1 which lists PDB structures for enzymes
classified by the Enzyme Commission (EC) number hier-
archy, designating enzyme specificity and mode of action.

In the first experiment, we perform classification on
two classes of enzymes acting on a peptide bond (pepti-
dases): serine proteases (EC 3.4.21.-) and cysteine pro-
teases (EC 3.4.24.-). Proteins in both classes perform the
same task of cleaving a peptide bond, but differ in terms of
catalytic mechanism. Both classes contain proteins that do
not necessarily share evolutionary history (i.e. are not nec-
essarily homologous) and therefore do not always share the
same structure (fold). The characteristic that proteins within
either of the classes share is the same functional mecha-
nism, which may have emerged in the course of convergent
evolution.

In another larger-scale experiment, we perform classifi-
cation of all 166 third-level EC classes against each other,
i.e. EC 1.1.1.- vs. EC 1.1.2.- vs. . . . vs. EC 6.6.1.-. We
experiment with two different methods of splitting samples
into training and test sets. By random split, we refer to
randomly assigning samples (PDB entries) to the training
or test set. A more challenging task is function prediction
with a strict split at the fourth EC level, meaning that if
e.g. a sample in EC 3.4.21.1 (chymotrypsin) gets randomly
assigned to the test set, then all other entries in this fourth-
level class also get assigned to the test set and none of them
to the training set. Thus, it is tested whether the neural
network can correctly predict chymotrypsins (EC 3.4.21.1)
to belong to the class of serine proteases (EC 3.4.21.-),
based solely on information inferred from other subclasses
of EC 3.4.21.-, such as subtilisin, thrombin or trypsin, but
no samples from chymotrypsin class.

In each training/test split, we select 25% of the samples
for the test set (consistently across experiments of the same
splitting method). Additional 25% are picked randomly as
a validation set to perform early stopping during training in
order to prevent overfitting. The remaining 50% of the data
are used for training.

For the small-molecule QSAR task, we use a dataset
of M1 muscarinic receptor agonists and inactive componds
(PubChem SAID 1798) that were annotated in a respective
assay [Butkiewicz et al., 2013]. We attempt to classify the
molecules into the active/inactive categories, reserving 20%
of the data for testing, and training on the other 80%.

3. Results
The receiver operating characteristic (ROC) for discrim-

inating between serine and cysteine proteases, i.e. classify-

1https://www.ebi.ac.uk/thornton-srv/databases/enzymes/

ing EC 3.4.21.- against EC 3.4.24.- with the random train-
ing/test split is shown in Fig. 5a. For low-resolution exper-
iments, the area under the ROC curve (AUC) of 0.91 with
single-channel inputs and 0.97 with multi-channel inputs in-
dicates a high quality of prediction and suggests that high
accuracy protein function prediction from 3D maps is feasi-
ble. Moreover, doubling the resolution in each dimension,
i.e. using 128 × 128 × 128 voxels in lieu of 64 × 64 × 64
voxels, further increases the AUC to 0.94 for single-channel
and 0.99 for multi-channel experiments. Thus, both of the
high-resolution settings outperform the corresponding low-
resolution settings; and both of the multi-channel settings
outperform the respective single-channel setting. This in-
dicates that the high-resolution data representation and the
multi-channel data representation (and both together) con-
tain valuable information for this task. However, the ran-
dom split entails that both test and training set most proba-
bly contain proteins from the same evolutionary family, thus
making the learning task substantially easier.

ROC for the same classes with a strict training/test split
is shown in Fig. 5b. The AUC=0.56 for single-channel in-
puts is much lower than for the random split, confirming
that the strict split – inferring protein function only based
on other protein families sharing same function – is a con-
siderably harder problem. However, the AUC=0.66 for
multi-channel inputs also shows that the multi-channel rep-
resentation of protein structure is beneficial for facilitating
the extraction of information about protein function. With
the strict split, increasing the resolution of the data does
not strongly influence the AUC, and in case of the multi-
channel inputs leads to decrease in predictive power. It is
however important to note that increasing the resolution no-
tably improves the expected number of true positives before
encountering a false positive (left part of ROC curve; for

(a) Random split (b) Strict split

Figure 5: ROC for protein function prediction: EC 3.4.21.-
(vs. EC 3.4.24.-) with random split (a) and strict split (b).
The multi-channel input representation outperforms the re-
spective single-channel settings. The proposed 3D input
representation provides meaningful information about the
molecules under the random split and even under the chal-
lenging strict split.
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Figure 6: Confusion matrix for classification of the 166
third-level EC classes. The pronounced diagonal means
correct prediction for the majority of test samples.

both single- and multi-channel methods with random split,
as well as for single-channel for strict split). This signifies
that the network given improved resolution learns to recog-
nize crucial structural features of individual classes. The
subsequent, mid-range drop in accuracy can, in our opin-
ion, be attributed to insufficient amount of data in the train-
ing set, which prevents the network from generalizing prop-
erly. This is also the reason for sub-par performance of the
method in “high resolution, multi-channel” regime.

It is however evident from Figures 5a and 5b that in-
troduction of additional channels denoting the amino acid
types substantially improves the expected prediction accu-
racy. In our opinion, this allows the network to easier
attain the knowledge on structural and functional proper-
ties of amino acids, which it would have to learn in train-
ing. By introducing additional channels, we alleviate this
need. It is evident that analogous effect could have been
achieved by pretraining the networks with a larger data cor-
pus, which we will demonstrate in subsequent work. There-
fore, we postulate that in the limit of infinite (or at least suf-
ficiently abundant) data, performance of “single-channel”
and “multi-channel” approaches would converge.

The confusion matrix for the classification of the 166
third-level EC classes with random train/test split is shown
in Fig. 6. The diagonal (correct predictions) is highly pro-
nounced, indicating that our deep learning approach stably
distinguishes the correct class from the 165 other possi-
ble classes of proteins in many cases, which is a challeng-
ing task requiring the representation of numerous function-
specific structural features within the neural network. Each
class had a slightly different AUC in the test data; the AUC
of the individual classes averaged across all classes was
0.87± 0.13 on the test data.

While protein function prediction results are proof of
concept rather than competitive, small-molecule QSAR re-
sults are at par with state-of-the-art methods in terms of
AUC. The ROC curve for biological activity classifica-

tion of M1 muscarinic receptor antagonists is shown in
Figure 7b. Models trained on this dataset achieved an
AUC=0.70. This value indicates that the models were
capable of differentiating molecules which exhibited bio-
logical activity from those that did not at a rate substan-
tially higher than random chance. The AUC value found
here is approximately equal to that of state-of-the-art meth-
ods based on hand-crafted descriptors applied to the same
dataset [Mendenhall and Meiler, 2016]. A further demon-
stration of the performance of the model can be seen in Fig-
ure 7a, which highlights a substantial gap between mode
scores for the two classes of compounds.

These results are both interesting and encouraging given
that state-of-the-art models utilize descriptors and network
architectures that are specifically optimized for biological
activity prediction. The performance of the models reported
here indicates that the chosen approximations for describ-
ing molecular structure are already capable of encoding in-
formation that is equally valuable to what is found in the
hand-crafted descriptors. Further refinement of both molec-
ular structure description and network parameters are likely
to boost the performance above what is seen here. Addi-
tionally, these models illustrate that deep learning can be
a powerful tool even in domains where the data sets are
much smaller and more heavily unbalanced than those seen
in more traditional applications of deep learning.

As noted in [Mendenhall and Meiler, 2016], the goal of
biological activity prediction is often to prioritize a large set
of compounds in order to select a small subset for physi-
cal testing, thereby making those compounds with the high-
est scores the most important from a practical standpoint.
These models were trained with a loss function designed
to optimize the overall AUC of the ROC curves (i.e. from
false positive rate (FPR) values of 0 to 1) which effectively
aims to best separate the two classes from each other as a
whole. However, this metric does not consider the perfor-
mance of the highest scoring samples, and as seen in Fig-
ure 7a, the highest-scoring active compound is separated
from the highest-scoring inactive compound by a small frac-
tion of the score range. Given these promising early re-
sults, approaching this problem with a loss function de-
signed to optimize compound scores at low FPR values (e.g.
the logAUC metric described in [Mendenhall and Meiler,
2016]) would provide a straightforward way to improve
the performance of these models in a manner beneficial for
practical QSAR application.

4. Discussion and Conclusions
In this work we have demonstrated the utility of 3D

convolutional neural networks for discriminating between
molecules in terms of their function in living organisms.
They allow for accurate classification of proteins, with-
out relying on domain (expert) knowledge or evolutionary
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(a) Normalized histogram of pre-
dictions (neural network outputs)
for active and inactive small
molecules (b) ROC (AUC=0.70)

Figure 7: Results for small-molecule QSAR. Predictions (a)
demonstrate some separability of active and inactive small
molecules in the test set. The ROC (b) has an AUC=0.70
approximately equal to that of state-of-the-art descriptor-
based methods applied to this dataset (PubChem SAID
1798).

data. Additionally, the use of the 3D convolutional neural
networks for classifying small molecules permits achiev-
ing comparable quality as state-of-the-art QSAR methods,
while obviating the need for handcrafted descriptors.

The data on protein classification presented above were
based purely on enzymes, but it is highly plausible that
these results generalize to the entire protein space. The
success in discriminating between a wide variety of en-
zyme classes strongly indicates that this approach al-
lows for high-confidence discrimination between differ-
ent functional classes (transporters, structural proteins, im-
munoglobulins. . . ). Discriminating within a class (e.g.
dopamine receptor from a glucagon receptor) should be
possible as well, as demonstrated by our serine vs. cysteine
protease experiment.

The classification experiments presented above are to be
treated as proof-of-concept. While we demonstrated the ap-
plicability of convolutional neural networks for these pur-
poses, we do acknowledge that the predictive power of these
methods can only increase when supplemented with addi-
tional features, used by the other methods in the respec-
tive fields. For purposes of protein function prediction, one
could easily improve expected prediction accuracy by ex-
tending the feature set by such ones as presence of com-
mon sequence motifs, structural classification (annotated or
predicted) and homology-derived information. The small-
molecule classification can be augmented by experimen-
tally determined features (e.g. logP, polarizability. . . ) and
ones derived from the structure (e.g. constitutional descrip-
tors, fragment counts. . . ). While the latter can be learned, it
may prove beneficial to provide them explicitly.

Notably, this work does not consider the fact that the vast
majority of molecules in living organisms is conformation-

ally flexible. It is possible to generate multiple conformers
of small molecules, for the QSAR use case, but it is not
intuitively obvious what effect will it have on the training
of the method. By using generated conformations as ac-
tives one would inadvertently introduce false positives in
the training set (i.e. conformations in which the ligand does
not bind would be labeled as positives), but on the other
hand it would allow the network to recognize also poten-
tially active ligands, even if they were in an unsuitable con-
formation. For protein function prediction, conformational
flexibility plays a less major role, but distinction between
apo (without bound ligand) and holo (with ligand bound)
structures in the training process could potentially play a
role for the expected predictive power.

While the protein function prediction part of this work
relied on experimental structural data, these methods can
also be applied to predicted protein structures. It could be
advisable to limit the prediction to the active site only, thus
allowing for much faster training and predictions, and en-
abling meta-prediction using multiple variant active sites.

The other potential use case is to use experimental elec-
tron density directly, without the need for fitting atoms
within. Recent developments in the area of direct imag-
ing, especially electron microscopy, make such methods
particularly relevant. As in its current form our method
does not depend on any sequence-related data, it is immedi-
ately applicable to such problems. This could enable high-
confidence function annotation of proteins recovered from
environmental samples.

These are just a few of potential application domains
for the methods we propose. By avoiding human-derived,
handcrafted descriptors they allow to capture the features
of the studied molecules that are truly important for func-
tional considerations. On contrary to these descriptors, they
will only increase in accuracy with the growing amount of
data. In contrast to methods based on structural compari-
son, the methods we proposed do not require superposition.
We postulate therefore that deep learning methods of infer-
ring functional information from raw spatial 3D data will
increase in importance, with the growing amounts of spatial
biological information and increased resolutions of direct
imaging methods.

Another promising direction is to combine our phys-
ically expressive representations with rotation-invariant
deep learning [Della Libera et al., 2019]. Methods with
hardwired invariance tend to perform better and require less
training data and no rotational data augmentation.
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3.3 q-Space Deep Learning: Twelve-Fold Shorter and
Model-Free Diffusion MRI Scans

Usual data processing pipelines for diffusion MRI consist of several steps each
of which is handcrafted and does not optimally preserve valuable information.
Moreover, the classical pipelines process each data sample separately without
using valuable information about the typical statistics of the data contained in
databases.

These two properties of the usual algorithms strongly indicated that the
usage of end-to-end deep learning, i.e. the joint optimization of all processing
steps and the usage of available training data, might be beneficial for diffusion
MRI.

And indeed, by proposing to apply deep learning to diffusion MRI data, we
achieved a twelve-fold reduction in scan time (for example from 24 minutes to
2 minutes), which allows to strongly reduce costs and make the unique sensitivity
of diffusion-MRI-based diagnostic methods available for patients who cannot
hold perfectly still for a long time in the loud and narrow MRI scanner. Another
achievement of our proposed methods is the possibility to become independent
of handcrafted models and representations that suboptimally discard parts of
the valuable information contained in the measurements. But even if model-
based processing is desired for some reason, our methods provide a twelve-fold
reduction of scan time.

More specifically, some of the main issues of previous methods are the fol-
lowing. Previous methods are based on handcrafted models that discard some
of the information present in the measurements. Moreover, fitting those mod-
els to the noisy measurements is an ill-posed/ill-conditioned problem. Possible
solutions could be disambiguated by using prior knowledge about statistics of
real data, but previous methods do not attempt to do that. Instead, they rely
on large numbers of measurements, thus requiring very long scans.

We show that deep learning can be successfully applied to diffusion MRI and
achieves a multitude of goals. Our methods can inpaint missing measurements
in diffusion-encoding space (q-space), estimate model parameters, and most im-
portantly directly identify tissue types from raw q-space measurements without
using any handcrafted suboptimal models nor representations.

We use q-space measurements as inputs to neural networks. The output
targets are chosen depending on the goals in each respective setting.

The author of this dissertation contributed substantially to the content of
the paper, in particular concerning the idea, parts of the code, neural network
training, and writing parts of the paper.

Accepted manuscript for IEEE Transactions on Medical Imaging. Published
version: doi: 10.1109/TMI.2016.2551324.
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Abstract—Numerous scientific fields rely on elaborate but 

partly suboptimal data processing pipelines. An example is 
diffusion magnetic resonance imaging (diffusion MRI), a non-
invasive microstructure assessment method with a prominent 
application in neuroimaging. Advanced diffusion models 
providing accurate microstructural characterization so far have 
required long acquisition times and thus have been inapplicable 
for children and adults who are uncooperative, uncomfortable, or 
unwell. We show that the long scan time requirements are mainly 
due to disadvantages of classical data processing. We demonstrate 
how deep learning, a group of algorithms based on recent 
advances in the field of artificial neural networks, can be applied 
to reduce diffusion MRI data processing to a single optimized step. 
This modification allows obtaining scalar measures from 
advanced models at twelve-fold reduced scan time and detecting 
abnormalities without using diffusion models. We set a new state 
of the art by estimating diffusion kurtosis measures from only 12 
data points and neurite orientation dispersion and density 
measures from only 8 data points. This allows unprecedentedly 
fast and robust protocols facilitating clinical routine and 
demonstrates how classical data processing can be streamlined by 
means of deep learning.  
 

Index Terms—Diffusion magnetic resonance imaging (diffusion 
MRI), artificial neural networks, diffusion kurtosis imaging 
(DKI), neurite orientation dispersion and density imaging 
(NODDI). 

I. INTRODUCTION 
VER the past three decades, diffusion magnetic resonance 
imaging (diffusion MRI) [1]–[4] has taken on an important 

role in assessing microstructural tissue and material properties 
non-invasively based on the diffusion of gases and liquids, 
primarily water. In radiology, diffusion MRI is a powerful 
technique, mainly due to its sensitivity to diffusion restriction 
(e.g. caused by brain ischemia), yet also any other 
microstructural tissue rebuilding as found in neoplasms or 
inflammatory lesions. Its potential as a basis for diagnostic and 
treatment monitoring markers has been established over the last 
years [5]–[8]. Advanced diffusion MRI models such as 
diffusion kurtosis imaging [2], [3] (DKI) and neurite orientation 
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dispersion and density imaging [4] (NODDI) provide more 
accurate characterization of tissue microstructure [2], [4], [9]–
[11] but require long acquisition time. This has so far led to high 
scan costs and has made advanced diffusion models 
inapplicable for patients who are uncooperative, uncomfortable 
or unwell. 

A. Model Fitting, Analytical Solutions, Approximation 
In diffusion MRI, a number of diffusion-weighted images 

(DWIs) for different diffusion weightings1 and directions 
(constituting the so-called three-dimensional q-space) are 
acquired [1]. Signal intensity in these images contains 
information regarding diffusion properties. The task in 
quantitative diffusion MRI is to find a mapping from a limited 
number of noisy signal samples to rotationally invariant scalar 
measures that quantify microstructural tissue properties. This 
inverse problem is solved in each image voxel. Currently, this 
problem is addressed by three approaches. 

The classical approach of estimating scalar measures is 
model fitting. Its data processing pipeline consists of fitting [12] 
a diffusion model and calculating rotationally invariant 
measures from the fitted model parameters. Prior to model 
fitting, the q-space data can be obtained by regular acquisition, 
or using advanced methods such as compressed sensing or 
dictionary learning (cf. below). 

Another approach can be taken if closed-form analytical 
solutions exist. For the diffusion model of DKI [2], [3] – which 
requires approximately 150 DWIs [3], [13], [14] – it has 
recently been shown [15], [16] that for certain DKI-based 
measures much fewer DWIs (e.g. 13 or 19 DWIs) are sufficient, 
and that these measures can be analytically calculated from the 
data in a single step. This has led us to the assumption that for 
many other scalar measures and tissue properties the most 
relevant information might as well be recovered from only a 
few DWIs. 

The third approach of calculating scalar measures is 
approximation, particularly machine learning. Simulations of 
simplified tissue models with extensive sets of diffusion 
weightings [17], [18] indicate that standard model fitting 
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procedures can be replaced by approximation methods. It was 
also mentioned [18] that feature selection methods could be 
applied to identify the most relevant DWIs in order to reduce 
these extensive sets of diffusion weightings. On the basis of 
these observations, we apply deep learning [19]–[23] for 
accurate approximation and present a deep learning framework 
for different inputs (full and subsampled sets of regular DWIs, 
non-diffusion contrasts) and different outputs (denoising, 
missing DWI reconstruction, scalar measure estimation, tissue 
segmentation). Scalar measure estimation from twelve-fold 
accelerated acquisition is demonstrated on two advanced 
models: DKI [2] (using radial kurtosis and fractional kurtosis 
anisotropy) and NODDI [4] (using orientation dispersion index 
and intracellular volume fraction). In comparison to most of the 
well-established models (e.g. diffusion tensor imaging [1]), 
DKI and NODDI are more elaborate and thus can provide 
improved sensitivity [2], [4], [9]–[11]; however, they also 
require considerably longer acquisition times. By shortening 
the acquisition duration of advanced models by an order of 
magnitude, we strongly improve their potential for clinical use, 
and reduce scan costs and motion artifacts caused by long scan 
durations. 

B. Advantages of Deep Learning 
Deep learning [19]–[23] is a family of algorithms for 

efficient learning of complicated dependencies between input 
data and outputs by propagating a training dataset through 
several layers of hidden units (artificial neurons). Each layer is 
a data transformation step. The classical diffusion MRI pipeline 
involving model fitting also consists of several steps. In the 
example of DKI, approximately 150 measurements [3], [13], 
[14] are reduced to 22 model parameters in the classical 
pipeline, then to a few rotationally invariant measures, and 
finally (implicitly or explicitly) to one parameter, i.e. the tissue 
property of interest such as the amount of disease-based 
microstructural change. (For NODDI, rotationally invariant 
measures are estimated during model fitting rather than in an 
additional step, see Fig. 1a.) In every step, information is partly 
lost by reducing the degrees of freedom. However, the classical 
pipeline does not provide feedback from the later steps to the 
earlier steps with regard to what part of the information should 
be retained or discarded and which transformations should be 
applied. Thus, the pipeline relies on handcrafting and fixing 
each step, i.e. the diffusion model and derived scalar measures. 
Deep learning takes a more flexible approach: the effects of 
each layer on the final result are propagated back to adjust 
preceding layers, such that all layers are optimized jointly in 
terms of the final objective, namely minimizing the output 
error. This prevents the loss of information during intermediate 
steps. Advantages of deep learning over handcrafted features 
have been shown in numerous other applications [23]. 

The main novelties introduced herein are: 

 
2 This paper has supplementary downloadable material available at 

http://ieeexplore.ieee.org, provided by the authors. This includes additional 
methods (denoising and reconstruction of missing DWIs), formal algorithms, 
results for additional scalar measures, the q-space subsampling schemes, 

· Using subsampled DWIs as machine learning input 
directly, 

· Unprecedented scan time reduction for DKI and 
NODDI, 

· Segmentation without using diffusion models. 
Preliminary results presented at a conference [24] are herein 

extended by additional evaluation, including the influence of 
neural network parameters, and more2. Related applications of 
machine learning are tractography [25] and non-diffusion MRI 
[26]. 

II. MATERIALS AND METHODS 
The relationship between the diffusion-weighted signal and 

microstructural tissue properties is non-trivial. However, an 
appropriately chosen, tuned and trained machine learning 
algorithm can theoretically represent any relationship between 
inputs and outputs [27] if such a relationship exists. We make 
use of this fact in order to leverage information contained in 
very limited numbers of input DWIs. In all experiments 
presented in this work, training datasets originate from a 
different human subject than the test datasets. The proposed 
family of methods is termed “q-space deep learning” (q-DL). In 
q-DL, we treat each image voxel individually as a data sample. 

The task of estimating the vector m of scalar measures from 
the vector S of signal measurements can be formalized as 
follows. The analytical solution is as simple as calculating H(S), 
where H is the closed-form function that maps S to m. Such 
closed-form solutions are available only for certain measures 
and certain diffusion weightings [15], [16]. In model fitting, m 
is estimated as g(f(S)), where θ = f(S) are the estimated diffusion 
model parameters obtained through model fitting f by solving 
an optimization problem, e.g. least squares [12], and g 
calculates rotationally invariant scalar measures from θ. In 
DKI, the steps of applying f and g are independent and not 
optimized jointly with respect to the accuracy of estimation of 
m; in NODDI, f and g are one joint step; in all cases, fitting is 
susceptible to noise. In contrast, q-DL adjusts the parameters of 
a multilayer neural network such that the outputs of the network 
well approximate the target measures m. The measures m are 
obtained for the training dataset by model fitting, but model 
fitting is not required for the datasets to which the trained 
network is subsequently applied. 

A. Feed-Forward Neural Networks 
A so-called multilayer perceptron is a multilayer artificial 

neural network that performs a nonlinear data transformation in 
each layer. Layer 0 is called the input layer, layer L the output 
layer, intermediate layers are called hidden layers. The 
transformation in layer ݅ ∈ ሼ1, … ,  ሽ follows the ruleܮ

ܽ
ሺሻ ൌ ൫ܹሺሻݏ

ܽ
ሺିଵሻ  ܾሺሻ൯,         ሺ1ሻ 

where ܽ
ሺሻ is the output vector of layer i for data sample j, the 

vector ܽ
ሺሻ is the input of the network, W(i) is called the weight 

stability to different random initializations, reproducibility with respect to 
different choices of training and test datasets, quantitative comparison to 
compressed sensing, stability to head rotation. 
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matrix, b(i) the bias vector, and si are 
nonlinearities (see below). The length 
of the vector ܽ

ሺሻ corresponds to the 
number of artificial neurons (hidden 
units) in layer i. During training, all 
weight matrices and bias terms are 
jointly adjusted such that the output 
vectors ܽ

ሺሻ for each training sample 
j (in our case: each image voxel j) 
well approximate the target output 
vectors ݕ. This adjustment is 
achieved by using the 
backpropagation algorithm 
(implemented in the deep learning 
toolbox [28]) to solve the 
optimization problem 

argmin
ௐ,

ฮ ܽ
ሺሻ െ ฮݕ

ଶ



,         ሺ2ሻ 

where the sum of errors is taken over 
all training samples j, and the outputs 

ܽ
ሺሻ recursively depend on the 

parameters W(i) and b(i)  according to 
the aforementioned recursive 
transformation rule for the ܽ 

ሺሻ for ݅ ∈
ሼ1, … ,  ሽ. Once trained, such a neuralܮ
network works in a deterministic 
manner. 

B. q-Space Deep Learning 
The proposed pipelines based on q-space deep learning 

reduce scan duration and perform the data processing as directly 
as possible without discarding information at intermediate 
steps. This is reflected in the comparison of q-DL to the 
standard pipeline and to other state-of-the-art methods in terms 
of possible steps of data processing (Fig. 1). Previous methods 
based on machine learning rely either on extensive acquisitions 
or on intermediate steps involving model fitting based on 
diffusion tensor imaging (DTI) and spherical harmonics (SH), 
whereas q-space deep learning provides the fastest acquisitions 
and the most direct data processing steps. 

In all experiments, training data originate from different 
human subjects than test data. The neural networks thus do not 
“know” the true output vectors of the test data but rather 
estimate them based on the input-output-mapping learned from 
training data. Each voxel j is treated individually as a data 
sample. The algorithm does not know its location in the image. 
We introduce several input-output-mapping tasks. Different 
deep networks are trained for different tasks: 
1) Estimation of Scalar Measures 

A network is trained to predict microstructure-characterizing 
scalar measures mj directly from the (reduced set of) DWIs Sj,α 
where α is a pseudorandom subsampling multi-index (such that 
the q-space sampling is consistent across training and test data). 
In other words, inputs are ܽ 

ሺሻ ൌ ܵ,ఈ with length |α|, and targets 
are ݕ ൌ ݉. The length of the output vector is the number of 

considered scalar measures. Training targets ݕ ൌ ݉ are 
obtained from a fully sampled training dataset Sj (consisting of 
|Sj|=n DWIs) by model fitting; however, a neural network is 
trained to predict mj from the subsampled data Sj,α. As a 
consequence, the neural network is able to estimate mj from α-
subsampled datasets. This allows an estimation of mj at a scan 
time reduction factor of n/|α| for all subsequent datasets. In our 
experiments, we use scan time reduction factors of up to 
n/|α|=148/12≈12.3 for DKI and up to n/|α|=99/8≈12.4 for 
NODDI. 
2) Model-Free Segmentation 

Tissue segmentation is achieved by training a neural network 
to discriminate between several tissue types. We propose 
modifying the approach [29] of multi-parametric MRI tissue 
characterization by artificial neural networks such that the 
DWIs are directly used as inputs rather than using scalar 
measures obtained from model fitting. Our approach thus 
allows using the unique information provided by diffusion MRI 
directly without the information reduction imposed by models. 
State-of-the-art automatic segmentation [30], [31] (based on 
non-diffusion images with spatial priors) into healthy white 
matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and 
multiple sclerosis lesions was used as ground truth for our 
proof-of-concept model-free segmentation (based on diffusion 
images without spatial priors). The q-DL framework allows 
incorporating additional contrasts other than DWIs as inputs to 
the learning algorithm. We used fluid-attenuated inversion 
recovery (FLAIR) signal as an additional input. The length of 
the output vector is the number of tissue classes (with each 

Fig. 1.  Possible steps of data processing from scanning a real-world subject (left) to the determination of the 
tissue properties (right). Standard DKI/NODDI pipeline is shown individually (a) and in comparison to advanced 
methods (b). Arrows designate possible data processing in the standard pipelines (solid red), state-of-the-art 
methods based on compressed sensing and machine learning (dash-dotted black) and novel processing 
possibilities introduced with q-space deep learning (dashed green), see also Ref. [24]. 
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output representing a relative class membership “likeliness” 
using softmax, see below). 

C. Details of the Neural Networks 
The deep learning toolbox [28] was used for deep learning 

experiments. The artificial neural network used is a multilayer 
perceptron with three hidden layers, each consisting of 150 
hidden units with a nonlinearity known as the rectified linear 
unit [19], [20], i.e. si(z)=max(0,z). This layout, applied to each 
image voxel independently, can be considered a convolutional 
neural network with window size 1×1 in each layer, masking 
out the loss for non-brain voxels. Linear units sL(z)=z are used 
in the output layer L for fitting tasks and softmax outputs 
sL(z)=exp(z)/ǁexp(z)ǁ1 for classification tasks. Each input and 
output of the neural network is independently scaled to the 
interval [0,1] and the same affine transformation parameters are 
reused for the test datasets. The network is initialized with 
orthogonal random weights [22]. We use a dropout [21] fraction 
of 0.1, stochastic gradient descent with momentum 0.9, 
minibatch size 128, learning rate 0.01 with a warm-up learning 
rate of 0.001 for the first 10 epochs. The learning rate was 
decreased by factor 0.9 whenever the training set error 
stagnated (averaged over 5 epochs) compared to the previous 5 
epochs. To prevent overfitting, 10% of the voxels in the training 
data set were used as a validation set and early stopping was 
employed when the validation set error (averaged over 10 
epochs) increased compared to the average over the previous 10 
epochs. These choices of the neural network parameters are 
based on practical considerations as described in Ref. [32]. We 
use a multilayer perceptron because it is a straightforward and 
powerful method. Three hidden layers provide acceptable 
results and short runtime for our purposes. Other network 
settings are evaluated in Fig. 6. In all experiments, training data 
originate from different human subjects than test data (except 
Fig. 12, panels (e,k,q,v)). For different q-space sampling 
schemes, the values of the network inputs (signal intensities) 
have a different meaning (and length), therefore a different 
network must be trained independently for every q-space 
scheme. 

D. Data 
Approval by the local ethics board for the in vivo study 

protocols and prior informed consent were obtained. In the 
multiple sclerosis data, datasets from five patients were used for 
training, and the dataset of the respective sixth patient was used 
for testing (in all combinations). In all other datasets, data from 
one healthy volunteer was used for training, and data from 
another healthy volunteer for testing. 
1) Five-Shell and Cartesian Healthy Volunteer Data 

Data sets of a total of two healthy volunteers were acquired 
using the common radial q-space scheme with 30 directions 
sampled on five shells (b=600, 1200, 1800, 2400, 3000s/mm²) 
and eight b=0 images. Ten repetitions of this scheme were 
acquired for each volunteer. Besides, Cartesian sampling [33] 
(515 points, bmax=3000s/mm²) was also performed. Echo-planar 
imaging was performed using a 3T GE MR750 MR scanner 
(GE Healthcare, Waukesha, WI, USA) equipped with a 32-

channel head coil (TE = 80.7ms, TR = 2s, FOV = 24cm × 24cm 
× 4cm, isotropic voxel size 2.5mm, ASSET factor 2). All data 
underwent FSL topup distortion correction [34], [35]. All DWIs 
were registered using an affine transformation [36] to 
compensate for motion. Advanced treatment of motion is 
subject of future work. Each volunteer data set contained 
approximately 40,000 brain voxels (i.e. training/test samples). 
2) Three-Shell Healthy Volunteer Data 

Data sets of a total of four healthy volunteers were acquired 
using a scheme optimized [13], [14] for DKI and suitable for 
NODDI [4]: three shells (b=750, 1070, 3000s/mm²) with 25, 40, 
75 directions, respectively, and eight b=0 images. Acquisition 
parameters and postprocessing were the same as for the five-
shell and Cartesian acquisitions. 
3) Human Connectome Project Data 

To demonstrate feasibility on a different scanner with 
different acquisition parameters, we used data sets of a total of 
two healthy volunteers from the Human Connectome Project 
(HCP) [37]–[44]. 
4) Multiple Sclerosis Data 

For tissue segmentation and lesion detection, six multiple 
sclerosis patients were scanned using a diffusion spectrum [33] 
random subsampling pattern with 167 DWIs (bmax = 
3000s/mm², TE = 80.3ms, TR = 5.4s, FOV = 24cm × 24cm × 
12cm, isotropic voxel size 2.5mm, ASSET factor 2).  

E. Experiments 
In all experiments, training data originate from different 

human subjects than test data. Estimation of scalar measures 
based on q-DL was performed on the five-shell, three-shell and 
HCP data for all subsampling sizes |α| from n down to 8 (as well 
as down to 1 for error evaluation). DKI-based radial kurtosis 
[45] was estimated for HCP data and five-shell data. Different 
networks were trained for these different q-space sampling 
schemes. NODDI-based neurite orientation dispersion index 
[4] was estimated for three-shell data. State-of-the-art model 
fitting [4], [12] (own implementation for DKI; NODDI Matlab 
toolbox for NODDI) and compressed sensing (CS) for 
Cartesian schemes based on dictionary learning [46] (followed 
by model fitting) were performed for comparison because they 
are the currently used approaches to estimate model-based 
measures (CS was applied to registered Cartesian data of the 
same volunteer). Model fitting of one fully sampled scan was 
used on the training set to generate output targets for q-DL 
training. The quality of the methods on the test data was 
evaluated in terms of root-mean-squared error: 

RMSE ൌ ඨ∑ ൫ ෝ݉ െ ݉,୲൯
ଶ

ୀଵ

ܬ
,         ሺ3ሻ 

where the sum is taken over all J voxels, the ෝ݉ are the results 
being evaluated, and the model fit of the nine additional 
independent repetitions of the scan was used for ground truth 
mj,gt (“reference standard”). The five-shell data were used for 
this evaluation. The fraction of voxels for which the q-DL value 
was close to the reference standard value was calculated for the 
different scalar measures. In addition to the neural network 
settings described above, different numbers of units per hidden 
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layer (between 50 and 750 in steps of 100) and different dropout 
fractions (between 0 and 0.5 in steps of 0.05) were compared. 
Using the three-shell datasets of four volunteers, the influence 
of three different training datasets on the same test dataset was 
compared, with reference standard obtained from fully-sampled 
model fitting. 

Model-free segmentation was applied to the multiple 
sclerosis data. State-of-the-art automatic segmentation [30], 
[31] into lesions, healthy WM, GM and CSF based on non-
diffusion images with spatial priors (see supporting information 
for details) was used as ground truth for our proof-of-concept 
model-free segmentation including diffusion images without 
spatial priors. The ground truth of the training data was used as 
output targets during training; the ground truth of the test data 
was used for segmentation quality evaluation. Segmentation 
quality was evaluated using the area under the curve (AUC) of 
the receiver operating characteristic (ROC). The deep learning 
models presented here cannot be more knowledgeable than the 
technique used to generate the labels. 

III. RESULTS AND DISCUSSION 
Figs. 2–5 compare the estimation of scalar measures 

produced by different methods. We show DKI-based radial 
kurtosis [45] of HCP data in Fig. 2 and of five-shell data in Fig. 
3 (with compressed sensing (CS) [46] applied to Cartesian data 
of the same volunteer in Fig. 3e–h) as well as NODDI-based 
neurite orientation dispersion index [4] of three-shell data in 
Fig. 4. State-of-the-art model fitting [4], [12] (Figs. 2a–d, 3a–d, 
4a–d), CS (Fig. 3e–h), and q-DL (Figs. 2e–h, 3j–m, 4e–h) are 
compared. Several numbers of used DWIs are compared, 
ranging from full sampling to 12-fold reduced scan time (scan 
time is shown in seconds per image slice). 

Compared with the standard pipeline, results of q-DL exhibit 
feasibility of scan time reduction by a factor of twelve.  Thus, 
protocols lasting about 30 minutes (Figs. 2–4 panel a) can be 
reduced to 2.5 minutes, strongly improving clinical feasibility. 

Fig. 5 compares the methods in terms of root-mean-squared 
error. This represents a quantitative evaluation of the results 
presented in Figs. 2–4. For DKI measures, q-DL always 
outperforms model fitting (Fig. 5a,b). Model fitting of 158 
DWIs (error: 0.306 (Fig. 5a), 0.195 (Fig. 5b)) is even 
outperformed by q-DL of 12 DWIs (error: 0.272 (Fig. 5a), 

Fig. 2.  Maps of radial kurtosis in the human brain for various methods and 
MRI scan acceleration factors. From left to right: 288, 40, 25 and 12 randomly 
selected DWIs are used. Model fitting followed by radial kurtosis calculation 
(a–d), and q-DL for radial kurtosis approximation (e–h) are compared. Model 
fitting is outperformed by the proposed method. 
 

 
Fig. 3.  Same as Fig. 2 (different scanner, different volunteer), including a 
comparison to compressed sensing (e–h). Required scan time for each
sampling scheme is shown in seconds per slice. Model fitting and compressed 
sensing are outperformed by the proposed methods. 
 

 
Fig. 4.  Same as Fig. 2 for neurite orientation dispersion index based on 
NODDI. The proposed method better preserves contrast at short scan times. 
 

Fig. 5.  Root-mean-squared error for different methods and different numbers 
of DWIs; estimation of radial kurtosis (a), fractional kurtosis anisotropy (b), 
intra-cellular volume fraction (c), and neurite orientation dispersion index (d); 
comparison of two different methods: model fitting (red) and q-DL (blue).
Reference standard is model fit of nine independent repetitions, i.e. 1422 
DWIs, registered to the test data. For DKI measures (a,b), model fitting is 
always outperformed by q-DL. For NODDI measures (c,d), model fitting is 
outperformed by q-DL if less than 70 DWIs are used. 
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0.150 (Fig. 5b)). For NODDI measures, q-DL outperforms 
model fitting when less than 70 DWIs are used (Fig. 5c,d).  

These curves demonstrate the trade-off between scan 
duration and quality provided by q-DL. Particularly, twelve-
fold reduced scan time provides an error magnitude similar to 
that of model fitting at full scan time (and for DKI-based 
measures even lower than that of model fitting at full scan time). 

For each number of subsampled DWIs, the subsampling was 
performed randomly and completely independently (but 
equally for the three compared methods). Thus, oscillations 
(amplitude of fluctuation) of the curves in Fig. 5 demonstrate 
the impact of random subsampling. Not all random 
subsamplings are equally useful. Among the compared 
methods, q-DL is most stable with respect to the choice of the 
samples, whereas model fitting decreases in stability (from very 
stable to unstable) with decreasing number of DWIs. Analogous 
variation was observed for repetitions of random subsampling 
instantiations when the number of DWIs was held constant (not 
shown). 

For model fitting of 158 DWIs, 95.0% of all voxels had a 
value within the interval mgt±0.5 (where mgt is the reference 
standard value) for radial kurtosis. The ratio was comparably 
high at 94.7% for q-DL of only 12 DWIs. For fractional kurtosis 
anisotropy, 81.0% of all voxels in model fit of 158 DWIs had a 
value in the interval mgt±0.3, whereas for q-DL of only 12 DWIs 
the ratio was as high as 95.9%. Intracellular volume fraction 
was estimated within mgt±0.3 by model fit of 158 DWIs in 

88.9% of all voxels, and by q-DL of 12 DWIs in 90.6%. For 
neurite orientation dispersion index, the ratios were 79.3% and 
85.3%, respectively. Thus, q-DL of as few as 12 DWIs provides 
comparable, and often a better, proximity to the true value 
compared to model fitting of as many as 158 DWIs. 

Table I shows the effects of different random subsampling 
schemes, training datasets and neural network initializations on 
the error. All results are very similar; each training dataset leads 
to good results. Accidental generation of a degenerate 
subsampling scheme or degenerate network initialization is 
extremely improbable, has not been encountered in practice, 
and can be easily checked for (using any qualitative or 
quantitative experiment). 

Fig. 6 shows the effect of neural network settings on the test 
set quality, indicating that using at least 150 hidden units per 
layer or a dropout [21] fraction of at least 0.05 improves the 
performance of q-DL. Results of other quality measures such as 
root-mean-squared deviation are analogous (not shown). Note 
that we merely compare the effect of different parameters on 
the test set, rather than performing definitive hyper-parameter 
fitting on a validation set. 

The final application of q-DL presented here is tissue 
segmentation and lesion detection. This task is achieved by 
training the neural network to discriminate between several 
tissue types based on the diffusion-weighted signal from the 
DWIs. In a proof-of-concept experiment, we used segmentation 

TABLE II 
COMPARISON OF REQUIRED NUMBER OF DWIS 

Method 
Number of 

DWIs required 
for DKI 

Number of 
DWIs required 

for NODDI 
References 

Standard Pipeline 150 99 [3], [4] 
Compressed 
Sensing 64 – [50] 

Machine Learning 
with model fitting – 30 [48] 

Analytical 
Solutions 

13-19 (specific 
measures only) – [15], [16] 

q-Space Deep 
Learning 12 8 proposed 

Comparison of suggested protocols and scan time for scalar measure 
estimation using different methods. q-Space Deep Learning provides the 
highest scan time reduction for both DKI and NODDI. 

 

 
Fig. 7.  Direct model-free tissue segmentation and lesion detection. When 
learning to discriminate multiple sclerosis lesions (red), healthy WM, GM and 
CSF based on DWIs and FLAIR, the proposed method segments the tissue 
types well and reliably detects lesions without using any diffusion model. 
Slices from datasets with the best (upper row, 0.938) and worst lesion AUC 
(lower row, 0.878) are shown. 
 

 
Fig. 6.  Correlation of radial kurtosis estimations using different dropout 
fractions and layer sizes for q-DL from 12 DWIs with radial kurtosis from 
fully sampled (148 DWIs) model fitting. 
 

TABLE I 
ERROR REPRODUCIBILITY 

Sampling 
Scheme 

Training 
Dataset 

Initialization 
1 

Initialization 
2 

Initialization 
3 

1 2 0.331 0.329 0.331 
1 3 0.321 0.320 0.321 
1 4 0.329 0.332 0.330 
2 2 0.337 0.345 0.332 
2 3 0.332 0.335 0.334 
2 4 0.340 0.340 0.340 
3 2 0.334 0.343 0.341 
3 3 0.327 0.326 0.329 
3 4 0.343 0.341 0.342 

Root-mean-squared error of radial kurtosis estimated by q-DL from 12 
DWIs of test dataset 1 for 27 experiments with different random subsampling 
schemes, different volunteer training datasets and different neural network 
initializations. 
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into WM, GM, CSF and multiple sclerosis lesions. 
Segmentation results from q-DL are shown in Fig. 7. The AUC 
of the ROC for lesions ranged between 0.878 and 0.938 for six 
different patients. AUC for WM, GM and CSF was consistently 
above 0.894 for all patients. Thus, DWIs can be used directly 
for segmentation without a diffusion model, i.e. without the 
intermediate information loss detailed in section I.B. Tailoring 
the protocol to optimal results in specific applications is subject 
of future research. 

Other previously proposed methods, including machine 
learning methods [17], [18], [47]–[49] as well as state-of-the-
art compressed sensing [50] require more DWIs and several 
intermediate steps (see Fig. 1b). For the number of DWIs 
suggested for different methods, see Table II. Most notably, 
compressed sensing and machine learning publications suggest 
using 64 DWIs for DKI [50] and 30 DWIs for NODDI [48], 
whereas our methods work with only 12 DWIs for DKI and 8 
DWIs for NODDI. Previous work that uses the DWIs directly 
as inputs to machine learning for tissue characterization [17], 
[18] does not only use large numbers of DWIs but is also limited 
so far to Monte Carlo simulations only, rather than in vivo 
experiments. A related idea is the use of DWIs directly as inputs 
to machine learning for tractography [25]. 

When switching to another scanner such that the DWI 
intensities are not the same anymore, the intensities should 
either be normalized or the network should be retrained. The 
same holds for changes in acquisition parameters such as echo 
time. A network that is able to understand data from different 
settings is subject of future research. 

In all presented applications, neural network training takes 
about one minute on a desktop computer. The network needs to 
be trained only once and can be applied to any number of 
datasets, taking 0.03 seconds per dataset, as opposed to several 
minutes per dataset required by most model fitting methods. 
Analytical solutions [15], [16] of scalar measure estimation 
provide acceleration of acquisition and processing comparable 
to q-DL, but are limited to specific scalar measures and 
acquisition schemes. With q-DL, the acceleration factor can be 
freely chosen and all scalar measures can be obtained 
simultaneously. There is also freedom in the choice of the 
sampling; in particular, random sampling yields robust results. 

IV. CONCLUSIONS 
The presented scan acceleration factor twelve sets a new state 

of the art in DKI and NODDI and thus opens new perspectives 
for clinical protocols. The results indicate that a considerable 
amount of information is contained in a limited number of 
DWIs, and that this information can be better retrieved by deep 
learning than by model fitting. The number of used DWIs can 
be freely chosen and represents a better trade-off between scan 
duration and quality than provided by conventional methods. 

Our framework for model-free diffusion MRI can be used to 
estimate arbitrary tissue properties in various settings where 
ground truth training datasets are available. Future research 

 
3 In other words, we search for a set of contrasts that well captures disease-

related variation of the data; as opposed to principle component analysis and 

may focus on creating ground truth training data from 
simulations, scanned phantoms and histologically validated 
data. Moreover, q-DL is the first model-free diffusion MRI 
segmentation method, meaning that it uses q-space data directly 
and does not partly discard information at intermediate steps. 

Recent work [51] indicates that the complexity of state-of-
the-art diffusion models is at the limit of allowing a stable 
model fit to the noisy diffusion MRI data obtained in an 
acceptable scan duration. Herein we demonstrate the fact that 
omitting model fitting allows considerably more stable measure 
estimation at short scan durations; this might circumvent the 
fitting stability “bottleneck” when balancing scan duration 
against model complexity. 

Classical quantitative diffusion MRI requires creating a 
diffusion model that well captures disease-related tissue 
changes via its associated scalar measures. Subsequently, a set 
of MRI contrasts needs to be chosen (diffusion-weighted 
gradient strengths and durations, single-pulsed or other gradient 
forms, non-diffusion sequences) that allow estimating all 
parameters of the model. The presented segmentation and 
abnormality detection method on the other hand is concerned 
with finding a set of contrasts whose signal “vector” (signal 
values from all contrasts) is most strongly affected by disease3. 
Simulational tissue models can still drive the design of 
meaningful gradient forms, but subsequent experiments do not 
rely on any model – particularly, model parameters do not have 
to be estimated. This allows future research to explore 
experiment design using elaborate simulational tissue models 
with large numbers of microstructural parameters. In this 
framework, model complexity is not limited by ill-posedness of 
subsequent model parameter estimation. 

A combination of q-DL (requiring twelve times less DWIs 
than standard methods for estimation of arbitrary scalar 
measures) with simultaneous multi-slice imaging [39] (three-
fold accelerated acquisition of the DWIs) in future applications 
is straightforward, yielding an unprecedented 36-fold scan time 
reduction. 

Our recommendation in the short term is to use short 
acquisitions with q-DL instead of long acquisitions with fitting. 
In the long term, we recommend creating complex tissue 
models that are not limited by fitting instabilities and using 
model-free q-DL tissue characterization. 

The capability of q-DL to accelerate the acquisition by an 
order of magnitude and detect tissue changes without a 
diffusion model opens new perspectives for research in 
quantitative diffusion MRI and demonstrates the benefits of 
deep learning for multi-step data processing pipelines. 
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Fig. 8.  Same as Fig. 2, including a comparison with q-DL-R followed by 
model fitting (e–h). 
 

 
Fig. 9.  Same as Fig. 8 for fractional kurtosis anisotropy based on DKI. The 
proposed methods better cope with noisy data despite noisy training data and 
strongly outperform model fitting.  
 

 
Fig. 10.  Same as Fig. 8 for intra-cellular volume fraction based on NODDI. 
The original protocol for this model [4] consists of 99 DWIs, and, more 
recently, an acceleration to 30 DWIs by means of machine learning was 
achieved with some contrast loss [48], whereas the methods proposed herein 
require only 8 DWIs and preserve contrast (panels (h) and (m)). 
 

 
Fig. 11.  Sampling schemes and DWIs reconstructed by q-DL-R. Random 
subsampling of the optimized DKI sampling scheme [13], [14] used in our 
experiments (a–d), three original DWIs acquired but not provided to q-DL-R 
(e–g) and three corresponding DWIs reconstructed by q-DL-R from 25 other 
DWIs (h–k) are shown. 
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Fig. 12.  Reproducibility of twelve-fold accelerated q-DL for four healthy 
volunteers. Radial kurtosis maps are shown. Standard pipeline from 148 DWIs
(a–d) and twelve-fold accelerated q-DL for all combinations of training and 
test dataset choices (e–v) are shown. 
 

Fig. 13.  Same as Fig. 5a–b (error of radial kurtosis (a) and fractional kurtosis 
anisotropy (b) for five-shell data) but also with evaluation of compressed 
sensing [46] (orange curve; evaluated only in one image slice as opposed to 
Fig. 5a–b, and for CS only every five abscissa positions due to long execution 
time of CS) and of q-DL-R (black curve). Model fitting is outperformed by CS 
nearly everywhere. For radial kurtosis, CS is outperformed by q-DL 
everywhere, and by q-DL-R if less than 80 DWIs are used (a). For fractional 
kurtosis anisotropy, CS is outperformed by q-DL-R everywhere, and by q-DL 
if less than 80 DWIs are used (b). 
 

 
Fig. 14.  The effect of a tilted head in the training set and/or the test set for 
q-DL of 12 DWIs. Fully-sampled Cartesian data was jointly rotated in image 
space and in q-space by 90°, without rotating the retrospective q-space 
subsampling mask of 12 DWIs. This allowed to study the effect of the data 
being rotated (jointly rotated in image space and q-space) or not rotated 
(neither in image space nor q-space). Mean and standard deviation of the error 
magnitude throughout all voxels is given. The method works well in all four 
cases. If training and test set have the same orientation (either both rotated, or 
both unrotated), the error is marginally lower. 
 

 
Fig. 15.  Same as Fig. 6 without using FLAIR, i.e. using DWIs only. 
 



IEEE TMI-2015-1057 3

 
 

APPENDIX 

A. Additional Tasks and Formal Algorithms 
1) Denoising 

The first and most simple application of our framework is 
denoising of DWIs, introduced here merely for the sake of 
completeness. For denoising, the voxel-wise signal from all 
DWIs is used as both the input and output of the neural network. 
A network trained to reconstruct its own inputs is known as an 
autoencoder [52]. Its approximate nature and dropout-based 
training [21] prevent overfitting and thus reduce noise. For q-
DL denoising, the signal vector Sj of length n (from all n DWIs) 
in voxel j is used as both the input ܽ 

ሺሻ and target yj of the neural 
network. The number of network inputs is the number n of used 
DWIs, i.e. each input vector ܽ

ሺሻ ൌ ܵ has length n (for every 

j). The length of the output vector ܽ
ሺሻ ൌ ܵ  is also n. This is a 

special case of reconstruction of DWIs (see below). In pseudo-
code, q-DL denoising can be represented as follows: 

Algorithm 1: q-DL denoising 
inputs: datasettraining, datasettest 
// load training DWIs 
Straining ← load_many_DWIs(datasettraining) 
// train neural network to predict targets from inputs: 
nn ← deep_learning_training(nn_inputs=Straining, 
  nn_targets=Straining)  
Stest ← load_many_DWIs(datasettest) 
Stest,denoised ← get_neural_network_outputs(network=nn,  
  nn_inputs=Stest) 
output: Stest,denoised 
Note that the denoising effect in this preliminary study is due 

to the inherent regularity of the mapping. Specific distributions 
(e.g. Rician) can be accounted for in future work by using 
tailored denoising-based training [53]. 
2) Reconstruction of Missing DWIs 

For q-DL-based Reconstruction of missing DWIs (q-DL-R), 

a neural network is trained to predict the signal Sj in all DWIs 
(voxel j) from a reduced subset Sj,α where α is a pseudorandom 
subsampling multi-index (such that the q-space sampling is 
consistent across training and test data). The input vector 
consists of the intensities of the subsampled DWIs, i.e. ܽ

ሺሻ ൌ

ܵ,ఈ, and its length is |α|. The output vector consists of the 
intensities of all the DWIs that are being reconstructed, i.e. 

ܽ
ሺሻ ൌ ܵ  with length n. Due to partial data redundancy in q-

space, missing DWIs can be reconstructed from a reduced 
subset. By “all DWIs”, we refer to all the DWIs available in a 
fully sampled training set (in the different datasets used herein, 
the number is between 148 and 288). For each length of α, the 
DWIs were selected uniformly randomly, and completely 
independently for different lengths of α. One b=0 image was 
always used, the other b=0 images were treated equally to DWIs 
in the random selection process. 

Algorithm 2: q-DL-R 
inputs: datasettraining, datasettest 
Straining ← load_many_DWIs(datasettraining) 
Straining,subsampled ← subsample(Straining) 
nn ← deep_learning_training(nn_inputs=Straining,subsampled,  
  nn_targets=Straining) 
// test dataset may have only few DWIs 
Stest,subsampled ← load_few_DWIs(datasettest)  
Stest,reconstructed ← get_neural_network_outputs(network=nn,  
  nn_inputs=Stest,subsampled) 
output: Stest,reconstructed 

3) Estimation of Scalar Measures 
Algorithm 3: q-DL 
inputs: datasettraining, datasettest 
Straining ← load_many_DWIs(datasettraining) 
// model fitting f and scalar measure calculation g 
mtraining ← g(f(Straining))  
Straining,subsampled ← subsample(Straining) 
nn ← deep_learning_training(nn_inputs=Straining,subsampled,  
    nn_targets=mtraining) 
// test dataset may have only few DWIs 
Stest,subsampled ← load_few_DWIs(datasettest)  
mtest,approximated ← get_neural_network_outputs(network=nn,  
    nn_inputs=Stest,subsampled) 
output: mtest,approximated 

4) Model-Free Segmentation 
Algorithm 4: q-DL segmentation 
inputs: datasettraining, datasettest 
Straining ← load_many_DWIs(datasettraining) 
// gold standard labels for training data 
ltraining ← load_tissue_labels(datasettraining)  
Straining,subsampled ← subsample(Straining) 
nn ← deep_learning_training(nn_inputs=Straining,subsampled,  
    nn_targets=ltraining) 
// test dataset may have only few DWIs 
Stest,subsampled ← load_few_DWIs(datasettest)  
ltest,approximated ← get_neural_network_outputs(network=nn,  
    nn_inputs=Stest,subsampled) 
output: ltest,approximated 

 

TABLE III 
SEGMENTATION QUALITY 

Inputs Dataset WM GM CSF Lesions 
DWIs and FLAIR 1 0.976 0.934 0.978 0.880 
DWIs and FLAIR 2 0.966 0.931 0.984 0.900 
DWIs and FLAIR 3 0.968 0.894 0.983 0.878 
DWIs and FLAIR 4 0.966 0.932 0.985 0.938 
DWIs and FLAIR 5 0.969 0.932 0.986 0.930 
DWIs and FLAIR 6 0.973 0.906 0.989 0.868 

DWIs only 1 0.975 0.931 0.981 0.878 
DWIs only 2 0.962 0.917 0.975 0.898 
DWIs only 3 0.963 0.902 0.981 0.869 
DWIs only 4 0.962 0.926 0.980 0.934 
DWIs only 5 0.967 0.925 0.981 0.928 
DWIs only 6 0.970 0.892 0.985 0.859 

FLAIR only 1 0.641 0.599 0.838 0.561 
FLAIR only 2 0.674 0.649 0.935 0.659 
FLAIR only 3 0.638 0.574 0.901 0.673 
FLAIR only 4 0.692 0.657 0.948 0.753 
FLAIR only 5 0.711 0.599 0.953 0.845 
FLAIR only 6 0.744 0.601 0.977 0.627 

Area under the curve of the receiver operating characteristic for each 
patient. 
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B. Differences of q-DL(-R) to Other Methods 
1) Differences to Compressed Sensing 

One of the several tasks presented herein is indeed the 
reconstruction of missing q-space data, and this is similar to 
compressed sensing in q-space [46], [50]. However, there are 
major differences that separate our work from compressed 
sensing methods. While an extensive comparison of state-of-
the-art compressed sensing methods [50] has revealed that 
about 64 DWIs are required for DKI compressed sensing, we 
require only 12 DWIs. Another difference between compressed 
sensing and q-DL-R is that most compressed sensing methods 
require data subsampled on a specific q-space grid, whereas q-
DL-R does not require the q-space coordinates as an input and 
can be applied in a straightforward manner to arbitrary (i.e. non-
Cartesian, non-radial) sampling schemes. Moreover, while we 
do explain q-DL denoising as well as q-DL-R for the sake of 
completeness (rather than competitiveness), the focus of our 
work and the main contributions are somewhat different. We 
introduce direct estimation of arbitrary scalar measures in one 
single step without model fitting from few DWIs. This is 
different from compressed sensing methods which rely on 
model fitting as an additional processing step. Moreover, in 
contrast to state-of-the-art methods, we introduce segmentation 
without using diffusion models. These differences to 
compressed sensing are shown in Fig. 1 in terms of data 
processing, in Table II in terms of number of required DWIs, 
and evaluated in Figs. 3 and 13. Besides, compressed sensing is 
image-model-driven (even if some model parameters can be 
learned) and even the most elaborate image models 
(regularizers) introduce artifacts [54], whereas deep learning is 
data-driven. 
2) Differences to Other Machine Learning Methods 

Previous machine learning methods for diffusion MRI rely 
either on using an extensive set of DWIs [17], [18] or on fitting 
diffusion models as an intermediate data processing step and 
using either the fitted model parameters [48] or scalar measures 
calculated from model parameters [47], [49] as inputs to pattern 
recognition and machine learning algorithms in the next step. 
In contrast to these methods, we use a reduced set of DWIs 
directly as input for deep learning. To our knowledge, using less 
DWIs in conjunction with machine learning is performed only 
by [48]; therein, the authors propose performing model fitting 
first, followed by machine learning, requiring 30 DWIs for 
NODDI, whereas we use the DWIs as inputs directly, requiring 
only 8 DWIs. Differences are shown in Fig. 1 in terms of data 
processing and in Table II in terms of number of required DWIs. 
Previous work that uses the DWIs directly as inputs to machine 
learning for tissue characterization [17], [18] does not only use 
large numbers of DWIs but is also limited so far to Monte Carlo 
simulations only, rather than in vivo experiments, whereas we 
demonstrate in vivo experiments and reduced numbers of 
DWIs. In our research, we tried random forests on the 
subsampled DWIs directly (this also is novel), but the results 
(not shown) were inferior to deep learning. 
3) Differences to Dictionary Learning 

Dictionary learning methods [46], [55] can be considered 
single-layer models, and lack the capability of learning more 

powerful multilayer hierarchical representations, whereas we 
propose learning multilayer representations (three hidden layers 
in our experiments). Dictionary learning methods require about 
40 DWIs [55]. The compressed sensing method used in Figs. 3 
and 13 is based on dictionary learning [46]. 

C. Additional Remarks 
Fig. 12 demonstrates reproducibility of twelve-fold 

accelerated processing using q-DL with respect to different 
choices of training and test datasets. 

The quality of solutions obtained by deep learning – despite 
random initialization and randomized stochastic training – was 
empirically shown to be high in numerous tasks [23]. Recent 
work [27], [56]–[59] has revealed new theoretical 
underpinnings of the success of deep learning. 
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3.4 Holistic Image Reconstruction for Diffusion MRI
Diffusion MR images are six-dimensional: they are defined over 3D physical
space and 3D diffusion-encoding space (q-space). Raw measurements are in
most cases a version of the six-dimensional image that is Fourier-transformed
along two of the three dimensions of physical space. Thus, image reconstruction
is necessary to obtain the image from the raw measurements.

The number of sampled points and the signal-to-noise ratio are limited.
Thus, the measurements have ambiguities, i.e. image reconstruction is an ill-
posed problem. To resolve ambiguities, image priors are used. For example,
out of several images that all correspond to raw measurements equally well,
the image with fewer fluctuations (less noise) is preferred. Noise is measured
and penalized via regularization terms by computing spatial derivatives of the
reconstructed image.

Existing diffusion MRI reconstruction methods reconstruct each 2D image
slice for each q-space coordinate separately. Thus, they do not use valuable
information that is present in neighborhoods in the third spatial dimension and
in 3D q-space.

We propose reconstructing the entire six-dimensional image jointly, and
using regularization terms that denoise the image along all six dimensions,
thus allowing to average out the noise at points that are neighbors in the six-
dimensional space and to achieve better image quality.

Specifically, our regularization terms are based on derivatives in 3D Eu-
clidean physical space, on 2D spherical shells in q-space, and on the 2D spherical
orientation distribution function (see Section 2.4).

The operator in MRI reconstruction is nonlinear [Valkonen, 2014]. There-
fore, we use an adaptation to nonlinear operators [Valkonen, 2014] of a primal-
dual hybrid gradient optimization method [Pock et al., 2009].

To evaluate our approach, we use use data from the Human Connectome
Project acquired with a custom-built high-resolution scanner as a reference and
undersample it retrospectively to emulate a normal scanner. Results show that
our approach yields images of superior quality compared to existing methods.
Resolution is considerably higher in physical space and in q-space. This indicates
that valuable information is contained in neighborhoods in the six-dimensional
image space, and that it can be effectively used to improve image quality by
employing appropriate regularization terms.

In other words, considering all six data dimensions jointly improves image
reconstruction results in diffusion MRI.

77



The author of this dissertation contributed substantially to the content of
the paper, in particular concerning parts of the idea, the code, experiments, and
writing parts of the paper.

This work is reprinted/adapted by permission from Springer Nature Cus-
tomer Service Centre GmbH: Springer Nature: Computational Diffusion MRI
(Proceedings of the 2015 MICCAI Workshop), Editors: Fuster, A., Ghosh, A.,
Kaden, E., Rathi, Y., Reisert, M. COPYRIGHT 2016.

Accepted manuscript for the MICCAIWorkshop on Computational Diffusion
MRI. Published version: doi: 10.1007/978-3-319-28588-7_3.

78



Holistic Image Reconstruction for Diffusion MRI

Vladimir Golkov1, Jorg M. Portegies2, Antonij Golkov3, Remco Duits2,4, and
Daniel Cremers1

1 Department of Informatics, Technische Universität München, Garching, Germany
golkov@cs.tum.edu, cremers@tum.de

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

r.duits@tue.nl, j.m.portegies@tue.nl
3 Department of Mathematics, Augsburg University, Augsburg, Germany

antonij.golkov@student.uni-augsburg.de
4 Department of Biomedical Engineering, Eindhoven University of Technology,

Eindhoven, The Netherlands

Abstract. Diffusion MRI provides unique information on the microar-
chitecture of biological tissues. One of the major challenges is finding
a balance between image resolution, acquisition duration, noise level
and image artifacts. Recent methods tackle this challenge by perform-
ing super-resolution reconstruction in image space or in diffusion space,
regularization of the image data or of postprocessed data (such as the ori-
entation distribution function, ODF) along different dimensions, and/or
impose data-consistency in the original acquisition space. Each of these
techniques has its own advantages; however, it is rare that even a few of
them are combined. Here we present a holistic framework for diffusion
MRI reconstruction that allows combining the advantages of all these
techniques in a single reconstruction step. In proof-of-concept experi-
ments, we demonstrate super-resolution on HARDI shells and in image
space, regularization of the ODF and of the images in spatial and an-
gular dimensions, and data consistency in the original acquisition space.
Reconstruction quality is superior to standard reconstruction, demon-
strating the feasibility of combining advanced techniques into one step.

1 Introduction

Among the main problems in diffusion MRI are scan duration limits (thus a
limited amount of data), image resolution limits, noise, and image artifacts. In
recent years, a host of methods [1,2,3,4,5,6,7,8,9] have been developed to tackle
these issues. These methods use (simplified) assumptions about the data, such
as specific types of smoothness / transform-domain sparsity / low-rankedness,
specific types of data similarity between different coordinates in the 3-D space
of diffusion directions and weightings (q-space), accurate or simplified image
acquisition models, in some cases combined with a tailored acquisition strategy.

Super-resolution in diffusion MRI allows increasing the resolution beyond
the hardware limits. In the original super-resolution techniques for diffusion



MRI [10,11], there is no coupling of different q-space coordinates, i.e. each q-space
coordinate is treated independently without taking advantage of common struc-
ture. It is performed from image space to image space, independently of the image
reconstruction step. Recent methods [12,13,14] couple q-space coordinates and
use the original data-acquisition space but regularize only in the reconstruction
space – not in additional spaces.

The proposed method allows leveraging complementary information by cou-
pling in q-space, while imposing data consistency in the original space and bal-
ancing regularization in several arbitrary representations simultaneously.

The rest of the paper is organized as follows. In Section 2.1, we describe
the data formation model. In Section 2.2, we introduce holistic reconstruction
(raw data consistency, several regularization spaces, super-resolution reconstruc-
tion in image and diffusion space) and give details on sampling in acquisition
and reconstruction spaces, the regularizers, the optimization procedure and its
implementation. We show results of holistic super-resolution reconstruction af-
ter artifical subsampling of Human Connectome Project data in Section 3 and
conclude with a discussion in Section 4.

2 Methods

2.1 Image Acquisition Model

The image is modeled on a domain Ω×R3, where Ω ⊂ R3 represents the domain
in image space, and dimensions four to six of Ω×R3 represent the space consist-
ing of three-dimensional diffusion directions and diffusion weightings (q-space)
for which discrete samples are acquired. A complex-valued diffusion MRI image
ρ is a mapping

ρ : Ω × R3 → C given by (1)

(y, q) 7→ ρ(y, q) = r(y, q) exp(iϕ(r, q)), (2)

where r is the image magnitude and ϕ is the image phase at spatial coordinate
y ∈ Ω and q-space coordinate q ∈ R3. Magnitude r and phase ϕ are mappings

r : Ω × R3 → R, (3)

ϕ : Ω × R3 → S1. (4)

These images are not acquired directly. Acquisition is performed in k-space (more
precisely: in the joint six-dimensional (k, q)-space), after Fourier transform F1,2

along the spatial dimensions 1 and 2 of Ω. When sampled at N data points, the
resulting data d ∈ CN forms from r and ϕ according to

d = T (r, ϕ) + ε, (5)

where ε is complex-valued i.i.d. Gaussian noise (thermal noise) and T is the
encoding operator. The operator T composes r and ϕ pointwise into a complex-
valued image via C(r, ϕ) = r � exp(iϕ) where “�” is the pointwise product,



followed by a Fourier transform into (k, q)-space and discrete sampling S:

T (r, ϕ) = SF1,2C(r, ϕ), with (6)

S : R3 × R3 → CN given by (7)

(Sρ̂)n =

∫

[−0.5,0.5]3
ρ̂(kn + v, qn) dv, (8)

where the ((kn, qn))n∈{1,...,N} are the sampling points in (k, q)-space. Details can
be found in refs. [15,16].

2.2 Holistic Reconstruction

Our goal is to reconstruct the image magnitude r and phase ϕ from the acquired
data d. In order to improve image quality, such a reconstruction should include
state-of-the-art image processing methods, such as denoising, super-resolution re-
construction and orientation distribution function5 (ODF) enhancement. Rather
than performing this in a classical manner, where each step is performed sep-
arately, we couple all transformations and regularizers into a single optimiza-
tion problem. This allows performing the entire reconstruction in a single step,
while having full control over the balance between all regularizers simultaneously.
Furthermore, this avoids data-consistency formulations in intermediate spaces,
where the noise distribution is difficult to model correctly (e.g. Rician signal dis-
tribution and other cases) – our least squares data term penalizes deviation from
k-space measurements, where noise is Gaussian, while still reconstructing and
regularizing in arbitrary spaces. Finally, a holistic formulation allows regulariz-
ing in additional spaces other than the acquisition and the reconstruction space.
This allows for example using information from the ODF (otherwise calculated
independently at a later step) to inform the super-resolution reconstruction in
image space.

In our proof-of-concept holistic reconstruction experiments, we treat the en-
tire six-dimensional data jointly (rather than treating each q-space coordinate
independently during image space reconstruction, followed by treating each im-
age coordinate y independently during q-space-based processing) and combine
the following concepts into a single optimization problem:

– Data consistency in the original (k, q)-space,

– Reconstruction into (y, q)-space with super-resolution in both the spatial
and diffusional dimensions,

– Spatial regularization of (y, q)-space data,

– Angular regularization of (y, q)-space data by treating each q-space shell
independently as functions on the (uncoupled) space R3 × S2 of positions
and orientations,

5 The ODF is a formalism that characterizes the strength of diffusion in different
directions. It is defined formally below in Eq. (10).



– Spatial and angular regularization of the ODFs which implicitly correspond
to the reconstructed (y, q)-space data by treating them as functions on the
(uncoupled) space R3 × S2 of positions and orientations.

The general form of holistic reconstruction into (y, q)-space is

arg min
r,ϕ

1

2
‖T (r, ϕ)− d‖2 +R(r), (9)

where R(r) is a sum of regularization terms which may or may not transform
the image magnitude r into another space, such as ODFs, prior to penalizing
non-regularity6.

The “codomain” of our pipeline, i.e. the reconstruction space, can be ex-
tended into diffusion models, as in refs. [17,18]. These model-based methods
can be complemented by our regularizers in additional spaces to yield a holistic
framework.

Sampling Scheme in (k, q)-Space In order to verify the super-resolution re-
construction capability of our holistic reconstruction, we use data of uniquely
high resolution from the Human Connectome Project [19,20,21,22,23,24,25,26],
assuming it to be the ground truth underlying image data, and simulate a low-
resolution k-space sampling of these ground truth images. In order to leverage
complementarity of data in q-space, we employ a low-resolution (k, q)-space sam-
pling scheme [13] in which high resolution components are left out alternatingly
in vertical or horizontal image directions for different q-space coordinates. The
q-space coordinates and the respective alternating vertical/horizontal k-space
subsampling are shown in Figure 1, left. Both acquisition and reconstruction
(see next paragraph) use the set of b-values B = {0, 1000, 2000, 3000} s/mm2.

Super-Resolution Sampling Scheme in Reconstruction Space While
data are artificially subsampled in k-space for the experiments, the reconstruc-
tion space is discretized such that the original high image resolution is recon-
structed. While 270 q-space coordinates are sampled (Figure 1, left), 486 are
reconstructed (Figure 1, right). This scheme achieves a super-resolution recon-
struction in image and diffusion space.

Regularization We will regularize several images of the type U ∈ H2(R3×S2),
namely the ODF and the spherical shells in q-space.

The ODF [27] for image r at image location y ∈ Ω and direction n ∈ S2 can
be calculated as

ODF(r)(y, n) =
1

Zκ

∫ ∞

0

(F4,5,6r)(y, pn)pκ dp (10)

6 The precise formula that we use for R(r) will follow later in Eq. (12).
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Fig. 1. Sampling scheme in q-space during acquisition (left) and reconstruction (right).
The acquired data have alternating artificial subsampling in vertical/horizontal high
frequencies in k-space. All high frequencies for all images are reconstructed. Colors
encode the b-value: B = {0, 1000, 2000, 3000} s/mm2.

with the usual choice κ = 2, where Zκ is a normalization constant and F4,5,6 is
the Fourier transform along the diffusion dimensions four to six that calculates
the diffusion propagator from q-space data in an idealized setting [28].

Let Gb be the linear operator that extracts a spherical q-space shell at a given
b-value (diffusion weighting) from r:

(Gb(r)) (y, n) = r(y,
√
bn). (11)

In a proof-of-concept holistic reconstruction, the shells and the ODFs are
regularized in the uncoupled space R3 × S2 of positions and orientations as
follows:

R(r) =
∑

b∈B

∫

R3×S2

α1‖∇yGb(r)(y, n)‖2

− α2

〈
Gb(r)(y, n),∆S2Gb(r)(y, n)

〉
+ α3|∆S2Gb(r)(y, n)|2 dy dσ(n)

+

∫

R3×S2

α4‖∇yODF(r)(y, n)‖2

− α5

〈
ODF(r)(y, n),∆S2ODF(r)(y, n)

〉
+ α6|∆S2ODF(r)(y, n)|2 dy dσ(n),

(12)

where B is the set of reconstructed b-values, the αi are regularization parameters,
σ is the usual surface measure on S2, ∆S2 is the Laplace–Beltrami operator on
the sphere and the negative inner products correspond to first-order regulariza-
tion according to

∫
−〈U,∆U〉 =

∫
‖∇U‖2 (i.e. Green’s identity with vanishing

boundary conditions as we assume our functions U to vanish at the boundary).



Defining appropriate inner products on the space H2(R3 × S2) 3 U, V and
on H1(R3 × S2,R3) 3 ∇yU,∇yV as

〈
U, V

〉
=

∫

R3×S2

U(y, n)V (y, n) dy dσ(n), (13)

〈
∇yU,∇yV

〉
=

∑

i∈{1,2,3}

∫

R3×S2

(∇yU(y, n))i (∇yV (y, n))i dy dσ(n), (14)

and using the induced norms, we can rewrite the problem (9,12) as follows:

min
r,ϕ

1

2
‖T (r, ϕ)− d‖2

+
∑

b∈B
α1‖∇yGb(r)‖2 − α2

〈
Gb(r),∆S2Gb(r)

〉
+ α3‖∆S2Gb(r)‖2

+α4‖∇yODF(r)‖2 − α5

〈
ODF(r),∆S2ODF(r)

〉
+ α6‖∆S2ODF(r)‖2.

(15)

Reformulations To obtain a convenient min-max form with simpler expres-
sions within the norms, we shall use the identity:

‖x̂‖2 = sup
ŷ

〈
x̂, ŷ
〉
− 1

4
‖ŷ‖2, (16)

obtained by taking the convex biconjugate and completing the square. This
reformulation introduces dual variables ŷ.

Optimization Procedure Our optimization problem (15) can be rewritten as
a min-max problem of the form

min
x

max
y

G(x) +
〈
K(x), y

〉
− F ∗(y) (17)

with convex G, F ∗ and a nonlinear K, which can be solved with the modified
primal-dual hybrid gradient method for nonlinear K [29,30,15]:

xi+1 := (I + τ∂G)−1(xi − τ [∇K(xi)]∗yi), (18a)

xi+1
ω := xi+1 + ω(xi+1 − xi), (18b)

yi+1 := (I + σ∂F ∗)−1(yi + σK(xi+1
ω )), (18c)

where ∂f represents the subdifferential of a function f , defined as

∂f(x0) =
{
v | f(x)− f(x0) ≥

〈
v, x− x0

〉
∀x ∈ domf

}
, (19)

and (I + λ∂f)−1 is the resolvent of the subdifferential, corresponding to the
proximal operator [31]:

(I + λ∂f)−1x = proxλf (x) = arg min
z
f(z) +

1

2λ
‖x− z‖2. (20)



The algorithm (18) has been applied [15] with the operator T (r, ϕ) to non-
diffusion MRI, and with another operator to diffusion MRI. The author an-
nounces combining T (r, ϕ) with direct reconstruction of the diffusion tensor in
a future study, while we present an application of T (r, ϕ) to reconstruction in
image×diffusion space.

By rewriting all five norms in our problem (15) using the identity (16), we
obtain the min-max form

min
r,ϕ

max
λ,(ζb)b∈B,(ηb)b∈B,ξ,ν

〈
T (r, ϕ), λ

〉
−
〈
d, λ
〉
− 1

2
‖λ‖2

+
∑

b∈B
α1

(〈
∇yGb(r), ζb

〉
− 1

4
‖ζb‖2

)

− α2

〈
Gb(r),∆S2Gb(r)

〉
+α3

(〈
∆S2Gb(r), ηb

〉
− 1

4
‖ηb‖2

)

+α4

(〈
∇yODF(r), ξ

〉
− 1

4
‖ξ‖2

)

− α5

〈
ODF(r),∆S2ODF(r)

〉
+α6

(〈
∆S2ODF(r), ν

〉
− 1

4
‖ν‖2

)
.

(21)

The primal variables are x = (r, ϕ) and the dual ones are y = (λ, (ζb)b∈B, (ηb)b∈B,
ξ, ν), where for example ηb denotes the dual variable associated to ‖∆S2Gb(r)‖2.
This can be regrouped into the standard form (17) as follows:

G(x) =
∑

b∈B
−α2

〈
Gb(r),∆S2Gb(r)

〉
− α5

〈
ODF(r),∆S2ODF(r)

〉
,

〈
K(x), y

〉
=
〈
T (r, ϕ), λ

〉
+
∑

b∈B
α1

〈
∇yGb(r), ζb

〉
+ α3

〈
∆S2Gb(r), ηb

〉

+ α4

〈
∇yODF(r), ξ

〉
+ α6

〈
∆S2ODF(r), ν

〉
,

±F ∗(y) =±
〈
d, λ
〉
± 1

2
‖λ‖2

± 1

4

(∑

b∈B
α1‖ζb‖2 + α3‖ηb‖2 + α4‖ξ‖2 + α6‖ν‖2

)
.

(22)

For the implementation of algorithm (18), we calculate the proximal opera-
tors [31]:

(I + τ∂G)−1x = (I + τ(Q+Q∗))−1x, (23)

Q =
∑

b∈B
G∗b∆S2Gb + ODF∗∆S2ODF, (24)

(I + σ∂F ∗)−1y =




(λ− σd)/(σ + 1)
(ζb/(1 + α1σ/2))b∈B
(ηb/(1 + α3σ/2))b∈B

ξ/(1 + α4σ/2)
ν/(1 + α6σ/2)



. (25)



Calculating [∇K(xi)]∗ (18) for the nonlinear part T (r, ϕ) (22) yields

[∇T (r, ϕ)]∗ = (SF1,2[∇C(r, ϕ)])∗ = [∇C(r, ϕ)]∗F∗1,2S∗, (26)

[∇C(r, ϕ)]∗λ̂ =

(
<(λ̂) cos(ϕ) + =(λ̂) sin(ϕ)

r(=(λ̂) cos(ϕ)−<(λ̂) sin(ϕ))

)
. (27)

Unbounded ODF Operator When writing out the Fourier transform F4,5,6

over Q ∈ R3, the ODF (10) contains the diverging term exp(−i〈pn,Q〉)p2.
Thus, the ODF operator is unbounded. Since an adjoint is required for the
algorithm (18), the operator can be made bounded in the infinite-dimensional
setting by including a Gaussian damping factor exp(−p2/ς2) as a mollifier. The
operator bound of the discrete operator depends on the discretization, and in
our discretization scheme no mollifier was needed in practice.

Implementation Details The operators F1,2, S (6), ODF (10), Gb (11), ∇y
and ∆S2 are linear. In the implementation, the spaces in which acquisition, reg-
ularization and reconstruction take place are discretized and thus the opera-
tors can be written as matrices. We obtain these matrices explicitly. Where not
evident, an operator matrix is computed by applying the operator to all stan-
dard basis vectors of the discretized space, yielding the columns of the matrix.
For pointwise operators, we compute and store repeating coefficients only once.
When computing [∇K(·)]∗ and K(·) in the algorithm (18), having the operator
matrices explicitly has the advantages of rapid computation by matrix multipli-
cation and easy computation of the adjoint operators. Besides, in the discretized
setting, the ODF operator is not unbounded anymore and thus has an adjoint,
as required by the algorithm. The norm ‖[∇K(·)]∗‖ of the operator [∇K(·)]∗
explodes as the discretization becomes finer, but in our discretization settings
there was no need to include a Gaussian mollifier in (10).

3 Results

Figure 2 shows the high-resolution “ground truth” image data from the Human
Connectome Project (Figure 2, left) alongside the results of two reconstruction
methods applied to the same data that has been artificially subsampled accord-
ing to the sampling scheme in (k, q)-space described in section 2.2 and illustrated
in Figure 1, left. This artificial subsampling procedure emulates a clinical setting
where resolution is considerably lower than in the Human Connectome Project,
and enables a comparison to this exceptionally high-resolution ground truth
data. The two compared reconstruction methods are standard reconstruction
(F1,2-transformed subsampled data; Figure 2, middle) and holistic image recon-
struction (as described above, with super-resolution sampling as in Figure 1,
right; results in Figure 2, right).

The employed parameters were α1 = 0.3, α2 = 0.1, α3 = 0.1, α4 = 0.01, α5 =
0.3, α6 = 0.01.



Fig. 2. High-resolution ground truth (left), standard reconstruction (middle), holistic
super-resolution reconstruction (right).

Holistic image reconstruction demonstrates considerably more detail than
standard reconstruction. While standard reconstruction results have a visibly
lower resolution, holistic reconstruction retrieves details that are present in the
ground truth data due to its super-resolution scheme and regularization in image
and diffusion space.

4 Discussion

The results of holistic reconstruction demonstrate considerably more detail than
the standard reconstruction.

Among the numerous advanced diffusion MRI reconstruction methods ex-
isting in literature, many methods perform denoising, missing data reconstruc-
tion (q-space compressed sensing), enhancement, etc. as an intermediate post-
processing step after image-space reconstruction. However, standard-reconstruct-
ed images can contain artifacts, intensity bias (e.g. Rician or more complicated),
and irretrievably discard some parts of information present in the raw k-space
data. Imposing data consistency in reconstructed image space can lead to these
errors being propagated on into subsequent data processing steps, and/or intro-
duce less tractable bias-correction terms. There is strong evidence that one-step
pipelines are better than multi-step pipelines due to information loss in interme-
diate steps [32]. Particularly, imposing data consistency on the original raw data
in k-space yields improved results compared to multi-step processing [13]. The
holistic reconstruction framework presented herein allows imposing data consis-
tency in the original data acquisition space, while also including regularization
in several spaces (such as (y, q)-space and “(y,ODF)-space”), and reconstructing
into an arbitrary space, including super-resolution reconstruction sampling.

Super-resolution methods are beneficial for diffusion MRI due to their ca-
pability to exceed hardware limitations on resolution. In the presented holistic



reconstruction framework, super-resolution is performed in image space and dif-
fusion space simultaneously, cf. Figure 1. At the same time, data consistency in
the original space and regularizations in additional spaces are incorporated in a
straightforward manner.

Many competing regularizers in different spaces exist in recent literature.
Each of them incorporates certain assumptions and improves data quality at
certain intermediate regularization strengths. Regularizations in different spaces
can be combined into one procedure (including true data consistency and super-
resolution) using holistic image reconstruction.

Reconstruction can be performed jointly with motion and distortion correc-
tion [5] in the future.

Finally, our choice of priors in (15) was based on isotropic Laplacians over the
spatial and angular part, and as such defined on R3×S2. Including anisotropies
and alignment modeling in a crossing-preserving way via the coupled space
R3 o S2 = SE(3)/({0× SO(2)}), see [1] Thm. 2, and [33], is expected to give
better results in future work.
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4 Conclusions
We used the techniques described above in Section 1.3.4 to analyze [Golkov
et al., 2013b] existing state-of-the-art processing methods for diffusion MRI and
identify important gaps in the set of existing methods, cf. Fig. 1 in [Golkov
et al., 2016a] (included above as Section 3.3). We used emerging families of
methods to fill these gaps. On one hand, we used convolutional neural networks
and obtained results that are twelve-fold better [Golkov et al., 2015a, Golkov
et al., 2016a] than in previous state-of-the-art methods for diffusion MRI. On
the other hand, we used state-of-the-art primal-dual optimization algorithms to
successfully leverage synergies along all six dimensions of diffusion MRI scans to
improve image quality [Golkov et al., 2014b, Golkov et al., 2014c, Golkov et al.,
2014d, Golkov et al., 2015b, Naeyaert et al., 2020, Naeyaert et al., 2021].

Subsequently, when another family of neural-network architectures – namely
rotation-equivariant deep learning for 2D and 3D data – emerged and started
outperforming other methods, we systematized it [Della Libera et al., 2019] and
adapted it to 6D diffusion MRI data [Müller et al., 2021a, Müller et al., 2021b],
outperforming previous methods on diffusion MRI.

We also summarized important properties of methods in a tabular form [Al-
jalbout et al., 2018, Swazinna et al., 2019] as described in Section 1.3.5. This
allowed us to create novel general-purpose clustering methods [Aljalbout et al.,
2018], also by using [Haeusser et al., 2018] patterns of neural network architec-
ture design from other ML tasks; and to address specific use cases for diffusion
MRI in a targeted manner, such as weakly supervised localization [Golkov et al.,
2018a] and various kinds of anomaly detection [Golkov et al., 2016c, Golkov
et al., 2018b, Vasilev et al., 2019, Swazinna et al., 2019]. Thus, we explored
various ML tasks, as described in Section 2.3.5.

Moreover, we advanced the research in important areas of biology, partic-
ularly in relationship to geometry and deep learning. We proposed novel rep-
resentations of information about the three-dimensional structure of molecules
such as proteins [Golkov et al., 2020b] and RNA [Do et al., 2018]. Our rep-
resentations make it easy for neural networks to learn to extract relevant fea-
tures. Particularly, our representations directly expose physical properties of the
molecule (for example the electron density and the electrostatic potential field)
that are relevant for the task at hand; they explicitly distinguish different amino
acid types via a highly untangled three-dimensional multi-channel encoding, so
that the neural network does not have to learn to seek subtle cues in order to
discover that information; and they collect all the information about each struc-
tural motif in one place in a way that allows to easily use deep learning that is
equivariant under displacements of structural motifs, i.e. detects them and uses
information about them in a consistent, reliable manner. Some of our repre-
sentations of molecular structure [Golkov et al., 2020b] are directly compatible
with state-of-the-art neural networks that are invariant under rotations of the
molecules, whereas our other representations [Do et al., 2018] are themselves
invariant under such rotations.

We proposed the usage of rich information about the evolution of proteins
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as input to neural networks, so that the network training ensures optimal ex-
traction of relevant information [Golkov et al., 2016b]. We also analyzed hypo-
thetical biologically meaningful extracted features, which allowed us to directly
choose an according neural-network architecture that outperformed state-of-the-
art methods [Golkov et al., 2016b]. One method of ours predicts the structure
of proteins from their sequence and evolutionary history [Golkov et al., 2016b].
Our other methods predict the function of RNA from its secondary structure
(base pairing) [Do et al., 2018], and the function of small molecules and pro-
teins from their three-dimensional structure [Golkov et al., 2020b]. Overall, the
usage of appropriate datasets and data representations and end-to-end train-
ing of appropriate network architectures ensured optimal results. Results were
promising in proof-of-concept experiments, and outperformed the state of the
art in our full experiments.

Cost functions based on the receiver operating characteristic are rarely used
in deep learning. However, we identified various theoretical reasons for the su-
periority of such cost functions over the default ones when dealing with virtual
screening, i.e. the prediction of the function of small molecules in pharmacol-
ogy [Golkov et al., 2020a]. These reasons are related to the special circumstances
present in virtual screening: severe class imbalance, high decision thresholds,
and a lack of ground truth labels in some datasets. We also developed new cost
functions from this family of cost functions to further address the problem of
high decision thresholds, as well as new training schemes. Our methods out-
perform standard deep learning approaches. These theoretical and empirical
insights demonstrate that a careful, application-specific choice of loss functions
can be worthwhile even in common tasks such as classification.

We also successfully applied deep learning to optical flow estimation
[Dosovitskiy et al., 2015], where pairs of images are mapped to vector fields,
speech synthesis [Fabbro et al., 2020], X-ray image analysis [Pasa et al., 2019],
evolutionary algorithms [Schuchardt et al., 2019], and we systematized regular-
ization methods in deep learning [Kukačka et al., 2017].

Overall, by designing methods as described in Sections 1.3 and 2.3.4, adapt-
ing existing state-of-the-art methods to new problems, or exploring new ML
tasks as described in Section 2.3.5, good results can be achieved in many cases.

The successes and methods so far open new avenues for addressing other
unsolved problems and complex challenges in the years to come.
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