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Abstract: Hot isostatic pressing can be utilized to reduce the anisotropic mechanical properties
of Al–Si–Mg alloys fabricated by laser powder-bed fusion (L-PBF). The implementation of post
processing densification processes can open up new fields of application by meeting high quality
requirements defined by aircraft and automotive industries. A gas pressure of 75 MPa during
hot isostatic pressing lowers the critical cooling rate required to achieve a supersaturated solid
solution. Direct aging uses this pressure related effect during heat treatment in modern hot isostatic
presses, which offer advanced cooling capabilities, thereby avoiding the necessity of a separate
solution annealing step for Al–Si–Mg cast alloys. Hot isostatic pressing, followed by rapid quenching,
was applied to both sand cast as well as laser powder-bed fused Al–Si–Mg aluminum alloys. It was
shown that the critical cooling rate required to achieve a supersaturated solid solution is significantly
higher for additively manufactured, age-hardenable aluminum alloys than it is for comparable
sand cast material. The application of hot isostatic pressing can be combined with heat treatment,
consisting of solution annealing, quenching and direct aging, in order to achieve both a dense
material with a small number of preferred locations for the initiation of fatigue cracks and a high
material strength.

Keywords: selective laser melting; additive manufacturing; fatigue resistance; critical cooling rate; hip

1. Introduction

Hot isostatic pressing of Al–Si–Mg cast material is conventionally performed at a pressure of
75 MPa, a temperature of 510 ◦C and for a duration of 120 min. Due to thermally activated dislocation
creep and diffusional creep processes, hot isostatic pressing completely removes the shrinkage porosity
from cast material [1–3]. Regular heat treatment, which consists of solution annealing, quenching and
aging, and is performed separately after densification, is employed to achieve high material strength.
Solution annealing requires high cooling rates to prevent diffusion and therefore avoid the dissolution
of alloying elements during cooling. An oversaturated solid solution of alloying atoms is mandatory
to achieve high material strength by precipitation of intermetallic phases during aging [4–7].

Laser powder-bed fusion (L-PBF) is established for the additive manufacturing of high
quality lightweight components. The fine precipitates, the cellular silicon structure and the high
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cooling rate after solidification results in high mechanical strength in the as-built condition [8,9].
Particularity, the high cooling rates during the L-PBF result in a supersaturated solid solution of
alloying elements, enabling to achieve high material strength via the precipitation of intermetallic
phases during aging [4–6]. The mechanical properties of additively manufactured age-hardenable
alloys vary in dependence of the distance between the processed layer and the substrate plate and are
governed by the heat input via the laser during the fabrication process. Most of the heat is dissipated
through the component, since the thermal conduction through the powder-bed is significantly slower,
due to the large interface between the argon gas and the powder particles [10,11]. The overall time
at elevated temperature is far shorter for layers processed near the end of the built job, compared to
layers which are processed in the early stage and remain at elevated temperature for several hours,
which in case of Al–Si–Mg often coincides with artificial aging temperatures. Anisotropic mechanical
properties are documented for L-PBF material and are caused by the layer-by-layer generation and
thus, are characteristic for the process.

L-PBF manufactured age-hardenable Al–Si–Mg alloys often possess a density as high as 99.99%
of their theoretical density [9]. Nevertheless, pores within the alloy are preferred locations for the
initiation of fatigue cracks and thereby, limit the field of applications of those components in variable
load environments [12]. Residual porosity in L-PBF is scattered all across the samples, but is usually
more frequent found close to the side surfaces, where pores influence the fatigue resistance stronger
than in the center of the material [13]. Those hidden notches or local lack of fusion phenomena may
facilitate crack initiation [12].

A heat treatment process consisting of solution annealing and aging can be applied to L-PBF
material in order to reduce the anisotropy of the mechanical properties and at the same time, reduce the
influence of the duration at aging temperature during the fabrication process [14]. Heat treatment
at atmospheric pressure or vacuum is likely to increase the porosity of L-PBF material due to the
expansion of gas filled pores at high temperatures [15]. Solution annealing is often found to be
detrimental for the mechanical properties, in particular the elongation at fracture and the fatigue
resistance, but is nevertheless a common procedure in order to increase the predictability of the
component behavior [8,9,16–19].

Hot isostatic pressing has been established as a heat treatment of cast components to increase
their density in order to meet the strict regulations for applications in the automotive and aircraft
industries [20,21]. Conventional hot isostatic pressing of age hardenable Al–Si–Mg alloys is known to
remove casting porosity entirely and is performed at a pressure of 75 MPa, at a temperature of 510 ◦C
and for a duration of 120 min. A complimentary heat treatment of solution annealing and aging is
conventionally performed afterwards, to achieve a high material strength.

A recently published study by our research group [22] showed that the critical cooling rate
necessary to achieve appreciable age-hardening for Laser-powder bed fused Al-Si-Mg ranged between
11 to 15 K/s under vacuum condition, whereas a quenching rate of 5 K/s was sufficient for cast
reference material.

The critical cooling rate after solution annealing is connected to the diffusivity of alloying elements,
which is known to be pressure dependent [23–25]. A pressure induced decease in the critical cooling
rate allows direct aging of cast Al–Si–Mg alloys, if the cooling rate after hot isostatic pressing is
high enough to avoid the precipitation of alloying elements during cooling [21,26–28]. Modern hot
isostatic presses are offering enhanced cooling capabilities, which allow the implementation of direct
aging, a combined process of densification, solution annealing and artificial aging [29,30]. By avoiding
pre-precipitate clustering of alloying elements at room temperature, direct aging of Al–Si–Mg alloys
results in higher strength, compared to regular heat treatment [31–33].

Due to microstructural differences, the ideal process parameters for hot isostatic pressing
of additively manufactured materials seem to be different to those established for cast material.
Hot isostatic pressing can nevertheless be utilized to reduce the porosity of different L-PBF
materials [34–36].
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2. Experimental

The alloy AlSi7Mg0.3 was processed via sand casting by the Georg Fischer AG, Schaffhausen,
Schweiz. A spark emission spectrometer, type SPECTROMAXx LMM16 (Spectro, Kleve, Germany) was
used to determine the chemical composition of the alloy, shown in Table 1. Details on the fabrication
process can be found in [26,28]. The alloy AlSi10Mg0.3 was processed by L-PBF in an SLM 280HL
selective laser melting machine (SLM Solutions GmbH, Lübeck, Germany), equipped with a 400 W
Yb-fiber-laser and a build space of 280 × 280 × 320 mm3. Powder with an average particle diameter
of 37 µm was used to fabricate tapered cylindrical samples with a diameter of 14 mm, a diameter of
10 mm along the gauge length and a total length of 75 mm. The samples were built in 0◦, 45◦ and
90◦ inclinations to the substrate plate. The fabrication parameters of the laser powder-bed fusion
samples are listed in Table 2.

Table 1. Chemical composition of the aluminum cast alloys AlSi7Mg0.3 and AlSi10Mg0.3. The alloys
meet the specifications defined by the standard Aluminum–Silicon EN 1706:2010 [37].

Cast Alloy AlSi7Mg0.3 (A356) L-PBF Alloy AlSi10Mg0.3
Element wt.-% Deviation wt.-% wt.-% Deviation wt.-%

Si 7.323 ± 0.008 11.114 ± 0.250
Fe 0.125 ± 0.002 0.178 ± 0.005
Cu 0.022 ± 0.001 0.004 ± 0.003
Mn 0.029 ± 0.001 0.006 ± 0.001
Mg 0.345 ± 0.001 0.241 ± 0.005
Ni 0.005 ± 0.001 0.005 ± 0.005
Zn 0.088 ± 0.072 0.006 ± 0.006
Ti 0.125 ± 0.003 0.010 ± 0.003
Al balance balance

Table 2. Fabrication parameters of laser powder-bed fusion samples.

Scan Speed Laser Power Hatch Distance Scan Vector Length Rotation Angle
[mm/s] [W] [mm] [mm] Increment [◦]

Core 1150 350 0.17 10 67
Support 900 350 - - -

Preheating temperature of 200 ◦C

Layer thickness of 50 µm

Argon environment

Contour irradiation and limitation window deactivated

The alloys were tensile tested on an Instron 4505 tensile testing machine at a strain rate of
ε̇ = 10−4 s−1. The tensile test samples were machined according to DIN 50125:2016-12, type B,
size M10 [38]. The strain was measured in parallel to the axis of the cylinder by use of an extensometer
attached to the specimens. Hardness measurements were performed according to DIN EN ISO 6506-2
using an M4U-025 hardness testing machine (EMCO-TEST, Kuchl, Austria) [39].

2.1. HIP Process and Heat Treatment

The mechanical properties of the L-PBF fabricated alloy AlSi10Mg0.3 were determined in as-built,
hot isostatically pressed as well as hot isostatically pressed and heat treated conditions. The mechanical
properties were than compared to those of hot isostatically pressed samples made from the alloy
AlSi7Mg0.3 using conventional sand cast technique. Samples of the series Aluminum–Silicon AlSi7-HIP
were sand cast and then hot isostatically pressed. Samples of series Aluminum–Silicon AlSi7-HIP-A
were first hot isostatically pressed, preaged at room temperature for more than seven days and then
artificially aged at 165 ◦C for 150 min. The process parameters are illustrated in Figure 1a. Samples of
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the series Aluminum–Silicon AlSi7-HIP-DA were quenched with a cooling rate of 1 K/s within the
temperature range between 540 and 200 ◦C and then held at 165 ◦C for 150 min. The process parameters
are shown in Figure 1b.

Tensile test samples of the alloy AlSi10Mg0.3 were built in 0◦, 45◦ and 90◦ inclination to the
substrate plate. Series Aluminum–Silicon AlSi10-HIP-DA was hot isostatically pressed, the same as
sample series Aluminum–Silicon AlSi7-HIP-DA. Series Aluminum–Silicon AlSi10-HIP-SA-DA was
additionally heat treated by solution annealing followed by water quenching and immediate artificial
aging at 165 ◦C for 150 min.
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Figure 1. Temperature over time profile of all heat treatment conditions.
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Figure 1. (a) Temperature over time profile of the heat treatment conditions AlSi7-HIP and AlSi7-HIP-A;
(b) Temperature over time profile of the heat treatment conditions AlSi7-HIP-DA, AlSi10-HIP-DA and
AlSi10-HIP-SA-DA.

3. Results and Discussion

The tensile test results for all hot isostatically pressed and heat treated conditions are depicted
in Figure 2. The quasistatic mechanical properties of the sand cast aluminum alloy AlSi7Mg0.3 were
improved by the application of hot isostatic pressing followed by quenching at 1 K/s. The same hot
isostatic pressing resulted in a higher material strength, if the samples were subsequently artificially
aged (Series Aluminum–Silicon AlSi7-HIP-DA). The same process of hot isostatic pressing and direct
aging did result in a strength decrease of the L-PBF material, compared to its as-built condition.
This can be explained by the cooling rate within the hot isostatic press, which was significantly lower
than cooling after solidification in the L-PBF process. Pressure is known to decrease the critical cooling
rate necessary for solution annealing of age-hardenable Al–Si–Mg alloys [29]. The supersaturation of
alloying elements and therefore, the resulting age-hardenability of an Al–Si–Mg alloy is usually higher
when quenching at the same cooling rate is performed at high pressure [28]. The tensile test results
shown in this study indicate that the difference in the cooling rate between the L-PBF process and hot
isostatic pressing was not compensated by the effect of pressure. Even though a cooing rate of 1 K/s
resulted in a reasonable material strength for hot isostatic pressing of cast material, the same cooing
rate was not high enough for L-PBF material to reach its strength in the as-built condition.
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Figure 2. Tensile test results for all hot isostatically pressed and heat treated conditions. Rp 0.2 is the
yield strenght, Rm is the ultimate tensile strength, A5 is the elongation at fracture. Aluminum–Silicon
AlSi7-AC is the as cast condition of the sand cast material. Aluminum–Silicon AlSi10-AB... denotes the
as build condition of the L-PBF material. The labels Aluminum–Silicon ...-HIP, ...HIP-A, ...-HIP-DA,
...HIP-SA-DA indicate the utilized heat treatment which is explained in Section 2.1. The labels ...0◦,
...45◦ and ...90◦ indicate the orientation of the samples to the substrate plate.

While lower strength aluminum alloys are usually more ductile than high strength variants,
this effect is not large enough to explain the high elongation at fracture measured for the hot isostatically
pressed AlSi10Mg0.3 sample series (22–23%). The alloy AlSi7Mg0.3 processed by sand casting had
an initial porosity of 0.17% (obtained in the Archimedes method). After hot isostatic pressing no
pores could be determined by means of optical methods and a density of 100% was calculated
using the results from Archimedes measurements and the calculated density. Samples of the L-PBF
alloy AlSi10Mg0.3 possessed a porosity of 0.30% in as-built condition, while a porosity of 0.02%
was determined after hot isostatic pressing. Voids in cast samples are usually caused by shrinking.
These pores are mostly empty and do usually not expand during heat treatment. Pores in L-PBF
samples are likely to contain either the inert gas utilized during the fabrication process, or hydrogen,
which stems from moisture in the powder.

Micrographs of L-PBF samples are shown in Figure 3a–d. When comparing the microstructure
of the L-PBF alloy AlSi10Mg0.3 in as-built condition (Figure 3a,c) to its microstructure after two
hours of hot isostatic pressing at a temperature of 540 ◦C and a pressure of 75 MPa (Figure 3b,d)
it could be noted that the microstucture of the alloy coarsened significantly at 540 ◦C during hot
isostatic pressing. Pores evident in the as-built condition (Figure 3c) were absent after hot isostatic
pressing. The material’s porosity has a strong influence on the elongation at fracture and its fatigue
resistance, but exerts a smaller effect on its hardness, yield strength and ultimate tensile strength [40,41].
Hot isostatic pressing reduced the porosity from 0.30% in the as-built condition to 0.02% after hot
isostatic pressing. The application of additional solution annealing usually does increase the porosity
of as-built L-PBF material due to the expansion of the entrapped inert gas contained in the pores.
Inert gases like Argon, which are typically used to prevent oxidation in the L-PBF process, have no
solubility in the alloy and can, therefore, not diffuse through the material. Even though the L-PBF
process was performed in Argon atmosphere, solution annealing did not increase the porosity of the
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material that has been hot isostatically pressed beforehand. It can be concluded, that the majority of
pores within the L-PBF material did not contain argon gas.

The results of the mechanical testing show that the application of hot isostatic pressing can
be utilized for L-PBF Al-Si-Mg alloys to defeat porosity. The yield strength and the ultimate
tensile strength of direct aged hot isostatically pressed condition Aluminum–Silicon AlSi10-HIP-DA
was lower than for the as-build condition. The mechanical strength of the heat treated condition
Aluminum–Silicon AlSi10-HIP-SA-DA was found to be significantly higher when compared to those of
the conditions Aluminum–Silicon AlSi10-HIP-DA. This indicates that some of the materials strength in
L-PBF as-build condition, which decreased by hot isostatic pressing, can be restored by the application
of additional solution annealing, if quenching is performed at a high cooling rate.

Figure 3e shows scanning electron image of the sand-cast alloy AlSi7Mg0.3 in as-cast condition,
Figure 3f scanning electron image of the sand-cast alloy AlSi7Mg0.3 in hot isostatically pressed and
direct-aged condition. The effects of hot isostatic pressing on the microstructure of the sand-cast alloy
were comparably small, compared to the microstructural changes during hot isostatic pressing of
the L-PBF alloy. Nevertheless, the high temperature (540 ◦C) has a pressure dependent effect on the
coarsening of silicon precipitates in sand-cast Al-Si–Mg alloys, as demonstrated in [28,29]. While the
microstructure of the L-PBF aluminum alloys is very fine, when compared to the heat treated and the
sand cast microstructure, the silicon precipitates in all of the investigated alloys are not the main reason
for the high strength of these age-hardenable aluminum alloys. The high strength of age-hardenable
aluminum alloy is more likely based on a fine dispersion of various phases, predominately GP-I zones
and β′′ particles which precipitate from an supersaturated solid solution during artificial aging [4,5,7].
Those strength relevant phases have a size of 50 µm × 500 µm, and a weak contrast to the aluminum
matrix. Therefore, the most strength relevant precipitates cannot be seen in the micrograhps of Figure 3.

The application of additional solution annealing followed by direct-aging resulted in a significant
increase in the mechanical properties. Particularly, the achieved yield strength was found to the
highest of all investigated conditions. While significant changes were observed in the microstructure
when comparing those heat treatment conditions, it can be concluded that neither the time at high
temperature during hot isostatic pressing, nor the time during solution annealing modified the
microstructure in a way, which would obstruct the alloy to posses high strength after additional
heat treatment. Even though this heat treatment condition results in high strength, the elongation
at fracture of all inclinations was between 11% and 14% and therefore, significantly higher when
compared to the as-built condition (3–6%). This effect could be explained by the reduction of
porosity, which resulted from hot isostatic pressing. In the as-built condition, Al grain boundaries are
surrounded with Si particles. These particles are heterogeneously distributed and occur predominantly
in overlapping regions (adjacent scan tracks and subsequent layers). Due to the alteration in the scan
track pattern the effect of the local embrittlement caused by the increased presence of Si particles is
more pronounced between the repetitive layering. Dedicated studies on destructive material testing
revealed brittle shear fracturing between layers, leading to a similar yield strength in tension and
compression, with minima at the constellation of a 45◦ angle between external uniaxial load with
respect to the layering [9]. Moreover, the fracture toughness was reported to be significantly reduced
in instances of crack propagation parallel to the layering [42].
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Figure 3. Micrographs of the alloys; (a) image of the laser powder-bed fusion (L-PBF) alloy AlSi10Mg0.3
in as-built condition obtained with an optical microscope; (b) image of the L-PBF alloy AlSi10Mg0.3 in
hot isostatically pressed and direct-aged condition obtained with an optical microscope; (c) scanning
electron image of the L-PBF alloy AlSi10Mg0.3 in as-built condition; (d) scanning electron image
of the L-PBF alloy AlSi10Mg0.3 in hot isostatically pressed and direct-aged condition; (e) scanning
electron image of the sand-cast alloy AlSi7Mg0.3 in as-cast condition, (f) scanning electron image of the
sand-cast alloy AlSi7Mg0.3 in hot isostatically pressed and direct-aged condition.

4. Summary and Outlook

Hot isostatic pressing can be utilized for L-PBF Al-Si-Mg alloys to defeat porosity and to reduce
the influence of the anisotropy effects caused by the layering and resulted in a high elongation at
fracture of more than 20%.

A cooling rate of 1 K/s was found to slow to perform direct ageing immediately after hot isostatic
pressing. The strength decrease of the L-PBF material induced by hot isostatic pressing was the result
of a significantly slower cooling in the hot isostatic press, compared to the cooling after solidification
in the L-PBF process. The critical cooling rate was found to be higher for the additively manufactured
AlSi10Mg0.3 alloy than for comparable sand cast material.
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Additional solution annealing did not increase the porosity of hot isostatically pressed L-PBF
material (fabricated in argon atmosphere). Therefore, some of the materials strength which decreased
by hot isostatic pressing can be restored by the application of additional solution annealing,
if quenching is performed at a higher rate.

The mechanical properties, in particular the yield strength of hot isostatically pressed and
heat treated L-PBF material, were at a very promising level. The exposure to high temperature
during hot isostatic pressing and solution annealing modifies the microstructure of additively
manufactured material in a way, which would obstruct the alloy to posses high strength after heat
treatment. A combined process of densification, solution annealing and aging might be realized, if the
lowering effect of pressure on the critical cooling rate, combined with advanced cooling technology
(made accessible in modern hot isostatic presses) are sufficient to arrive at a supersaturated condition
of the alloying elements silicon and magnesium by hot isostatic pressing.
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