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Abstract: Submerged hollow fiber membranes (SHFMs) are used for a wide variety of applications.
Their applicability and their advantages, however, depend crucially on the prevailing hydrodynamics
within single fibers. In this respect, the non-uniform distribution of transmembrane flux is a known
problem related to inhomogeneous membrane fouling and disadvantages for cleaning. To address
this problem, we propose an approach to homogenize transmembrane flux by varying the local
membrane resistance using optimal control methods for the first time in SHFM research. Based on an
established model, different scenarios are optimized, namely with different fiber lengths and inner
radii. In addition, a double-end setup is explored. It is shown that the optimization goal is reached
very well in all tested cases, which underlines the general validity of our strategy. Further uses and
extensions of the optimization method are provided, as well as hints for the practical implementation
of the suggested measures.

Keywords: filter design; mechanistic model; membrane filtration; optimal control; process optimization

1. Introduction

Submerged hollow fiber membranes (SHFMs) are a versatile separation technology.
SHFMs are employed for various filtration problems such as those encountered in water
treatment, e.g., microfiltration, ultrafiltration, and reverse osmosis, or in membrane biore-
actors. Compared to flat sheet or tubular membrane modules, SHFMs have the advantages
of high packing density, good cleanability, small energy expenditure during operation,
and low fabrication costs [1–4]. SHFMs consist of bundles of fibers, usually called modules,
which are either horizontally or vertically submerged in a pressurized liquid reservoir.
If the fibers are not submerged in a tank, but incorporated in a cartridge with a cylindrical
casing, the membranes are commonly only referred to as hollow fiber membranes; how-
ever, the prevailing physics remain largely the same. In most setups, a suction pump is
used, often in the mode of constant flow, to transport the permeate from the membrane
module [2].

Importantly, the said advantages, mainly concerning cleanability and energy expendi-
ture, crucially depend on the prevailing hydrodynamics. In this respect, the arrangement
of single fibers within a module has been found to be important [4,5]. However, particular
emphasis has also been placed on the hydrodynamics in single fibers. The non-uniform
profile of transmembrane flux, with the highest flux at the membrane outlet, has been
repeatedly claimed as a significant disadvantage [1–4]. When operated in non-cross-flow
mode, the profile of transmembrane flux leads to a locally varying fouling behavior. In the
cross-flow mode, where often bubbles are used to enhance cleaning in case of vertically
oriented SHFM modules, it is reported that below a critical flux, no problems occur because
the influence of cross-flow is pronounced enough to prevent significant clogging. However,
due to the higher values of transmembrane flux at the outlet, this critical flux is easily
superseded there [1,2,6]. In previous work, the influence of basic design parameters, such
as fiber length and fiber diameter, on the profile of transmembrane flux was studied [1–3].
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Our aim is also to address the known problem of a non-uniform profile of transmem-
brane flux. However, the problem is addressed differently than before: we propose to use
another influencing factor as the control variable, namely the local membrane resistance,
which is varied along the fiber’s length coordinate. Except in the conclusion, the practical
implementation and questions of manufacturing are not considered in this article; rather,
the focus lies on what one would ideally like to manufacture. The introduced method is
a model-based optimization approach using optimal control theory. For the model, we
rely on the well established formulation by Chang and Fane [1]. The same model is also
used in later publications of their group where it is employed for parametric studies [2],
extended to also include clogging [7], and applied to aid the interpretation of experimental
findings [8]. The same model is also utilized in various other works [9,10]. Based on a
slightly different derivation, Ye et al. [11] arrive at a very similar mathematical formulation,
which also holds true for the model of Liang et al. [12]. In newer modeling approaches,
e.g., by Li et al. [3], the model by Chang et al. is still used as a reference case and very
similar results are achieved compared with the new model. For this reason, the model by
Chang and Fane [1] is considered a well-tested standard case and a there is a good basis for
incorporating it into our optimization approach.

As a reliable mathematical process description exists, the focus of this work is not
on modeling but on proposing a new optimization method, which is a common goal in
process systems engineering [13]. Even though different works have aimed at optimiz-
ing SHFMs [2,14–17], this is the first study where optimal control theory is applied to
hollow fiber membranes. In general, dynamic programming or optimal control meth-
ods are only rarely encountered in filtration research. Previous investigations in the
context of membrane science were done by Blankert et al. [18,19], Zondervan et al. [20],
and Paulen et al. [21,22], who determined the optimal time-trajectories for operation; in
addition, some newer work addresses time-optimal control in the field of filtration [23].
In contrast, optimal control is conducted here along a spatial dimension, an aspect only
scarcely addressed within classical optimal control research [24–26]. Therefore, this can be
considered an innovative methodological twist, which also implies that optimal control is
applied for the design of hardware instead of, as usual, for optimization of the operation
of given equipment. The presented approach builds on previous work by the authors
where depth filter media were optimized along their flow direction, i.e., also along a spatial
dimension [27–29]. Therefore, the novelty claim of this work does not consist of a new
optimal control algorithm, but rather in its somewhat unusual utilization by optimizing
the control variable in a spatial dimension and mainly in employing optimal control for
the first time in SHFM research. Thus, when we speak of a “new optimization method”,
a new tool for optimizing the design of SHFMs is meant.

2. Theoretical Background

As discussed, we will base our work on the established model presented by Chang and
Fane [1]. They, in turn, rely on earlier work, mainly on Apelblat et al. [30], who derived a
model for fluid exchange between blood capillaries and the surrounding tissue through per-
meable membrane walls. Doshi et al. [14] and Bruining [31] already used similar equations
to predict the hydraulic behavior of hollow fiber membranes. These modeling approaches
consider only the hydraulics of single fibers as also illustrated in Figure 1, where a basic
model sketch is provided.
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Figure 1. Model sketch with details for a short membrane section of length dx.

In the approach by Chang and Fane [1], two main effects are combined: laminar pipe
flow and Darcian transmembrane flux. The model derivation is briefly recapitulated to
prepare the model for its use in our optimal control approach. Volumetric flow rate Q in
the cylindrical hollow membrane is described by the Hagen–Poiseuille equation:

Q = −πr4

8µ

dp
dx

, (1)

where r is the inner radius of the membrane, µ the fluid’s dynamic viscosity, p the pressure
inside the membrane, and x the spatial coordinate, starting at the dead-end side of the
membrane. Transmembrane flux J is modeled based on Darcy’s law:

J = −∆P
µR

=
po − p

µR
; (2)

∆P is the local pressure difference across the membrane’s surface, R is the local
membrane resistance, and po is the fluid pressure outside of the membrane. Please note
that in normal operation R is the sum of the resistance of the clean membrane Rm and
some additional resistance Rd due to deposition of impurities on the membrane surface,
i.e., R = Rm + Rd; this will be addressed later on in this section. The local mass balance

dQ
dx

= 2πrJ (3)

describes the increase in flow rate Q along the length coordinate x due to transmembrane
flux J. If Equations (1) and (2) are introduced into this mass balance, one obtains

d2 p
dx2 =

16
Rr3 (p − po) = λ2(p − po) , (4)

where λ is defined as

λ =

√
16
Rr3 (5)

to abbreviate further equations. Considering only the pure hydraulics of submerged hollow
fiber membranes, i.e., without any effects of deposition or fouling on resistance (R = Rm),
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Chang and Fane [1] derived an analytical solution for Equation (4). Assuming no axial
inflow, i.e., dp/dx = 0 at x = 0, plus providing the average transmembrane flux J, i.e.,

J =
1
L

∫ L

0
J dx , (6)

the resulting integration constants can be determined and the solution becomes [1]:

p(x) = po −
µRλJL

eλL − e−λL

(
eλx + e−λx

)
, (7)

or, using Equation (2),

J(x) =
λJL

eλL − e−λL

(
eλx + e−λx

)
, (8)

where L is the length of a single fiber. However, three things are important to note with
respect to these results. First, inclusion of hydrostatic pressure for vertically oriented
fibers, as done by Chang et al. [1,2], does not influence the overall behavior. Hydrostatics
affects the fluid surrounding the membrane, i.e., po, as well as the fluid column inside the
membrane, i.e., p. Therefore, it does not impact the flux J(x). Equation (8), therefore, has the
same form for vertically and horizontally oriented membrane fibers. However, hydrostatic
pressure can be easily included if the absolute pressure values inside the membrane or on
the outlet of single fibers is of interest. Secondly, the classical model describes steady-state
behavior. Only if fouling is included can the behavior become transient due to the fact
that more deposits are accumulated over time on the membrane fiber. As our optimization
approach only addresses the hydrodynamics of single fibers without fouling, we are also
dealing with a steady-state problem. The third point we want to stress is the limited validity
of Equations (7) and (8). For obtaining these analytical solutions, it is implicitly assumed
that the resistance R does not change with x, as can be seen from the foregoing derivation.
This is, however, no longer true when fouling is considered because the non-constant
transmembrane flux J(x) will also cause a locally varying deposition of impurities. We
assume that a constant R is also no longer feasible when the membrane resistance Rm is
made the control variable in our optimal control approach because it is then, by definition,
dependent on the spatial variable x, i.e., Rm(x). For these reasons, Equations (7) and (8)
cannot be used for the main part of this work and we need to rely instead on solving
Equation (4) directly by numerical methods.

As already explained, when the deposition of impurities on the membrane is consid-
ered, resistance R is modeled as Rm + Rd, i.e., as the sum of the pure membrane resistance
Rm and the additional resistance due to deposition Rd. Rm is a property of the membrane
and, therefore, independent of time. However, it may be dependent on space, i.e., Rm(x)
as in our optimization. Optimization of Rm(x) is thus a typical design problem. In contrast,
Rd is a function of space and time, i.e., Rd(t, x), as it is not a function of design but of
operation. For reasons of readability, we will omit these independent variables in the
following, and include them only if special attention is drawn to them. Rd depends on the
amount of liquid w that passes through the membrane per unit filter surface:

w =
∫ T

0
J dt , (9)

which influences the local resistance Rd in the following way:

dRd
dw

=
Rd

n

C
, (10)

where C and n are constants describing the increase in resistance for different filtration
mechanisms. Equation (10) was introduced by Blankert et al. [18] and is intended as a mod-
ern formulation of the classical laws of filtration proposed by Hermans and Bredée [32] and
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Hermia [33]. In these laws of filtration, the exponent n indicates different filtration mecha-
nisms; it is 0 for incompressible cake filtration, 1 for a mechanism referred to as intermediate
blocking, 3/2 for standard blocking, and 2 for complete blocking [18,34]. Deposition on
hollow fiber membranes has been already investigated in the literature [7,9,35]. Lee et al. [35]
found that cake filtration and standard blocking are the dominant fouling mechanisms
for hydrophilic and hydrophobic membranes, respectively. Liu et al. [9] included cake
filtration and also modeled cake compression. Please note that Equations (9) and (10) are
only unrestrictedly valid for a non-cross-flow operation mode of SHFMs.

Membrane fouling is only briefly treated here in order to motivate our optimization
approach and aid interpretation of the results. We will only consider cake filtration, i.e.,
n = 0. In this case, C is related to the resistance of the filter cake formed by deposited
impurities [18]. Please note that for pronounced cake formation, the one-dimensional
Cartesian description that has been used can also be easily transferred to cylindrical
geometries; various formulations are found in the literature [36–38]. Having mentioned
this, we will not further consider the cylindrical fiber geometry and treat the deposition as
a pure one-dimensional Cartesian problem as it is also approached in the cited literature on
modeling of hollow fiber membranes; this is a valid approximation for small cake heights.
Even though only cake filtration is treated, our reasoning and the optimization results,
however, are valid for all other filtration modes as well. This is due to the fact that for
all filtration mechanisms, the local fouling state depends on w(t, x) which, according to
Equation (9), is the time integral of J. Thus, if our optimization goal of a constant local
flux J(x) is reached, single membrane fibers equally exhibit constant local values of w(x)
and, therefore, a constant resistance Rd(t, x) for each point in time t. For this reason, cake
filtration serves only as one example of fouling. The reasoning, however, remains general.

With respect to the overall approach, please note that more complicated models have
also been proposed in the literature. One obvious disadvantage of the model based on
Equations (1)–(3) is that it relies on the simplest coupling of transmembrane flux and pipe
flow. Physically, however, the ideal axial pipe flow may be influenced by the perpendicular
flow through the membrane wall. For this reason Kim et el. [39] and Li et al. [3] proposed
alternative models that take this effect into account. Nevertheless, we will use the basic
modeling approach of Chang and Fane [1] as this model has proved suitable for many
applications, especially when low transmembrane fluxes are encountered, and can be
still solved with reasonable computational efficiency required when addressing optimal
control problems.

All parameters needed to solve the introduced model equations are summarized in
Table 1. Single parameter values are varied in different scenarios considered in the results
section; these values are shown in the last row of the table. The values for the reference case
are taken from Chang et al. [1,2] except for the value of C, which is chosen so that typical
time scale and fouling effects from the literature are met [1]. In addition, other publications
show that the parameter values used in this study are in the typical range [3,8,11,31].

Table 1. Model parameters.

Parameter r/mm L/m Rm/m−1 µ/mPas J/L m−2 h−1 C/m2

Reference case 0.2 1.0 1.0 × 1011 1.0 30 5.0 × 10−13

Variation 0.3 1.5 - - 20 -

3. Numerical Methods

All numerical simulations and optimization operations are performed using MATLAB
(version: 2019a, supplier: The MathWorks, Natick, MA, USA). As explained, the basis for
solving the model is Equation (4). To meet our reference case of Chang et al. [1,2], however,
the simple solution of this second-order differential equation must be supplied with an
additional building block. This is due to the fact that for solving Equation (4), boundary
conditions for p and dp/dx are required. Chang et al. as well as other groups [1,2,35]
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use the average transmembrane flux J, as defined in Equation (6), as an overall constraint.
However, when the analytical solutions of Equations (7) and (8) are no longer valid, e.g., due
to locally varying resistances, J can only be computed from the final simulation results.
For this reason, a self-implemented bisection method is used to determine the boundary
condition for p at x = 0 so that the desired value for J is met. Bisection is conducted until
the difference between upper and lower interval becomes smaller than 10−3 times the
mean value of the solution. This threshold proved sufficient to achieve inaccuracies of less
than 0.02% in all performed simulations, i.e., J deviated less than this percentage from its
predefined value. The procedure is insensitive to the chosen start values. A validation
of this procedure is provided at the beginning of the results section. The said bisection
method is used iteratively with the MATLAB solver ode45, by which the two coupled
ordinary differential equations are solved; ode45 is used with its default settings. The
boundary condition for dp/dx at x = 0 is 0 when no in- or outflow at the lower end takes
place. The situation changes in a double-end setup, as explained later; see Equation (12).

Membrane fouling due to cake formation is computed by an explicit method, i.e., in-
tegration moves forward in time without any inner iterations. The local flow profile is
obtained by the approach just described. Current local resistance R(t, x) is determined
according to Equation (10) based on the local cumulative volume w(t, x), as defined in
Equation (9), for each point in time. Initially, the membrane is assumed to be unclogged,
i.e., Rd(t, x) = 0 at t = 0. Using the profile of R(t, x) at time T, J(t, x) for T + ∆t is
computed and so on. A time-step size ∆t of 30 s is used, which is chosen according to a
convergence study, i.e., a finer time discretization does not change the results anymore.

As mentioned, we aim at a constant transmembrane flux. This leads to the following
cost functional used in the optimal control computation

f =
1
L

∫ L

0

(
J(x)− J

)2 dx , (11)

i.e., the variance of the flux; please note that Equation (11) is a Lagrangian-type objective
functional. Thus, the optimization task is min( f ), which is achieved by optimizing the path
of Rm(x). Note that this is a time-invariant problem as we only optimize the membrane
resistance Rm as a function of the fiber’s length coordinate x. Fouling is not included in
the optimization procedure. However, we argued on physical grounds in Section 2 that a
constant local flux also leads to a constant deposition along the fiber length. Numerically,
optimal control is approached by a direct single shooting algorithm based on discretization
of the control variable [40–42], i.e., Rm in our case. This is a so-called direct solution method
where the cost functional is minimized straightforwardly, in contrast to indirect methods
where a Hamiltonian together with necessary and, if possible, sufficient conditions is
employed to determine the optimal paths [41]. Initially, the unknown trajectory of Rm(x)
is approximated by a linear profile that is optimized. The optimal linear profile, defined by
two points, is intersected by a third point in the next iteration, for which the previous linear
solution is used as the initialization. In all further optimization steps, additional points
are introduced between previously optimized locations; all points are linearly connected.
This iterative division and optimization procedure is described in more detail in other
publications by the authors [27,28]. Numerical optimization is conducted using MATLAB’s
function fminsearch with its default settings. The sought-for optimal path is approximated
by six iterations, corresponding to 33 points, which yields sufficiently smooth profiles in
the current case, as can be seen in the results section.

4. Results and Discussion

First of all, a validation of our numerical solution method, described in the last section,
is provided. For this reason, the analytical solution of Equation (8) is compared with
the numerical solution of Equation (4). As can be seen in Figure 2, both results show
perfect agreement for the parameters of the reference case, as given in Table 1, and which
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also remains true when these parameters are varied. Therefore, our solution procedure,
including the described bisection method, is seen as valid.
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Figure 2. Validation of numerical method by comparison of numerical and analytical solutions of
flux profile J(x), shown for reference case.

Due to the locally varying transmembrane flux, a locally varying fouling behavior can
be expected in non-cross-flow mode. This behavior was also found in the literature [43]
and is, as described, seen as a problem in the operation of submerged hollow fiber mem-
branes. Figure 3 shows the increase in local resistance R(t, x) and its transient influence
on local transmembrane flux J(t, x). Increase in local resistance is most pronounced at
the membrane outlet (x = L) where the transmembrane flux is highest, as already shown
in Figure 3a. The coupling of fouling and flow is due to the fact that each fluid element
also contains some amount of foulants and that, therefore, a higher amount of liquid
than passed locally through the membrane leads to a more pronounced clogging at this
location. Fouling, in turn, causes a local decrease in flux as depicted in Figure 3b. Therefore,
a negative feedback loop is created, i.e., at the fiber outlet, flux is highest, which is also
related to the most pronounced clogging which, in turn, causes the strongest decline in
local flux. Nevertheless, deposition of impurities on the membrane surface is still very
inhomogeneous as can be seen from the changing resistance profile over time in Figure 3a.
As explained in the introduction, inhomogeneous clogging behavior is disadvantageous
for membrane cleaning and it is, therefore, desirable to avoid it.
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Figure 3. Transient effect of membrane fouling on local resistance R(t, x) (a) and flux profile J(t, x) (b) for reference case.

Due to the coupling of fouling and flux, a constant transmembrane flux also implies
constant fouling along the membrane length, as argued in Section 2. Figure 3, therefore,
retrospectively justifies our chosen optimization goal. The said behavior is especially im-
portant in the non-cross-flow mode, but when cross-flow is applied it is also required that
the critical flux is nowhere superseded, as explained in the introduction. Therefore, a con-
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stant flux with a suitably chosen value is the safest way to assure that the critical flux is
not reached.

In our first optimal-control case study, our reference case by Chang and Fane [1]
is optimized to achieve a constant flux. Please note that here and in all of the following
optimization scenarios, we deal again with problems of membrane design that are therefore
time-invariant. All shown resistances are membrane resistances Rm. In Figure 4, the opti-
mized solution is compared to the gradient-free membrane with the same average flux J.
It can be observed that the optimization goal was ideally reached, meaning that the local
transmembrane flux is indeed constant along the membrane length. This is a result of the
optimized profile of local transmembrane resistance Rm(x), which is lowest at the inlet
(x = 0) and highest at the membrane outlet (x = L).
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Figure 4. Optimization of reference case; flux profiles J(x) (a) and optimized resistance profile Rm(x) (b).

In order to investigate the influence of different membrane parameters and to under-
line the general validity of the proposed method, two scenarios with geometrical variations
are considered. First, a membrane with an increased length is addressed; second, a mem-
brane with a larger inner radius is studied. These parameters were also varied in the
literature with the goal of investigating their influence on the axial profile of transmem-
brane flux [2]. Figure 5 shows the corresponding results for the longer membrane fiber
(L = 1.5 m), both optimized and gradient-free. For achieving the same overall flow rate per
fiber as in the reference scenario, which is obtained by multiplying the average flux with
the total surface of the membrane fiber, an average flux of J = 20 L m−2 h−1 is used here.
The findings are juxtaposed with our reference case of a one-meter-long fiber. It can be
seen that longer membranes still cause more inhomogeneous flux profiles, which need to
be compensated by a more pronounced variation of local membrane resistance. However,
using the optimized resistance profile also given in Figure 5, a constant flux can be achieved.
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Figure 5. Optimization of membrane fiber with an increased length of 1.5 m and comparison to reference case with a length
of 1 m; flux profiles J(x) (a) and optimized resistance profile Rm(x) (b).
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Increase of the inner membrane radius has the opposite effect compared to increasing
the length of fibers, i.e., it homogenizes the flux profile. In Figure 6, results for a fiber of 1 m
length but an inner radius of 0.3 mm are shown, i.e., 50% larger compared to the reference
case. In order to keep the total flow rate constant, again an average flux of J = 20 L m−2 h−1

is used. The gradient-free membrane is compared to the optimized gradient membrane
and it can be seen again that the optimized membrane has a completely homogeneous
transmembrane flux.
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Figure 6. Optimization of membrane fiber with an increased radius of 0.3 mm and comparison to reference case with radius
of 0.2 mm; flux profiles J(x) (a) and optimized resistance profile Rm(x) (b).

It could be argued that membranes with such strong deviations in local resistance
might be unrealistic, a point we will also address in the conclusions section. In response to
this issue, we also propose a method by which a homogeneous transmembrane flux can be
achieved without such strong gradients of Rm(x). To achieve this, we turn to a double-end
scenario where suction is applied at both ends of the membrane, as also encountered in the
literature [4,10]. This setup leads to the following boundary condition at x = 0:

dp
dx

= −8µQ
πr4 = −16sµLJ

r3 , (12)

where s is the share of the total flow rate that is extracted at x = 0. Positive values of s
correspond to inflow at x = 0, negative values to outflow. For the previous results, s = 0
was used as no inflow or outflow being assumed at this location. Now, s is set to −0.5,
i.e., half of the overall flow rate is extracted at x = 0. In Figure 7, the optimized resistance
profile as well as the corresponding flow profiles are shown; both are compared again
to the gradient-free scenario. Please note that for these results forward computation was
performed directly; however, for determining the optimal control solution, the domain
was split, i.e., left and right sides of the curve were computed separately for membrane
segments of 0.5 m each. This was done to circumvent possible numerical problems. When
splitting the domain, s is again set to 0 for one fiber end (as in all cases above). Both half-
fiber solutions are subsequently stitched together at the s = 0 location. It can be seen from
the solution that the chosen strategy is valid, as the overall optimization goal is perfectly
reached and the prescribed flux is met as well. Additionally, Figure 7 illustrates that the
double-end setup indeed requires only the smallest variation of membrane resistance
compared to all previously studied cases in order to achieve a constant transmembrane
flux. This can be explained by the fact that even without optimization, the double-end
mode already has a more homogeneous flow profile compared to the reference case.
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Figure 7. Optimization of double-end setup and comparison to reference case; flux profiles J(x) (a) and optimized resistance
profile Rm(x) (b).

For further comparison of the four different scenarios, each for a homogeneous,
i.e., gradient-free, membrane and an optimized gradient membrane, the inhomogeneity
of the flux profile is evaluated; Table 2 summarizes the outcomes. As a measure for inho-
mogeneity of flux we rely on f / J2, i.e., the variance of flux f , as defined in Equation (11)
scaled by the square of the average flux. The chosen scaling makes sense because in the non-
optimized cases f is in the order of J2. As already observed earlier in the article and in the
literature [2,4], an increasing length of the membrane fiber leads to a larger inhomogeneity
of the flux profile whereas a larger inner radius decreases flux inhomogeneity. In addition,
a double-end setup with the same throughput has a lower inhomogeneity of flux. Table 2
shows again in a quantitative manner that the optimization goal is reached very well in
all investigated cases, i.e., that all optimized membranes have an ideally homogeneous
flux profile.

Table 2. Inhomogeneity of flux profile as quantified by the dimensionless flow-rate weighted variance of flux f / J2.

Case Reference Length Variation Radius Variation Double End

Homogeneous membrane 1.2 2.4 0.32 0.28
Gradient membrane <10−6 <10−6 <10−6 <10−6

Relying on the previous results, it is easy to show that all optimized membrane
fibers also show a completely homogeneous fouling behavior in the non-cross-flow mode.
In contrast to the outcomes for the reference case presented in Figure 3, where a pronounced
difference in local deposition is visible, a constant transmembrane flux also causes a
constant deposition profile on the membrane surface. Note that this is true not only for
the mechanism of cake filtration, but also for all other filtration mechanisms discussed
earlier because w(t, x), as defined in Equation (9), does not differ along the fiber length. It
is expected that this has a positive influence on membrane cleaning. In addition, when
cross-flow is applied, the homogeneous flux profile in optimized membrane fibers ensures
that the critical flux is nowhere superseded.

5. Conclusions and Outlook

In this article, we introduced a new optimization method to determine profiles of local
resistance which lead to a constant transmembrane flux along the length of submerged
hollow fiber membranes. The method is based on optimal control theory and relies on
the established and repeatedly validated model by Chang and Fane [1]. Using different
scenarios with varying fiber lengths and radii, the broad validity of the approach was illus-
trated. In all cases, the goal of a locally invariable flux was perfectly reached. In addition, a
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double-end setup was investigated. This setup already has, per se, a lower inhomogeneity
of transmembrane flux, which implies that only a smaller variation of local resistance is
required in order to achieve a completely homogeneous profile of transmembrane flux.

As it might be objected that locally varying the resistance of submerged hollow fiber
membranes is hardly feasible from a practical point of view, the double-end setup might
be a good starting point for an implementation in practice. However, in general, we see
a change in filtration research from what we call the “microtheoretic paradigm”, where
the focus of research turned to the theoretical understanding of pore-scale effects in filters,
to a research phase that can be termed the “micromanipulative paradigm” [44]. Now,
the microscale of filters can be influenced in previously unimaginable ways. A key role is
played here by different 3D-printing and additive manufacturing technologies [45–48]. In
addition, local and selective thermal or chemical treatment on very small length scales can
be mentioned. Based on this background, we can also think of ways to locally influence the
resistance of single membrane fibers. One can imagine, e.g., a locally varying coating or
a targeted deposition of micro- or nanoparticles on the membrane surface, which could
be fixed by sintering processes. Influencing the local pore size, which directly impacts
resistance, by thermal or chemical treatment might also be an option. A variation of the
local lateral thickness of the fibers, as already applied in ceramic gradient membranes [49],
might be another means to achieve varying resistances. Obviously, it is also possible to
combine some of these manufacturing processes to realize the required gradients.

Besides these direct practical uses of the obtained results, the method itself might be
a beneficial basis for further use and development. With the same basic approach, other
optimization goals can be addressed, e.g., the resistance profile can be determined so that
only a certain maximal flux is not superseded, meaningfully the so-called critical flux.
Whereas our algorithmic take on optimizing the axial resistance profile proved sufficient
for the goal of a constant flux, other optimization goals might result in more complicated
problems with their own challenges concerning numerical stability. In this respect, a
wavelet-based optimal control could be promising [50,51]. Besides its use for single fibers,
our method can also be combined with design methods for whole modules. These methods
account for the influence of fiber position on the profile of transmembrane flux, which
also influences the optimization goal for single membrane fibers. Such a problem could
be addressed by combining computational fluid dynamics (CFD) simulations of whole
modules with our optimization method for single fibers. Additionally, the method might be
adapted to other membrane types, e.g., to spiral-wound membranes, or even for different
applications, such as soil mechanics and petroleum engineering [52].
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