
TECHNISCHE UNIVERSITÄT MÜNCHEN
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“In his essay entitled ‘What is Semantics?’, Anatol Rapoport wrote:

‘There are two suffixes in our language (and similar ones in other European

languages) which suggest organized knowledge. One is the venerable, academic

“ology,” that reminds one of university curricula and scholarship. The other is the

energetic and somewhat mysterious “ics,” which has a connotative flavor of magic.

Where “ology” suggests academic isolation (ichthyology, philology), “ics” suggests

a method of attack on life’s problems. It contains a faint throwback to the ancient

dreams of the philosopher’s stone and of “keys” to the riddles of the universe.

Ancient words ending in “ics” are mathematics and meta-physics. Of more recent

origin are economics, statistics, semantics, and cybernetics’.

One might add genetics, and now, genomics”.

(McKusick & Ruddle, 1987)
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Abstract

The kidneys are responsible for endocrine, metabolic and excretory functions vital

to maintaining a homeostatic balance. Mostly asymptomatic in early stages, chronic

kidney disease (CKD) is diagnosed based on levels of estimated glomerular filtration

rate (eGFR) falling below 60 ml/min/1.73 m2 – that is, when around 50% of kidney

function has been lost. CKD is an increasingly prevalent non-communicable disease

in aging populations that imposes a considerable burden on individuals and health

care systems. Kidney research is thus a field in which molecular epidemiological re-

search can provide novel insights into the biological mechanisms underlying kidney

function and disease by identifying molecular markers associated and/or predictive

of disease progression.

Many well-designed studies have been conducted in the last decades to charac-

terize molecular (or -omic) markers in relation to kidney disease. Whereas urine

proteomic biomarkers have made their way to being used in clinical practice (e.g.

to predict disease progression), the complex proteomic profile of blood remains

relatively unexplored. Moreover, prior studies on proteomic markers and renal

function have not distinguished causality from correlation. Likewise, multiple stud-

ies have shown epigenetic age acceleration measured in blood to be associated with

aging-related diseases (e.g. frailty, cognitive function and physical fitness, among

a number of other conditions) and mortality. Nevertheless, whether DNAm-based

predictors of age and mortality are correlated with different parameters of kidney

aging and low function has not been investigated.

The general purpose of this dissertation is to contribute to the understanding of

the molecular basis of kidney function (and disease) by investigating the association

between kidney traits and omic-based biomarkers, more precisely plasma proteins

and DNAm-based predictors of aging and/or mortality, in multi-ethnic population-
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based studies. This was achieved by conducting two large-scale epidemiological

research projects with international collaboration partners with the objective of

addressing two main research goals: to determine whether plasma proteins are as-

sociated with eGFR and CKD and assess whether this association might be causal,

and to investigate if epigenetic age acceleration and DNAm-based mortality mea-

sures in blood are associated with kidney function as reflected in multiple traits.

The findings presented in this thesis consist of 57 plasma proteins associated with

kidney function (with eGFR as a proxy thereof). Of these associations, one seems

to be of causal nature: Mendelian randomization suggested that eGFR has a posi-

tive effect on the levels of testican-2. Likewise, the strong and consistent association

of different kidney traits reflecting poor kidney function (i.e. low eGFR, prevalent

CKD, high urinary albumin-to-creatinine ratio [uACR], prevalent albuminuria and

high serum urate) with DNAm-based signatures of aging and/or lifespan highlights

the pervasive nature of aging-related chronic inflammation and immune system

aging. This thesis presents an initial epidemiological appraise on the correlation

between kidney function, proteomic biomarkers and epigenetic age acceleration in

population-based studies. Further dedicated research to assess the clinical validity

of the proteins and “epigenetic clocks” identified here for disease stratification and

prognosis is warranted.

x



Zusammenfassung

Die Nieren sind für endokrine, metabolische und exkretorische Funktionen verant-

wortlich, die für die Entgiftung des Körpers und die Regelung des Flüssigkeits-

und Säure-Basen-Haushalts wichtig sind. Chronisches Nierenversagen (auf Englisch

chronic kidney disease [CKD] gennant) ist im Frühstadium meist asymptomatisch

und wird erst diagnostiziert, wenn die glomeruläre Filtrationsrate (eGFR) unter 60

ml/min/1.73 m2 fällt - das heißt, wenn etwa 50% der Nierenfunktion bereits verloren

gegangen ist. CKD ist eine weit verbreitete Krankheit der alternden Bevölkerung,

die sowohl für die Patienten als auch für Gesundheitssysteme eine erhebliche Bela-

stung darstellt. Die Nierenforschung ist daher ein Bereich, indem molekulare epi-

demiologische Forschung neue Einblicke in die biologischen Mechanismen der Nie-

renfunktion und -erkrankung liefern kann: neue Biomarker, die Informationen über

den Gesundheitszustand oder den Krankheitsverlauf liefern, können dadurch iden-

tifiziert werden.

In den letzten Jahrzehnten wurden zahlreiche Studien durchgeführt um Biomar-

ker im Zusammenhang mit Nierenerkrankungen zu charakterisieren. Proteomische

Biomarker im Urin werden in der klinischen Praxis verwendet (z. B. zur Vorhersa-

ge des Krankheitsverlaufs). Das komplexe proteomische Profil des Blutes ist jedoch

noch relativ unerforscht und frühere Studien haben nicht zwischen Kausalität und

Korrelation unterschieden. Mehrere Studien haben gezeigt, dass die im Blut gemes-

sene epigenetische Altersbeschleunigung mit altersbedingten Krankheiten (unter

anderem Gebrechlichkeit, kognitive Funktion und körperliche Fitness) und Sterb-

lichkeit assoziiert sind. Dennoch wurde bisher nicht untersucht, ob epigenetische

(DNAm-basierte) Prädiktoren für Alter und Sterblichkeit mit Parametern der ge-

ringen Nierenfunktion in Zusammenhang stehen.

Das Ziel dieser Dissertation ist es die Assoziation zwischen Nierenfunktion und
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Zusammenfassung

molekulare Biomarker (Plasmaproteinen und DNAm-basierten Prädiktoren für Al-

terung und/oder Sterblichkeit) in multiethnischen bevölkerungsbasierten Studien

zu untersuchen und damit zum Verständnis der molekularen Grundlagen von Nie-

renfunktion und –erkrankung beizutragen. Dies wurde durch die Durchführung von

zwei epidemiologischen Forschungsprojekten mit internationalen Kooperationspart-

nern erreicht, die zwei Hauptforschungsziele verfolgten. Das erste Ziel war es fest-

zustellen ob Plasmaproteine mit eGFR und CKD assoziiert sind und zu beurteilen

ob diese Assoziation kausal ist, das Zweite zu beurteilen ob epigenetische Altersbe-

schleunigung und DNAm-basierte Mortalitätsmarkers im Blut mit Nierenfunktion

assoziiert sind.

Im Rahmen dieser Arbeit wurden 57 mit Nierenfunktion assoziierte Plasmaprote-

ine identifiziert, davon scheint eines von kausaler Natur zu sein: eGFR hat einen po-

sitiven Effekt auf den Plasmaspiegel von Testican-2. Ebenso unterstreicht die starke

und konsistente Assoziation verschiedener Nierenmerkmale, die eine schlechte Nie-

renfunktion widerspiegeln (z. B. niedrige eGFR, prävalente CKD, hoher Albumin-

Kreatinin-Quotient, Albuminurie und hohes Serumurat), mit DNAm-basierten Prä-

diktoren des Alterns und/oder der Lebensspanne die allgegenwärtige Natur der al-

tersbedingten chronischen Entzündung und des Alterns des Immunsystems.

Diese Arbeit präsentiert eine erste epidemiologische Einschätzung der Korrelation

zwischen Nierenfunktion, proteomischen Biomarkern und epigenetischer Altersbe-

schleunigung in bevölkerungsbasierten Studien. Um die klinische Validität der hier

identifizierten Proteine und
”
epigenetischen Uhren“ für die Krankheitsstratifizie-

rung und -prognose abschließend zu beurteilen, ist weitere Forschung notwendig.
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Verhütung, Früherkennung und optimierten

THerapie chronischer ERkrankungen in der

älteren Bevölkerung

EWAS epigenome-wide association study

FDR False discovery rate

FWER Family-wise error rate

GDF15 Growth Differentiation Factor 15, protein

GrimAA Age acceleration as measured by the difference be-

tween GrimAge and chronological age

GTEX Genotype-Tissue Expression (GTEx) project

GWAS Genome-wide association study

HannumAA Age acceleration as measured by the difference

between Hannum’s estimated DNAmAge and

chronological age

HDL high density lipoprotein

HorvathAA Age acceleration as measured by the differ-

ence between Horvath’s estimated DNAmAge and

chronological age

HUNT Nord-Trøndelag Health Study

xviii



List of Abbreviations

IEAA Intrinsic Epigenetic Age Acceleration

IGBFP6 Insulin Like Growth Factor Binding Protein 6,

protein

INTERVAL The ”INTERVAL” study

IVW MR Inverse-variance weighted Mendelian Randomiza-

tion

JHS Jackson Heart Study

K/DOQI National Kidney Foundation’s Kidney Disease

Outcomes Quality Initiative

KORA ”Kooperative Gesundheitsforschung in der Region

Augsburg”, in English ”Cooperative health re-

search in the Region of Augsburg”

LD Linkage disequilibrium

MCP matricellular proteins

MP2K2 Dual specificity mitogen-activated protein kinase

kinase 2, protein

MR Mendelian Randomization

MRS Mortality Risk Score

MS Mass-spectrometry

NAS Normative Aging Study

PAI-1 Plasminogen activator inhibitor-1

PEA Proximity Extension Assay

PhenoAA Age acceleration as measured by the difference be-

tween PhenoAge and chronological age

PPI Protein-protein interaction network

pQTL protein quantitative trait loci

xix



List of Abbreviations

QMDIAB Qatar Metabolomics Study on Diabetes

RELT Receptor Expressed In Lymphoid Tissues, also

known as Tumor Necrosis Factor Receptor Super-

family Member 19L, protein

REML Restricted Maximum Likelihood

RLS restless leg syndrome

RNA Ribonucleic acid

RNAi RNA interference

RRT renal replacement therapy

SD standard deviation

SNP single nucleotide polymorphism

SPARC secreted protein acidic and rich in cysteine, pro-

tein family

SPOCK2 SPARC (Osteonectin), Cwcv And Kazal Like Do-

mains Proteoglycan 2, gene name

TAJ Tumor Necrosis Factor Receptor Superfamily

Member 19, protein

TIMP-1 TIMP Metallopeptidase Inhibitor 1, protein

TNF SR-I Tumor Necrosis Factor Soluble Receptor I, protein

TNF SR-II Tumor Necrosis Factor Soluble Receptor II, pro-

tein

uACR Urine Albumin-to-Creatinine Ratio

WHI Women’s Health Initiative

xx



List of Figures

1.1 Workflow of -omics studies, reproduced from (Franks & Pomares-

Millan, 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Epigenetic mechanisms, modified from (Miranda-Gonçalves et al.,
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Preface

This document is a publication-based dissertation stemming from the doctoral re-

search conducted by the candidate between October 2017 and April 2021 under the

supervision of Prof. Dr. Juliane Winkelmann and Prof. Dr. Jerzy Adamski (Tech-

nical University of Munich, TUM) and mentorship of Dr. Melanie Waldenberger

and Dr. Christian Gieger at the Research Unit Molecular Epidemiology from the

Institute of Epidemiology (Helmholtz Zentrum München). This dissertation ful-

fills the criteria listed in §6 (2) “Regulations for the Award of Doctoral Degrees”

effective January 1, 2014:

1. the present dissertation is based on two first-author papers accepted for pub-

lication in international peer-reviewed journals, listed in the section dedicated

to the candidate’s publication record;

2. the dissertation provides scientific background and formulates the research

questions in an introductory section (Chapter 1), describes the analytical

strategies used to address these questions in a methodology section (Chapter

2), presents the obtained results (Chapter 3), contextualizes them in relation

to relevant literature in a discussion section (Chapter 4), and provides an

outlook of how these findings may motivate future research (Chapter 5);

3. the dissertation includes a short summary of each publication and the indi-

vidual contributions of the candidate (Chapter 3);

4. the original papers and written consent for their inclusion in this dissertation

was provided by the publishers (Appendix A to Appendix C).

The overarching goal of this doctoral project was to identify potential -omic

biomarkers associated with kidney function and related traits in well characterized

and established human cohorts in order to offer novel insights into the molecular

xxv



Preface

mechanisms underlying kidney function and disease. To this end, comprehensive

analyses of -omics data in multiple human cohort studies were conducted to investi-

gate the association between kidney traits, plasma proteins, and DNA methylation

(DNAm)-based measures of aging. These analyses resulted in the publication of two

original research papers: one addressing the identification of proteomic biomark-

ers associated with estimated glomerular filtration rate (eGFR) and assessing the

causal nature of the identified associations using data from genome-wide associa-

tion studies (GWAS) (Mat́ıas-Garćıa et al., 2021b), and the second one exploring

the association between five kidney traits (eGFR, chronic kidney disease [CKD],

urinary albumin-to-creatinine ratio [uACR], microalbuminuria and serum urate)

and seven DNAm-based predictors of aging and/or mortality (Mat́ıas-Garćıa et al.,

2021a).
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RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, Smith JA, Taylor JA,

van Meurs JBJ, Vineis P, Waldenberger M, Deary IJ, Relton CL, Horvath

S, Marioni RE. Genome-wide association studies identify 137 loci for DNA

methylation biomarkers of ageing. bioRxiv. 2020. 2020.2006.2029.133702.

doi:10.1101/2020.06.29.133702 – manuscript accepted at Genome Biology

• Hawe JS, Wilson R, Schmid K, Zhou Li, Lakshmi L, Lehne BC, Kühnel

B, Scott WR, Wielscher M, Yew YW, Baumbach C, Lee DP, Marouli E,
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1 Introduction

This chapter will introduce the reader to principles of observational epidemiology

and large-scale profiling of molecular -omic data with a focus on population-based

studies (Figure 1.1). In order to outline the findings corresponding to the work

on DNAm-based aging and mortality predictors, details on the construction and

interpretation of the so-called “epigenetic clocks” are presented (Figure 1.2 to Figure

1.5). As this dissertation describes work on proteomic biomarker discovery, a state

of the art analytical method to obtain proteomics data is shown in Figure 1.6.

This chapter will also offer a brief review of concepts and current knowledge on

the (molecular) epidemiology of chronic kidney disease (CKD) and describe the

knowledge gaps this doctoral research aimed to narrow. Finally, the objectives of

this thesis will be outlined with regard to the concepts and ideas covered in this

chapter, and these aims will be linked to the molecular epidemiological studies

described in both included first-author publications (Mat́ıas-Garćıa et al., 2021a;

Mat́ıas-Garćıa et al., 2021b).

1.1 Principles of (Molecular) Epidemiology

Molecular epidemiology, defined in the 2005 edition of the Handbook of Epidemi-

ology as “the application of the techniques of molecular biology to the study of

populations, with a particular focus on the investigation of disease” (Vineis et al.,

2005), can be understood as a field of epidemiology characterized by the use of

biological markers – biomarkers – to better characterize exposures, susceptibility of

disease and health outcomes (Khoury et al., 2008). Molecular epidemiology aims

to offer knowledge useful for health research and clinical practice by investigating

biomarkers involved in disease etiology, intermediate phenotypes and pathological

events, as well as pre/clinical disease and prognosis (N. Rothman et al., 2011).
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1.1.1 Use of biomarkers

The use of biological molecules in epidemiological studies is not a novelty on its

own: classical examples are the determination of antibody titers when investigat-

ing exposure to infectious disease, or blood lipids in cardiovascular research. As

once health outcomes were based on conventional biomarkers like estrogen receptor

status in breast cancer, nowadays -omic biomarker research can assess specific gene

expression signatures and relate them to disease prognosis (Khoury et al., 2008).

Epidemiological research identifies three groups of biomarkers: biomarkers of expo-

sure and/or dose, of a biological effect (e.g. tissue damage, molecular dysfunction,

early pathophysiological events) and of susceptibility (Schulte et al., 2011). Other

sources suggest this classification can be extended to a continuum of biomarkers

reflecting multi-stage molecular events ranging from exposure to initiation and pro-

gression of disease, as well as individual susceptibility markers (Garcia-Closas et al.,

2011).

1.1.2 Study design and aims

In general, epidemiology is conducted based on either experimental or observational

studies: the first are characterized by the random designation and administration

of interventions to groups of individuals in order to assess the effect on a given out-

come (e.g. clinical trials), whereas the second are conducted in settings in which

due to ethical or feasibility reasons such allocation of an intervention is not done,

but the occurrence of exposures and outcomes is registered (Khoury et al., 2008).

Molecular epidemiology is especially well-suited to contribute to improving the

definition of exposures in settings with low expected exposure level and/or multiple

sources of exposure; to offer novel insights into the dynamics of gene-environment

interactions; and to bring forward the identification of markers of early response to

treatment (Vineis et al., 2005). To achieve these aims, research must be conducted

following a clear workflow, starting with an appropriate study design that will allow

for the generation of good quality -omics data and an appropriate analysis thereof

(Franks & Pomares-Millan, 2020) (Figure 1.1).
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Figure 1.1: Workflow of -omics studies, reproduced from (Franks & Pomares-Millan,
2020)

An extensive description of general principles of epidemiological study design is

beyond the scope of this thesis. Nevertheless, as observational epidemiology studies

are of relevance to the work presented in this dissertation, the following paragraphs

will provide additional details on their execution, advantages and caveats in the

context of molecular epidemiology.

Observational epidemiologic studies

In this dissertation, data from individuals participating in population-based cohorts

were used to analyze correlations between –omic molecular phenotypes and param-

eters reflecting kidney function. This section will therefore focus on study designs

in which the unit of observation is the individual, unlike ecological studies in which

the unit of observation is a population or a community. Rothman and colleagues

distinguish four types of observational studies in their chapter dedicated to types of

epidemiologic studies in Modern Epidemiology: cohort, case-control, cross-sectional

and ecologic studies (K. Rothman et al., 2008).

Cohort studies identify a source population and classify their individuals based

on their exposure status to then evaluate the occurrence of disease. Cohort studies

aim at assessing disease prevalence and incidence, are useful to understand the natu-
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ral history of disease and risk factors, and produce data on environmental (including

lifestyle and other exposures) factors (K. Rothman et al., 2008). The establishment

of longitudinal cohort studies, where individuals recruited to a cohort are followed

over time, offers the possibility of conducting repeated sampling of health outcomes

and molecular phenotypes, which may be predecessors or consequences of disease

(Khoury et al., 2008).

Case-control studies select individuals based on their disease status and iden-

tify appropriate controls independently from their exposure status from one shared

source population (either individuals in a hospital registry for hospital-based studies

or a sample population for population-based studies) (Vineis et al., 2005). Case-

control studies can be used to study rare diseases and their genetic architecture,

as genetic information does not change with time, as well as gene-gene and gene-

environment interactions, and their effect in disease (Khoury et al., 2008). However,

some of the limitations of this study design include the potential for selection bias

(where cases all stem from a similar geographic region and the distribution of co-

morbidities and other diseases in control individuals may not be representative of

the general population) and bias coming from differential participation from cases

and controls (Garcia-Closas et al., 2011).

Cross-sectional studies select a representative sample of individuals from a

source population independently from their disease or exposure status, and assess

both exposure and disease at the same point in time (Vineis et al., 2005). These

studies offer a “snapshot” of events in the population (Garcia-Closas et al., 2011),

and are conducted to assess exposures and to explore the correlations between

health outcomes and molecular phenotypes (Khoury et al., 2008). However, this

study design does not distinguish between causal information on the incidence of

disease and the natural history of disease, and additional considerations are neces-

sary to use data produced by such a study to offer causal insights (Hernan, 2018;

Khoury et al., 2008).
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1.2 -Omics

Khoury and colleagues were right when they wrote in 2008 that “the use of biomark-

ers in epidemiology will reach a new level of complexity, with the simultaneous study

of hundreds or even thousands of data points for each person” (Khoury et al., 2008).

Such data points are collected and studied by the omic sciences, whose –omics suffix

is derived from the Ancient Greek. Genomics was a term coined over thirty years

ago to describe the then-emerging discipline merging molecular and cell biology

with genetics and computational science that was to be dedicated to mapping/se-

quencing genes and analyzing data stemming thereof – and was used first to name

the journal Genomics (McKusick & Ruddle, 1987). The term is now used to de-

scribe the study of the functions and interactions of all the genes that constitute

the genome, the advent of genomic medicine and its potential applications to pre-

vention, diagnosis and therapy (Guttmacher & Collins, 2002). The possibility to

measure additional biological molecules with improved resolution and at large-scale

allowed for other –omic disciplines to emerge and be applied to human studies to

assess gene expression, molecular products thereof, and their interaction with the

environment (Figure 1.1) (Franks & Pomares-Millan, 2020; Hasin et al., 2017).

The following sections will further introduce the reader to three –omic disciplines

relevant for this thesis: genomics, epigenomics and proteomics.

1.2.1 Genomics

The field of genomics, the most mature –omic discipline (Hasin et al., 2017), has

rapidly moved forward since the completion of the mapping of the human genome

to the possibility of quickly sequencing entire individual genomes nowadays, and

presents its own set of ethical, technical and biological challenges going into the

future (McGuire et al., 2020). Genome-wide association studies (GWAS) are con-

ducted to assess the correlation between the frequency of certain genetic variants

and a phenotype of interest (e.g. a marker of disease, progression or response to

treatment). GWAS have produced knowledge on variants with a causal role either

in disease initiation or involved in pathophysiological mechanisms, thus offering

insights into the genetic architecture of disease susceptibility; likewise, novel phar-

macological targets and disease biomarkers have also been identified as a product

of these studies and integrated into clinical practice (Tam et al., 2019). GWAS
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have also proven to be helpful in identifying replicable genetic variant-trait asso-

ciations and insights into biological mechanisms despite the relatively small effect

sizes identified in these studies (Tam et al., 2019).

Genetic variants identified in GWAS may not necessary be causal themselves, but

are rather in linkage disequilibrium (LD) (i.e. alleles from different loci are associ-

ated in a non-random manner) with those with a causal role, so additional wet-lab

experiments are necessary to describe precise causal mechanisms (Tam et al., 2019).

Nevertheless, data on the association between genetic variants and traits produced

by GWAS can be used together with other types of data and analytical methods

to produce additional insights beyond gene-trait associations: SNP heritability can

be estimated to outline the genetic architecture of disease, polygenic risk scores

to detect pleiotropy and validate GWAS discoveries, or Mendelian randomization

to assess the causal nature of associations between phenotypes (Visscher et al.,

2017). An introduction to the principles, conduction and limitations of Mendelian

randomization is presented in Chapter 2.

1.2.2 Epigenomics: DNA methylation

Epigenetics, initially described as the causal interactions between genes and gene-

products allowing for the expression of phenotypic traits, is now better understood

as the (heritable) regulation of gene expression independent to changes in DNA

sequence (Tollefsbol, 2011). Three central mechanisms through which epigenetic

mechanisms regulate gene expression have been defined, namely: DNA methy-

lation (DNAm), chromatin modifications and non-coding RNA participating in

RNA interference (RNAi) mechanisms (Figure 1.2).

DNAm, the most extensively studied epigenetic mechanism, is a process in which

certain DNA regions, usually cytosine-guanine dinucleotides (CpG sites) undergo

chemical modification by having a methyl group transferred (if removed, the pro-

cess is called de-methylation). DNAm is a main player in the regulation of gene

expression, it is involved in gene imprinting and X chromosome inactivation (Suzuki

& Bird, 2008), as well as in cellular differentiation (Tollefsbol, 2011). Likewise, the

role of DNAm in numerous conditions and diseases (e.g. cancer, cardiovascular and
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metabolic diseases, autoimmune disorders) has been shown (Kulis & Esteller, 2010;

Morales-Nebreda et al., 2018; Muka et al., 2016).

Figure 1.2: Epigenetic mechanisms, modified from (Miranda-Gonçalves et al., 2018)

A variety of methods exists to detect and quantify DNAm levels, and depending

on the research question and aims, some techniques may be more appropriate than

others. Although a review of the different DNAm profiling methods and consid-

erations on profiling specific regions versus genome-wide methylation patterns is

beyond the scope of this thesis, the reader may wish to refer to (Hattori & Ushi-

jima, 2011) for a detailed account on the analytical methods available to profile

genomic regions, as well as their strengths and limitations. Methods to assess

genome-wide methylation patterns, mostly based on principles used in assessment

of gene-specific methylation, have been coupled with microarray technology, se-

quencing and/or cloning principles (Rauch & Pfeifer, 2011). A relevant example

of the microarray technology is the Illumina HumanMethylation 450K beadchip

(Bibikova et al., 2011), a high-throughput platform offering information on DNAm

levels on the single nucleotide level that has been widely used in population-based

epidemiologic studies.

A relatively recent development in population-based epigenomics was the de-

velopment of “epigenetic clocks” based on genome-wide methylation patterns
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measured using the aforementioned microarray technology. The next section will

introduce the reader to the concept of “epigenetic clock”, present how to inter-

pret estimates of epigenetic aging produced by such DNAm-based predictors and

provide details on the most widely used predictors in research.

Epigenetic clocks and epigenetic age acceleration

The “epigenetic clocks” are algorithms meant to predict age and lifespan based

on DNAm levels of specific (and largely non-overlapping) sets of CpGs (Liu et al.,

2020). Of note, although the term “epigenetic clocks” and “epigenetic aging” have

been widely used in the literature, ”DNAm-based aging predictors” and ”DNAm-

Age” seem to be a more appropriate terms to describe the algorithms and produced

estimates thereof, considering these measures of aging are based solely on DNAm

and that by definition measures of epigenetic age could also be based on changes

in chromatin modifications or RNAi.

Importantly, although different measures of DNAm-based aging have been pro-

posed, their derivation is similar: penalized regression algorithms are trained on

data from the sample donors using aging (or some measure thereof), which results

in the selection of specific CpG dinucleotides. These are assigned weights based on

how much they change with age, and are then combined in a linear manner using

these weights to produce a numerical estimate of epigenetic age (Field et al., 2018;

Horvath & Raj, 2018).

Figure 1.3 shows the elegant summary presented by Field and colleagues on

how these DNAm-based aging estimates are produced (Field et al., 2018). While

negative coefficients, shown in blue, indicate that methylation decreases with age,

positive coefficients shown in red suggest increasing methylation with age. Fur-

thermore, CpGs may have different rates of change, where darker colors represent

faster aging rates (panel A from Figure 1.3). Panel B shows the calculation of three

individuals’ epigenetic age (one individual per row) based on the methylation levels

of 8 CpGs (one CpG per column) included in a fictitious clock for demonstration

purposes: the methylation value at each of the eight CpG sites is color coded as

white-to-black circles, and the weight assigned to each CpG (i.e. the coefficient
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obtained in the penalized regression algorithm) is shown in the red/blue squares;

the products of the methylation value and the weight at each CpG, shown as a

numerical value in the top right corner of each square, are added to obtain the pre-

dicted DNAm-based age estimate (DNAmAge) for each individual (Figure 1.3)

(Field et al., 2018).

Figure 1.3: Derivation of epigenetic clocks, adapted from (Field et al., 2018)

Measures of biological aging are considered to be a proxy of an individual’s phys-

iological status and thus deviations from chronologic age (measured by the number

of calendar years lived) may reflect a faster (acceleration) or slower (deceleration)

aging rate (Figure 1.4) (Yu et al., 2020). In this regard, the existence of discrepan-

cies between DNAmAge and chronological age, a phenomena known as epigenetic

age acceleration, is interesting as it might reflect physiological dysregulation and
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premature aging (Dhingra et al., 2018; Horvath & Raj, 2018). Evidence suggests

that epigenetic age acceleration reflects biological aging beyond chronological age,

capturing a “cumulative epigenetic drift that represents a multifactorial degenera-

tive process across tissues and organisms” (Lim & Song, 2018). However, whether

epigenetic aging plays a role in the mechanistic pathophysiology of disease remains

to be elucidated (Dhingra et al., 2018; Jung & Pfeifer, 2015).

Figure 1.4: Age acceleration/deceleration as discrepancies between biological and
chronological age, reproduced from (Yu et al., 2020)

Epigenetic clocks, depending on their construction, reflect information from chrono-

logical and/or biological aging processes. Figure 1.5 shows that, on the one hand,

chronological clocks (i.e. clocks trained with chronological age as its outcome) are

meant to capture elapsed time since birth and thus do not reflect biological ag-

ing. In that sense, the correlation between DNAmAge and chronological age from

individuals experiencing accelerated biological aging (shown in orange) and those

with a slower aging process (shown in blue) is expected to be perfect. On the other

hand, biological clocks (i.e. clocks trained using some measure of biological aging as

outcome) do identify individuals with accelerated biological aging, although at the

expense of their accuracy as chronological clocks. Finally, although hybrid clocks

do capture chronological age to a large extent, deviations from the expected DNA-

mAge estimates are thought to reflect biological age (Field et al., 2018).
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Figure 1.5: Chronological, biological and hybrid clocks, modified from (Field et al., 2018)

Two of the earliest measures of epigenetic age were proposed by Hannum (Han-

num et al., 2013) and Horvath (Horvath, 2013). The first was developed using

chronological age as outcome and was based solely on DNAm data from whole blood,

identifying 71 CpGs (Hannum et al., 2013). Hannum’s clock captures age-related

changes in blood cell composition (Marioni et al., 2015) and is a good mortality

predictor (Chen et al., 2016). Horvath’s epigenetic clock was also derived to pre-

dict chronological age and resulted in the selection of 353 CpGs. Nevertheless, this

clock extended its applicability to multiple tissues and the entire lifespan, as DNAm

data from 30+ different tissues donated by both adults and children was used in

its construction, and thus this estimator is sometimes referred to as a pan-tissue

epigenetic clock (Horvath, 2013). The estimated DNAm-based age measure, DNA-

mAge or epigenetic age, greatly correlates with chronological age across tissues and

samples (Horvath, 2013), although deviation from this is thought to reflect biolog-

ical age (Horvath & Raj, 2018). As noted by (Field et al., 2018), both Hannum’s

and Horvath’s clocks are likely “hybrid” clocks, that is, clocks calibrated against

biological age that cannot accurately reflect biological age by design (Figure 1.5),

11



1 Introduction

and thus show a poorer performance than other clocks in predicting disease and

response to the environment (Field et al., 2018; Quach et al., 2017).

These clocks, often referred to as the “first-generation” DNAm-based predictors,

have been refined and improved in order to come up with measures that are ei-

ther independent of blood cell composition and mirror cell-intrinsic ageing-related

changes (such as the intrinsinc epigenetic age acceleration, IEAA) or that

leverage age-related changes in blood cell composition, hence representing a measure

for immune aging (extrinsic age epigenetic age acceleration, EEAA) (Chen

et al., 2016; Quach et al., 2017). Such measures and others derived from similar

approaches have been used to analyze the relationship between epigenetic age and

ageing-related phenotypes and mortality, producing numerous findings (Dhingra

et al., 2018; Horvath & Raj, 2018).

A “second generation” of DNAm-based age predictors aimed at better capturing

changes in physiological regulation by incorporating composite surrogate markers

of biological age (e.g. clinical biomarkers and related traits) as outcome measures

(Horvath & Raj, 2018). PhenoAge was developed based on a measure of “phe-

notypic age” – that is, a variable built considering 10 biological parameters and

risk factors: chronological age, albumin, creatinine, glucose and C-reactive pro-

tein levels, lymphocyte percentage, mean cell volume, red blood cell distribution

width, alkaline phosphatase levels and white blood cell count (Levine et al., 2018).

This algorithm resulted in the selection of 513 CpGs, which when used to estimate

DNAmAge, outperform the “first generation” of clocks in relation to predicting

lifespan and cardiovascular disease (Levine et al., 2018). Moreover, this epigenetic

clock reflects DNAm changes related to tobacco exposure, a significant driver of

mortality-associated DNAm changes (Zhang et al., 2017), unlike those of Hannum

and Horvath. However, the use of this clock is limited to blood and adult-derived

samples (Horvath & Raj, 2018).

GrimAge, a mortality predictor based on plasma protein levels associated with

mortality outcomes, was also recently developed following a two-stage procedure

(Lu et al., 2019). First, DNAm-based surrogate biomarkers of smoking pack-

years and proteins associated with mortality or morbitidy (i.e. adrenomedullin,

12



1.2 -Omics

C-reactive protein, plasminogen activator inhibitor-1 [PAI-1]), growth differentia-

tion factor 15 [GDF15], b2-microglobulin, leptin, tissue inhibitor metalloproteinase

1 [TIMP-1]) were constructed. This was followed by the regression of time-to-

death due to all-cause mortality on these DNAm-based surrogate biomarkers. The

age-adjusted version of DNAm GrimAge, a measure equivalent to epigenetic age

acceleration, outperformed other clocks in relation to prediction of age-related dis-

ease, its association with poor levels of known clinical biomarkers and with adverse

findings from computed tomography data (Lu et al., 2019).

Another interesting DNAm-based lifespan marker, developed solely based on

mortality data, is the 10-CpG epigenetic mortality risk score (MRS) (Zhang

et al., 2017). Recently validated (X. Gao, Colicino, et al., 2019), this measure

can also be used to define risk levels based on the total number of “aberrantly”

methylated CpG sites identified; these are defined by the cut-offs derived from the

1st quartile from the nine CpGs negatively correlated with mortality and the 4th

quartile of single CpG positively correlated with mortality as defined in (Zhang

et al., 2017). Individuals are then assigned to one of three mortality risk levels

based on the total number of “aberrantly” methylated CpGs: low risk, MRS =

0–1; moderate risk, MRS = 2–5; and high risk, MRS >5. This measure allows for

the identification of individuals with higher risk of death due to cancer and cardio-

vascular disease (Zhang et al., 2017).

1.2.3 Proteomics

Proteomics, the discipline dedicated to identification, quantification and analysis

of proteins, has also benefited from recent technological developments that have

made it possible to simultaneously profile hundreds of proteins at the population

level. Proteins circulating in plasma, known as the plasma proteome, reflect the

systemic physiological status of an individual, as it is a product of various tissues

(Uhlén et al., 2019) and thus represents a very complex matrix of clinical interest

(Ping et al., 2005). Moreover, it is also informative of certain lifestyle exposures

(e.g. medication intake), as well as genetic predisposition to disease and early dis-

ease (Geyer et al., 2016). Additional to its diversity in relation to protein function,
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the plasma proteome is also characterized by a wide range of protein abundance,

where the reference range of known proteins covers >11 orders of magnitude (J. G.

Smith & Gerszten, 2017). Moreover, the most abundant proteins (e.g. albumin and

immunoglobulins) constitute up to 99% of the protein mass measured in blood, thus

posing a technical challenge for its profiling (Tirumalai et al., 2003). Proteins in

the lower abundance end of this spectrum may result from active secretion or tissue

leakage (either due to pathological mechanisms or regular cell turnover), and may

thus be of particular interest to clinical research (Uhlén et al., 2019). Given the

nature of the plasma proteome and the challenges its profiling presents, assessing

the proteome at a scale feasible in population-based studies has been possible only

in recent years (Hasin et al., 2017; Zanini et al., 2020).

Methods of proteomic profiling

Methods to profile proteomics can be classified as belonging tomass-spectrometry

(MS) or to affinity-based assays (Zanini et al., 2020). MS, either in its targeted or

untargeted design, allows for the identification of post-translational modifications,

but its implementation in large-scale studies is hindered by its labor-intensive na-

ture and its limited coverage of moderate-to-abundant proteins only (Zanini et al.,

2020). Affinity assays using antibodies to capture specific proteins and quantify

them based on signal intensity of reporter antibodies (e.g. enzymatic antibody-

labeled in the case of enzyme-linked immunosorbent assays, ELISAs) are the gold-

standard in current clinical practice (J. G. Smith & Gerszten, 2017). However,

these assays are limited in their detection range due to their poor sensitivity to

detect low-abundance proteins (Fulwyler & McHugh, 1990), in their multiplexing

because of issues with cross-reactivity between reagents (Ellington et al., 2010),

and in its flexibility due to the costs associated to development of new antibodies

(J. G. Smith & Gerszten, 2017).

The use of oligonucleotide-based aptamers, which are nucleotide sequences that

fold and interact with proteins with high-binding affinity (Gold et al., 2010), is one

of the most developed alternatives to affinity-based methods using antibodies. A

recent review on emerging technologies for large scale proteomic profiling highlights
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this method for its higher multiplexing possibilities and sample throughput, as well

as the ease of reagent development (J. G. Smith & Gerszten, 2017). Figure 1.6

shows the workflow from SOMAscan, a commercial platform using aptamers of 40

nucleotides to conduct relative quantification of protein levels in blood. In brief,

proteins interact with and are captured by the bead-fixed aptamers to be then

biotin labeled, followed by a step in which the aptamers themselves are released

from the beads. These protein-aptamer constructs are captured again on strepta-

vidin beads, after which the aptamers are eluted and can be then analyzed using

a microarray-based DNA quantification (J. G. Smith & Gerszten, 2017). Of note,

although high specificity and reproducibility has been reported for this platform,

unspecific binding has been observed in some cases and it is recommended that re-

sults are verified using other analytical methods. A more detailed description on the

technical details of this assay and its use in this work is offered in the first-author

publication (Mat́ıas-Garćıa et al., 2021b).

Figure 1.6: Workflow from aptamer-based proteomic platform, modified from
(J. G. Smith & Gerszten, 2017)
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1.3 Kidney function and disease

The kidneys are two fist-sized organs that, despite their relative small size, perform

excretory, endocrine and metabolic functions that are central to maintaining home-

ostasis (Levin et al., 2013). Kidney damage is a term that broadly describes the

identification of renal abnormalities that may happen before reduction in kidney

function, but may not be informative of the disease etiology (Levin et al., 2013).

1.3.1 Measures of kidney function and damage

Kidney function, specifically their ability to filter blood, is most often assessed in

clinical settings by estimating glomerular filtration rate (eGFR) based on blood

levels of serum creatinine, an endogenous filtration marker (Eckardt et al., 2013;

Levey et al., 2009). The estimation of GFR using alternative filtration markers, like

cystatin C, has been recommended in cases where GFR estimation has to be more

accurate. For example, this is recommended whenever GFR estimates will lead

clinical decisions, as in the case of patients with low serum creatinine-based eGFR

(45-59 ml/min/1.73 m2) but no additional markers of kidney damage who thus re-

quire further confirmation of kidney disease to have a referral to nephrological care

(Inker et al., 2014; Levin et al., 2013). Although GFR represents only one dimen-

sion of kidney function (namely, excretory function), it has been recognized as ”the

best overall measure of kidney function in health and disease” (“K/DOQI clinical

practice guidelines for chronic kidney disease: evaluation, classification, and strati-

fication”, 2002; Levin et al., 2013). Decreased GFR is defined as <60 ml/min/1.73

m2, a threshold indicating less than half of the average values observed in young

adults (125 ml/min/1.73 m2), and GFR <15 ml/min/1.73 m2 is considered as kid-

ney failure (Levin et al., 2013).

Beyond eGFR, markers of kidney damage include proteinuria due to increased

glomerular permeability (albuminuria), incomplete tubular reabsorption of proteins

(tubular proteinuria) or higher levels of small proteins circulating in plasma (Levin

et al., 2013). Although proteinuria is associated with progression to ESRD and

mortality independently from changes in eGFR (Astor et al., 2011; Matsushita et

al., 2010), both eGFR and albuminuria seem to be complementary markers (Inker et

al., 2014). The use of urinary albumin-to-creatinine ratio (uACR), a marker
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of kidney injury determined in spot urine samples, has been more emphatically

recommended: uACR has been observed to be a more specific and sensitive marker

of kidney damage than albuminuria (Inker et al., 2014), and thus may be useful in

identifying early kidney damage preceding eGFR decline (for example, in diabetic

nephropathy) (Matsushita et al., 2010). A third biomarker of low eGFR is serum

urate, a by-product of purine metabolism disposed of by the kidneys; higher levels

of this marker are associated with cardiovascular and kidney disease (Joosten et al.,

2020).

1.3.2 CKD: Staging and definition

Chronic kidney disease (CKD), defined by anomalies in kidney function or

structure lasting more than 3 months, is either characterized by reduced eGFR

(<60 ml/min/1.73 m2) or >1 markers of kidney damage (Inker et al., 2014). A

5-stage system based on GFR levels was initially proposed in 2002 (“K/DOQI

clinical practice guidelines for chronic kidney disease: evaluation, classification, and

stratification”, 2002), and it was later updated to better reflect disease prognosis

by incorporating three albuminuria categories and etiology of disease (hinted by

location of findings or presence of systemic disease) to these stages (Figure 1.7)

(Inker et al., 2014). Figure 1.7 shows low risk categories in green, where CKD is

not present in the absence of additional markers of kidney damage; categories with

moderately increased risk for disease progression are shown in yellow, followed by

categories in orange with high and very high risk in red (Inker et al., 2014).

1.3.3 Epidemiology of CKD

CKD has a global prevalence of 10-16% and is expected to be an increasingly

prevalent noncommunicable disease in aging populations (Eckardt et al., 2013; Hill

et al., 2016; Levey et al., 2007). Although decreased GFR correlates with the pro-

gressive reduction of other kidney functions in CKD (Levin et al., 2013), it follows

widespread structural damage – changes in serum creatinine are not evident until

50% of the renal filtration function is lost (Mischak et al., 2015). The existence of

a blind spot for early renal disease detection is thus obvious, making early CKD an

increasingly prevalent silent disease (Sanchez-Nino et al., 2017). Moreover, there is

a lack of therapeutic interventions for CKD. The only available treatment for kid-
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ney disease in its final stage, end-stage renal disease (ESRD), is renal replacement

therapy (RRT) either as renal transplantation or dialysis; while access to RRT is

already currently not available for all patients in need of it, the number of peo-

ple needing RRT will double by 2030 in comparison to the data reported in 2010

(Liyanage et al., 2015).

Figure 1.7: Prognosis of CKD by GFR and albuminuria categories, reproduced from
(Inker et al., 2014)

The increasing CKD prevalence, over and above the lack of therapeutic inter-

ventions and the limited access to end-stage therapy, present a significant global

burden on both individuals and governmental health budgets (Eckardt et al., 2013;

Levey et al., 2007; Sanchez-Nino et al., 2017). CKD is one of the leading causes of

mortality, especially in countries with limited access to treatment and highly preva-

lent risk factors (e.g. diabetes and hypertension), and a significant contributor to

morbidity worldwide (“Global, regional, and national age-sex specific all-cause and

cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis

for the Global Burden of Disease Study 2013”, 2015; Rhee & Kovesdy, 2015).
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1.3.4 Risk factors and outcomes

Several risk factors for kidney disease have been identified, including diabetes, hy-

pertension, the presence of autoimmune diseases, systemic and urinary infections, as

well as family history or exposure to certain environmental and/or pharmacological

agents (Inker et al., 2014). Kidney disease is a risk factor for a number of complica-

tions that may happen independently from disease stage; these complications can

be broadly classified into events derived from drug toxicity (e.g. faulty pharma-

cokinetics leading to drug toxicity and acute kidney injury [AKI]), metabolic and

endocrine dysfunction (e.g. anemia, malnutrition and bone disorders as a result

of reduced kidney function) and increased mortality risk due to cardiovascular

disease (CVD) (Levin et al., 2013). Decreased GFR is associated with an in-

creased prevalence of risk factors of CVD and the start of clinical abnormalities

attributable to kidney failure (Sarnak et al., 2003). The strong link between kid-

ney disease progression and incident CVD events is well-known (“K/DOQI clinical

practice guidelines for chronic kidney disease: evaluation, classification, and strat-

ification”, 2002), as individuals with CKD are more likely to die due to CVD than

reaching ESRD (Levey et al., 1998). Restless legs syndrome (RLS), a sleep-related

movement disorder, is also associated with kidney disease and represents an impor-

tant and frequent comorbidity in ESRD (Trenkwalder et al., 2016). Interestingly, a

genetic contribution from RLS to ESRD has been reported (Schormair et al., 2011).

1.3.5 Kidney omics: current perspectives

Kidney research has seen many advances in the last two decades with regard to

the profiling of -omic phenotypes at the population level, although a “systems epi-

demiology” approach to renal research questions is an idea initially proposed only

around ten years ago (Haring & Wallaschofski, 2012). Although a review of the lit-

erature on -omic studies in kidney research is beyond the scope of this dissertation,

the next paragraphs will introduce the reader to a few examples of relevant studies

in the areas of genomics, epigenomics and proteomics of kidney function.

Genome-wide association studies (GWAS) in the field of renal research

have identified genetic variants associated with numerous kidney traits, such as

eGFR (Wuttke & Köttgen, 2016; Wuttke et al., 2019), eGFR decline (Gorski et al.,

19



1 Introduction

2021), albuminuria (Teumer et al., 2019) and serum urate (Tin et al., 2019). In

order to better understand the functional role of these genetic variants in kidney

disease, studies thereafter have also focused on identifying genomic loci associated

with gene expression and/or protein levels – such loci are called eQTL (expression

quantitative trait loci) and pQTL (protein quantitative trait loci), respectively.

For example, Martini and colleagues used transcriptomic and data from single nu-

cleotide polymorphisms (SNPs) previously identified in an eGFR GWAS in kidney

tissue from patients with CKD to identify eQTLs, offering insights on the opposite

roles of inflammatory and metabolic processes in CKD (Martini et al., 2014).

Epigenome-wide association studies (EWAS), conducted in a similar man-

ner to GWAS but with a focus on the association between methylation levels at

CpG sites (or differentially methylated positions) rather than allele frequencies,

have also been conducted to identify epigenetic signatures of eGFR (Breeze et al.,

2021; Chu et al., 2017). Although a few studies have reported associations (or lack

thereof) between a few kidney traits and some measures of epigenetic aging (Lu

et al., 2019; Roshandel et al., 2020; J. A. Smith et al., 2019), these studies have

been limited by the relatively small sample sizes and lack of replication samples.

In relation to proteomic studies of kidney function, earlier studies were focused

on urinary proteins, which when combined proved to be a successful biomarker of

disease progression (e.g. CKD273 classifier) (Good et al., 2010; Mischak et al.,

2015). The blood proteome has been explored in more recent studies, mostly due

to the existence of new technologies allowing for the profiling of complex biolog-

ical samples – an example being SOMAscan, a platform using DNA aptamers to

measure hundreds of plasma proteomic biomarkers (Gold et al., 2010). The reader

may wish to refer to (Mischak et al., 2015) and (Sanchez-Nino et al., 2017) for

comprehensive reviews on proteomics of kidney function. In brief, although this

platform has been used in epidemiological studies of other health outcomes, prior

assessments of the plasma proteome in relation to kidney function using aptamer-

based technologies (or a similar approach) have been limited by the comparatively

low number of proteins assessed (Carlsson et al., 2017) or by small sample sizes

without replication (Christensson et al., 2017; Gold et al., 2010).
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During peer-review of our manuscript, a similar study to ours was published

(Ngo et al., 2020) – however, causality in the identified protein-eGFR associations

was not addressed. Mendelian randomization (MR), an increasingly popular

method in molecular epidemiology to infer causal effects between two traits, can be

used to this end (Pierce & Burgess, 2013; Sekula et al., 2016).

1.4 Aims

The aim of this dissertation is to contribute to the understanding of the molecular

basis of kidney function and disease by investigating the association between kidney

traits and -omic biomarkers, more precisely with plasma proteins and DNA methy-

lation (DNAm)-based predictors of aging and/or mortality. In collaboration with

international research partners, two large-scale epidemiological research projects

using data from multi-ethnic population-based studies were conducted with the ob-

jective of addressing two research questions:

1. Are plasma proteins associated with eGFR and CKD, and if so, is the rela-

tionship protein-eGFR causal?

In order to identify proteins associated with eGFR and CKD, regression

analyses adjusting for potential confounders were conducted in a German

population-based cohort with 965 individuals in the discovery stage. In the

replication stage, associations identified in the discovery stage were further

tested in independent population-based studies of European and admixed an-

cestry with up to 1,887 individuals. Replicated eGFR-protein associations

were further investigated using publicly available gene and protein expres-

sion datasets, pathway analyses and protein-protein interaction networks.

Finally, replicated eGFR-protein associations were evaluated by conducting

Mendelian randomization analyses, using genetic variants as instruments to

infer causal effects of kidney function on plasma proteins and vice versa.

2. Are any measures of DNAm-based aging and mortality associated with the

aforementioned and additional kidney traits?

The association between DNAm-based measures of aging and mortality (or
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epigenetic clocks) and multiple kidney traits was examined in up to 9,688

samples from five independent population-based cohorts with participants of

European ancestry, as well as African American and Latino/Hispanic par-

ticipants. Regression analyses adjusting for potential confounders were con-

ducted in all studies, followed by transethnic and ethnic-specific meta-analyses

in order to obtain combined and ethnic-specific estimates of the associations

between DNAmAge acceleration and multiple kidney traits.

22



2 Methods

This chapter will address the study design, variable definitions and statistical ap-

proaches adopted in the two large-scale epidemiological research projects to address

the aforementioned research questions, as outlined in (Lisa, 2014).

2.1 Plasma proteomics and kidney function

2.1.1 Study design

To investigate the association of plasma proteins and kidney function, a cross-

sectional study was conducted. Data on the plasma levels of 993 proteins measured

using an aptamer-based platform and kidney traits (i.e. eGFR and CKD) were

available in up to 2,882 individuals (N = 2,548 with European ancestry, N = 334 ad-

mixed ancestry) from three population-based and one case-control studies; data was

analyzed following a discovery-replication approach (Figure 2.1). Information on

kidney traits (eGFR, CKD, uACR, albuminuria and serum urate) and established

risk factors (i.e. age, sex, BMI, smoking, diabetes, hypertension, triglycerides, HDL

and blood lipid lowering drugs) as well as blood samples, were collected at the time

of interview by trained personnel following the standard operating procedures es-

tablished by each cohort (Table 2.1). In brief, eGFR was estimated based on serum

creatinine as per the CKD-EPI equation (Levey et al., 2009); chronic kidney disease

(CKD) was defined as <60 ml/min/1.73 m2 (Jha et al., 2013) and albuminuria was

defined as >29 mg/g of creatinine (Toto, 2004).

2.1.2 Participating cohort studies

KORA (Cooperative health research in the Region of Augsburg) is a population-

based cohort from Augsburg, southern Germany and two surrounding counties.

The KORA F4 (2006-2008) study is a follow-up survey collecting detailed clinical
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Table 2.1: Data availability across cohorts in proteomics study

Studies included
Available variables

KORA F4 QMDiab INTERVAL HUNT3

Aim #1: Association with plasma proteins Discovery Replication

Aptamer-based protein levels ! ! — —
Aim #2: Association with DNAmAge acceleration — — — —

DNAm ! — — —
Kidney traits

eGFR ! ! ! !

CKD ! ! ! !

uACR ! — — —

Microalbuminuria ! — — —

Serum urate ! — — —
Covariates

Age ! ! ! !

Sex ! ! ! !

BMI ! ! ! !

Smoking ! ! ! !

Diabetes ! ! ! !

Hypertension ! ! ! !

Triglycerides ! ! ! !

HDL ! ! ! !

Lipid-lowering drugs ! — ! —

Available variables at assessment time-points in each study are marked with a !, “—“ denotes
not available.
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and demographic information as well as peripheral blood for -omics analyses from

participants of the KORA S4 survey (1999–2001) (Holle et al., 2005; Rathmann

et al., 2009). The KORA F4 served as a discovery cohort, and three additional

studies were included to test for replication of our findings: Nord-Trøndelag Health

Study (HUNT), more precisely the third survey (HUNT3) from this population-

based study from Norway with data on participants of European descent (Krokstad

et al., 2012); the INTERVAL Study (INTERVAL), a randomized trial on blood

donation intervals with participants of European descent from the UK (Moore et

al., 2016); and the Qatar Metabolomics Study on Diabetes (QMDIAB), a cross-

sectional case-control study on type 2 diabetes from participants of Arab, South

Asian and Filipino descent in Qatar (Mook-Kanamori et al., 2014).

Figure 2.1: Study design of project on plasma proteomics and kidney function, based on
(Mat́ıas-Garćıa et al., 2021b)
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2.1.3 Assessment of proteomics

Plasma proteins were measured using SOMAScan, a multiplex aptamer-based plat-

form allowing for high-throughput measurement with high sensitivity and specificity

of secreted, extracellular and intracellular proteins in blood plasma (Rohloff et al.,

2014). Additional details on the technical details of these measurements are of-

fered in (Nayor et al., 2020; Suhre & Arnold, 2017; Sun et al., 2018) and in the

first-author publication (Mat́ıas-Garćıa et al., 2021b).

2.1.4 Variable definitions

Table 2.2 displays how variables were used in the proteomics and kidney function

analyses. Column 1 displays the name, column 2 provides a definition of the vari-

able, whereas column 3 shows how each variable was coded in the analyses.

Table 2.2: Variable categorization for aim #1

Name Description and units Type

Outcome variables

eGFR Estimated glomerular filtration rate as

calculated by the serum creatinine-based

CKD-EPI equation, log-transformed

(ml/min/1.73 m2)

continuous

CKD Chronic kidney disease,

defined as <60 ml/min/1.73 m2 (yes, no)

dichotomous

Exposure variables

Protein Protein plasma levels obtained using

an aptamer-based platform, measured in

relative fluorescence units (RFU)

continuous

Covariates

Age Age at time of examination (years) continuous

Sex Self-reported biological sex (male, female) dichotomous

BMI Body mass index (kg/m2) continuous

Smoking status Self-reported smoking (current, former or never-

smoker)

dichotomous

Diabetes Fasting plasma glucose ≥ 126 mg/dl or

treatment for diabetes (yes, no)

dichotomous
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Hypertension Systolic blood pressure ≥ 140 mm Hg or

diastolic blood pressure ≥ 90 mm Hg or

treatment for hypertension (yes, no)

dichotomous

Triglycerides Log-transformed (mg/dL) continuous

HDL High density lipoprotein (mg/dL) continuous

Intake of lipid lowering

drugs

Self-reported intake of drugs

with ATC code C10 (yes, no)

dichotomous

2.1.5 Statistical analysis

Logistic and linear multiple regression models were used to assess the relationship

between kidney traits as outcomes and protein levels as predictors. This was first

conducted in the discovery study, KORA F4, adjusting for the covariates listed in

Subsection 2.1.4:

kidney trait ∼ protein level + covariates

Replication using the same statistical models was conducted in three independent

studies, though only associations with eGFR and CKD could be explored as the

other traits were not available in these cohorts (Table 2.1). Pathway analyses,

protein-protein interaction networks and causal inference were conducted based on

the set of replicated eGFR-protein associations. All statistical and bioinformatics

analyses were done with R v.3.6.0 (R Core Team, 2019). Details on the statistical

principles from the conducted analyses are provided in Section 2.3 of this Chapter.

2.2 DNAmAge acceleration and kidney traits

2.2.1 Study design

To determine whether DNAmAge acceleration (DNAmAA) is associated with pa-

rameters of low renal function, a cross-sectional study was conducted. The associ-

ation between DNAm-based aging and mortality predictors and kidney traits was

examined in up to 9,688 individuals (N = 6,363 with European ancestry, N = 2,718

African American and N = 607 Hispanic/Latino individuals) from five population-

based studies, and the estimates from each study pooled in a large meta-analysis
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(Figure 2.2). Information on kidney traits (eGFR, CKD, uACR, albuminuria and

serum urate) and established risk factors (i.e. age, sex, BMI, smoking, diabetes,

hypertension, triglycerides and HDL) as well as blood samples, were collected at

the time of interview by trained personnel following the standard operating proce-

dures established by each cohort (Table 2.3). In brief, eGFR was estimated based

on serum creatinine as per the CKD-EPI equation (Levey et al., 2009); chronic

kidney disease (CKD) was defined as <60 ml/min/1.73 m2 (Jha et al., 2013) and

albuminuria was defined as >29 mg/g of creatinine (Toto, 2004).

Figure 2.2: Study design of project on DNAmAge acceleration and kidney traits, based
on (Mat́ıas-Garćıa et al., 2021a)
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Table 2.3: Data availability across cohorts in DNAmAge study

Studies included
Available variables

KORA F4 ESTHER NAS WHI JHS

Aim #1: Association with plasma proteins — — — — —

Aptamer-based protein levels ! — — — —
Aim #2: Association with DNAmAge acceleration Meta-analysis

DNAm ! ! ! ! !
Kidney traits

eGFR ! ! ! ! !

CKD ! ! ! ! !

uACR ! ! — — !

Microalbuminuria ! ! — — !

Serum urate ! ! ! — !
Covariates

Age ! ! ! ! !

Sex ! ! ! ! !

BMI ! ! ! ! !

Smoking ! ! ! ! !

Diabetes ! ! ! ! !

Hypertension ! ! ! ! !

Triglycerides ! ! ! ! !

HDL ! ! ! ! !

Lipid-lowering drugs ! — — — —

Available variables at assessment time-points in each study are marked with a !, “—“ denotes
not available.
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2.2.2 Participating cohort studies

The KORA F4 (2006-2008) study is a follow-up survey collecting detailed clinical

and demographic information as well as peripheral blood for -omics analyses from

participants of the KORA S4 survey (1999–2001) (Holle et al., 2005; Rathmann

et al., 2009).

The ESTHER study (Epidemiologische Studie zu Chancen der Verhütung,

Früherkennung und optimierten THerapie chronischer ERkrankungen in der älteren

Bevölkerung) is a population-based cohort study conducted in the federal state of

Saarland, Germany (Raum et al., 2007); individuals’ information on sociodemo-

graphic characteristics, lifestyle factors, and history of major diseases, as well as

blood samples for -omics profiling, were obtained at the baseline interview (2000-

2002) (Zhang et al., 2017).

The NAS (Normative Aging Study) is a longitudinal study established by the

U.S. Department of Veterans Affairs in 1963 based in the Greater Boston area

(Mehta et al., 2016); information on lifestyles, dietary habits, activity levels, and

demographic factors, as well as blood samples, are collected at each visit (up to

four visits between 1999 and 2013) (X. Gao, Colicino, et al., 2019; Mehta et al.,

2016).

The WHI (Women’s Health Initiative) is a study of postmenopausal women re-

cruited from 40 U.S. clinical centers who participated in an observational study

or in clinical trials during 1993-1998 (Anderson et al., 2003; Howard et al., 2006;

Jackson et al., 2006; The Women’s Health Initiative Study Group, 1998).

The JHS (Jackson Heart Study) is a prospective, community-based cohort de-

signed to investigate risk factors for cardiovascular disease among African Amer-

icans in the Jackson, Mississippi, metropolitan tri-county area (Hinds, Madison,

and Rankin); information on clinical variables, lifestyle and sociocultural factors

were obtained at the baseline JHS examination (2000-2004) and in two subsequent

clinic visits (2005-2008 and 2009-2013) (Carpenter et al., 2004; Taylor et al., 2005;

Wilson et al., 2005).
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2.2.3 Assessment of DNAm and epigenetic age

Methylation levels of approximately 480,000 or 850,000 CpG sites were measured

using the 450k or EPIC methylation arrays, respectively (Bibikova et al., 2011).

Methylation data was normalized and processed by an analyst in each cohort ap-

plying the pre-processing pipeline of their preference and following a standardized

workflow. DNAm data was used to estimate DNAm-based predictors of aging and

mortality, and whenever appropriate DNAmAA was calculated as the difference

between an individual’s DNAmAge and chronological age (Fransquet et al., 2019).

Additional technical details of these measurements are offered in (X. Gao, Colicino,

et al., 2019; Zeilinger et al., 2013) and in the first-author publication (Mat́ıas-Garćıa

et al., 2021a).

2.2.4 Variable definitions

Table 2.4 displays how variables were used in the DNAmAge and kidney func-

tion analyses. Column 1 displays the name, column 2 provides a definition of the

variable, whereas column 3 shows how each variable was coded in the analyses.

Table 2.4: Variable categorization for aim #2

Name Description and units Type

Outcome variables

eGFR Estimated glomerular filtration rate

as calculated by the serum

creatinine-based CKD-EPI

equation, log-transformed

(ml/min/1.73 m2)

continuous

CKD Chronic kidney disease,

defined as <60 ml/min/1.73 m2

(yes/no)

dichotomous

uACR Urinary albumin-to-creatinine ratio

(mg/g)

continuous

Microalbuminuria uACR ≥ 30 mg/g (yes/no) dichotomous
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Serum urate Also known as uric acid (mg/dl) continuous

Exposure variables

Hannum DNAmAA DNAmAge Acceleration measured by

the Hannum clock, defined as the

difference between Hannum’s DNAmAge and

chronological age

continuous

Horvath DNAmAA DNAmAge Acceleration measured by

the Horvath clock

continuous

EEAA Extrinsic Epigenetic Age Acceleration continuous

IEAA Intrinsic Epigenetic Age Acceleration continuous

PhenoAA PhenoAge acceleration continuous

GrimAA GrimAge acceleration continuous

MRS Mortality risk score, calculated as the

linear combination of 10 CpGs

continuous

MRS, categorical Three risk levels based on the total

number of “aberrantly”

methylated CpGs:

low risk if 0–1 CpGs;

moderate risk if 2–5 CpGs;

high risk if >5 CpGs

categorical

Covariates

Age Age at time of examination (years) continuous

Sex Self-reported biological sex

(male, female)

dichotomous

BMI Body mass index (kg/m2) continuous

Smoking status Self-reported smoking (current,

former or never-smoker)

dichotomous

Diabetes Fasting plasma glucose ≥ 126 mg/dl

or treatment for diabetes

(yes, no)

dichotomous

Hypertension Systolic blood pressure ≥ 140 mm Hg

or diastolic blood pressure ≥ 90 mm Hg

or treatment for hypertension (yes/no)

dichotomous

Triglycerides Log-transformed levels (mg/dL) continuous

HDL High density lipoprotein (mg/dL) continuous
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Houseman variables Blood cell proportions estimated

using DNAm, as described in

(Houseman et al., 2012)

continuous

2.2.5 Statistical analysis

Logistic and linear regression models were used to assess the relationship between

five kidney traits (eGFR, CKD, UACR, microalbuminuria and serum urate) as

outcomes and seven DNAm-based measures of aging and/or lifespan as predictors,

adjusting for the covariates defined in Subsection 2.2.4:

kidney trait ∼ DNAm-based aging/lifespan measure + covariates

These analyses were conducted in all participating studies by a designated ana-

lyst. Study-levels results were meta-analysed using fixed- and random-effects mod-

els using the metafor package v2.0 (Viechtbauer, 2010) in R version 3.5.3 (R Core

Team, 2019). Additional details on the statistical principles are provided in the

next section of this Chapter.

2.3 Statistical approaches

In order to evaluate the association between eGFR and/or other kidney traits (as

outcomes) and plasma protein levels (exposure in aim #1) or DNAm-based mea-

sures of aging (exposure in aim #2), several statistical analyses were conducted

(Table 2.5).

The following sections will provide an overview of the statistical approaches used

in this dissertation.
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Table 2.5: Data analysis strategies

Data analysis plan

Aim #1: Association with proteomics

Univariate analysis Mean and SD of continuous variables,

number and percent of categorical variables

Bivariate analysis Assessment of unadjusted relationship between plasma

proteins and eGFR using correlation in discovery cohort

Multivariate analysis Linear and logistic regression models to model the

association between plasma proteins and eGFR, adjusting

for known confounders, calculating odds ratios and/or beta

coefficients, as well as their corresponding standard errors

Causal inference Two-sample Mendelian randomization using

inverse-variance weighted (IVW) MR, MR-Egger,

weighted median MR, mode-based MR, and Wald’s ratio

Aim #2: Association with DNAmAge acceleration

Univariate analysis Mean and SD of continuous variables, number and

percent of categorical variables

Multivariate analysis Linear and logistic regression models to model the

association between DNAmAA and kidney traits,

adjusting for known confounders, calculating odds ratios

and/or beta coefficients, as well as their corresponding

standard errors

Meta-analysis Trans-ethnic and ethnic-specific meta-analyses of

study-level results using fixed-effect and

random-effects models

2.3.1 Association analyses

Foulkes divides the data produced from population-based genetic association stud-

ies into three components (Foulkes, 2009), although this conceptualization can be

extended to most -omic analyses. The first component is the genotype of the indi-

vidual, which when may be exchanged with the term molecular phenotype when ex-

tending this terminology to other types of -omics; the second component is the phe-

notype, or trait(s) of interest known to be correlated with the health outcome under

scrutiny; and the third component, covariates, are additional variables capturing

biological, environmental and socioeconomic information relevant to the analyses

at hand (Foulkes, 2009). In this sense, the goal of association studies in molecu-
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lar epidemiology is first to determine whether a relationship between a molecular

phenotype and a trait exists, and second, to describe this relationship. The next

subsections will describe the statistical tests applied to explore such associations,

strategies used to take into account the issues derived from multiple testing, and

introduce the reader to a causal inference method using genetic variation to assess

causality in trait-trait associations.

Regression modeling

The linear relationship between two variables x and y can be modeled as a straight

line, under the assumption that the outcome variable yi is linearly related to the

predictor variables xi with a normally distributed random component. This is

modeled in the following equation:

yi = β0 + β1xi + ϵi for i = 1, . . . , n (2.1)

with

ϵi ∼ N(0, σ2) (2.2)

Here, ϵi is a term representing the residual error, which follows the normal dis-

tribution with a constant mean of 0 and variance σ2. The unknown regression

coefficients (β0 and β1) and the population variance σ2 are to be estimated from

the data at hand. One of the most common methods to estimate the regression

coefficients is the method of least squares, which produces a fitted line that satisfies

the condition that the sum of the square of the differences from the fitted line to

the observed points should be minimized. Under the normality assumption of the

residuals (Equation 2.2), the estimates produced by least squares are equal to the

estimates produced by maximum likelihood methods (Heiberger & Holland, 2015).

Multiple linear regression extends these principles to cases in which two or more

predictors are included (Heiberger & Holland, 2015). The calculated β coefficients

can be interpreted as the estimated mean difference in the outcome per unit change

in the exposure given all other variables included remain constant – for example,

the mean difference in eGFR per increase in protein levels after adjusting for po-

tential confounders.
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Of note, as in E(Y | X = x), Y is the “regressand” (also known as dependent

variable or outcome variable), and X the “regressor” (also termed independent

variable, predictor or covariate). Despite the confusion that the traditional “in/de-

pendent variable” terminology may cause, the regression of Y on X, E(Y | X = x),

or X on Y , E(X | Y = y), can be considered for any pair of variables and does

not necessarily imply a causal direction of effect or any temporal relation between

variables defined as regressor and regressand (Greenland, 2005).

Logistic regression is useful to assess data where a dependent variable is coded as

a dichotomous variable (i.e. it can only adopt two possible values, like sick/healthy

and treatment/control) or it represents a sample proportion. Logistic regression is

in principle applied following the same principles from linear regression, although

it introduces the use of a link function to allow for the analysis of a dichotomous

dependent variable. The logarithm of the odds, also known as the logit transfor-

mation, allows for this transformation from having a closed interval [0,1] to the set

of all real numbers:

y = logit(p) = ln(
p

1− p
) (2.3)

So that the model for logistic regression with one predictor is expressed as:

logit(p) = β0 + β1x+ ϵ (2.4)

where p is the outcome variable, either coded as a binary variable or a proportion,

x is the predictor variable, and ϵ is the residual that is assumed to follow a binomial

distribution. Additional details on the estimation of the coefficients by maximum

likelihood methods can be found in (Heiberger & Holland, 2015).

Meta-analysis

The following section is based on the guide by (Harrer et al., 2021). Meta-analysis

involves analyzing multiple studies and applying statistical methods to pool and

explore heterogeneity in results from the different studies. There are two main

meta-analysis models, namely fixed-effect and random-effects models.
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The fixed-effect model works under the assumption that all obtained estimates

are derived from one homogeneous population, and therefore builds on the existence

of one true estimate shared by all studies (θ):

θ̂k = θ + ϵk (2.5)

where θ̂k is the observed estimate from the study k, obtained as the true effect

of the population θ modified by the sampling error in the study ϵk. The sampling

error is also represented by the standard error of the estimate. Under this model,

studies with smaller standard errors (therefore offering more precise estimates) are

assigned a greater weight prior to pooling the estimates. In the inverse-variance

meta-analysis, the weight of each study (ωk) is then given by the inverse of the

variance of each estimate ( 1
s2k
).

Irrespective of the choice of weight for the studies, the combined estimate is then

given by the weighted average of the estimates across a set of k studies:

θ̂ =

∑K
k=1 ωkθ̂k∑K
k=1 ωk

(2.6)

However, in a perhaps more realistic scenario, between-study heterogeneity may

affect the obtained effects and should be taken into account in the meta-analysis

models. The random-effects model assumes that the estimated effect (θ̂k) results

from a study-specific true effect size (θk) considering the sampling error (ϵk), as

follows:

θ̂k = θk + ϵk (2.7)

The inclusion of the term from the study’s true effect size (θk) shows that there

is no assumption of a true universal effect, but a study-specific effect θk derived

from the mean of a distribution of true effect sizes (µ) and its own error estimation

(ζk):

θk = µ+ ζk (2.8)

37



2 Methods

The observed effect is then obtained under the random-effects model as follows:

θ̂k = µ+ ζk + ϵk (2.9)

To take the error (ζk) (and thus between-study heterogeneity) into account, the

variance of the distribution of the true effect sizes (τ2) is calculated and included

in the given random-effects weights to each effect (ω∗
k):

ω∗
k =

1

s2k + τ2
(2.10)

Of note, there are many different methods to estimate τ2, of which the most

often applied is that of DerSimonian and Laird; another option is its estimation by

Restricted Maximum Likelihood (REML).

The random-effects pooled size is calculated using the random-effects weights ω∗
k

instead of ωk in Equation 2.6, as shown next:

θ̂ =

∑K
k=1 ω

∗
kθ̂k∑K

k=1 ω
∗
k

(2.11)

An alternative meta-analysis model that can be used to pool p-values in circum-

stances where raw data and the effect estimates derived thereof (e.g. regression co-

efficient) cannot be combined is the “inverse normal” orweighted Z-test method.

This test, a version of Stouffler’s inverse normal method, transforms and combine

the p-values from the k study (pk) by using the inverse normal transformation and

then weights using the square root of the sample size as a study-specific weights

(ωk). The combined p-value is obtained based on the distribution of the statistic

from sum of the weighted p-values across studies (Zaykin, 2011).

Multiple testing correction

In regression analyses, hypothesis testing can be done on single regression coef-

ficients, where the null hypothesis of no effect of the predictor on the outcome

(H0: βi = 0) is tested against the alternative hypothesis of H1: βi ̸= 0. A test
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statistic is calculated and its p-value, or the probability of observing an estimate

under the assumption of H0 being true that is at least as extreme as the estimated

from the sample, is used to either reject H0 (if α > p value) or retain H0 (if other-

wise) (Heiberger & Holland, 2015).

Type I errors are produced when the null hypothesis H0 of is rejected when H0

is true. Type II errors are when H0 is not rejected when the alternative hypothesis

H1 is true (Table 2.6). The probability of making a type I error, denoted as α, is

pre-specified to a certain accepted level (most commonly 0.05). β, on the other side,

is the probability of making a Type II error; the probability of correctly rejecting a

false H0, or the power of a test, is therefore given by 1− β (Heiberger & Holland,

2015).

Table 2.6: Hypothesis testing

Decision based on test

Retain H0 Reject H0

Reality
H0 is true True negative Type I error

H1 is true Type II error True positive

Based on (Heiberger & Holland, 2015) and (Foulkes, 2009)

Molecular epidemiology studies also have the particular feature of including hun-

dreds or thousands of molecular phenotypes for their analysis (e.g. genes, proteins,

CpG sites or gene transcripts). If multiple testing in the statistical analyses is not

accounted for, spurious positive associations arising from Type I and Type II er-

rors may be reported (Khoury et al., 2008). Testing multiple hypotheses results in

the inflation of the error rate, which can be controlled through the adjustment for

multiple comparisons in two ways: controlling the family-wise error rate (FWER:

probability of making at least one type-I error) and the false discovery rate (FDR:

proportion of true H0 from those declared significant). A straightforward (but

conservative) approach to control the FWER for multiple testing is apply the Bon-

ferroni adjustment, a single step adjustment method done by dividing the overall

level α = 0.05 by the number of independent tests conducted, and setting this as
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the level α′ for each test (Foulkes, 2009).

2.3.2 Mendelian Randomization

Mendelian Randomization (MR) is a causal inference method based on instru-

mental variable analyses. Since gene variants (more specifically polymorphisms at

the single nucleotide level, SNPs) are naturally randomly assorted during gamete

formation (and this prior to any exposures/outcomes) and do not change with time,

they can be used as “fixed” variables to assess exposures to lifelong traits on health

outcomes (Davey Smith & Hemani, 2014). The nature of these variables, also called

instruments, minimizes the risk of reverse causation and confounding common to

effect estimates from observational epidemiology (Davey Smith & Hemani, 2014).

In a nutshell, if genetic variation has an impact on health outcomes similar to that

of environmental exposures, it can be said that genetic variation itself is related to

disease risk by modifying the exposure (Davey Smith & Hemani, 2014; G. D. Smith

& Ebrahim, 2003). For MR to produce robust causal estimates of “genetically” de-

termined exposures, SNPs used must meet its three underlying assumptions (Figure

2.3, panel A): genetic variants (ZA) must be strongly associated with the exposure

(marked as (1)), and not associated with the outcome but through the exposure

(2) or with potential confounders (3) (Davey Smith & Hemani, 2014; Lawlor et al.,

2008).

Two-sample Mendelian randomization (2SMR) can be used to explore causal-

ity when summary statistics from gene-exposure and gene-outcome associations

are estimated in different population samples (ZA and ZB in Figure 2.3, panel A)

(Davey Smith & Hemani, 2014; Haycock et al., 2016; Pierce & Burgess, 2013).

This presents an ideal tool in an era when GWAS on multiple different traits, like

protein levels (Emilsson et al., 2018; Sun et al., 2018) and kidney traits (Wuttke

et al., 2019), have been made publicly available. These datasets can be used by

researchers to explore the causal nature of observational associations in the field

of kidney research (Sekula et al., 2016). MR can also be conducted in a bidirec-

tional manner, meaning causality in both directions (i.e. from exposure to outcome

and vice versa) is explored (panel B in Figure 2.3). Comprehensive details on the
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different methods, sensitivity analyses and interpretation of MR results has been

provided in the main text and supplemental notes from the first-author publication

(Mat́ıas-Garćıa et al., 2021b).

Figure 2.3: Representation of causality inference and assumptions in Mendelian
Randomization, reproduced from (Davey Smith & Hemani, 2014)
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3.1 Plasma proteomics and kidney function

3.1.1 Publication

The original research paper was published in the Journal of the American Society

of Nephrology (Mat́ıas-Garćıa et al., 2021b), and is included in this dissertation in

Appendix A.

3.1.2 Aim of this study

A cross-sectional study using data from population-based and one case-control stud-

ies was conducted to identify potential novel plasma proteomic biomarkers of kidney

function, specifically of estimated glomerular filtration rate (eGFR) and chronic

kidney disease (CKD, defined as reduced eGFR < 60 ml/min/1.73 m2).

3.1.3 Summary of results

In this epidemiological study of aptamer-based plasma proteins and kidney dis-

ease, we were able to identify 80 plasma proteins associated with eGFR (of which

34 were also associated with CKD) after adjusting for potential confounders in the

discovery study. Collaboration with other population samples having available data

on aptamer-based proteomics allowed us to replicate the identified associations by

running the same regression models in independent studies, thus serving as an ex-

ternal validation step. Replication was conducted in three stages: protein-eGFR

and -CKD associations were replicated first in European ancestry studies, then in

an admixed-ancestry study, and the set of overlapping associations between both

aforementioned replication sets was considered the final set of replicated trans-

ethnic associations: 57 proteins were consistently associated with eGFR, of which

23 were additionally correlated with CKD. Cystatin C, b2-microglobulin, IGBFP6
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and testican-2 were among the top proteins identified. Many of the proteins iden-

tified in this association study have been reported in earlier studies using the same

aptamer-based proteomics platform, thus our study provided confirmatory evidence

of their association. Moreover, one novel protein, contactin-4, was identified in our

study. Additionally, sensitivity analyses using eGFR calculated based on cystatin-

C in the discovery sample showed consistent results for all 57 replicated proteins.

The set of 57 replicated proteins associated with eGFR were further investigated

in enrichment analyses. Gene/protein expression across all tissues was also investi-

gated in publicly available data sources (GTEx and ProteomeDB). No enrichment

of pathways, biological processes or molecular functions were identified, likely due

to the targeted nature of the aptamer-based platform. Moreover, the expression

of most of the studied proteins were detected across many tissues. Protein-protein

interaction network analysis (PPI) showed that the set of 57 proteins shared more

interactions within the network built than expected, suggesting potential shared

functions and pathways.

Causal effects using publicly available GWAS data on gene-eGFR and gene-

protein associations were estimated by two-sample bidirectional Mendelian random-

ization. Robust evidence of a positive causal effect across multiple MR methods

was observed for the effect of kidney function (with eGFR as a proxy thereof) on

testican-2. This suggests interventions (either pharmacological or lifestyle) designed

to improve eGFR are genetically predicted to also have an increasing effect in the

plasma levels of testican-2. Evidence of causal effects of three proteins (melanoma

inhibitory activity [MIA], carbonic anhydrase III and cystatin M) on eGFR was

also observed, although these estimates were based on fewer SNPs and could not

be thus tested in sensitivity analyses.

Gene expression analyses in kidney tissue conducted with publicly available

datasets from Nephroseq showed a positive bivariate correlation between eGFR and

the expression of the protein-coding gene for testican-2, SPOCK2. Multivariable

analyses conducted with RNA-sequencing transcriptome data from human kidney

showed no significant association with eGFR, but a negative association with tubu-

lar atrophy and interstitial fibrosis.
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Our study provides insights into novel potential proteomic biomarkers of eGFR

and CKD using a novel multiplex technology in at the population sample level.

We were able to identify and replicate a number of plasma proteins associated

with kidney function as measured by clinically relevant parameters, where these

associations seem to extend across the ethnicities included in our study. Results

from the association study, causal inference analyses and gene expression in kidney

tissue further suggest testican-2 and its protein-coding gene SPOCK2 may have

an important role in kidney function. Low plasma levels of testican-2 may be

indicative of poor renal function, suggesting this protein may be a physiological

marker of kidney disease progression with potential clinical relevance.

3.1.4 Contributions

I contributed to this project and its resulting publication by planning the study

design, creating an analysis plan and establishing a multidisciplinary collaboration

with researchers from independent studies. I was also responsible for conducting

the association and sensitivity analyses in the discovery population-based study, as

well as the causal inference analyses with GWAS data. All the main figures, tables

and references were created and/or curated by me. Regarding the paper writing, I

wrote the first full draft of the manuscript and integrated feedback from co-authors.

I also was the main responsible for addressing the referees’ comments during the

two rounds of peer-review and for the communication with the editor.

3.2 DNAmAge acceleration and kidney traits

3.2.1 Publication

The original research paper was published in the Journal of Clinical Epigenetics

(Mat́ıas-Garćıa et al., 2021a), and is included in this dissertation in Appendix B.

3.2.2 Aim of this study

A cross-sectional study with five multi-ethnic, population-based studies was con-

ducted to investigate whether established epigenetic age acceleration, as measured
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by multiple DNAm-based predictors of aging and mortality, is associated with kid-

ney function and related traits (i.e. eGFR, CKD, uACR, albuminuria, and serum

urate).

3.2.3 Summary of results

In this epidemiological study of DNAm-based predictors of aging and mortality and

kidney disease, we were able to identify associations between epigenetic age accel-

eration and poor kidney function. Collaboration with other population samples

having available data on DNAm and kidney traits allowed us to adjust for the same

set of confounders and run the same regression models in all studies.

The study-level results were then pooled in a large-scale, trans-ethnic meta-

analysis of up to 9,688 individuals. We identified 23 significant DNAm-based

predictor-kidney trait associations (p < 1.43E-03 and concordant direction of effect

across studies) in the transethnic fixed-effect meta-analysis. These associations can

be divided into three interesting groups. In the first, all included parameters of poor

kidney function (i.e. lower eGFR, prevalent CKD, higher uACR or microalbumin-

uria and higher serum urate) were associated with a positive epigenetic age acceler-

ation as measured by PhenoAge, extrinsic epigenetic age acceleration (EEAA) and

mortality risk score (MRS). The second group, composed by the “first-generation”

epigenetic clocks HannumAge and HorvathAge, showed a different pattern of asso-

ciation: age acceleration in the Horvath estimate (HorvathAA) was only negatively

associated with eGFR (i.e. epigenetic age acceleration correlated with lowering lev-

els of eGFR). HannumAA, on the other hand, was also negatively associated with all

traits but serum urate. Finally, the third group of associations featured those iden-

tified with the mortality predictor GrimAge, where a measure of age acceleration

calculated with this DNAm-based predictor was associated with uACR, albumin-

uria and serum urate but not with serum creatinine-based traits. Of note, low

heterogeneity between-studies was identified in most associations between DNAm-

based predictors and kidney traits. In cases where heterogeneity was high, evidence

from a random-effects model was interpreted and included in the description of the

main results.
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Six associations between DNAm-based predictors and kidney traits were repli-

cated across studies with participants of European ancestry and African Americans.

The 10 CpG MRS stands out for its replication across all subgroups (including the

small Hispanic/Latino cohort) in relation to its association with low eGFR, CKD

and high levels of serum urate. Likewise, the associations between low eGFR and

extrinsic measure of aging (EEAA), as well as those between PhenoAA and CKD

and urate, were also independently observed in studies with African Americans and

individuals with European ancestry. Ethnic-specific replication was observed for 16

associations in total, where studies of European ancestry mostly were driving the

associations identified for uACR and eGFR with PhenoAA, EEAA and HorvathAA.

Secondary analyses to investigate associations with the eight DNAm-based com-

ponents of GrimAge and the categorical risk variables of the MRS (high risk and

moderate risk) were also conducted. These analyses showed that DNAm-estimated

adrenomedullin (DNAmADM), plasminogen activator inhibitor-1 (DNAmPAI1) and

pack years (DNAmPACKYRS) were positively associated with higher uACR, higher

serum urate levels and microalbuminuria. Likewise, an increase in uACR was iden-

tified for individuals with > 5 “aberrantly” methylated CpGs compared to those

with 0-1 aberrantly methylated loci (high risk MRS vs low risk MRS). Similar as-

sociations were observed for microalbuminuria.

Our study, the first study of this nature on this topic, offers evidence on the cor-

relation between multiple kidney traits and DNAm-based aging and lifespan pre-

dictors measured in whole blood, as well as with some secondary DNAm-estimated

markers. The observed associations seem to reflect the impact of mechanisms such

as immunosenescence, inflammaging and oxidative stress on kidney disease. Our

study also contributes to a better understanding of the DNAm-based predictors

themselves, as it seems like the changes captured by the CpGs included in these

predictors also mirror pathological changes common to systemic inflammation and

renal disease. Nevertheless, future research in clinical studies is required to as-

sess whether these DNAm-based predictors may be useful in disease prognosis and

stratification. Functional studies to pinpoint the molecular mechanisms underlying

the physiological interplay between epigenetic mechanisms and biological aging are

also warranted.
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3.2.4 Contributions

I contributed to this project and its resulting publication by planning the study

design, creating an analysis plan and establishing a collaboration with scientists

from independent studies. I was also responsible for conducting the association

analyses in the KORA F4 study, as well as for combining the data from all studies

in the meta-analyses. All the main figures, tables and references were created

and/or curated by me. Regarding the paper writing, I wrote the first full draft of

the manuscript and integrated feed-back from co-authors. I also was responsible for

addressing the referees’ comments during peer-review and for the communication

with the managing editor.
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The aim of this thesis is to contribute to the understanding of the molecular mech-

anisms underlying kidney disease by identifying novel potential plasma proteomic

biomarkers and epigenetic measures of aging associated with kidney traits. This

aim was achieved by conducting two large-scale epidemiological studies with in-

formation from multi-ethnic population-based cohorts, assessing our findings with

regard to the available body of scientific and medical literature and by making our

results publicly available as open-access original research articles (Mat́ıas-Garćıa

et al., 2021a; Mat́ıas-Garćıa et al., 2021b). This chapter will guide the reader

through a brief recapitulation of relevant literature to interpret the main findings,

strengths and limitations from both studies, and present future opportunities to

further explore these topics.

4.1 Plasma proteomics and kidney function

4.1.1 About our findings in relation to current literature

We identified 57 proteins associated with eGFR (23 of them were also associated

with CKD) in one of the first two transethnic meta-analyses of renal function pro-

teomics (Mat́ıas-Garćıa et al., 2021b). Several well-known biomarkers of renal func-

tion were included in our findings (e.g. cystatin C, b2-microglobulin, IGBFP6)

(Carlsson et al., 2017; Christensson et al., 2017; Gold et al., 2010; Jovanovic et al.,

2003; Niewczas et al., 2019), thus supporting the validity of our aptamer-based

proteomic analyses.

Our results are also in line with those reported by other renal studies using the

same aptamer-based platform or similar proteomic profiling technologies (Carlsson

et al., 2017; Christensson et al., 2017; Gold et al., 2010; Ngo et al., 2020): we

replicate 15 of the proteins identified in the pioneer SOMAScan study of plasma
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samples from 42 CKD patients (Gold et al., 2010), five of the proteins associated

with lower baseline eGFR and 5-year eGFR decline in a study examining 80 cir-

culating proteins in 1,000 participants (Carlsson et al., 2017), and a large number

of proteins reported in a recent SOMAScan study of 2,893 plasma proteins in 389

Swedish individuals (Christensson et al., 2017). Moreover, five of our proteins (TNF

SR-I and –II, TAJ, RELT, DAF and CCL14) were included in a signature captur-

ing the inflammatory process underlying end-stage renal disease in diabetic cohorts

(Niewczas et al., 2019), and another five proteins (b2-microglobulin, cystatin C,

DAF, MP2K2 and testican-2) were included in a set of proteins meant to reflect

renal health in a “stand-alone” blood test (Williams et al., 2019). Interestingly,

40% of our proteins (k = 23) were identified in podocyte exosome-enriched urine,

suggesting their involvement in cellular functional processes underlying glomerular

filter permeability (Prunotto et al., 2013). At the time of revision of this paper, a

study with a similar design and aims was published (Ngo et al., 2020) – conducted

in two population-based studies with indiviuals of European ancestry and African

American individuals, this study found 126 proteins associated with baseline eGFR.

There is an overlap of 43 proteins independently reported in both ours and the work

by (Ngo et al., 2020), including well-known proteomic biomarkers and novel can-

didates like testican-2. This set of replicated proteins is listed in (Mat́ıas-Garćıa

et al., 2021b).

All in all, our study serves as both a replication of the aforementioned studies,

as well represents one of the first two aptamer-based studies of eGFR with internal

replication and large sample size. Likewise, sensitivity analyses conducted in the

discovery sample showed that the direction of the association and statistical signifi-

cance in the cystatin C-based eGFR analyses were congruent with those from serum

creatinine-based eGFR. This offered evidence on the relevance of these biomarkers

to kidney function beyond the potential biases caused by the use of serum creati-

nine to estimate GFR.

To investigate whether genetic susceptibility to renal function (using eGFR as

a proxy thereof) or plasma protein levels may have a causal effect on the other,

Mendelian randomization (MR) was conducted with publicly available results on

GWAS from kidney function and protein levels. To date, only one study using
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MR to assess causality of kidney function and proteomic biomarkers has been re-

ported (Mohammadi-Shemirani et al., 2019); however, its focus, studied population

and biomarker selection are markedly different to ours. Our MR analyses provided

strong evidence of a causal effect of renal function on the plasma levels of testican-2,

as this effect was identified across sensitivity analyses that relax the assumptions

upon which MR relies (Folkersen et al., 2020). Additional gene expression analyses

using transcriptomic data from kidney tissue (Jiang et al., 2020; Rowland et al.,

2019; Xu et al., 2018) showed SPOCK2 expression was negatively associated with

tubular atrophy and interstitial fibrosis, both measures of structural damage.

Testican-2, a secreted protein of the SPARC protein family (Clark & Sage, 2008),

belongs to a group of matricellular proteins (MCPs) involved in extracellular ma-

trix (ECM)-cell interactions and ECM processing (Feng et al., 2019). This protein

has been detected in urine (Marimuthu et al., 2011), whereas its renal release into

the bloodstream (arterial-to-renal venous gradients, V/A > 1) (Ngo et al., 2020)

suggests changes in its plasma levels may reflect glomerular filtration alterations

(Schenk et al., 2008). SPOCK2, the gene coding for this protein, has been described

in relation to both glomerular remodeling and maintenance of tissue integrity and

wound healing mechanisms (Francki & Sage, 2001). Interestingly, and in line with

the observations we made based on cross-sectional data, higher testican-2 plasma

levels have also been associated with less eGFR loss over time and reduced odds of

incident CKD in the aforementioned recent aptamer-based study (Ngo et al., 2020).

Enriched in human glomeruli in comparison to tubuli samples (Lindenmeyer et al.,

2010; Woroniecka et al., 2011) and other non-renal tissues (Nystrom et al., 2009),

SPOCK2 has been reported as a glomerular and podocyte-specific gene (Ju et

al., 2013; Lindenmeyer et al., 2010), whereas evidence from immunohistochemistry

and immunofluorescence of human kidney tissue show glomerular expression and

podocyte-specific expression in adult human kidney samples at single-cell resolution

(Ngo et al., 2020).

We also found suggestive evidence of a causal effect of three proteins (MIA,

cystatin M and carbonic anhydrase III) on eGFR. Importantly, these effects were

inferred using one single SNP as genetic instrument and thus no sensitivity anal-

yses could be conducted, meaning the evidence of a causal effect is weak in these
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cases. Although available information on the roles these proteins play in kidney

function is limited, there is evidence these proteins are involved in murine kidney

morphogenesis (Schwab et al., 2003), legumain regulation in extracellular matrix

remodelling and fibronectin deposition (Morita et al., 2007; Van Vliet et al., 2001),

and oxidative damage in proximal tubule dysfunction (Gailly et al., 2008). Thus,

these causal effects identified by MR may be biologically plausible. However, the

molecular mechanisms by which these proteins may be exerting effects on eGFR,

if existing, are to be explored in appropriate experimental models following up on

these initial findings.

4.1.2 About our contribution to the field

The evidence from cross-sectional population-based studies, the causal effects esti-

mated by MR and the associations with histologic measures all support the notion

that testican-2 (and SPOCK2 ) may be interesting novel biomarkers of kidney func-

tion and disease. As observed in our analyses, low plasma levels of testican-2 are

associated with poor renal function. An independent study reported low plasma

testican-2 levels to be predictive of incident CKD (Ngo et al., 2020). Together, the

evidence at hand suggests testican-2 could be used as a biomarker of early kidney

disease and/or progression (Christensson et al., 2017; Ngo et al., 2020). However,

the utility of testican-2 as a biomarker with regard to its tissue of origin, the mech-

anisms influencing its blood levels and its potential clinical utility require further

study.

4.2 DNAmAge acceleration and kidney traits

In the study of DNAmAge acceleration, we identified associations with multiple

kidney traits and different measures of epigenetic age acceleration (Mat́ıas-Garćıa

et al., 2021a).

4.2.1 About our findings in relation to current literature

We identified 23 associations between kidney traits and DNAm-based aging/mortal-

ity predictors in a large meta-analysis from up to five multi-ethnic population-based

cohorts. These associations can be grouped into three different groups. The first
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group consists of those DNAm-based predictors that were associated with all stud-

ied parameters of poor kidney health: PhenoAA, MRS and EEAA. The second

group, consisting of the “first-generation” clocks (Hannum and Horvath), showed

distinct patterns of association: HorvathAA was only associated with lower eGFR,

while HannumAA was associated with all kidney traits but serum urate. Finally,

the third group consisted of the associations with GrimAge acceleration (GrimAA),

which was associated with higher uACR and serum urate, as well as prevalent mi-

croalbuminuria.

Our findings may be explained in relation to premature systemic and kidney ag-

ing (Rowland et al., 2018; Shiels et al., 2017). Premature aging is driven, among

other lifestyle and environmental factors, by an increased allostatic load – to which

immunosenescence, systemic inflammation (’inflammaging’) and oxidative stress

contribute (Franceschi & Campisi, 2014; Kooman et al., 2014; Mueller et al., 2020;

Tecklenborg et al., 2018). Some of the molecular mechanisms involved in oxida-

tive stress and chronic inflammation specific to renal aging include mitochondrial

dysfunction, ureamic-induced epigenetic changes, as well as the production of reac-

tive oxygen species in the glomeruli by pro-inflammatory factors leading to barrier

function impairment and albuminuria (Joosten et al., 2020; Kooman et al., 2014;

McCarthy et al., 1998; Young & Wu, 2012).

Recent evidence suggests the 10-CpG MRS captures mortality risks mediated

by oxidative stress (X. Gao, Gào, et al., 2019) and inflammation-driven changes

in immune cell counts (Ward-Caviness et al., 2020). Likewise, both EEAA and

PhenoAA are also extrinsic aging measures (i.e. tracking changes in blood cell

composition) that may nevertheless mirror intrinsic (i.e. cell composition indepen-

dent) aging-related physiological dysregulation (Horvath & Raj, 2018; Levine et

al., 2018). Moreover, these three DNAm-based predictors have shown a stronger

predictive association with time to death than the “first-generation” predictors and

intrinsic measures of age acceleration, suggesting they better reflect biological aging

(Chen et al., 2016; Zhang et al., 2017) - in line with the associations observed with

all kidney traits included in this study.

The “first-generation” clocks are thought to reflect distinct aspects of aging, in
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line with the distinct association patterns we observed. On the one hand, Horvath

was developed as a “pan-tissue” clock, capturing changes in ubiquitous cell-intrinsic

pathways independent of changes in blood cell composition (Horvath, 2013). Han-

num, on the other hand, is strongly correlated with changes in immune cell counts

and imunosenescence (Chen et al., 2016; Marioni et al., 2015). Nevertheless, GWAS

on these clocks suggest both estimators include genes involved in metabolic and im-

mune system pathways (Gibson et al., 2019; Lu et al., 2018). Our findings may be

thus explained in relation to both DNAm-based predictors being (at least partially)

indicators of immune system aging. The associations between GrimAge and serum

urate, uACR and albuminuria indicate this DNAm-based predictor may reflect sys-

temic inflammation and earlier signs of renal damage. Our findings, in line with

prior reports on albumin excretion in diabetic and non-diabetic subjects (Lu et al.,

2019; Roshandel et al., 2020), may be explained by the role high serum urate levels

play in immune system aging (Joosten et al., 2020; Kooman et al., 2014) and kidney

disease progression (Astor et al., 2011; Matsushita et al., 2010).

Finally, the results observed in relation to the secondary DNAm-estimated mark-

ers (i.e. adrenomedullin [DNAmADM], plasminogen activator inhibitor-1 [DNAm-

PA1] and smoking pack years [DNAmPACKYRS]) are in line with their known

biological roles. Individuals with cardiorenal diseases have higher blood levels of

ADM and PAI-1; likewise, ADM has been suggested to predict disease progres-

sion (Dieplinger et al., 2009; Kronenberg, 2009) and PAI-1 has been proposed as a

risk factor for cardiorenal complications (Vaughan, 2005; Yamamoto et al., 2005).

Moreover, tobacco smoking is associated with both renal function decline and in-

flammation (Hall et al., 2016), and its effects in disease progression may be mediated

by mechanisms like oxidative stress and endothelial dysfunction (Orth & Hallan,

2008).

All in all, it will be necessary to disentangle the biological and chronological age

components of the existing clocks to better understand these and other reported

association in the literature. Likewise, better defining disease-specific biological

clocks and more precise chronological clocks is a challenge that needs to be overcome

to allow for their future use as specialized tools (Bell et al., 2019).
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4.2.2 About our contribution to the field

DNAm-based lifespan and aging predictors capture the effects of systemic inflam-

mation and oxidative stress, mechanisms shared by numerous chronic diseases. In

kidney disease in particular, immune function dysregulation and higher allostatic

load are tightly correlated to changes in the epigenetic landscape and physiologi-

cal renal homeostasis. Our findings on kidney traits and DNAm-based predictors

of aging thus suggest DNAmAge is a promising marker linking immune system

decline and inflammageing to chronic kidney disease and renal functional decline.

Future studies disentangling the precise molecular mechanisms underlying the ob-

served associations and the potential clinical value of the DNAm-based measures

are warranted.

4.3 Strengths and limitations

The strengths of the work included in this dissertation feature the careful adjust-

ing for potential confounders, the inclusion of well-established independent studies

encompassing different ethnicities and the large sample size, the assessment of mul-

tiple phenotypes (e.g. almost a thousand proteins, up to five kidney traits and

several different DNAm-based biomarkers) and the overall novelty of both stud-

ies. By conducting several analyses, it was possible to explore the influence of

adjusting for confounders in both studies. The inclusion of many independent

and well-established population-based studies allowed us to replicate and thus as-

sess the external validity of our results. All biological samples producing the ana-

lyzed data were collected following standard operating procedures in well-described

population-based cohorts. Likewise, -omic biomarkers were measured using com-

mercially available platforms (i.e. SomaLogic, Illumina DNAm arrays) and their

data was processed also according to well-defined workflow schemes. In this sense,

and regarding the analytical validity of the aptamer-based and epigenetic predic-

tors of age, our findings seem to be robust. Moreover, the findings presented in

both publications show effects with the same direction (e.g. positive epigenetic age

acceleration and higher levels of certain proteins associated with low renal func-

tion) across studies, thus proving that the identified associations are robust despite

potential measurement error, inter- and intra-population variability. We were also
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able to comprehensively address biological aging as predicted by different DNAm-

based predictors, renal health as evidenced by multiple kidney traits and examine

a large number of plasma proteins. This dissertation presents the first reports of

confounder-adjusted eGFR-protein and kidney trait-DNAm predictor associations

replicated across multi-ethnic independent studies, and as such, offers an initial sys-

tematic view of omics and kidney function from a population-based point of view.

Limitations include the phenotype definitions, type of biological samples stud-

ied, the observational nature of the data, and issues derived from the analytical

approaches followed. Regarding the phenotype definition, although GFR is the

best measure of kidney function, it is also an incomplete indicator of kidney dis-

ease: it does not reflect earlier changes in other sections of the kidneys (e.g. tubular

dysfunction or interstitial damage) and does not fully mirror its pathophysiology

(Glassock & Winearls, 2008). Nevertheless, serum creatinine is a marker that is

easily determined in blood and is thus often measured in population-based epi-

demiological cohorts, whereas more specific measures of kidney damage may not

be available in such settings. Another potential limitation of this work is that the

reported associations are based mostly on data derived from blood rather than kid-

ney tissue. Given the tissue (and even cell type) specificity of DNAm patterns and

gene expression, future -omics studies in kidney tissue will be able to address better

whether the associations reported are relevant to in situ changes and their poten-

tial clinical use. Some methodologic issues related to the assessment of oservational

data include the possibility of unobserved confounding and presence of biases that

cannot be adjusted for, phenotype and exposure misclassification, and the uncer-

tainty associated with the biological meaning of the proteomic and DNAm-based

biomarkers.

Regarding the choice of analytical platform used in both studies, a few limita-

tions are to be noted. First, the use of an aptamer-based analytical platform to

profile hundreds of plasma proteins, although advantageous because of its multi-

plexing possibilities and sample throughput, also presents issues in the specificity

and cross-reactivity of the probes that have to be explored on a case-by-case basis

for all proteins. Alternative methods like ultrasensitive immunoassays, proxim-

ity extension assays (PEA), and mass spectrometry (MS) methods can be used
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to gain insights into the specificity of reagents used in affinity methods. Further-

more, this platform does not reflect the entire plasma proteome and does not cover

post-translational modifications. Secondly, the inclusion of CpGs in the epigenetic

clocks is dependent on the coverage offered by the microarray technologies used,

which in its latest version with >850,000 CpGs offers a low genomic coverage of

up to 3% of the 28 million CpG sites in the human genome. More informative

biological clocks might be derived from methods with a better genomic resolution,

as well as from the study of other epigenetic features like other DNA modifications,

chromatin marks and RNAi mechanisms.

Finally, we assessed the associations between kidney traits and omics-based data

one -omic layer at a time, whereas an integrative approach to this topic may offer

different additional insights. Moreover, given the complex nature of kidney disease,

research of mechanistic insights will require -omics data collected at multiple time-

points (Hasin et al., 2017) and cell/animal models to disentangle these mechanisms.
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By conducting two large-scale epidemiological studies in multi-ethnic population-

based cohorts, we were able to identify novel associations between plasma proteomic

biomarkers and DNAm-based measures of aging and kidney function (Mat́ıas-

Garćıa et al., 2021a; Mat́ıas-Garćıa et al., 2021b). To further contribute to the

ever-growing literature on population-based -omics studies, our findings have been

made publicly available as original research articles following open-access principles.

Our contributions, though subject to some limitations, contribute to narrowing the

knowledge gaps outlined in Chapter 1 and suggest potential future research direc-

tions.

The coverage of the -omics markers and kidney traits assessed could be extended

by using other proteomic and DNAm technologies, studying larger sample sizes and

patient samples with individuals showing varying severity degrees of kidney disease.

Likewise, an integrative approach to the study of -omics in kidney disease may offer

results that are more readily applicable in clinical practice. The use of open-source

information to identify whether either proteins or the CpGs in the clocks have been

targeted in clinical trials, and if so whether their indications reflect renal biology

or if they may be potential targets for related (drug) indications may also offer

interesting insights. The identification of specific causal mechanisms will, however,

necessarily involve additional studies in cellular and animal models, as well as ded-

icated longitudinal studies in human populations.

As single-cell technology becomes more readily available for their application in

large-scale studies, it will be interesting to explore whether the different proteins

and the epigenetic mechanisms described in this dissertation can be related to other

-omic layers and gene expression signatures at the single-cell level to identify cell

types driving these reported associations. In the meantime, the use of cell-type-
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deconvolution algorithms to assess the cell type specificity of the DNAm-based

signatures measured in bulk assays in blood (or even in kidney tissue) may also

offer specific insights into their role in disease progression.

Emerging consortia dedicated to the assessment of specific molecular phenotypes

in relation to health outcomes and their significant contributions to their respective

fields will further push the current frontiers of knowledge. Moreover, the estab-

lishment of new biobanks and population-based cohorts at the national level across

countries will enable future large-scale epidemiological research and novel collab-

orations. Our findings are product of academic collegiality and the collaboration

with epidemiologic cohorts, as outlined throughout this work. Standing on the

shoulders of giants, this dissertation presents insights into DNAm-based measures

of aging and proteomics in relation to kidney function, and paves the way for future

research.
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Appendix A

Publication: Plasma proteomics of renal function: a

trans-ethnic meta-analysis and Mendelian randomization

study

Please note that the copyright on the first-author publication on plasma proteomics

(Mat́ıas-Garćıa et al., 2021b) is held by the American Society of Nephrology (ASN)

and is subject to ”fair use” provisions of U.S. or applicable international copyright

laws; the publication is hereby reprinted with permission of the ASN.
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ABSTRACT
Background Studies on the relationship between renal function and the humanplasmaproteomehave iden-
tified several potential biomarkers. However, investigations have been conducted largely in European pop-
ulations, and causality of the associations between plasma proteins and kidney function has never been
addressed.

Methods Across-sectional studyof993plasmaproteinsamong2882participants in four studiesofEuropean
and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified transethnic associations between
eGFR/CKD and proteomic biomarkers. For the replicated associations, two-sample bidirectional Mendelian
randomization (MR) was used to investigate potential causal relationships. Publicly available datasets and
transcriptomic data from independent studies were used to examine the association between gene expres-
sion in kidney tissue and eGFR.

Results In total, 57 plasma proteins were associated with eGFR, including one novel protein. Of these, 23
were additionally associated with CKD. The strongest inferred causal effect was the positive effect of
eGFR on testican-2, in line with the known biological role of this protein and the expression of its protein-
codinggene (SPOCK2) in renal tissue.Wealso observed suggestive evidence of an effect ofmelanoma inhib-
itory activity (MIA), carbonic anhydrase III, and cystatin-M on eGFR.

Conclusions In a discovery-replication setting, we identified 57 proteins transethnically associated with
eGFR. The revealed causal relationships are an important stepping stone in establishing testican-2 as a clin-
ically relevantphysiologicalmarkerofkidneydiseaseprogression,andpoint toadditionalproteinswarranting
further investigation.

JASN 32: 1747–1763, 2021. doi: https://doi.org/10.1681/ASN.2020071070

The kidneys’ ability to filter blood and maintain
homeostasis is reflected in the GFR.2 Blood levels
of serum creatinine, a filtration marker, can be
used for eGFR.3,4 CKD, characterized by reduced
eGFR (,60 ml/min per m2) and proteinuria, has
a global prevalence of 10% to 16%5,6 and is expected

to be increasingly common in aging populations.2

Increased serum creatinine is not evident until
approximately 50% of the renal filtration function
is lost,7 making CKD a silent disease and creating
a blind spot for early kidney disease detection.8

Its rising prevalence, in addition to the lack of
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therapeutic options,8 imposes a significant burden on health
systems and individuals worldwide.2,6

A number of biomarker research studies have been con-
ducted in regard to early detection, diagnosis, and/or progres-
sion prediction of kidney diseases.7,8 Early efforts in proteome
research focused on urine biomarkers, where combiningmul-
tiple urinary biomarkers was successful (e.g., CKD273 classi-
fier).7,9 More recent studies have focused on blood, an easily
accessible tissue mirroring the metabolic status of multiple
organs, with a complex profile requiring sensitive techniques
for its study. SOMAscan, a platform using DNA aptamers to
measure hundreds of plasma proteomic biomarkers,10 has
been successfully used in different epidemiological set-
tings.11-15 However, kidney disease has not been sufficiently
investigated: prior studies have tested a limited number of
proteins,16 relied on small samples without replication,10,17

or have not investigated causality.18 Mendelian randomiza-
tion (MR), a causal inference method relying on the random
allocation of alleles at conception to estimate causal effects
on outcomes, is an increasingly popular method used in
genetic epidemiology studies to address causality.19,20

We present a cross-sectional study using a multiplexed
aptamer-based proteomics platform to investigate associa-
tions between 1095 plasma proteins and eGFR/CKD, and
other renal parameters in a discovery cohort (Cooperative
Health Research in the Region of Augsburg S4 prospective
cohort follow-up; KORA F4), with replication in three inde-
pendent studies of European and admixed ancestry (INTER-
VAL, Nord-Trøndelag Health Study [HUNT], and Qatar
Metabolomics Study on Diabetes [QMDiab]). To better
understand the biological significance of the identified pro-
teins, we conducted enrichment, protein, and transcriptome
analyses across tissues, and investigated their interconnection
using protein-protein interaction (PPI) network analysis. We
also investigated causal effects between eGFR and the
replicated proteins using two-sample bidirectional MR. We
further examined the correlation between their gene expres-
sion in kidney tissue, eGFR, and histological parameters using
both publicly available datasets and transcriptomic data from
a kidney resource.

METHODS

Study Populations
The KORA study is a population-based sample from the gen-
eral population living in the region of Augsburg, Southern
Germany. The KORA F4 survey, a follow-up of the KORA
S4 prospective cohort (1999–2001), was conducted from
2006 to 2008, and included a total of 3080 participants. Clin-
ical and demographic information, and peripheral blood for
“omics” analyses, were collected; details on the standardized
examinations, interviews, and tests conducted in the KORA
study have been previously described.21,22 This study acted
as discovery cohort in the cross-sectional association study
of plasma proteins and renal function (Figure 1A).

Included in the replication phase were HUNT, namely the
third survey (HUNT3) from this population-based study from
Norway with data on participants of European descent;23 the
INTERVAL study, a randomized trial assessing blood dona-
tion practices across the United Kingdom with extensive phe-
notyping available for 50,000 participants of European
descent;24 and the QMDiab, a cross-sectional case-control
study on type 2 diabetes from participants of Arab, South
Asian, and Filipino descent in Qatar.25 Population character-
istics from the four studies are shown in Table 1. Information
on data availability is given in Supplemental Note 1.

Sample Collection and Proteomic Profiling
EDTA plasma samples collected by the studies following stan-
dardized procedures were centrifuged, aliquoted, and stored
at -80�C.26-28 Samples for proteomic profiling and GFR esti-
mation were taken at the same time.

Proteomic profiling in all participating studies was done
using SOMAscan (SomaLogic, Inc.), an aptamer-based, affin-
ity proteomics platform.10,29-31 Plasma samples from KORA
F4, HUNT3, and INTERVAL were shipped on dry ice to
SomaLogic (Boulder, CO), and proteomic profiling was per-
formed using a SOMAscan panel with 1129 protein-specific
SOMAmer probes for KORA,26 3622 for INTERVAL,27 and
5000 for HUNT3.28 In the QMDiab cohort, the kit-based
SOMAscan platform was run by the Weill Cornell Medicine
Qatar proteomics core following protocols and instrumenta-
tion provided by SomaLogic Inc., under supervision of
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Significance Statement

Studies on the plasma proteome of renal function have identified
several biomarkers, but have lacked replication, were limited to
European populations, and/or did not investigate causality with
eGFR. Among four cohorts in a transethnic cross-sectional study,
57 plasma proteins were associated with eGFR, 23 of them also
with CKD. Furthermore, Mendelian randomization and gene
expression analyses in kidney tissue highlighted testican-2 as a
physiological marker of kidney disease progression with potential
clinical relevance, and identified a few additional proteins warrant-
ing further investigation.
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SomaLogic personnel, to measure 1129 proteins in plasma
samples.26 The samples were all measured by individuals
blinded to the identities corresponding to the samples. In
summary, fluorescently labeled single-stranded synthetic
nucleotides (Slow Off-rate Modified Aptamers, SOMAmers)
immobilized on streptavidin-coated beads are incubated with
plasma samples to capture proteins and generate SOMAmer-
protein complexes. Washing steps eliminate unbound
SOMAmers and unbound/nonspecifically bound proteins.
The next steps are biotin labeling and photocleavage to liberate
SOMAmer-protein complexes from the beads. This is followed
by incubation in a buffer disrupting nonspecific interactions,
recapturing the biotin-labeled protein/aptamer complexes in

streptavidin-coated beads, and additional washing steps to
remove nonspecific SOMAmers. These are then eluted from
the target proteins andquantifiedon customDNAmicroarrays
using deposited SOMAmer-complementary oligonucleotides,
which produces measurements in relative fluorescence units
as proxies to protein concentrations. Quality control (QC) at
the sample and SOMAmer levels using control aptamers and
calibrator samples was conducted by the manufacturer. In
brief, based on standard samples included on each plate, the
resulting raw intensities were processed using a workflow
including hybridization normalization,median signal normal-
ization, and signal calibration to control for interplate differ-
ences. In the discovery cohort (KORA F4), QC resulted in

Study overview

Observational study

Discovery

INTERVAL
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k = 2330
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Figure 1. (A) Cross-sectional association study. Data from 995 participants and 1129 proteins from KORA F4 was used in the discovery
phase of a proteome-wide association study of renal function using confounder-adjusted regression models. The replication studies
were INTERVAL, HUNT, and QMDiab. Three rounds of replication are shown: R1, replication based on the meta-analysis of P values
from the linear regression results of the studies with European ancestry; R2, replication based on the results of linear regression models
performed in the Arab, South Asian, and Filipino descent sample QMDiab; R3, identification of proteins consistently associated with
eGFR across samples and ethnicities. The set of proteins identified in R3 was then functionally annotated and brought forward to the causal
analysis phase. (B) Causal analysis. Two-sample bidirectional MR using data on participants from European ancestry studies in the Chronic
Kidney Disease (CKDGen) Consortium to instrument the forward analysis (eGFR causal to protein level) and data from INTERVAL and AGES-
Reykjavik to instrument the reverse analysis (protein level causal to eGFR). Details on the data processing workflow for MR are shown.
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the exclusion of 29 proteins and one sample, and five proteins
were further excluded due to crossreactivity (Assay Change
Log SSM-064_Rev_0_DCN_16-263 issued by SomaLogic,
available at the integrated web-server at http://proteomics.
gwas.eu),26 producing data on k51095 proteins in 999 partic-
ipants (Supplemental Table 1). The same QC conducted in
each study resulted in the inclusion of 3301 participants in
INTERVAL,27 2432 individuals in HUNT3,12 and 352 partici-
pants in QMDiab,26 and a set of 993 proteins passing QC in all
studies (column “R” in Supplemental Table 1); further details
on the proteomics profiling from the samples included in
this study are described elsewhere.12,26,27 Protein mapping to
several identifiers was provided by the manufacturer
(Supplemental Table 1).

Outcome Definitions
Our first analysis is a proteome wide association study: we
investigated associations between proteins and renal traits as
outcomes, using linear regression models with adjustment
for potential confounders. The primary outcomes studied in
this analysis were eGFR from serum creatinine and CKD,
given their availability in all included studies.

eGFR was calculated using the CKD Epidemiology Collab-
oration equation with serum creatinine4 with the R package
nephro v1.2.32 Serum creatinine wasmeasured using themod-
ified kinetic Jaff�e reaction in KORA, HUNT, and QMDiab
(and calibrated by multiplying by 0.95),33 and a nuclear mag-
netic resonance platform (Nightingale Health) in the INTER-
VAL study. Pearson’s correlation between serum
creatinine–based eGFR and this nuclear magnetic
resonance–based eGFR variable was estimated in KORA
(Supplemental Figure 1). CKD was defined as eGFR ,60
ml/min per 1.73 m2.34

Weperformed some analyses for outcomes available only in
the discovery study. Urinary albumin and urinary creatinine
were used to calculate urinary albumin-creatinine ratio

(uACR) and its derived parameter microalbuminuria (MA,
defined as uACR .30 mg/g). eGFR decline was defined as
log(eGFR)follow-up – log(eGFR)baseline divided by the follow-
up time, where KORA F4 (2006–2008) was used as baseline
andKORAFF4 (2013–2014) as its follow-up survey. Sensitivity
analyses were also run using eGFRcys (derived from the CKD
Epidemiology Collaboration equation using cystatin C).13

Definition of Covariates
Covariates used in the regression analyses were age at the time
of examination, sex, body mass index (BMI), smoking status,
diabetes (yes/no), hypertension (yes/no), log-transformed tri-
glycerides, HDL, and intake of lipid-lowering drugs (yes/no).
See Supplemental Note 2 for precise cohort-specific defini-
tions of covariates used.

Statistical Analysis
Data preprocessing and statistical analyses were conducted
using the R language for statistical computing v.3.6.0.35 Before
statistical analysis, proteomic data were log transformed and
standardized. Linear regression was used to examine the asso-
ciation between protein levels and continuous kidney traits
(log-transformed eGFR, uACR, eGFR change), whereas logis-
tic regression was used for binary kidney traits (CKD, MA).
Multiple testing was accounted for using a Bonferroni correc-
tion considering the total number of investigated proteins at
each stage (k51095 in discovery).

Sensitivity analyses in the discovery sample included
regression models with serum creatinine–based eGFR as an
outcome and no adjustment for BMI or diabetes, and models
including cystatin C–based eGFR as outcome and the same set
of covariates from the main model. Pearson’s correlations
between the regression coefficients resulting from the sensitiv-
ity and themain analyses were calculated. Interaction analyses
were also conducted for the proteins identified at discovery by
adding an interaction term (each of age, sex, and smoking

Table 1. Population characteristics of association studies

Trait KORA HUNT3 INTERVAL QMDiab

N 995 930 623 334
Age, yr 59.31 (7.81) 68.94 (10.29) 47.36 (13.35) 47.10 (12.57)
Male 480 (48.2) 688 (74.0) 343 (55.1) 169 (50.6)
BMI, kg/m2 27.78 (4.58) 28.38 (3.97) 27.16 (10.05) 29.66 (5.95)
Smokers 572 (57.5) 699 (75.16) 99 (15.89) 60 (18.0)
Serum creatinine (mg/dl) 0.85 (0.18) 0.92 (0.32) 0.70 (0.14) 0.85 (0.22)
eGFR, ml/min per 1.73m2 85.98 (14.06) 80.25 (18.75) 108.27 (16.21) 96.00 (18.36)
CKD 38 (3.8) 138 (14.8) 1 (0.16) 19 (5.7)
UACR, mg/dl 5.64 (3.61, 9.94) NA NA NA
MA 58 (5.9) NA NA NA
HDL cholesterol, mg/dl 57.32 (15.20) 45.12 (11.24) 74.33 (24.42) 47.58 (13.75)
Triglycerides, mg/dl 107 (75, 155.5) 141.27 (106.28, 194.85) 132.75 (97.35,194.70) 169 (99.20, 215.23)
Lipid lowering medication use 142 (14.3) NA 33 (5.30) NA
Hypertension 397 (39.9) 355 (38.2) 48 (7.70) 103 (30.8)
Diabetes 68 (6.8) 128 (13.8) 2 (0.32) 172 (51.5)
Measurement units are shown in parentheses in the trait column, where the absence of units means it is a categorical trait. The mean and (SD) are presented for non-
skewed continuous variables, whereas for skewed continuous variablesmedian (first and third quartile) are presented. Count and% are shown for categorical variables.
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status individually) to the fully adjusted model (Supplemental
Note 3).

For those protein-outcome pairs significantly associated in
the discovery, two replications were conducted: a European
replication (R1) and a replication in an admixed population
(R2) (Figure 1A). Replication was defined as P,0.05 and con-
sistent direction of effect as in the discovery study. The Euro-
pean replication for eGFR consisted of the meta-analysis of
results fromHUNT and INTERVAL using Stouffer’s method,
aP value combinationmethod especially useful when raw data
cannot be pooled across studies, which is the case with
aptamer-based measurements, where data in relative fluores-
cence units is not directly comparable across studies. Also
known as “inverse normal” or weighted Z-test, this method
takes the P values for the i-th study (pi), transforms them by
using the inverse normal transformation, and weights them
according to the square root of the sample sizes (wi). The
sum is then computed, and the combined P value is obtained
using the distribution of the resulting statistic, T5SwiH(pi).36

For CKD, only the HUNT study was used in the European
replication (INTERVAL had only one patient), and the
admixed population replication was based on the results of
QMDiab. Our final set of transethnic associations (R3) were
those pairs of proteins-outcomes that were replicated in
both R1 and R2. Replicated eGFR-associated proteins were
taken to the next stages of the analysis: proteomic target vali-
dation, enrichment analyses, and MR.

Validation of Proteomic Targets
We examined the plasma levels of proteins measured using
Proximity Extension Assay (PEA) technology (Olink) in a
subgroup of randomly selected participants from the KORA
F4 study (n5173).37,38 In brief, protein abundance was quan-
tified using real-time PCR in the PEA proteomic technology
(Olink), producing relative quantification data in NPX units
(normalized protein expression levels, on log2 scale);NPXval-
ues were intensity normalized with the plate median for each
assay as the normalization factor, and samples and proteins
that did not pass QC were excluded.38 Eight of the most rele-
vant proteins (cystatin C, RELT, IGFBP-6, myoglobin, TNF
sR-I, RGMB, FSTL3, contactin-4), and three of the proteins
identified in the causal inference analysis (carbonic anhydrase
3,melanoma inhibitory activity [MIA], cystatinM)were avail-
able in this subset of proteomic measurements. Of note,
testican-2 was not available for measurement using this
technology. Scatterplots of the aptamer-based and PEAmeas-
urements, annotated with their Pearson’s correlations and P
values, are shown in Supplemental Figure 2. The lack of
immunoassays fully validated for specificity, linearity, and
possible interference for most of the measured analytes in
SOMAScan (including testican-2) limits the investigation
into the concordance between these two methods.39

Information on specificity and crossreactivity of the
aptamers was available from three independent studies27,40,41

for 54 of the 57 proteins identified to be transethnically asso-
ciated with eGFR. Target specificity issues (i.e., comparable
binding observed to a target that is not the product of the
same gene) were observed in four proteins (ephrin-A5,
IGFBP-5, hemojuvelin, and cystatin SA)27,40 (Supplemental
Tables 2–4). Moreover, in previous studies, 23 of the 57 pro-
teins were directly validated via mass spectrometry in blood
plasma/serum, and other biological matrices41

(Supplemental Table 2), and 49 using solution affinity meas-
urements27, 40 (Supplemental Tables 3–4).

Functional Annotation, Enrichment, and
Expression Analyses
Annotation was conducted using the R package InterMineR
v1.6.1,42 a tool facilitating access to data from theHumanMine
release 6.0 (May 2019). DAVID v.6.843 was used to look for
annotations for Gene Ontology Terms (molecular function,
biological process) and pathway information, and to identify
publications relevant to the set of 57 replicated proteins.
Gene information was retrieved from the human assembly
GRCh37 (hg19) using BioMart v.4,44 and shown in
Supplemental Table 5.

To investigate the expression patterns of the 57 eGFR-
associated proteins and their corresponding protein coding
genes across tissues, we used proteomics andRNA-seq expres-
sion data from the ProteomicsDB45,46 and the Genotype-
Tissue Expression (GTEx) database.47 The data presented
and described in this manuscript were generated on October
2, 2020 through amultigene query on the ProteomicsDBAna-
lytics Toolbox portal from: https://www.proteomicsdb.org/
proteomicsdb/#analytics/expressionHeatmap and GTEx por-
tal https://www.gtexportal.org/home/multiGeneQueryPage.

PPI Network Analysis
We queried STRING,48 the PPI server, to examine the rela-
tionship between the proteins that were identified as robustly
associated with eGFR across studies and ethnicities (k557
transethnically eGFR-associated proteins). We used the set
of SOMAscan proteins available across studies as background
(k5993), adding no additional interactors (proteins) to the
network during the analyses, and considered a minimum
required interaction score for a medium confidence (0.400)
(Supplemental Note 4).

MR
MR, an instrumental variable method used to infer causality,
leverages the natural randomization inherent in the (random)
assortment of genes during gamete formation to assess the
effect of lifelong exposures on health outcomes.49 Single-
nucleotide polymorphisms (SNPs) are used as instrumental
variables (IV; or instruments), given their alleles are randomly
assigned to individuals before any exposures/outcome and
they are nonmodifiable, thus minimizing the risk of reverse
causation and confounding.49 The idea behind MR is that if
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genetic variation produces differences mirroring the biologi-
cal effects of environmental exposures that alter disease risk,
then genetic variation itself should be related to disease risk
by having an influence on the exposure.49,50 MR uses SNPs
as surrogates for an exposure of interest, allowing the estima-
tion of the effects of life-long, genetically determined
“exposures” onhealth outcomes.49MRproduces robust causal
inference estimates if the SNPs used are valid instruments—
that is, if they meet the three assumptions on whichMR relies:
SNPs must be strongly associated with the exposure, and not
associated with either (measured or unmeasured) confound-
ers or with the outcome except potentially through the expo-
sure.51 Causality in MR is thus defined as the modification of
an exposure leading to a change in the outcome, where the
inferred causal effects byMRdonot necessarily imply the exis-
tence of a straightforward interpretation with respect to direct
causal factors,50 nor do they offer information on the time
interval (e.g., during development) or target tissue in which
such modification of the exposure or intervention would
need to be delivered.52

To investigate whether a genetic liability to lower or higher
eGFR causally alters plasma protein levels or vice versa, MR
was conducted in the set of 57 proteins whose associations
with eGFR showed transethnic replication. Two-sample
bidirectional MR19 was used to infer the causal effect of renal
function (eGFR as proxy thereof) on plasma protein levels
(forward MR) and vice versa (reverse MR, Figure 1B). Results
from publicly available genome-wide association studies
(GWAS) for (1) eGFR from the CKDGen consortium
(meta-analysis of European-ancestry populations),53 and (2)
plasma proteins from INTERVAL27 and Age, Gene/Environ-
ment Susceptibility-Reykjavik Study (AGES-Reykjavik)41

were used to performMRusingMRBase.54 A detailed account
on the MR methods, data sources, and analyses conducted is
available in Supplemental Note 5.

Instrument Selection
In the forwardMR (i.e., assessing the effect of renal filtration on
protein levels), 256 SNPs associated with eGFR at genome-wide
significance in the CKDGen results were selected as candidate
IV. These SNPs were then filtered based on their relevance to
renal function (associated with BUN, a complementary renal
trait, with an opposite direction of effect,NIV547) and clumped
based on linkage disequilibrium (r250.01 and Kb510,000) to
identify independent variants (NIV541). Summary statistics
on 41 SNP-eGFRassociationswere extracted from theCKDGen
results, and corresponding SNP-protein associations were
extracted fromthe INTERVALresults for 47proteins. For inves-
tigating the causal effects of eGFR on proteins, 47 eGFR-protein
relationships were instrumented by 41 SNPs.

For the reverse MR (i.e., interrogating the causal effect of
proteins on renal filtration), gene positions (GChr37,
Supplemental Table 5) were used to identify genome-wide sig-
nificant cis-SNPs for 28 proteins in the INTERVAL results as

candidate IV and LD clumped (same criteria as forward MR).
Summary statistics on SNP-protein associations for 28 pro-
teins were extracted from the INTERVAL results, and its cor-
responding SNP-eGFR associations were extracted from the
CKDGen results. The same strategy was followed to identify
instruments in the AGES-Reykjavik results; SNP-protein
results were extracted from this dataset for 29 proteins, and
SNP-eGFR results were extracted for 26 proteins from the
CKDGen data. Further details of the genetic instrument selec-
tion and data harmonization process are shown in
Supplemental Figure 3 and Supplemental Table 6. Thus, for
investigating the causal effect of proteins on eGFR, 35
protein-eGFR relationships were instrumented by 1–5 SNPs,
of which 17 proteins were examined using data from both
INTERVAL and AGES-Reykjavik (Supplemental Figure 4).

Data Harmonization, Phenotypic Variance Explained,
and Instrument Specificity
Details on data harmonization, the handling of palindromic
SNPs, and calculating the phenotypic variance explained by the
SNPs are given in Supplemental Note 5. Harmonized datasets
used in the MR analyses are available in Supplemental Table 7.

To look for further evidence of horizontal pleiotropy, asso-
ciation between our SNPs and other traits were searched for in
the GWAS Catalog55 (Supplemental Table 8).

MR and Sensitivity Analyses
The primaryMR analysis used inverse variance weighted (IVW)
regression. In this method, the coefficient of the gene-outcome
association is regressed on the coefficient of the gene-exposure
association with the intercept constrained to zero, assuming no
directional pleiotropy.56,57 Because IVW requires two or more
SNPs, in patients where only one SNP instrumented the analysis,
Wald’s ratio (coefficient of the gene-outcome associationdivided
by the gene-exposure association) was calculated whenever only
one SNP instrumented the analyses, as IVWMR requires two or
more SNPs.57

For MR analyses instrumented by more than two SNPs,
three further MRmethods were used as sensitivity analyses.58

MR-Egger regression was used to assess pleiotropy, because
this method allows for horizontal pleiotropy and provides
an estimate of the unbalanced horizontal pleiotropic effects
in its intercept.59 Weighted median60 and weighted mode
MR,61 methods less sensitive to the presence of invalid instru-
ments and to pleiotropic SNPs behaving as outliers, were also
used. A number of additional analyses were run to check for
outliers, directional pleiotropy and heterogeneity, as recom-
mended.58,62 Details are given in Supplemental Note 5.

Causal estimates were assessed at a Bonferroni-corrected
significance level, namely, 0.05 divided by the number of pro-
teins assessed in each MR direction (47 in forward and 51 in
reverse MR). Causal effects were considered robust if they
were significant at Bonferroni P,0.05 in the IVW or Wald
estimator, and results from the pleiotropy-robust sensitivity
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MR analyses examined to test for violations to MR
assumptions.

Expression Analyses in Human Kidney Tissue
The correlation between expression of SPOCK2, one of the
genes coding for proteins showing evidence for a causal rela-
tionship with eGFR, was calculated with data from microdis-
sected tubulointerstitial components of human renal biopsies
from 26 individuals with CKD at different disease stages
(I–IV)63 (GEO accession: GSE69438). Gene expression of
the protein-coding genes identified in MR (SPOCK2, CA3,
CST6, MIA) and renal traits was further assessed in (1) data
from Nephroseq v5 (n5458), a platform of comprehensive
kidney disease gene expression datasets,64 and (2) a human
kidney tissue resource based on RNA sequencing (n5427,
see Supplemental Note 6).1

WithinNephroseq, univariate correlation analyses between
eGFR and gene expression were conducted separately in
study-defined histological compartments of the human kid-
ney (i.e., glomerular and tubulointerstitial) in 458 available
kidney samples from three datasets of patients with kidney
disease (Ju et al., Sampson et al., and Reich et al.),63,65,66 and
one dataset of “apparently” healthy renal tissue (Rodwell
et al.).67 The correlations were meta-analyzed using inverse
variance weighted random effects models,68 and heterogene-
ity was assessed using Cochran’s Q test.

Multivariable regression analyses were conducted in the
human kidney resource (n5427).1 In brief, we constructed
linear regression models with renal expression of each candi-
date as the response variable; whereas eGFR and histologically
confirmedmeasures of structural kidney damage were used as
independent variables together with age, sex, BMI, three
genetic principal components, diabetes, and a variable num-
ber of surrogate variables (29 for eGFR and 26 for all histology
phenotypes).1,69 eGFR was based on circulating levels of cre-
atinine, as reported before.1 Histologic measures of structural
integrity (glomerular sclerosis, glomerular Bowman’s capsule
thickening, tubular atrophy, interstitial fibrosis, interstitial
inflammation, and vascular lesions) were assessedmicroscop-
ically and scored on a semiquantitative scale (whereby 0
indicates no or minimal damage and 3 is consistent with the
highest degree of structural injury), as reported previously.70

RESULTS

Figure 1 illustrates the design of this study. First, a cross-
sectional association study was performed to identify proteins
associated with renal function parameters in a discovery-
replication setting: KORA F4 acted as the discovery, and
INTERVAL, HUNT3, and QMDiab as replication studies
(Figure 1A). Replicated transethnic protein associations
were then assessed for causality using two-sample MR, using

data from the largest GWAS available for the traits of interest
(CKDGen, INTERVAL, and AGES-Reykjavik) (Figure 1B).

CROSS-SECTIONAL ASSOCIATION OF PLASMA
PROTEINS AND RENAL FUNCTION

Population characteristics of the four cohorts included in the
cross-sectional association study are shown in Table 1.

Results from the Discovery Study
The association between 1095 plasma proteins and eGFR/
CKD was assessed in the KORA F4 study (n5995). A total
of 80 proteins were significantly associated with eGFR
(P,0.05/1095) (Supplemental Figure 5A). The top three neg-
ative associations (i.e., higher eGFR associated with lower
plasma protein levels) were observed with cystatin C (b5-0.
068; 95% confidence interval [95% CI], -0.078 to -0.059]
change in log-transformed eGR per standard deviation
increase in protein level, P52.63E-40), TNF receptor super-
family member 19L (RELT; b5-0.063; 95% CI, -0.073 to -0.
053; P57.82E-33) and b2-microglobulin (b5-0.059; 95%
CI, -0.070 to -0.050, P5 6.16E-30), and the strongest positive
association (i.e., higher eGFR associated with higher plasma
protein levels) was that of testican-2 (b50.036; 95% CI, 0.
026 to 0.045, P52.066E-13) (Supplemental Table 1). Of
note, 34 of these 80 proteins were also associated with CKD
(Supplemental Table 1).

Sensitivity analyses showed that 71 of the 80 eGFR-associ-
ated-proteins identified in the main analysis were consistently
associated with cystatin C–based eGFR, with a high correla-
tion between regression coefficients (r50.841, P,0.001).
Models with no adjustment for BMI or diabetes produced
highly similar estimates to those obtained in the main analysis
(r50.99, P,0.001 for both; Supplemental Table 9). Likewise,
the exclusion of individuals with CKD (n538) did not signif-
icantly affect the correlation between the plasma levels of pro-
teins and eGFR (Supplemental Figures 6 and 7). Interaction
analyses suggested associations with five plasma proteins
were accentuated with age (Supplemental Table 10).

Additional renal outcomes were assessed in the discovery
cohort: eGFR change was associated with five proteins, three
proteins were associated with uACR, and no proteins were
associated with MA (Supplemental Table 11).

Results from Replication Studies
Serum creatinine was the only available trait across all replica-
tion cohorts (Figure 1A), thus only associations with eGFR/
CKD were further explored.

The European replication (R1) was conducted using
HUNT3 and INTERVAL; results from this analysis confirmed
the association of 62 of the 76 proteins available across studies
(Supplemental Figure 5). The second replication round (R2)
was performed inQMDiab, a population of admixed ancestry;
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this confirmed 65 eGFR-protein associations (Supplemental
Figure 5). High correlations between z values from the discov-
ery study and replication studies were observed (correlations
ranging from 0.66 with INTERVAL to 0.93 with HUNT3,
Supplemental Figure 8). The overlap of the proteins replicated
in R1 and R2 produced the set of 57 robustly replicated trans-
ethnic eGFR-protein associations (Supplemental Table 12).
Figure 2 shows the cross-sectional effect estimates for the
top 10 protein-eGFR associations across the four cohorts;
INTERVAL, a largely healthy and younger population,
showed the smallest effect sizes, whereas the strongest effects
were observed in HUNT3, a cohort of older individuals with
lower mean eGFR and higher CKD prevalence. One novel
protein, contactin-4, was identified. All 57 proteins were rep-
licated in the cystatin C–based eGFR sensitivity analysis
(Supplemental Table 9).

All 34 CKD-protein associations from the discovery phase
were replicated in HUNT3 and 23 in QMDiab; these 23 were
thus considered transethnically robust (Supplemental Table
13). Figure 3 shows the overlap between proteins associated
with eGFR/CKD.

Functional Annotation, Enrichment and
Expression Analyses
Several pathways, biological processes and molecular func-
tions were represented in the set of replicated proteins
(Supplemental Table 14). No enrichment was observed,
perhaps due to the coverage of the analytical platform.10,30,71

Peptides for most of the replicated proteins were detected in
multiple tissues and body fluids, including kidney tissue
(Supplemental Figure 9). Most genes showed ubiquitous

Observational estimates from the top 10 replicated proteins
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Figure 2. Regression coefficient estimates from the top 10 proteins identified in the cross-sectional association transethnic study on
eGFR. The x axis shows the estimates and 95% CI for the regression coefficients (i.e., change in log-transformed eGFR per standard
deviation increase in protein level), and each panel corresponds to one protein. Estimates are color coded according to the specific
study: HUNT3 in red, INTERVAL in green, KORA in blue, and QMDiab in purple. TFF3, Trefoil factor 3; RELT, TNF receptor superfamily
member 19L; IGFBP-6, Insulin-like growth factor-binding protein 6; DAN, Neuroblastoma suppressor of tumorigenicity 1; TNF sR-I: TNF
receptor superfamily member 1A; FSTL3, Follistatin-related protein 3; ARMEL, Cerebral dopamine neurotrophic factor.
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expression across the human tissues represented in the Pro-
teomeDB (Supplemental Figure 10) and GTEx datasets
(Supplemental Figure 11).

PPI Network Analysis
We queried STRING to examine PPIs in the set of 57 repli-
cated proteins. More interactions than expected were
observed in the resulting network (P51.12E-04,
Supplemental Figure 12). Because the inclusion of proteins
in the main PPI analysis was conditional on the platform’s
coverage and study design, less stringent sensitivity analyses
allowing for the inclusion of additional proteins connected
additional nodes (e.g., SPOCK2 or MIA) not connected in
the main analysis to the network (Supplemental Note 4).

MR

To assess whether genetically determined higher or lower
plasma levels of the 57 proteins identified as transethnically

associated with eGFR may affect this renal trait, and whether
genetically determined eGFR causally alters circulating levels
of plasma proteins, two-sample bidirectional MR was con-
ducted (Figure 1B).

Forward MR: eGFR Has an Effect on Testican-2
In the forward direction of the MR (i.e., inferring the effect of
eGFR on levels of 47 proteins), 40 SNPs explaining 1.59% of
the variance of eGFR were used as instruments
(Supplemental Table 15).

Plasma levels of seven proteins were identified as causally
affected by eGFR according to the IVW MR model
(Supplemental Table 16 and Supplemental Figures 13–19).
Although no evidence of directional pleiotropy, influential
SNPs, or instrument heterogeneity was observed (with the
exception of IGFB6, Supplemental Table 17–19), pleiotropy-
robust sensitivity MR analyses did not provide further evi-
dence of causality for six of them, suggesting IVW findings
may be driven by undetected horizontal pleiotropy.72 In con-
trast, a positive causal effect of eGFR on testican-2 was identi-
fied by multiple MRmethods (weighted median P52.84E-04,
Figure 4). Assuming this robust evidence reflects a true
relationship, the results suggest that if eGFR is altered by an
interventionmimicking the effect of the SNPon eGFR, plasma
levels of testican-2 will also increase.

In total, 11 of the SNPs instrumenting the forward MR
analysis were identified as potentially pleiotropic (associations
at P,5E-08 with other traits, Supplemental Table 8). Restric-
tive MR was conducted excluding these SNPS; although not
significant, perhaps due to reduced statistical power derived
from using fewer SNPs as instruments and/or the exclusion
of SNPs that might be on the actual causal pathway of interest,
these results were in agreementwith those from themain anal-
ysis (same direction and size of effect, Supplemental Table 20).

Reverse MR: MIA, Cystatin M, and Carbonic Anhydrase
III Affect eGFR
In the reverse direction of the MR (i.e., assessing the effect of
35 proteins on eGFR), one to five cis-SNPs explaining
0.91%–29.33% of phenotypic variance were used as genetic
instruments (Supplemental Table 15).

A negative effect of MIA on eGFR was identified by multi-
pleMRmodels (Table 2), results that suggest if plasma protein
levels are lowered by means of an intervention mimicking the
effect of the SNP on MIA, eGFR will increase. No evidence of
influential SNPs was observed (Supplemental Tables 17–19),
yet the funnel plot suggested directional pleiotropy
(Supplemental Figure 20). One SNP instrumenting this anal-
ysis was identified as potentially pleiotropic (Supplemental
Table 8).

Positive effects of carbonic anhydrase III and cystatinM on
eGFR were also identified (Wald’s ratio P55.04E-04 and
8.41E-05, respectively) (Table 2). Although further sensitivity
analyses could not be conducted given the availability of one

Overlap of replicated associations with eGFR and CKD

eGFR-associated proteins

ARMEL,
Bone proteoglycan II,

CAPG,
Carbonic anhydrase III,
Cathepsin V, Ck-b-8-1,
Contactin-4, CRDL1,

Cystatin M, CYTT,
DAF, Elafin,

Endostatin, EphB6,
FABP, Gelsolin,

Glutathione
S-transferase Pi,

Glypican 3, HCC-1,
IGFBP-5, MIA,

MP2K2, MPIF-1,
Myoglobin, Resistin,

RGM-C, RGMB,
SLPI, TAJ, TIG2,

TNF sR-II,
UNC5H3, UNC5H4,

URB

CKD-associated
proteins

b2-Microglobulin, Cathepsin
H, Cystatin C, DAN,

Ephrin-A4, Ephrin-A5,
Epithelial cell kinase,

ERBB3, ERP29, ESAM,
Factor D, FSTL3, IGFBP-6,

JAM-B, Kallikrein 11,
kallikrein 8, Layilin, RELT,

Testican-2, TFF3, TNF sR-I,
Trypsin, Trypsin 2

Figure 3. Results from the transethnic discovery-replication
observational study. Depicted in the left circle are the 57 proteins
associated with eGFR, the continuous measurement of renal func-
tion; the 34 eGFR-specific proteins reflect associations along the
full range of renal function, whereas the 23 proteins also associ-
ated with CKD reflect a direct association with a clinically relevant
low eGFR (,60 ml/min per 1.73m2). Shown in bold is contactin-4,
a novel protein identified by this study, and underlined are the
four proteins for which evidence on causal effects was identified
by MR.
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cis-SNP for each protein, no gene-trait associations were
found for these SNPs in the GWAS Catalog,55 indicating a
lack of evidence for pleiotropic effects. MR estimates obtained
with different pGWAS data (see Methods, Supplemental
Figure 4) had the same direction of effect (Supplemental
Table 16). Of note, no statistically significant effect of
testican-2 on eGFR was identified (Supplemental Table 16).

Gene Expression in Kidney Tissue
No correlation between eGFR and expression of SPOCK2 (pro-
tein-coding gene for testican-2) in tubulointerstitial components
of human renal biopsies from 26 individuals with CKD63 was

found (Supplemental Figure 21). Further univariate analyses
conducted withNephroseq data showed a statistically significant
correlation between eGFR and SPOCK2 gene expression in glo-
merular compartment/kidney cortex (r50.242, P50.033)
(SupplementalTable 21).We then conductedmultivariable anal-
yses using RNA-sequencing–characterized human kidney tran-
scriptomes from up to 427 individuals1,69,70 (Supplemental
Note6, SupplementalTable 22).Whereasnoassociationbetween
gene expression and eGFR was observed (Supplemental Table
23), SPOCK2 expression was negatively associated with tubular
atrophy and interstitial fibrosis (P50.03 for both), and CST6
expression was negatively associated with glomerular sclerosis
(P50.02, Supplemental Table 23).

Results from forward MR estimating the casual effect of eGFR
on testican-2
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Figure 4. (A) Scatter plot showing the individual genetic effects of the selected IVs on log transformed eGFR (coefficient of the SNP-
exposure association) on the x axis and on testican-2 plasma levels (coefficient of the SNP outcome) on the y axis, along with their 95%
CI. Each data point corresponds to an individual SNP. The lines correspond to the slopes of the different MR methods, which can be
interpreted as the change in testican-2 levels per unit increase in log-transformed eGFR, and are color coded as follows: IVW-MR in light
blue, MR-Egger in dark blue, weightedmedian in light green, weightedmode in dark green. (B) Forest plot showing the individual causal
estimates of each of the 40 genetic instruments. The red points show the pooled estimates using all SNPs in the four methods. 95% CI
are shown.
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DISCUSSION

We conducted a cross-sectional association study of plasma
proteomics and eGFR/CKD in four independent cohorts,
identifying known and potential novel biomarkers. Two-
sample bidirectional MR suggested the existence of causal
effects in four eGFR-protein associations.

A total of 80 proteins were associated with eGFR in our dis-
covery analysis, with transethnic replication confirming 57 of
these; 23were also found to be associatedwithCKD.Although
our analyses use serumcreatinine–based eGFRdue to its avail-
ability across studies and its utility in clinical practice, models
using cystatinC–based eGFR show the results are robust to the
GFR estimationmethod. Likewise, further sensitivity analyses
indicate the associations are largely independent of adjust-
ment for BMI or diabetes.

Additional analyses in the discovery cohort produced asso-
ciations between eGFR decline and DAN, TNF sR-1 and
FSTL3, in line with those previously reported.18 No overlap
between the set of proteins associated with uACR and the pro-
teins previously reported73 was observed, which may be
explained by the different time points of the eGFR and albu-
minuriameasurements.73 No proteins were significantly asso-
ciated with MA, possibly due to its low prevalence (5.9%) in
KORA.

We identify several well-known biomarkers of renal func-
tion,10,16,17,74,75 supporting the validity of our eGFR analyses.
Our results are also in line with previous proteomic studies on
eGFR,10,16-18 inflammation in ESKD,75 and a “standalone”
renal health test40 (Supplemental Table 12). Contactin-4,

involved in neuronal network development, was identified
as a novel eGFR-associated protein. Its plasma (but not urine)
detection suggests it is either not filtered at the glomerular
capillaries, or filtered but later reabsorbed into blood from
the tubules, so that variations in its plasma levels may reflect
changes in glomerular and tubule function.76,77 The age-
interaction effects identified for four proteins may be a conse-
quence of their age-varying trajectories,78 and require future
investigation. The ubiquitous expression of our proteins
across tissues, and our PPI network results, suggests the
proteins are involved in cellular functions relevant tomultiple
tissues (Supplemental Table 14),79 potentially mirroring the
systemic nature of kidney disease.80 Interestingly, podocyte-
exosome enrichment in urine identified 23 of our proteins,
pointing to their participation in processes underlying glo-
merular filter permeability.81

To investigate whether genetically determined renal func-
tion (using eGFR as a proxy thereof) or plasma protein levels
may have a causal effect on the other, bidirectional MR with
publicly available GWAS data was conducted. Our findings
in the forward MR direction, supported by pleiotropy-
robust sensitivity MR methods, identified a causal effect of
eGFR on plasma levels of testican-2. Considering the MR def-
inition of causality, these results suggest lifestyle or pharmaco-
logical interventions designed to improve eGFR (as a proxy of
renal function) have the potential to increase plasma testican-
2 levels.

Testican-2 is a secreted protein of the SPARC family,82 a
group of matricellular proteins regulating extracellular
matrix–cell interactions and extracellularmatrix processing,83

Table 2. Causal estimates across MR methods

Association IVW MR-Egger Weighted Median Weighted Mode Wald Ratio

eGFR ! SPOCK2
b 5.21 8.61 6.10 6.51
CI 2.78 to 7.66 2.41 to 14.8 2.81 to 9.40 1.19 to 11.8 –

P 2.95E-05 0.01 2.84E-04 0.021
NIV 40 40 40 40

CA3 ! eGFR
B 0.007
CI – – – – 0.003 to 0.01
P 5.04E-04
NIV 1

CST6 ! eGFR
B 0.007
CI – – – – 0.004 to 0.01
P 8.41E-05
NIV 1

MIA ! eGFR
b -0.002 -0.001 -0.002 -0.001
CI -0.003 to -0.001 -0.002 to 0.000 -0.003 to -0.001 -0.002 to -0.001 –

P 8.79E-04 0.299 2.00E-04 0.081
NIV 3 3 3 3

Results from the forward MR (effect of eGFR on protein levels, i.e. eGFR! protein) are based on the 40 instruments retrieved fromWuttke et al., 2019,53 whereas the
reverse MR (protein! eGFR) are based on the one to three instruments retrieved from the INTERVAL pGWAS reported in Sun et al., 2018.27 In bold are significant P
valuesat aBonferroni-corrected level (0.05/47 for the forwardanalysis, 0.05/28 for the reverseanalysis).SPOCK2, testican-2;CA3, carbonic anhydrase III;CST6, cystatin-
M;MIA, melanoma-derived growth regulatory protein; b, causal estimate.
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and is involved in a number of biological processes
(Supplemental Table 24). In line with our results, higher
testican-2 plasma levels have also been associated with less
eGFR loss over time and reduced odds of incident CKD.18

Its protein-coding gene, SPOCK2, is associated with both nor-
mal maintenance of organ and tissue integrity, and with
wound healing and other responses to injury.85 Despite the
ubiquitous expression of this gene, its enriched expression
in human glomeruli in comparison to other nonrenal tis-
sues18,86-89 and its renal downregulation in diabetic kidney
disease86 suggest it has a particularly relevant role in renal cel-
lularmechanisms. Furthermore, recent evidence from arterio-
venous sampling demonstrated renal release of this protein
into the bloodstream,18 which in addition to its urine detec-
tion,84 suggests changes in its plasma levels may be indicative
of kidney function.18,76 However, the contribution other
organs might have in its plasma levels cannot be ruled out.

Although the association between eGFR and SPOCK2 renal
expression did not reach statistical significance in some of our
analyses (which may be partly explained by low statistical
power in the dataset with 26 patients with CKD), the direc-
tionality of the coefficient (i.e., positive association) was con-
sistent across datasets. Moreover, multivariable analyses
showed higher scores of histologic measures of renal struc-
tural damage to be negatively associated with SPOCK2 renal
expression, consistent with prior evidence.86

All in all, the agreement between the cross-sectional results
reported by us and by others,17,18,40 and our MR findings and
the associations with histologic measures, indicate testican-2
and its protein-coding gene SPOCK2 may have an important
role in kidney function. Lowplasma levels of testican-2may be
indicative of poor renal function,meaning this proteinmay be
a physiological biomarker of kidney health and disease pro-
gression.17,18 Although the reverse direction of this causal
association did not reach statistical significance in our MR
analyses, a reverse causal effect (i.e., testican-2 on renal func-
tion) is biologically plausible given the role matricellular pro-
teins play in extracellular matrix repair83,90 and its in vitro
effects on human glomerular endothelial cells.18 The utility
of testican-2 as a biomarker with regard to its potential func-
tional effects, tissue of origin, or the mechanisms influencing
its blood levels, requires further study.

Three proteins (MIA, cystatin M, and carbonic anhydrase
III) were identified as potentially having a causal effect on
eGFR, effects biologically plausible given their known roles
(Supplemental Table 24). Nevertheless, the precise mecha-
nisms through which these proteins could be exerting effects
on eGFR remain to be elucidated. Discordant directions of
effect from the observational and the causal estimates (cystatin
M, carbonic anhydrase III) could be explained due to differ-
ences in sample size/characteristics, reverse causation, or con-
founding in the case of the observational estimates, or due to
limitations inherent to the MR methods.91,92 A further expla-
nation might be that they represent different effects: MR
examines lifelong exposures to higher or lower protein levels,

whereas results from observational studies could be reflective
of acute or short-term effects.92

The strengths of our study include the use of a multiplex
proteomics platform and large sample size. This is the first
report of eGFR-protein associations adjusted for multiple
potential confounders, replicated in independent samples of
diverse ancestries, and assessed using causal inference. MR
was conducted with the largest available GWAS results
from nonoverlapping European ancestry populations, thus
avoiding issues derived from population stratification and
sample overlap. We reduced the possibility of horizontal
pleiotropy by using GWAS summary statistics from a com-
plementary renal trait (blood urea nitrogen) to improve the
specificity of the genetic instruments for eGFR, by focusing
on cis-SNPs, and by using multiple pleiotropy-robust sensi-
tivity analyses.

Our study also has several limitations. Aptamer-based pro-
teomic methods may be affected by probe cross-reactivity and
nonspecific binding,79 although the aptamer-based measure-
ments of most of the reported proteins have been validated
in multiple independent studies.27,40,41 This platform does
not produce absolute plasma concentrations or cover post-
translational modifications, limiting the interpretability of
the regression coefficients and the scope of the studied plasma
proteome.79 Our findings are based on cross-sectional data, so
studies examining their longitudinal changes are warranted.
Despite the multiethnic nature of our study, our results may
not extend to ethnic groups not represented in our analyses.
We avoided weak instrument bias inMR, but cannot discount
the possibility of having incurred selection bias in the case of
the SNP-protein data. The sample size in which genetic asso-
ciations with protein levels were calculated was significantly
smaller than the sample used to identify genetic associations
with eGFR, which likely resulted in differences in power.
Finally, knowledge of the biological role of the proteins iden-
tified is insufficient for our findings to suggest mechanistic
insights. A follow-up of our findings in appropriate experi-
mental models would provide additional evidence on the
inferred causal associations reported here and help to unravel
the molecular mechanisms underlying our findings. Likewise,
future validation studies using validated absolute quantitative
assays with increased sensitivity for the detection of testican-2,
and other proteins identified here, are warranted to establish
reference ranges and to explore their suitability as prognostic
and diagnostic biomarkers in clinical settings.

In summary, our transethnic population-based study of
plasma proteomics and renal function identified multiple
markers of kidney function. Our MR findings are a stepping
stone in establishing testican-2 as a physiological marker of
kidney disease progression, and further identify proteins war-
ranting additional investigation. Our results may serve as the
starting point for future translational work on the utility of
these proteins as diagnostic or prognostic biomarkers of dis-
ease, and for research on mechanistic insights at the tissue
and single-cell levels.
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Appendix B

Publication: DNAm-based signatures of accelerated aging

and mortality in blood are associated with low renal

function

Please note that the appended first-author publication on DNAm-based measures of

aging and/or mortality (Mat́ıas-Garćıa et al., 2021a) was made available under the

Creative Commons Attribution 4.0 International License (CC BY 4.0), by which

the author may share and redistribute the material in any medium without formal

permission under the condition of proper attribution (i.e. citation).
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RESEARCH

DNAm‑based signatures of accelerated 
aging and mortality in blood are associated 
with low renal function
Pamela R. Matías‑García1,2,3,4* , Cavin K. Ward‑Caviness5, Laura M. Raffield6 , Xu Gao7 , Yan Zhang8,9 ,  
Rory Wilson2,3, Xīn Gào8, Jana Nano3,10, Andrew Bostom11, Elena Colicino12, Adolfo Correa13, Brent Coull14, 
Charles Eaton11,15, Lifang Hou16, Allan C. Just12, Sonja Kunze2,3, Leslie Lange17, Ethan Lange17, Xihong Lin18, 
Simin Liu19, Jamaji C. Nwanaji‑Enwerem20, Alex Reiner21, Jincheng Shen22, Ben Schöttker8,23, Pantel Vokonas18, 
Yinan Zheng16, Bessie Young24,25, Joel Schwartz20, Steve Horvath26, Ake Lu26, Eric A. Whitsel27,28, 
Wolfgang Koenig4,29,30, Jerzy Adamski31,32,33 , Juliane Winkelmann34,35,36,37, Hermann Brenner8,23 ,  
Andrea A. Baccarelli7, Christian Gieger2,3, Annette Peters3,4,10, Nora Franceschini27†  and 
Melanie Waldenberger2,3,4*†  

Abstract 

Background: The difference between an individual’s chronological and DNA methylation predicted age (DNAmAge), 
termed DNAmAge acceleration (DNAmAA), can capture life‑long environmental exposures and age‑related physi‑
ological changes reflected in methylation status. Several studies have linked DNAmAA to morbidity and mortality, 
yet its relationship with kidney function has not been assessed. We evaluated the associations between seven DNAm 
aging and lifespan predictors (as well as GrimAge components) and five kidney traits (estimated glomerular filtra‑
tion rate [eGFR], urine albumin‑to‑creatinine ratio [uACR], serum urate, microalbuminuria and chronic kidney disease 
[CKD]) in up to 9688 European, African American and Hispanic/Latino individuals from seven population‑based 
studies.

Results: We identified 23 significant associations in our large trans‑ethnic meta‑analysis (p < 1.43E−03 and consist‑
ent direction of effect across studies). Age acceleration measured by the Extrinsic and PhenoAge estimators, as well 
as Zhang’s 10‑CpG epigenetic mortality risk score (MRS), were associated with all parameters of poor kidney health 
(lower eGFR, prevalent CKD, higher uACR, microalbuminuria and higher serum urate). Six of these associations were 
independently observed in European and African American populations. MRS in particular was consistently associ‑
ated with eGFR (β =  − 0.12, 95% CI = [− 0.16, − 0.08] change in log‑transformed eGFR per unit increase in MRS, 
p = 4.39E−08), prevalent CKD (odds ratio (OR) = 1.78 [1.47, 2.16], p = 2.71E‑09) and higher serum urate levels (β = 0.12 
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Background
The kidneys are responsible for maintenance of homeo-
stasis and blood filtration, and their function is most 
commonly clinically assessed by measuring serum creati-
nine levels to estimate glomerular filtration rate (eGFR) 
[1, 2]. Chronic kidney disease (CKD), defined by low 
eGFR (< 60  ml/min/m2) and/or presence of protein in 
urine, is an increasingly prevalent non-communicable 
disease with a considerable burden worldwide [3–5]. 
Increased urinary albumin-to-creatinine ratio (uACR) 
is a marker of kidney injury, measured to identify early 
kidney damage which can precede eGFR decline (for 
example, diabetic nephropathy) [6]. Albuminuria is a pre-
dictor of CKD progression and mortality [6, 7], whereas 
high serum levels of urate, a molecule of purine nucleo-
tide metabolism excreted by the kidney, is a risk factor 
for incident cardiovascular and kidney disease, and also a 
biomarker of low eGFR [8].

DNA methylation (DNAm), defined as the covalent 
addition of a methyl group to a DNA nucleotide (usu-
ally the cytosine of a cytosine-guanine dinucleotide 
[CpG]), is the most extensively studied epigenetic mecha-
nism, and its role in numerous conditions and diseases 
has been demonstrated [9]. Age-predicting algorithms 
based on the percentages of DNAm observed at sets of 
CpGs, such as the ones proposed by Hannum [10] and 
Horvath [11], have been used to predict an individual’s 
age (DNAmAge) and assess biological aging by calcu-
lating the difference between an individual’s predicted 
and chronological age—a concept known as DNAmAge 
acceleration (DNAmAA) [12, 13]. Other measures have 
been derived to assess specific aspects of aging mecha-
nisms, such as intrinsic epigenetic age acceleration 
(IEAA), which assesses aging independent of blood 
immune system changes [14], or extrinsic epigenetic age 
acceleration (EEAA) [15, 16], which specifically estimates 
aging as related to the immune system and reflected 
in changes in blood immune cell-type proportions. A 

“second generation” of DNAm-based aging signatures 
incorporated physiological markers to better capture 
changes in traditional biological aging biomarkers [12]. 
PhenoAge was developed as a marker meant to mirror 
physiological dysregulation as reflected in changes in age 
and 9 additional age-related features, such as C-reactive 
protein and serum glucose [17]. GrimAge is a mortality 
predictor based on mortality-related DNAm-estimated 
traits [18]. Another DNAm-based lifespan predictor, the 
10-CpG epigenetic mortality risk score (MRS), stands out 
for its simplicity and its recent validation [19, 20].

Multiple studies have shown, although with vary-
ing findings, a positive relationship between DNAmAge 
measured in blood and aging-related diseases and mor-
tality [12, 13, 21]. DNAmAge is associated with all-cause 
mortality [22, 23], frailty [24], cognitive function and 
physical fitness [25], body mass index (BMI) [26] and 
obesity [27], lifetime stress [28] and a number of other 
age-related conditions [12]. The available evidence points 
to DNAmAge as a potential global biomarker of biologi-
cal aging and health, though potential for publication 
bias must be considered [21]. Although some of the “sec-
ond-generation” DNAm-based aging measures include 
proteins or markers known to be associated with kidney 
function [17, 18], whether these and other DNAm-based 
predictors are correlated with different parameters of 
kidney aging and low function has not been investigated 
[13, 29, 30].

We evaluated the association between five kidney traits 
(eGFR, prevalent CKD, uACR, microalbuminuria and 
serum urate) and seven DNAm-based age and/or lifes-
pan predictors (HannumAA, HorvathAA, EEAA, IEAA, 
PhenoAA, GrimAA and MRS) in up to seven population-
based studies in a large trans-ethnic meta-analysis. We 
also evaluated kidney trait associations with secondary 
DNAm-based predictors: categorical epigenetic mor-
tality risk score (MRS) variables, and eight DNAm-esti-
mated traits underlying the GrimAge mortality predictor. 

[0.07, 0.16], p = 2.08E−06). The “first‑generation” clocks (Hannum, Horvath) and GrimAge showed different patterns of 
association with the kidney traits. Three of the DNAm‑estimated components of GrimAge, namely adrenomedullin, 
plasminogen‑activation inhibition 1 and pack years, were positively associated with higher uACR, serum urate and 
microalbuminuria.

Conclusion: DNAmAge acceleration and DNAm mortality predictors estimated in whole blood were associated with 
multiple kidney traits, including eGFR and CKD, in this multi‑ethnic study. Epigenetic biomarkers which reflect the 
systemic effects of age‑related mechanisms such as immunosenescence, inflammaging and oxidative stress may have 
important mechanistic or prognostic roles in kidney disease. Our study highlights new findings linking kidney disease 
to biological aging, and opportunities warranting future investigation into DNA methylation biomarkers for prognos‑
tic or risk stratification in kidney disease.

Keywords: Aging, Kidney function, Epigenetic age acceleration, DNAm age, Glomerular filtration rate, UACR , Serum 
urate
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We additionally performed ethnic-specific meta-analyses 
to identify robust associations across cohorts of different 
ethnicities.

Results
Study characteristics
We conducted a trans-ethnic meta-analysis of seven 
DNAm-based age/lifespan predictors and five kidney 
traits using data from seven population-based cohorts 
(Fig.  1, population characteristics in Table  1). Serum 
creatinine-based traits (eGFR and prevalent CKD) were 
available for all European ancestry (k = 5), African Amer-
ican (k = 2) and one additional Hispanic/Latino study 
(N = 9688). Sample sizes for the other traits were smaller: 
serum urate was available in four studies with European 
ancestry and one study with African American partici-
pants (N = 5903), while uACR and microalbuminuria 
were available in three of the European ancestry studies 

and one African American study (N = 4110). Additional 
details on the cohorts are provided in Additional file  1: 
Table S1.

DNAm-based age and lifespan predictors were used 
as independent variables and kidney traits as dependent 
variables in covariate-adjusted regression models. Study-
level results showed associations were slightly attenu-
ated after the inclusion of additional covariates in model 
2 (namely BMI, log-transformed triglycerides, HDL, 
hypertension, smoking status and diabetes) in compari-
son with model 1 (basic model adjusting for chronologi-
cal age and sex; Additional file  1: Table  S2). Sensitivity 
analyses showed that “crude” bivariate correlations were 
largely attenuated after adjustment for chronological age; 
the introduction of additional variables did not signifi-
cantly alter the observed effects, despite a slight increase 
in the coefficient after the introduction of smoking in 
models with MRS and GrimAge (Additional file 3: Note 

23 significant
DNAm predictor-kidney trait associa

African American studies

Hispanic/La no study

European ancestry
studies

N = 1,725

N = 1,529

N = 906 and 754

NEur. = 1,449

Trans-ethnic meta-analysis of study-level regression 
coefficients

kidney trait ~ DNAm-based predictor + chronological age + sex + 
BMI + blood lipids + hypertension + smoking + diabetes 

N ≤ 9,390

p < 1.43E-03 and concordant effect direc on across studies

UACR
microalbuminuria

eGFR

urate

Horvath

CKD
MRS

Hannum

Pheno
EEAA

Grim

KORA F4

NAS

ESTHER-I and –II

WHI

NAfr.Am. = 1,041

N = 1,677

WHI

JHS

NHisp. = 607WHI

Fig. 1 Study design. Regression analyses were conducted in each study by modeling DNAm‑based predictors as independent variables and kidney 
traits as dependent variables, adjusting for confounders. Results from the fully adjusted model (with chronological age, sex, BMI, log‑transformed 
triglycerides, HDL, hypertension, smoking status, diabetes as covariates and baseline eGFR for serum urate analyses) were meta‑analyzed using 
inverse‑variance weighted fixed‑effects and random‑effects models. We based our main interpretations on the fixed‑effects results; if heterogeneity 
was large (I2 > 0.50 and Cochran’s Q phet < 0.05), we based our interpretations on the random‑effects results. The Venn diagram shows the set of 23 
statistically significant associations between DNAm‑based predictors and kidney traits identified in the trans‑ethnic meta‑analysis (p < 1.43E−03 and 
consistent direction of effect across studies)
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S1). Estimates from the fully adjusted model were meta-
analyzed using inverse-variance weighted fixed-effects 
and random-effects models. We based our main interpre-
tations on the fixed-effects results; if heterogeneity was 
large (I2 > 0.50 and Cochran’s Q phet < 0.05), we based our 
interpretations on the random-effects results (Methods).

Meta‑analysis of associations between DNAm‑based 
predictors and kidney traits
We identified 23 significant DNAm-based predictor-
kidney trait associations (p < 1.43E−03 and concordant 
direction of effect across studies; Table 2). Three interest-
ing groups worth further discussion are: (1) PhenoAA, 
MRS and EEAA were associated with all parameters of 
poor kidney health (lower eGFR, prevalent CKD, higher 
uACR or microalbuminuria and higher serum urate); (2) 
the “first-generation” epigenetic aging markers, where 
HannumAA was associated with all kidney traits but 

serum urate, and HorvathAA was only associated with 
lower eGFR; and (3) an analogous measure to age accel-
eration in GrimAge was associated with uACR, micro-
albuminuria and serum urate (Fig.  1). Six associations 
between DNAm-based predictors and kidney traits were 
replicated across ethnic groups, and ethnic-specific repli-
cation was observed for 16 associations in total.

PhenoAA, EEAA and MRS universally associated with poor 
kidney health
From these three DNAm-based predictors, associa-
tions with MRS had the smallest p-values: one MRS unit 
increase had a − 0.12 (95% CI = [− 0.16, − 0.08]) change 
in one standard deviation (SD) of log-transformed 
eGFR (p = 4.39E−08) and was associated with 78% [47–
116%] increased odds of prevalent CKD (p = 2.71E−09) 
(Table  2). Although high heterogeneity was identi-
fied in associations between MRS and CKD, uACR and 

Table 1 Population characteristics

Population characteristics of all participating studies. The means and standards deviation (SD) are shown for continuous traits, and N (%) for categorical traits. 
**Skewed variables, for which median and (1st, 3rd quartile) are shown. The sample sizes presented here for each of the studies correspond to the number of 
observations with information on DNAm‑predictors, serum‑based creatinine kidney traits, chronological age and sex. Age was measured in years at time of 
participation in study; BMI in kg/m2; serum creatinine in mg/dL; eGFR, serum‑creatinine‑based estimated glomerular filtration rate in mL/min/1.73  m2; CKD: prevalent 
chronic kidney disease, defined as eGFR < 60 ml/min/1.73  m2; uACR in mg/g;  microalbuminuria was defined as uACR ≥ 30 mg/g; serum urate in mg/dl; prevalent 
diabetes was defined based on use of glucose lowering drugs or fasting plasma glucose ≥ 126 mg/dl; hypertension defined using the Joint National Committee 
(JNC) VII definition (blood pressure > 140/90 mm Hg or use of anti‑hypertensive medications); HDL cholesterol and triglycerides in mg/dl; C‑reactive protein in mg/L; 
NA denotes the trait was not available. Abbreviations used in ethnic background row: Eur., European ancestry; Afr.Am.., African American; His., Hispanic/Latino. An 
extended version of this table is shown in Additional file 1: Table S1

Traits KORA ESTHER‑I ESTHER‑II NAS WHI JHS

Ethnic 
background

Eur Eur Eur Eur Afr. Am His Eur Afr. Am

N 1725 906 754 1529 1041 607 1449 1677

Age 60.98 (8.88) 62.00 (6.53) 62.76 (6.75) 74.61 (7.05) 61.83 (6.67) 60.93 (6.64) 66.32 (6.73) 56.23 (12.31)

Male 843 (48.9) 435 (48.0) 316 (41.9) 1529 (100) 0 (0) 0 (0) 0 (0) 649 (37.17)

BMI 28.11 (4.78) 27.75 (4.25) 27.47 (4.76) 28.00 (4.13) 31.61 (6.43) 29.21 (5.22) 28.84 (5.83) 32.02 (7.37)

Smoking status

Never smoker 720 (41.7) 443 (48.9) 354 (47.0) 478 (31.3) 496 (48.06) 376 (62.46) 766 (53.34) 1490 (85.88)

Ever smoker 1003 (58.2) 463 (51.1) 400 (53.0) 1051 (68.7) 536 (51.94) 226 (37.54) 670 (46.66) 245 (14.12)

Serum creati‑
nine

0.91 (0.27) 0.69 (0.31) 0.85 (0.31) 1.11 (0.45) 0.82 (0.21) 0.73 (0.23) 0.74 (0.14) 0.96 (0.59)

eGFR 86.77 (16.02) 99.77 (21.15) 86.63 (18.94) 69.32 (16.14) 92.31 (19.65) 88.64 (15.39) 83.69 (13.33) 93.57 (22.37)

CKD 99 (5.7) 54 (5.9) 72 (9.5) 407 (26.6) 59 (5.67) 31 (5.11) 82 (5.66) 115 (6.59)

uACR ** 6.15 (3.85, 
11.97)

9.14 (5.49, 
17.98)

8.92 (5.34, 
16.53)

NA NA NA NA 5.95 (3.95,13.23)

Microalbumi‑
nuria 

150 (8.7) 125 (13.8) 104 (13.8) NA NA NA NA 106 (13.75)

Serum urate 5.37 (1.46) 4.22 (1.49) 4.85 (1.47) 6.13 (1.51) NA NA NA 5.64 (1.70)

Diabetes 158 (9.2) 141 (15.56) 150 (19.89) 235 (15.4) 166 (15.95) 71 (11.70) 96 (6.64) 433 (24.81)

Hypertension 788 (45.7) 516 (55.95) 446 (59.15) 1130 (73.9) 561 (56.21) 207 (35.94) 471 (35.33) 1027 (58.82)

HDL cholesterol 56.47 (14.64) 51.70 (15.79) 53.21 (15.45) 48.81 (12.85) 54.76 (13.78) 51.05 (13.02) 51.38 (11.92) 51.35 (14.73)

Triglycerides ** 110 (77, 158) 89.70 (58.30, 
140.50)

111.85 (76.50, 
116.30)

114 (83, 158) 104 (75, 141) 140 (105, 188) 133 (95, 184) 92 (64, 129)

C‑reactive 
protein **

1.27 (0.63, 
2.655)

1.62 (0.83, 3.46) 2.40 (1.06, 4.72) 1.47 (0.75, 3.04) NA NA NA 2.71 (1.18, 5.96)
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microalbuminuria, the results from random-effects mod-
els (Additional file 1: Table S3) were consistent with the 
estimates produced by the fixed-effect model: for exam-
ple, one MRS unit increase was associated with a 0.25 
[0.10, 0.40] change in one SD of log-transformed UACR 
(p = 1.06E−03). Figure 2 shows the study-level regression 
coefficients of the association between the continuous 
kidney traits and DNAm-based predictors standardized 
to one SD deviation in both terms to allow for their com-
parison. While the strength of association with serum 
urate of these three DNAm-based predictors was similar, 
MRS and EEAA had the largest effects on eGFR (Fig. 2, 

standardized effects in Additional file 1: Table S4). Simi-
lar observations were done for the binary kidney traits 
(Additional file 2: Fig. S1).

Figure 3 shows results from ethnic-specific meta-anal-
yses significant in both European ancestry and African 
American meta-analyses (p < 1.43E−03, Additional file 1: 
Table  S3). MRS stands out for its replication across all 
subgroups, including the small Hispanic/Latino cohort 
(Fig. 3a, study-level results in Additional file 1: Table S2). 
The eGFR-EEAA and CKD-PhenoAA effects were also 
replicated at the Bonferroni-corrected significance level 
across ethnic-specific meta-analyses (Fig.  3b), whereas 

Table 2 Trans‑ethnic meta‑analyses of associations between kidney traits and DNAm‑based age and lifespan predictors

Results from trans‑ethnic meta‑analyses of associations between kidney traits and DNAm‑based age and lifespan predictors in up to seven population‑based studies. 
Study‑level associations were adjusted for chronological age, sex, BMI, blood lipids, hypertension, smoking and diabetes. Beta coefficients are given as changes in one 
standard deviation (SD) of the continuous kidney trait. Fully adjusted associations of serum‑creatinine‑based traits (eGFR, CKD) are based on N ≤ 9390 observations, 
whereas the sample size for urinary albumin‑based traits (uACR, microalbuminuria) is N ≤ 4406 and for urate N ≤ 5769. I2 is the heterogeneity statistic, and (Q) 
phet corresponds to Cochran’s Q heterogeneity statistic

Shown in bold are statistically significant associations (p < 1.43E‑03 and consistent direction of effect across studies) with either no evidence of heterogeneity in the 
fixed‑effects model or supporting findings from the random‑effects model
a phet of MRS with CKD, uACR and microalbuminuria < 0.05, therefore reported association based on significant random‑effects models: MRS‑uACR: β = 0.248 [0.1, 
0.397], p = 1.061E−03; MRS‑CKD: OR = 1.915 [1.316, 2.786], p = 6.89E−04; and MRS‑microalbuminuria: OR = 2.197 [1.403, 3.439], p = 5.82E−04 (Additional file 1: 
Table S3)

Clock eGFR CKD

β 95% CI p I2 phet OR 95% CI p I2 phet

HorvathAA  − 0.006  − 0.01, − 0.003 5.15E−04 38.696 0.121 1.019 1.003, 1.034 0.016 13.663 0.323

HannumAA  − 0.007  − 0.011, − 0.004 1.05E−04 0 0.816 1.033 1.016, 1.05 8.55E−05 44.898 0.08

GrimAA  − 0.006  − 0.01, − 0.002 1.94E−03 63.474 0.008 1.027 1.01, 1.044 1.27E−03 77.714 5.2E−05

PhenoAA  − 0.005  − 0.008, − 0.002 2.62E−04 0 0.564 1.031 1.018, 1.044 3.19E−06 33.885 0.158

EEAA  − 0.008  − 0.012, − 0.005 2.09E−06 43.328 0.09 1.038 1.022, 1.055 3.41E−06 49.636 0.053

MRS  − 0.117  − 0.158, − 0.075 4.39E−08 27.67 0.208 1.784 1.474, 2.159 2.71E−09 68.295 0.002a

IEAA  − 0.004  − 0.008, 0 0.051 16.08 0.303 1.007 0.99, 1.025 0.427 2.365 0.411

Clock uACR Microalbuminuria

β 95% CI p I2 phet OR 95% CI p I2 phet

HorvathAA 0.002  − 0.004, 0.008 0.606 0 0.632 1.014 0.992, 1.036 0.223 0 0.703

HannumAA 0.014 0.009, 0.02 2.04E−06 0 0.967 1.054 1.032, 1.076 1.08E−06 0 0.898

GrimAA 0.029 0.021, 0.037 1.07E−12 7.22 0.357 1.106 1.074, 1.138 7.58E−12 0 0.59

PhenoAA 0.01 0.005, 0.015 2.71E−05 0 0.787 1.035 1.017, 1.053 8.96E−05 0 0.612

EEAA 0.013 0.008, 0.017 4.62E−07 0 0.989 1.048 1.03, 1.066 1.42E−07 0 0.86

MRS 0.252 0.179, 0.324 1.01E−11 76.128 0.006a 2.238 1.734, 2.889 6.14E−10 67.72 0.026a

IEAA 0.002  − 0.004, 0.008 0.529 0 0.847 1.015 0.991, 1.04 0.214 0 0.769

Clock Urate

β 95% CI p I2 phet

HorvathAA 0.003  − 0.001, 0.007 0.12 0 0.453

HannumAA 0.005 0.001, 0.009 0.011 0 0.919

GrimAA 0.009 0.004, 0.013 1.17E−04 56.31 0.057

PhenoAA 0.009 0.006, 0.012 4.71E−08 0 0.432

EEAA 0.007 0.004, 0.011 4.37E−05 41.60 0.144

MRS 0.115 0.067, 0.162 2.08E−06 12.16 0.336

IEAA  − 0.001  − 0.005, 0.003 0.675 0 0.797
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their “complementary” associations (CKD-EEAA and 
eGFR-PhenoAA) were nominally significant (Additional 
file  2: Fig. S2A). Further effects observed in both Euro-
pean ancestry meta-analysis and the African American 
cohort were the associations of higher serum urate with 
MRS and PhenoAA (Fig.  3c). On the other hand, the 
associations between EEAA, PhenoAA and MRS with 
higher uACR (and prevalent microalbuminuria) identi-
fied in the trans-ethnic meta-analysis were mostly driven 
by the effects from the European ancestry cohorts (Addi-
tional file 2: Figs. S3 and S4), as well as that of serum urate 
and EEAA (Additional file 2: Fig. S5A). Most notably, the 
association between uACR and MRS was replicated at 
the Bonferroni-corrected level in two of the European 
ancestry cohorts (KORA and ESTHER-II), and nominally 
significant in the third one (Additional file 1: Table S2).

Associations with “first‑generation” DNAm clocks 
and GrimAge
HorvathAA, age acceleration measured by the “first-gen-
eration” DNAm-based predictor HorvathAge, was exclu-
sively associated with low eGFR: a one year difference 
between DNAm-estimated age and chronological age 

was associated with a − 0.006 [− 0.01, − 0.003] change 
in log-transformed eGFR (p = 5.15E−04, Table  2). Han-
numAA, another “first-generation” DNAm-based age 
predictor, was also associated with eGFR; the strength 
of the association with both “first-generation” DNAm-
based predictors was similar (Fig.  2). HannumAA was 
additionally associated with CKD, uACR and microal-
buminuria (Additional file  2: Figs. S2–S4B). While the 
effects observed for HannumAA with eGFR and CKD 
were robustly replicated by cohorts with African Ameri-
can participants (Additional file 2: Fig. S2B), the associa-
tion between HorvathAA and eGFR was mostly driven 
by studies with European ancestry (Additional file 2: Fig. 
S2C).

A year of GrimAge acceleration was associated with an 
increase of 0.03 SD of log-transformed uACR and a 10.6% 
increase in the odds of having microalbuminuria, both early 
markers of renal damage (Additional file 2: Figs S3–S4C). 
Likewise, a one-year difference in GrimAge was associated 
with higher serum urate levels, a risk factor for cardiorenal 
disease (Additional file 2: Fig. S5B). The GrimAA effects on 
uACR were the largest across DNAm-based predictors and 

Fig. 2 Standardized effect estimates from DNAm‑based predictors and kidney traits. Scatter plot showing the effect estimates from the DNAmAge 
and lifespan predictors across continuous kidney traits for individual studies and trans‑ethnic fixed‑effects meta‑analysis. Effect estimates have been 
standardized to one SD in both variables to allow for comparison of effect sizes. The legend shows the combination of shape and color coding 
assigned for the studies
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kidney traits (Fig. 2), and a similar effect was observed for 
microalbuminuria (Additional file 2: Fig. S1).

Associations with categorical MRS and GrimAge 
components
In the categorical MRS, where risk groups were defined 
based on the number of CpGs with methylation levels 
beyond pre-defined high-risk thresholds, a 0.431 (95% 
CI = [0.29, 0.57]) SD increase in log-uACR was observed 
for individuals with > 5 “aberrantly” methylated CpGs 

(high risk MRS) compared to those with 0–1 aberrantly 
methylated loci (low risk MRS) (p = 4.01E-09, Additional 
file  2: Fig. S6A). Similar associations were observed for 
microalbuminuria (OR = 2.075 [1.582, 2.722], p = 1.36E-
07; Additional file 1: Table S3). The moderate MRS cat-
egory (defined as those with 2–5 “aberrantly” methylated 
loci) was also associated with serum urate (Additional 
file  2: Fig. S6B). These effects were mostly driven by 
European ancestry studies, where effects had a similar 
strength of association and replicated within this group 

Fig. 3 Multivariate regression meta‑analysis of association between kidney traits and MRS, EEAA and PhenoAA. Multivariate regression models 
were used to assess the relationship between kidney traits and age acceleration as measured by seven DNAm‑based predictors of age and/or 
lifespan, including Zhang’s 10‑CpG mortality risk score (MRS), PhenoAge and extrinsic epigenetic age acceleration (EEAA). Results from the fully 
adjusted model included chronological age, sex, BMI, log‑transformed triglycerides, HDL, hypertension, smoking status and diabetes as covariates, 
and baseline eGFR for serum urate analyses. Inverse‑variance weighted fixed‑effects models meta‑analysis was conducted, where if heterogeneity 
was observed ([Q] phet < 0.05), a random‑effects model was further interpreted. Individual panels show forest plots with the study‑level and 
meta‑analytic results for each association between kidney trait and DNAm‑based predictor from the fully adjusted model. The rows correspond to 
the different studies and the sample size for each analysis (N). For eGFR and urate, the regression estimates represent the change in one standard 
deviation of the kidney trait per unit change in the MRS or per one year of age acceleration for PhenoAA and EEA. For CKD, the estimate column 
corresponds to the odds ratio (OR). The x‑axis shows the estimates obtained from either the regression model (for single studies, data point shape 
is a black square) or the meta‑analytic estimate (data point shape is a green diamond for serum creatinine‑based traits and a red diamond for urate) 
with their 95% CI. Estimate: regression coefficient for the continuous traits and OR for CKD, 95% CI: 95% confidence interval of the estimate
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(Additional file  2: Fig. S7). None of these effects repli-
cated in the African American cohort, perhaps due to the 
smaller sample size and reduced statistical power.

In regard to the secondary analyses with the eight 
DNAm-based components that constitute GrimAge, we 
found associations for three of them. DNAm-estimated 
adrenomedullin (DNAmADM), plasminogen-activa-
tion inhibition 1 (DNAmPAI1) and pack years (DNAm-
PACKYRS) were positively associated with higher uACR, 
higher serum urate levels and microalbuminuria (Addi-
tional file 1: Table S5). Of note, the effects identified for 
serum urate replicated in both the European-ancestry 
analyses and in the African American cohort (Additional 
file  1: Table  S2), whereas those in uACR and microal-
buminuria were mostly replicated within the European 
studies.

Discussion
We identified 23 associations between kidney traits and 
DNAm-based predictors of aging and/or mortality in a 
large trans-ethnic meta-analysis from up to seven multi-
ethnic population-based cohorts. PhenoAA, MRS and 
EEAA were associated with all parameters of poor kid-
ney health (lower eGFR, prevalent CKD, higher uACR or 
microalbuminuria and higher serum urate). Distinct pat-
terns of association were observed with age acceleration 
in the “first-generation” clocks (Hannum and Horvath) 
and an analogous measure in GrimAge: HorvathAA was 
only associated with lower eGFR, while HannumAA was 
associated with all kidney traits but serum urate. Finally, 
GrimAA was associated with uACR, microalbuminuria 
and serum urate.

Sensitivity analyses showed that the inclusion of chron-
ological age in a “crude” model lead to large attenuation 

of the correlation between DNAm-based predictors and 
kidney traits, as expected when adjusting for variables 
confounding the exposure-outcome association. The pos-
terior introduction of additional variables did not further 
alter the observed effects. A slight increase in the coeffi-
cient after the introduction of smoking was observed for 
MRS and GrimAge, which may be explained in general 
by the strong correlation between smoking and DNAm/
DNAmAge acceleration in blood [31–34], and specifi-
cally in relation to the these two markers as they either 
directly incorporate cigarette smoking into its formula-
tion [19] or capture the effects of cigarette smoking [20].

From the three “universally” associated DNAm-
based predictors, MRS was robustly associated with 
multiple kidney phenotypes, some of which replicated 
across ethnic-specific analyses (i.e., eGFR, prevalent 
CKD and urate). Together with EEAA and GrimAA, 
MRS showed the largest effects in comparison with the 
other DNAm-based predictors. Moreover, MRS mod-
erate and high risk categories [20] were also associated 
with eGFR and markers of kidney injury in the second-
ary analyses. Recent evidence suggests the MRS is a 
DNAm-based biomarker which reflects mortality risks 
by capturing the effects of oxidative stress and systemic 
inflammation, as well as inflammation-driven changes 
in immune cell counts—all mechanisms shared by 
numerous chronic diseases [35–38]. Particularly in kid-
ney aging, mitochondrial dysfunction, uremia-induced 
epigenetic changes and the production of reactive oxy-
gen species in the glomeruli that lead to barrier func-
tion impairment and albuminuria are all mechanisms 
promoting oxidative stress [8, 39–41]. These factors 
may thus explain the associations between kidney traits 
and MRS here identified. The grounding of the MRS 

Fig. 3 continued
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in inflammation and oxidative stress mechanisms may 
also explain the predictive power of this predictor in 
regard to outcomes from cancer to cardiovascular dis-
ease mortality [20, 21].

EEAA and PhenoAA, also associated with all kid-
ney traits, are both extrinsic aging measures (i.e., track-
ing changes in blood cell composition) that also capture 
(intrinsic) aging-related physiological dysregulation 
[12, 18]. EEAA, identified as a measure of immune sys-
tem aging, is considered better at predicting age-related 
decline of tissue performance [12, 14, 18]. Increased allo-
static load, activation of stress and pro-aging pathways, 
impairment of protective pathways as well as exogenous 
lifestyle and environmental factors are all factors driving 
premature aging [17, 39]. Immunosenescence [42, 43], 
systemic low-grade inflammation (’inflammaging’) [44] 
and oxidative stress [37, 39] contribute to an increased 
allostatic load and are mechanisms present in kidney 
aging [17, 45]. In particular, the immune system plays 
an important role in the incidence, development and 
resolution of renal disease [43]. A signature of 447 genes 
involved in renal aging further confirmed the relevance 
of cellular pathways common to immune function and 
renal physiological decline [46]. Likewise, CKD patients 
show signs of premature immunological aging (such as 
poor naïve T-cell frequency and reduced thymic out-
put), a status induced by ureamia (high concentrations of 
serum urate in blood) that is associated with poor clini-
cal outcomes [47]. At the cellular level, telomere attrition 
[39, 48] and the cytokine secretory profile of senescent 
cells promote inflammation and lead to fibrotic damage 
[37, 39, 43, 45], further linking inflammaging to renal 
dysfunction [9]. Our findings, in line with the positive 
association between PhenoAge and albumin excretion 
rate identified in 499 subjects with type 1 diabetes [49], 
may be thus explained by the relationship between these 
DNAm-based predictors and the aging-related changes 
to the immune system, low-grade chronic inflammation 
and oxidative stress that impact renal disease [37, 47]. 
Moreover, EEAA, PhenoAge and the MRS have shown 
a stronger predictive association with time to death than 
HannumAA, HorvathAA and IEAA, suggesting they bet-
ter reflect mortality risks associated with biological aging 
[16, 20]—and based on our findings, also better reflect 
immune system changes associated with kidney aging. 
The correlation between these DNAm-based predictors 
and poor kidney health may also explain their strong 
associations with mortality, as the ensuing contribu-
tion of renal disease to physiological dysregulation may 
increase mortality risk [6, 7, 39, 50].

Distinct patterns of association were identified with 
two of the “first-generation” clocks, HorvathAA and 
HannumAA. HorvathAA, thought to track cell-intrinsic 

aging (e.g., epigenetic stability mechanisms, cell growth 
and survival as well as organismal development) [11, 
12, 16, 18], was exclusively associated with eGFR in our 
study. The statistical power derived from the larger sam-
ple size in our study likely explains this positive asso-
ciation, unlike prior studies reporting null findings with 
eGFR [49, 51]. Considering tissue from individuals with 
renal disease was included in the development of this 
pan-tissue marker [11], this epigenetic marker reflects 
alterations in ubiquitous cell-intrinsic pathways that our 
findings suggest may be relevant for renal (glomerular) 
function. Genome-wide association studies of the Han-
num and Horvath DNAm-based predictors have shown 
that, even though they capture different aspects of aging, 
both markers are influenced by genes associated with 
metabolic and immune system pathways [52, 53]. Conse-
quently, these DNAm-based predictors may also some-
what be reflective of the immune molecular mechanisms 
previously described. An additional factor of potential 
relevance for the eGFR-HorvathAA association may be 
aberrant glucocorticoid signaling, given its potentially 
pathogenic role in renal function [54] and the enrich-
ment of glucocorticoid response elements in this DNAm 
marker [29].

HannumAA, associated with lower renal function and 
markers of early renal damage (uACR and microalbumi-
nuria) in our study, is also strongly correlated with blood 
cell counts [16, 23] and is sensitive to environmental 
influences [15, 53]. Moreover, it has also been associated 
with higher levels of inflammatory biomarkers, creati-
nine and certain lipid classes in individuals of European 
ancestry [14, 15, 55]. Like other extrinsic measures, Han-
num seems to be a better marker for later-life diseases 
and mortality than Horvath [22] and has even been pro-
posed as a prognostic marker of pathological metabolic 
processes [56]. HannumAA in cancerous kidney tissue vs 
normal samples has also been reported [10], thus offering 
further evidence on the relevance of our findings in blood 
to renal disease.

The association between one-year difference in the 
GrimAge predictor and higher uACR, serum urate and 
microalbuminuria—but not eGFR or prevalent CKD—
suggests this DNAm-based predictor might be more 
sensitive to systemic inflammation and early renal dam-
age. Albuminuria changes can occur before eGFR decline 
in early kidney disease [6]: early structural glomerular 
lesions in patients with normal eGFR are better cor-
related with changes in uACR than with GFR decline, 
where the latter might not be present yet [57]. Moreover, 
albuminuria is a predictor of CKD progression and mor-
tality independently from eGFR changes, which suggests 
they represent two independent mechanisms underlying 
renal disease progression [6, 7]. Our findings are in line 
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with prior reports of GrimAge association with albu-
min excretion in T1D patients and non-diabetic subjects 
[19, 49], where lower power may explain the null find-
ings reported in [51]. Asymptomatic hyperuricaemia, or 
high serum urate levels, is involved in pro-inflammatory 
mechanisms and is associated with a high risk of cardio-
vascular and renal disease [8]. Serum urate, both in its 
crystal and soluble forms, activates innate immunity and 
triggers DNAm epigenetic mechanisms (e.g., promoting 
cytokine secretion, pro-inflammatory pathways including 
oxidative stress) leading to persisting inflammation and 
an increased allostatic load [8, 39]. These effects may, in 
turn, explain our findings in relation to GrimAge. A high 
degree of heterogeneity in the eGFR- and CKD-GrimAA 
analyses was observed, similarly to reports in prior stud-
ies [58, 59].

Overall, the observed associations did not show a clear 
pattern across kidney traits, thus supporting the pro-
posed notion that the existing DNAm-based predictors 
might reflect different aspects of biological aging. This 
is in line with their differential association with risk fac-
tors, intermediate phenotypes and diseases [12, 58, 60, 
61], and their inclusion of non-overlapping CpGs sets 
[19, 20, 60, 62]. The CpG overlap between DNAm-based 
predictors was assessed in detail by Liu et.al, where the 
lack of CpG overlap may be explained by the redundancy 
of the methylome: CpGs selected in the construction of 
different DNAm predictors may represent different aging 
hallmarks or pathways, despite the potential biological 
similarities of their genomic regions [62]. Our findings 
are also consistent with the many associations observed 
with EEAA and other blood immune system correlated 
DNAm-based predictors [12], and with the lack of asso-
ciations with IEAA observed in prior studies [52, 61].

DNAm-estimated adrenomedullin (DNAmADM), 
plasminogen activator inhibitor-1 (DNAmPA1) and 
smoking pack years (DNAmPackYears) were positively 
associated with decreased renal function. Consist-
ent with our findings, patients with chronic cardiorenal 
diseases have higher blood levels of ADM [63, 64] and 
PAI-1 [65–67], where the first is a potential biomarker of 
CKD progression [64, 68] and the latter a risk factor for 
cardiorenal disease [66, 69]. Several factors involved in 
kidney disease pathogenesis (e.g., oxidative stress, inflam-
mation) induce PAI-1 expression (66, 70, 71), which in 
turn has been linked to fibrosis, glomeruli damage and 
other pathogenic mechanisms in renal disease [65, 67], 
as well as to thrombosis and an increased hypercoagu-
lable state—a shared phenotype of inflammaging [37] 
and renal disease [72]. Moreover, the effects of smoking 
in DNAm [31, 32] and their association to DNAmAge 
acceleration in blood are well known [33, 34]. PhenoAge 
and MRS capture effects of cigarette smoking [18, 20, 

33, 58, 60], whereas GrimAge specifically incorporates 
cigarette smoking into its formulation [19]. Cigarette 
smoking has been associated with renal function decline 
and increased inflammation [73], where several mecha-
nisms explaining the negative effects of smoking on renal 
function (e.g., oxidative stress, endothelial dysfunction, 
immune function modulation) contribute to renal disease 
progression [74]. Overall, our findings are in line with the 
roles described in the literature for the studied DNAm-
estimated markers, and further support the notion that 
associations between epigenetic aging and health out-
comes may be mediated by age-related pro-inflammatory 
mechanisms [75]. Moreover, they suggest DNAm-based 
estimates might prove to be valuable proxies in settings 
where such variables are not available (e.g., limitations in 
the clinical use of ADM [68] and self-reported smoking 
[34]).

Strengths of this work are the large sample size and 
inclusion of multiple independent studies involv-
ing multi-ethnic populations. We comprehensively 
addressed biological aging and lifespan as predicted by 
DNAm and assessed multiple kidney traits reflecting dif-
ferent aspects of renal health. Our results in regard to 
PhenoAge and GrimAge represent confirmatory findings 
to some extent, given that renal function variables were 
included in the derivation of these algorithms [18, 19]. Of 
note, although the MRS was derived using data of two of 
the cohorts included in this study, it has been indepen-
dently validated [20, 21] and the replication of its associa-
tions across multiple cohorts suggest our findings are not 
a product of data overfitting. All in all, our study meets 
the considerations proposed by a recent literature review 
and meta-analysis on the topic [22].

Limitations of this study include the estimation of 
DNAm markers in blood samples rather than renal tis-
sue, although there is currently no epigenetic age pre-
dictor derived in kidney tissue. Age-related methylation 
changes can be tissue-specific [76] and show inter-indi-
vidual variation [46], yet associations between eGFR 
and DNAm in blood have been demonstrated to be rel-
evant to kidney traits [46, 77]. Moreover, this remains 
the only viable approach for research conducted in 
population-based studies, where taking renal biopsies 
from participants is not done due to practical and ethical 
considerations. Despite the bias inherent to the calcu-
lation of eGFR using equations that systematically pro-
duce higher values for individuals identified as black [2, 
78, 79], associations with trans-ethnic replication in our 
study featured lower eGFR (CKD). Nevertheless, future 
kidney research would benefit from the development 
and use of methods relying on filtration markers inde-
pendent from muscle mass and/or moving beyond race 
as a variable [78]. The lack of trans-ethnic replication 
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of all associations may be explained by multiple factors, 
most notably the smaller sample sizes from non-Euro-
pean studies, or ethnic biases in DNAm-based predic-
tors (as those reported for PhenoAge in [80]). Future 
studies using larger, homogeneous sample sizes from 
diverse ethnic groups are needed to address the general-
izability of our findings, and to interrogate the contribu-
tions of environmental and social determinants of health 
disparities in epigenetic aging. Our models assumed 
a linear relationship in the age range studied here, and 
residual confounding after adjustment for the covari-
ates included in our regression analyses is a possibility. 
Another potential limitation is that the cross-sectional 
nature of the study does not allow to draw conclusions 
on temporal relationships between DNAm and renal 
phenotypes, although DNAm patterns reflect lifetime 
environmental exposures and genetic factors. Our find-
ings do not provide a mechanistic or causal explanation 
for renal aging and blood epigenetic aging markers, but 
should be considered hypothesis-generating research. 
Preliminary results from the largest genome-wide asso-
ciation (GWAS) study of DNAm-based aging and lifes-
pan predictors found no evidence of causal effects 
on renal outcomes (uACR, eGFR, albuminuria and 
serum urate, among 150 studied traits) [81]. Neverthe-
less, DNAm-based aging/lifespan signatures could still 
be a valuable biomarker of kidney disease prognosis, 
risk stratification or kidney-related outcomes. Future 
research should aim to expand our understanding of epi-
genetic aging in chronic diseases and on the clinical util-
ity of the DNAm-based predictors.

Conclusion
In this study of multi-ethnic population-based cohorts, 
kidney traits were robustly associated with DNAm-
based aging and lifespan predictors measured in whole 
blood, as well as with some secondary DNAm-esti-
mated markers. Our findings are consistent with a body 
of literature on the role immunosenescence, inflam-
maging and oxidative stress play in renal function and 
damage, as well as offer evidence on the relevance of 
cell-intrinsic aging mechanisms. DNAm age and lifes-
pan predictors seem to capture the contribution of 
multiple CpGs to pathological changes common to 
systemic inflammation and renal disease, highlighting 
the systemic nature of age-related physiological func-
tional decline. Future research in longitudinal studies 
is required to evaluate the translational value of our 
findings as either prognostic biomarkers for disease 
progression and mortality, or as means to enhance risk 
stratification; functional studies to explore the complex 
physiological interplay between epigenetic mechanisms 
and biological aging are also warranted.

Methods
Study design
The association between kidney traits as dependent 
variables and DNAm aging/lifespan predictors as inde-
pendent variables was modeled using linear regression 
following a meta-analytic approach (Fig.  1). Study-level 
results from up to seven studies were included in the 
meta-analyses: four studies with participants of European 
ancestry, one study of African American participants and 
three substudies from the WHI with European American, 
African American and Hispanic/Latino participants. The 
studies were KORA (Kooperative Gesundheitsforschung 
in der Region Augsburg), NAS (Normative Aging Study), 
ESTHER (Epidemiologische Studie zu Chancen der Ver-
hütung, Früherkennung und optimierten THerapie chro-
nischer ERkrankungen in der älteren Bevölkerung), WHI 
(Women’s Health Initiative) and the Jackson Heart Study 
(JSH). The ESTHER, NAS and WHI studies contributed 
multiple sets of data that were analyzed separately: data 
sets from ESTHER corresponded to two surveys with 
non-overlapping sets of participants, whereas data from 
NAS were longitudinal and collected over consecutive 
examinations and analyzed taking into account these 
repeated measures. Further details on the data collection 
and methods used in each study are available in Addi-
tional file 3.

Outcome definition
Serum creatinine values obtained with a Jaffé assay before 
2009 were calibrated by multiplying by 0.95 [82] and used 
to calculate estimated glomerular filtration rate (eGFR) 
as per the CKD-EPI equation [2] in its implementation 
in the R package nephro [83]. Prevalent chronic kidney 
disease (CKD) was defined as eGFR < 60 ml/min/1.73  m2 
[84]. eGFR and urinary albumin-creatinine ratio (UACR) 
were log transformed prior to statistical analysis. Micro-
albuminuria was defined as uACR ≥ 30  mg/g. Serum 
urate was also studied.

DNAmAge assessment
Methylation was measured using the Illumina Infinium 
HumanMethylation450K or EPIC array in whole blood 
and used to estimate measures of DNAmAge and mor-
tality (additional details on each predictor are described 
in Additional file 3: Note S2). Five DNAmAge and lifes-
pan predictors were calculated using the online DNAm 
Age calculator (https:// dnama ge. genet ics. ucla. edu/) [11]: 
Hannum’s estimate (HannumAge), ExtrinsicAge (EEAA) 
[10], Horvath’s estimate (HorvathAge) [11], PhenoAge 
[18] and GrimAge [19]. IEAA, a marker capturing cell-
intrinsic aging properties that are independent of blood 
cell types, was derived by regressing HorvathAge on cell 
counts [10]. Quality control was conducted as in previous 
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meta-analyses of epigenetic measures [16], with exclusion 
of individuals with mismatching predicted and reported 
sex data. Age acceleration (AA) measures were calculated 
in each study as the difference between the predicted 
DNAmAge and chronological age, with chronological 
age included in all models as an adjustment for known 
chronological age effects across the lifespan. Defining age 
acceleration as the difference, rather than the residual of 
chronological age regressed on epigenetic age, has advan-
tages as it is an individual measure as opposed to a popu-
lation measure, and is not defined to have mean 0 in each 
population as is the case for the residual measure. A sixth 
measure, the 10-CpG-based epigenetic mortality risk 
score (MRS) in its continuous form was calculated as the 
sum of the methylation β values multiplied by the regres-
sion coefficients of each of the ten CpGs for all-cause 
mortality, as described in [20].

Further measures of epigenetic aging were included 
in the secondary analysis: the risk-level MRS variable 
was built based on the cumulative number of “aber-
rantly” methylated CpG sites, defined by the cut-offs 
derived from the 4th quartile of the CpG positively cor-
related with mortality (cg08362785) and the 1st quartile 
of the other nine loci defined in [20]. Participants were 
then assigned to one of three risk levels based on the 
total number of “aberrantly” methylated CpGs: low risk, 
MRS = 0–1; moderate risk, MRS = 2–5; and high risk, 
MRS > 5. Finally, to better understand GrimAge, we also 
included in the analysis its eight underlying traits (smok-
ing pack-years, adrenomedullin, beta-2 microglobulin, 
cystatin C, growth differentiation factor 15, leptin, plas-
minogen activation inhibitor 1, tissue inhibitor metal-
loproteinase 1) [19] if a renal phenotype was associated 
with GrimAge.

Statistical analysis
Linear and logistic regression models were run with 
kidney traits as outcomes and measures of DNAm-
based age acceleration and lifespan as predictors, 
including covariates to adjust for potential confound-
ing by biological and technical factors. Chronological 
age and sex were included in a basic model, whereas 
additional adjustment for BMI (kg/m2), log trans-
formed triglycerides, HDL, hypertension, smoking 
status (current/ever, never) and diabetes was done in 
the fully adjusted model. Linear regression models for 
serum urate additionally adjusted for baseline eGFR. 
Details on the study-specific definition or exclusion 
of variables, as well as additional information on all 
of the cohorts, are given in Additional file  3: Note S3. 
Leukocyte count (either measured or estimated by the 

Houseman approach [85]) was additionally included 
in the regression models for Horvath’s estimate as to 
obtain the intrinsic age acceleration measure (IEAA). 
In the secondary analyses, the aforementioned covari-
ates from the basic and the fully adjusted models were 
used, with the exception of no smoking adjustment for 
DNAm-predicted pack years. All measures of associa-
tion between epigenetic markers and continuous renal 
traits (eGFR, uACR, urate) were standardized to the 
standard deviation of the given renal trait as to obtain 
estimates comparable across renal traits.

All outcomes were available in at least one cohort 
of European ancestry and African American stud-
ies (Additional file  1: Table  S1), although eGFR and 
CKD were the only outcomes reported by all partici-
pating studies. Each cohort provided regression esti-
mates and standard errors, which were pooled using 
inverse-variance fixed-effects and random-effects 
models. Between-study heterogeneity was assessed 
using Cochran’s Q and I2 statistics. High heterogene-
ity was defined as I2 > 0.50 and (Q) phet < 0.05. If high 
heterogeneity was detected in the fixed-effects model, 
the random-effects model was interpreted. All statisti-
cal analyses were conducted using R version 3.5.3 [86], 
where meta-analyses were conducted using the metafor 
package v2.0 [87]. Multiple testing was addressed by 
correcting the significance level for the total number 
of statistical tests (i.e., Bonferroni correction, 0.05/7 
epigenetic markers * 5 renal traits). Associations were 
considered significant if p < 1.43 E−03 in the trans-
ethnic meta-analysis and if they had consistent direc-
tion of effect across studies. Ethnic-specific replication 
was defined as associations with consistent direction of 
effect reaching nominal statistical significance (p < 0.05) 
in two or more studies.
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conditions on the license are included in this appendix.

The bibliography included in this document lists literature referenced in Chapter

1 to Chapter 4. Please note that some of references were included in the bibliog-

raphy of the first-author publications (Mat́ıas-Garćıa et al., 2021a) and (Mat́ıas-

Garćıa et al., 2021b).

Figures reproduced and/or adapted from other publications (Davey Smith & He-

mani, 2014; Franks & Pomares-Millan, 2020; Miranda-Gonçalves et al., 2018) –

namely Figure 1.1, Figure 1.2 and Figure 2.3 – , are contained in articles published

under a Creative Commons Attribution International License (CC BY) and thus no

permission is necessary to reuse article contents given a proper citation is in place.

A copy of this license is available at http://creativecommons.org/licenses/by/4.0/.

Emojis used in this dissertation are part of Twitter’s open source emoji set, Twe-
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Wilson, R., Gào, X., Nano, J., Bostom, A., Colicino, E., Correa, A., Coull,

B., Eaton, C., Hou, L., Just, A. C., Kunze, S., Lange, L., Lange, E., Lin,

115

https://doi.org/10.18632/aging.101684
https://doi.org/10.18632/aging.101684
https://doi.org/10.1038/s41467-017-02697-5
https://doi.org/10.1021/pr2003038
https://doi.org/10.1186/s13059-015-0584-6
https://doi.org/10.1681/asn.2013080906
https://doi.org/10.1681/asn.2013080906


Bibliography

X., Liu, S., Nwanaji-Enwerem, J. C., Reiner, A., Shen, J., Schöttker, B.,
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Wuttke, M., & Köttgen, A. (2016). Insights into kidney diseases from genome-wide

association studies. Nature Reviews Nephrology, 12, 549. https://doi.org/

10.1038/nrneph.2016.107https://www.nature.com/articles/nrneph.2016.

107#supplementary-information

Wuttke, M., Li, Y., Li, M., Sieber, K. B., Feitosa, M. F., Gorski, M., Tin, A., Wang,

L., Chu, A. Y., Hoppmann, A., Kirsten, H., Giri, A., Chai, J.-F., Svein-

127

https://doi.org/10.1007/978-3-540-26577-1_28
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1186/s13148-020-00830-8
https://doi.org/10.1186/s13148-020-00830-8
https://doi.org/10.1038/s41591-019-0665-2
https://doi.org/10.2337/db10-1181
https://doi.org/10.1038/nrneph.2016.107 https://www.nature.com/articles/nrneph.2016.107#supplementary-information
https://doi.org/10.1038/nrneph.2016.107 https://www.nature.com/articles/nrneph.2016.107#supplementary-information
https://doi.org/10.1038/nrneph.2016.107 https://www.nature.com/articles/nrneph.2016.107#supplementary-information


Bibliography

bjornsson, G., Tayo, B. O., Nutile, T., Fuchsberger, C., Marten, J., Cocca,

M., Ghasemi, S., Xu, Y., Horn, K., Noce, D., van der Most, P. J., Sedaghat,

S., Yu, Z., Akiyama, M., Afaq, S., Ahluwalia, T. S., Almgren, P., Amin, N.,
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university's library. Would this be a case of infringement to the copyright, or would this fall in the
category of "fair use"? 
 
Would it be possible to receive a letter from the journal with a clarification on the above mentioned?
That would be really helpful.
 
Thank you again.
 
All the best,
Pamela  
 

Von: "scough" <scough@asn-online.org>
 An: "Matias Garcia, Pamela Raquel" <pamela.matias@helmholtz-muenchen.de>
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Sure, no problem. The following forms are s�ll outstanding.
 
Missing copyrights: David Roberts
Missing Disclosures: John Danesh, Nicholas Watkins, David Roberts
 
The paper is currently with the produc�on team for copyedi�ng and forma�ng. They’ll reach out as soon as your proofs
are ready.
 
You are welcome to include this paper in your disserta�on. Please make sure to cite it accordingly. The paper will be
online before that date, but will be published within an issue in August.
 
Please let me know if you have any other ques�ons.
 
Best,
 
Sydney Cough
Managing Editor, JASN
scough@asn-online.org
 
 
 
 
From: Pamela Ma�as <pamela.ma�as@helmholtz-muenchen.de> 
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 To: Sydney Cough <scough@asn-online.org>

 Subject: Re: JASN-2020-07-1070.R2- Outstanding Forms Needed
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Thank you for your continuous support with co-author queries. May I please know whose forms are
still missing? I will again reach out to get these forms in place. 
 
Once these forms are in place, what would be the next steps in the publication process? Is there any
additional information missing from our side prior to receiving the proofs?
 
 
I would also like to enquire about the inclusion of this article in a publication-based dissertation. This
dissertation is to be submitted by myself mid-June to the Technical University of Munich (TUM) for the
awardment of a doctoral degree. May I please receive a letter of approval from the publisher for this
purpose?  
 
Thank you again.
 
Best regards, 
Pamela Matías 
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the complete thesis and include permission for Proquest/UMI to supply single copies, on
demand, of the complete thesis. Should your thesis be published commercially, please
reapply for permission. Theses and dissertations which contain embedded PJAs as part of
the formal submission can be posted publicly by the awarding institution with DOI links
back to the formal publications on ScienceDirect.

 

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly
2000 established subscription journals that support open access publishing. Permitted third
party re-use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the
article nor should the article be modified in such a way as to damage the author's honour or
reputation. If any changes have been made, such changes must be clearly indicated.
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The author(s) must be appropriately credited and we ask that you include the end user
license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
done for commercial purposes, and that the user gives appropriate credit (with a link to the
formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

Associating advertising with the full text of the Article
Charging fees for document delivery or access
Article aggregation
Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.
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agree to the following terms and conditions applying to this transaction. You also agree to
the Billing and Payment terms and conditions established by Copyright Clearance Center
(CCC) at the time you opened your Rightslink account.

LIMITED LICENSE 
The AACR grants exclusively to you, the User, for onetime, non-exclusive use of this
material for the purpose stated in your request and used only with a maximum distribution
equal to the number you identified in the permission process. Any form of republication
must be completed within one year although copies made before then may be distributed
thereafter and any electronic posting is limited to a period of one year. Reproduction of this
material is confined to the purpose and/or media for which permission is granted. Altering or
modifying this material is not permitted. However, figures and illustrations may be
minimally altered or modified to serve the new work.

GEOGRAPHIC SCOPE 
Licenses may be exercised as noted in the permission process

RESERVATION OF RIGHTS
The AACR reserves all rights not specifically granted in the combination of 1) the license
details provided by you and accepted in the course of this licensing transaction, 2) these
terms and conditions , and 3) CCC's Billing and Payment terms and conditions.

DISCLAIMER 
You may obtain permission via Rightslink to use material owned by AACR. When you are
requesting permission to reuse a portion for an AACR publication, it is your responsibility to
examine each portion of content as published to determine whether a credit to, or copyright
notice of a third party owner is published next to the item. You must obtain permission from
the third party to use any material which has been reprinted with permission from the said
third party. If you have not obtained permission from the third party, AACR disclaims any
responsibility for the use you make of items owned by them.

LICENSE CONTINGENT ON PAYMENT  
While you may exercise the rights licensed immediately upon issuance of the license at the
end of the licensing process for the transaction, provided that you have disclosed complete
and accurate details of your proposed use, no license is finally effective unless and until full
payment is received from you, either by the publisher or by the CCC, as provided in CCC's
Billing and Payment terms and conditions. If full payment is not received on a timely basis,
then any license preliminarily granted shall be deemed automatically revoked and shall be
void as if never granted. Further, in the event that you breach any of these terms and
conditions, or any of the CCC's Billing and Payment terms and conditions, the license is
automatically revoked and shall be void as if never granted. Use of materials as described in
a revoked license, as well as any use of the materials beyond the scope of an unrevoked
license, may constitute copyright infringement and the publisher reserves the right to take
any and all action to protect its copyright in the materials.

COPYRIGHT NOTICE 
You must include the following credit line in connection with your reproduction of the
licensed material: "Reprinted (or adapted) from Publication Title, Copyright Year,
Volume/Issue, Page Range, Author, Title of Article, with permission from AACR".

TRANSLATION 
This permission is granted for non-exclusive world English rights only.

WARRANTIES 
Publisher makes no representations or warranties with respect to the licensed material.
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INDEMNIFICATION 
You hereby indemnify and agree to hold harmless the publisher and CCC, and their
respective officers, directors, employees and agents, from and against any and all claims
arising out of your use of the licensed material other than as specifically authorized pursuant
to this license.

REVOCATION 
The AACR reserves the right to revoke a license for any reason, including but not limited to
advertising and promotional uses of AACR content, third party usage and incorrect figure
source attribution.

NO TRANSFER OF LICENSE 
This license is personal to you and may not be sublicensed, assigned, or transferred by you
to any other person without publisher's written permission.

NO AMENDMENT EXCEPT IN WRITING 
This license may not be amended except in a writing signed by both parties (or, in the case
of publisher, by CCC on publisher's behalf).

OBJECTION TO CONTRARY TERMS 
Publishers hereby objects to any terms contained in any purchase order, acknowledgement,
check endorsement or other writing prepared by you, which terms are inconsistent with these
terms and conditions or CCC's Billing and Payment terms and conditions. These terms and
conditions together with CCC's Billing and Payment terms and conditions (which are
incorporated herein) comprise the entire agreement between you and publisher (and CCC)
concerning this licensing transaction. In the event of any conflict between your obligations
established by these terms and conditions, and those established by CCC's Billing and
Payment terms and conditions, these terms and conditions shall control.

THESIS/DISSERTATION TERMS  
If your request is to reuse an article authored by you and published by the AACR in your
dissertation/thesis, your thesis may be submitted to your institution in either in print or
electronic form. Should your thesis be published commercially, please reapply.

ELECTRONIC RESERVE 
If this license is made in connection with a course, and the Licensed Material or any portion
thereof is to be posted to a website, the website is to be password protected and made
available only to the students registered for the relevant course. The permission is granted
for the duration of the course. All content posted to the website must maintain the copyright
information notice.

JURISDICTION 
This license transaction shall be governed by and construed in accordance with the laws of
Pennsylvania. You hereby agree to submit to the jurisdiction of the federal and state courts
located in Pennsylvania for purposes of resolving any disputes that may arise in connection
with this licensing transaction.

Other Terms and Conditions:

v1.0

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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Terms and Conditions

Wolters Kluwer Health Inc. Terms and Conditions

1. Duration of License: Permission is granted for a one time use only. Rights herein do
not apply to future reproductions, editions, revisions, or other derivative works. This
permission shall be effective as of the date of execution by the parties for the
maximum period of 12 months and should be renewed after the term expires.

i. When content is to be republished in a book or journal the validity of this
agreement should be the life of the book edition or journal issue.

ii. When content is licensed for use on a website, internet, intranet, or any publicly
accessible site (not including a journal or book), you agree to remove the
material from such site after 12 months, or request to renew your permission
license

2. Credit Line: A credit line must be prominently placed and include: For book content:
the author(s), title of book, edition, copyright holder, year of publication; For journal
content: the author(s), titles of article, title of journal, volume number, issue number,
inclusive pages and website URL to the journal page; If a journal is published by a
learned society the credit line must include the details of that society.  

3. Warranties: The requestor warrants that the material shall not be used in any manner
which may be considered derogatory to the title, content, authors of the material, or to
Wolters Kluwer Health, Inc.

4. Indemnity: You hereby indemnify and hold harmless Wolters Kluwer Health, Inc. and
its respective officers, directors, employees and agents, from and against any and all
claims, costs, proceeding or demands arising out of your unauthorized use of the
Licensed Material

5. Geographical Scope: Permission granted is non-exclusive and is valid throughout the
world in the English language and the languages specified in the license.

6. Copy of Content: Wolters Kluwer Health, Inc. cannot supply the requestor with the
original artwork, high-resolution images, electronic files or a clean copy of content.

7. Validity: Permission is valid if the borrowed material is original to a Wolters Kluwer
Health, Inc. imprint (J.B Lippincott, Lippincott-Raven Publishers, Williams &
Wilkins, Lea & Febiger, Harwal, Rapid Science, Little Brown & Company, Harper &
Row Medical, American Journal of Nursing Co, and Urban & Schwarzenberg -
English Language, Raven Press, Paul Hoeber, Springhouse, Ovid), and the
Anatomical Chart Company

8. Third Party Material: This permission does not apply to content that is credited to
publications other than Wolters Kluwer Health, Inc. or its Societies. For images
credited to non-Wolters Kluwer Health, Inc. books or journals, you must obtain
permission from the source referenced in the figure or table legend or credit line
before making any use of the image(s), table(s) or other content.

9. Adaptations: Adaptations are protected by copyright. For images that have been
adapted, permission must be sought from the rightsholder of the original material and
the rightsholder of the adapted material.

10. Modifications: Wolters Kluwer Health, Inc. material is not permitted to be modified
or adapted without written approval from Wolters Kluwer Health, Inc. with the
exception of text size or color. The adaptation should be credited as follows: Adapted
with permission from Wolters Kluwer Health, Inc.: [the author(s), title of book,
edition, copyright holder, year of publication] or [the author(s), titles of article, title of
journal, volume number, issue number, inclusive pages and website URL to the
journal page].
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11. Full Text Articles: Republication of full articles in English is prohibited.
12. Branding and Marketing: No drug name, trade name, drug logo, or trade logo can be

included on the same page as material borrowed from Diseases of the Colon &
Rectum, Plastic Reconstructive Surgery, Obstetrics & Gynecology (The Green
Journal), Critical Care Medicine, Pediatric Critical Care Medicine, the American
Heart Association publications and the American Academy of Neurology publications.

13. Open Access: Unless you are publishing content under the same Creative Commons
license, the following statement must be added when reprinting material in Open
Access journals: "The Creative Commons license does not apply to this content. Use
of the material in any format is prohibited without written permission from the
publisher, Wolters Kluwer Health, Inc. Please contact permissions@lww.com for
further information."

14. Translations: The following disclaimer must appear on all translated copies: Wolters
Kluwer Health, Inc. and its Societies take no responsibility for the accuracy of the
translation from the published English original and are not liable for any errors which
may occur.

15. Published Ahead of Print (PAP): Articles in the PAP stage of publication can be
cited using the online publication date and the unique DOI number.

i. Disclaimer: Articles appearing in the PAP section have been peer-reviewed and
accepted for publication in the relevant journal and posted online before print
publication. Articles appearing as PAP may contain statements, opinions, and
information that have errors in facts, figures, or interpretation. Any final
changes in manuscripts will be made at the time of print publication and will be
reflected in the final electronic version of the issue. Accordingly, Wolters
Kluwer Health, Inc., the editors, authors and their respective employees are not
responsible or liable for the use of any such inaccurate or misleading data,
opinion or information contained in the articles in this section.

16. Termination of Contract: Wolters Kluwer Health, Inc. must be notified within 90
days of the original license date if you opt not to use the requested material.

17. Waived Permission Fee: Permission fees that have been waived are not subject to
future waivers, including similar requests or renewing a license.

18. Contingent on payment: You may exercise these rights licensed immediately upon
issuance of the license, however until full payment is received either by the publisher
or our authorized vendor, this license is not valid. If full payment is not received on a
timely basis, then any license preliminarily granted shall be deemed automatically
revoked and shall be void as if never granted. Further, in the event that you breach any
of these terms and conditions or any of Wolters Kluwer Health, Inc.’s other billing and
payment terms and conditions, the license is automatically revoked and shall be void
as if never granted. Use of materials as described in a revoked license, as well as any
use of the materials beyond the scope of an unrevoked license, may constitute
copyright infringement and publisher reserves the right to take any and all action to
protect its copyright in the materials.

19. STM Signatories Only: Any permission granted for a particular edition will apply to
subsequent editions and for editions in other languages, provided such editions are for
the work as a whole in situ and do not involve the separate exploitation of the
permitted illustrations or excerpts. Please view: STM Permissions Guidelines

20. Warranties and Obligations: LICENSOR further represents and warrants that, to the
best of its knowledge and belief, LICENSEE’s contemplated use of the Content as
represented to LICENSOR does not infringe any valid rights to any third party.

21. Breach: If LICENSEE fails to comply with any provisions of this agreement,
LICENSOR may serve written notice of breach of LICENSEE and, unless such breach
is fully cured within fifteen (15) days from the receipt of notice by LICENSEE,
LICENSOR may thereupon, at its option, serve notice of cancellation on LICENSEE,
whereupon this Agreement shall immediately terminate.
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22. Assignment: License conveyed hereunder by the LICENSOR shall not be assigned or
granted in any manner conveyed to any third party by the LICENSEE without the
consent in writing to the LICENSOR.

23. Governing Law: The laws of The State of New York shall govern interpretation of
this Agreement and all rights and liabilities arising hereunder.

24. Unlawful: If any provision of this Agreement shall be found unlawful or otherwise
legally unenforceable, all other conditions and provisions of this Agreement shall
remain in full force and effect.

For Copyright Clearance Center / RightsLink Only:

1. Service Description for Content Services: Subject to these terms of use, any terms
set forth on the particular order, and payment of the applicable fee, you may make the
following uses of the ordered materials:

i. Content Rental: You may access and view a single electronic copy of the
materials ordered for the time period designated at the time the order is placed.
Access to the materials will be provided through a dedicated content viewer or
other portal, and access will be discontinued upon expiration of the designated
time period. An order for Content Rental does not include any rights to print,
download, save, create additional copies, to distribute or to reuse in any way the
full text or parts of the materials.

ii. Content Purchase: You may access and download a single electronic copy of
the materials ordered. Copies will be provided by email or by such other means
as publisher may make available from time to time. An order for Content
Purchase does not include any rights to create additional copies or to distribute
copies of the materials

Other Terms and Conditions:

v1.18

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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INTRODUCTION

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection
with completing this licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the Billing and Payment terms and conditions
established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your
Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to
the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has
appeared in our publication with credit or acknowledgement to another source, permission
must also be sought from that source.  If such permission is not obtained then that material
may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference list at the end of your publication, as
follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with
permission from Elsevier."

4. Reproduction of this material is confined to the purpose and/or media for which
permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of Elsevier
Ltd. (Please contact Elsevier’s permissions helpdesk here). No modifications can be made to
any Lancet figures/tables and they must be reproduced in full.

6. If the permission fee for the requested use of our material is waived in this instance,
please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed
immediately upon issuance of the license at the end of the licensing process for the
transaction, provided that you have disclosed complete and accurate details of your proposed
use, no license is finally effective unless and until full payment is received from you (either
by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions.  If
full payment is not received on a timely basis, then any license preliminarily granted shall be
deemed automatically revoked and shall be void as if never granted.  Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never
granted.  Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement
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and publisher reserves the right to take any and all action to protect its copyright in the
materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and
their respective officers, directors, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed,
assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing
signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any
purchase order, acknowledgment, check endorsement or other writing prepared by you,
which terms are inconsistent with these terms and conditions or CCC's Billing and Payment
terms and conditions.  These terms and conditions, together with CCC's Billing and Payment
terms and conditions (which are incorporated herein), comprise the entire agreement
between you and publisher (and CCC) concerning this licensing transaction.  In the event of
any conflict between your obligations established by these terms and conditions and those
established by CCC's Billing and Payment terms and conditions, these terms and conditions
shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described
in this License at their sole discretion, for any reason or no reason, with a full refund payable
to you.  Notice of such denial will be made using the contact information provided by you. 
Failure to receive such notice will not alter or invalidate the denial.  In no event will Elsevier
or Copyright Clearance Center be responsible or liable for any costs, expenses or damage
incurred by you as a result of a denial of your permission request, other than a refund of the
amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied
permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only
unless your license was granted for translation rights. If you licensed translation rights you
may only translate this content into the languages you requested. A professional translator
must perform all translations and reproduce the content word for word preserving the
integrity of the article.

16. Posting licensed content on any Website: The following terms and conditions apply as
follows: Licensing material from an Elsevier journal: All content posted to the web site must
maintain the copyright information line on the bottom of each image; A hyper-text must be
included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com; Central Storage: This license does not include permission for a
scanned version of the material to be stored in a central repository such as that provided by
Heron/XanEdu.
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Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier
homepage at http://www.elsevier.com . All content posted to the web site must maintain the
copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following
clauses are applicable: The web site must be password-protected and made available only to
bona fide students registered on a relevant course. This permission is granted for 1 year only.
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