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Abstract
Dynamic rewriting of machine code is a widely used technique for enabling program
compatibility, analyzing program behavior, particularly with the goal of improving
security or performance, and for dynamically optimizing performance. Many existing
systems focus on optimizing the rewriting step itself and therefore typically roll their
own, often low-level, internal code representation. However, such systems attain
their low overhead in rewriting by trading performance and code quality of the
newly generated code, thereby introducing significant overheads to the execution
of complex or longer running programs. Compiler frameworks like LLVM, on the
other side, provide high-quality code generators, but require the “source” code to
be in a higher-level and more abstract code representation.

Therefore, in this thesis I present a new, performance-focused library Rellume
to lift machine code to efficient LLVM-IR code, bridging the gap between binary
rewriting systems and the LLVM framework and enabling an effective use of LLVM
in the context of dynamic binary rewriting systems.

Based on Rellume, I create Instrew, a performant LLVM-based framework for
dynamic binary translation and instrumentation implementing a novel client–server
approach, which increases flexibility by separating the process of code transformation
from the actual execution. Performance results on the SPEC CPU2017 benchmarks
show that Instrew reduces the execution overhead to less than 1/17th of the
widely used binary translator QEMU and less than 1/9th of the state-of-the-art
instrumentation framework Valgrind.

Furthermore, I develop the API and library BinOpt to exploit run-time-only
information of applications by dynamically specializing compiled functions. An
application developer can specify code regions and run-time information using library
calls, which trigger dynamic optimizations during program executions. I compare
three different rewriting approaches and find that LLVM-based binary optimization
on the top of Rellume allows for performance improvements of up to 67% on
optimized image processing kernels.

This enables the flexible use of LLVM in dynamic binary rewriting, advances the
state of high-performance dynamic binary translation as well as instrumentation,
and opens up a new class of dynamic optimization opportunities.





Kurzfassung
Dynamische Umschreibung von Maschinencode ist eine weit verbreitete Technik
um Programmkompatibilität zu erhöhen, um Programmverhalten zu analysieren,
insbesondere im Hinblick auf eine Erhöhung von Sicherheit oder Performanz, und
um die Performanz von Programmen dynamisch zu optimieren. Viele existierende
Systeme fokussieren die Optimierung des Umschreibens auf Kosten der Performanz
und Qualität des neu generierten Codes und führen damit zu einem signifikanten
Geschwindigkeitsverlust bei der Ausführung von komplexen oder lang-laufenden
Programmen. Auf der anderen Seite stellen Compilerframeworks wie LLVM hoch
optimierte Codegeneratoren bereit, erwarten aber, dass der Quellcode auf einer
höheren Ebene in einer abstrakteren Coderepräsentation vorliegt.

Daher stelle ich in dieser Dissertation die neue, performanzfokussierte Bibliothek
Rellume vor, welche Maschinencode zu effizientem LLVM-IR Code transformieren
kann und damit die Brücke zwischen Systemen für Binärumschreibung und dem
Framework LLVM schlägt. Dies ermöglicht eine effektive Nutzung von LLVM im
Kontext dynamischer Systeme für Binärumschreibung.

Basierend auf Rellume erstelle ich Instrew, ein performantes LLVM-basiertes
Framework für dynamische Binärübersetzung und -instrumentierung. Das Frame-
work implementiert einen neuartigen Client-Server-Ansatz, welcher die Flexibilität
des Systems erhöht, indem die Codetransformation von der eigentliche Ausführung
des umgeschriebenen Codes getrennt wird. Die Performanzergebnisse auf den SPEC
CPU2017 Benchmarks zeigen, dass Instrew den Geschwindigkeitsverlust auf weniger
als 1/17 des weit verbreiteten Binärübersetzers QEMU und weniger als 1/9 des
Instrumentierungsframeworks Valgrind reduziert.

Darüber hinaus entwickele ich die API und Bibliothek BinOpt, um Informati-
onen in Anwendungen, die nur zur Laufzeit vorhanden sind, auszunutzen, indem
kompilierte Funktionen dynamisch spezialisiert werden. Ein Anwendungsentwickler
spezifiziert Coderegionen und Laufzeitinformationen mittels Bibliotheksaufrufen,
welche dynamische Optimierungen während der Programmausführung anstoßen. Ich
vergleiche drei unterschiedliche Ansätze für Binärumschreibung und finde heraus,
dass ein LLVM-basierter Ansatz aus Basis von Rellume einen Performanzgewinn
von bis zu 67% auf optimierten Bildverarbeitungsoperationen erzielt.

Diese Arbeit ermöglicht die flexible Nutzung von LLVM für dynamische Binärum-
schreibung, erweitert den Stand der Technik im Bereich von hoch-performanter
dynamischer Binärübersetzung sowie -instrumentierung und eröffnet eine neue Klasse
an dynamsichen Optimierungsmöglichkeiten.
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1 Introduction

1.1 Motivation

Although processing capabilities of modern Central Processing Units (CPUs) are
constantly increasing, efficient and optimized execution of programs is still a very
important topic: high performance and energy efficiency demand an effective
usage of available computation units. Efficient execution of program code requires
transforming the program source into optimized machine code, which can then be
executed directly by hardware. This is typically achieved by compiling source files
into a single binary file containing the optimized machine code. When the program
is subsequently executed, the binary file is loaded into memory by the operating
system for execution by the CPU. While the compilation step allows for machine
code generation for the target CPU architecture, it also limits portability of the
compiled binary file to other systems with different CPU architectures.

Programming of performance-sensitive programs is usually done in low-level
languages, like C, C++, or Fortran, that include less abstractions and therefore
allow optimizations closer to the hardware level. For the purpose of performance,
such languages generally also omit extra checks for program integrity and instead
assign the responsibility of ensuring program correctness to the programmer, with
potentially severe consequences with regard to security. Further, as the compilation
step is strictly separated from program execution, information that is only available
while the program is running, for example configuration options, cannot be taken
into account for subsequent dynamic program optimization.

These problems can be addressed with the widely used technique of dynamic
binary rewriting, which transforms machine code of a program during its execution.
This technique covers a wide range of applications: program compatibility with
other architectures can be achieved by dynamically translating the program code to
the target architecture [Bel05]. Binary rewriting is also frequently used for program
analysis, where the behavior of the program can be modified to extract additional
performance statistics [Luk+05; BGA03] or add extra checks for unintended be-
havior, capturing possible bugs and security issues [NS07b]. Furthermore, dynamic
optimization techniques allow for improving the application performance after the
initial compilation process, making use of run-time-only information [WB16].

1



1 Introduction

1.2 Challenges
Systems for dynamic binary rewriting are not only faced with the challenge of
parsing, analyzing, and producing machine code on-demand, but also have to
perform these processing steps themselves with low overhead, as the transformation
is performed at run-time during the execution of the program and therefore the
associated transformation cost is accounted for in the overall execution time.

Therefore, many systems for dynamic binary rewriting use a low-level Intermediate
Representation (IR) for storing and transforming program code, optimized for fast
code generation. Such an IR can either be independent of the architecture, allowing
to retarget program execution to a different architecture and increasing portability
to other platforms [NS07b; Bel05], or may not abstract architecture-specific details
at all, allowing for even faster code generation while requiring higher effort and
more analyses for actual code modifications [BGA03; Luk+05]. Still, in both cases
only few and lightweight optimizations are applied to keep transformation costs low.

However, the lack of optimizations and optimized machine code generation after
performing code transformations leads to significant slowdowns on applications with
longer execution times. This is especially relevant for applications in the area of
High-Performance Computing (HPC), which typically are computationally intensive
and also have comparably long execution times, even for small workloads.

This motivates enhancing dynamic binary rewriting techniques with additional
and more complex optimizations in combination with an optimizing machine code
generator. While implementing such transformations anew is technically possible,
it would be accompanied by a significant amount of engineering and maintenance
effort. At the same time, such optimizations are already widely implemented by
compilers. In fact, most industry-standard optimizing compilers are not only capable
of performing a variety of program transformations, but also have highly tuned code
generation back-ends for many processor architectures.

One of these widely used compiler infrastructures is the LLVM project [LA04],
which not only focuses on performance, but also emphasizes modularity and flexible
applicability as design goals. In particular, the framework has a dedicated Applica-
tion Programming Interface (API) for constructing and transforming program code
and is completely usable without further toolchain dependencies. This makes LLVM
a well-suited framework for the use case of dynamic binary rewriting. Nonetheless,
this requires a transformation to lift machine code to LLVM’s IR.

1.3 Approach
This motivates bridging the gap between systems for binary rewriting, operating on
low-level machine code, and the LLVM compiler infrastructure, performing high-level
code transformations and optimized code generation.

2



1.4 Contributions

To this end, this thesis describes Rellume, a flexible library for lifting machine
code to LLVM-IR optimized code for use in dynamic contexts. As such, the library
has two main goals: the generated LLVM-IR code shall be performant and also the
lifting process itself shall take place with low overhead. Additionally, generating
architecture-independent LLVM-IR code enables dynamic retargeting of program
code to other architectures. This library serves as a building block for developing
performance-focused systems for dynamic binary rewriting based on the LLVM
compiler infrastructure.

Based on this lifting library, Instrew is an LLVM-based framework for performance-
focused dynamic binary translation and heavy-weight instrumentation; Figures 1.1a
and 1.1b give a high-level overview on the approach. The original machine code
is lifted to LLVM-IR with function granularity using Rellume, allowing Instrew to
use the optimization and code generation infrastructure provided by LLVM to its
full extent. The provided tool API allows for modifications of the program code at
LLVM-IR level, enabling tool developers to leverage LLVM optimizations to reduce
the overhead incurred by dynamic program instrumentation.

In addition to transparent rewriting of applications, dynamic binary rewriting can
also be controlled by the application itself. This enables an application to explicitly
trigger dynamic rewriting of specific code portions, for example for the purpose
of optimization when they find to have additional information that can lead to
performance improvements. BinOpt is a library that allows for application-guided
specialization of selected functions on additionally available run-time-only data (see
also Figure 1.1c). The API of the library is designed to be easily implementable with
different rewriting approaches. In particular, one approach (DBLL) uses Rellume
to perform LLVM-based optimization of machine code at run-time, leveraging the
availability of many compiler transformations and a highly tuned machine code
generator.

1.4 Contributions
The key contributions of this thesis include:

• Rellume, a performance-oriented library for lifting machine code to LLVM-
IR, designed for use in dynamic contexts.
The library can transform machine code into architecture-independent LLVM-
IR code with the same semantics. The produced LLVM-IR code can be
compiled again for execution, even on other platforms as long as they share
the same pointer width. Optionally, the relation of the lifted code to the
machine code is made explicit to enable tracking of instructions, register
usage, or memory accesses. The lifting process requires no further information
beyond the machine code and relevant information, for example about the

3
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Instrew (as described in Chapter 4)

Program
Machine

Code

Rellume (Chp. 3)
Lift to LLVM-IR LLVM-JIT

Executed
Machine

Code

(a) Overview on the Instrew framework. All executed parts of the program are lifted to LLVM-IR
using Rellume and compiled again using the LLVM JIT compiler, optionally to a different target
architecture.

Instrew (with extension in Chapter 5)

Program
Machine

Code

Rellume (Chp. 3)
Lift to LLVM-IR Transformation LLVM-JIT

Executed
Machine

Code

Tool modifying entire
program execution

(b) The Instrew framework used for Dynamic Binary Instrumentation. All executed parts of the
program can be transformed by a tool, which can modify the program semantics. Afterwards, code
fragments are compiled back to machine code using the LLVM JIT compiler.

BinOpt/DBLL (Chapter 6)

Program
Machine

Code

Rellume (Chp. 3)
Lift to LLVM-IR

Optimization LLVM-JIT

Executed
Machine

Code

Most program parts are executed without modifications

Application controls optimization
only selected parts are transformed

(c) Overview on the BinOpt library. The program is generally executed without modifications.
The application explicitly controls which parts are dynamically optimized. With an LLVM-based
optimizer, the machine code is then lifted LLVM-IR using Rellume and after making use of specified
optimization data, the specialized code is compiled back to machine code using the LLVM JIT
compiler.

Figure 1.1: Overview on the approaches of Instrew and BinOpt and their relation to
the lifting library Rellume.
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1.4 Contributions

control flow, is recovered automatically. This makes Rellume also generally
suitable for application a dynamic context.
The library not only focus on the performance of the lifted code, but also the
efficiency of the lifting step itself, which is especially important in performance-
sensitive contexts. The generated LLVM-IR is executable without further
transformations and only few, lightweight optimizations are required for high-
performance LLVM-IR code.
Currently, x86-64 and 64-bit RISC-V are supported as source architectures;
the general concepts also apply to other common architectures and the library
was designed to be easily extensible.

• Instrew, a framework for performance-oriented LLVM-based Dynamic Bi-
nary Translation (DBT) and heavy-weight Dynamic Binary Instru-
mentation (DBI).
The Instrew framework pursues a new approach of solely basing Dynamic
Binary Instrumentation (DBI) on LLVM, without the use of other IRs outside
of LLVM. The transformation of machine code to LLVM-IR relies on Rel-
lume, which allows for processing whole functions at once, enabling for more
optimized code transformations and leading to a better usage of the LLVM
optimization infrastructure. As machine code is lifted to target-independent
LLVM-IR, changing the architecture back-end allows for Instrew to be used
as flexible Dynamic Binary Translation (DBT) system with cross-Instruction
Set Architecture (ISA) instrumentation capabilities — this particular aspect
is particularly advantageous with new and highly customizable ISAs like
RISC-V [RIS19].
Additionally, Instrew implements a novel client–server approach for DBT,
where the entire translation process happens in a separated server process
while the client is only responsible for executing the translated code. This
not only increases flexibility in distributed systems, where a single server can
rewrite code for many clients, but also can reduce the translation overhead
with a permanently running server that caches translated code fragments.
Moreover, this design also simplifies research of new techniques for binary
translation or transformation: as a consequence of the strict encapsulation of
the rewriting process in a separate process, the client can be used as a generic
and performance-focused base for developing new approaches.
Performance results on the SPEC CPU2017 benchmark suite [Sta21] show
that Instrew has an average overhead of only 59% over the native execution
on x86-64, which is significantly less than the overhead of comparable systems,
including the widely used QEMU emulator [Bel05] with 1044%, the LLVM-
based DBT system HQEMU [Hon+12] with 135%, and the Valgrind [NS07b]
DBI framework with 547%.
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• BinOpt, a library for application-guided run-time binary optimization
and specialization.
This work provides a new library enabling application or library developers
to dynamically specialize machine code on run-time-only information, for
example, configuration parameters or results of previous computations. As
code fragments and information used for specialization are explicitly specified
by the application, this approach allows for an effective usage of developer
knowledge and introduces no further profiling overhead during program execu-
tion. The operation on machine code not only allows subsequent optimization
of dynamically optimized code, also but leads to an easier integration with
existing build systems and enables re-use of optimization and code generation
work done during the initial compilation step.
The library provides a generic API to configure and trigger specializa-
tions from the application. At the same time, the API provides sufficient
flexibility for the actual optimization back-end to implement different ap-
proaches. In particular, in addition to an LLVM-based optimizer (DBLL), also
the binary function optimizer Drob [Hil19] and the tracing binary optimizer
DBrew [WB16] are supported.
A comparison of the three supported optimization approaches shows the
differently chosen trade-offs between the performance of the optimized code
and the overhead of the optimization process itself. Using BinOpt for a widely
used optimized image processing library shows that this approach can lead to
significant performance improvements of up to 67%.

1.5 Outline
This thesis is structured as follows: Chapter 2 gives an overview on program
execution, binary rewriting, and machine code generation. Chapter 3 then describes
the Rellume library for lifting machine code to LLVM-IR in detail. Afterwards,
Chapter 4 presents and evaluates the Instrew framework in the context of dynamic
binary translation; Chapter 5 covers the use case of program instrumentation with
Instrew. Next, Chapter 6 demonstrates the use of dynamic binary rewriting for
application-guided performance optimization. Finally, Chapter 7 concludes this
thesis with a summary and an outlook on future work.
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2 Background
In this chapter, a broad overview on program execution and code transformations
with relation to machine code will be given. Afterwards, the field of binary rewriting
will be described in more details with particular focus on dynamic approaches
operating transparently to the rewritten program. Finally, the prevalent strategy
for generating efficient machine code will be described together with a brief outline
of the widely used LLVM optimization and code generation framework.

2.1 Program Execution
Generally, two main strategies for executing programs exist [Ayc03]: the first strategy
is program interpretation, where the program is executed directly statement-by-
statement. Here, the CPU only executes instructions from the interpreter itself. The
second strategy is compilation, where a program is translated to machine code, which
is then natively executed by the CPU. Prominent examples for a plain interpreter are
shells like Bash [Fre20], where programs (“shell scripts”) are executed line-by-line;
examples for plain compilers include GCC [Fre21] and the Go compiler [Goo21],
where programs are translated to native machine code.

These strategies are not exclusive, however, and various combinations exist by
initially compiling the program to some sort of intermediate code representation,
for example bytecode, which is later interpreted. The CPython interpreter [Pyt21b],
for example, compiles programs into bytecode, which is then interpreted for the
actual program execution [Pyt21c].

Further, there may also be multiple compilation stages: for example, in the
JavaScript engine V8 [V8 17], where parts of the the bytecode are compiled further
to machine code during program execution. In fact, also many optimizing com-
pilers internally have numerous different code representations in which different
optimizations are applied.

Different approaches of compilation and execution strategies have their respective
advantages and disadvantages; the most critical aspect regarding execution efficiency
is that programs that are eventually compiled to native machine code for the CPU
generally execute faster [Ayc03] as there is no interpretation overhead involved.
Thus, in the following, approaches that involve interpreters will not be covered
further.

7



2 Background

2.2 Code Transformation

Program code is given in a typically well-defined representation. Such representations
differ in their appearance, which is often strongly influenced by their usage. The
most extreme, but also most important, case is machine code, which generally is
designed to be implemented in hardware and is the final form in which program
code can natively be executed. Therefore, many kinds of code transformations serve
the goal of eventually reaching machine code. An overview on the processes relating
different levels of code representation is shown in Figure 2.1.

The process of translating code from a higher-level representation to a lower-level
representation — for example, machine code or some kind of bytecode — is generally
referred to as compilation or lowering. There is no constraint on the points in time
for the compilation stages: an initial compilation stage may translate a program to
bytecode, which immediately before its execution gets compiled further to actual
machine code. Compilation at the time of program execution is referred to as Just-
in-Time (JIT) compilation or dynamic compilation, compilation before program
execution is referred to as Ahead-of-Time (AoT) compilation or static compilation.

However, code transformation processes may also occur in the other direction
where machine code is translated to a higher-level code representation; this is broadly
referred to as de-compilation or lifting. This kind of transformation is commonly
used for analysis of compiled programs where the source code is not available, for
example in malware analysis [van07]. De-compilers typically operate statically as
they usually do not intend to immediately execute the progam. Note that clearly
distinguishing “higher-level” and “lower-level” representations might not always be
possible, for example in cases where bytecode is used for both representations.

The case of transforming machine code to machine code either for the same or a
different CPU architecture is referred to as binary rewriting, which typically incorpo-

Programming
Language

Machine Code

Programming
Language

Machine Code

Compiling(Lowering)
De-Compiling

(Lifting)

Binary Rewriting

High-level

Low-level

Source Repr. Target Repr.

Figure 2.1: Overview on the naming of code transformation processes between different
levels of code representation. These transformations can also involve multiple steps with
different layers of code representations in between.
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rates lifting and subsequent lowering steps. Like compilation, binary rewriting can
be done either statically before program exection or dynamically during program
execution.

2.3 Binary Rewriting
There are three main goals for performing binary rewriting: compatibility, behavioral
changes, and optimization. The purpose of program analyses is typically accom-
panied with behavioral modifications, for example, to extract additional profiling
data, and, therefore, is not covered separately hereafter.

Most systems that perform binary rewriting operate transparently to the rewritten
program, that is, the transformed program is not explicitly aware of the rewriting
process1. Few systems for (dynamic) binary rewriting can also be controlled or
influenced by the application itself, which will be referred to as application-guided
binary rewriting. Given that a large majority of binary rewriting systems operate
transparently, only such approaches will be covered in this section; application-guided
approaches will be discussed later in detail in Chapter 6.

2.3.1 Rewriting Goals
Following the three main goals, binary rewriters can be classified among the following
three non-exclusive categories (see also Figure 2.2):

• Binary Translation: execute a program compiled for one source CPU architec-
ture on a potentially different target CPU architecture, without behavioral

1There are several ways for an application to detect the static or dynamic rewriting process,
rendering these techniques unusable for security purposes [Kir+18].

Binary
Translation
Different arch.
Same behavior

Binary
Instrumentation
Same architecture
Changed behavior

Identity
Transformation
Same architecture

Same behavior

Binary
Opt.

Figure 2.2: Illustration of the three categories of binary rewriting and their relation.
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changes. The source and target architectures may also be identical and only
diverge in available ISA extensions, for example, for executing a program
when a required ISA extension is missing on the target CPU. As a special
case, the source and target architectures may also be completely identical, in
which case the rewriting process becomes an identity transformation.

Example: QEMU [Bel05]

• Binary Instrumentation: modify program behavior; for example, to add
additional program integrity checks, profiling routines, or improved security
enforcement. The source and target architectures are usually identical, but
can also be different. A special case is the null-instrumentation, where no
modifications are performed.

Example: Valgrind [NS07b]

• Binary Optimization: optimize a program without behavioral changes. The
typical optimization objective is an improved execution time, but a rewriting
system can also aim for other optimization criteria like a size reduction of the
program. The target architecture is typically a superset of the source archi-
tecture, for example, to enable usage of more recent available ISA extensions.
While binary optimization can be technically seen as a special case of binary
instrumentation and translation, the goals, and therefore also the rewriting
strategies, are fundamentally different; binary instrumenters and translators
primarily focus functionality with performance being only a secondary concern.

Example: Dynamo [BDB00]

For all three categories, the rewriting process can be either done statically,
where modifications target the executable file containing the machine code, or
dynamically, where modifications target the machine code loaded into memory for
execution. Static rewriting generally has a lower performance impact, but is also
more difficult to implement as machine code has to be distinguished from data and
all potential jump targets, especially from indirect jumps, have to be identified
correctly. Furthermore, handling code generated dynamically from the rewritten
program during its execution is impossible. On the contrary, dynamic rewriting
avoids this problem and also allows for handling dynamically generated code, at
the cost of rewriting overhead incurred during program execution. [Ang06; Pri19;
Net04]

Therefore, many widely used frameworks [NS07b; Bel05; Luk+05; BGA03; BH00]
for binary rewriting perform dynamic rewriting. In the following, the generic
architecture of a transparent dynamic binary rewriting framework will be described.
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2.3.2 Transparent Dynamic Binary Rewriting
A transparent user-level dynamic binary rewriting system generally operates as
follows (cf. also Figure 2.3): initially, the rewriter, also referred to as the host, is
loaded into memory by the operating system, which in turn loads the program
to be rewritten, also referred to as guest program, into its own address space.
Additionally, the rewriter sets up a virtual stack for the guest program, which
contains the command line arguments, environment variables, and the auxiliary
vector for additional information on the program execution, and initializes the state
of the emulated guest CPU, notably by setting the emulated stack pointer to the
virtual stack and the emulated program counter to the entry point of the guest
program. The initialization is completed by starting the main execution loop of the
rewriter.

In the main execution loop, the rewriter inspects the virtual program counter
and decodes a block of code from that address, which is typically lifted to some sort
of IR. At this point, the behavior of the code can be modified for instrumentation
purposes. Afterwards, the possibly modified code is then compiled to machine code
of the host architecture and stored at a different address. This newly rewritten code
is then executed and thereby modifies the virtual CPU state, in particular the new
program counter indicating the next instruction to be executed. The main loop
then repeats the rewriting–execution process until the guest program terminates.

Optimizations To prevent redundant rewriting of the same code, rewriters com-
monly install a code cache: rewritten code fragments are cached and reused when

Rewriter Process

Guest Code

Code Cache

Execution
Manager

Decode & Lift

Intermediate Repr.

Optionally:

Modify IR

Code Gen.

main
loop

Figure 2.3: Architecture of a typical Transparent Dynamic Binary Rewriting system.
Guest code is lifted to an Intermediate Representation before modifications can be applied;
the newly generated code is then stored in a code cache for execution. Figure slightly
modified from [ES20a].
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the execution loop encounters a guest address that was transformed previously.
Additionally, to reduce the overhead of dispatching to code fragments, rewritten

code blocks can be chained by patching the code fragment to directly jump to the
subsequently following block, avoiding the extra step of going through the main loop.
This optimization, however, is only possible when the target is definitely known and
therefore is not applicable for indirect jumps or function returns.

It is also possible to avoid the extra step through the main loop for function
returns using a return-address stack: whenever a function call is encountered in the
guest program, the guest return address and the host address of the corresponding
rewritten code is pushed to a shadow stack. When a guest function return is
executed later on, the execution can directly continue at the host address after
verifying that the shadowed guest address is indeed correct. This verification step is
critical, as calls and returns do not have to match at instruction-level, for example,
in case of exceptions or setjmp/longjump.

Moreover, the rewriting system can identify traces of subsequently executed blocks
by collecting profiling data of rewritten code and may decide to apply further and
possibly more expensive optimizations on frequently executed (hot) traces.

Common Rewriting Approaches The key factor for a binary rewriter is the IR
used for representing the guest code. One important implication is the size of the
blocks that are rewritten at once. For this, two common options have evolved: the
first option are basic blocks (e.g., DynamoRIO [BGA03]), which is a sequence of
instructions with a single entry point and is terminated by the first instruction which
potentially modifies control flow, for example a conditional branch. The second
option are superblocks (e.g., Valgrind [NS07b]), which are similar to basic blocks
but only terminate at the first unconditional control flow instruction. Consequently,
while a basic block has a single exit point, a superblock can have multiple side
exits from conditional branches contained in the instructions. The key advantage of
both options is simplicity: basic blocks or superblocks can be easily identified in
machine code, allow for a straight-forward analysis without the need of handling an
arbitarily complex control flow, and for the same reason also simplify generation of
new machine code.

Another implication of the IR is the abstraction from the guest architecture: a
binary translator generally employs an architecture-independent IR — during the
lifting process, architecture-specific peculiarities are abstracted to simplify code
generation for the host architecture. In contrast, a binary rewriter that demands
guest and host architecture to be the same additionally has the option of using an
architecture-specific IR, maintaining the original guest instructions and modifying
them only when actually required.

While using an architecture-independent IR simplifies behavior modifications and
reduces effort when retargeting the rewriting system to a new architecture, using an
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func(v0)

v1=v0<0

v2=v0+1 v3=v0-1

v4=Φ(v2,v3)
return v4

v 1=
1 v1 =0

(a) Graphical representation.

1 define i32 @func(i32 %0) {
2 %2 = icmp slt i32 %0, 0
3 br i1 %2, label %3, label %5
4 3:
5 %4 = add i32 %0, 1
6 br label %7
7 5:
8 %6 = sub i32 %0, 1
9 br label %7

10 7:
11 %8 = phi i32 [%4, %3], [%6, %5]
12 ret i32 %8
13 }

(b) LLVM IR representation.

Figure 2.4: An example for a function in Single-Static Assignment (SSA) form. Every
value is assigned exactly one instruction; values from different incoming blocks can be
merged using Φ nodes.

architecture-specific IR typically incurs less overhead during rewriting at the cost of
increased difficulty for analyses and transformations, as architecture-specific details
and limitations have to be respected.

2.4 Machine Code Generation
Generation of efficient machine code is an important challenge, not only in the
context of static compilers, but also for Just-in-Time (JIT) compilers and binary
rewriters. After program optimizations, a program is typically represented in a
higher-level IR, which has to be lowered to efficient code for execution on the target
CPU.

2.4.1 Single-Static Assignment Form
Optimizing compilers typically employ an IR based on the Single-Static Assignment
(SSA) form [RWZ88; Cyt+91]: a value can be assigned the result of exactly one
instruction. Whenever a basic block in the control flow graph has multiple incoming
edges, a special phi node can be used to select a value depending on the actually
taken incoming edge. An example of a function in Single-Static Assignment (SSA)
form is shown in Figure 2.4a. This form has main benefit of simplifying program
analysis, as only the actual data dependencies are considered, therefore facilitates
further optimizations, for example the elimination of redundant computations and
dead code, and generally eases program modifications during that process.
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Lowering from a compiler IR to machine code generally involves three steps [Bli16]:
first, corresponding machine code instructions for IR instructions have to be selected,
which typically requires lowering instruction sequences for efficiency. Second, the
instructions have to be scheduled, determining the execution order of the previously
selected instructions. And third, the storage for the individual values has to be
allocated, typically including allocating registers, stack frame slots, and inserting
instructions for data movement when required. However, finding an efficient instruc-
tion sequence is a complex problem and the problem of determining the optimal
instruction selection is NP-complete.

2.4.2 Compiler Infrastructures
The objective of avoiding redundant implementation of optimizations and analyses
led to the development of compiler infrastructures, which reduce coupling between a
language-specific front-end, the program optimizations, and the architecture-specific
code generation back-end. As an additional benefit of this separation, such compilers
can be ported to new architectures more easily, as many existing components can
be reused.

For example, the GNU Compiler Collection (GCC) [Fre] uses up three different
IRs, in which different analyses and transformations are be performed. GCC is,
however, generally designed to operate as static compiler and therefore heavily
relies on external tools for assembling and linking. While a library for usage in JIT
contexts is provided in recent versions [Mal20], it has only a rather limited API,
relies on the availability of other toolchain components during execution, and only
receives comparably little development efforts.

The demand of a flexibly usable code generation library led to the development
of the LLVM framework [LA04]. Compiler front-ends like Clang [LLV20a] transform
the source language into the main code representation of LLVM, the LLVM-IR.
The LLVM framework then provides many optimization passes and a machine code
generator. The entire process of optimization and code generation, however, can also
happen at run-time using the JIT execution engine. In contrast to GCC, the entire
framework is designed to be used as a library and therefore provides a powerful and
easily usable API.

Today, LLVM provides a high quality optimization and code generation framework
for several target architectures and is therefore used by several compilers [LLV20a;
Wal21; Arm20] and even graphics drivers [Pau21].

LLVM Intermediate Representation The LLVM-IR [LLV20b] is organized in
a module, which contains global variables as well as function declarations and
definitions. Function definitions are represented in SSA form and consist of one or
more basic blocks. A basic block is a sequence of LLVM-IR instructions, ended by a
terminator instruction, which is usually a (conditional) branch to other blocks or a
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function return. LLVM-IR features a RISC-like instruction set without implicit side
effects. In contrast to a CPU instruction set, however, LLVM-IR is strongly-typed,
including variable-length integer, vector, and structure types, and models all control
flow transfers explicitly. Function call instructions are ordinary instructions that
cannot modify the control flow of the caller. An example function is shown in
Figure 2.4b.

More complex or target-specific operations are exposed as intrinsic functions,
which can be used like normal function call target, but are treated specially during
optimization and lowering. An example for an intrinsic function is llvm.floor
for floating-point values. If this operation is natively supported by the target
architecture, this intrinsic gets lowered to a corresponding instruction; otherwise a
function call to the standard library is generated. Other intrinsics include operations
like memcpy, functions for accessing variable arguments, and target-specific vector
operations. [LLV20b]

2.5 Summary
The discussions above showed that code generation to natively executable machine
code is important for performance. Machine code can be generated from a higher-
level code representation, but can also be derived from existing other machine
code using binary rewriting. In particular, dynamic binary rewriting during the
execution of a program is a widely used technique for achieving compatibility
through translation, behavioral modifications through instrumentation, and also
for performance optimizations. Many widely used systems, however, rely on low-
level code representations to reduce the performance overhead incurred by the
rewriting process, and therefore do not benefit from advances in optimizing compiler
infrastructures like LLVM. Incorporating an existing compiler infrastructure into a
dynamic binary rewriting system requires a performance-focused transformation,
lifting machine code to the compiler IR. Therefore, the next chapter will present
Rellume, a performance-focused library for lifting machine code to the IR of the
LLVM infrastructure.
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3 Rellume: Lifting Machine Code to
Performant LLVM-IR

This chapter describes an approach to lift machine code to LLVM-IR with the focus
on performance of the lifting process and the generated LLVM-IR code. This is
implemented in a library named Rellume and provides the foundation for further
applications described later in this thesis: dynamic binary translation (Chapter 4),
dynamic binary instrumentation (Chapter 5), and dynamic binary optimization
(Chapter 6.7.3).

Publication Information
The approach described in this chapter was previously published in [ES20a]
with further extensions described in [EOS21], in particular the support for
multiple architectures and the call–return optimization.

3.1 Motivation
Extracting semantics from machine code is a common problem, not only for the
purpose of reverse engineering compiled programs, but also for retargeting binaries
for other architectures, instrumenting the program with profiling or debugging code,
and post-optimization of binaries. Doing such operations directly on machine code
is impractical for several reasons: first, there are encoding limitations that have
to be fulfilled, causing significant effort if even minor program changes cannot be
encoded in the same instruction. Second, hardware architectures typically have a
fixed numbers of registers, requiring major program refactoring for enhancements or
workarounds for encoding limitations if no unused registers are available. Third,
such operations are strongly tied to a specific architecture and cannot be ported
easily.

For these reasons, machine code is usually lifted to a more abstract IR. Such
IRs differ in their degree of abstractions implied by their purpose. For example, a
binary instrumenter which only targets a single architecture may keep instructions
in an architecture-dependent format, enabling fast lowering to new machine code
(e.g., DynamoRIO [BGA03]), whereas a binary translator to a different architec-
ture strongly benefits from an architecture-independent code representation (e.g.,
QEMU [Bel05]).
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However, lower-level IRs have another major disadvantage: while they may allow
for complex transformations, implementing optimizations to reduce the overhead of
the transformation requires porting many optimizations from standard compilers
to the IR. Since this is a very large effort, current systems typically only perform
simple optimizations (e.g., QEMU [Bel05], Valgrind [NS07b]), or none at all (e.g.,
DynamoRIO [BGA03]).

This drawback can be circumvented by lifting machine code directly to the
high-level IR of a standard compiler framework, which already provides several
analyses, optimizations, and a code generation back-end. One state-of-the-art
compiler infrastructure is the LLVM [LA04] framework, which features a high-
quality code optimizer and machine code generator for several architectures. This
framework is used for many compilers, e.g., Clang [LLV20a] or the Arm Compiler
for Linux [Arm20]. The LLVM-IR is not only suitable for lowering C code, but also
allows to express complex semantics such as vector operations. As the LLVM-IR
was designed to support large code transformations, it comprises a very extensive
API for modifications of the IR. Moreover, LLVM was also designed to be used
as JIT compilation framework, which enables use for run-time code generation as
required for dynamic binary instrumentation or optimization systems.

Consequently, LLVM is an interesting IR for analyzing and modifying machine
code, especially for later execution of the modified code using the built-in JIT
compiler.

3.2 State of the Art

Several approaches for lifting machine code to LLVM-IR have been proposed already.
Many of these approaches primarily serve the goal of static analysis of binary
files, but do not emphasize the possibility that the lifting process can also occur
dynamically during program execution. For such static approaches, the performance
of the lifting and subsequent optimization process has a lower priority. Other
approaches are specifically designed for the dynamic use-case, where the translated
is executed immediately and the lifting time is of concern. Table 3.1 gives an
overview of the lifters covered here.

Internally, several lifters rely on Tiny Code Generator (TCG) [Bel+19], the
IR internally used by QEMU [Bel05], to initially abstract the machine code to a
low-level, but architecture-independent, code representation. This way, supporting
several architectures is possible with only low effort, since the mapping of the ISA
semantics to a simplified representation is performed using TCG. However, some
limitations of TCG, like basic block granularity or the lack of proper support for
floating-point operations, require additional workarounds during lifting to LLVM-IR.
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Table 3.1: Overview of approaches lifting machine code to LLVM-IR, showing maintenance
state, whether the lifted code is executable, whether the lifter can be used in a static or
dynamic context, supported architectures, and the overall intention. This table is not
complete; several unmaintained lifters or lifters with only partial coverage of a single
architecture are excluded. Inspired by a table in the McSema documentation [Tra21].

Name Maint. Exec. S/D Architectures Purpose

S2E [CKC11; Cyb18] 3 3 Both x86, ARM, . . . Analysis
HQEMU [Hon+12] — 3 Dyn. x86, ARM Emulation
DBILL [Lyu+14] — 3 Dyn. x86, ARM Instrumentation
McSema [Tra21] 3 3 Stat. x86, ARM, . . . Analysis, Rev.Eng.
Fcd [Clo16] — — Stat. x86-64 Decompilation
RetDec [KMZ17] 3 3 Stat. x86, ARM, . . . Decompilation
Rev.ng [DFA18] 3 3 Stat. x86, ARM, . . . Analysis
MCTOLL [YS19] (3) 3 Stat. ARM Analysis
Dagger [Bou+17] — 3 Both x86-64 Generic
Reopt [Gal21b] 3 3 Stat. x86-64 Recompilation

3.2.1 Static Lifting Approaches
Static approaches can be grouped by their main purpose: analysis of compiled
binary files, potentially performing modifications and generating a new binary; and
decompilation to human-readable source code.

Binary Analysis and Modification McSema [Tra21] is a lifter for x86(-64),
AArch64, and SPARC, supporting a wide range of executable formats and ISA
extensions. The main focus of this project is binary analysis and reverse engineering,
but the lifted LLVM-IR code is also executable, e.g. for fuzzing. The lifting strategy
is as follows: first, IDA Pro1 is used functions are identified in the binary and
recover the Control Flow Graph (CFG) of the functions. Second, for each function
a corresponding LLVM-IR function with the recovered structure of basic blocks
is created. Third, the individual instructions are lifted to LLVM-IR code; this
process is implemented in a separate library called Remill. And fourth, the resulting
function is optimized and helper structures used for lifting are removed.

A lifted function generated by McSema takes three parameters [Tra19a]: a pointer
to the state of the virtual CPU, the program counter, and a pointer to an object
representing memory. These states are modified as part of the execution of the
lifted function. During lifting, specific operations are not lifted to native LLVM-IR
constructs, but to so-called Remill intrinsics, which act as helper functions. They
are used for representing atomic operations, system calls, and all memory accesses

1IDA Pro [Hex20] is a commercial disassembler.
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of the lifted code [Tra19b; Tra20]. During later optimizations, some of these helper
functions are removed again. To avoid strong divergence between the original code
and the lifted code as a consequence of optimizations, active measures to prohibit
such transformations are taken, such as modifications of data structures to prevent
automatic elimination of memory accesses [Tra20].

Dagger [Bou+17] is a modified version of LLVM that includes a lifter from x86-64
to LLVM-IR for dynamic and static usage, without relying on external components.
The project, however, appears to be in an early state and discontinued.

MCTOLL [YS19] is a more recent project focusing on static analyses sharing
the same goal not to rely on external components for disassembling and CFG
reconstruction. Currently supported architectures are AArch32 and x86-64 without
SSE extensions.

S2E [CKC11] is a generic framework for binary analyses, internally lifting TCG
basic blocks to separate LLVM functions [Cyb18]. These can be combined later, for
example, to using control flow analysis data obtained through McSema as done with
RevGen [Cyb18]. The S2E lifter from TCG to LLVM-IR can be used as a separate
library also in a dynamic context.

Reopt [Gal21b] is a tool for lifting x86-64 binary files to LLVM-IR and was
originally designed for the purpose of optimizing binaries [Gal], but generally focuses
on code analysis and recompilation. Internally, the actual machine code is extracted
from the binary file and functions are recovered. Then, the machine code of the
functions is lifted to an architecture-independent Domain-specific Language (DSL)
using Macaw [Gal21a; Gal17], which is a framework serving binary analysis and
supports symbolic execution of the DSL. From this DSL, the code is subsequently
lifted to LLVM-IR; indirect calls appear to be unsupported.

Rev.ng [DFA18; Gus+19] is a tool for static binary analysis and translation, which
lifts all code first to TCG and from there into a single function. The code execution
is governed by a dispatcher block, which jumps to the basic block matching a given
program counter value.

Decompilers Fcd [Clo16] is a decompiler which internally lifts machine code to
LLVM-IR before emitting the code as a C-like output. The project supports x86-64
only and appears to be no longer maintained.

RetDec [KMZ17; Křo14] is a more generic decompiler supporting more file formats
and architectures. After abstracting file format specifics, the control flow is analyzed
and functions are identified. Then, the machine code of the executable is lifted to
LLVM-IR into a single function; however, more complex instructions are not handled
explicitly and are implemented using helper functions. Afterwards, the lifted code
is optimized at LLVM-IR-level, including recovery of data types, local variables,
and function signatures. Finally, the LLVM-IR code is lifted further to C, during
which further transformations for more readable output are performed. Registers
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values are stored in global variables, and the LLVM-IR functions generated during
the lifting process have no parameters.

3.2.2 Dynamic Lifting Approaches
Besides S2E [CKC11] and Dagger [Bou+17], which both support static and dynamic
operation, only very few dynamic lifting approaches that provide a sufficient coverage
of a widely used architecture are known. Many of them integrate with QEMU:
LnQ [Hsu+11] is a QEMU-based approach that lifts directly from machine code to
LLVM-IR with basic block granularity, but was superseded by HQEMU [Hon+12]
with a TCG-based approach. The other QEMU-based approaches simply lift TCG
code further to LLVM-IR for enhanced performance [CC10; Jef09; Hon+12; Lyu+14]
or for dynamic binary analysis [WLK13], either using a custom lifter or with the
S2E lifter library.

3.3 Rellume Lifting Approach
For a performance-oriented lifter designed for use in dynamic contexts, three main
goals exist: first, the derived LLVM-IR must be “good” and match the expectations
of the existing optimization infrastructure, which is generally targeted at code
derived from higher-level languages. Second, the lifting process itself and also the
subsequently needed optimizations are required to have a low overhead in a dynamic
context. Thus, lifting has to be as straight-forward as possible and avoid unnecessary
transformations. Generally, the code generated during lifting should only require
few and lightweight optimization passes to satisfy the first goal of “good” IR code;
and third, the generated LLVM-IR should make use of built-in LLVM constructs
where possible, as these are tightly coupled with the rest of the infrastructure and
consequently allow to make effective use of existing lowering strategies.

To satisfy these goals, the most reasonable approach for lifting machine code
to LLVM-IR is to perform this step directly without an additional IR. This not
only eliminates an extra transformation step, but also avoids restrictions on smaller
code granularity and limited expressiveness as exhibited by TCG. A direct lifting
strategy, in contrast, also allows for mapping more complex control flow efficiently
to LLVM-IR and maintaining a direct relationship with the original code, which is
especially relevant for instrumentation applications. Furthermore, extensive use of
built-in LLVM functionality not only ensures a good integration with other parts of
the framework, but also enables retargetability to compile and execute the lifted
code on different architectures.

We implemented this direct lifting strategy in the novel lifting library Rellume2,
which lifts machine code with function granularity to target-independent LLVM-IR.

2https://github.com/aengelke/rellume licensed under LGPLv2
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The library is separated into an architecture-independent part, which implements
the generic lifting approach, and an architecture-dependent part, which supplies the
required information about the source architecture and the instructions semantics.
In this section, the architecture-independent lifting approach will be described;
the architecture-dependent parts and required modifications for adding a new
architecture will be covered in Section 3.4.

3.3.1 Lifting Stages

Lifting an arbitrary sequence of machine code to LLVM-IR is done in three separated
stages: decoding, lifting instruction semantics, and finally linking basic blocks.
Figure 3.1 shows an example for the lifting result.

Stage 1: Decoding. Starting from an externally supplied address, machine code
from that point on is decoded. The decoding procedure follows direct jumps and
both targets of conditional branches, reconstructing the CFG consisting of basic
blocks. When creating the division into basic blocks, it is ensured that every
decoded instruction is part of exactly one basic block, to avoid having redundant
code in the lifted code. The decoder cannot continue decoding after indirect jumps
and instructions for function return, as the next address is not statically known.
Furthermore, the decoder also does not follow function calls, even if the target
address is known. This has two reasons: first, functions are designed to be called
from several places, and decoding into a sub-function would result in redundant
decoding and further processing. Second, if inlining a function had a significant
impact on the run-time performance, it would have been already done by the
compiler. There is one exception where decoding continues after the function call,
this is described later in Section 3.3.7.

As further optimization, the use of jump tables, as commonly generated for
switch statements, could be detected at this point to possibly continue decoding
after indirect jumps; this is left as future work.

Stage 2: Lifting Instruction Semantics. After all instruction have been decoded,
a skeleton LLVM-IR function is created and initially filled with basic blocks for each
basic block of the reconstructed CFG. Then, for each instruction, LLVM-IR code is
emitted individually into the corresponding basic block. To reduce the overhead of
emitting unused instructions, some parts of the LLVM-IR code are generated only
on demand, with the aim of improving not only the performance of the lifter, but
also reducing the function size for later optimization passes. In particular, many
unnecessary cast instructions can be avoided.
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1000: mov rax, rdi
1003: cmp rdi, rsi
1006: jge 100b
1008: mov rax, rsi
100b: ret

(a) Initial code to lift. This function com-
putes the maximum of two signed 64-bit in-
tegers given in rdi and rsi.

1000: mov rax, rdi
1003: cmp rdi, rsi
1006: jge 100b

1008: mov rax, rsi

100b: ret

branch
taken

fallthrough

fallthrough

(b) Code after reconstruction of the CFG.
The function is split into basic blocks.

1 define void @func_1000 (i8* %cpu) {
2 %cpu. rsp_off = getelementptr i8 , i8* %cpu , i64 40
3 %cpu.rsp = bitcast i8* %cpu. rsp_off to i64*
4 %cpu. rsi_off = getelementptr i8 , i8* %cpu , i64 56
5 %cpu.rsi = bitcast i8* %cpu. rsi_off to i64*
6 %cpu. rdi_off = getelementptr i8 , i8* %cpu , i64 64
7 %cpu.rdi = bitcast i8* %cpu. rdi_off to i64*
8 %rsp .0 = load i64 , i64* %cpu.rsp , align 8
9 %rsi .0 = load i64 , i64* %cpu.rsi , align 8

10 %rdi .0 = load i64 , i64* %cpu.rdi , align 16
11 br label % addr_1000
12
13 addr_1000 :
14 ; mov is replaced with SSA value propagation .
15 ; flag computation eliminated by InstCombine .
16 %cond = icmp slt i64 %rdi .0, %rsi .0
17 br i1 %cond , label %addr_1008 , label % addr_100b
18
19 addr_1008 :
20 ; mov is replaced with SSA value propagation .
21 br label % addr_100b
22
23 addr_100b :
24 %rax .0 = phi i64 [ %rsi .0, % addr_1008 ], [ %rdi .0, % addr_1000 ]
25 ; ret loads return address from stack and increments rsp by 8.
26 %rsp .0p = inttoptr i64 %rsp .0 to i64*
27 % retaddr = load i64 , i64* %rsp .0p, align 4
28 %rsp .1p = getelementptr i64 , i64* %rsp .0p, i64 1
29 %rsp .1 = ptrtoint i64* %rsp .1p to i64
30 br label % endblock
31
32 endblock :
33 %cpu. rax_off = getelementptr i8 , i8* %cpu , i64 8
34 %cpu.rax = bitcast i8* %cpu. rax_off to i64*
35 %cpu.rip = bitcast i8* %0 to i64*
36 store i64 %retaddr , i64* %cpu.rip , align 16
37 store i64 %rax .0, i64* %cpu.rax , align 8
38 store i64 %rsp .1, i64* %cpu.rsp , align 8
39 ret void
40 }

(c) Lifted LLVM-IR; for brevity the optimization pass InstCombine was already applied and
the status flag values are discarded. The entry block loads required registers into SSA variables;
subsequently following basic blocks correspond to basic block in the machine code. At the end, the
updated register values are written back just before the function returns.

Figure 3.1: Example of Rellume’s lifting procedure.
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Stage 3: Linking Basic Blocks. Once all basic blocks have been filled with
instructions representing their architectural semantics, branches between the basic
blocks are added and the phi nodes (cf. Section 2.4.1), which are used to propagate
register values between basic blocks, are filled appropriately.

3.3.2 LLVM-IR Functions
The design of the LLVM-IR demands that all code is enclosed in functions, which
closely follow functions in higher-level languages like C [ISO17]: a function can have
several parameters and has a single return value. From the control flow perspective,
a function consists of basic blocks, of which the first is the single entry point, and
every basic block is terminated either by a branch to another basic block or a
function return.

In machine code, however, there is no explicit concept of functions. Thus, when
transforming a set of machine code instructions to LLVM-IR, it has to be enclosed
in an artificial function, which only internally contains the semantics of the machine
code. Functions created by the lifter therefore have the following structure: they do
not return a value and take a single parameter to the state of the emulated CPU,
which is modified throughout the execution of the function.

This CPU state contains all state relevant for modeling the guest CPU, involving
the program counter, the state of general-purpose and vector registers, status flag
registers, and special-purpose registers like the base address for the fs/gs segments
on x86-64.

As the CPU state resides in memory, it is important to avoid load and store
operations where possible and, therefore, keeping state in SSA registers where
possible — this not only makes the code easier to analyze for later optimizations,
but also avoids expensive analyses of memory aliasing. Consequently, the values of
all registers are loaded from the CPU state once in the entry block and are written
back when a consistent CPU state is required, for example, when the LLVM function
returns. Within the function, the register state is propagated using SSA registers
and PHI nodes.

3.3.3 Control Flow
Whenever a chunk of machine code is lifted, it is divided into basic blocks during
decoding. These basic blocks are generally mapped to LLVM basic blocks, the
control flow in machine code represented by jumps or fall-through is transformed
into branch instructions terminating the LLVM basic blocks. If the target address
of a jump is not decoded or not statically known, the function adjusts the program
counter to the address of the next instruction and returns after updating the CPU
state in memory. Once the address is known during the actual program execution,
a new, separate lifting process has to get initiated.
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Some instructions have a more complex behavior and cannot be represented in
a single LLVM basic block. An example are the repeated string instructions of
x86-64, which may loop or not be executed at all depending on a register value, or
the division instruction, which may need a special case when the divisor is zero to
avoid invoking undefined behavior in LLVM. Such cases require an architectural
basic block to be represented by multiple LLVM basic blocks.

3.3.4 Registers
Internally, Rellume distinguishes three kinds of registers: general-purpose regis-
ters, vector or floating-point registers, and status flags (see Section 3.3.5). The
concept of separating integer and floating-point registers matches the design of
several widespread architectures, most notably x86-64 [Int20a], AArch64 [Arm18],
Power [IBM17], and RISC-V [RIS19]. Obviously, the number and size of these
registers may differ between architectures: while x86-64 has 16 general-purpose
registers, AArch64 has 323; and where AArch64 has four status flags, RISC-V has
none at all. There may be further registers types — the x86-64 architecture, for
example, also has legacy x87 Floating-point Unit (FPU) registers with a size of 80
bits — which are currently not represented, but can be easily added.

While at hardware-level registers are essentially a bitvector of constant size, this
modeling is no longer sufficient when lifting to the strongly-typed LLVM-IR. A
register can be accessed in different views of the underlying binary representation,
which we refer to as facets. Such facets can vary in the subset of bits they represent
— for example, on x86-64 the 64-bit register rax can also be accessed as 16-bit
sub-register ax or as 8-bit sub-register ah — and in their data type — for example,
a 128-bit vector register may be interpreted as <4 x f32>, as <16 x i8>, or as
i128. Further examples are shown in Figure 3.2. Making such types explicit in the
LLVM-IR code is an important factor with regard to the performance of the lifted
code, as automatic type inference is not performed during optimizations at LLVM-IR
level — compilers with type inference already perform such transformations at an
earlier stage.

For every register, there is a so-called native facet, which is an integer type
spanning all bits of a register. This facet must always be specified when a register
is modified to ensure that the entire register content is known. All other facets can
then be deduced from the native facet of, if written previously in a more suitable
type, be deduced from a cached value. The actually used facets for register accesses
depend on the lifted machine code instructions.

General-purpose registers usually have the size of a pointer — that is, 64-bit on
64-bit architectures — and are commonly used for scalar integer data of different
sizes, or plain data movement, or for pointers. Consequently, general-purpose

3The stack pointer sp and x0–x30, not counting the zero register.
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rax

64-bit int
eax

32-bit int
ax

16-bit int
ah

8-bit int (high)
al

8-bit int (low)

(a) Examples for scalar facets (dark gray) of general-purpose registers for x86-64: for a write-back
of 32-bit facets, the upper half of the register is zeroed (white), while for 8-bit or 16-bit facets the
untouched part (light gray) has to be preserved via bit masking. AArch64 only uses a 64-bit and a
32-bit facet, which zeroes the upper part of the register; RISC-V64 in contrast sign-extends 32-bit
values to 64 bits.

s0

32-bit float
d0

64-bit int
h0

16-bit int
(b) Examples for scalar facets (dark gray) of vector registers on AArch64. Whether untouched
parts are left unmodified or set to zero depends on the instruction.

8×16-bit int 2×32-bit float 2×64-bit float

(c) Examples for vector facets of vector registers. The vector element type and the vector size
depend on the instruction.

Figure 3.2: Overview of different register facets. Registers can be accessed as scalar value
or as a vector. The actual data type is defined by the machine code instruction, which
also defines whether untouched parts of the registers are preserved or zeroed. Figure is
based on [ES20a].

registers have integer facets for accessible sub-registers — x86-64 requires a 32-bit, a
16-bit, and two 8-bit facets (see Figure 3.2a). Further, LLVM strongly distinguishes
integer and pointer types to ease analysis of memory aliasing, whereas there is no
difference in machine code. To enable lifting integer arithmetic from machine code to
pointer arithmetic with getelementptr in LLVM-IR where possible, general-purpose
registers also have a pointer facet, which is used for memory accesses.

Vector and floating-point registers are generally used for scalar or vector arithmetic
of floating-point values or integers and therefore have a variety of facets with different
vector sizes and vector element types (see Figures 3.2b and 3.2c).

3.3.5 Status Flags
The status flags register differs from conventional registers: the individual flag
bits are almost always tested individually and the combined representation is used
very rarely. In particular, x86-64 only has three instructions to read the combined
representation (namely pushf, lahf, and syscall) [Int20a], AArch64 has only a
single instruction for this purpose [Arm18].

Thus, within Rellume, status flags are represented as different single-bit registers
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in the CPU state and therefore are also propagated as different values throughout the
lifted code. The combined representation is only computed when actually required.

Between different architectures, the number and purpose of status flags differs;
therefore, the number of flags is varying like the number of other registers. The
x86-64 architecture, for example, has six status flags (sign, zero, carry, overflow,
auxiliary carry, parity) indicating the result of an arithmetic operation and one
control flag (direction) affecting the behavior of string instructions. In contrast,
RISC-V has does not use the concept of status flags at all and encodes all condition
operands directly in conditional instructions.

3.3.6 Memory Accesses
Memory accesses by the lifted code are generally lifted as regular load and store
LLVM-IR instructions with the default (global) address space 0. To allow for an
easy distinction of application memory accesses and memory operations of the lifter
to access the CPU state, the latter are performed with pointers in address space 1.
This has no further impact on the code generation process, but serves a hint to the
alias analyses that the lifted code will never access the CPU state, allowing further
optimizations regarding the CPU state.

As LLVM is designed for handling code generated from a high-level language, the
null pointer is usually treated specially, in that arithmetic on this special pointer
value is undefined. However, when lifting machine code, this is not necessarily the
case; the address value zero may as well be used as address base in combination
with a sufficiently large “offset”. Hence, optimizations regarding the null pointer
have to be inhibited on Rellume-generated functions. This is achieved by setting
the null-pointer-is-valid attribute on such functions.

3.3.7 Further Optimizations
In addition to the previously described general lifting approach, Rellume implements
three optimizations for improving the performance of the generated LLVM-IR code.
These optimizations can be disabled individually, as they may have a negative
impact on the overall performance in certain situations.

3.3.7.1 Call–return Optimization

In the lifting mode described in Section 3.3.1, the lifting process stops when encoun-
tering a function call, and the code of the called function as well as the code after
the function return have to be handled separately. While this is a feasible approach,
it neglects the fact that most function return ordinarily4 and, after the function call
finished, continue execution at the instruction following the call instruction.

4This is not always the case, even on compiler-generated code, e.g., with longjmp or exceptions.
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func 40ab00

func 40abcd

func 401200

...
; call 0x401200
; (...store ret.addr 0x40abcd)
store 0x401200, %cpustate.rip
tail call dispatch(%cpustate)

; code at 0x401200
...
; ret
; (...load ret.addr from stack)
store %retaddr, %cpustate.rip
tail call dispatch(%cpustate)

; code at 0x40abcd
...

(a) Function call lifted without special call–return handling. The call is realized by storing the
return address on the stack and the CPU state; the actual execution is realized by using a dispatcher.
Likewise, the function return also jumps to the dispatcher with the return address fetched from the
stack.

func 40ab00

func 401200...
; call 0x401200
; (...store ret.addr 0x40abcd)
store 0x401200, %cpustate.rip
call dispatch(%cpustate)
cmp %cpustate.rip, 0x40abcd

; mismatch (unlikely)
tail call \

dispatch(%cpustate)

; match, continue at 0x40abcd
...

; code at 0x401200
...
; ret
; (...load ret.addr from stack)
store %retaddr, %cpustate.rip
ret

(b) Function call lifted with call–return mode. The function call is realized using a native call.
When the called function returns using a native return, the new instruction pointer in the CPU
state is compared with the expected return addresses. If the address are equal, the code after the
call can be executed, otherwise a jump to the dispatcher is necessary.

Figure 3.3: Example for code lifted without and with the call–return mode. In call–return
mode, fewer lifted functions are created and fewer calls to the dispatcher are necessary.
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Therefore, the lifted code can be optimized by making use of built-in function
call mechanisms in LLVM-IR. A function call in machine code to a function call in
the LLVM-IR and a return instruction is lifted as a function return. For correctness,
after the lifted function call succeeded, the return address must be verified and only
in case of mis-speculation, a dynamic dispatch is required. A comparison of the
default approach and the optimized call–return is shown in Figure 3.3.

This optimization has two key advantages: first, a lifted function is more likely to
cover the actual function in machine code when it contains calls to other functions.
When lifting larger sections of code, this leads to a reduced number of lifted functions.
And second, when the lifted code is compiled again to machine code, less dynamic
dispatches are required and the return address prediction of the CPU is utilized,
reducing the execution overhead and the number of dispatch operations. One
disadvantage, however, is the possibly increased complexity of the lifted functions,
which may have a negative performance impact of subsequent optimization or
compilation.

3.3.7.2 Flag Computation at Function Boundaries

In particular on x86-64, where many arithmetic instructions also update the status
flags register, the computation of the flag values can accumulate to a significant
overhead. While many of these computations can be eliminated during optimizations,
this is not possible at the boundaries of the lifted code. This is the case on indirect
jumps as well as function calls and returns. However, especially for function calls and
returns, almost all compilers and widely used calling conventions do not require flag
values to be preserved across a function call or return instruction5. Consequently,
unused flag computations immediately before a function call or return can be
discarded. As this optimization potentially modifies the program semantics — in
particular with hand-crafted assembly code — it can be disabled.

3.3.7.3 Registers for Thread-local Storage

Some architectures provide additional registers designed for use as base address
for thread-local storage. For example, on x86-64 [Int20a], the segment registers fs
and gs have a configurable base address and can be used in combination with all
memory operands; and on AArch64 [Arm18], the user-accessible system register
tpidr el0 is generally used for this purpose. These registers are also stored in the
CPU state, but unlike other registers, they are not passed as SSA registers through
the function, because they are used only rarely. When required, the register value is
loaded from the CPU state in memory; optimization passes are expected to combine
redundant load operations.

5I am not aware any general-purpose compiler which makes such assumptions and never
encountered such cases with the benchmarks used in this thesis or other publications.
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Nonetheless, on x86-64, also native segment registers can be used instead to
avoid these additional memory accesses: the segments gs and fs are mapped to
LLVM’s address spaces 256 and 257, respectively, which are defined by LLVM to
correspond to these segments. However, this optimization is expected to only have
a low performance impact due to the rare use of segment registers.

3.4 Architecture Support
Rellume currently supports the architectures x86-64 [Int20a] and 64-bit RISC-
V [RIS19] with common extensions (rv64imafdc), but is structured to generally
support widespread general-purpose ISAs. The library is designed to be easily
extensible towards new architectures, while at the same time being able to re-use
most architecture-independent parts like handling of control flow or registers. This
section outlines the steps required to add support for a new architecture to Rellume
and afterwards describes handling of some specific features of ISAs, which need to
be considered when extending the lifter.

3.4.1 Adding a New Architecture
Adding a support for a new architecture to RISC-V requires following these steps:

1. Specify registers. As first step, the structure of the CPU state has to be
defined. This includes defining the number and sizes of supported registers
and their facets.

2. Supply decoder. A necessary requirement for lifting machine code is to decode
the stream of binary code into separated instructions. The decoded instruction
can be stored in arbitrary format, but have to be annotated with information
about the size of the instruction and possible control flow modifications. The
latter consists a classification (e.g., conditional branch, function return, or
unchanged) and, if available, the addresses of possible branch targets. This
information is required for the architecture-independent control flow handling.

3. Implement instruction lifting. A mapping of instruction semantics to corre-
sponding LLVM-IR code is required. The instruction lifter can rely on the
common infrastructure for handling registers and memory accesses.

4. Extend list of supported architectures. Finally, the configuration API of the
library has to be updated to indicate support for the newly added architecture

In most cases, following these steps suffices to extend the lifter. However, depending
on the size and complexity of the instruction set, the third step might be considerable
effort, in particular with large ISAs, like AArch64 [Arm18].
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3.4.2 Handling Specific ISA Features
Widespread ISAs share several common concepts and approaches, while they also
differ in some areas. A compiler IR, like the LLVM-IR, is usually an intersection of
features from the supported architectures, making it easy to target them during
code generation. This, however, implies that some concepts from ISAs cannot be
easily represented in the IR, and some low-level concepts may not be representable
at all. Other characteristics can be modeled appropriately, but care must be taken
to correctly represent subtle differences of the same concept found in different
ISAs. This section outlines some problematic ISA features and possible solutions
for mapping these to LLVM-IR constructs.

Integer Division An integer division operation and the related integer remainder
or modulo operation have two corner cases: first, the divisor might be zero, in which
case the result is mathematically not defined; and second, for a signed division
of the minimum integer value by −1, an integer overflow occurs as the binary
representation of the quotient needs more bits than the dividend itself.

Different architectures pursue different strategies for handling these corner cases:
for example, AArch64 [Arm18] and RISC-V [RIS19] return defined values when
encountering such operations, whereas x86-64 [Int20a] raises an exception. To
address the diversity of hardware implementations of these cases, programming
languages like C [ISO17] and compilers like LLVM [LLV20b] define integer division
with such values as undefined behavior, where it is unspecified whether the operation
will succeed at all, and if it does, what the resulting value is.

This, of course, is not a viable option when lifting a well-defined operation from
machine code to LLVM-IR and therefore lifting an instruction for integer division
requires additional checks and handling for these corner cases.

Floating-point Semantics One non-trivial problem of properly representing
floating-point semantics in LLVM-IR is the lack of support for different rounding
modes; currently, only the default mode round-to-nearest is supported6 [LLV20b].
However, as demanded by the C standard [ISO17], the rounding mode is dynamically
configurable using a library function, and therefore, many ISAs implement a register
to control the rounding mode [Int20a; Arm18; RIS19]. Additionally, some ISAs
support an explicit specification of the rounding mode for conversion instructions
(e.g., AArch64 [Arm18]) or for all floating-point instruction (e.g., RISC-V [RIS19]).

As many applications are not highly sensitive on exact floating-point arithmetic,
ignoring the dynamically configured rounding mode is generally sufficient for most
arithmetic operations. For conversions to integer values, however, the rounding mode

6There is ongoing work for proper support of other rounding modes, and parts of this support
are available using experimental instrinsic functions.
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has a highly visible effect, and consequently needs explicit handling. This can be
realized by first rounding the floating-point value to the next integral number using
LLVM intrinsics, like llvm.round, before doing the actual conversion. However,
as not all targets have native support for these intrinsics, they may be lowered to
library function and require a software implementation.

A bitwise accurate representation of floating-point operations with proper handling
of special values like SNaN /QNaN with native LLVM operations for floating-point
arithmetic is not possible. While LLVM and most ISAs closely follow the IEEE-754
standard [IEE08; LLV20b], in some cases, like the computation of the minimum
of two numbers, there are minor deviations from the standard with regard to the
handling of NaN values, and different ISAs specify different operations in such
cases. Thus, bitwise accuracy ultimately needs a full software implementation of
floating-point arithmetic, which may have a significant performance impact.

Atomic Memory Operations Multi-threaded programs require atomic memory
operations for access to shared variables or locks. Consequently, the LLVM-IR
provides instructions for atomic compare-and-swap and read-modify-write primitives
combined with a proper lowering to equivalent sequences of machine instructions.
On the other side, ISAs like RISC-V [RIS19] provide instructions for atomic read-
modify-write, but no compare-and-swap. Instead, such operations shall be realized
using a loop of load-reserve/store-conditional instructions, which only succeed, if
the memory location at the specified address was not modified by another thread in
between.

Such low-level loops cannot be represented in LLVM-IR and correctly translating
such sequences to a different architecture requires either hardware support or
extensive software handling for tracking memory accesses [Cot+17]. In the current
implementation of the RISC-V lifter, such loops are, therefore, currently transformed
as non-atomic memory operations. Support for correctly lifting load-reserve/store-
conditional loops likely requires changes to the LLVM-IR.

Memory Ordering While many architectures, like ARM or RISC-V, implement
weak ordering, which allows processors to reorder memory operations in a flexible
way and therefore require memory barriers in multiprocessing environments [McK10],
x86-64 implements processor ordering [Int20a], which basically only allows reorder-
ing memory load operations before memory write operations. LLVM, however,
implements a memory ordering model similar to weak ordering [LLV20b], which
allows more optimizations and simplifies targeting architectures with weak ordering.

Consequently, lifting x86-64 memory operations to LLVM-IR would technically
require to add atomicity constraints to all load and store instructions. As this
would cause the code generator to insert many memory barriers with associated
performance costs, this is currently not implemented.
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3.5 Library API
The library Rellume provides an API to allow users, for example, a dynamic binary
rewriting system, to lift given machine code into corresponding LLVM-IR code.

The API of Rellume is designed to be simple and flexible with regard to support of
other and future architectures. Generally, the API is structured as follows: first, the
user has to create a configuration object, where they can specify the architecture as
well as other options, for example, configuring specific optimizations or the insertion
of markers to simplify relating the lifted code with the original code. With this
configuration object, a new lifted function can be created. This function can be
populated with instructions; based from specified starting addresses, all instructions
reachable through branches or only individual instructions can be added. Once
all requested instructions were added, the function can be finalized, which implies
linking the control flow of the provided machine code instructions and returning the
LLVM-IR function.

Listing 3.1 shows a usage example of the Rellume API. Initially, the user creates
an LLVM-IR module, which will later be used to hold the lifted function. Afterwards,
a Rellume configuration is created. At this point, the configuration can be modified;
in this case, only the architecture of the machine code is specified as x86-64. After
all required configuration options have been set, a new lifted function is created
with the configuration and the module. Subsequently, all code reachable from the
start address of the code is lifted into a new LLVM-IR function. This function is
handed over to the user of Rellume after the lifting process is finalized.

1 static const unsigned char code [] = { /* ... */ };
2 int main(void) {
3 // Create LLVM module
4 LLVMModuleRef mod = LLVMModuleCreateWithName (" lifter ");
5

6 LLConfig * cfg = ll_config_new (); // Create config .
7 ll_config_set_architecture (cfg , "x86 -64"); // Set architecture
8

9 LLFunc * fn = ll_func_new (mod , cfg); // New function
10 // Lift code reachable by following all direct jumps. The last
11 // two parameters allow for an optional virtual address mapping
12 ll_func_decode_cfg (fn , ( uintptr_t ) code , NULL , NULL);
13 LLVMValueRef llvm_fn = ll_func_lift (fn); // Finalize function
14

15 LLVMDumpValue ( llvm_fn );
16 return 0;
17 }

Listing 3.1: Usage example of the Rellume API. All instructions in code reachable via
direct branches are lifted into the LLVM-IR function llvm fn.
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To account for the fact that the machine code designated for lifting may reside at a
different address during lifting than during its execution — for example, when a file
is mapped to an arbitrary memory address — the functions to decode instructions
into a lifted function allow for an optional address mapping: an function to access
instruction bytes at a given address from the perspective of the lifted code can be
supplied as parameter; if omitted, Rellume assumes that the lifted code resides in
the same address space.

3.6 Discussion
A general quantitative evaluation of tools or libraries that lift machine code to LLVM-
IR is problematic, as it strongly depends on the surrounding use case. Similarly, a
comparison of lifted code fragments is likely misleading given the strongly diverging
use cases and design goals of other approaches. This section will, therefore, pursue
a discussion of the lifting approach implemented in Rellume. After describing
the different operation constraints for static and dynamic lifters, the approach
of Rellume will be compared with the actively maintained state-of-the-art lifters
McSema [Tra21] and S2E [CKC11] (cf. Section 3.2); Figure 3.4 gives an overview
on these different approaches. The performance aspect of the generated code by
Rellume and the lifting process itself is evaluated in Section 4.4 for the context of
DBT, in Section 5.4 for the context of DBI, and also in Section 6.8 for the context
of dynamic binary optimization.

Operation Constraints Dynamic lifters have inherently different operation con-
straints compared to static lifters.

Static lifters must cover many possible execution cases. Identifying machine code
and recovering control flow from a binary file is a hard problem. In particular,
distinguishing machine code from constant data and identifying possible targets
of indirect jumps are non-trivial tasks. Thus, some lifters like McSema [Tra21]
or RevGen [Cyb18] rely on widely-used reverse engineering software for control
flow recovery. A lifter operating in a dynamic context, in contrast, does not have
to handle all possible cases at once and can defer handling of situations like the
identification of dynamic jump targets until they actually occur.

Additionally, when a dynamic lifter is used for immediate execution of the lifted
code, the lifter generally has to face tighter performance constraints. Furthermore,
not only the time needed for lifting accounts for the overall execution time, but also
the time needed for subsequent processing, for example optimization or code genera-
tion. Hence, a performance-oriented dynamic lifter has to optimize the performance
of the lifting process and also the number and complexity of subsequently needed
transformations. In the dynamic context, additional analyses for recovering specific
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language constructs from machine code can only be used if they are expected to
pay off by reducing compilation or execution times.

Another major difference between static and dynamic lifters is the input format:
static lifters generally expect an executable file they can analyze completely, whereas
a dynamic lifter may not have all information available. For example, when a binary
is loaded into memory, typically not all sections are mapped; and dynamically
generated code has no associated executable file at all.

In combination, these constraints imply that a system for lifting machine code
to LLVM-IR in a dynamic context shall avoid unnecessary code transformations,
costly analyses, and handling of unlikely corner cases, but instead has to properly
support cases of incomplete information and only partially available machine code.

Comparison with McSema McSema [Tra21] is a tool to transform entire binary
files in equivalent LLVM-IR code with the focus on binary analysis and reverse
engineering, Figure 3.4a gives a rough overview over the lifting procedure. The tool
relies on external programs to identify of functions and their separation basic blocks.
Additionally, during the initial lifting step, several constructs from machine code,
for example memory accesses, are initially mapped as calls to internal intrinsic
functions of the lifter, which are only removed at a later stage after optimizations.
Furthermore, registers are initially lifted as memory access to their CPU state, such
accesses are only combined and eliminated at a later stage.

The additionally required transformation to remove lifter intrinsics and the
transformation of memory-backed guest registers to SSA registers essentially rewrite
most parts of the initially lifted code, with associated optimization costs. The
dependency on external (proprietary) tools additionally increases the effort needed
for an integration into dynamic systems.

Rellume, in contrast, avoids these extra transformation steps by lifting to the
desired idiomatic LLVM-IR code directly and is able to recover control flow dy-
namically. Rellume also does not attempt to identify global variables or calling
conventions, as this is not required for the case of dynamic re-execution. However,
this also implies that Rellume is currently (but not inherently) less suitable for
static analysis due to the lack of such analyses.

Comparison with (systems based on) the S2E Lifter The lifting component of
S2E [CKC11] is based on a modified version of TCG; a basic block of machine code
is first transformed to TCG IR code and further transformed into an LLVM-IR
function. Figure 3.4b gives an overview over the lifting procedure.

This already exposes a significant limitation of this lifting approach: only sin-
gle basic blocks are lifted at a time, and lifting separate basic blocks results in
separate LLVM-IR functions. Representing the control flow of machine code func-
tions in LLVM-IR functions requires significant further transformations, as per-
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(a) Simplified lifting process of McSema [Tra21]. Functions, basic blocks, instructions, and the CFG
are separated with a separate tool into an intermediate file format; the actual lifting process uses
this information [Tra19a]. After the instruction semantics have been transformed to LLVM-IR, the
code is optimized and only afterwards, so-called intrinsics of the lifter (e.g., for memory accesses)
are removed.
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Binary
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(b) Lifting approach of S2E. LLVM code is derived from previously created TCG code. Only single
basic blocks are lifted, for a representation of control flow, multiple blocks need to be lifted separately
and subsequently combined.
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(c) Lifting approach of Rellume. LLVM code is derived from previously created TCG code. Only
single basic blocks are lifted, for a representation of control flow, multiple blocks need to be lifted
separately and subsequently combined.

Figure 3.4: Slightly simplified overview on the lifting steps of McSema, S2E, and Rellume.
All three approaches use different internal representations and also differ in their lifting
granularity — McSema lifts entire binary files with (possibly) multiple functions, S2E only
single basic blocks, and Rellume single functions consisting of (possibly) multiple basic
blocks.
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formed by RevGen [Cyb18], which relies on McSema for function identification, or
rev.ng [DFA18], which combines all lifted basic blocks into a single function. Thus,
such TCG-based approaches avoid significant overhead during program execution
at the cost of more expensive transformations.

Rellume avoids these transformations and can generally be used in similar contexts
as the S2E lifter. However, Rellume currently supports fewer architectures than
TCG and is also less tested.

3.7 Summary
This chapter described the library Rellume, which lifts machine code functions to
equivalent LLVM-IR code. The library focuses on the performance of the lifted code
and also reduced the complexity of required code transformations. During lifting,
the control flow of the machine code is reconstructed before the instruction semantics
are transformed into semantically equivalent LLVM-IR code. Machine code is lifted
with near-function granularity, stopping only function calls and indirect jumps;
as an optional optimization function calls are predicted to return ordinarily for
even larger granularity. The lifting library currently supports x86-64 and RISC-V,
but is designed to be easily extensible towards other widespread contemporary
architectures. The next chapter details Instrew, a framework for LLVM-based
Dynamic Binary Translation based on Rellume; and Section 6.7.3 describes an
approach for dynamic binary optimization based on LLVM and Rellume.
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4 Instrew: LLVM-based Dynamic
Binary Translation

The previous chapter described a library for lifting machine code to LLVM-IR with
focus on performance in a dynamic context. This chapter will build upon this
library and introduce the framework Instrew, which performs user-level Dynamic
Binary Translation and Dynamic Binary Instrumentation solely based on LLVM,
allowing for increased optimization possibilities and higher performance. In the
following, the Instrew architecture and the use-case of Dynamic Binary Translation
without functional changes is described in detail; the instrumentation capabilities
for modifying program behavior are covered in Chapter 5.

Publication Information
The approach described in this chapter was previously published in [ES20a]
with further extensions and modifications described in [EOS21].

4.1 Motivation
Executing programs that are compiled for a different CPU is a frequent problem, for
example with legacy or proprietary software where the source code is unavailable
or porting would constitute too much effort. Such code may be compiled for an
entirely different ISA than the host architecture, for example, executing x86-64
binaries in AArch64, but might also be compiled for a later version of the same
ISA requiring ISA extensions that are unavailable on the target CPU. This point
can become especially relevant for RISC-V [RIS19], where ISA extensions can be
combined flexibly and vendor-specific extensions are actively encouraged.

A very similar situation occurs in computer architecture research when developing
new ISAs or ISA extensions. An evaluation of newly added instruction is principally
possible by using FPGAs — such simulators are very accurate, but also time-
intensive during development and therefore unsuitable for rapid design iterations.
Furthermore, for many parts of the design process, cycle-accurate performance
results are not needed; for example when optimizing compiler support, statistics on
executed instructions and their effectiveness can already suffice.

While plain interpretation of the program instructions is possible, interpretation
of machine code adds massive overhead, very similar to interpretation of programs.
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Thus, this overhead can be significantly reduced by translating code fragments from
the guest to the host architecture using Dynamic Binary Translation (DBT). The
remaining overhead depends on the quality of the translation and also the time
taken for the translation itself.

Therefore, a DBT system faces the challenge to generate efficient machine code for
the host architecture with a low translation and optimization overhead. Especially
longer-running applications, however, benefit from more optimizations, outweighing
the effort needed for the more costly translation process. This motivates to further
emphasize the quality of the translated code using of a more advanced optimization
and code generation procedure, similar to those found in standard compilers.

4.2 State of the Art
Binary translation can be performed dynamically during program execution by
translating code when required or statically before program execution by translating
the executable file as a whole. Dynamic approaches generally allow for complete
program execution whereas static approaches are faced with the problem to discover
all possibly executed code fragments before the program is executed — handling of
dynamically generated or modified machine code is not possible with static trans-
lation alone. The advantage of static binary translation over dynamic translation,
however, is the absence of translation overhead at the run-time of the translated
program combined with the ability to perform further optimizations as all code
is available and known during the translation process. Nevertheless, dynamic ap-
proaches are much more common, most likely due to their applicability on more
applications without translation limitations and their ease of use.

4.2.1 Dynamic Binary Translation
User-level DBT is the most common approach for binary translation. Many of these
approaches are based on QEMU [Bel05], an infrastructure for virtualization with
support for many architectures. This is achieved by adding an abstraction layer
between the guest and the host architecture. Other dynamic approaches exist as
well, but are typically specialized on specific guest–host architecture combinations.

4.2.1.1 QEMU-based Approaches

QEMU [Bel05] is the de-facto standard for many kinds of virtualization and DBT-
based ISA emulation. As such, it covers a wide range of commonly used architectures
for guests and hosts. There are two emulation modes [QEM20a]: in system emulation,
a full system with different privilege levels and a nested Memory Management Unit
(MMU) is provided to emulate a full operating system. Contrary, in user-mode
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emulation, user-space programs are emulated and system calls are passed through
to the host operating system where possible. If the guest architecture is the same
as the host architecture, QEMU can use hardware virtualization exposed through
KVM, if available, otherwise QEMU falls back to regular DBT [Bel+17].

Internally, the binary translation component of QEMU is based on the Tiny Code
Generator (TCG) [Bel+19; QEM20b; Bel+20] IR. TCG is a virtual ISA with a
fixed set of registers and a strong type system. As TCG itself originates from a
compiler back-end, it has the notation of functions, but within QEMU, only basic
blocks are translated in one step. The virtual instruction set only supports integer
operations; floating-point arithmetic and other complex guest instructions are only
supported by including calls to helper functions [Bel+20]. During emulation, the
front-end lifts basic blocks of guest code to TCG, where lightweight optimizations
like the elimination of dead instructions are performed. Afterwards, the back-end
compiles the code for the host architecture. For precise handling of CPU exceptions
from the host, a mapping from the instructions of the translated code to the guest
code and the associated virtual CPU state is maintained [QEM20b].

The binary translator, the original code, the translated code, and all memory
allocated by the guest program reside in the same address space for simplicity. To
prevent the guest program from accessing memory of the binary translator itself, all
guest memory allocations and memory accesses are translated to add an additional
constant offset, so that memory below this offset is unaddressable for the guest.

LLVM-based Optimizations As a consequence of the basic block granularity and
the simple virtual instruction set, QEMU/TCG, while designed for portability
and precise emulation, is not focused on efficient emulation. Consequently, several
systems based upon QEMU for improved performance have been proposed, in
particular by using the LLVM framework for optimizations.

Chipounov et al. [CC10] translate basic blocks from TCG further to LLVM-IR to
make use of the LLVM optimizing code generator, but find that this simple approach
incurs a high translation overhead from LLVM, which cannot be compensated.
Jeffery [Jef09] experiments with a hybrid approach, where LLVM is used on a
different core in parallel to the translation using TCG, replacing the TCG-generated
code when the LLVM-generated code is ready. However, with this approach they
find that the optimized code was only executed rarely.

LnQ [Hsu+11] were the first to achieve performance improvements by replacing
TCG with LLVM inside the QEMU framework. Their translation approach is
based on translating basic blocks by inlining prepared code fragments for the
individual instructions. However, further details on performed transformations or
the actual code fragments remain unclear. HQEMU1 [Hon+12] achieved slightly
higher performance improvements by keeping TCG as fast-path code generator and

1HQEMU appears to be a successor of LnQ.
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running the LLVM translation only on hot traces in a separate thread. Sequences
of TCG code blocks are lifted to LLVM-IR for optimized code generation of longer
code sequences. A variant of HQEMU [Hsu+15] designed for use on less powerful
hardware supports executing the LLVM-based optimization on a different system,
however, this execution mode is no longer supported in newer versions.

Based on this prior work it can be observed, that an increased translation
granularity is necessary for effective use of LLVM and its optimizations. This,
however, is difficult to realize with QEMU and especially with TCG due to the
limitation to basic block translation and a rather small virtual instruction set.

Multi-threaded Emulation With the increasing availability of multi-core proces-
sors, also support for multi-threaded programs inside DBT became a subject of
research. Problems not only arise in the handling of the code cache, which can
be either unified for all threads or separated for each thread, but also in properly
mapping memory semantics of the guest architecture to the host architecture.

COREMU [Wan+11] is a port of QEMU to support multiple threads with a
unified code cache, but with an incomplete implementation of the semantics for
atomic memory operations. PQEMU [Din+11] experimented with both, shared and
unified code caches, but made no advances for a correct implementation of memory
consistency and atomic operations. Pico [Cot+17] implements different schemes for
handling atomics based on a software emulation or hardware transactional memory;
the software emulation was later merged into upstream QEMU. Qelt [CC19] further
improved the code translation performance by partitioning the code cache for each
thread and added support for using the host FPU for floating-point emulation.
Furthermore, they added an instrumentation API to TCG.

4.2.1.2 Other Dynamic Binary Translators

Other approaches besides using QEMU exist, but are usually focused on selected
guest–host pairs. One of the first DBT systems was Mimic [May87], which dynami-
cally translates from System/370 to RT PC by translating blocks of code at once.
Walkabout [CLU02] is a binary translator that focuses on decoupling source and
target architectures for eased retargetability, but has a high performance overhead.

Since the publication of QEMU, however, fewer new DBT systems were proposed.
One of them is HERMES [Zha+15], which does not perform optimizations on the
IR used during the translation, but applies post-optimizations on the translated
machine code.

Rv8 [CH17], RISCV-DBT [Guo18], and RIA-JIT [Dor+20] are recent approaches
targeting optimized translation of programs compiled for the emerging RISC-V
architecture to x86-64, experimenting with different optimization strategies like
instruction fusion and load–store elimination. All of these systems use the same
address space for the guest program and the binary translator itself, like QEMU.
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Windows supports executing 32-bit x86 binaries on AArch64 using a transparent
dynamic binary translation layer, which caches translated code fragments across
execution of the program, further details on the translation mechanism are un-
known [Mic21]. Apple includes a binary translator for x86-64 binaries to run on
AArch64 processors in recent released of macOS, making use of hardware support
for the x86-64 memory model and caching of translated code fragments [App21;
Søg20]; further details on the actual translation process are unknown.

Transkernel [Guo+19] is a kernel-level approach targeting heterogeneous systems
and uses QEMU to transparently migrate to and execute processes on processor
cores with a different architecture.

4.2.2 Static Binary Translation
Binary translation can also be performed offline, where an executable file compiled
for a source architecture is rewritten to be natively executable on a probably different
target architecture. The general procedure begins with an initial decoding step,
where machine code is lifted to some architecture-independent IR. From this IR, a
new executable file for the target architecture is generated. During the lifting step,
further analyses may take place to recover more information about functions and
program semantics; and during the lowering step, target-specific optimizations are
performed. [Ang06; CV00] In this section, only more general static binary translation
systems without a fixed source–target architecture combination will be covered.

The critical point of static binary translation is to discover as much possibly
executed code as possible in the executable file. As code and data may be interleaved
and cannot be separated clearly, the translated binary file includes a copy of the
original file [CV00; Cyb18]. As it is impossible to discover and therefore translate
all possibly executed code statically — for example, dynamically computed jump
targets or JIT-compiled machine code — for full program correctness, the binary
translator additionally need to add an emulator for machine code of the source
architecture [CV00].

The University of Queensland Binary Translator (UQBT) [CV00; Cif+01] is a
static binary translator framework with support for multiple code generation targets.
Initially, the source binary code is decoded and lifted to an architecture-independent
code representation and the control flow graph is recovered. For the compilation
to different architectures, multiple approaches are implemented, including a back-
end based on a standard C compiler. For handling of untranslated code, different
possibilities are outlined, including an interpretation of a lower-level and more
fine-grained code representation obtained during lifting as well as a brute-force
approach to cover all possible code bytes during the translation process.

LLVM-based Approaches Many newer, more general approaches are based on
the LLVM framework [LA04] by lifting the source binary code to LLVM-IR and
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then using the LLVM optimizer and compiler to produce a new executable binary.
LLBT [She+12; SHY14] is a tool which lifts ARMv6 binaries to LLVM-IR, lifting

all translated instructions into a single function. Indirect jumps are handled by
looking for jump tables and potential targets of function returns combined with a
dispatcher to dynamically jump to translated code fragments. The data sections of
the source binary are kept without modifications; accesses to literal pools, which
are commonly stored at the end of each function in the code segment, are handled
specially during lifting.

Rev.ng [DFA18; Gus+19] originally was a tool for LLVM-based binary analysis,
but has been extended to support static binary translation as well. The binary
code is initially lifted to TCG, the IR also used by QEMU, from where it is lifted
further to LLVM-IR. As done in LLBT, all code is lifted to a single LLVM-IR
function combined with a dispatcher for handling indirect jumps. To allow for more
optimizations, a further extension [Gus+19] identifies functions during lifting and
moves them to separate LLVM-IR functions, while keeping the main dispatcher
intact.

RevGen [Cyb18] also uses TCG to lift machine code semantics to LLVM-IR,
but creates a LLVM-IR function for each basic block, which are subsequently
combined using control flow graph information obtained through analysis using
McSema [Tra21].

4.3 Instrew Architecture
The LLVM compiler infrastructure provides a flexible framework for high-quality code
optimization and compilation. Thus, LLVM has already been used for binary trans-
lation [Hsu+11; Hon+12; She+12; DFA18], exploiting the architecture-independent
LLVM-IR that provides sufficient abstraction from the original code and enables an
effective usage of features provided by the host CPU. However, existing dynamic
approaches were limited by small translation granularities of basic blocks or su-
perblocks, which result from the integration with existing infrastructures; whereas
static approaches were limited by the need to cover as many cases as possible during
their translation step.

These problems can be solved by combining a dynamic translation mechanism, for
higher flexibility, with a larger translation granularity, for enabling further and more
complex optimizations and thereby using LLVM’s optimization infrastructure to its
full extent. This approach is implemented in the Instrew2 framework. In Instrew,
entire functions are lifted to LLVM-IR using Rellume (see Chapter 3) without an
additional code representation layer in between. The resulting increased translation
time generally pays off over longer runs.

2https://github.com/aengelke/instrew, open-source and licensed under LGPLv2.1+.
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Figure 4.1: Overview of the Instrew client–server architecture. The client process is
responsible for controlling the program execution and executing the rewritten code fragments,
while the server process performs the actual rewriting and optional instrumentation process.
The communication between these processes is realized using an IPC protocol. Figure
slightly modified from [ES20a].

Client–Server Architecture Contrary to many existing dynamic binary rewriters,
Instrew performs the code rewriting process in a so-called server process which
is separated from the process that executed the rewritten code, which is referred
to as the client process. The two processes communicate via an Inter-process
Communication (IPC) mechanism. The overall architecture is depicted in Figure 4.1.

There are several benefits of this separation: first, it enables further optimization
possibilities: for example, a permanently running rewriting server may cache rewrit-
ten code for use with multiple executions, reducing the translation overhead. Second,
the rewriting process can be performed on a machine different to the machine used
for executing the program. This is especially relevant for parallel applications
running multiple threads or even on multiple compute nodes and avoids redundant
rewriting of code. And third, this architecture provides a flexible foundation for
developing different dynamic binary rewriting approaches. As the client is not aware
of the rewriting process itself and merely processes rewritten code fragments, a
different rewriting server that adheres to the communication protocol can be used
instead or in addition to the LLVM-based rewriter.

4.3.1 Server Process
The Instrew server process is initially spawned by the client process and is generally
passive. After the initial configuration handshake, the server waits for code rewriting
requests from the client. Upon receiving such a request, the server responds to the
client with requests to send the necessary instruction bytes. To avoid frequent or
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redundant instruction requests, code bytes are requested with page-size granularity
and cached in the server process. These instructions are then decoded and lifted to
LLVM-IR using Rellume (see Chapter 3) with function granularity, optionally also
using the call–return optimization described earlier in Section 3.3.7.13.

After lifting the function to target-independent LLVM-IR code, selected optimiza-
tion passes provided by LLVM are applied to eliminate any overheads added during
the lifting stage, such as unused status flag computations. Depending on the target
and the configuration, the interface of the lifted function is adjusted to match the
expectation of the client. Finally, the code is compiled into an ELF object file and
sent back to the client.

4.3.2 Client Process
The Instrew client process manages the program execution flow and maintains the
code cache of already rewritten program parts. As such, it initially establishes the
connection to the server process, maps the emulated program into memory, and sets
up the register state of the emulated CPU. Afterwards, it enters the main dispatch
loop, which looks up the corresponding functions in the code cache and executes
them. Whenever the dispatcher encounters a guest code address that was not
translated before, a translation request is sent to the server. Once the translation
process finishes, the returned ELF object is processed by storing the contained code
in the code cache, applying relocations, and resolving symbols — this essentially
turns the client into a simple run-time linker.

Besides the dispatching and linking functionality, the client also implements a
system call abstraction to abstract Application Binary Interface (ABI) differences
between the guest and the host architecture. System calls for spawning other
threads are, however, currently not supported, this is left for future work. The
function for handling system calls is accessible to rewritten code under a special
function name. Additionally, also implementations of important standard library
functions are provided, to which calls may be generated automatically by LLVM
during compilation. These include memcpy and memset, but also 128-bit integer
arithmetic used by x86-64 division instructions and specific floating-point operations
like floor or round, which may have no corresponding hardware instruction on the
target architecture.

4.3.3 Communication Protocol
The communication protocol between the client and server is a binary protocol
with a primary focus on simplicity and efficiency. Currently, the communication

3There is an option to disable these optimization, as the increased granularity may have a
negative overall performance impact due to increased code generation times
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Figure 4.2: Overview on the communication protocol between client and server process.

is performed using UNIX pipes, which also allow the server to run on a different
machines using SSH, but using sockets or shared memory regions is possible as well
and can be implemented easily. The communication protocol relies on messages,
which have an 8-byte header containing the type as well as the size of the payload
and the payload itself (see Figure 4.2a).

Initialization Protocol For the initial handshake between client and server (see
also Figure 4.2b), the client sends a configuration object (C INIT) for the rewriting
process, which encodes command-line options like optimization or debugging param-
eters. The server then responds with a message (S INIT) containing configuration
options for the client, which currently includes information about the function
interface of translated code. Additionally, the server sends a message (S OBJECT)
with a (possibly empty) initial object for linking to the client, which can contain
additional helper functions that should be available to further objects.

Rewriting Protocol The protocol for rewriting code fragments works as follows
(see also Figure 4.2c). The client sends a request (C TRANSLATE) to the server,
containing the guest address for translation as payload. If the server needs more
instruction bytes from the client, the sends a memory request (S MEMREQ), which
contains the address and the size of the requested memory region. The client answers
with a message (C MEMBUF) containing the corresponding memory region and a final
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byte indicating whether all bytes could be successfully read4. This step repeats
until the server has collected all required instruction bytes for the rewriting process.
Eventually, the server sends a message (S OBJECT) with the object file containing the
rewritten code. The client then processes this object file and executed the enclosed
code.

4.3.4 Structure of Code Fragments
All code fragments received by the client from the server are object files in the
Executable and Linkable Format (ELF) format. However, for simplicity of the client,
only a subset of possibilities given by the format is supported.

Usage of ELF Symbols The most important restriction are the names of public
functions. To store all functions in a hash table with a numeric key for simple
lookup, each function name has to adhere a specific format: the first letter is “Z”,
followed by the number for the hash table index in octal representation. A more
meaningful function name can follow afterwards, but is ignored for symbol resolution
and only serves for debugging purposes. For functions that correspond to guest
code, the respective guest address is used as numeric key and so that the function
can be called by the dispatcher; for other functions, numbers which correspond to
invalid guest addresses are used.

The ELF object may also reference functions from previous objects and also
functions exposed by the client, for example for handling system calls. With this
method, also the dispatcher itself can be called. This is used when the call–return
optimization is active: the dispatcher can be called like an ordinary function to
implement nested calls, which, as a consequence, simplifies the code generation
process.

Function Interface Generally, functions that correspond to guest code and are
called by the dispatcher have to follow a specific interface: these functions take a
single parameter, namely the pointer to the CPU state, which is modified throughout
the execution. However, this requires that all CPU state must be written back to
memory at the boundaries of code fragments, inducing additional overhead. This
can be avoided by using more a specialized calling convention: for x86-64 targets,
LLVM supports the HHVM calling convention, where 12 guest registers can be kept
in host registers. To this end, the server can refactor functions to use this special
calling convention and eliminate unnecessary accesses to the CPU state in memory;

4Due to the direct use of the write system call for reading guest memory, an access to an
invalid address do not cause a signal (SIGSEGV), but only causes the system call to fail with EFAULT.
This case can be detected easily and the information about the error can be sent to the server
with the final success field.
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the client is informed about the selected register convention during the initialization
handshake.

This transformation works for all supported guest architectures. Unfortunately,
this approach only works on x86-64 hosts due to the absence of similar calling
conventions on other targets. A more general calling convention that allows to
explicitly specify register constraints would be required to generalize this approach
to other targets; this is left for future work.

4.4 Evaluation
The overall performance of Instrew, but also the quality of the translated code
fragments and the efficiency of the rewriting process, are evaluated using the SPEC
CPU 2017 [Sta21] benchmark suite, which covers a wide range of workloads derived
from real applications. As guest architectures, x86-64 and RISC-V64 are used,
and the code is then dynamically translated to the host architecture, where x86-
64 and AArch64 are used. The performance of Instrew is compared against a
natively compiled baseline using the same source code for each host architecture,
QEMU [Bel05] for all four guest–host combinations, and HQEMU [Hon+12] in its
parallel hybrid mode for the combination of x86-64–AArch64. Rv8 [CH17] turned
out to be entirely de-functional due to several implementation issues, including
incorrect loading of ELF files as well as emulation issues leading to misbehaving
applications and segmentation violations, presumably caused by bugs in the code
translation process.

4.4.1 Setup
The x86-64 host platform is based on Intel Xeon CPUs (E5-2697 v3, Haswell),
17 MiB L3 cache and 64 GiB main memory, running SUSE Linux 15 SP1 with
Linux kernel 4.12.14-197.40 in 64-bit mode. The AArch64 host platform is based
on Cavium ThunderX2 99xx CPUs, 32 MiB L3 cache and 512 GiB main memory,
running CentOS Linux 8 with Linux kernel 4.18.0-193.6.3.

All benchmarks are run with the reference input workload size in single-threaded
mode; benchmark 600.perlbench was excluded due to use of x87 FPU instructions
and unsupported system calls. Native code on the x86-64 platform is compiled with
GCC 9.2.0; native code on the AArch64 platform and all cross-compiled code is
compiled with GCC 10.2.0. For all compilations, optimization level -O3 is used
during compilation and benchmarks are statically linked against glibc 2.32.

For Instrew, commit 1cdb1bc5 is used together with LLVM 11. In addition to
the base Instrew, the variations using the HHVM calling convention (for x86-64
hosts only) and the call–return optimization are evaluated. For QEMU, version

5https://github.com/aengelke/instrew/tree/1cdb1bc
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5.2.0 is used, and for HQEMU, version 2.5.2 is used in combination with LLVM 6.0,
which is the latest supported version of HQEMU and was patched according to the
documentation.

4.4.2 Results
This section will describe the results of the translation grouped by their target
architecture6.

4.4.2.1 Translations to x86-64

The overhead of the identity translation from x86-64 guest programs to x86-64
hosts is shown in Figure 4.3. For Instrew, the most performant configuration
(Instrew+hhvm) has an overhead of 59% (int: 71%, fp: 48%) over the natively
executed code, which is less then half the overhead of HQEMU with 135% (int:
142%, fp: 128%) and even more significantly lower than the overhead of QEMU
with 1044% (int: 284%, fp: 1728%).

In comparison to the base Instrew, the optimization to use the HHVM calling
convention reduces the average overhead from 78% to 59%, as 12 guest registers are
always kept in host registers, significantly reducing the overall memory accesses at
the boundaries of translated code fragments. However, this improvement is smaller
for the floating-point benchmarks (55% → 48%). This has two main reasons: first,
the HHVM calling convention does not include floating-point registers, so that all
Streaming SIMD Extensions (SSE) registers still must be stored in memory. And
second, the floating-point benchmarks generally have a longer execution time with
less switches between code fragments, reducing the relative performance gain.

The call–return optimization leads to performance improvements on benchmarks
that execute many function calls, for example on 605.mcf or 638.imagick. On other
benchmarks, the performance of the translated code is improved, but negated by the
increased translation time, which is driven by the increased size of code fragments.
The most notable example for this behavior is the benchmark 602.gcc, where 53%
of the time are used for translation (without call–return opt.: 34%). Overall, the
call–return optimization in combination with LLVM 11 leads to a slight benefit of
run-time performance but is overshadowed by the overhead of code generation.

When translating RISC-V to x86-64, the performance results are generally similar,
as shown in Figure 4.4: the average overhead of Instrew+hhvm over the natively
compiled code is 58% (int: 80%, fp: 37%); this is much lower than the overhead of
QEMU with 827% (int: 210%, fp: 1383%). However, the results differ from x86-64

6Note: in literature, the mean is usually computed using the geometric mean, however, this
thesis uses the arithmetic mean (average) to account for the fact, that there is no multiplicative
relation between different benchmarks. Further differences from numbers previously published in
[EOS21] are mainly caused by using a newer version of LLVM.
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(b) Results for SPEC CPU 2017 Floating-Point benchmarks.

Figure 4.3: Performance results when translating x86-64 to x86-64, normalized to the
execution of the natively compiled code. The relative translation time for Instrew and
HQEMU is shown using error bars.
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Figure 4.4: Performance results of the SPEC CPU 2017 benchmarks when translating
RISC-V64 to x86-64, normalized to the execution of the natively compiled code. The
relative translation time for Instrew is shown using error bars.

as guest architecture in an unexpected aspect: the floating-point benchmarks have
a lower overhead when translating from RISC-V, despite the fact that RISC-V does
not yet have standardized vector instructions. This has two reasons: first, some of
the benchmarks do not benefit strongly from vector instructions; and second, the
combination of Rellume and LLVM generates further optimized x86-64 machine
code even if the input machine code was not strongly optimized.

4.4.2.2 Translations to AArch64

The overhead over a natively executed program when translating x86-64 guest
programs to AArch64 hosts is shown in Figure 4.5. For Instrew, the most performant
configuration (Instrew+callret) has an overhead of 123% (int: 171%, fp: 80%) over
the natively executed code, which is significantly less then half the overhead of
HQEMU with 200% (int: 252%, fp: 152%) and also significantly lower than the
overhead of QEMU with 973% (int: 480%, fp: 1417%).

A major source of overhead are frequent memory accesses for loading and storing
the values of guest registers. Due to the lack of a calling convention that allows a
flexible use of host registers, all guest registers have to be stored to memory whenever
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Figure 4.5: Performance results when translating x86-64 to AArch64, normalized to the
execution of the natively compiled code. The relative translation time for Instrew and
HQEMU is shown using error bars.
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Figure 4.6: Performance results of the SPEC CPU 2017 benchmarks when translating
RISC-V64 to AArch64, normalized to the execution of the natively compiled code. The
relative translation time for Instrew is shown using error bars.

the program execution continues at a different code fragment. The increased amount
of memory operations subsequently also affects the dispatcher, which needs to fetch
the address of the next code fragment from memory. This causes pipeline stalls of
several cycles on each dispatch, contributing to the overall overhead.

The call–return optimization, however, is much more effective on the AArch64
host machine than on x86-64 hosts. As the target of function returns are predicted
using CPU facilities, generally less dispatch operations are required and therefore,
in addition to possibly better use of code optimizations, also reduce the overhead
incurred by the dispatcher. In combination with the lower code generation times
for AArch64 targets, the call–return optimization reduced the overall overhead from
210% to 171% on the integer benchmarks.

When translating RISC-V to x86-64, the performance results are generally similar,
as shown in Figure 4.6: the average overhead of Instrew+callret over the natively
compiled code is 105% (int: 149%, fp: 65%); this is again much lower than the
overhead of QEMU with 714% (int: 329%, fp: 1060%). The overhead is slightly lower
than with x86-64 guests, presumably due to the larger register count of RISC-V,
causing less accesses to stack memory in the guest code.
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Figure 4.7: Translation time breakdown for Instrew+hhvm when translating x86-64→x86-
64. The linking time is not shown here, as it is always below 1%.

4.4.2.3 Translation Times

To gain further insights into the performance of the rewriting process, the server
process is modified to measure the time spent for lifting, optimization and code
generation. Figure 4.7 breaks down the translation times for x86-64→x86-64 trans-
lations. For all benchmarks, the main part of the translation time is the code
generation back-end of LLVM with an average of 76%. The fraction of time spent
in Rellume for lifting the machine code is in the range of 5–7%. The time spent for
communication with the client and the linking step on the client side is below 1%
in all cases. The call–return mode increases the code generation time, leading to an
average distribution of 4/13/83% for lifting/optimization/code generation.

One exception is the 602.gcc benchmark with an extraordinarily high rewriting
time. This is rooted in the number of indirect jumps contained in the code, which
is caused by heavy use of switch statements and indirect function calls on the
original code. This not only leads to a high number of code fragments, but also to
redundant code translation, as for each executed jump target, the remainder of the
function is translated anew.

Another important factor for the translation time is the host architecture. Code
generation on the AArch64 host is significantly faster than on the x86-64 host, both in
absolute terms and in relation to the benchmark execution time; despite the fact that
all benchmarks are generally slower on the AArch64 machine. For x86-64→AArch64
translations, this leads to an average time distribution of 5/21/74%.

The guest architecture, on the other side, has only a rather small impact on the
translation time. Due to complexity of the operations from several instructions, using
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x86-64 as guest architecture leads to higher translation times on some benchmarks
(e.g., 602.gcc), but nearly unchanged translation times on others (e.g., 620.omnetpp).

4.4.3 Discussion
The results clearly show that Instrew achieves significant performance improvements
over state-of-the-art systems for DBT. Especially in comparison to HQEMU, which
also relies LLVM for machine code optimization, the performance overhead over the
natively optimized code is more than halved.

This implies that the approach of directly lifting from machine code to LLVM-IR
without an extra intermediate step, like TCG, is beneficial. Especially the larger
translation granularity, which exposes common control flow constructs like loops in
the LLVM-IR, allows for better usage of the LLVM optimization and code generation
infrastructure.

Further performance improvements can be achieved when using a calling conven-
tion which does not require frequent write-back of the entire guest state to memory.
This, however, is currently only supported on x86-64 hosts with the HHVM calling
convention. Due to a missing generalized all-registers calling convention in LLVM,
this concept cannot be easily ported to other target architectures and for imple-
menting this concept in a target-independent manner, changes to the LLVM-IR are
likely necessary.

A significant issue, especially for applications with a short execution time, is the
translation time. In particular, the SelectionDAG instruction selector is known to
have performance issues and there is an ongoing effort in the LLVM community to
add a new back-end, GlobalISel, which addresses this problem [LLV21]. However,
as Instrew’s client–server also allows for a permanently running server or an extra
caching layer between the client and the server, there are also other possibilities to
reduce the impact of translation costs.

Finally, Instrew works with recent versions of LLVM without modifications — in
contrast to HQEMU, which requires a patched version of an older LLVM version,
decreasing maintainability and decouple it from recent improvements in the LLVM
framework.

4.5 Summary
In this chapter, the Instrew framework for LLVM-based Dynamic Binary Translation
was described. Basing on Rellume, machine code is lifted directly to LLVM-IR
without an additional layer of code representation in between. Instrew implements
a novel client–server approach for translation, where the entire process of lifting and
translation is encapsulated in a separate server process. The client is responsible
for managing program execution and sends translation requests to the server when
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required. The communication protocol is designed for simplicity and conceptually
also allows to use the same client with a different rewriting approach. Performance
results on the SPEC CPU2017 benchmark suite on x86-64 show that Instrew has
an average overhead of just 59% over the natively executed code, which is less than
half of the overhead of HQEMU with 135% and even more significantly lower than
plain QEMU with 1044%.
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5 Instrew for Dynamic Binary
Instrumentation

The previous chapter described the Instrew framework for performant DBT/DBI
based on LLVM, with a particular focus on the overall translation process and
the use-case of Dynamic Binary Translation. This chapter extends the Instrew
framework with an API to additionally enable Dynamic Binary Instrumentation on
LLVM-IR level, allowing to dynamically modify program behavior.

Publication Information
The general approach described in this chapter was previously published in
[ES20a].

5.1 Motivation
Dynamic behavioral modification of compiled binaries is useful for for a wide range
of use cases. A common example are tools which add additional integrity checks,
for example by tracking the bounds of memory allocations [NS07a; BZ11; Ser+12],
detecting use of uninitialized memory [NS07a; SS15], or revealing possible race
conditions [JT08; SI09]. An entirely different application of program instrumenta-
tion is performance analysis and collection of performance metrics, often allowing
deeper insights into performance characteristics of a program: for example, Call-
grind [WKT04] dynamically inserts tracing code to gather accurate data on function
timings and also memory accesses, enabling a simulation of cache behavior. Ze-
roSpy [You+20] puts extra checks into the program to dynamically detect redundant
zeros, guiding optimizations to avoid inefficient redundant computations. Other
applications include security enhancements and hardening [Haw+17; Zha+14] as
well as assuring secure execution of programs [War+12].

The general technique to achieve such behavioral modifications is program in-
strumentation: additional code is inserted into the code before its execution. Such
instrumentation can occur at different stages: it can occur during compilation,
where a pass in the compiler instruments the program with the requested additional
behavior. This, however, may be a significant effort as all parts of the program
and libraries have to be recompiled for full coverage; and may be impossible if the
source code is not entirely available.
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Thus, program instrumentation is frequently performed at binary level. Like
binary translation, this can either happen statically in a separate step before the
program execution, or dynamically while the program itself is running. While static
binary instrumentation may be beneficial for applications where the instrumented
code is executed more often, only dynamic approaches can guarantee covering all
possible situations as discussed previously in Section 4.2.

Consequently, several frameworks for Dynamic Binary Instrumentation (DBI)
exist [NS07b; Luk+05; BGA03]. However, existing tools generally aim for low
overhead of the instrumentation process itself and therefore either do not abstract
from the original machine code instructions and therefore make code optimization
significantly more difficult, or use a reduced architecture-independent IR to simplify
instrumentation, but only perform few optimizations during subsequent code gener-
ation. In both cases, meaningful instrumentation results in a significant slowdown
due to a lack of code optimization and optimized machine code generation.

A solution to this problem is to incorporate a compiler framework like
LLVM [LA04] into the code generation process to provide optimizations and an
high-quality machine code generator. DBILL [Lyu+14] implemented this idea based
on HQEMU [Hon+12], but generally suffers from the same limitations as HQEMU.
Moreover, the missing support for floating-point operations due to the use of TCG
excludes a whole class of applications.

By leveraging Instrew (see Chapter 4) and adding an API to enable program
instrumentation, these limitations can be avoided, yielding a high-performance
framework allowing heavy transformations combined with a high-quality optimizer
and code generator.

5.2 State of the Art
Similar to binary translation, binary instrumentation tools can perform code modi-
fication either statically, ahead of the program execution, or dynamically, during
the execution of the program, and the same advantages and disadvantages apply, as
discussed previously in Section 4.2. Consequently, most widely used tools for binary
instrumentation perform such operations dynamically.

However, as binary instrumentation tools generally target the same target ar-
chitecture as the code was previously compiled for, it is not necessary to abstract
from the guest architecture: tools can also employ an architecture-dependent IR
to perform code modifications, for example by representing storing the original
instructions in the IR or by avoiding a higher-level IR at all and operating directly
on machine code.

The internal code representation has a direct impact on instrumentation possibili-
ties, the instrumentation time, as well as the feasibility of optimizations and code
generation. IRs with sufficient abstraction of the underlying ISA allow for more
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heavy transformations and thereby also for better optimizations, as tools do not
need to care about low-level encoding limitations or register availability. However,
such tools also face the problem to generate entirely new code from the abstract IR,
often resulting in considerable overhead over the original code.

On the contrary, IRs that are strongly tied to the target architecture can typically
reuse the original code and therefore avoid the overhead of instruction selection;
but at the same time, the missing abstraction increases the difficulty to perform
actual code modifications and subsequent optimizations, leading to high overhead
with many code modifications.

The remainder of this section will describe state-of-the-art frameworks for binary
instrumentation, classified by the level of abstraction from the guest architecture.

5.2.1 Frameworks with Architecture-independent IR
One of the most popular and widely used frameworks for heavy-weight DBI is
Valgrind [NS07b]. Internally, Valgrind implements an architecture-independent
SSA-based IR named VEX, which can represent code chunks with superblock
granularity. The relationship between the VEX code and the original code is made
explicit by special instructions to get or put values from/to an emulated register
file. Before code is compiled back to machine code, some lightweight optimization
passes are applied, for example, elimination of dead or redundant instructions. The
instrumentation tool operates in the same address space as the guest program
and can arbitrarily modify the VEX code. In addition to inspecting, adding, and
modifying VEX instructions, a tool can also insert special calls to external helper
functions.

DBILL [Lyu+14] is a modification of HQEMU [Hon+12] to base the instrumenta-
tion process on LLVM. As with HQEMU, the LLVM-IR representation for machine
code is derived by lifting chains of TCG code. However, as instrumentation at the
level of LLVM-IR prevents using a bypass using the TCG code generator and instead
demands all code chunks to be lifted to LLVM-IR regardless of profiling information.
As TCG does not natively support floating-point operations, but instead relies
on external helper functions to provide the semantics, DBILL does not support
applications involving floating-point arithmetic.

5.2.2 Frameworks with Architecture-dependent IR
For binary instrumentation without a higher-level abstraction from the target
architecture, several approaches and tools exist. These can be classified in dynamic
tools, which perform instrumentation during program execution, and static tools,
which instrument the binary code completely prior to the execution and produce
a new, modified binary file. Particularly static tools are primarily focused on
instrumentation in the context of enhancing program security.
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Dynamic Instrumentation Pin [Luk+05] is a DBI system that allows instrumen-
tation tools to insert calls to helper functions at arbitrary points in the program.
Internally, the original code is not lifted to an abstract IR, but stored as decoded
machine instructions in basic block chunks. Recent versions of Pin [Int20b] perform
simple optimizations, such as inlining calls to simple instrumentation functions,
whereas for functions with a non-trivial control flow a call instruction is inserted.
While the tool API also provides simple means to modify instructions of the program,
they are rarely used.

DynamoRIO [BGA03; Bru04] was originally developed as a system for transpar-
ent dynamic binary optimization, but shifted its focus to binary instrumentation.
Internally, the instructions are represented as decoded machine instructions. Tools
can modify these instructions directly while observing encoding restrictions of the
target architecture, or can use DynamoRIO’s architecture-independent API, which
provides common operations for multiple architectures. DynamoRIO itself does not
perform any optimizations after the instrumentation.

HDTrans [Sri+06] focuses on reducing the translation overhead by optimizing
the instruction decoding and the mapping to possibly modified instructions using
lookup-tables. Additionally, basic blocks are dynamically combined to traces, which
can also cover the targets of indirect jumps. Program instrumentation, however,
is only possible by exchanging entries in the lookup-table for specific instructions;
general modifications of code and therefore more complex instrumentation payloads
appear to be unsupported.

DynInst [BM11] follows an entirely different approach to dynamic instrumentation:
instead of rewriting the entire application code, an external tool can actively and
dynamically replace individual functions. This requires the tool to have deeper
knowledge of the application code, which it can gain via binary analysis. The
instrumentation tool runs in a different process, code modifications of the application
process are performed using debugging mechanisms like ptrace. For actual code
modifications, an architecture-independent API is provided, but instructions are
not lifted to an IR independent of the target architecture.

Static Instrumentation One of the first systems for performing static binary
instrumentation was ATOM [SE94], which allows the insertion of function calls at
arbitrary points in a program compiled for Alpha CPUs. Simple optimizations are
applied to reduce the call overhead of instrumented helper functions.

With the appearance of DBI systems, the focus of static instrumentation tools
shifted towards security applications. One popular motivation for several tools is
to harden applications by enforcing control flow integrity or sandboxing policies,
thereby increasing the difficulty of exploiting security vulnerabilities [Aba+05;
MM06; ZS13; Haw+17]. Some of these approaches, however, require the use of a
specific compiler setup to have sufficient information about the machine code to
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perform their operations. Another use case is to enforce policies on unknown and
potentially adversarial binaries [War+12; Zha+14].

Such hardening tools, however, did not find wider usage and more recent ap-
proaches for enforcing control flow integrity are based on compiler or CPU exten-
sions [Cor19]. Further, recent versions of Linux include multiple mechanisms to
enforce general security policies, like restricting system calls with an arbitrary filter
with seccomp [Cor12].

5.3 Instrumentation Tool API
Instrew supports tools for the purpose of enabling modifications of the translated
code and exposes this functionality as API for use by tools. Such code modifications
are performed in the server process, and in particular between the step of lifting
machine code to LLVM-IR and the code generation step, to make effective use of
LLVM’s optimizations.

To achieve this goal, an Instrew tool is a shared library object, which is dynamically
loaded into the server on a request by the client. A tool is required to specify two
functions: first, it has to provide an initialization function. This function can parse
arguments passed to the tool, indicate compatibility with specific lifting modes —
for example, to request markers about instruction boundaries —, and can load an
initial set of tool-library functions into the client process; and second, a tool has
to provide an instrumentation function, which can arbitrarily modify a function
of LLVM-IR code lifted by Rellume. In particular, the tool can also inline helper
functions and can run additional optimization passes.

As the tool itself has no access to the client memory, as it resides in the server
address space, a tool can specify a set of functions in LLVM-IR to be compiled
and sent to the client before the program execution starts. These functions can be
called from subsequently instrumented code. For example, a set of “tool library”
functions can be compiled once, including complex code paths, so that cold code
does not have to be re-compiled for each instrumented function. To keep tools
target-independent, library functions are compiled dynamically from LLVM-IR code,
which can be derived from other programming languages, like C, using a suitable
compiler, like Clang [LLV20a].

For storing data, tools are provided with two non-exclusive options: the first
option is a small area with a size of 48 bytes in the CPU state, which is always
available. As this is usually not sufficient, the second option are functions for manual
allocation of larger memory regions. As the client only provides very simple means
for memory management via the mmap/munmap system calls, a tool currently has
to manage memory manually. Enhancements of the tool API to simplify memory
management are subject to future design work.

A tool can intercept system calls by wrapping all calls to the system-call-emulation
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function in the client with an own function. This way, it is possible to detect all
I/O operations and also the program exit, which, for example, can be used to write
data collected during the execution.

Following the fact that Instrew is also a DBT system, the instrumented code
can also be executed on a different architecture. For example, RISC-V code can
be instrumented in the architecture-independent LLVM-IR, and this instrumented
code can be then compiled for and executed on a x86-64 machine. This flexibility
also enables different use cases for architecture and compiler development, as the
target architecture of the static compilation no longer has to match the architecture
where the code will be executed.

5.4 Evaluation
The overall performance of Instrew is evaluated using the SPEC CPU 2017 [Sta21]
benchmark suite, which covers a wide range of workloads derived from real appli-
cations. The widely used instrumentation tool Valgrind [NS07b] is used as main
comparison, as it has very similar capabilities for instrumentation and code trans-
formation. As an additional comparison, Pin [Luk+05] and DynamoRIO [BGA03]
are employed due to their widespread use. However, note that this is not a fair
comparison, because Pin and DynamoRIO have a smaller scope of possible code
modifications.

For the actual instrumentation, two cases are considered: in the first case, the
instrumentation systems were configured to perform an identity transformation
without actual modifications — this is an extreme case to evaluate the overhead
introduced by the instrumentation system itself. In the second case, an instrumen-
tation tool that counts the number of dynamically executed instructions is used.
These tools are in all cases designed to update a counter in memory at the end of
each basic block. This is by no means the optimal way to collect this information
for all of instrumentation systems, but represents the case of a naively written tool
without complex optimizations.

5.4.1 Setup
All experiments were conducted on a platform with the x86-64 architecture. The
dual-socket system is based on Intel Xeon CPUs (E5-2697 v3, Haswell), 17 MiB L3
cache and 64 GiB main memory, running SUSE Linux 15 SP1 with Linux kernel
4.12.14-197.40 in 64-bit mode.

All benchmarks are run with the reference input workload size in single-threaded
mode; benchmark 600.perlbench was excluded due to use of x87 FPU instructions
and unsupported system calls. All code is compiled with GCC 9.2.0 and optimization
level -O3, benchmarks are statically linked against glibc 2.32.
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For Instrew, commit 1cdb1bc1 is used together with LLVM 11. Based on the
results described in Section 4.4, Instrew is configured to use the HHVM calling
convention. For Valgrind, version 3.15.0 is used, for Pin, version 3.18 is used, and
for DynamoRIO, release 8 is used.

For the instruction counting tool, the example tools of Pin (inscount2 mt) and
DynamoRIO (inscount2); due to a lack of a sufficiently simple example without
easily avoidable overhead, Valgrind was not evaluated.

5.4.2 Results without Instrumentation
The performance results for the first case without actual program modifications are
shown in Figure 5.13. With Instrew, the execution is on average 59% (int: 71%, fp:
48%) slower than the natively executed code. This is significantly lower than the
overhead of Valgrind with 547% (int: 275%, fp: 791%), but also higher than the
average overhead of Pin with 26% (int: 40%, fp: 13%) and DynamoRIO with 19%
(int: 25%, fp: 13%).

The main source of overhead in Valgrind is the abstraction from the original code
to its architecture-independent IR, VEX, in combination with only few and light
optimizations during code generation. One source of overhead, which particularly
affects the floating-point benchmarks, is the handling of vector instructions: such
instructions are split up into more simple instructions during the lifting step from
machine code to VEX, but these sequences are not recombined to the original
instruction during code generation. Instrew also split up complex instructions into
sequences of simpler LLVM-IR instructions, but the LLVM code generator later is
able to merge these again, resulting in a significantly lower performance impact.

Without performing actual instrumentation, Pin and DynamoRIO are generally
faster than Instrew on nearly all benchmarks, as their smaller transformation scope
allows them to reuse large parts of the original machine code. On the benchmark
621.wrf, the Pin-based execution is even faster than the native execution, most
likely because of tracing optimizations.

5.4.3 Results with Instrumentation
The performance results for the case with an instrumentation that counts the
number of executed instructions are shown in Figure 5.2. With Instrew, the average

1https://github.com/aengelke/instrew/tree/1cdb1bc
2The tool was patched to print the number of instructions to stderr instead of stdout to not

interfere with the SPEC CPU2017 benchmark infrastructure.
3Note: in literature, the mean is usually computed using the geometric mean, however, this

thesis uses the arithmetic mean (average) to account for the fact that there is no multiplicative
relation between different benchmarks. Further differences from numbers previously published in
[ES20a] are caused by further performance optimizations and a newer version of LLVM.
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Figure 5.1: Performance results on x86-64 with no instrumentation, normalized to the
execution of the natively executed code. The relative translation time for Instrew is shown
using error bars.
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Figure 5.2: Performance results on x86-64 with instruction count instrumentation,
normalized to the execution of the natively executed code. The relative translation time for
Instrew is shown using error bars.

execution overhead increases to 120% on the integer benchmarks. However, the
systems with an architecture-dependent code representation are generally slower
in this case, with Pin having an overhead of 802% and DynamoRIO having an
overhead of 140% on the integer benchmarks.

Due to the lack of optimizations in DynamoRIO and Pin, which additionally
appears to fail inlining the instrumentation payload, Instrew has the lowest instru-
mentation overhead on nearly all benchmarks. One particular exception is 602.gcc
due to the high compilation times as a consequence of the code size.

5.4.4 Discussion
As a consequence of the optimized machine code generation, Instrew is notable
faster than Valgrind, even when no code modifications are performed. This shows
that for a DBI system with a high-level and architecture-independent IR, the use
of a compiler infrastructure, like LLVM, is highly beneficial, despite the higher
overhead for compilation.

When no instrumentation is performed, tools like Pin or DynamoRIO have a low
overhead of the native code, as they not only avoid the compilation overhead, but
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5 Instrew for Dynamic Binary Instrumentation

also reuse most of the original instructions. With Instrew, in contrast, LLVM has
to reconstruct a matching machine code sequence from the LLVM-IR instruction,
which may be slower than the original sequence. Thus, it is not unexpected that
Instrew has a higher overhead than DynamoRIO or Pin in this case.

However, the picture changes when actual code modifications are performed: in
these cases, LLVM’s optimizations result in a lower overhead than DynamoRIO,
which merely connects instructions, but does not optimize code sequences. This
shows, that already for simple program instrumentations, the use of LLVM and an
abstract IR leads to a lower performance impact than systems that only operate at
instruction-level, provided that the overall program execution time can amortize
the optimization overhead.

5.5 Summary
This chapter described the instrumentation capabilities of Instrew and the API
provided for instrumentation tools. With this approach, instrumentation can be
applied at LLVM-IR level independently of the actual CPU architecture and LLVM’s
optimizing code generator can be used for to improve the efficiency of the instru-
mented code. Furthermore, this approach enables Dynamic Binary Instrumentation
even when the architecture of the program and the host CPU architecture do not
match, as Instrew will automatically compile code for the correct architecture.
Performance results on the SPEC CPU2017 benchmarks show Instrew has an av-
erage overhead of only 59% over the native execution, which is significantly less
than the state-of-the-art tool for heavy binary instrumentation Valgrind with an
overhead of 547%. Moreover, already for light instrumentation use cases, Instrew is
even faster than the instrumentation systems Pin and DynamoRIO, which use an
architecture-specific IR.
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6 BinOpt: Application-guided
Runtime Binary Specialization

The last two chapters described the application of binary rewriting transparently
to the application to reduce overhead when performing dynamic translation or
instrumentation. However, when exploiting information that is only available during
program execution, run-time binary rewriting can also be used to perform further
optimizations, improving application performance beyond the possibilities of static
compilation. Especially in High-Performance Computing (HPC), sources of such
information are manyfold and resulting performance improvements can improve
the efficiency of the overall application. This chapter describes a library-based
programming model for specializing program code to such run-time information,
named BinOpt, together with three different strategies to use this information
for actual optimizations. Performance results show that even on real-world code
significant performance improvements can be achieved.

6.1 Motivation
Performance is crucial for many applications, especially in High-Performance Com-
puting (HPC), but also in other computationally-intensive domains like image
processing. Therefore, recent optimizing compilers support many different optimiza-
tion strategies, aim at improving the use of compute capabilities offered by modern
hardware architectures. Such optimizations include different strategies for loop
transformations, automatic vectorization, and folding of expressions and constant
data.

The traditional approach for producing optimized machine code consists of two
strictly separated stages: initially, at compile-time, the source code is analyzed, opti-
mized and executable machine code is generated for the target platform. Depending
on the size and structure of the source code, optimizing compilation may take a
considerable amount of time. Afterwards, at run-time, the previously generated
machine code is loaded into memory and executed. The time required for loading is
usually negligible and the same binary file can be executed several times. To avoid
frequent re-compilation, programs typically provide configuration options to operate
on different inputs or otherwise adapt to a changed environment.

However, the approach of strict separation into the two phases has a major
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drawback: available information at compile-time is incomplete, limiting possibilities
for further transformations and inhibiting opportunities for optimization. Examples
for such missing information are manyfold:

• High-level programming models for distributed systems usually determine
their data layout at run-time, adding an extra level of indirection, which
cannot be resolved during compilation.

• Applications using multiple processors regularly use dynamic load balancing
to improve resource utilization — at the cost of another level of indirection.

• Many applications or application parts have an initial setup phase, processing
configuration options and other input data. Resulting information, like matrix
sizes, is only available at run-time, preventing constant propagation and the
elimination of dispatch functions among other optimizations.

• Often the actual hardware configuration is unknown during compilation, forc-
ing the compiler to make conservative assumptions about available hardware
features, like ISA extensions or the system topology — with the consequence
that available hardware resources are not utilized.

Although it is possible, in theory, to generate many variants of the code at compile-
time, this approach is not only highly impractical, because code size and compilation
time grow with the number of variants, but also very limited, because in many cases
the possible range of specializations is simply too big to cover all likely variants.

Run-time Code Specialization Effective utilization of hardware features requires
a run-time component that produces specialized variants for performance-sensitive
code regions as required, making use of run-time-only information for optimization.

The simplest strategy to detect potentially performance-sensitive parts is to
rewrite all parts of the program as they are executed, similar to dynamic binary
instrumentation systems. Obviously, with this strategy many code parts with
limited potential for performance improvement will undergo the rewriting procedure,
causing avoidable overhead. A refined strategy for transparent optimization is to
profile the application while running and trying to identify performance-sensitive
regions. Essentially, this replaces overhead of code rewriting with profiling overhead.

In fact, both strategies suffer from not knowing run-time constant information
and performance-sensitive code sections. However, application developers do have
this knowledge. The only way to reliably exploit this knowledge is that the code
specialization process is explicitly guided by the application itself — a strategy
henceforth referred to as application-guided optimization.
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Figure 6.1: Overview of the dynamic optimization process based on binary rewriting.
The machine code loaded at run-time is decoded, tuned for run-time-only information, and
then compiled again to new, optimized machine code.

Application-guided Optimization Optimizing a section of machine code by spe-
cializing it for a given run-time setting can be achieved using three general methods.
The first option is to simply trigger a recompilation at run-time, providing more
information to the compiler. This approach, however, comes with substantial limi-
tations: sources or suitable compilers may not be available at run-time, especially
in HPC environments, and in addition, high compilation times are likely to negate
performance benefits. Using some intermediate representation instead of the origi-
nal source code suffers from similar problems, with the addition of being hard to
integrate into existing build systems.

The second option consists of modifying the program to make use of JIT-
compilation libraries, for example as provided by the LLVM [LA04] framework, to
specifically generate optimized code for performance-critical sections. While this
approach clearly allows for the highest performance benefits, it is also requires high
effort in development and maintenance and also does not allow for the optimization
of code residing in other shared libraries.

The third option is to optimize compiled machine code, which is always available
as it must be executable for the CPU. While with this approach program semantics
must be reconstructed from machine code, it also has several other benefits: it is
independent of the used compiler, permitting the use of vendor-supplied compilers,
and further allows optimization across boundaries of different programming languages
and even pre-compiled shared libraries. Moreover, specialization on binary-level has
the benefit of shifting several expensive compilation steps to compile-time, including
the initial selection of instructions and registers, reducing the run-time overhead of
code generation.

By making use of ABI guarantees at function borders, a binary specializer can
be easily exposed as a library, as first shown by Weidendorfer et al. [WB16]. An
application can specify a function as optimization target together with further
information about known parameters or memory regions. The library can then
optimize the function an create a specialized variant. Figure 6.1 shows an overview
of the optimization process.
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6.2 Optimization Opportunities and Limitations
Conceptually, many optimizations performed by a compiler can also be applied
to machine code. However, possibilities for transformations are more restricted,
because a considerable amount of semantic information from the source code is lost
during the process of machine code generation. Prominent examples are information
on data types, the layout of the stack frame, and pointer aliasing. Further, while
ordinary compilers are already constrained by the semantics of the underlying
language specification, like C or C++, machine code has even tighter semantics,
and transformations can only be performed if they can be proven to be correct, i.e.,
the observable state does not change.

6.2.1 Beneficial Transformations
As a consequence of the semantic limitations, optimization possibilities are in
general either low-level or require sophisticated analyses to prove correctness of
the transformation in a particular setting. In different contexts, the following
transformations have shown to be possible and in many cases beneficial, roughly
ordered by decreasing complexity:

• Loop transformations [AC71] (e.g., loop unrolling, loop fusion) eliminate loop
overhead and reduce the amount unproductive instructions and branches.
Optimizations like loop unrolling are more beneficial on small loops where
the loop overhead is comparably high; excessive loop unrolling, however, is
usually problematic due to size constraints of the instruction cache.
Run-time knowledge of iteration count, e.g., due to constant propagation, or
a size reduction of the loop body, e.g., due to dead code elimination, may
enable this transformation.

• Vectorization [Mal+11] improves usage of available SIMD computation units.
This optimization may become beneficial or an existing vectorization scheme
can be improved as a consequence of prior loop transformations, dead code
elimination, and constant propagation.

• Improved register allocation [AC71] is important to reduce memory accesses by
keeping as much working data as possible in registers directly in the processor
core.
Following constant propagation more registers become available, which can
be used to avoid spilling data on the stack; and as a consequence of loop
transformations, more available registers may allow for exposure of more
parallelism to the processor and help to avoid stack spilling.
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• Improved instruction scheduling and selection [AC71] to the target micro-
architecture may allow for a faster program execution and better utilization
of compute resources, for example as offered by available ISA extensions.
This optimization is almost always beneficial, namely if any part of the code
has changed during another transformation or the target processor has been
unknown at compile-time.

• Constant propagation [AC71] folds operations with all-constant input data
to another constant value, reducing performed computations, code size, and
eventually also memory accesses. This optimization may enable many other
transformations.
In the context of run-time specialization, this is the key transformation which
allows to exploit the benefit of run-time-only data by propagating it through
the program code and thereby triggering other optimizations.

• Dead code elimination [AC71] reduces the code size and eliminates branches.
Elimination of conditional branches with a known condition is directly enabled
by constant propagation. While on modern processors the direct impact is
comparably low due to improved branch prediction logic and trace caches
for instructions, a code size reduction may have an impact on heuristics for
decisions on other transformations and reduces code generation time.

• Inlining or procedure integration [AC71] reduces the overhead incurred by
the call/return sequence and may enable other optimizations like constant
propagation.
While compilers generally perform inlining as well, it can easily be the case that
inlining previously was considered as non-beneficial — changed circumstances,
like a smaller code size of the callee, may result in a changed estimate. If
the call target is not statically known, inlining may only become possible at
run-time as a result of constant propagation.

6.2.2 Limitations
Run-time optimizations are not only constrained by the increased effort of recon-
structing information about the stack frame and proving correctness, also their
usefulness and performance benefit imposes practical limitations.

In general, when performing run-time optimizations, the performance gains must
outweigh the transformation effort. In particular, this is only the case if the
optimized code is executed multiple times: the cost for decoding, analyzing, and
code generation in software is several times higher than executing these instructions
once. Note that a loop inside the transformated code suffices for executing the code
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multiple times, in which case, however, rewriting the code part outside of the loop
contributes overhead which needs to be amortized.

This observation has immediate consequences for the application of run-time
binary optimization: first, the technique has to be applied very selectively to only
those code portions, where a high benefit can be achieved. Second, the data for
which a specialization is created must not change too often, otherwise performance
gains are negated by too many rewriting operations.

Another limitation arises for the kind of information that enables optimization:
almost all transformations that benefit from available constant data only benefit from
integer constants, for example loop iteration counts or indices into data structures.
Floating-point constants, on the other side, are hard to propagate due to restrictive
semantics, and even if unsafe optimizations were allowed, it is rarely the case that
a significant amount of computations can be eliminated. Additionally, several
widespread architectures have only limited (e.g., AArch64 [Arm18]) or no support
(e.g., x86-64 [Int20a]) for encoding floating-point constants directly in the machine
code as immediate operand.

Corollary: The described approach for run-time optimization is not a general-
purpose optimization and also not suitable for all kinds of constant data. Its
applicability depends on the type of the known data, its use, and the overall
workload size.

6.3 Configuration Data
The approach of application-guided dynamic binary optimization requires knowledge
about run-time data, which does not change throughout the execution of a part
of the program (or at least is unlikely to do so). Essentially, in many cases such
data is some kind of configuration to the program or a kernel included therein.
In the following, the term configuration data will be used to refer to all kinds of
run-time-only data. Such configuration data may have a variety of sources and
lifespans:

• Machine specifications like processor features or network topologies are avail-
able from the early beginning of the program and is always1 constant through-
out the entire execution of the program.

This kind of information is generally available and typically used by specialized
libraries like Basic Linear Algebra Subprograms (BLAS) [Bla+02] and run-time
systems like Message Passing Interface (MPI) [Mes15] implementations.

1Exceptions are programs which support transparent movement between different nodes.
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• Program arguments, for example as specified on the command-line, are a very
common form of constant-data, for example, matrix dimensions. These may
include scalar constants, but also files or even code fragments like plug-ins.
This kind of configuration data is constant across the whole execution of the
program.
Information about the relevance and impact of program configuration options
are usually only known to the application developer.

• Run-time systems like the one of an Open Multi-Processing (OpenMP) [Ope20]
implementation or an MPI [Mes15] library support configuration parameters,
dynamically configurable data structures, for example, MPI data types, and
tools which can modify their behavior. Usually such data and tools are
processed at program start and remain unchanged throughout the entire
execution.
This information is only partially known to the application developer, but
always known to the developers of the run-time systems. Some parts of this
configuration like tools are usually transparent to the application.

• Data from set-up phases is typically created by preprocessing input data,
processing configuration options, or initializing other data structures. Con-
figuration data produced in such a phase is usually constant throughout the
(typically longer) run of the actual computation routine.
This kind of information is usually unique to the application developer.

• Dynamic load balancing enables more efficient use of compute capabilities by
re-distributing and re-organizing data structures during execution. Therefore,
the run-time data layout and data distribution can change, either triggered
explicitly by the application or transparently by a run-time system. This may
also have an impact on the actual data layout; for example, halo regions may
be stored differently to simplify communication patterns. Typically, run-time
systems try to keep this information is constant over longer time spans to
avoid overhead of frequent changes, but there are no strict guarantees.
This information is usually only known to the developer specifying the data
layout and defining trigger points for layout changes. This may be the applica-
tion developer or the developer of the run-time system, and this information
may also be transparent to the respective other component.

• Parameters of compute kernels may differ for each run of the kernel, and such
a kernel may be called multiple times in the course of a computation routine.
Such parameters can, for example, describe sizes of matrices or specify an
exact data layout, and are constant throughout the execution of the kernel.
This constantness of this information is usually known to the kernel developers.
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6.4 Use Cases
In the following, different application scenarios that contain high-impact configura-
tion data, so that they can potentially benefit from run-time specializations, will be
described.

Image Processing Kernels Image processing operations, like color filters, blur
filters, or affine transformations, typically include many configuration options, which
are specified when the kernel is called. Consequentially, such options often determine
varying code paths, where run-time checks can be eliminated, indirect function
calls, which — if resolved — can be inlined, and varying operation region sizes,
where the operation loops may be unrolled and vectorization may be used more
effectively. Additionally, also the support of newer ISA extensions may be used to
further specialize code for the currently available processing facilities.

Linear Algebra Kernels Implementations of linear algebra functions, for example
the BLAS [Bla+02] functions, include several configuration parameters, like the size
of the input vectors or matrices, stride sizes, and matrix layout. These configuration
options must be checked for validity and optimized implementations typically
dispatch internally to a specialized implementation for a given configuration. While
the hereby incurred overhead can be negligible for larger operations, it can add up
when many small operations are executed. As the configuration parameters are
usually known (and therefore their validity), the initial check and dispatch can be
skipped, directly jumping into the computation part of the kernel.

A more advanced binary optimizer may even go one step further and optimize
the actual computation part of the kernel. However, as such routines are usually
highly optimized and may even involve hand-written assembly, care must be taken
not to create a less performant specialization.

Sparse Data Structures Sparse data structures have one or more internal layers of
indirections to reduce their memory footprint, often involving some kind of indexing
with integer data, e.g., in the Compressed Sparse Row (CSR) format [Saa00]. In
many cases, also the control flow depends heavily on the data and may be hard
to predict for hardware. Specializing operations on sparse data structures has the
potential to yield high performance improvements: indirections can be removed
and integer offsets or control flow decisions can be directly encoded in machine
operations, reducing irregular memory access patterns and avoiding unpredictable
branches. Further, depending on the actual indices, it may be possible to avoid
expensive gather/scatter operations and instead make use of contiguous memory
accesses. Subsequently, for example, this may also enable improved use of Single
Instruction Multiple Data (SIMD) extensions. However, specialization is still only
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useful if specialized operation is run multiple times, for example, when using the
same sparse matrix for several multiplications.

Run-time-specified Data Structures While the layout of data structures is known
for applications, either directly or through template instantiation, this may not be
the case for libraries or run-time systems. These need to adapt to data structures
configured at run-time. A prominent example are MPI data types, which are
configured using an API before they can be used in communication operations
[Mes15]. Also other libraries for data serialization face a similar situation. In
these cases, once the actual data type is configured completely, the packing and
unpacking code can be specialized. This optimization is more beneficial for small
data structures with non-contiguous data, as for large structures the performance
of such code is limited by memory bandwidth.

Plug-ins Many applications and libraries provide plug-in mechanisms for external
tools to monitor or modify program behavior. Such plug-ins are usually realized
by registering callback functions, which are called under specific conditions, or by
intercepting libary calls using mechanisms of the dynamic linker2. In both cases,
the underlying mechanism consists of one or more indirect function calls. Such tool
interfaces also exists in run-time systems in HPC environments, for example the
OpenMP tool interfaces (OMPT, OMPD) [Ope20], which rely on callbacks, or the
MPI profiling interface [Mes15], which relies on the run-time linker to intercept calls
to MPI.

In performance-critical sections, such callbacks can add up to a significant over-
head, which can be eliminated by resolving indirections and optionally also inlining
the code of the plug-in.

Auto-tuning Automatic tuning of applications and libraries is a widely researched
field [TCH02; PE06; CH15; MFG16]. Such frameworks strive to optimize several
tuning parameters of applications and libraries to optimize for one or more objectives,
typically including performance. Among other tunable parameters, such systems
usually include dynamic parameters of the application and their libraries as well as
optimization options used during compilation in their search space.

Using run-time optimization, the overall performance of the tuning process can
be improved. Kernels can be specialized for dynamic parameters, avoiding extra
overhead from the tuning framework as the measured code is more similar to what a
compiler would generate. Further, and more importantly, compilation options, like
the loop unrolling threshold, vectorization strategies, or target-specific optimizations,
can be modified on a per-function basis without the need to recompile the entire
program or library, optimizing the tuning process itself. Moreover, when the original

2Example: by this means the heap allocator can be exchanged.
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code makes use of data type abstractions, the data layout can be efficiently changed
without re-compilation by replacing and inlining accessor functions at run-time.

6.5 Library Approach
The approach of application-guided dynamic binary optimization can be implemented
using an API. The developer of an application or library explicitly specifies functions
designated for optimization, specifies the configuration data for use with optimization,
and triggers the optimization process itself. The result is a new function specialized
for the configuration data, which can be subsequently used instead of the original
function.

With DBrew [WB16] and Drob [Hil19], two library-based approaches have been
proposed already. However, the libraries not only have different optimization scopes
and strategies, but also have different APIs, making a comparison of the approaches
significantly more difficult.

This motivates the development of a new unified API, which provides a common
interface for different optimizers. Developers can then use this unified API instead
of the rewriter-specific APIs to easily substitute the optimizer, allowing an easy
comparison without requiring substantial code changes.

6.6 Unified API
The API design of a library very important for its usage, especially for a library which
enabled run-time rewriting of user-specified compiled functions. This thesis proposes
a unified API for function-level binary rewriting, allowing multiple implementations
of binary rewriters/optimizers to be used without the need to modify the program
code for different rewriters.

In particular, the following requirements for the design of the API are especially
relevant:

• The API shall be general for the user. From the user’s perspective, it shall
accept any function that follows the normal C ABI without further restrictions.

• The API shall be fail-safe and not require any error handling on the side of
the user, reducing effort for adaption. Whenever the actual implementation is
unable to handle a given function, the only option is to provide the existing
function as result, without any modifications.

• The API shall be future-proof : it shall allow for a trivial implementation of the
required functionality. This implies that using the API does not necessarily
add a hard dependency on a rewriting system, reducing the adoption barrier.
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For example, when the application or library needs to be ported to another
architecture without an available rewriting system, API calls can be easily
stubbed out with a no-operation implementation.

• The API shall be flexible for the implementation of a binary optimizer. From
that perspective, the API shall not limit the capabilities of the concrete
optimization library and also allow for library-specific configurations.

• The API shall be compatible with other compiled programming languages and
not be restricted to C or C++. As many programming languages support
bindings to other libraries following the C ABI for both directions, using
library functions in the user’s language and passing functions written in the
user’s language as function pointers to C functions, we deduce that the API
must be compatible with C.

We designed an API matching these requirements and realized it in the library
BinOpt [ES20b], which supports different rewriters using the same user-facing
interface. The library currently is focused on the x86-64 architecture and the Linux
operating system kernel, as this is the most widespread architecture for highly
performance-sensitive applications, including many HPC platforms. The remainder
of this section will detail the main functionality of the API and its impact on both
sides, the user of the API and the developer of a rewriting library implements the
API. Listings 6.1 and 6.2 show usage examples of the library, and Appendix B
includes a complete description of the API.

To satisfy the criteria of compatibility with other compiled programming languages,
the BinOpt API adheres the common subset from C and C++. To allow multi-
threaded use, a user has to initially construct a thread-specific handle into the
rewriting library. The handle can be released when no longer required.

API Design
The function binopt init() creates a new handle into the rewriter and the
function binopt fini(handle) releases the handle and all associated memory
allocations, including rewritten functions.

Rewriter Implementation
A rewriter must not share state between different handles, which implies that
global variables cannot be used to store state. A rewriter does not need to free
resources when the handle is finalized, but obviously is encouraged to do so.

All functions that are being rewritten must follow the C ABI, which on x86-64
Linux platforms is the System V ABI [Mat+14]. All data needed to generate a
specialized variant of the function, including a pointer to the function itself, is stored
inside a configuration object.
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1 int func(int a, int b) {
2 return a - b;
3 }
4 int main(void) {
5 // Create a new handle into the library
6 BinoptHandle h = binopt_init ();
7 // Create a configuration for func
8 BinoptCfgRef bc = binopt_cfg_new (h, func);
9 // Specify signature , two parameters , int(int , int)

10 binopt_cfg_type (bc , 2, BINOPT_TY_INT32 , BINOPT_TY_INT32 , BINOPT_TY_INT32 );
11 // Specify second parameter as constant int 42
12 binopt_cfg_set_parami (bc , 1, 42);
13
14 int (* nfn)(int , int) = binopt_spec_create (bc);
15
16 // Call new version , uses 42 instead of 16
17 int res = nfn (48, 16);
18 }

Listing 6.1: Example usage of BinOpt. The library calls are used to specialize the
function func for the constant second parameter 42. Note that the second constant can be
propagated, but this is not required: if no optimization occurs for whatever reason, the
returned function nfn is also allowed to use the specified parameter value.

1 int func( size_t len , const int* buf) {
2 int res = 0;
3 for ( size_t i = 0; i < len; i++)
4 res += buf[i];
5 return res;
6 }
7 int main(void) {
8 // Example array
9 int array [] = { 4, 3, -1, 4 };

10
11 // Create a new handle into the library
12 BinoptHandle h = binopt_init ();
13 // Create a configuration for func
14 BinoptCfgRef bc = binopt_cfg_new (h, func);
15 // Specify signature , two parameters , int(ulong , void *)
16 binopt_cfg_type (bc , 2, BINOPT_TY_INT32 , BINOPT_TY_UINT64 , BINOPT_TY_PTR );
17 // Specify first parameter to array length
18 binopt_cfg_set_parami (bc , 0, sizeof array / sizeof array [0]);
19 // Specify second parameter as pointer and mark associated array as constant
20 // This is the combined form of the following call sequence :
21 // binopt_cfg_set_parami (bc , 0, &array);
22 // binopt_cfg_set_mem (bc , array , sizeof array , BINOPT_MEM_CONST );
23 binopt_cfg_set_paramp (bc , 0, array , sizeof array , BINOPT_MEM_CONST );
24
25 int (* nfn)(size_t , const int *) = binopt_spec_create (bc);
26
27 // Call new version , uses array values from above instead
28 int res = nfn (2, (int []) {3, 1});
29 }

Listing 6.2: Example showing BinOpt usage for specifying a constant memory region.
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API Design
The function binopt cfg new(handle, func) creates a new configuration
object for the purpose of rewriting within the context of a handle for the
function func, which will be referred to as rewriting target.

Rewriter Implementation
A rewriter is allowed to already decode and analyze the function at this point.

Limitations of the C language require the presence of a way to specify the signature
of the function explicitly — this is necessary because arguments and return values
may be stored in different registers or the stack, depending on the parameter type.
Currently the BinOpt API only supports simple types (e.g., integers, floating-point
numbers, pointers), structure or union types must be transformed manually to
the correct simple types according to ABI rules. In future, it may be possible to
provide a C++ API which uses metaprogramming mechanisms or reflection to
extract relevant information. Additionally, ongoing efforts in the C community to
improve type-generic programming [Gus21] may allow for use of lambda expressions
and automatic inference of the function prototype.

API Design
The function binopt cfg type(cfg, nparam, retty, paramtys...) sets
the type of the rewriting target, specifying the number of parameters, the
return type, and the types of the parameters.

Rewriter Implementation
A more sophisticated rewriter may also fetch this information from debug infor-
mation sections like DWARF [DWA17] or Compact C Type Format (CTF) [14]
and therefore not require this explicit configuration call or use it to warn if
there is a type mismatch. As debug information sections are not necessarily
present, the API function is strictly necessary.

An important source of optimization potential are constant memory regions. By
default, all memory ranges that are mapped as read-only in the virtual address space
of the program are treated as constant data. Other memory regions can be marked
as constant explicitly in a configuration. If the automatic detection of read-only
regions is not desired for some memory regions, for example due to read-only shared
file mappings, regions can also be explicitly configured as dynamic.
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API Design
The function binopt cfg mem(cfg, addr, len, flags) configures a mem-
ory region, where flags is either BINOPT MEM CONST for constant memory,
BINOPT MEM DEFAULT to depend on the page mapping provided by the kernel,
or BINOPT MEM DYNAMIC to forcefully treat a region as volatile. Specified mem-
ory regions must not overlap. Initially, all memory is configured as default.

Rewriter Implementation
A rewriter may use additional information about constant memory regions as
soon as they are available.

Another source of constant data are parameters, which can be given a constant
value or address after the function signature has been specified.

API Design
The function binopt cfg param(cfg, idx, valptr) sets a parameter at a
given index to a constant value, with valptr being a pointer to the constant
value. Convenience functions are provided to set integer parameters directly
and to associate a constant memory region directly to a pointer parameter.

Rewriter Implementation
A rewriter may propagate information about constant parameters immediately
after configuration for incremental optimizations.

Rewriters may support further configuration options, for example allowing the
optimization of floating-point arithmetic (fast math), a threshold value for loop
unrolling, and verbosity of debug information. Such options can be configured using
rewriter-specific configuration options, which are exposed in a single API function.

API Design
The function binopt cfg set(cfg, flag, value) sets a rewriter-specific
option. value may also be a pointer to a more complex structure.

Rewriter Implementation
By default, all configuration options must be set to the most restrictive sup-
ported option. This allows a rewriter to apply this information immediately
for incremental optimizations. Unsupported options must be ignored.

Once the configuration is finished, a new specialization of the function can be
generated, which has the same signature as the original function. In case of a
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configuration or rewriting error, either a less optimized function may be generated,
or the original function is returned directly.

API Design
The function binopt spec create(cfg) returns a pointer to an optimized
specialization of the function, or a pointer to the original function.
The function binopt spec delete(handle, spec) may delete a specialized
function, or does nothing if the given function is not generated by the rewriter.
Care must be taken when recursively specializing functions, as rewriting failure
results in the returned “original” function being still generated by the rewriter,
which may cause double-free errors.

Rewriter Implementation
The rewriter should attempt to create an optimized specialization, but in
unsupported or unexpected circumstances, it is always safe to return the
original function.
Actually deleting unused specializations is not required, as this might be non-
trivial to do, for example, if several code variants share the same memory
region.

A configuration can be cloned, simplifying programming if multiple similar spe-
cializations of a function are required and at the same time allowing for further
optimizations in the rewriting process.

API Design
The function binopt cfg clone(cfg) creates a new independent configuration
with the same state as the original.

Rewriter Implementation
A rewriter is free to just clone the configuration, to clone an internal anal-
ysis/optimization state of the function, or even temporarily generate new
machine code from the current configuration state.

Trivial implementation: Null rewriter The design criteria of the BinOpt API
mandates that a trivial, yet fully-functional implementation must be possible. With
the API described above, such an implementation is possible, even without any
memory allocations: the handle is unused and the configuration pointer is a pointer
to the rewriting target. All calls that modify the configuration are ignored. When
a new specialization is requested, the pointer to the original function is returned
without performing any modifications.
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Figure 6.2: Overview of different stages from the three rewriting approaches. Some stages
may be executed multiple times, for example, when further code is discovered or previous
analysis results are invalidated during optimization.

6.7 Rewriting Strategies
The general strategy for run-time binary optimization consists of four main stages:
first, the original machine code has to be decoded into a code representation that is
used for analyses and transformations. Second, the decoded program is analyzed for
transformation possibilities and optimization potential. Third, based on the analysis
results transformations are applied. And fourth, new machine code is generated for
the transformed program.

These stages are typically not completely separable, though: as a result of applying
transformations, prior analyses of the second step may be invalidated, requiring
the rewriter to redo some analyses throughout the transformation of the program.
Further, these stages may also be interleaved, for example, when decoding only
occurs for code that turns out to be reachable during analysis of previously decoded
fragments.

The key factor for analyses and code transformations is the Intermediate Repre-
sentation (IR) used to internally represent the program code: low-level IRs allow
for fast transformations and code generation but make analyses more expensive
and complex transformations more involved. Due to the lack of abstraction from
machine code, transformations are rather low-level. High-level IRs, in contrast,
simplify program analysis and enable more impactful transformations with low
effort, but require more time for lowering to efficient machine code.

In order to understand the trade-offs between different IRs and rewriting strategies,
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a direct comparison of different optimizers implementing such approaches is necessary.
This section will describe three different approaches for performing function-level
binary optimization. First, Section 6.7.1 will describe DBrew [WB16], a tracing
binary optimizer, which performs strictly-local analyses and transformations on
machine code similar to a tracing binary rewriter. Second, Section 6.7.2 will cover
Drob [Hil19], a binary optimizer which performs function-level analyses while still
being close to the original code for fast code generation. Finally, Section 6.7.3
will detail DBLL [ES20b], which lifts machine code to LLVM-IR [LA04] using
Rellume (see Chapter 3) and re-uses the entire LLVM infrastructure for analysis,
optimization, and JIT-compilation. Table 6.1 shows an overview of these approaches
and Figure 6.2 depicts an overview of the rewriting stages.

6.7.1 Tracing Binary Rewriting: DBrew
DBrew [WB16; EW17] is a prototypical tracing binary rewriter for x86-64. A
function is optimized by tracing through possible execution paths. On the way,
instructions with all-constant input operands and conditional branches with a
known branch decision are removed. This approach is inspired from tracing binary
optimization and translation tools with the difference that the function and all
functions called therein are processed completely ahead-of-time.

Publication Information
The information given in this sub-section is based on [WB16; EW17] and the
DBrew sources.

6.7.1.1 Rewriting Approach

The rewriter steps through a function in basic block granularity, starting with the
basic block at the entry address of the function. For each basic block, the rewriter
keeps track of a known-world state, which stores the value state of registers and the
stack frame, including possibly constant values. There are five possible value states:

• dead: this state is used for uninitialized values, for example non-parameter
registers.

• dynamic: this state implies that no constant value is known at rewriting time,
for example for unknown parameters or other values that are computed in the
function with a possibly non-constant value.

• static: this state marks values that have a known constant value, which is
stored in the known-world state. This is used, for example, for immediate
operands or constant parameters.
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• static2: this is a special state for pointers. Values loaded from an address
derived from a pointer with the state static2 are marked again as static2,
enabling a simple way to mark memory regions as constant transitively.

• stack-relative: to keep track of offsets relative to the stack frame of the function,
this state indicates that the known-world states stores a constant offset to the
start of the stack frame.

When processing a basic block, the rewriter decodes all instructions and iterates
over these. If all input operands of an instruction are constant, the values for the
output operands are computed at rewriting-time, stored as static in the known-world
state, and the instruction is removed. Likewise, if the instruction loads from a
constant memory region or dereferences a pointer with state static2, the actual
memory access is performed and the value is again treated as constant. Otherwise,
an instruction is captured and emitted in the rewritten code again. If such a captured
instruction depends on values emitted by previously removed instructions, the known
constant value is either encoded as immediate operand or, if this is not possible,
restored immediately before the captured instruction.

Function calls are simply treated as push/jmp combination, with the addition
that the return address is stored in a shadow stack. When encountering a nested
return instruction, the continuation address is taken from the shadow stack without
further verifications. As indirect jumps or calls with a dynamic address are not
supported, DBrew can eliminate the push/jmp sequence in many cases.

At the end of a basic block, the successors are determined from the last instruction.
Basic blocks ending with a conditional jump generally have two possible successors
(branch taken vs. fallthrough), unless the jump condition is known. In case of an
unconditional jump or the absence of an instruction modifying the control flow
(fallthrough), there is just one successor. A return instruction of the top-level
function indicates the end of the function; a nested return instruction has one
successor, which is determined by the address stored on the shadow stack by a
previous call instruction. If a succeeding basic block was not yet processed with
the same known-world state, it is added to the processing queue of basic blocks.
Consequently, basic blocks are duplicated whenever a tracked constant value is
modified.

After all basic blocks have been processed, the generator produces new machine
code from the captured instructions for each basic block. As all transformations
only emit encodable x86-64 instructions, machine code generation only consists of
encoding the instruction in binary form. The generated machine code blocks are
then connected using appropriate jump instructions, taking care of changed offsets.
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1 sum_array : // rdi=len , rsi=ptr
2 xor eax , eax // accumulator
3 xor ecx , ecx // loop ctr.
4 jmp . Lloopcond
5 . Lloopbody :
6 add eax , [rsi + 4 * rcx]
7 add rcx , 1
8 . Lloopcond :
9 cmp rcx , rdi

10 jb . Lloopbody
11 ret

rdi=3−−−−−→

1 sum_array_3 :
2 mov eax , [rsi]
3 add eax , [rsi + 0x4]
4 add eax , [rsi + 0x8]
5 ret

(a) Specialization of a function calculating the sum of all values in an integer array with a constant
length 3. The loop is unrolled completely, the value of the then constant loop counter is propagated
and the addition with zero is removed.

1 acc_array : // rdi=len , rsi=ptr
2 // edx= accumulator
3 mov eax , edx // accumulator
4 xor ecx , ecx // loop ctr.
5 jmp . Lloopcond
6 . Lloopbody :
7 add eax , [rsi + 4 * rcx]
8 add rcx , 1
9 . Lloopcond :

10 cmp rcx , rdi
11 jb . Lloopbody
12 ret

rdi=3
rsi=&{4, 5, 6}
−−−−−−−−−−−→

1 acc_array_456 :
2 mov eax , edx
3 add eax , 4
4 add eax , 5
5 add eax , 6
6 ret

(b) Specialization of a function accumulating the sum of all values of a constant integer array with
a third parameter. The loop is unrolled completely and the memory accesses to the constant values
are removed. This example shows the use of the static2 state: a pointer is passed as parameter
and all subsequent dereferences are removed transitively. Expressions are not re-ordered, resulting
in a series of addition operations, which could be folded to add eax, 15.

1 foo: // edi , esi , edx are int
2 mov eax ,esi
3 imul eax ,edx // comp. edx*esi
4 cmp edi ,0 // but if edi >=0
5 jl .Lret
6 mov eax ,edi // .. return edi
7 .Lret:
8 ret

edi=6−−−−−→

1 foo_spec :
2 mov eax , esi
3 imul eax , edx
4 mov rax , 6
5 ret

(c) Branches with a known constant condition are removed. The compare instruction is also removed
because all operands are known constants. However, the now-unused preceding computational
operations are not eliminated.

Figure 6.3: Examples of specializations generated using DBrew.
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6.7.1.2 Implemented Optimizations

With this approach, DBrew implements several simple, yet performance-critical
optimizations.

Instructions with only constant input operands are removed and constants are
propagated into instructions where possible. For some instructions, even further
simplifications are applied: for example, an addition with the constant zero does
not change the value and can be replaced with a simple move instruction (as shown
in Figure 6.3a).

Loop unrolling is performed whenever the iteration range of a loop is constant.
As the constant loop counter will be tracked in the known-world state, this state is
different in every loop iteration, resulting in all basic blocks of the loop to be copied
for every value in the iteration range. Examples are shown in Figures 6.3a and 6.3b.

Constant values from memory are propagated when a memory range is either
marked as constant or the address has the state static2. For integer values, this
causes memory accesses that result in a known constant value to be removed and
replaced with a constant value encoded directly in the generated instruction stream,
as shown in Figure 6.3b. For floating-point constants, no such optimization is
implemented as x86-64 does not support immediate floating-point operands [Int20a].

Conditional branches where the jump decision can be determined from statically
available information are removed and the only succeeding basic block is merged,
as exemplified in Figure 6.3c. Due to the lazy processing strategy, code fragments
that are known to be never executed are never added to the processing queue and
therefore are not even decoded.

As function calls are essentially treated only as unconditional jumps, all function
calls will be eliminated and inlined unconditionally. This aggressive inlining strategy
strictly avoids overhead from call or return instructions, but may also significantly
increase the code size and is problematic for recursive functions — rewriting recursive
functions with possibly unbounded depth unconditionally results in a rewriting
failure.

6.7.1.3 Limitations and Performance Considerations

DBrew implements a simple and straight-forward approach to apply simple and
performance-effective optimizations. Due to the strictly local nature of the imple-
mented transformations, no complex analyses are necessary, making the optimization
process very efficient. As all instructions remain valid x86-64 instructions during all
transformations, no further effort for re-allocating registers or selecting instructions
is required, resulting in a low overhead for code generation.

This simplicity is, however, also the biggest drawback of DBrew: the lack of an
overview on the whole function prevents an impact analysis of several transformations.
For example, the strategy of complete loop unrolling may lead to a massive increase
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of code size when the constant iterations range is large, and aggressive inlining
additionally imposes limitations for recursive functions. A large amount of highly
redundant generated code not only increases rewriting time, but also has a negative
impact on the execution time of the generated code due to cache constraints.
Limiting this code duplication would require merging known-world states with
different constants, which may be non-trivial if the loop iteration cannot be identified
easily.

Another missed optimization opportunity results from the absence of a liveness
analysis of computed values. Instruction may become unused due to branch elimi-
nation or constant propagation; but whenever these instructions have not entirely
constant input operands, they are not removed, as illustrated in Figure 6.3c. Thus,
the optimization result may still contain superfluous instructions, which are not
relevant for the behavior of the function.

Recombining partially constant expressions (see Figure 6.3b) require a more
abstract code representation that allows for more flexible recombination of operands
compared to x86-64 instructions.

Finally, deficiencies in the implementation and the limited coverage of x86-64
instructions further limit the applicability of DBrew for more general applications.

6.7.2 Whole-function Binary Rewriting: Drob
Drob [Hil19] is a binary optimizer that performs analyses and transformations at
function scope while still focusing on low rewriting times. This rewriter addresses
the shortcomings of the strictly-local transformations performed by DBrew by
analyzing the entire scope of the optimization target. At the same time, Drob
strives to avoid expensive parts of code generation, including instruction selection
and register allocation: as these parts are already during done before compile-time,
the rewriter attempts to re-use the original code as much as possible, only changing
code fragments that actually benefit from additional run-time information.

Publication Information
The information given in this sub-section is based on [Hil19] and the Drob
sources.

6.7.2.1 Rewriting Approach

Initially, the function that is specified for optimization and all known targets of
function calls contained therein are decoded. With this information, a so-called
Interprocedural Control Flow Graph (ICFG) is constructed, which represents the
entire rewriting scope and the relation between functions contained in it. All further
analyses and optimizations, however, operate at function scope; inter-procedural
optimizations, like inlining, are not implemented. In the following, the initial lifting
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step, the analyses, and the transformations are described in their main execution
order.

Function Representation A function is decoded into superblocks, which have
a single entry point, but can have several exits. This is intended to allow for
a code representation close to the original machine code layout and reduces the
overall number of blocks. To simplify code generation, superblocks can be chained
to indicate a preferred ordering and enable the omission of a terminating branch
instruction by falling through to the next block. The superblocks of a function
represent its CFG.

Within a superblock, instructions are stored in a target-dependent format, closely
following the instruction and register representation of the underlying architecture.
Instructions can have a predicate for conditional execution, which is used on x86-
64 for conditional jumps and moves. Drob also supports handling unmodeled
instructions, for which no semantics have been specified: such an instruction is
conservatively assumed to read and write all registers and modify arbitrary memory
locations. Consequently, in this rather conservative rewriting mode, the optimization
scope is severely limited.

Register Liveness Analysis For several optimization passes, information about
the usage of written registers is helpful, allowing Drob to detect unused effects of
instructions, which can therefore be ignored, to identify entirely unused instruction
sequences, which can be removed, and to find cyclic chains of unused values.

Starting at the return instructions, information about used registers is propagated
backwards through the instructions of all superblocks of the function until the
liveness data no longer changes. For each instruction, Drob stores the set of registers
which is potentially used afterwards. When further information about conditional
execution or eventually written registers is available (e.g., from a previous analysis
run propagating constant values), such information is incorporated as well.

Stack Analysis The core analysis of Drob propagates information about the state
of registers and stack slots — hence referred to as stack analysis — through the
program, making use of dynamically available information about specified constants.
However, the stack analysis is aborted whenever a (partial) pointer to stack memory
escapes the analysis, for example when a pointer to a local variable is written to
non-stack memory or when encountering an unmodeled instruction.

The analysis attaches a program state to each superblock, which shadows the
state of the CPU registers and the stack frame, both in byte-wise granularity. Each
shadowed byte has one of the following states:

• dead: the value is undefined.
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• unknown: the value depends on state unknown during the analysis, e.g.,
unknown parameters or non-constant memory regions.

• immediate: the value is a known constant.

• usrptr: the value is a constant offset from a pointer parameter, used to
associate information with parameters, e.g., alias information or const-ness.

• returnptr: the return address on the stack.

• stackptr: the value is a constant offset to the stack pointer; used to track the
address of the stack pointer.

• tainted: usage of the value for memory access invalidates stack analysis, e.g.,
pointers that might point to the stack or are computed from stack pointer
fragments.

• tail/stackptrtail: as pointers have a size of 8 bytes, the seven bytes following a
usrptr/returnptr/stackptr are marked with this state. Access to such values
have the state unknown or tainted.

The analysis starts at the entry block with an initial program state constructed
from the function parameters. Within a block, the program state is updated with
the effect of the instructions, eventually propagating constant values and emulating
instructions with constant input operands. At this point, information about constant
values is also attached to the instruction operands for later specialization. At the
ends of the superblock, the program state is propagated to the succeeding blocks,
which are analyzed as well.

It may happen that a block is analyzed multiple times, for example within loops.
In such cases, the program states have to be merged, where different states are
updated to a generalized state. For example, merging two different immediate values
result in unknown and merging a stackptr and a non-stackptr value results in tainted.
When the program state of the block changes, it has to be examined again with the
new, more general state. This process repeats until the analysis data converged to
a stable point for all reachable blocks.

Optimizations After the initial analyses, a pre-defined sequence of optimization
passes (see below) is executed. Before each optimization pass, Drob checks whether
the analysis data still reflects the current state of the code, running the analysis
passes again as needed. Consequently, the two analysis passes are executed several
times throughout the optimization step. A strategy for partially updating the
analysis results with only changed code parts is not implemented as it is expected
to be less precise, potentially causing Drob to miss optimization opportunities.
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Code Generation After applying the optimization passes, Drob generates new
machine code using a two-stage strategy: in the first stage, the code size of all
superblocks is computed, using the longest possible encoding for branch instructions.
This information is used to select the shortest possible encoding for branches.
Chained blocks are laid out in order to avoid branch instructions. Only in the
second stage actual machine code is generated. During code generation, the encoder
tries to re-use the original encoding if the instruction was unmodified during the
optimization process.

As computed constants for floating-point values or vector registers cannot be
encoded directly in the instruction stream, they are stored in a separate constant
pool located after the generated code.

6.7.2.2 Implemented Optimizations

Drob implements several optimization passes, which are applied in a predefined
order. The first optimization pass performs a simple unrolling of loops that consist
of a single superblock. If a superblock contains a conditional branch to itself, the
part of the block up to the conditional branch is duplicated ten times3 with the
conditional branch being copied. If the condition of that branch turns out to be
constant, the branch will be removed during specialization. Examples of the loop
unrolling pass can be seen in Figures 6.4a, 6.4b, and 6.4d.

The dead code elimination pass is based on the stack analysis and removes
unreachable superblocks and instructions whose result is never used. In particular,
unnecessarily unrolled loop iterations are removed. Similarly, the dead register write
elimination pass removes unused instructions, but only requires a register liveness
analysis, thereby avoiding the creation of an updated stack analysis. The effect of
these passes can be easily identified in Figure 6.4c.

When information about constant operands is available, instructions can eventually
be specialized to make use of this information. If the output values of an instruction
are known, these can typically be folded into move instructions, as shown in
Figure 6.4c. Constant input operands are folded into immediate operands or
references to the constant pool where possible. Note that instructions that become
unused in the course of specialization get removed by a later run of the dead code
elimination pass.

A special case is the optimization of memory operands: if the address is known,
it may point to a memory region that was specified as constant. In this case, the
memory access can either be removed entirely, for example as in Figure 6.4b, or
the constant value gets moved to the constant pool, improving cache usage by
exploiting spatial locality. However, even if the memory access does not result in a
known value, it is still possible to make use of constant address fragments. Several

3The unroll count is a configuration option with the default value 10.
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1 sum_array : // rdi=len , rsi=ptr
2 xor eax , eax // accumulator
3 xor ecx , ecx // loop ctr.
4 jmp . Lloopcond
5 . Lloopbody :
6 add eax , [rsi + 4 * rcx]
7 add rcx , 1
8 . Lloopcond :
9 cmp rcx , rdi

10 jb . Lloopbody
11 ret

rdi=3−−−−−→

1 sum_array_3 :
2 xor eax , eax
3 add eax , [rsi]
4 add eax , [rsi +0x4]
5 add eax , [rsi +0x8]
6 ret

(a) Specialization of a function summing an integer array for a constant length 3. The loop is
unrolled ten times, but iterations that are never executed are removed again. The value of the then
constant loop counter is propagated and folded into the address operand. The addition with zero is
not removed as this optimization is only implemented for 64-bit additions.

1 acc_array : // rdi=len , rsi=ptr
2 // rdx= accumulator
3 mov rax , rdx // accumulator
4 xor ecx , ecx // loop ctr.
5 jmp 2f
6 1: add rax , [rsi + 8 * rcx]
7 add rcx , 1
8 2: cmp rcx , rdi
9 jb 1b

10 ret

rdi=3
rsi=&{4, 5, 6}
−−−−−−−−−−−→

1 acc_array_456 :
2 mov rax , rdx
3 add rax , 4
4 add rax , 5
5 add rax , 6
6 ret

(b) Specialization of a function adding up the values of a constant integer array and an integer
parameter. The loop is unrolled completely and the memory accesses to the constant values are
removed. Expressions are not re-ordered, resulting in a series of addition operations, which could
be folded to add eax, 15.

1 foo: // edi , esi , edx are int
2 mov eax ,esi
3 imul eax ,edx // comp. edx*esi
4 cmp edi ,0 // but if edi >=0
5 jl 1f
6 mov eax ,edi // .. return edi
7 1: ret

edi=6−−−−−→
1 foo_spec :
2 mov rax , 6
3 ret

(c) Branches with a known constant condition are removed together with dead code and instructions
that do not affect the program behavior. The constant result is written with a newly created mov
instruction in the destination register.

1 compzero : // edi is int
2 mov eax , edi
3 1: shr eax , 1
4 jnz 1b // ret if eax =0
5 ret

no spec.−−−−−−→

1 compzero_drob :
2 mov eax , edi
3 shr eax , 0x1
4 jz 2f
5 shr eax , 0x1
6 jz 2f // 8 more times
7 1: shr eax , 0x1
8 jnz 1b
9 2: ret

(d) Rewriting of a function that always returns zero with no further information for specialization.
Drob unrolls all simple loops ten times, even if no useful information is available.

Figure 6.4: Examples of specializations generated using Drob.
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architectures support more complex addressing modes, for example x86-64 with a
base, a scaled index and a constant displacement [Int20a]. Thus, a constant scaled
index can also be folded into the displacement, as exemplified in Figure 6.4a.

Finally, Drob reduces the number of branch instructions between superblocks by
chaining them, resulting in a fall-through edge in the machine code, or merging
them, if possible. This is implemented in the block layout optimization pass, which
is executed after passes that modify the CFG of the function.

6.7.2.3 Limitations and Performance Considerations

Drob combines a function-level analysis with local transformations, applying rather
simple transformations in a safe but effective way. Using function-level analyses,
information about the usage of constant values is extracted and resulting unused
instructions, laying the ground for optimizations to leverage this information to
eliminate computational instructions and dead branches.

Code is modified only if an actual optimization is taking place, while all other
parts are left unchanged, allowing to safely apply Drob on code having only few spots
with optimization potential. As the original machine code instructions are never
abstracted away, the original code can be re-used in places without modifications,
reducing the overall time needed for machine code generation.

The extensive analyses, in particular the stack analysis, however, are rather
expensive, especially as they have to be performed multiple times during the
rewriting process. Due to their iterative nature, the analysis time may grow super-
linear with the complexity of the control flow.

While Drob provides a code representation and analysis facilities to enable even
complex transformations, potential of performance improvements is currently limited
by the set of available optimizations. Especially the lack of more generalized loop
transformations prevents significant performance improvements of non-trivial code,
where loop bodies typically involve a non-linear control flow, e.g., for conditionals.

One of the biggest drawback is the code representation in machine code instruc-
tions, which not only imposes constraints for transformations to always produce
encodable instructions, but also increases the difficulty of folding arithmetic expres-
sions, modifying the register allocation, or re-combining instructions.

Ultimately, also the very limited coverage of fully described instruction semantics
and specialization opportunities limits applicability on a larger set of applications;
and further expansion of the instruction coverage requires non-trivial code modifica-
tions.

6.7.3 LLVM-based Binary Rewriting: DBLL
Instead of re-implementing specific optimization on machine code level, a different
approach consists of re-using analyses and transformations implemented in compilers.
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DBLL4 [ES20b] makes use of standard compiler optimizations provided by LLVM
for the case of binary optimization, transforming binary code at the level of an
architecture-independent LLVM-IR (see Section 2.4.2 for a brief description).

Publication Information
This approach was previously published as [ES20b], which in turn is based on
work published in [EW17].

6.7.3.1 Rewriting Approach

To make use of the LLVM optimizer and code generator, the first step is to lift the
machine code semantics of the function designated for rewriting to the LLVM-IR.
This function is then optimized. If during optimization further code is discovered,
for example the target of an indirect function call, this code is lifted as well and the
optimization process is repeated until no further code is discovered. Finally, the
LLVM MCJIT [LLV20c] compiler is used to compile the code and prepare it for
execution.

Initial Lifting The initial step of lifting the compiled function to LLVM-IR is
done using Rellume (see Chapter 3) with the call-return optimization described in
Section 3.3.7.1. This results in a single LLVM-IR function describing the machine
code semantics, which takes a pointer to the CPU state as single parameter. The
function returns whenever the original function returns; nested function calls and
indirect jumps are represented as placeholder calls.

As LLVM does not permit direct access to the stack, at the beginning of the
function a fixed-size virtual stack is allocated on the stack using the LLVM alloca
instruction. The size of the stack defaults to 4 kiB, but can be configured using the
rewriter-specific configuration API.

Next, the function is adjusted so that the function signature in LLVM-IR matches
the parameter and return types specified using the BinOpt API. Inside the function,
the CPU state is allocated on the stack at the beginning and parameters are stored
in the corresponding virtual registers or virtual stack according to the System V
ABI [Mat+14]. If a parameter is marked as constant, the constant value is stored
instead, causing the actual parameter to be ignored. Further, every return statement
is modified to return the correct values from the CPU state.

4Historical note: the approach to use LLVM for specialization was first described in [EW17]
as “LLVM fixation”. The work was later split into the stand-alone lifting library Rellume [ES20a]
(see Chapter 3) and the rewriting approach presented together with the BinOpt library [ES20b],
which is named DBLL and described here. DBrew-LLVM [EW17] refers to the approach of
post-processing machine code generated by DBrew [WB16; EW17] using LLVM; this direct bridge
was removed due to increasing differences in storing decoded x86-64 instructions.
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Iterative Code Discovery and Optimization During the lifting process of Rel-
lume, only code within a function is considered. Code reached via call instructions
(direct and indirect) and code reached via indirect jump instructions is not lifted.
Especially resolving indirect call or jump targets is an important run-time optimiza-
tion, allowing inlining and further constant propagation. However, such targets
usually only become known during the optimization process. This leads to an
iterative procedure of lifting and optimization, which ends when no further code for
lifting can be discovered.

Therefore, the overall optimization process is the following: after the initial
lifting, some light optimization passes are applied. If any of the placeholder calls for
(indirect) calls/jumps is found to have a constant address, code from these addresses
if lifted, the placeholder call is replaced with a call to the newly lifted function, or, in
case of indirect jumps, the following code fragment is inlined, and the optimization
process repeats. Otherwise, the full optimization pipeline is applied. If at this point
any placeholder calls have a known address, code is lifted and the process repeats.
Otherwise, there is no code left to discover, and all lifted code is fully optimized.

A special case for lifting functions are stubs in the Procedure Linkage Table
(PLT): these contain a single indirect jump to a library function, whose address is
stored in the Global Offset Table (GOT), or to the dynamic linker if the function
is resolved for the first time. However, the GOT is usually mapped as writable to
permit lazy binding of libraries, implying that the library function generally cannot
be resolved during optimization, even if the address is probably known. To avoid
this problem and the problem of avoiding to accidentially lift the dynamic linker
itself, PLT stubs are detected and not lifted.

Moreover, optimizing into library functions is generally problematic from the
performance perspective: many functions like malloc or fopen provide very little
optimization potential based on constant data, but are usually complex and therefore
require a large amount of time for lifting, “optimization” and code generation. Other
frequently called functions, like memset or strlen, usually employ highly-tuned
implementations making use of assembly language, where performance gains are
rather unlikely if the code is re-compiled using LLVM.

Code Generation After optimization, the LLVM-IR module is compiled to machine
code using the LLVM JIT compiler. The newly compiled function resides in the
same address space and can be used as drop-in replacement, because the previous
LLVM-IR function has the same signature as the original function.

However, care has to be taken when some indirect calls or jumps remain after
optimization. This case is handled by restoring all registers, including the stack
pointer, to their virtual state and continuing at the original code. This is achieved
using a combination of inline assembly in LLVM-IR and (ab-)using the iretq
instruction to set the instruction pointer and the stack pointer [ES20b].
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1 sum_array : // rdi=len , rsi=ptr
2 xor eax , eax // accumulator
3 xor ecx , ecx // loop ctr.
4 jmp . Lloopcond
5 . Lloopbody :
6 add eax , [rsi + 4 * rcx]
7 add rcx , 1
8 . Lloopcond :
9 cmp rcx , rdi

10 jb . Lloopbody
11 ret

rdi=3−−−−−→

1 sum_array_3 :
2 mov eax , [rsi +0x4]
3 add eax , [rsi]
4 add eax , [rsi +0x8]
5 ret

(a) Specialization of a function adding up the values an integer array for a constant length 3. The
loop is unrolled, the initial addition with zero is replaced with a load from the second element.

1 acc_array : // rdi=len , rsi=ptr
2 // rdx= accumulator
3 mov rax , rdx // accumulator
4 xor ecx , ecx // loop ctr.
5 jmp . Lloopcond
6 . Lloopbody :
7 add rax , [rsi + 8 * rcx]
8 add rcx , 1
9 . Lloopcond :

10 cmp rcx , rdi
11 jb . Lloopbody
12 ret

rdi=3
rsi=&{4, 5, 6}
−−−−−−−−−−−→

1 acc_array_456 :
2 lea rax , [rdx +0xf]
3 ret

(b) Specialization of a function adding up the values of a constant integer array and a third
(dynamic) integer parameter. The loop is unrolled and all memory accesses are removed. The
constant values are combined and optimized into a x86-64 complex memory operand.

1 div: // edi , esi are int
2 mov eax , edi
3 xor edx , edx
4 div esi
5 ret

edi=5−−−−−→

1 div5:
2 mov ecx , edi
3 mov eax , 0 xcccccccd
4 imul rax , rcx
5 shr rax , 0x22
6 ret

(c) Division operations with a constant divisor are lowered to a more efficient combination of a
multiplication with a logical shift.

1 compzero : // edi is int
2 push rbx
3 mov eax , edi
4 .Lloop:
5 shr eax , 1
6 jnz .Lloop // ret if eax =0
7 pop rbx
8 ret

no spec.−−−−−−→
1 compzero_dbll :
2 xor eax , eax
3 ret

(d) The LLVM optimizer detects that the function will always return zero and the unnecessary
register spill to the stack is eliminated.

Figure 6.5: Examples of specializations generated using DBLL.
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6.7.3.2 Performed Optimizations

Due to the use of the LLVM framework, the huge range of optimizations in standard
compilers is available. As a consequence of the high abstraction over the underlying
machine code, analyses and transformations are not only greatly simplified, but
also some optimizations found in the previously described rewriting approaches, for
example moving constants into immediate operands, are not explicitly necessary,
because such modifications are performed automatically during the lowering process.
In general, as all information about the register allocation, instruction selection,
and block ordering is not preserved during lifting, such low-level characteristics of
the machine code are implicitly improved. Figure 6.5c shows an example of this,
where a division with constant divisor is transparently lowered to a multiplication.

For the main optimization, the generic -O3 pass pipeline is used, extended with
only three new passes specifically tailored to machine code rewriting. The generic
pass sequence provided by LLVM includes passes for instruction combination,
inlining, vectorization, loop unrolling (see, e.g., Figures 6.5a and 6.5b) and other
(non-trivial) loop transformations, and propagating memory accesses to SSA registers
where safely possible (see, e.g., Figure 6.5d). The following passes are specifically
designed for DBLL.

Improved Alias Analysis When the lifted machine code makes heavy use of
integer-pointer conversions, the basic analysis of potential memory aliasing has to be
conservative and prevents transformations regarding loads/stores. In combination
with the stack-allocated CPU state, however, this needlessly limits important
optimizations: the original program has no access to that structure and therefore it
is known to not alias with any other pointers used by the original code.

This information is supplied to the alias analysis infrastructure using a newly
added plug-in, which indicates that any pointer not derived from the CPU state
can never alias with a pointer derived from the CPU state. This pass ensures that
the CPU state structure will be eliminated by the scalar replacement of aggregates
(SROA) pass.

Constant Memory Regions When compiling from higher-level languages, the
case of constant addresses (besides null) occurs rather rarely, for example, with
memory mapped I/O, but in general does not require any special handling. Thus,
LLVM simply treats such constant addresses like any other pointer.

In contrast to the compile-time setting, there is more information about constant
addresses in the run-time setting: load operations from read-only memory regions
can be folded into constants. Such information can either be derived from the virtual
memory mapping, e.g., /proc/self/maps on Linux, or can be explicitly specified
during configuration.
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To make use of this knowledge, an additional pass is scheduled multiple times
in the pipeline. This pass checks for all load instructions with a constant address
whether the entire memory access has a known value, and if this is the case, the
load is replaced by a constant value. Such constants are propagated during later
passes, for example with instruction combination. An example of the application of
this pass is shown in Figure 6.5b.

Folding Integer-Pointer Casts As integer and pointer arithmetic is indistinguish-
able in machine code, but uses separate instruction in the LLVM-IR, the lifted
code may contain several occurrences of inttoptr instructions. When a pointer
parameter is specialized, this frequently leads to sequences of ptrtoint followed by
arithmetic followed by inttoptr. Such sequences are currently not folded with the
standard optimization passes, preventing further propagation constant pointers.

This problem is addressed by adding a simple pass which folds such sequences
of ptrtoint/add to a getelementptr instruction, which is dedicated for pointer
arithmetic.

6.7.3.3 Limitations and Performance Considerations

The described LLVM-based rewriting approach provides access to a wide range of
transformations and analyses used by traditional compilers for the purpose of run-
time binary optimization. The abstraction of low-level details with the architecture-
independent LLVM-IR having the SSA properties enables complex transformations,
which, combined with the highly-tuned code generation infrastructure, allows for
heavily optimized rewritten code.

These abstractions and high-level optimizations, naturally, imply a significant cost:
several time-expensive analysis passes are required for more involved transformations,
and code generation encompasses several complex lowering steps. As information
about the original selection of machine instructions or registers is discarded during
lifting, these steps have to be done again, even if specific code parts did not
meaningfully changed.

Furthermore, while the optimizing code generation back-end (SelectionDAG)
generally performs a high-quality selection of instructions, it is also known to have
a significant performance impact, especially due to its own internal IR. A faster
replacement back-end named GlobalISel is under active development (initially with
focus on AArch64), but is not ready for wider use. [LLV21]

A different limitation regarding transformation opportunities arises from a lack of
meta-information. During compilation from source, many meta-information on the
generated machine code is available, for example, information about the stack frame
layout, array bounds, data types, and calling conventions. Most of this information
is usually lost during compilation and also not stored in the debug information.
The lack of such information can limit transformations, e.g., reorganizing the stack
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frame or optimizing calls to unknown functions. For example, unspilling variables
from the stack is generally impossible, unless it can be proven that no other code is
able to access that location. Consequently, there may still be discrepancies between
the run-time optimized code and a code specialized at compile-time, even if the
same underlying optimizations are applied.

6.8 Evaluation of Approaches
To evaluate the applicability, performance, and effectiveness of the three previ-
ously described rewriting systems, these systems will be applied on several micro-
benchmarks. The benchmarks were selected to cover different subsets of optimizable
patters and operations. In addition to evaluating the achieved performance gain
and the time needed for the optimization itself, this evaluation also seeks to discover
practical limitations.

6.8.1 Setup
All experiments described in the following were performed on a system equipped
with an Intel Xeon Bronze 3106 CPU (Skylake), clocked at 1.7 GHz with disabled
TurboBoost, 11 MiB L3 cache, and 80 GB main memory, running Ubuntu 18.04.3
with Linux kernel 4.15.0-70 in 64-bit mode. All code was compiled with GCC 9.2.0
with the -Ofast option and linked against glibc 2.27. For DBrew, commit 10a202f5

was used; for Drob commit 90570d46 was used; and for BinOpt, which includes
DBLL in its source tree, commit cf7a9a67 was used together with LLVM 11.0.1.
Due to lack of meaningful support of instructions from newer x86-64 ISA extensions,
all compilers and code generators were restricted to only use instructions from the
base x86-64 instruction, including SSE/SSE2, but without newer extensions.

For each micro-benchmark, the three rewriting systems DBrew, Drob, and DBLL
are applied to generate a specialized and optimized version of the kernel function.
The observed execution times are compared against the execution of the original,
unoptimized function, which will serve as baseline for the run-time optimizations.
Moreover, the performance is also compared against a specialization obtained at
compile-time using the inlining and constant-propagation optimizations, which
therefore can be considered as an optimal specialization.

To ensure stable time measurements, even for short time spans, the rewritten
kernel of the micro-benchmark are repeated sufficiently often to achieve time spans
larger than a second; and all measurements are repeated five times, and in case
of high variance, more runs are performed. In this thesis only the average times

5https://github.com/caps-tum/dbrew/tree/10a202f
6https://github.com/aengelke/drob/tree/90570d4
7https://github.com/aengelke/binopt/tree/cf7a9a6
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are shown; the depiction of (always rather short) error bars was omitted for better
readability.

6.8.2 Micro-Benchmarks & Results
In this section, the individual benchmarks, the specialization configuration when
applying the rewriting systems, and the performance results of the newly generated
code will be described. The results of the execution times of the optimized kernels
are shown in Figure 6.6a.

6.8.2.1 Stencil

Benchmark The problem of applying a stencil unknown during compilation to a
matrix is a frequent problem, for which reason a resulting benchmark was previously
used for evaluating DBrew [WB16; EW17], Drob [Hil19], and DBLL [ES20b], but
also for other dynamic optimization techniques [Gra+99; DeV+13]. To avoid
unnecessarily frequent indirect function calls and allow for the use of vector units,
the kernel function used here performs the two-dimensional stencil operation on all
elements of a given matrix with a run-time-specified stencil. The matrix elements
are single-precision floating-point values. The stencil is specified as a sparse data
structure, being an array of triples consisting of an x-offset, a y-offset, and a
multiplication factor.

Specialization The stencil is specialized for a four-point stencil, computing the
average of all four immediately neighbored matrix elements. Further, the size of the
matrix is also marked as constant and fixed as 649×649. Additionally, floating-point
optimizations were allowed to allow regrouping of computations, e.g. by factoring
out common multipliers.

To work around the aggressive unrolling behavior of DBrew, for DBrew a slightly
modified kernel had to be used8: the inner specialization target that applies the
kernel to a single element had to be spliced out into a different non-inlinable
function. This way, for the outer function the force-unknown mode could be applied,
preventing the loop indices from being marked as constant.9

Results DBrew achieves a performance improvement of 42% by unrolling the loop
iterating over the stencil points and propagating constant offsets from memory into
the instruction stream. The code specialized by Drob is slighly faster with 50%

8Otherwise, DBrew failed due to buffer size limitations.
9Not specifying the matrix size as constant value led to infinite unrolling, as the static loop

counter caused state duplication, which never ended as the iteration bound is dynamic. Increasing
the buffer sizes (or, alternatively, reducing the matrix size) caused the rewriting process to succeed,
but the generated code was non-functional, as actually needed instructions were removed.
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Figure 6.6: Performance results comparing the three described approaches for run-time
binary optimization on micro-benchmarks.
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overall improvement by additionally removing dead instructions and folding constants
deeper into existing instructions, e.g. as immediate operands or displacements in
memory operands. The performance improvement of DBLL is 90% and thus at
the same level as the compile-time specialized kernel, performing vectorization and
moving the common multiplication factor into a single multiplication operation.

6.8.2.2 Fastexp

Benchmark In this benchmark, the kernel function performs the square-and-
multiply algorithm for exponentiation with an integer exponent on a floating-point
base. This benchmark was chosen to evaluate the support for optimizing loops with
a non-trivial control flow in the loop body. This benchmark is inspired from an
example of using ‘C [Pol99].

Specialization The integer exponent is specialized to the constant 76, which leads
to a sufficiently complex operation (in contrast to choosing a power of two). With
the constant exponent, all control flow decisions and other integer arithmetic become
obsolete, leaving only the essential floating-point computations.

To work around a limitation of DBrew when applying calling conventions, the
function parameters had to be ordered in way such that constant parameters are
sorted before floating-point parameters.

Results Both, DBrew and DBLL, reach the performance of the compile-time
specialized code. Drob, however, is unable to effectively optimize the function due
to a missing pass for unrolling loops consisting of more than one superblock.

6.8.2.3 Polynomial

Benchmark The kernel function of this benchmark evaluates a polynomial, which
is given as an array of coefficients, at a specified point. For example, to evaluate
the polynomial 2x3 + 5x − 3, the coefficients are given as [−3, 5, 0, 2]. For all
values, double-precision floating-point arithmetic is used. With this benchmark,
optimization of floating-point arithmetic is evaluated.

Specialization For specialization, the coefficients are fixed to a constant array of
length 11, which leads to a sufficiently complex operation, containing several entries
with values zero and one. Possible optimizations are loop unrolling, consequent
elimination of integer arithmetic instructions, removal of terms with a coefficient
value zero and omission of multiplications with a constant value one.
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Results DBLL achieves a performance improvement of 56% over the generic kernel.
In fact, the LLVM-generated code is even slightly faster than the code generated by
GCC, due to a more efficient mapping of the arithmetic operations to machine code
instructions. Due to a lack of arithmetic optimization, DBrew and Drob yield a
specialized version, which improves performance by only 10% and 13%, respectively,
over the generic variant.

6.8.2.4 Division

Benchmark This benchmark performs an integer division. It was originally selected
to evaluate optimizations of complex integer operations. As DBrew and Drob
currently do not model the semantics of the division instruction, this benchmark
actually shows handling of unsupported instructions for these rewriting systems.

Specialization The function is specialized for the constant divisor 11, which is
non-trivial to optimize as it is not a power of two. This allows to replace the rather
expensive integer division operation with a much more efficient multiplication with
a constant magic number combined with a shift [War13].

Results DBrew aborts rewriting and returns the original function as the integer
division instructions is not supported. Drob also does not support the division
instruction, but enters a more restrictive rewriting mode and therefore still succeeds
in rewriting without performing any actual modifications. As optimizing division
operations with a constant divisor is a common compiler optimization, this is also
implemented by LLVM and therefore the LLVM-based rewriter produces the same
code as GCC.

6.8.2.5 Reduce

Benchmark In this benchmark, a function is sequentially applied on all elements
of an array of double-precision floating-point values, with the current array element
and the result of the previous function call (or the first element in case of the first
call) as arguments. Such an operation is commonly referred to as reduction and can
be used, for example, to compute the minimum or sum of the array. This benchmark
was created to evaluate the capability of inlining an indirect function call.

Specialization The kernel function is specialized with reduction operation which
compute the sum of the two specified parameters. The resulting optimization
possibility consists of inlining the specified function and removing instructions
required for maintaining ABI compliance.
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Results DBrew is the only rewriting system that successfully optimizes this bench-
mark and inlines the function, yielding an improved function with a performance
improvement of 20%. However, note that no ABI was specified for the passed func-
tion, implying that the performed optimization was actually unsafe. In particular,
modern compilers may choose to modify ABI of strictly internal functions, which
may cause unexpected problems when rewriting arbitrary code.

The code generated by Drob is non-functional, as Drob stops decoding when
encountering the indirect function call and therefore ignores the function epilogue,
ignoring the fact that the indirectly called function will return.

DBLL fails to inline the function and replaced the indirect function call with its
own strategy to continue at original code, causing a slowdown of factor 2.6x. As no
ABI information about the specified function is present and the indirect function
call is performed in a loop, the LLVM optimizer cannot prove that the callee-saved
register holding the address of the function is not modified by the function itself.
Thus, the indirect function call is maintained for correctness.

6.8.2.6 Indjmp & Indjmp-Spec

Benchmark These benchmarks are the most simplest used for this evaluation: the
kernel function takes a function pointer as single parameter. The specified function
is called and its result is returned. As a consequence of tail-call optimization,
the resulting machine code consists of a single indirect jump instruction. This
benchmark was designed to evaluate handling of indirect jumps during the rewriting
process.

Specialization This benchmark was evaluated in two configurations: in the first
specialization configuration, no additional information was specified, implying that
the indirect jump cannot be removed. In the second configuration, a function pointer
was specified as constant parameter, in which case the indirect jump can be removed
and the specified function can be inlined.

Results Neither DBrew nor Drob can handle indirect jumps with an unknown
address and aborted their rewriting process by return the original function. DBLL
is able to rewrite the first configuration, but the resulting code was 40x slower as a
consequence of using the expensive and serializing iretq instruction.

In the second configuration with a constant jump target, DBrew and DBLL
successfully inline the called function; Drob, in contrast, is unable to handle indirect
jump, even when the target becomes dynamically known.
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Table 6.2: Relation between optimization effect, rewriting time, and the number of kernel
calls needed to amortize the rewriting time. The base time is the execution time of the
unoptimized kernel. All execution times refer to one execution of the rewritten function
and do not include rewriting times.

Base time Exec. time Diff. Rew. time #calls
Stencil/DBrew 3.03ms 1.78ms −1.25ms 0.40ms 1
Stencil/Drob 3.03ms 1.52ms −1.51ms 2.30ms 2
Stencil/DBLL 3.03ms 0.31ms −2.73ms 54.48ms 20
Fastexp/DBrew 15.18µs 4.28µs −10.90µs 200µs 19
Fastexp/Drob 15.18µs 13.48µs −1.69µs 820µs 486
Fastexp/DBLL 15.18µs 4.24µs −10.93µs 13900µs 1272
Polynomial/DBrew 13.84µs 12.48µs −1.35µs 200µs 149
Polynomial/Drob 13.84µs 12.08µs −1.75µs 1220µs 698
Polynomial/DBLL 13.84µs 6.11µs −7.72µs 16020µs 2076

6.8.3 Rewriting Times

The measured times spent for performing the actual rewriting and optimization is
shown in Figure 6.6b. Two main causes for varying transformation times can be
observed: the first factor is the complexity of the rewritten code itself. From the
described micro-benchmarks, the stencil benchmark is the most complex with three
nested loops. This complexity immediately results in an increase in rewriting time
by a factor of 2–4 compared to benchmarks with a single loop or no loop at all.

The second, and much more important, factor is the complexity of the performed
analyses and transformations itself. DBrew performs only very simply and strictly
local operations and therefore is also the fastest approach on all benchmarks (unless
DBrew performs massive loop unrolling, which is not the case on any of the
benchmarks shown here). Drob requires 3–7 times more rewriting time compared to
DBrew due to its whole-function analyses. DBLL, in contrast, takes 13–26 times
more rewriting time than Drob and 55–135 times more time than DBrew. This is
not only caused by the more extensive analyses performed at LLVM-IR-level, but
also the optimized machine code generation using the SelectionDAG back-end is
more complex and therefore requires more time.

Table 6.2 compares the rewriting time with the absolute performance improvement
of the performed optimization. It can be observed that in all shown cases the faster
rewriting approach requires a lower number of execution times to amortize the cost
of the optimization process; in case of the stencil benchmark, DBrew’s optimization
already pays off with a single execution of the function. When the transformed code
is executed more often, the use of the heavy rewriter DBLL becomes beneficial.
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6.8.4 Discussion
The experiments and results above clearly show differences between the quality and
applicability of the rewriting systems. These differences are caused by a different
quality of the applied optimizations, but also the rewriting time has an impact.

Optimization quality DBrew has a simple yet effective optimization strategy,
which can achieve significant performance improvements by rather simple optimiza-
tions. Still, the architectural limitation of strictly-local optimizations structurally
prevents advanced transformations like vectorization. Moreover, also implementa-
tion issues become apparent, most notably from missing instructions and other bugs

— for example, even for rather simple kernels as in the stencil benchmark, several
workarounds had to be applied.

Drob performs further analyses on the entire function and therefore can perform
further optimizations. However, there are currently few optimizations implemented
that make use of these capabilities, so that only small improvements over DBrew’s
local approach can be achieved. Further, the lack of a general loop unrolling
transformation, which can handle loops consisting of more than one superblock,
strongly limits optimization effects on larger optimization targets. Finally, also
Drob only covers a small subset of x86-64 instructions. As Drob enters a restrictive
mode when encountering such instructions, no further optimizations are performed
afterwards. While this allows Drob to technically succeed “optimizing”, in such
cases it actually does not optimize code but rather copies the existing code without
modifications.

DBLL is the only rewriter which is able to rewrite all evaluated micro-benchmarks.
In most cases it is further able to achieve a performance-level similar to a compile-
time specialized code, mostly as a consequence of re-using compiler techniques. This
indicates that lifting machine code to well-optimizable LLVM-IR code is generally
possible. Nonetheless, whenever non-resolvable indirect calls or jumps are involved,
the “optimization” was not beneficial and in fact resulted in a significant slowdown.
Due to lack of knowledge about ABI semantics of function calls and to ensure strict
correctness of transformations, indirect functions in loops cannot be resolved —
solving this problem would require either more ABI information to be specified or
some kind of speculative optimization to determine whether some transformation
will turn out to be valid. Although DBLL is the only rewriter to support unresolvable
indirect jumps, the use of an interrupt return instruction for handling this case in
the rewritten code adds considerable overhead. Thus, all kinds of indirect calls or
jumps are currently best avoided for all three rewriting systems.

Transformation time The rewriting time has an immediate effect on the appli-
cability of the run-time optimization: a fast rewriter like DBrew can also be used
effectively for optimizations where the optimized function has only a short overall
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run-time or is used rarely, despite the simplicity of the actually performed opti-
mizations. In contrast, an expensive optimizer like DBLL usually generates more
efficient code, but due to high transformation times, it also needs a sufficiently large
timespan to amortize the costs.

This motivates the design of hybrid rewriters, which perform execution and op-
timization in parallel on different processor cores with multiple optimizers. Such
a system could initially start with a fast-generated but not thoroughly optimized
specialization and replace the the rewritten kernel with more optimized specializa-
tions once they become available from another rewriter running on a different core.
Further research in this direction is left as future work.

Conclusions The previous results and observations show that DBLL is currently
the most robust rewriting system with the widest support of instructions and opti-
mization possibilities. While both DBrew and Drob implement approaches to also
optimize transformation time and therefore allow for a faster pay-off, implemen-
tational issues such as the small set of supported instructions (DBrew and Drob),
missing optimization passes (Drob), or other bugs (DBrew) prevent the general
applicability.

6.9 Evaluation on Real-world Code
In the previous section, the performance and applicability of the different rewriting
systems was evaluated using micro-benchmarks. To also evaluate the overall ap-
proach of a library for application-guided run-time binary optimization, the library
is applied to performance-sensitive real-world code. In particular, in this section,
image processing kernels will be specialized, which generally have a large number of
configuration options controlling various parts of the algorithm and therefore make
them hard to optimize statically at compile-time.

Publication Information
The application of run-time binary optimization on the benchmarks described
in the following was previously published in [ES20b], which was developed as
part of this work. The evaluation presented here is more detailed and covers
more configuration options and comparisons.

6.9.1 Benchmarks
For this evaluation, two operations from the image processing library Generic
Graphics Library (GEGL) [Kol20] are optimized by applying the library BinOpt.
The general procedure for adapting the operations is the following: first, the main
operation kernel and relevant configuration options are identified. In particular, from
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the entire process routine, non-critical set-up code is separated from performance-
critical code which actually operates on the image data. Second, this operation
is outlined into a separate function with the relevant configuration options and
other important run-time information as function parameters, for example, the
dimensions of the image. Third, the library calls for creating a BinOpt configuration
and specialization of the function previously outlined are added and the specialized
function is used instead. Within the configuration, parameters and associated
memory regions with known run-time values are marked as constant. Finally, a new
configuration option to disable the run-time optimization is added for the purpose
of comparison — if disabled, the outlined function is called directly.

Gblur-1d Filter The first optimized operation is the gblur-1d filter. This operations
implements a one-dimensional Gaussian blur filter with a configurable standard
deviation and orientation (horizontal or vertical). A two-dimensional Gaussian blur
filter, which is usually used for two-dimensional images, is realized as two applications
of the one-dimensional filter with different orientations. For this evaluation, only
the Finite Impulse Response (FIR) filter is optimized as this filter provides better
numerical stability over the Infinite Impulse Response (IIR) filter. The operation
supports images with 1–4 color channels and uses single-precision floating-point
values to represent a value of a color channel.

Internally, the operations works as follows (see also Figure 6.7). Initially, a
one-dimensional weight matrix is computed. The size of the matrix depends on the
configured standard deviation σ and the resulting number of rows/columns is 6.5 ·σ,
rounded upwards to the next odd integer number to enable symmetric application
on a pixel. After this setup step, the actual operation begins. The individual rows
or columns of the image — depending on the orientation of the filter — are copied
into a temporary buffer with a user-configurable policy for handling corners of the
image. Then, the weight matrix is applied to each pixel and each color channel
separately and the results of the computation are written back into a different buffer.
Once all columns or rows are finished, the new result is copied back into the image.
As a consequence of the copying step, the actual filter operation does not depend
on the orientation. However, as the image is has a row-major order in memory,
using a vertical orientation leads to more scattered memory access and therefore
uses processor caches less efficiently.

To apply BinOpt for specialization, the innermost part, which applies the matrix
to a given point, is outlined into a separate function for specialization. This function
is then specialized for the size of the matrix, the matrix values itself, and the number
of color channels.

Bilateral Filter The second optimized operation is the bilateral filter, which is a
two-dimensional blur filter. While it is conceptually similar to the Gaussian blur
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Figure 6.7: Illustration of the Gblur-1d filter with σ = 1. The one-dimensional stencil
covers 7 pixels, whose values are weighted, summed up, and stored as new pixel value.
This process is applied for all pixels of the image.

filter, the impact of neighbored pixels not only depends on their distance, but also
on their per-channel color difference. Nearby pixels with a larger color difference
therefore have less impact than pixels with a similar color. The operation in GEGL
only supports a single color format, which is the 4-channel RGBA format with
single-precision floating-point data types.

Initially, the operation computes the two-dimensional distance-weight matrix,
whose size depends on the user-configured blur radius. For a specified radius r,
the weight matrix has the size (2 · r + 1) × (2 · r + 1). Then, in the main part of
the operation, all pixels of the image are processed. For each pixel, all neighbored
pixels in the specified radius are considered; their values are accumulated weighted
by the distance-weight from the matrix computed previously and the inverse color
difference; and the result is written to the new image. To avoid accessing the pixel
values of pixels beyond the border of the source images, additional bounds checks
are required.

To apply BinOpt for specialization, the main part that performs the actual
operation after the computation of the weight matrix is outlined to a separate
function for specialization. This function is then specialized for the blur radius, which
indicates the matrix size, the matrix values themselves, as well as the dimensions of
the image. In the original kernel, the computing the color distance involves the use
of the exponential function from the standard library. To avoid indirect function
calls, this call was replaced by a polynomial approximation in both, the specialized
kernel and the reference baseline.

6.9.2 Setup
The setup of the hardware and software stack is identical to the setup described
in Section 6.8.1. Additionally, GEGL 0.4.28 and Babl 0.1.84 are used. For image
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verification, ImageMagick 6.9.7.4 was used. However, as the compiled kernels use
several instructions that are currently unsupported by DBrew and Drob, only the
DBLL rewriter is used for this evaluation. All codes are compiled with the -Ofast
compiler option, which is also used by GEGL, and for the run-time optimized code,
fast-math optimizations are enabled.

The images used for this evaluation are dynamically generated using GEGL’s
checkerboard render operation, cropped to a specified size. Note that for the
operations considered here, the values of the individual pixels have no impact on
the actually performed operations.

The kernels are applied on different configurations of the standard deviation or
blur radius. To determine the required workload size where the rewriting time is
amortized, additionally images of different sizes are used. As the gblur-1d filter
supports images with a different number of color channels, for that benchmark the
image is explicitly re-formatted to a specified image format, and the different color
formats grayscale (Y), grayscale with transparency (YA), RGB color (RGB), and
RGB color with transparency (RGBA) are evaluated as well.

To evaluate the effectiveness of run-time optimizations, of the bilateral filter
benchmark also source-code-level specializations are generated, which incorporate
the same information as specified to the run-time optimization library. This code
is compiled with GCC 9.2.0 and also with Clang 11, which uses the same LLVM
framework as the run-time optimizer.

All produced output files are verified for correctness using the compare tool of
ImageMagick. It is verified that the resulting images are either identical to the
baseline without any optimizations or have a low mean absolute error (i.e., at most
a few pixels diverge by insignificant values, which could result from differences in
floating-point rounding).

6.9.3 Results
Gblur-1d Filter The results of the evaluation on the gblur-1d filter are shown in
Figure 6.8. Overall, the application of the described LLVM-based binary optimiza-
tion technique leads to performance improvements of 51%, as shown in Figure 6.8a.
For a reasonably small blur radius and images with multiple color channels, the
performance improvement is in the range of 25–40%. For filters with a standard de-
viation less than 10 (corresponding matrix size: 65 elements), the loop that iterates
over the neighbored points is unrolled, eliminating the loop overhead and allowing
for more optimized use of vector instructions. If the matrix is larger, unrolling
is no longer considered as beneficial by the heuristics built into LLVM. Further
optimizations include unrolling the loop over the color channels and elimination of
associated offset computations.

A significant difference in the performance improvement originates in the number
of color channels: images with a single color channel can use SIMD extensions much
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Figure 6.8: Performance results evaluating the dynamically optimized GEGL gblur-1d
kernel. Execution times include rewriting times, the baseline is the kernel with any dynamic
transformations disabled.

113



6 BinOpt: Application-guided Runtime Binary Specialization

2 4 6 8 10 12

0.4

0.6

0.8

1

Blur Radius

N
or

m
al

iz
ed

ru
n-

tim
e

BinOpt Baseline
Clang 11 GCC 9

(a) Overall execution time of the dynamically
optimized kernel and compile-time specialized
kernels normalized to the unoptimized kernel.
Performance differences are caused by different
unrolling and vectorization strategies. Image
size: 5000×3000.

2 4 6 8 10 120

50

100

Blur Radius

R
ew

rit
in

g
tim

e
[m
s]

Optimization time

(b) Rewriting time for the dynamically opti-
mized kernel normalized to the unoptimized
kernel. The rewriting time is higher when loop
unrolling is performed.

0 2 4 6 8
·104

0

0.1

0.2

0.3

0.4

0.5

Image Size [pixels]

To
ta

lt
im

e
[s

]

Baseline Rewriting Time Optimized
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Figure 6.9: Performance results evaluating the dynamically optimized GEGL bilateral-
filter kernel. Execution times include rewriting times, the baseline is the kernel with any
dynamic transformations disabled. The kernel internally only supports images with four
color channels.
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more effectively, because neighbored pixel values are stored immediately next to each
other and therefore no de-interleaving of color channels is required. When multiple
color channels are present, a series of move and shuffle instructions is required.

The rewriting time, shown in Figure 6.8b, initially grows linear with the size of
the matrix, but once loop unrolling is no longer performed, the rewriting time drops
significantly due to the smaller size of the code. The number of color channels also
has an impact on the rewriting times; the most significant difference is in case of a
single color channel rewriting is faster as shuffling values is not required.

As expected, the orientation of the filter has no impact on the absolute performance
improvement (cf. Figure 6.8c). However, the relative performance improvement
compared to the unoptimized version is smaller for vertical kernels, as more time is
spent for copying the columns of the image into the temporary buffer.

Due to the rather small performance improvement of 25–40% and rewriting times
up to 90ms, larger image sizes are needed to amortize rewriting times. As shown
in Figure 6.8d, with a standard deviation of 3 (corresponding matrix size: 21) and
four color channels, a size of ∼ 1200× 1200 (∼ 1.4M pixels) is required to achieve a
faster overall performance when run-time optimizations are performed.

Bilateral Filter The performance results for the bilateral filter are shown in Fig-
ure 6.9. Applying BinOpt/DBLL on this kernel leads to performance improvements
of up to 67%, as shown in Figure 6.9a. For a blur radius smaller than 8 pixels, the
improvement is slightly lower with around 30–40%. These performance improve-
ments have a variety of sources: first, for a small radius (≤ 3), the loops iterating
over the weight matrix are unrolled and therefore the loop overhead is eliminated.
Additionally, the bounds checks and index computations can be simplified. However,
no vectorization is performed. Loop unrolling is no longer considered as beneficial
by the LLVM heuristic for a radius larger than 4, but vectorization is still not
performed. Only with a blur radius of 8 pixels and larger, the LLVM vectorizer
considers use of SIMD processing as beneficial: now, always four neighbored pixels
are processed in parallel, with the four color channels distributed over separate
vectors. Additionally, the matrix loop is now unrolled again.

When specifying the same information as constants for GCC to generate an
operation for a fixed blur radius and image size, only loop unrolling is performed for
small matrices, but besides this, no vectorization or other optimizations take place.
Consequently, GCC is unable to leverage the additional information even when
explicitly specified. In contrast, Clang pursues a different vectorization strategy and
always puts the four color channels of a pixel into a vector. While this approach
is faster compared to code without vectorization, at least for larger matrices a
vectorization schema that parallizes over pixels turns out to be more effective. It
should be noted that both Clang and BinOpt/DBLL are based on the same LLVM
version for optimization.
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The rewriting time, as shown in Figure 6.9b, roughly corresponds to the size
of the generated code. When loop unrolling is performed (blur radius < 4 or ≥
8), the rewriting time grows due to increased effort needed for analyses and code
generation.

Due to the large performance improvement, the high rewriting time in the range
of 60–100ms amortizes already for small images. As it can be seen in Figure 6.9c,
with a blur radius of 8 pixels, a size of ∼ 180×180 (∼ 32k pixels) is already sufficient
to achieve a faster overall performance.

6.9.4 Discussion

The results show that, even for optimized real-world code, significant performance
improvements over statically optimized code can be achieved. The observed speed-up
was only possible due to exploitation of concrete values from dynamic configuration
options. Although it is possible to generate specialized kernels for all possible
configuration values, such an approach is highly impractical compared to the
relatively minor changes necessary to use the BinOpt API.

When comparing with compile-time specialized code with the same specialization
data, the run-time optimized version derived from prior machine code could even
outperform two state-of-the-art C compilers. This is an indicator that starting
optimization from machine code is no large optimization hindrance. Especially, the
fact that GCC is unable to leverage the additional information for specialization
is a clear indication that basing a dynamic binary optimization system on LLVM
has more potential for effective optimizations. However, the results also imply that
both compiler infrastructures, GCC and LLVM, still have substantial problems in
finding a good vectorization strategy.

The time needed for the optimization process itself strongly depends on the
performed optimization and the complexity of the code. Still, the high rewriting
time for the LLVM-based binary rewriting approach can be amortized already with
a single execution of the optimized kernel. Further improvements in this regard
would be possible by re-using specialized kernels for several kernel executions, for
example, when processing multiple images with the same operation sequence.

Nonetheless, the technique is not in all cases beneficial — especially for small
workloads — and therefore the time overhead has to be balanced with the benefits.
Moreover, it does require programmer effort to identify suitable optimization targets
and related code modifications to separate this code to have function boundaries,
so that a function-level specialization can be applied. Thus, the approach of
application-guided run-time binary optimization can only be reasonably used for
performance-critical code sections when optimization potential can be derived from
run-time data in a sufficiently compact and isolatable code region.
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6.10 Related Work: Post-compilation Optimization
The idea of using run-time-only information for generating a further optimized
program during its execution has a long history. Approaches for realizing this
optimization step can be classified into three categories:

• Libraries that simplify generation of machine code at run-time;

• Language constructs, language extensions, or Domain-specific Languages
(DSLs) created for designating code regions for run-time compilation or opti-
mization; and

• Dynamic binary optimizers, which improve performance during program
execution without explicit knowledge or control of the application itself and
in many cases automatically without any external input.

In all these categories, research gained significant traction in the mid-1990s to the
early-2000s. Since then, computer architecture and compiler development have seen
radical changes in development: not only did Dennard scaling [Den+74] end, forcing
CPU manufacturers to increase the number of processor cores and do other per-core
optimizations to improve the overall performance of processors [Esm+11], but also
compilers have seen major improvements with regard to optimization, most notably
with profile-guided optimization [Fre01], which is widely available nowadays, and
improved strategies for instruction selection [Bli16].

It can be assumed, that for these reasons the performance impact of many dynamic
optimization techniques became lower, thereby causing overall research in these
areas to decline. While in all categories notable improvements have been published
in recent years, only library-based approaches have received significant developments
and wider adoption over the past decades.

Classification of BinOpt The approach of application-guided run-time binary op-
timization described previously in this chapter can be classified as a hybrid approach
of a library, the use of language constructs, and dynamic binary optimization. From
a purely technical perspective, it is a library, which a program can link against to
use provided functionality. From the perspective of a user, this is not only a library,
it also allows to re-use the same programming language and language constructs as
the rest of the code. Internally, the library is a dynamic binary optimizer, which —
in contrast to many other systems — has explicit knowledge about run-time data
which it is worth optimizing for.

Structure The rest of this section on related work is structured as follows: in
the next three sub-sections, important and recent approaches in each of the three
categories will be described. Finally, Section 6.10.4 will cover approaches regarding
feedback-directed optimization and static binary optimization.
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6.10.1 Run-time Code Generation Libraries
Numerous libraries and frameworks that implement or supplement JIT compilation
or run-time code generation in general and work without compiler modifications
have been proposed. Thus, in the following, only a small selection of relevant or
highly related libraries will be covered.

LLVM [LA04] is a widely used run-time code generation and optimization infras-
tructure, which is not only used in static compilers, like Clang [LLV20a], but also
for JIT code compilation. The LLVM-IR code can be constructed using API calls
from the application. Afterwards, optimizations or other transformations can be
applied and, finally, the JIT infrastructure can be used to compile the created code
into the same address space.

libgccjit [Mal20] is a library that exposes the optimization and code generation
part of GCC as library for JIT compilation. Internally, this library uses GCC to
create a temporary shared object file, which is then compiled using standard tools
and afterwards loaded into the process using the dynamic linker (dlopen()). In
contrast to LLVM, libgccjit requires an assembler and a linker to be available on
the execution machine.

QBE [Car] is a generic code generation library, which aims to be more flexible and
provide faster code generation by avoiding expensive transformations. Generally,
the approach attempts to balance overall complexity of the compilation process
with the performance of the emitted machine code. MIR [Mak20] is a more recent
library with similar ideas, aiming to act as JIT compiler for CRuby and replacing
currently used LLVM and libgccjit.

KART [Noa+17] is a library that provides the infrastructure for run-time com-
pilation of C/C++/Fortran source files. Specializations can be specified using
preprocessor defines given as command-line parameters to the compiler. The code is
compiled into a shared library and loaded into the same program using the dynamic
linker (dlopen()).

6.10.2 Run-time Optimization with Compiler Support
Several approaches for exposing dynamic code generation through specific constructs
integrated into an existing programming language, through compiler extensions, or
through the use of Domain-specific Languages (DSLs), have been implemented.

The only widely available “language construct” can be found in dynamic languages
like Python [Pyt21b] or ECMAScript [Ecm21] (commonly known as JavaScript):
the eval() function. Such a function takes a dynamically constructed string as
parameter and evaluates it using the semantics of the programming language itself.
As the provided expression can also describe a function, eval() can be used to
convert dynamically generated functions into natively callable functions. When the
execution engine of the dynamic language supports JIT compilation, for example like
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V8 [Tit15] for JavaScript, this dynamically evaluated function is turned into machine
code. For example, CPython uses this technique to create efficient namedtuple
implementations [Pyt21a].

Extensions of the C/C++ ‘C [EHK96; Pol+99] (Tick C) extends the C lan-
guage [ISO17] with additional syntax to enable application-controlled run-time
optimizations. In particular, they add operators to mark code regions to be com-
piled at run-time and incorporate data at run-time into dynamically generated code
as well as type specifiers to simplify handling of dynamically generated functions.
During compilation, code regions marked for run-time compilation are compiled
to “code-generating functions”, which at run-time create the actual machine code
incorporating dynamic values.

Tempo [Noe+98; CN96] is an approach for run-time specialization using partial
evaluation based on the C language, which performs further analyses of side effects
and is implemented by generating small templates during compilation, which are
linked together at run-time.

DyC [Gra+99; Gra+00] is a different C extension for supporting dynamic opti-
mizations, where constant data is marked only using a special function call. During
compilation, a set of code templates and an associated dynamic code generator are
produced. During execution, the code generator fills in static values and concatenates
the templates to the final function.

Easy::Jit [CG18] is based on modified C++ compiler (Clang) and allows to
dynamically optimize functions. During compilation, all LLVM-IR code is embedded
into the binary so that it is accessible at run-time. When the JIT-compilation is
triggered using a call into the run-time library, the LLVM-IR code is optimized
for the actual parameters, compiled and executed. This project is closest to the
BinOpt approach described in this chapter. However, in contrast to requiring a
specific compiler and C++ as language, the BinOpt approach works with arbitrary
compilers as long as the function follows the C ABI. Further, BinOpt allows to
explicitly specify additional memory regions as constant or parameters as dynamic,
exposing more optimization potential while allowing for better re-use of already
created specializations.

ClangJIT [Fin+19] is the most recent approach based on C++ attributes and
the Clang/LLVM infrastructure. For annotated functions, the abstract syntax tree
produced by the compiler and the generated LLVM-IR code are embedded into
the executable file. At run-time such functions are then optimized for the specified
parameters. In addition to CPUs, also optimization of CUDA code is supported.

OpenCL [Khr19] code is generally compiled at run-time for a chosen host archi-
tectures, usually CPUs or Graphics Processing Units (GPUs). During compilation
of a module at run-time, additional specialization constraints can be specified using
API calls, which can be used by the back-end for further optimizations.
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Other languages LLVM [LA04] IR code cannot only be generated using API calls,
but can also be pre-generated from higher-level languages using existing compilers
and then be dynamically loaded, specialized, and compiled at run-time.

Terra [DeV+13] is a low-level language designed for producing specialized imple-
mentations embedded in Lua code. Terra code can be produced dynamically and is
JIT-compiled to machine code using LLVM for execution.

DeGoal [Cha+14] is an approach to produce fast code generators from a simple
assembly-like language. At run-time, constants and other data is filled inserted at
specified places and machine code is generated.

6.10.3 Dynamic Binary Optimization
Dynamic binary optimizers strive to improve performance of a currently running
program by modifying its machine code. Such systems usually operate transparently
to the program that is optimized. Many of these systems operate automatically with-
out further guidance and therefore have no prior knowledge about the application,
for which reason they have to detect frequently executed (“hot”) code fragments
where improvements are possible during the program execution.

One of the first transparent binary optimizers was Dynamo [BDB99; BDB00],
which optimizes code on the PA-RISC architecture. The system initially runs the
program in an interpreter, where it identifies hot traces of actually executed code by
software profiling and optimizes such traces in native code by combining included
code blocks, improving locality. DynamoRIO [BGA03] started as a variant of
Dynamo targeting the transparent optimization of x86 code, but afterwards shifted
its focus towards generic code modification [Bru04].

Mojo [Che+00] is a similar transparent optimization system for x86 with support
for multi-threading, but in fact increases execution times on several benchmarks.

Wiggins/Redstone [DGR99] do transparent binary optimizations for Alpha, where
hot code fragments are re-organized into traces and specialized for concrete run-time
values; the system uses hardware performance counters to identify relevant hot code
fragments. Adore [Lu+04] uses a similar technique for Itanium and additionally
inserts prefetch instructions to reduce memory latency. COBRA [KHY07] also
targets Itanium and further extends these ideas by using separate threads to
monitor performance counters and optimizing memory accesses by inserted prefetch
instructions and hints for concurrent memory access, reducing cache misses in
multi-threaded programs.

Kistler and Franz [KF01] propose a dynamic optimization system for PowerPC
which permanently profiles the application, performs data layout and trace opti-
mizations, and generates a new binary, which replaces the loaded executable in
memory during execution. However, they do not optimize machine code directly,
but instead start from an architecture-independent low-level code representation
(Slim Binary [FK97]).
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More recent dynamic binary optimizers are more specialized to a specific type of
optimization. Selftrans [NMO11] performs run-time vectorization of existing binary
code by analyzing the machine code for specific patterns that are found to benefit
from vectorization and replacing occurences with an improved implementation that
makes better use of available SIMD extensions.

Padrone [Rio+14] is a framework which allows to profile and optimize machine
code running in a different process. Although the framework does not implement
any optimizations itself, it has been used to implement an optimization tool which
increases the length of vector operations from 128-bit SSE to 256-bit AVX instruc-
tions [Hal+15].

ExanaDBT [SYE17] is an optimization system that lifts profiles code during
execution and performs polyhedral optimizations on identified code fragments.
Selected code fragments are lifted to LLVM-IR using McSema [Tra21], where
Polly [GGL12] is applied to perform the actual transformation.

These approaches differ from the BinOpt approach, which not only avoids the
overhead of profiling and transparently dispatching to optimized code, but also allows
for highly targeted transformations and better exploitation of available information.

6.10.4 Static and Feedback-directed Optimization
Besides approaches to exploit run-time information directly during execution, a
different strategy consists of a three stages, which work without code modifications:
in the first stage, the program is initially compiled, optionally with profiling instru-
mentation. In the second stage, this program is then executed on different, common
workloads and profiling information about actual values or control flow decisions is
gathered. In the third stage, the program is the re-compiled or otherwise optimized
based on this profiling information.

As this strategy only allows for optimizing on likely values instead of guaranteed
values, the optimized program still has to operate properly for all sets of possible
inputs. Thus, such optimizations can be considered as complimentary to run-time
specializations.

Link-time Optimization Originally, link-time optimizers operated on machine
code emitted in the prior compilation step. For example, PLTO [Sch+01] is a
static binary rewriter that optimizes compiler-produced object files during linking,
eventually including profile data from a previous compilation with instrumentation.

However, with the integration of link-time optimization into compilers [GCC05;
LA04], which relies on embedding the compiler intermediate code representation in
the object file and using these for enhanced inter-procedural optimizations during
linking, link-time optimizers operating on machine code became obsolete.
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Profile-guided Optimization Classic profile-guided optimization is widely avail-
able with standard compilers [Fre01]. Code is first compiled with instrumentation
for profiling, then executed on some workloads, and finally compiled again where
the previously acquired profiling data is employed to guide optimizations.

AutoFDO [CML16] is a system which instead profiles applications running in
production using system-level profilers to account for changing workloads. The
gathered data is then used for steering optimization when the next build is released
for production use.

BOLT [Pan+19] is a static binary optimizer which uses collected profiling data to
perform optimizations on binary level, allowing more precise use of gathered data.

Auto-tuning Frameworks Tools for automatic performance tuning are generally
faced by a variety of tuning parameters, of which they strive to find a performance-
effective combination. Therefore, typically a subset of possible combinations is
evaluated, from which a result is derived. Such systems can tune for selections of
compiler options [PE06], but also for application-specific parameters [TCH02].

The type of performed optimizations is orthogonal to the approach described here,
as such frameworks do not specialize for actual run-time data. Still, the BinOpt
approach can be used to optimize auto-tuning frameworks by avoiding expensive
compilations and propagating application-specific tuning parameters further inside
the application, as outlined previously in Section 6.3.

6.11 Summary
In this chapter, an application-guided technique for run-time binary optimization
was presented. In particular, a new library BinOpt was introduced to expose such
optimizations in a general, flexible, and future-proof manner. For optimization,
an application can designate functions and explicitly mark further information to
generate specialized versions of a function. Three different approaches and the
corresponding implementations were described, which operate at different abstrac-
tion levels and therefore have different optimization possibilities and optimization
overhead. The results show that an LLVM-based rewriting approach achieves best
performance, with an overall performance improvements of up to 67% on real-world
applications. In future, a hybrid optimization system which selects the optimization
strategy dynamically can reduce rewriting overheads and a better integration into
other languages, for example by using meta-programming capabilities of C++, can
further ease usage.
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Efficient and performant execution of program code requires a transformation to
native machine code, which is typically achieved by compiling code from program-
ming language. This separate compilation step ties compiled code to a specific
processor architecture and prevents subsequent optimization based on information
that is only available while the program is running. Dynamic binary rewriting
is a widely used technique to address these challenges and also enables in-depth
analyses of performance limitations and potential security vulnerabilities. Many of
these systems, however, lack high-quality optimizations typically found in compilers,
causing a significant slowdown.

Therefore, this thesis introduced Rellume, a performance-focused library to
bridge the gap between dynamic binary rewriting systems and the standard compiler
framework LLVM by lifting machine code to the IR of LLVM, enabling full use of the
optimization and code generation infrastructure. To reduce the performance impact
in the context of dynamic compilation, particular emphasis was put on reducing the
overhead of the lifting step itself and on optimizing the newly generated code.

Based on Rellume, the Instrew framework for LLVM-based Dynamic Binary
Translation and Dynamic Binary Instrumentation was described. The framework
implements a novel client–server approach, where the entire translation and instru-
mentation procedure is split into a separate process to increase flexibility and enable
improvements of efficiency in distributed systems. The presented instrumentation
API allows for flexible code modifications in the architecture-independent LLVM-IR.
Performance results on the SPEC CPU2017 benchmark suite [Sta21] show that
Instrew has an average overhead of only 59% over the native execution, which is
significantly lower than comparable systems like QEMU [Bel05] with 1044% and
Valgrind [NS07b] with 547%.

To enable dynamic optimizations based on additional application-specific infor-
mation, I proposed a library-based approach implemented in the BinOpt library,
where an application can explicitly designate compiled functions for specialization
on dynamic configuration data. Further, an API unifying the interfaces of different
dynamic optimizers was introduced, providing a way to target multiple rewriting
systems in a common, yet flexible manner. For this API, three different rewriting
approaches were described, which operate at different instruction levels. The perfor-
mance results show, that on optimized image processing kernels, an LLVM-based
rewriting approach yields a reduction of the overall execution time by up to 67%.

In combination, this work enables the effective use of LLVM for all applications of
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dynamic binary rewriting and demonstrated that by providing a high-performance
framework for Dynamic Binary Translation and Dynamic Binary Instrumentation
as well as a library for application-guided run-time binary optimization.

Future Work
Extending Rellume to support lifting more architectures, for example, complete
support of AArch64 or the Power architectures, would increase the portability of the
lifter and make the all depending systems described in this thesis usable for more
systems. Also, porting popular tools from other instrumentation frameworks to
Instrew would enable to fully use the potential of LLVM’s optimizations for widely
used instrumentation use cases and at the same time lead to improvements to the
Instrew tool API, making tool development easier. Moreover, Instrew could also be
applied for security purposes, for example, by combining static and dynamic binary
analysis to gain insights into possibly unwanted behavior with lower effort.

In regard to the work on dynamic binary optimization, further guidance for
application developers on optimization possibilities by tools integrated into static
compilers would allow for a more effective use of dynamic optimizations. Such tools
could point out missed optimizations due to missing knowledge during the initial
compilation. Also, integrating more semantic information about machine code in
a portable manner could further reduce the optimization overhead and has the
potential to simplify the API for applications even further.

For both, Instrew and BinOpt, further performance optimizations can be achieved
by avoiding redundant analyses and code generation. This could be realized by
a system daemon, which caches or even speculatively transforms code and can
also integrate easily into the Instrew approach with the client–server architecture.
Especially in distributed systems and particularly in High-Performance Computing,
where many systems and CPU cores execute the same program, such a daemon could
substantially reduce the overhead incurred by the dynamic code generation process.
A system-level daemon could also open the door towards transparent collection of
performance statistics and optimization without requiring any code modifications
or user interaction.

The presented techniques can further be used to improve the performance of
tools for program analysis and security based on dynamic binary instrumentation.
Further, the dynamic optimization techniques allow to reduce the overhead of
abstract high-level programming models, especially for distributed systems, and
therefore ease programming while maintaining performance at the same time. This
aspect of efficiency is not only relevant for High-Performance Computing, but may
also gain importance in the context of cloud computing.
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A Developed Software
This appendix provides a compact overview over software that was developed for
this thesis and described in previous chapters.

Rellume A library for efficiently lifting machine code to performent LLVM-IR.
• Currently supported architectures: x86-64 and RISC-V.

Support for AArch64 is work-in-progress.

• Currently supports LLVM versions 9–11.

• https://github.com/aengelke/rellume, licensed under LGPLv2.1+.

Instrew A performance-focused framework for LLVM-based Dynamic Binary Trans-
lation (DBT) and Dynamic Binary Instrumentation (DBI).

• Currently supported guest architectures: x86-64 and RISC-V.
Support for guest architectures strongly depends on Rellume.

• Currently supported host architectures: x86-64 and AArch64.

• Currently supports LLVM versions 9–11.

• https://github.com/aengelke/instrew, licensed under LGPLv2.1+.

BinOpt A library for application-guided optimization and specialization of com-
piled functions at run-time, providing a unified API for DBrew, Drob, and DBLL
(see below).

• Currently supported architecture: x86-64.

• https://github.com/aengelke/binopt, licensed under LGPLv2.1+.

BinOpt – DBLL A rewriter implementation for BinOpt based on Rellume and
LLVM.

• Currently supported architecture: x86-64.

• https://github.com/aengelke/binopt/tree/master/rewriter/dbll,
licensed under LGPLv2.1+.
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B BinOpt API Description
This appendix describes the C API of BinOpt. Section 6.6 describes the design
rationale and implications for implementations of this API.

1 const char* binopt_driver (void);

Return the name of the actual rewriter implementation, or the string
Default (no rewriting) for the default implementation. This can be used to
distinguish rewriters when using rewriter-specific configuration options.

1 typedef struct BinoptOpaqueHandle * BinoptHandle ;
2 BinoptHandle binopt_init (void);

Create a new handle into the rewriter. A handle must only be used in a single
thread, multiple handles can be used in different threads.

1 void binopt_fini ( BinoptHandle );

Close a handle and free all associated resources, including optimized functions and
specialization configurations.

1 typedef struct BinoptCfg * BinoptCfgRef ;
2 typedef void* BinoptFunc ;
3 BinoptCfgRef binopt_cfg_new ( BinoptHandle handle , BinoptFunc base_func );

Create a new configuration for a given function. Implementations may deduce type
information from DWARF or CTF information encoded in the binary, or other
sources. If such information is not available, the type must be configured using
binopt cfg type.

1 BinoptCfgRef binopt_cfg_clone ( BinoptCfgRef base_cfg );

Clone a configuration. This creates a deep clone of the previous configuration and
inherits all properties. The new configuration is entirely independent of the old
configuration.

1 void binopt_cfg_free ( BinoptCfgRef cfg);

Free a configuration.
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1 typedef enum {
2 BINOPT_TY_VOID = 0,
3 BINOPT_TY_INT8 ,
4 BINOPT_TY_INT16 ,
5 BINOPT_TY_INT32 ,
6 BINOPT_TY_INT64 ,
7 BINOPT_TY_UINT8 ,
8 BINOPT_TY_UINT16 ,
9 BINOPT_TY_UINT32 ,

10 BINOPT_TY_UINT64 ,
11 BINOPT_TY_FLOAT ,
12 BINOPT_TY_DOUBLE ,
13 BINOPT_TY_PTR ,
14 BINOPT_TY_PTR_NOALIAS ,
15 } BinoptType ;
16 void binopt_cfg_type ( BinoptCfgRef cfg , unsigned count , BinoptType ret , ...);

Set function signature with a specified number of parameters. Functions with a
variable number of arguments are not supported.

1 typedef enum {
2 /// Undefined flag value. Do not use.
3 BINOPT_F_UNDEF = 0,
4 /// Maximum stack size of optimized code.
5 BINOPT_F_STACKSZ ,
6 /// Fast -math optimizations flags.
7 BINOPT_F_FASTMATH ,
8 /// Log level verbosity . 0 = none/quiet ( default ).
9 BINOPT_F_LOGLEVEL ,

10 // Other flags can be defined by the implementation .
11 } BinoptOptFlags ;
12 void binopt_cfg_set ( BinoptCfgRef cfg , BinoptOptFlags flag , size_t val);

Set a configuration flag. Specific rewriters may offer more configuration flags,
before these can be safely used, an application has to identify the rewriter using
binopt driver. However, unsupported flags shall be ignored.

1 void binopt_cfg_set_param ( BinoptCfgRef cfg , unsigned idx , const void* val);

Set a parameter to a constant value. Note that this API takes a non-captured
pointer to the constant value. The size of the dereferenced memory is inferred from
the parameter type. The value is copied into an internal configuration storage. The
parameter index must be smaller than the number of configured parameters.

1 void binopt_cfg_set_parami ( BinoptCfgRef cfg , unsigned idx , size_t val) {
2 binopt_cfg_set_param (cfg , idx , &val);
3 }

Convenience function specializing an integer parameter to a given constant value.
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1 typedef enum {
2 /// The memory region flags depend on the page mapping -- read -only pages
3 /// are assumed to be constant , while unmapped and writable regions are
4 /// treated as dynamic .
5 BINOPT_MEM_DEFAULT = 0,
6 /// The memory region is treated as constant . Behavior if the area is
7 /// modified between configuration and the last call of the rewritten code
8 /// is undefined .
9 BINOPT_MEM_CONST ,

10 /// The memory region and all regions deduced from pointers ( recursively )
11 /// loaded from that are assumed to be constant . Some rewriters do not
12 /// support detecting nested pointers and treat such regions as regular
13 /// constant memory .
14 BINOPT_MEM_NESTED_CONST ,
15 /// The memory region is treated as dynamic .
16 BINOPT_MEM_DYNAMIC ,
17 } BinoptMemFlags ;
18 void binopt_cfg_mem ( BinoptCfgRef cfg , void* base , size_t size ,
19 BinoptMemFlags flags);

Explicitly configure a memory region. Constant memory regions must not be
modified until the last execution of a function derived from this configuration.

1 void binopt_cfg_set_paramp ( BinoptCfgRef cfg , unsigned idx , const void* ptr ,
2 size_t size , BinoptMemFlags flags) {
3 binopt_cfg_set_param (cfg , idx , &ptr);
4 binopt_cfg_mem (cfg , ptr , size , flags);
5 }

Convenience function specializing a pointer parameter to a memory region and
attach information about size and constant-ness to this region.

1 BinoptFunc binopt_spec_create ( BinoptCfgRef cfg);

Create a specialized implementation for a configuration. The ABI of the returned
function is identical to the original function. A rewriter is not required to actually
return a specialized implementation, it may also return a pointer to the original
function.

1 void binopt_spec_delete ( BinoptHandle handle , BinoptFunc spec_func );

Mark a specialized implementation for deletion. However, a rewriter does not
necessarily have to release the associated storage, as this may be impossible due to
code reuse.
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Acronyms
ABI Application Binary Interface.

AoT Ahead-of-Time.

API Application Programming Interface.

AVX Advanced Vector Extensions.

BLAS Basic Linear Algebra Subprograms.

CFG Control Flow Graph.

CPU Central Processing Unit.

CSR Compressed Sparse Row.

CTF Compact C Type Format.

CUDA Compute Unified Device Architecture.

DBI Dynamic Binary Instrumentation.

DBT Dynamic Binary Translation.

DSL Domain-specific Language.

ELF Executable and Linkable Format.

FIR Finite Impulse Response.

FPGA Field-programmable Gate Array.

FPU Floating-point Unit.

GCC GNU Compiler Collection.

GEGL Generic Graphics Library.

GOT Global Offset Table.
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Acronyms

GPU Graphics Processing Unit.

HHVM Hip-Hop Virtual Machine.

HPC High-Performance Computing.

ICFG Interprocedural Control Flow Graph.

IIR Infinite Impulse Response.

IPC Inter-process Communication.

IR Intermediate Representation.

ISA Instruction Set Architecture.

JIT Just-in-Time.

MMU Memory Management Unit.

MPI Message Passing Interface.

OpenMP Open Multi-Processing.

PLT Procedure Linkage Table.

RISC Reduced Instruction Set Computer.

SIMD Single Instruction Multiple Data.

SSA Single-Static Assignment.

SSE Streaming SIMD Extensions.

SSH Secure Shell.

TCG Tiny Code Generator.
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