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Abstract
For Model Predictive Control in safety-critical systems it is not only important
to bound the probability of constraint violation but to reduce this constraint vio-
lation probability as much as possible. Therefore, an approach is necessary that
minimizes the constraint violation probability while ensuring that the Model
Predictive Control optimization problem remains feasible even under changing
uncertainty. We propose a novel two-step Model Predictive Control scheme that
yields a solution with minimal constraint violation probability for a norm con-
straint in an environment with uncertainty. After minimal constraint violation
is guaranteed, the solution is then also optimized with respect to other control
objectives. Recursive feasibility and convergence of the method are proved. A
simulation demonstrates the effectiveness of the proposed method for a collision
avoidance example.
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1 INTRODUCTION

Autonomous systems in safety-critical applications, such as autonomous driving or human–robot interaction, depend on
controllers that are able to safely and efficiently cope with uncertainties. In these applications, autonomous vehicles and
robots must avoid collisions to ensure safety, while also optimizing other objectives, for example, energy consumption. For
this problem setup, Model Predictive Control (MPC) is a promising method due to its ability to cope with hard constraints
while optimizing an objective function.

Classic MPC methods deal well with deterministic systems and provide guarantees for stability as well as recursive
feasibility.1-3 Recursive feasibility ensures that the MPC optimization problem remains feasible at future time steps if the
optimization problem is initially feasible.

More advanced MPC algorithms are necessary in the presence of uncertainty in the system. Robust Model Predictive
Control (RMPC) methods4 provide control laws that satisfy the control objectives and constraints by accounting for the
worst-case realization of the uncertainty, assuming that the bound of the probability distribution for the uncertainty is
known a priori.5,6 A major drawback of RMPC is that it accounts for worst-case uncertainty realizations, resulting in con-
servative control laws. This can be problematic in applications with high levels of uncertainty, for example, autonomous
driving in dense traffic.
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This issue is resolved by Stochastic Model Predictive Control (SMPC) methods, which exploit knowledge of the uncer-
tainty by introducing probabilistic constraints. Instead of considering the worst possible uncertainty realization as in
RMPC, SMPC methods introduce a risk parameter that specifies how likely a constraint violation may be. This proba-
bilistic constraint is referred to as a chance constraint. In many applications, it is acceptable to allow a small probability
of constraint violation. This results in a positive effect on performance, as the control law is no longer required to account
for unlikely uncertainty realizations. Extensive summaries of diverse SMPC methods are given by Mesbah7 and specifi-
cally for linear SMPC by Farina et al.8 Stability of SMPC without a terminal constraint is addressed by Lorenzen et al.,9
while a performance analysis comparing MPC and SMPC is presented by Seron et al.10 Oldewurtel et al.11 proposed an
SMPC approach where the constraint is adapted online, based on the frequency of constraint violations.

In general, it is difficult to handle probabilistic constraints directly, requiring a transformation into a tractable deter-
ministic representation of the chance constraint. For Gaussian uncertainties, an analytic expression can be determined,12

while other uncertainties require different methods such as the particle MPC and the scenario MPC approach.13,14

However, the benefits of using chance constraints come with the disadvantage of constraint violations if unlikely
uncertainty realizations occur. This also leads to the problem of ensuring recursive feasibility, that is, guaranteeing that
the MPC optimization problem remains solvable at every step. If an uncertainty realization with low probability occurs, it
is possible that no admissible control input exists that satisfies the chance constraints. Recursive feasibility also becomes
an issue if the maximal uncertainty value is not constant, that is, the bound of the uncertainty probability density function
changes over time.

Recursive feasibility of SMPC for bounded disturbances is addressed by Korda et al.15 A further approach addressing
recursive feasibility in SMPC are stochastic tube methods16,17 using constraint tightening. Lorenzen et al.18 suggested an
approach that combines the works of Korda et al.15 and Kouvaritakis et al.16 where a tuning parameter is introduced that
allows for shifting priority between performance and an increased feasible region. Covariance steering-based SMPC19,20 is
a further SMPC approach that ensures recursive feasibility for linear systems with unbounded noise. Recursive feasibility
in SMPC for probabilistically constrained Markovian jump linear systems is addressed by Lu et al.21 Recursively feasible
SMPC with closed-loop chance constraint satisfaction for potentially unbounded disturbance distributions is presented
in Hewing et al.22

Due to its ability to efficiently cope with environments subject to uncertainty, SMPC has become increasingly pop-
ular in applications such as process control,12,23 energy control24 and power systems,25,26 finance,27 general automotive
applications,28 as well as more specifically safety-critical applications, for example, path planning13 and autonomous
driving.29-34 However, the possible constraint violation and the resulting infeasibility of the optimization problem are
limiting factors when designing an efficient SMPC algorithm in practice, especially for safety-critical applications.

A further drawback of chance constraints in SMPC appears if the optimal solution is “on the chance constraint” even
though other solutions are possible with no or minimal effects on the cost function. A solution of the SMPC optimization
problem minimizes the cost function and satisfies the required probability for the chance constraint. There may be other
solutions with low cost that have a chance constraint violation probability less than required by the risk parameter or even
zero. However, the SMPC optimization problem is considered to be solved once a solution is found with minimal cost that
satisfies the chance constraint, given the risk parameter. This means that the solution with a lower constraint violation
probability is not obtained. Additionally, choosing a suitable risk parameter is challenging, as high values increase risk,
while low values reduce efficiency.

These issues are especially relevant in safety-critical systems. One example is an autonomous vehicle that plans to
avoid collisions in an uncertain environment, for example, a car avoiding a bicycle with uncertain behavior. If the bound of
the uncertainty is not known a priori, RMPC algorithms are either not applicable or require that the vehicle does not move
until all surrounding vehicles are distanced enough. This, however, is not practical. Therefore, the collision constraint,
realized with a norm constraint, could be transformed into a chance constraint in an SMPC approach, allowing a small
collision probability. While this yields a more efficient solution than RMPC, applying SMPC may potentially result in a
collision. Further, if the chance constraint in SMPC cannot be satisfied anymore because an unlikely scenario occurred
or the uncertainty bound changed, the optimization problem becomes infeasible. Alternative control laws and recovery
strategies can then be used to regain a feasible controller. However, in such scenarios where the chance constraint cannot
be satisfied, the controller should ideally yield the safest solution possible, which is not guaranteed with standard recovery
strategies. In the example of the autonomous vehicle, the safest solution is the one with the lowest collision probability.

In this paper we propose a novel MPC strategy for linear, discrete-time systems that not only satisfies general hard
constraints over the entire prediction horizon, but additionally minimizes the probability of violating a norm constraint
in the next predicted step while also optimizing for other control objectives. This is achieved by first calculating a set that
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constrains the system inputs such that only those inputs are allowed that minimize the constraint violation probability.
This is then followed by an optimization problem, which optimizes further required objectives, such as fast reference
tracking or energy consumption. In this subsequent optimization problem, only those inputs are admissible that min-
imize the norm constraint violation probability. The proposed method can handle time-varying bounds of the system
uncertainty and considers hard constraints on the states and inputs for the entire prediction horizon, for example, due to
actuator limitations. Choosing a suitable risk parameter is not required.

We will first present the general method to minimize constraint violation probability. For the general method, it can be
difficult to determine a tightened set of admissible inputs that guarantee minimal constraint violation probability. There-
fore, we suggest an approach that allows the computation of this tightened input set for uncertainties with symmetric,
unimodal probability density functions, that is, the relative likelihood of uncertainty realizations decreases with increased
distance to the mean. This tractable approach yields a convex set of inputs, minimizing the constraint violation proba-
bility. Guarantees are provided for recursive feasibility, even for an increasing uncertainty bound, and for convergence of
the proposed MPC algorithm. In the following, we will refer to the proposed method as CVPM-MPC, that is, MPC with
constraint violation probability minimization (CVPM). A simulation for a vehicle collision avoidance scenario shows the
effectiveness of the proposed method and highlights its advantages compared to SMPC and RMPC.

In summary, the main contributions are as follows:

• Proposition of a general CVPM-MPC method to minimize the constraint violation probability for the next predicted
step while satisfying state and input constraints and optimizing further objectives

• Derivation of a specific CVPM-MPC approach for uncertainties with symmetric, unimodal probability density function
• Guarantee of recursive feasibility and convergence for the CVPM-MPC method

The proposed CVPM-MPC method can be beneficial to multiple applications, especially to safety-critical appli-
cations such as autonomous driving or human–robot interaction where the risk measure regarding collision is
norm-based.29,35,36 In these safety-critical applications, there is a clear priority on maximizing safety, that is, the
constraint violation probability of safety constraints needs to be minimal, before optimizing other objectives, for
example, energy consumption. The proposed CVPM-MPC is particularly suited for potentially changing uncertainty
bounds.

While in general it is possible to minimize the constraint violation probability not only for the first step but for multiple
steps, this significantly increases conservatism, resulting in solutions that are more similar to RMPC solutions. Minimiz-
ing the constraint violation probability of the first step iteratively yields the advantage of safer solutions than SMPC and
less conservatism compared to RMPC. We therefore focus on iteratively minimizing the constraint violation probability
for the next step, that is, the first predicted MPC step, however, a solution approach for a multistep CVPM-MPC method
is also provided.

The remainder of the paper is structured as follows. Section 2 introduces the system to be considered, the uncertainty,
and the control objective. The proposed method is introduced in Section 3, first focusing on minimizing the constraint
violation probability, then introducing the resulting MPC algorithm. Section 4 analyzes the properties of the suggested
method, guarantees on recursive feasibility and convergence, while the CVPM-MPC method is discussed in Section 5. An
example of the applied method is given in Section 6, simulating a vehicle collision avoidance scenario. Section 7 provides
conclusive remarks.

Notation: Regular letters indicate scalars, bold lowercase letters denote vectors, and bold uppercase letters are used for
matrices, for example, a, a, A, respectively. Random variables are represented by bold uppercase letters. The Euclidean
norm is denoted by ‖.‖2. The probability of an event is given by P(.) and a probability density function is described by f
if a probability density function exists. The support of a probability density function is denoted by supp (f ). Step k of a
state or parameter is represented by a subscript k, for example, xk for state x. The integers in the interval between a and
b, including the boundaries, are denoted by Ia∶b.

2 PROBLEM SETUP

In this section, we define the system class and the general MPC algorithm. Additionally, a probabilistic norm constraint
is introduced. Based on these preliminaries, the problem statement is given subsequently.
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2.1 System dynamics and control objective

Consider the controlled linear, time-invariant, discrete-time system

xk+1 = Axk + Buk, (1a)

yk = Cxk, (1b)

with time step k, states xk ∈ Rn, control input uk ∈ Rm, output yk ∈ Rq, and matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.
Furthermore, we consider an uncertain system, which, for instance, describes the trajectory of an object. The uncertain

system dynamics are given by

yr,k+1 = yr,k + ur,k + wk (2a)

= yr,k+1 + wk, (2b)

depending on the output yr,k ∈ Rq at step k, a deterministic, known input ur,k ∈ Rq, and a stochastic part wk ∈ Rq, which
is the realization of a random variable Wk. The nominal prediction of yr,k+1 is indicated by yr,k+1 = yr,k + ur,k, consisting
of the previous output yr,k and the deterministic, known input ur,k.

Assumption 1 (Uncertainty properties). The random variables Wk (wk) ∼ fWk with the probability distribution pWk and
density function fWk have zero mean and are truncated with the initially known, convex and bounded support supp

(
fWk

)
.

The support of fWk is given by

supp
(

fWk

)
=
{

wk| ‖wk‖2 ≤ wmax,k
}

(3)

where wmax,k ∈ R≥0.
The controller for (1) is designed to optimize a finite horizon objective function while accounting for input and state

constraints. In the following, the index k represents regular time steps, whereas the index j indicates prediction steps
within an MPC optimization problem.

2.2 Model predictive control

We consider an MPC algorithm to solve the control problem with a finite horizon objective function V . MPC repeat-
edly solves an optimization problem on a finite horizon. After the optimization, only the first optimized control input
is applied. Then, the horizon is shifted by one step and a new optimization is performed. Without loss of generality it is
assumed that an MPC optimization starts with x0. The finite horizon cost V (x0,U0), with the MPC horizon N, contin-
uous stage cost l

(
xj,uj
)
= x⊤

j Qxj + u⊤
j Ruj with l (0, 0) = 0, Q ∈ Rn×n, R ∈ Rm×m, Q ≽ 0, R ≻ 0, and continuous terminal

cost Vf (xN) with Vf (0) = 0, is then given by

V (x0,U0) =
N−1∑
j=0

l
(

xj,uj
)
+ Vf (xN) , (4)

with the input sequence U0 = (u0,u1, … ,uN−1).
We first formulate the MPC optimization problem with input constraints  and state constraints  , which are

independent of the uncertain system (2), resulting in

V∗ = min
U0

V (x0,U0) , (5a)

s.t. xj+1 = Axj + Buj, j ∈ I0∶N−1 (5b)
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uj ∈  , j ∈ I0∶N−1 (5c)

xj+1 ∈  , j ∈ I0∶N−1 (5d)

xN ∈ f. (5e)

The input uj is bounded by the nonempty input value space  ⊆ Rm, that is, the input constraint (5c). The convex state
constraint and terminal constraint sets are denoted by  and f, respectively.

Assumption 2 (Control invariant terminal set). For all xj ∈ f, there exists an admissible uj such that xj+1 ∈ f.

Assumption 3 (Lyapunov functions). The cost V is a Lyapunov function in  and the terminal cost Vf is a control
Lyapunov functions in f.

We denote with Uj the set of admissible inputs uj such that all constraints of (5) are satisfied for j ∈ I0∶N−1, that is,

Uj =
{

uj
|||(5c), (5d), (5e)

}
∀j ∈ I0∶N−1. (6)

2.3 MPC with a probabilistic norm constraint

In the following, the uncertain system (2) is considered.

Assumption 4 (Initially known uncertainty). The initial state yr,0 and deterministic input ur,0 are known at the
beginning of each MPC optimization.

Here, we consider an additional constraint for the MPC problem (5), which is the norm constraint

‖‖yk − yr,k
‖‖2 ≥ ck, (7)

representing a constraint on the 2-norm ‖‖yk − yr,k
‖‖2, for example, the distance between two points must not be smaller

than a minimal value ck. While (7) is a hard constraint, we will first transform (7) into a chance constraint and later, in
Section 3, we will minimize the probability that this norm constraint is violated.

Remark 1. It is also possible to consider a p-norm constraint with ‖‖yk − yr,k
‖‖p instead of the 2-norm. Similar to the 2-norm,

all p-norms are convex. Without loss of generality we will consider the 2-norm, as most applications require a 2-norm to
represent the Euclidean distance.

As yr,k is subject to uncertainty, the norm constraint (7) is difficult, potentially impossible, to fulfill, or it might lead
to overly conservative control inputs. The hard norm constraint (7) can be relaxed if substituted by the chance constraint

P
(‖‖yk − yr,k

‖‖2 < ck
) ≤ 𝛽k, (8)

with

pk ∶= P
(‖‖yk − yr,k

‖‖2 < ck
)
, (9)

where 𝛽k is a risk parameter and pk denotes the constraint violation probability for the norm constraint (7). The constraint
violation probability pk for step k is evaluated at step k − 1, that is, at the previous step. Therefore, the probability pk
depends on the input uk−1, yielding yk according to (1).

The following example will illustrate the idea of the chance constraint. We consider a controlled object with posi-
tion yk and a dynamic obstacle with position yr,k where ‖‖yk − yr,k

‖‖2 is the distance between both objects. The objects
collide if ‖‖yk − yr,k

‖‖2 < ck. An interpretation for (8) is that pk represents the probability of a collision and this constraint
violation probability is bounded by a predefined risk parameter 𝛽k. A similar example is analyzed in a simulation in
Section 6.

The bounded support of pk is given by
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supp (pk) = {uk−1|pk > 0} , (10)

resulting in pk = 0 if the maximal uncertainty value wmax,k−1 cannot cause ‖‖yk − yr,k
‖‖2 < ck.

While it is possible to consider the norm constraint (7) over multiple steps, we will only consider the norm constraint
for the next predicted step j = 1 with a horizon N ≥ 1. Applying (7) over the entire horizon N results in a conservative
control law similar to RMPC. The one-step chance constraint is given by

P
(‖‖y1 − yr,1

‖‖2 < c1
) ≤ 𝛽1, (11)

where we define

p1 (u0) ∶= P
(‖‖y1 − yr,1

‖‖2 < c1
)
. (12)

Only the general MPC problem (5) is addressed in Assumptions 2 and 3. The norm constraint (7) is not considered,
as it is specifically addressed in the method presented in Sections 3 and 4.

Remark 2. The norm constraint (7) is only considered in the first step, that is, at step j = 1, as we later minimize
the probability of constraint violation for the first step. However, if this norm constraint is required to be consid-
ered at future steps j ∈ I2∶N , this can be achieved by treating (7) as a chance constraint, similar to (11), resulting
in

P

(‖‖‖yj − yr,j
‖‖‖2

< cj

) ≤ 𝛽j, j ∈ I2∶N . (13)

This chance constraint (13) is then added to (5) and subsequently needs to be considered in (6). Assumptions 2 and 3 still
need to be fulfilled if chance constraints are included for j ∈ I2∶N within the optimization problem.

2.4 Problem statement

Instead of only bounding the chance constraint (11) by the risk parameter 𝛽1, we aim at minimizing the constraint
violation probability p1 within the MPC optimization problem. The challenge is to solve the MPC problem

V∗ = min
U0

V (x0,U0) , (14a)

s.t. xj+1 = Axj + Buj, j ∈ I0∶N−1 (14b)

yj = Cxj, j ∈ I0∶N (14c)

uj ∈ Uj, j ∈ I0∶N−1 (14d)

while it needs to be guaranteed that

u0 = arg min
u0∈Ux,0

P
(‖‖y1 − yr,1

‖‖2 < c1
)
, (15)

and that the MPC problem remains recursively feasible. Here, (14d) summarizes the constraints of the initial MPC
problem (5), according to the definition of Uj in (6), and (15) ensures that p1 is minimized.

Besides minimizing constraint violation probability, this problem formulation allows to derive a method that also
handles a further important challenge in safety-critical applications: maintaining recursive feasibility of the MPC optimal
control problem for an unexpectedly increasing uncertainty support, which is problematic to ensure when using SMPC
and RMPC.

In this paper, we propose a novel MPC approach, CVPM-MPC, that first ensures the minimal constraint violation prob-
ability p1, but then still optimizes the cost function V(x0,U0). This approach yields a control input resulting in the lowest
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possible constraint violation probability, given input and state constraints, while still optimizing further objectives. The
CVPM-MPC method guarantees recursive feasibility, also for a changing uncertainty support, and ensures convergence
of the MPC algorithm.

3 METHOD

In this section, we derive the CVPM-MPC method to minimize the constraint violation probability pj for the first pre-
dicted step j = 1 in an MPC problem. First, a general approach is presented to find a tightened admissible input set that
minimizes the first step constraint violation probability. In the following part, it is shown how this approach can be incor-
porated into MPC. A visualization of the method is displayed in Figure 1. As determining the tightened input set within
the CVPM-MPC method is difficult in general, we then provide an alternative, computable approach, assuming an uncer-
tainty with a symmetric, unimodal probability density function (PDF). A solution approach for a multistep CVPM-MPC
is described in Appendix B.

3.1 General method to minimize constraint violation probability for the one-step
problem

When minimizing p1 over u0 within the MPC algorithm, three different cases need to be considered. In each case a
set Ucvpm,0 is determined, which consists of inputs u0 that minimize the constraint violation probability. Ideally, even
considering the bounded uncertainty, satisfaction of the constraint may be guaranteed in the next step, for all choices of
u0 ∈ U0, which will be referred to as case 1. However, for stochastic systems we potentially have the situation that case 1
cannot be guaranteed. Here, two cases need to be distinguished. First, given the uncertainty, there is no choice for u0 that
guarantees constraint satisfaction (case 2). Second, some choices for u0 guarantee constraint satisfaction, whereas other
choices do not lead to such a guarantee (case 3). Depending on the case, Ucvpm,0 is determined differently as described in
the following.

Case 1 (Guaranteed constraint satisfaction)
The probability of violating the norm constraint is zero, independent of the choice for u0, that is,

p1 (u0) = 0 ∀u0 ∈ U0. (16)

Therefore, every u0 ∈ U0 is a valid input, resulting in

Ucvpm,0 = U0. (17)

F I G U R E 1 Visualization of a CVPM-MPC optimization: Given an input set and state constraints, as well as the current system state
and uncertain system state, an updated input set is determined. This updated input set ensures a minimal norm constraint violation
probability for the next step. Then, an MPC optimization problem is solved, optimizing for further objectives [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Case 2 (Impossible constraint satisfaction guarantee)
There is no choice for u0 such that constraint satisfaction can be guaranteed in the presence of uncertainty, that
is,

p1 (u0) > 0 ∀u0 ∈ U0. (18)

As it is impossible to guarantee p1 = 0, the aim is to minimize p1. Selecting

Ucvpm,0 =

{
u0
|||u0 = arg min

u0∈U0

p1 (u0)

}
(19)

yields the set Ucvpm,0, which only consists of inputs u0 that minimize p1.

Case 3 (Possible Constraint Satisfaction Guarantee)
If only some inputs u0 guarantee satisfaction of the norm constraint (7), that is,

∃ u0 ∈ U0 s.t. p1 (u0) = 0, (20)

then the set

Ucvpm,0 = {u0| (p1 (u0) = 0) ∧ (u0 ∈ U0)} , (21)

consists of those inputs that yield constraint satisfaction.
In all three cases Ucvpm,0 needs to be found, leading to the following strong assumption.

Assumption 5. The set Ucvpm,0 can be determined for all cases 1–3.

While it is possible to approximate Ucvpm,0 by sampling, finding an analytic solution for Ucvpm,0 highly depends on the
probability distribution. However, if Ucvpm,0 can be determined, the CVPM-MPC method guarantees minimal constraint
violation probability for p1.

Theorem 1. If Assumption 5 holds, minimization of the constraint violation probability p1 is guaranteed by selecting Ucvpm,0
according to cases 1–3.

Proof. The proof is derived in Appendix A1. ▪

In dynamic environments, the worst-case uncertainty wmax,k may change over time, which influences the probabil-
ity of constraint violations. If the support changes, the CVPM-MPC approach still minimizes this constraint violation
probability.

Corollary 1. If the uncertainty support supp
(

fWk

)
changes from step k to k + 1, the CVPM-MPC problem solved at step

k + 1 guarantees that the constraint violation probability pk+2 is minimized.

Proof. The proof is derived in Appendix A2. ▪

The MPC problem (14) is now adapted given the set Ucvpm,0 to guarantee minimal constraint violation probability of
the norm constraint while still optimizing for further objectives.

3.2 MPC with minimal first step constraint violation probability

Applying the previously determined Ucvpm,0 yields the CVPM-MPC problem
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V∗ = min
U0

V (x0,U0) , (22a)

s.t. xj+1 = Axj + Buj, j ∈ I0∶N−1 (22b)

yj = Cxj, j ∈ I0∶N (22c)

U0 ∈ U∗
0. (22d)

The set U∗
0 defines the admissible inputs, which yield minimal constraint violation probability combined with keeping

the inputs and states within the input and state constraint sets. The set U∗
0 is given by

U
∗
0 =
{

U0
||| (u0 ∈ Ucvpm,0

)
∧
(

uj ∈ Ux,j, j ∈ I1∶N−1
)}

, (23)

where Ux,j is defined in (6) and Ucvpm,0 is obtained according to Section 3.1.
The complete CVPM-MPC problem (22) allows to optimize a cost function and satisfy state and input constraints,

while minimization of the constraint violation probability p1 is ensured.

3.3 Minimal constraint violation probability for the one-step problem with symmetric
unimodal PDF

The proposed CVMP-MPC method in Section 3.1 only guarantees minimal constraint violation probability if
Assumption 5 is fulfilled. Therefore, it must be possible to always determine Ucvpm,0, which is a strong assumption. In
the following, we provide an adapted approach of the CVMP-MPC method that guarantees minimal constraint violation
probability if the PDF of the uncertainty is symmetric and unimodal.

In the following, we first give a definition for symmetric, unimodal probability density functions PDFs. Further, we
introduce a substitute for the constraint violation probability pk. Then, the three cases from Section 3.1 are adapted in
order to minimize p1 for the PDF addressed in the following. For each case a convex set of admissible inputs Ucvpm,0 is
determined.

3.3.1 Symmetric unimodal PDF

We first define the class of symmetric, unimodal probability distributions.

Definition 1 (Symmetric unimodal distribution). A probability distribution is symmetric and unimodal if its PDF has
a single mode, that is, a single global maximum, which coincides with its mean 𝝁 and

f (𝝁 + 𝜹1) = f (𝝁 + 𝜹2) ∀ ‖𝜹1‖2 = ‖𝜹2‖2 . (24)

With Definition 1 it is ensured that the PDF has its peak at mean 𝝁 and that the PDF is strictly radially decreasing.
As the probability distribution is symmetric, all realizations with similar distance to 𝝁 have the same relative likelihood.
Since there is only one global maximum of the PDF at 𝝁, realizations with increasing distance to 𝝁 have a lower relative
likelihood.

The constraint violation probability pk is a probabilistic expression and cannot directly be used in the optimization
problem. The following assumption will allow to find a deterministic substitute for pk.

Assumption 6 (Uncertainty with symmetric unimodal PDF). The PDF fWk for Wk in (2) is symmetric and unimodal
with mean 𝝁 = 0.

An example for an admissible probability distribution pWk with symmetric, unimodal PDF is a truncated isotropic
bivariate normal distribution  (0,Σ) with covariance matrix

Σ = diag
(
𝜎2

1 , 𝜎
2
2
)
= 𝜎2I, 𝜎 = 𝜎1 = 𝜎2, (25)
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with variance 𝜎2 and identity matrix I. The support in each direction is required to be equal, which can be achieved by
over-approximating. Distributions with 𝜎1 ≠ 𝜎2 can be over-approximated by choosing

Σ = 𝜎maxI, 𝜎max = max (𝜎1, 𝜎2) . (26)

We now address the relation between pk and fWk considering Assumption 6. The following lemma shows that the
constraint violation probability pk can be decreased by choosing uk−1 such that the distance is increased between the next
system output yk and the next known, nominal random system output yr,k.

Lemma 1. If Assumption 6 holds, the probability pk is decreasing for an increasing norm ‖‖yk − yr,k
‖‖2.

Proof. The proof is derived in Appendix A3. ▪

This lemma shows that the probability of violating the norm constraint (7) decreases if the difference between yk and
yr,k increases. Lemma 1 now allows to find a substitute function for pk.

3.3.2 Substitute probability function

The probability pj cannot be used directly to obtain the set Ucvpm,0. Therefore, a substitution is required for pj. Based on
Lemma 1, the probability pj decreases for an increasing norm ||yj − yr,j||2. This property is used to choose a substitution
for the constraint violation probability pj. Here, the substitute function is selected to be

h
(||yj − yr,j||2) = ||yj − yr,j||22. (27)

While pj is decreasing with the norm ||yj − yr,j||2, the function h
(||yj − yr,j||2) is increasing with ||yj − yr,j||2. Therefore,

increasing the value of function h
(||yj − yr,j||2) yields a reduced probability pj, which is exploited in the following to

minimize constraint violation probability.

Remark 3. While h
(||yj − yr,j||2) = ||yj − yr,j||22 is adequate for most safety-critical applications, other scalar functions

h′ (||yj − yr,j||2) are possible, as long as they are twice differentiable and strictly monotonically increasing.

Considering the constraint violation probability for the first predicted step j = 1, this probability p1 is minimized for a
maximal h

(‖‖y1 − yr,1
‖‖2

)
. However, since fWk is truncated and supp (pk) is bounded, there potentially are multiple admis-

sible inputs that result in an equal constraint violation probability. The aim is now to find the convex set Ucvpm,0 including
all inputs ucvpm,0 ∈ Ucvpm,0 that result in a minimal p1. As ur,0 is deterministic and known according to Assumption 4,
h
(‖‖y1 − yr,1

‖‖2

)
is a deterministic expression that can be evaluated.

The set Ucvpm,0 can then be found by comparing the worst-case uncertainty wmax,0 with the minimum and maxi-
mum possible values of h

(‖‖y1 − yr,1
‖‖2

)
, that is, hmin,1 and hmax,1, respectively. The maximal value hmax,1 is determined

by

hmax,1 ∶= max
u0∈U0

h
(‖‖y1 − yr,1

‖‖2

)
= h
(

max
u0∈U0

(‖‖y1 − yr,1
‖‖2

))
(28)

corresponding to the largest distance between y1 and yr,1. Analogously, hmin,1 can be found by

hmin,1 ∶= min
u0∈U0

h
(‖‖y1 − yr,1

‖‖2

)
= h
(

min
u0∈U0

(‖‖y1 − yr,1
‖‖2

))
. (29)

The result for hmin,1 can be obtained by determining the minimum value of ‖‖y1 − yr,1
‖‖2, as the objective function

h
(‖‖y1 − yr,1

‖‖2

)
and U0 are convex. The following lemma provides a strategy to find hmax,1.

Lemma 2. Let the nonempty convex polytope  ⊂ Rg, g ∈ N, be bounded by a finite set of hyperplanes, such that  has a
finite number of edge vertices with a convex function z ∶  → R. Then, a global maximum
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zmax = max
v∈ z (v) (30)

is obtained by searching for the maximum value of z on the boundary 𝜕 of its domain  .

Proof. The proof is derived in Appendix A4. ▪

3.3.3 Determination of the updated admissible input set

Similar to Section 3.1 we regard three cases. The resulting set Ucvpm,0, depending on the three cases, is then used in
the CVPM-MPC problem (22) to guarantee minimal constraint violation probability of the norm constraint. In order to
distinguish between the cases, we will consider the relation

‖‖y1 − yr,1
‖‖2 ≥ c1 + wmax,0 ⇒ ‖‖y1 − yr,1

‖‖2 ≥ c1, (31)

which follows using a reverse triangle inequality, given the dynamics of the uncertain system (2). Here, c1 + wmax,0 rep-
resents the necessary distance between y1 and yr,1, consisting of the required minimal distance c1 at step j = 1 and the
maximal random system step wmax,0 at j = 0, such that ‖‖y1 − yr,1

‖‖2 ≥ c1 for all ‖w0‖2 ≤ wmax,0.

Case 1 (Guaranteed constraint satisfaction)
For any u0 ∈ U0 constraint satisfaction is guaranteed, that is, p1 = 0 for

hmin,1 ≥ h
(

c1 + wmax,0
)
. (32)

The initial state configuration of the controlled and stochastic system is such that the minimum value possible for
h
(‖‖y1 − yr,1

‖‖2

)
, that is, hmin,1, still yields a larger value than inserting c1 combined with the worst-case wmax,0 into h,

which moves yr,1 closest to y1. This results in a guaranteed constraint satisfaction p1 = 0. Therefore, every u0 ∈ U0 is an
admissible input, that is,

Ucvpm,0 = U0. (33)

Case 2 (Impossible constraint satisfaction guarantee)
There is no input u0 ∈ U0 that can guarantee p1 = 0, that is,

hmax,1 < h
(

c1 + wmax,0
)
. (34)

The largest value for h
(‖‖y1 − yr,1

‖‖2

)
that can be achieved with u0 ∈ U0 is hmax,1, corresponding to the lowest possi-

ble p1. However, to guarantee constraint satisfaction of (7), hmax,1 is required to be larger or at least equal to h(c1 +
wmax,0), with the worst-case absolute value wmax,0 for the realization of w0. Constraint satisfaction cannot be guaranteed
here.

The solution corresponding to hmax,1 is denoted by ucvpm,0. Minimal p1 is achieved with

ucvpm,0 = arg max
u0∈U0

h
(‖‖y1 − yr,1

‖‖2

)
, (35)

as h
(‖‖y1 − yr,1

‖‖2

)
increases and p1 decreases with an increasing norm.

Therefore,

Ucvpm,0 =
{

ucvpm,0
}
, (36)

is selected since the input choice ucvpm,0 guarantees the lowest constraint violation probability when p1 > 0.
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Remark 4. If (35) yields more than one solution, Ucvpm,0 in (36) may also consist of more than one element, that is, all
solutions of (35). However, there can be restrictions if convexity of Ucvpm,0 is required.

Case 3 (Possible constraint satisfaction guarantee)
The final case yields p1 = 0 for some u0 and applies if

hmax,1 ≥ h
(

c1 + wmax,0
)
> hmin,1. (37)

While some u0 ∈ U0 cannot guarantee zero constraint violation probability, it is possible to find u0 such that

h
(‖‖y1 − yr,1

‖‖2

) ≥ h
(

c1 + wmax,0
)
. (38)

Therefore, for some u0 constraint satisfaction can be guaranteed in the presence of uncertainty. Hence, the task is to find
a set

Ucvpm,0 =
{

u0
||| (h (‖‖y1 − yr,1

‖‖2

) ≥ h
(

c1 + wmax,0
))

∧ (u0 ∈ U0)
}
, (39)

which consists of all inputs u0 ∈ U0 that yield constraint satisfaction and therefore p1 = 0.
The first part of the set in (39),

Umode3,0 =
{

u0
|||h (‖‖y1 − yr,1

‖‖2

) ≥ h
(

c1 + wmax,0
)}

, (40)

describes a super-level set, including only inputs u0 that lead to p1 = 0. This super-level set is generally non-convex.
In order to receive a convex set Ucvpm,0 for the optimization problem, an approximation is performed, based on the
boundary

𝜕Umode3,0 =
{

u0
||| h
(‖‖y1 − yr,1

‖‖2

)
= h
(

c1 + wmax,0
)}

. (41)

Proposition 1. An approximated, convex solution of (39) in case 3 is obtained by

Ucvpm,0 = Ûcvpm,0 =
{

u0|Û0
(

u∗
0
)
∩ U0

}
, (42)

with

Û0
(

u∗
0
)
=
{

u0
|||(∇u∗

0
h
(‖‖‖y1
(

u∗
0
)
− yr,1

‖‖‖2

))⊤ (
u0 − u∗

0
) ≥ 0
}

, (43)

the gradient operator ∇u∗
0
, and a point u∗

0 ∈ 𝜕Umode3,0 ∩ U0, which is an admissible input.

Remark 5. While it was previously not explicitly stated that y1 depends on u0, the dependence of y1 on u∗
0 is stated for

clarity in Proposition 1.

Proof. The proof is derived in Appendix A5. ▪

An approach to finding u∗
0 is solving the system

h
(‖‖‖y1
(

u∗
0
)
− yr,1

‖‖‖2

)
= h
(

c1 + wmax,0
)

(44)

with u∗
0 ∈ U0. The choice of u∗

0 is not unique. It is possible that Ûcvpm,0 is empty due to approximating even though case
3 applies.

Remark 6. If Ûcvpm,0 = ∅ in case 3, then u0 can be determined by following the procedure of case 2.
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Following the approach in Remark 6 still provides a solution that minimizes p1. However, in case 2 only a single option
Ucvpm,0 = ucvpm,0 is given, while case 3 has the advantage of providing a set Ucvpm,0 with multiple possible inputs u0. Case 3
therefore offers the possibility to then optimize to account for further objectives, given the set of admissible inputs Ucvpm,0.

4 PROPERTIES

In the following, two important properties are analyzed. First, recursive feasibility of the proposed method is shown. This
is followed by a proof of convergence.

4.1 Recursive feasibility

Recursive feasibility guarantees that if the MPC optimization problem is solvable at step k, it is also solvable at step k + 1.
This needs to hold as MPC requires the solution of an optimal control problem at every time step.

Definition 2. (Recursive feasibility) Recursive feasibility of an MPC algorithm is guaranteed if

U
N
k ≠ ∅ ⇒ U

N
k+1 ≠ ∅ (45)

where U
N
k is the set of admissible inputs Uk to fulfill the constraint (22d) from step k to step k + N.

In the following, recursive feasibility will be established for the proposed method.

Theorem 2. The CVPM-MPC algorithm in (22) is recursively feasible with the general CVPM approach of Section 3.1.

The proof is divided into two parts. First, it is shown that Ucvpm,0 ≠ ∅ at any step, which is different to standard MPC
methods. Then, recursive feasibility of the optimization problem (22) is shown.

Proof. The proof is derived in Appendix A6. ▪

The proof for the general CVPM-MPC method can be extended for the CVPM-MPC approach for uncertainties with
symmetric, unimodal PDFs in Section 3.3.

Corollary 2. If Assumption 6 holds, the CVPM-MPC algorithm in (22) is recursively feasible with the CVPM approach of
Section 3.3.

Proof. The proof is derived in Appendix A7. ▪

Theorem 2 and Corollary 2 show that if the MPC problem (5) is designed to be recursively feasible, the CVPM-MPC
algorithm (22), based on (5), remains recursively feasible. According to Corollary 1, minimizing pk is independent of the
uncertainty support, therefore, recursive feasibility is guaranteed if the uncertainty support changes.

4.2 Convergence

In the following, convergence of the proposed method is shown. In this section, the MPC optimization starts at xk. While it
is possible to track a reference varying from the origin, here, without loss of generality, we will only consider the regulation
of the origin.

The uncertain output yr,k can potentially lie close to the origin or even directly in the origin. In order to minimize pk,
an area around yr,k is then inadmissible for the system output yk. This can lead to the case where the origin is inadmissible
for the controlled system, that is, 0 ∈ cv,k, where

cv,k =
{

xk
|||pk (uk−1) > 0, xk = Axk−1 + Buk−1

}
, (46)
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denotes the bounded and open set of states xk with pk > 0, that is, constraint violation is possible for all xk ∈ cv,k.
An inadmissible origin, of course, is an issue when investigating the stability of the proposed algorithm. However,
we will provide a convergence guarantee under the following two assumptions concerning the stochastic nature
of yr,k.

Assumption 7 (Admissible origin). (a) There exists a k0 < ∞ such that for all k ≥ k0 it holds that

0 ∉ cv,k ∀ k ≥ k0. (47)

(b) There exists a ky0 < ∞ and a finite sequence of inputs uk such that yk = 0 for all k ≥ ky0 ≥ k0.
(c) There exists a kcase1,3 < ∞ and for all k ≥ kcase1,3 ≥ k0

∃ uk−1 s.t. pk (uk−1) = 0, (48)

and Ucvpm,k ≠ ∅.

Assumption 7 (a) ensures that even if yr,k is occupying the space around the origin for some time, eventually yr,k will
be distanced enough that the origin becomes admissible for the controlled system, as the boundedness of the stochastic
system state yields a closed admissible space for the controlled system. Assumption 7 (b) ensures that there is a possibility
for the controlled system to reach the origin.

With Assumption 7 (c) it is guaranteed that either case 1 or case 3 is applicable if Assumption 7 (a) holds. This ensures
that pk = 0 at some time after the origin becomes admissible for the controlled system.

Lemma 3. If Assumption 7 holds, there exists a closed, control invariant set ̃k =  ⧵ cv,k for k ≥ kcase1,3, which contains
the origin.

Proof. The proof is derived in Appendix A8. ▪

The set ̃ consists of the states that ensure constraint satisfaction of  and yield pk = 0 for k ≥ kcase1,3.

Assumption 8 (Terminal constraint set). The terminal constraint set f is a subset of ̃k, that is, f ⊂ ̃k.

In the following, convergence of the proposed method is addressed.

Theorem 3. If Assumptions 3 and 7 hold, the proposed CVPM-MPC method in Section 3.1 satisfies that xk converges to 0
for k → ∞.

Proof. The proof is derived in Appendix A9. ▪

In Theorem 3 it is only shown that the system converges to the origin once the random system fulfills
Assumption 7. However, every time the stochastic output allows the system to reach the origin, the system will
move toward the origin. The system state xk remains at 0 until yr,k moves in such a way that the origin has
nonzero constraint violation probability. As the main goal is to ensure minimum constraint violation probability of
(8), yk will move away from the origin to minimize pk if yr,k behaves in such a way that it causes pk > 0 in the
origin.

Corollary 3. If Assumptions 7 holds, the proposed CVPM-MPC method in Section 3.3 for uncertainties with symmetric,
unimodal PDFs satisfies that xk ∈  for all k and that xk converges to 0 for k → ∞.

Proof. The proof is derived in Appendix A10. ▪

Therefore, if the origin is admissible, the controlled system will converge. However, satisfying the norm constraint
has priority over converging to the origin. Compared to standard MPC methods, the origin is not necessarily within the
constraint set  . Therefore, the standard MPC stability approach cannot be applied, but convergence is proved as in
Theorem 3.
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5 DISCUSSION OF THE PROPOSED CVPM-MPC METHOD

One could argue now that the proposed algorithm is a combination of RMPC in the first step and, potentially, SMPC
in the following steps. While there are some similarities to this combination, we solve a different problem. The most
important difference is that the constraint violation probability is minimized in the first predicted step and the initial
uncertainty probability is not required to be zero. RMPC approaches require constraint satisfaction initially and ensure
that constraints are satisfied throughout the prediction horizon.

Our proposed CVPM-MPC method is more closely related to SMPC than RMPC, as constraint violations are pos-
sible. Nevertheless, the suggested method can be interpreted as lying between SMPC and RMPC. The results are
more conservative than SMPC, as a zero percent constraint violation probability is found if possible, that is, pk =
0 in (8), but less conservative than RMPC. An advantage over both, SMPC and RMPC, is the ability to minimize
the constraint violation probability and to successfully cope with sudden uncertainty support changes, as recur-
sive feasibility can still be guaranteed. The uncertainty support can change due to unexpected events or modeling
inaccuracies. Presuming and considering this potential change in uncertainty support is reasonable if the system
is subject to epistemic uncertainty. Epistemic uncertainty refers to uncertainty that could theoretically be known
but, in practice, is not known precisely, for example due to approximations in modelling, insufficient data, or
challenging behavior prediction. Accounting for epistemic uncertainty is an investigated topic in machine learning
literature.37,38

In SMPC with chance constraints, recursive feasibility is a major issue. For example, an unexpected realization of
the uncertainty at step k, where the uncertainty realization likelihood lies below the chance constraint risk parameter
at step k, leads to a state at step k + 1 with no solution to the optimization problem if the required risk parameter of the
chance constraint cannot be met. An option to regain feasibility is to solve an alternative optimization problem or apply
an input that was previously defined. However, these alternatives do not necessarily lead to a solution that yields the
lowest constraint violation probability. Furthermore, it is possible to soften chance constraints by using slack variables
in the cost function. However, this approach is not acceptable in applications where the chance constraint represents a
safety constraint. If a slack variable is introduced, it competes with other objectives within the cost function and does
not ensure constraint satisfaction. The proposed CVPM-MPC method always finds the optimal input that results in the
lowest constraint violation probability while remaining recursively feasible.

RMPC guarantees recursive feasibility but at the cost of reduced efficiency, as worst-case scenarios need to be
taken into account. Additionally, if the support of the uncertainty can suddenly change over time, for example, the
future motion of an object becomes more uncertain due to a changing environment, RMPC can become too conser-
vative to be applicable. A robust solution can only be obtained by always considering the largest possible uncertainty
support. The proposed method deals with this by adjusting to changing uncertainty supports at every step, as will
be illustrated in Section 6. A suddenly or unexpectedly increasing uncertainty support, for example, due to an inac-
curate prediction model, may lead to increased constraint violation probability for a limited time after the support
changes. Before the support changes, the optimized inputs of the proposed algorithm lead to a less conservative result
than RMPC while ensuring that the constraint violation probability is kept at a minimal level immediately after the
change.

In the proposed method, we only consider minimizing the constraint violation for the first predicted step. It is possible
to consider multiple steps by increasing the uncertainty support for each considered step as described in Appendix B,
however, this leads to a more conservative solution. For every additional predicted step in which the constraint violation
probability is minimized, the maximal possible uncertainty value must be considered. This yields a highly restrictive set of
admissible inputs, which minimize the constraint violation probability over multiple predicted steps. As it is assumed that
the support of the uncertainty PDF can change over time, considering multiple steps with the initially known support does
not guarantee lower constraint violation probability for multiple steps. If the support increases, the previously obtained
multi-step CVPM-MPC solution becomes invalid. Therefore, given an updated uncertainty support at each step, it is a
reasonable approach to only minimize the constraint violation probability for the first predicted step, resulting in the safest
solution at the current step. It is possible to consider the norm constraint for collision avoidance in multiple predicted
steps by either formulating a chance constraint, as mentioned in Remark 2, or a robust constraint. However, this can
result in infeasibility of the optimization problem, particularly if the uncertainty support varies over time. Despite only
considering the norm constraint for the next predicted step, it is still beneficial to use an MPC horizon N > 1. Other
objectives are optimized over the entire horizon, given that the first input is included in the set Ucvpm,0, which potentially
consists of multiple admissible inputs that all minimize the constraint violation for the next step.
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Applying the CVPM-MPC approach possibly results in oscillating behavior. As long as case 1 is valid, the
proposed method does not affect the optimization, as Ucvpm,0 = U0. Once case 2 is active, a solution is found
that minimizes the probability of constraint violation, ignoring the reference and potentially moving from the
reference, as only one input is admissible. When case 1 is valid again, the optimized the reference is tracked
again until, possibly, case 2 becomes active again. This can be improved by considering the norm constraint as
a chance constraint for multiple predicted steps, however, recursive feasibility is not guaranteed, as mentioned
before.

The main focus of the suggested method is to minimize the constraint violation probability. It is clear that stability
cannot always be guaranteed, as the origin can be excluded from the admissible state set. We consider a narrow road
where a bicycle is located between the controlled vehicle and the vehicle reference point. If the road is too narrow for the
vehicle to pass, it will remain behind the bicycle and never reach the reference point, that is, Assumption 7 (b) is violated.
However, Assumption 7 implies that the origin is not inadmissible at all times, and once the origin is admissible, the
controlled system converges.

It is also important to note that minimizing the constraint violation probability has priority over other optimization
objectives. Especially in safety-critical applications, this can be of major interest, for example, an autonomous car must
ensure that the collision probability is always minimal, prior to reducing energy or increasing passenger comfort. If SMPC
were to be applied in such scenarios, the question would arise of how to choose the SMPC risk parameter 𝛽k. A large
𝛽k yields efficient behavior but might be unacceptable due to an insufficient safety level. Finding a reduced value for 𝛽k
in SMPC is challenging, as even very small risk parameters allow for constraint violations, while 𝛽k = 0 does not yield a
chance constraint and the advantages of SMPC are lost. In the proposed CVPM-MPC method, the task of appropriately
choosing a risk parameter is not required.

Additionally, in safety-critical systems a further aspect reduces the usability of chance constraints in SMPC. A solution
is valid as long as the probability of violating the safety constraint satisfies the risk parameter. Assuming there exists
a solution with lower, or even zero percent, constraint violation probability, the optimization solution will still be “on
the chance constraint” if this results in lower objective costs. The allowed constraint violation then depends on the risk
parameter. We consider again the example in the introduction of a car overtaking a bicycle. Using a chance constraint
with 𝛽k > 0, the car will pass the bicycle but will choose a trajectory around the bicycle that allows a collision with a low
probability due to 𝛽k > 0. Given a finite bicycle uncertainty support, passing the bicycle with slightly more distance yields
zero collision probability with only a small increase of cost. However, in practice, this slightly increased cost is acceptable
if thereby safety is guaranteed.

For the approach in Section 3.3 the PDF fWk does not need to be known exactly as long as it fulfills Assumption 6. If fWk

is symmetric and unimodal, it is ensured that increasing ‖‖yk − yr,k
‖‖2 results in a lower constraint violation probability pk.

The proposed method is especially useful in collision avoidance applications, which are either in two- or
three-dimensional space. While applying the proposed method in 2D is straightforward, 3D applications can be more
challenging to solve, especially finding u∗

0 in (42). For collision avoidance scenarios, possible uncertainty in (1) can be
considered by increased uncertainty in (2).

The structure of CVPM-MPC considers two main aims: minimizing constraint violation probability and optimizing
additional objectives, such as energy consumption. Multi-objective MPC39,40 is an MPC scheme to trade-off multiple
opposing objectives within one optimal control problem, where each individual objective is assigned a weighting fac-
tor. In our case, we do not aim at a trade-off, but one of the two objectives is regarded first. Only if optimizing the
first objective, that is, minimizing constraint violation probability, allows multiple possible inputs, further objectives
are taken into account. In multi-objective MPC this translates to assigning a weight of zero to all additional objectives.
While this could be an approach to minimize constraint violation probability, other objectives would not be optimized.
Therefore, compared to multi-objective MPC, the proposed CVPM-MPC method provides a solution for safety-critical
systems where constraint violation probability needs to be minimized and further objectives should be optimized if
possible.

Applying CVPM-MPC to safety-critical applications, specifically collision avoidance for automated vehicles or
robots, only requires defining a simple norm constraint for the obstacle to be avoided. For example, in the case
of vehicles, the norm constraint represents the distance to other surrounding vehicles, whereas for robots the
norm constraint represents the distance between the end effector and an object or human. Especially for robots
it needs to be considered that, depending on the robot, other robot links must also avoid collisions. The sim-
ulation described in the following section may serve as an example of how to use CVPM-MPC in automated
driving.
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6 SIMULATION RESULTS

In the following, a simulation is presented and discussed to further explain the general idea and its application. This
collision avoidance scenario with two vehicles illustrates an application where the proposed method is beneficial. The
simulations were run in MATLAB on a standard desktop computer using MPT341 and YALMIP.42 Solving a single
optimization of the MPC algorithm takes 54 ms on average. All quantities are given in SI units.

6.1 Collision avoidance simulation

A collision occurs if the distance between two objects becomes too small. This distance can be represented by a norm
constraint. The priority is then enforcing the norm constraint, or if not feasible, minimizing the probability of violating
the norm constraint.

We consider the example mentioned in Sections 1 and 5 where a controlled vehicle avoids collision with a bicycle,
referred to as obstacle in the following. The controlled vehicle is approximated by a circle with radius rc = 2.0 and the
obstacle is approximated by a circle with radius rr = 0.8 and is subject to stochastic motion in a bounded area, for example,
a road. The circles are chosen to fully cover the individual shapes of the controlled vehicle and obstacle. The scenario
setup is shown in Figure 2. The continuous system dynamics of the controlled vehicle in x and y direction are given by

ẋ =

[
ẋ
ẏ

]
=

[
vx

vy

]
=

[
u1

u2

]
, (49)

where x = [x, y]⊤ and [vx, vy]⊤ are the position and velocity in a 2D environment, respectively. The inputs are given by
[u1,u2]⊤. Using zero-order hold with sampling time Δt = 0.1 yields the discretized system

xk+1 =

[
1 0
0 1

]
xk +

[
eΔt − 1 0

0 eΔt − 1

]
uk, (50a)

yk =

[
1 0
0 1

]
xk (50b)

which is similar to (1). We will consider the input constraints

 =

{
u =

[
vx

vy

] |1 ≤ vx ≤ 9, |vy| ≤ 3.5

}
. (51)

In x-direction there exists a minimum velocity vx,min = 1 to ensure that the controlled vehicle is always moving for-
ward, which also limits the potential oscillating behavior due to the CVPM-MPC approach. We also consider the state
constraints

 =

{
x =

[
x
y

] |ylb ≤ y ≤ yub

}
, (52)

where ylb = 2.0 and yub = 8.0 are the boundaries of the road minus the radius rc.
The assumed behavior of the obstacle with random behavior is given by

yr,k = yr,0 +
k−1∑
i=0

(
ur,i + wi

)
(53)

depending on the initial output yr,0, the input ur,k, and the realization wk of the random variable Wk ∼ fWk and yr =
[xr, yr]⊤. We assume fWk to be symmetric, unimodal, and truncated, resulting in the support of fWk
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F I G U R E 2 Vehicle avoidance scenario. Approximated shapes of the
controlled vehicle (car) and obstacle (bicycle) are indicated by black lines within
the objects [Colour figure can be viewed at wileyonlinelibrary.com]

supp
(

fWk

)
=
{

wk| ‖wk‖2 ≤ wmax,k
}
, (54)

where wmax,k is the radius of the support boundary of Wk. The physical interpretation of wmax,k is that it is the maximum
uncertain distance the obstacle can move in one step, additionally to the deterministic distance ur,k. At step k, the con-
trolled vehicle knows the obstacle position yr,k and deterministic input ur,k, but wk is unknown. The deterministic input
represents the forward motion of the dynamic obstacle, the random variable denotes the uncertainty within the forward
motion. Without the deterministic input, the dynamic obstacle would only move around its initial position yr,0 due to
the zero-mean random variable. The combination of a deterministic input with the random variable with zero mean is
similar to a random variable with nonzero mean, where the controlled vehicle knows the mean. In general, the exact
PDF is not required to be known. The proposed CVPM-MPC approach is applicable as long as the actual PDF adheres to
Assumption 6 and the uncertainty bounds are known.

As the main aim of this simulation is to minimize the collision probability, an expression for this probability is neces-
sary in order to analyze the simulation results. The collision probability at step k between the two vehicles will be denoted
by pcol,k and it has finite support as fWk is truncated. In this example, a norm constraint is used to avoid a collision, that
is, the norm constraint violation probability is minimized. Therefore, the probability of a collision pcol,k is defined analo-
gous to pk in Section 2. The derivation and expression for the collision probability pcol,k is omitted here due to readability.
Details can be found in Appendix C.

The collision probability pcol,k depends on the Euclidean distance

dk = ‖‖yk − yr,k
‖‖2 , (55)

between the controlled vehicle and obstacle. Similar to (7), a norm constraint can be formulated where ck = dsafe,k may
be interpreted as the minimal distance between the controlled vehicle and the obstacle such that a collision is avoided.
The support of pcol,k results from adding the radius of the controlled vehicle and the obstacle to supp

(
fWk

)
that is,

supp
(

pcol,k
)
=
{

yk
|||dk ≤ dsafe,k

}
, (56)

where dsafe,k = wmax,k−1 + rr + rc is the safety distance required to avoid a collision between the controlled vehicle and
the obstacle, taking into account the radius of both vehicles, rr and rc, and the maximal obstacle step wmax,k−1. Similar to
Lemma 1 for pk, pcol,k is decreasing for increasing dk.

As proposed in Section 3.3.2, we choose h(𝜉) = 𝜉2, which is strictly monotonically increasing with 𝜉. This
yields

h
(‖‖yk − yr,k

‖‖2

)
= ‖‖yk − yr,k

‖‖2
2, (57)

which can be considered a substitution for the probability function pcol,k.
The controlled vehicle uses the CVPM-MPC algorithm (22) with N = 10 and
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Q =

[
1 0
0 1

]
, R =

[
0.01 0

0 0.01

]
. (58)

The x-position references for the controlled vehicle are obtained by xref,k = x0 + vx,refkΔt, where vx,ref is the reference
velocity in x-direction.

In the following, two scenarios will be analyzed. In the first scenario, the controlled vehicle is located close to its state
boundary, that is, the road boundary, showing that the norm constraint is minimized in the presence of state constraints.
In the second scenario, the obstacle uncertainty support will suddenly increase. The orientation𝜙 of the controlled vehicle
in Figures 3 and 5 is approximated by

𝜙 = arctan u2

u1
. (59)

6.1.1 Active state constraint

In the first simulation, it is shown that the proposed method is applicable if state constraints are active. The reference
velocity and y-position for the controlled vehicle are set to vx,ref = 5.0 and yref = 8.0, respectively, with initial position
y0 = [0, 8]⊤. The obstacle motion consists of a deterministic part ur,k = [0.5, 0]⊤ combined with random behavior subject
to a Gaussian uncertainty with wmax,k = 0.15, with mean y-position yr = 4.0 and a mean x-velocity vr,x = 5.0. Therefore,
the x-position reference of the controlled vehicle is the same as the mean x-position of the obstacle in every step. Here, a
sine motion is applied to the y-position of the obstacle with constant x-velocity, which is one possible outcome given the
Gaussian uncertainty. The sine motion ensures that the maximal uncertainty values appear in the simulation, while the
constant obstacle x-velocity keeps the controlled vehicle and the obstacle close together.

The vehicle configurations at different time steps are shown in Figure 3 and the results of the simulation are dis-
played in Figure 4. Initially, the controlled vehicle and obstacle have the same x-position. Starting at t = 3.9 s, the
controlled vehicle needs to slow down to maintain a safe distance to the obstacle. As the maximal obstacle uncer-
tainty is known by the controlled vehicle, the collision probability is kept at zero. After t = 4.5 s, the obstacle moves
away from the controlled vehicle, resulting in increased input u1 in order to get closer to the x-position reference. At
t = 5.0 s, the controlled vehicle catches up with its x-position reference, which is then followed by constant inputs.
Between t = 9.0 s and t = 11.0 s, similar behavior can be observed. It can be seen that the CVPM-MPC ensures pk = 0
with active state constraints. As mentioned in Section 4, the motion of the obstacle can result in an inadmissible
origin, i.e., Assumption 7 (c) is violated and the controlled vehicle cannot keep its reference velocity. However, as
shown in Theorem 3, once the obstacle moves away, the velocity of the controlled vehicle again reaches the reference
velocity.

This first simulation scenario is also used for a Monte Carlo simulation with 2000 simulation runs to evaluate the
effectiveness of constraint violation probability minimization. Instead of applying the deterministic sine motion to the
obstacle y-position and keeping the x-velocity constant, a random step is applied to the obstacle in addition to the deter-
ministic part ur,k = [0.5, 0]⊤. This random step is based on a truncated bivariate normal distribution with covariance
matrix 𝚺 = diag(𝜎2, 𝜎2), 𝜎 = 0.05, mean 0, and wmax,k = 0.15. The covariance matrix was chosen in such a way that trun-
cating the normal distribution does not have a large effect, that is, for the nontruncated normal distribution the probability
of ‖wk‖2 > wmax,k is less than 1%. The results underline the effectiveness of the CVPM-MPC method. In 98.8% of the
simulations the constraint violation probability remained at pcol,k = 0. The maximal constraint violation observed was
pcol,k = 0.21%. No collisions occurred in any of the 2000 simulation runs.

6.1.2 Change of uncertainty support

In the second simulation, we show that the proposed method is capable of dealing with varying uncertainty support of
the obstacle. The controlled vehicle aims to obtain the reference velocity vx,ref = 4.0 while maintaining yref = 4.0 with the
initial position y0 = [0, 4]⊤. The obstacle moves with a constant input ur,k = [0.25, 0]⊤ at yr = 4.0. We consider here that
the obstacle uncertainty support suddenly changes, for example due to a changing environment. At first, the expected
uncertainty support is wmax,k = 0.15 and at t = 2.0 s it changes to wmax,k = 0.9, while returning to wmax,k = 0.15 at t = 4.0 s.
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F I G U R E 3 Vehicle configurations for the
simulation with active state constraints. The controlled
vehicle boundary is shown as a solid blue line and the
obstacle boundary is a solid orange line. The dashed
orange circle represents the possible obstacle location at
the next time step [Colour figure can be viewed at
wileyonlinelibrary.com]

In the simulation, the obstacle does not move randomly, which helps to better understand the action of the controlled
vehicle once the uncertainty support changes. At each time step, the controlled vehicle knows the current uncertainty
support of the obstacle.

The vehicle configurations at different time steps are shown in Figure 5 and the results of the simulation are displayed
in Figure 6. As the controlled vehicle has a higher velocity it will eventually pass the obstacle, therefore, the distance
Δx = x − xr turns positive. At t = 0.8 s, the controlled vehicle gets close enough to the obstacle that the controlled vehi-
cle moves away from yref to maintain vx,ref and ensures that the distance dk = ‖‖yk − yr,k

‖‖2 ≥ dsafe,k. As wmax,k increases
at t = 2.0 s, so does the required distance between the controlled vehicle and obstacle, causing the controlled vehicle
to move further away from yref. Due to input limitations, the controlled vehicle cannot move fast enough. This results

http://wileyonlinelibrary.com


BRÜDIGAM et al. 21

F I G U R E 4 Simulation results for the simulation
with active state constraints. The controlled vehicle is
close to the state constraint. The gray area denotes
actions by the controlled vehicle to avoid a collision. The
collision probability remains 0 [Colour figure can be
viewed at wileyonlinelibrary.com]

in dk < dsafe,k, that is, pcol,k > 0 at t = 2.0 s, that is, there is a probability of collision for the next time step. However, dk
is increased to a maximal level, given uk ∈ Uk, resulting in a minimal constraint violation probability pcol,k. Once the
distance satisfies dk ≥ dsafe,k at t = 2.2 s, pcol,k becomes zero, and the controlled vehicle moves along the obstacle bound-
ary for the next step, as seen for t = 2.3 s. At t = 4.0 s, wmax,k decreases, and the controlled vehicle converges to yref at
t = 4.8 s.

In order to validate the probability of constraint violation, the simulation was run 2000 times with an arbitrary random
obstacle step at t = 2.0 s, which is the first step with the increased uncertainty bound wmax,k = 0.9. The vehicles collided
in 144 simulations, yielding a collision probability of 0.072 compared to the calculated collision probability 0.0723, as
described in Appendix C.
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F I G U R E 5 Vehicle configurations for the
simulation with changing uncertainty support. The
controlled vehicle and obstacle boundaries are shown as
solid blue and orange lines, respectively. The dashed
orange circle represents the possible obstacle location at
the next time step [Colour figure can be viewed at
wileyonlinelibrary.com]

6.2 Comparison to RMPC and SMPC

If RMPC and SMPC are applied in the previous simulations, certain problems arise, mainly due to infeasibility of the opti-
mization problem. This could be solved by providing rigorous alternative optimization problems, predefined alternative
inputs, or highly conservative worst-case considerations. However, there is no ideal RMPC or SMPC approach to deal
with the scenario in the simulation. In the following, we will compare the simulation results of the proposed method to
RMPC and SMPC qualitatively and quantitatively.

We will first consider the behavior with RMPC applied to the controlled vehicle. In the first simulation, RMPC
delivers safe results similar to the CVPM-MPC method, while remaining behind the obstacle in order to account
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F I G U R E 6 Simulation results for the simulation
with changing uncertainty support. The gray area
represents a higher uncertainty support. Once the
uncertainty support changes, the collision probability
temporarily increases to the minimal level possible
[Colour figure can be viewed at wileyonlinelibrary.com]

for the worst-case obstacle behavior. In the second simulation, two cases can be distinguished. If the initially con-
sidered uncertainty support is wmax,k = 0.15, the behavior is similar to the proposed method until the uncertainty
support changes. As it is impossible to find a state with zero collision probability after the uncertainty support
is altered, the RMPC optimization problem becomes infeasible. If the considered uncertainty support is initially
chosen such that the larger support after t = 2.0 s is covered, RMPC yields a safe solution, however, it is pass-
ing the obstacle at a larger distance than initially required. In many applications it is also difficult to choose the
worst-case uncertainty support a priori, as higher supports might occur later, resulting in even more conservative RMPC
solutions.

It is now assumed that the controlled vehicle is controlled using SMPC with a chance constraint with risk param-
eter 𝛽k > 0 for collision avoidance. In the second simulation, before the uncertainty support changes, the controlled
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T A B L E 1 Performance comparison

SMPC Small support Large support
Method risk parameter 𝜷k Changing support wmax,k = 0.15 wmax,k = 0.90

CVPM-MPC — 1.43e2 — —

RMPC — 5.93e2 1.63e2 1.01e4

SMPC 0.8 1.03e2 0.87e2 1.12e2

SMPC 0.9 1.16e2 0.89e2 1.32e2

SMPC 0.95 1.31e2 0.91e2 1.51e2

SMPC 0.99 1.61e2 0.95e2 1.97e2

Abbreviations: MPC, Model Predictive Control; RMPC, Robust Model Predictive Control; SMPC, Stochastic Model Predictive
Control.

vehicle passes the obstacle a little closer than with the proposed CVPM-MPC method, as the chance constraint allows
for small constraint violations. However, whereas the proposed CVPM-MPC method ensures safety while only pass-
ing the vehicle with little more distance, the SMPC approach would pass the obstacle “on the chance constraint,”
that is, as close as 𝛽k allows, sacrificing guaranteed safety for small cost improvements. In other words, leaving
slightly more space between the controlled vehicle and the obstacle would result in pk = 0 with only little higher
cost.

When the uncertainty support changes, the SMPC solution is as close to the obstacle as 𝛽k allowed in the previous
step. The chance constraint cannot be met anymore because the uncertainty support increased, resulting in a constraint
violation probability larger than allowed by 𝛽k. The SMPC optimization problem then becomes infeasible, requiring an
alternative optimization problem to be defined beforehand. In the first simulation, a similar situation occurs. If the chance
constraint allows the controlled vehicle to be in a position that yields pcol,k > 𝛽k due to the unconsidered worst-case
obstacle motion, this leads to infeasibility of the optimization problem.

We evaluate the performance of CVPM-MPC by comparing the overall cost to implementations of RMPC43 and
SMPC29,44 for the simulation scenario of Section 6.1.2. Performance is compared based on the cost function of the opti-
mal control problem, where the applied inputs and resulting states of the entire simulation are evaluated according
to

Jsim =
Nsim−1∑

k=0
x⊤

k+1Qxk+1 + u⊤

k Ruk, (60)

with Nsim simulation steps. Four different risk parameters are analyzed for SMPC. The results are shown in Table 1.
We first consider the changing uncertainty support as in Section 6.1.2. The CVPM-MPC method performs significantly

better than RMPC, while SMPC has slightly lower cost, except for a conservative choice 𝛽k = 0.99, where the SMPC cost
is larger.

However, both the RMPC and SMPC optimal control problem become infeasible for some steps when the uncer-
tainty support changes at t = 2.0 s. Therefore, we analyze how RMPC and SMPC perform if only a small support of
wmax,k = 0.15 or only a large support of wmax,k = 0.9 is assumed and applied. For SMPC, a nontruncated Gaussian distri-
bution is necessary to compute an analytic solution. The distribution is selected to have zero mean and covariance matrix
𝚺 = diag

(
𝜎2, 𝜎2) with 𝜎0.15 = 0.05 and 𝜎0.9 = 0.3. The covariance values are chosen such that 𝜎0.15 and 𝜎0.9 approximate

a distribution with support wmax,k = 0.15 or wmax,k = 0.90, respectively. For both support cases, the CVPM-MPC perfor-
mance is always better compared to the RMPC performance, with a significant advantage if wmax,k = 0.90 is assumed
for RMPC. If a small support is assumed, SMPC is less conservative. If SMPC considers a large support, SMPC is only
less conservative for lower risk parameters. Nevertheless, assuming wmax,k = 0.90 for RMPC and SMPC is only a partly
satisfactory solution. In addition to increased cost, feasibility becomes an issue in the case that the uncertainty support
increases again.

The comparison shows that the proposed method offers certain advantages over RMPC and SMPC, espe-
cially guaranteeing recursive feasibility of the optimization problem in the presence of a changing uncertainty
support.
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7 CONCLUSION

The proposed CVPM-MPC algorithm yields a minimal violation probability for a norm constraint for the next step while
also optimizing further objectives and satisfying state and input constraints. Recursive feasibility and, under certain
assumptions, convergence to the origin is guaranteed. While the suggested method is inspired by RMPC and SMPC, it
provides feasible and efficient solutions in scenarios where RMPC and SMPC encounter difficulties or are not applicable.

As norm constraints are especially useful in collision avoidance applications, the advantages of the presented
CVPM-MPC method can be exploited in applications such as autonomous vehicles or robots, especially in shared environ-
ments with humans. A brief example is introduced where a controlled vehicle is overtaking a bicycle while minimizing
the collision probability. Here, we focus on minimizing the next step constraint violation for a norm constraint. However,
depending on the application, a multistep CVPM-MPC could be beneficial. Especially for collision avoidance, it is also of
interest not only to focus on the collision probability but to consider the severity of collision if a collision is inevitable.

CVPM-MPC is especially suited for collision avoidance applications. Besides the previously mentioned applications,
CVPM-MPC may also be useful in other areas where norm constraints are considered, such as portfolio selection in
finance.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial and scientific support by the BMW Group within the CAR@TUM
project. We thank Johannes Teutsch for assisting setting up the comparison simulations.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Tim Brüdigam https://orcid.org/0000-0001-8913-8003

REFERENCES
1. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM. Constrained model predictive control: stability and optimality. Automatica.

2000;36(6):789-814. https://doi.org/10.1016/S0005-1098(99)00214-9
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APPENDIX A. PROOFS

The following appendix contains the proofs for this work.

A.1 Proof of Theorem 1

Proof. The proof follows straightforward from the definition of the three cases. All possibilities are covered regarding the
guarantee of constraint satisfaction, that is, guaranteed constraint satisfaction (case 1), impossible constraint satisfaction
guarantee (case 2), and the case where constraint satisfaction is only guaranteed for some but not all u0 ∈ U0 (case 3).
If p1 = 0 is possible, that is, case 1 or 3, (17) and (21) guarantee that Ucvpm,0 consists only of inputs u0 ∈ U0 that yield
p1 = 0. If no u0 ∈ U0 guarantees p1 = 0, minimal constraint violation is guaranteed by only allowing inputs u0 ∈ U0 that
minimize p1 according to (19). ▪

A.2 Proof of Corollary 1

Proof. The proof follows directly from the problem definition. First, the CVPM-MPC approach ensures that the constraint
violation probability is minimized for each step, which allows pk+2 > pk+1 if the uncertainty support increases. Second,
minimizing pk+2is independent of minimizing pk+1. ▪

A.3 Proof of Lemma 1

Proof. According to Assumption 6, fWk is symmetric and unimodal, and therefore fWk is decreasing with increasing ‖wk‖2,
i.e., the larger ‖wk‖2, the lower its PDF value. The uncertainty realization with the highest relative likelihood is the mode
of fWk with wk = 0, yielding the most likely random output yr,k+1 = yr,k+1. It follows that

fWk (w̃k) < fWk (wk) for ‖w̃k‖2 > ‖wk‖2 , (A1)

where ỹr,k+1 = yr,k+1 + w̃k is less likely than yr,k+1 = yr,k+1 + wk and

‖‖yr,k+1 − ỹr,k+1
‖‖2 > ‖‖yr,k+1 − yr,k+1

‖‖2 , (A2)

due to ‖w̃k‖2 > ‖wk‖2.
It follows that the larger ‖‖yk+1 − yr,k+1

‖‖2, the higher the PDF value of a large ‖‖yk+1 − yr,k+1
‖‖2 due to (A1). Therefore,

the larger ‖‖yk+1 − yr,k+1
‖‖2, the higher the PDF value of ‖‖yk+1 − yr,k+1

‖‖2 ≥ ck. This results in

‖‖ỹk+1 − yr,k+1
‖‖2 > ‖‖yk+1 − yr,k+1

‖‖2 ⇔ pk+1
(

ũk, yr,k
) ≤ pk+1

(
uk, yr,k

)
(A3)

with ỹk+1 ≠ yk+1 and ỹk+1 = C (Axk + Bũk) according to (1).
The same holds for ‖‖yk − yr,k

‖‖2 instead of ‖‖yk+1 − yr,k+1
‖‖2, showing that pk is decreasing with increasing‖‖yk − yr,k

‖‖2. ▪

A.4 Proof of Lemma 2

Proof. This proof is based on Bauer’s maximum principle.45 We consider any two points v1, v2 ∈ 𝜕 on the boundary of
 . Any point on the line between v1, v2 can be described by b = 𝜆v1 + (1 − 𝜆)v2, using the definition of convexity. Due

http://dx.doi.org/10.1016/j.ifacol.2020.12.515
https://doi.org/10.1002/rnc.5636
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to the convexity of z, it holds that z (b) ≤ max {z (v1) , z (v2)}. Any point on the line between v1, v2 can be reached by a
convex combination. Since v1, v2 can be chosen arbitrarily, every point b in the interior of  can be reached. Therefore, a
global maximum zmax is found on the boundary 𝜕 . ▪

A.5 Proof of Proposition 1

Proof. The set Umode3,0 is nonempty and nonconvex with the boundary point u∗
0 ∈ 𝜕Umode3,0 of Umode3,0. There exists a sup-

porting hyperplane to Umode3,0 at u∗
0.46 This supporting hyperplane is used to approximate the nonconvex set Umode3,0. The

gradient ∇u∗
0

(
h
(‖‖‖y1
(

u∗
0
)
− yr,1

‖‖‖2

))
is a vector orthogonal to the hyperplane on the boundary 𝜕Umode3,0 at u∗

0, pointing

away from the convex set Umode3,0. The scalar product of ∇u∗
0

(
h
(‖‖‖y1
(

u∗
0
)
− yr,1

‖‖‖2

))
and any point u0 on this hyperplane

is zero, while the scalar product of ∇u∗
0

(
h
(‖‖‖y1
(

u∗
0
)
− yr,1

‖‖‖2

))
and any point in the half plane not containing Umode3,0 is

positive. Therefore, (43) approximates Umode3,0. As the intersection of two convex sets yields a convex set,46 the resulting
approximated set Ûcvpm,0 is convex as well. ▪

A.6 Proof of Theorem 2

Proof. As shown in the proof of Theorem 1, the three cases (16), (18), and (20) cover all possibilities with individual,
nonempty sets Ucvpm,0. This yields that there always exists a u0 ∈ Ucvpm,0.

As u0 ∈ U0, it holds that conditions (5c), (5d),(5e) can be fulfilled with uj ∈ Uj for j ∈ I1∶N−1 according to (6) and due
to Assumption 2. No input u0 is possible which would cause Uj = ∅ for j ∈ I1∶N−1. Therefore, feasible solutions uj exist
and Ux,j is a nonempty set for j ∈ I1∶N−1.

The first condition in (23) considers the first input u0, while the second condition covers the following inputs uj with
j ∈ I1∶N−1. Therefore, the two conditions are independent and U∗

0 ≠ ∅ for any MPC optimization. The MPC algorithm (22)
is guaranteed recursively feasible. ▪

A.7 Proof of Corollary 2

Proof. The proof follows straightforward from Theorem 2, showing that Ucvpm,k ≠ ∅ for all three cases (32), (34), and (37).
According to Lemma 2, hmin,1 and hmax,1 can always be found. Given any value for h

(
c1 + wmax,0

)
exactly one of the three

cases is applicable, yielding Ucvpm,0 ≠ ∅. For cases 1 and 2 no approximation is necessary. If Ûcvpm,0 = ∅ for case 3, the
approach of case 2 is used according to Remark 6, i.e., Ucvpm,0 =

{
ucvpm,0

}
. Therefore, Ucvpm,k ≠ ∅ for all three cases. ▪

A.8 Proof of Lemma 3

Proof. As cases 1 or 3 are applied, the space blocked by cv,k around yr,k with nonzero constraint violation probability can
be regarded as a hard constraint. This yields xk ∉ cv,k for all k ≥ kcase1,3. As  is closed and cv,k is open, the resulting
set ̃k is closed. As xk ∈ ̃k ⊆  , there exists a uk such that xk+1 ∈  according to Theorem 2. Assumption 7 (c) ensures
that Ucvpm,k is not empty, therefore xk+1 ∈ ̃k and ̃k is control invariant. ▪

A.9 Proof of Theorem 3

Proof. First, the MPC algorithm in (5) will be considered without the norm constraint (7). As V (x0,U0) is a Lyapunov
function in  , given Assumption 3, the MPC algorithm of (22) without (7) is asymptotically stable, following the MPC
stability proof of Rawlings et al.43

Now, the CVPM-MPC method is considered. According to Theorem 2, for all k, xk ∈  there exists a feasible Uk such
that xk+1 remains in  . Lemma 3 ensures that xk∗ ∈ ̃k for k∗ ≥ kcase1,3, where ̃k replaces  to ensure constraint satis-
faction of the norm constraint. The set ̃k is closed, control invariant, contains the origin according to Assumption 7, and
f ⊆ ̃k, given Assumption 8. Therefore, the system (1), controlled by the CVPM-MPC algorithm in (22), is asymptotically
stable and converges to 0 for k > k∗ and k → ∞, similar to the MPC algorithm in (5). ▪

A.10 Proof of Corollary 3

Proof. The proof is similar to the proof of Theorem 3. The set cv,k in (46) can be expressed as
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cv,k =
{

xk
|||h (‖‖yk − yr,k

‖‖2

)
< h
(

ck + wmax,k−1
)
, yk = Cxk

}
. (A4)

Equation (47) is satisfied by

h
(‖‖0 − yr,k

‖‖) ≥ h
(

ck + wmax,k−1
)

∀ k ≥ k0, (A5)

while (48) transforms into

∃ uk−1 s.t. h
(‖‖yk − yr,k

‖‖2

) ≥ h
(

ck + wmax,k−1
)
, (A6)

for the CVPM-MPC method in Section 3.3.
Similar to Lemma 3, given the open and constant set cv,k and Assumption 7, ̃k is closed, constant, control invari-

ant, and contains the origin. With the MPC algorithm (5) and k > k∗, k → ∞ the system (1) is asymptotically stable and
therefore converges to 0.

▪

APPENDIX B. MINIMAL CONSTRAINT VIOLATION PROBABILITY FOR THE MULTI-STEP
PROBLEM

The method presented in Section 3 minimizes the constraint violation probability for the next step. In the following, a
possible extension of the one-step CVPM-MPC method is shown. Considering multiple steps l > 1 yields a method closer
related to RMPC, as it provides advantages with respect to robustness but conservatism is increased.

Considering the stochastic process (Wk)k∈I0∶j−1
, its realization, a sequence (wk)k∈I0∶j−1

with j ∈ N≥0, and the initially
known output yr,0 yields

yr,k = yr,0 +
k−1∑
i=0

wi. (B1)

While in the one-step method pj only needs to be minimized for the next step j = 1, for the l-step approach pj needs to
minimized for 1 ≤ j ≤ l.

Similar to Section 3, we first address the general method and then provide a solution for fWk satisfying Assumption 6.

B.1 General method to minimize constraint violation probability for the multistep problem
It is necessary to find the set Ucvpm,0∶l−1, which represents the set of admissible input sequences U0∶l−1 = [u0, … ,ul−1]⊤
that minimize pj for 1 ≤ j ≤ l. In the following, three cases are again considered. The constraint violation pj+1 for step
j + 1 depends on the previous output yj, the input uj, and the uncertain output yr,j.

Case 1 (Guaranteed constraint satisfaction)
Constraint satisfaction is guaranteed for all steps j ∈ I0∶l−1, that is,

pj+1
(

uj
)
= 0 ∀uj ∈ Uj, j ∈ I0∶l−1, (B2)

resulting in

Ucvpm,0∶l−1 =
{

uj
|||uj ∈ Uj, j ∈ I0∶l−1

}
. (B3)

Case 2 (Impossible constraint satisfaction guarantee)
For a j with 0 ≤ j ≤ l − 1, potentially at multiple steps j, constraint satisfaction cannot be guaranteed by any input uj ∈ Uj,
that is, pj+1 = 0. This can be expressed by

∃ j ∈ I0∶l−1 s.t. pj+1
(

uj
)
> 0 ∀ uj ∈ Uj. (B4)

The set of admissible inputs that minimize the constraint violation probability is then given by
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Ucvpm,0∶l−1 =

{
uj
|||uj = arg min

uj∈Uj

pj+1
(

uj
)
, j ∈ I0∶l−1

}
. (B5)

Case 3 (Possible constraint satisfaction guarantee)
At each step 0 ≤ j ≤ l − 1 it is possible, but not guaranteed, that the norm constraint is satisfied for j + 1, that is,

∃ uj ∈ Uj s.t. pj+1
(

uj
)
= 0 ∀ j ∈ I0∶l−1. (B6)

This yields

Ucvpm,0∶l−1 =
{

uj
||| (pj+1

(
uj
)
= 0
)
∧
(

uj ∈ Uj
)
, j ∈ I0∶l−1

}
.

B.2 Minimal constraint violation probability for the multistep problem with symmetric unimodal PDF
After defining the general case, we now address the multi-step CVPM-MPC method for a symmetric, unimodal PDF. We
make the following assumptions.

Assumption 9 (Constant minimal norm value). The minimal norm value cj = c is constant.

Assumption 10 (Known deterministic input). The deterministic input ur,j is known for j ∈ I0∶l−1.

A simple approach to find Ucvpm,0∶l−1 is to maximize ‖‖yl − yr,l
‖‖2 with

yr,l = yr,0 +
l−1∑
i=0

ur,i, (B7)

as this automatically results in a maximization of ‖‖‖yj − yr,j
‖‖‖2

for j ∈ I0∶l−1 because pj is decreasing with increas-

ing ‖‖‖yj − yr,j
‖‖‖2

. Therefore, if pl is minimized, pj is also minimized for j ∈ I0∶l−1. Similar to (28) and (29), we
define

hmax,l = h
(

max
uj∈Uj, j∈I0∶l−1

(‖‖yl − yr,l
‖‖2

))
(B8)

hmin,l = h
(

min
uj∈Uj, j∈I0∶l−1

(‖‖yl − yr,l
‖‖2

))
. (B9)

We now regard the three possible cases and determine Ucvpm,0∶l−1.

Case 1 (Constraint satisfaction guarantee)
For any U0∶l−1 it follows that pj+1 = 0 for j ∈ I0∶l−1, that is,

hmin,l ≥ h

(
c +

l−1∑
i=0

wmax,i

)
. (B10)

In comparison to (32), wi needs to be considered for i ∈ I0∶l−1. This yields

Ucvpm,0∶l−1 =
{

U0∶l−1
|||uj ∈ Uj, j ∈ I0∶l−1

}
. (B11)

Case 2 (Impossible constraint satisfaction guarantee)
It is not possible to guarantee pj+1 = 0 for j ∈ I0∶l−1 as
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hmax,l < h

(
c +

l−1∑
i=0

wmax,i

)
(B12)

Therefore, Ucvpm,0∶l−1 consists of the input sequence U0∶l−1 that minimizes pl, resulting in

Ucvpm,0∶l−1 =

{
U0∶l−1

|||U0∶l−1 = arg max
uj∈Uj, j∈I0∶l−1

h
(‖‖yl − yr,l

‖‖2

)}
. (B13)

Case 3 (Possible constraint satisfaction guarantee)
There are possible input sequences U0∶l−1 such that pl = 0. Similar to case 3 for the one-step CVPM-MPC, we again need
to find a set Ucvpm,0∶l−1 that only allows input sequences U0∶l−1 resulting in constraint satisfaction of (7) for j ∈ I1∶l. This
is achieved by choosing

Ucvpm,0∶l−1 =

{
U0∶l−1

||| h
(‖‖yl − yr,l

‖‖2

) ≥ h

(
c +

l−1∑
i=0

wmax,i

)
∩ uj ∈ Uj, j ∈ I0∶l−1

}
, (B14)

where the approximation Ûcvpm,0∶l−1 can be found analogously to Proposition 1.
The l-step CVPM-MPC algorithm can then be formulated as in (22) with

U
∗
0 =
{

U0
|||U0∶l−1 ∈ Ucvpm,0∶l−1 ∧ uj ∈ Ux,j, j ∈ Il∶N−1

}
. (B15)

APPENDIX C. COLLISION PROBABILITY FUNCTION

Here, the collision probability pcol,k is described in detail, which is only needed for the evaluation of the simulation but
not the proposed method. The PDF fWk is chosen to be

fWk (rk) =
⎧⎪⎨⎪⎩

1
𝜎z
√

2𝜋
e−

r2
k

2𝜎2 if 0 ≤ rk ≤ wmax,k,

0 otherwise
(C1)

where rk is used instead of wk and

supp
(

fWk

)
=
{

rk
|||0 ≤ rk ≤ wmax,k

}
, (C2)

with variance 𝜎 = 1 and

z = Φ
(

wmax,k
)
− Φ (0) (C3)

Φ (r) = 0.5

(
1 + erf

(
r√
2

))
(C4)

such that

∫
supp

(
fWk

) fWk (rk) drk = 1. (C5)
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As the main aim of this simulation is to minimize the constraint violation probability, that is, the collision probability,
an expression for this probability is necessary in order to analyze the simulation results. The controlled vehicle and the
obstacle collide if their bodies overlap, that is, rcomb > ‖‖yk − yr,k

‖‖2 with the combined radius rcomb = rc + rr. A collision at
step k is inevitable if ‖‖yk − yr,k

‖‖2 + wmax,k−1 < rcomb, i.e., even for the best-case wmax,k−1 the objects will collide at step k.
For ‖‖yk − yr,k

‖‖2 − wmax,k−1 ≥ rcomb it follows that pcol,k = 0.
The collision probability is calculated according to the following procedure. We consider a circle where the radius is

the required distance rcomb and a circle with radius rk. The intersection of both circles can be interpreted as the collision
probability, by integrating the intersection area of both circles, weighted with fWk (rk). This is illustrated in Figure C1.
In case that there is no intersection area, then pcol,k = 0. If an intersection exists, there are two intersection points. The
intersection area is therefore bounded on one side by the arc with radius rcomb and on the other side by the arc of the
boundary of the uncertainty. As the intersection area is symmetric, it is sufficient to derive the calculation for one half,
that is, the area between the line connecting yr,k and yk and the intersection point pint,1 as depicted by the striped area in
Figure C1. This yields an angle 𝜃int,1 ∈ [0; 0.5𝜋] between the two lines connecting yr,k and yk as well as yr,k and pint,1. The
distance rint (𝜃) between yr,k and the controlled vehicle boundary between the two intersection points follows from the
law of cosines

r2
comb = rint(𝜃)2 + d2

k − 2dkrint (𝜃) cos(𝜃), (C6)

where dk = ‖‖yk − yr,k
‖‖2 and 𝜃 ∈

[
0; 𝜃int,1

]
with

𝜃int,1 = sin−1
(

a
2wmax,k−1

)
, (C7)

a =

√
4d2

kw2
max,k−1 −

(
d2

k − r2
comb + w2

max,k−1

)2

dk
.

(C8)

This yields

rint (𝜃) = 0.5
(

2dk cos(𝜃) −
√

(2dk cos(𝜃))2 − 4
(

d2
k − r2

comb

))
. (C9)

The intersection area on both sides of the line between yk and yr,k, weighted with the PDF fWk,pol , yields the collision
probability

pcol,k = 2∫
𝜃int,1

0

1
2𝜋∫

wmax,k−1

rint(𝜃)
fWk (r) drd𝜃, (C10)

for dk + wmax,k−1 ≥ rcomb, depending on the angle 𝜃int,1.

F I G U R E C1 Collision probability calculation. The blue circle
combines the radius of the controlled vehicle and the obstacle, the
dashed orange circle represents the area potentially covered by the
uncertainty. The striped area represents one half of the intersection
between the two circles [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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This yields the overall collision probability

pcol,k =
⎧⎪⎨⎪⎩

1 if dk + wmax,k−1 < rcomb,

0 if dk − wmax,k−1 ≥ rcomb,

(C31) otherwise.

(C11)

For reasons of readability, the dependence on k for pint, 𝜃int,1, rint, and a is omitted.


