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Abstract: Rationale: Pancreatic ductal adenocarcinoma (PDAC) remains a tumor entity of
exceptionally poor prognosis, and several biomarkers are under current investigation for the prediction
of patient prognosis. Many studies focus on promoting newly developed imaging biomarkers without
a rigorous comparison to other established parameters. To assess the true value and leverage the
potential of all efforts in this field, a multi-parametric evaluation of the available biomarkers for
PDAC survival prediction is warranted. Here we present a multiparametric analysis to assess the
predictive value of established parameters and the added contribution of newly developed imaging
features such as biomarkers for overall PDAC patient survival. Methods: 103 patients with resectable
PDAC were retrospectively enrolled. Clinical and histopathological data (age, sex, chemotherapy
regimens, tumor size, lymph node status, grading and resection status), morpho-molecular and genetic
data (tumor morphology, molecular subtype, tp53, kras, smad4 and p16 genetics), image-derived
features and the combination of all parameters were tested for their prognostic strength based
on the concordance index (CI) of multivariate Cox proportional hazards survival modelling after
unsupervised machine learning preprocessing. Results: The average CIs of the out-of-sample data
were: 0.63 for the clinical and histopathological features, 0.53 for the morpho-molecular and genetic
features, 0.65 for the imaging features and 0.65 for the combined model including all parameters.
Conclusions: Imaging-derived features represent an independent survival predictor in PDAC and
enable the multiparametric, machine learning-assisted modelling of postoperative overall survival
with a high performance compared to clinical and morpho-molecular/genetic parameters. We propose
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that future studies systematically include imaging-derived features to benchmark their additive value
when evaluating biomarker-based model performance.

Keywords: pancreatic ductal adenocarcinoma; survival analysis; multiparametric modelling; genetics;
molecular phenotyping; image-derived features

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC), despite its relative rarity, remains among the deadliest
tumor entities in the developed world. For instance, PDAC is the 4th leading cause of cancer-related
death while representing only 3% of newly diagnosed cancer cases in the United States [1]. A large
body of research into therapeutic targets, and newly introduced therapy regimens, have hitherto
not been able to improve overall PDAC patient prognosis beyond a five-year survival of about
9% [2]. Even in the setting of tumor resection and adjuvant chemotherapy [3], patients often develop
therapy-resistant tumor recurrence or metachronous metastatic disease. The key driver of such
therapy escape phenomena is likely to be tumor heterogeneity, both on the genetic level, with the
four driver genes kras, smad4, tp53 and p16 [4,5] having been shown to lead to distinct survival
outcomes [6,7]. On the molecular/histo-morphologic level, quasi-mesenchymal and epithelial tumors
demonstrate a distinct chemotherapy response [8,9]. Hence, despite the overall poor prognosis in
PDAC, significant differences in individual patient survival are noted. Therefore, outcome prediction
and patient stratification based on available parameters represent important goals in clinical patient
care. The current gold standard for tumor assessment, biopsy and histopathology, entail a major
risk of misclassifying tumors due to undersampling and sampling errors. Moreover, non-invasive
biomarkers have yet to reach clinical maturity. Recently however, evidence has emerged that the
machine learning-based analysis of pre-therapeutic imaging can provide a decision guidance based
on the non-invasive derivation of quantitative, whole-tumor characteristics [10,11]. Image pattern
analysis and machine learning approaches (often termed radiomics) have yielded encouraging results
in the prediction of molecular PDAC subtypes and of patient survival from magnetic resonance or
computed tomography imaging [12,13]. Much of recent research, driven by the increase in attention
towards the field of artificial intelligence, has concentrated exclusively on proving the superiority
of radiomics to human observers or other diagnostic and prognostic parameters [14–16]. However,
in a disease as complex as PDAC, the integration of clinical information, invasive biomarkers and
imaging-derived data may provide a more comprehensive prognostic assessment of the tumor than
any single modality [17]. Therefore, a fair comparison elucidating the differential contribution of each
parameter type and their combined value, is warranted.

In this study, we present a multimodal, data-driven workflow including clinical information,
histo-morphologic/genetic parameters and computed tomography-derived imaging biomarkers for
modelling overall patient survival in the post-operative setting.

2. Experimental Section

The study was designed as a retrospective cohort study. The study was approved by the
institutional ethics review board (Ethics Committee of the Technical University of Munich Faculty of
Medicine) (Protocol Number 180/17S; date of approval: 9 May 2017), and the requirement for individual
written consent was waived. All procedures were carried out in accordance with pertinent laws and
regulations, as well as the Helsinki declaration. The STrengthening the Reporting of OBservational
studies in Epidemiology (STROBE) checklist [18] and patient inclusion flowchart are included in the
supplemental material (Table S1 and Figure S1). In brief, 177 patients with a confirmed diagnosis of
PDAC were considered for inclusion. Patients without baseline computed tomography (CT) imaging,
incomplete imaging, insufficient image quality (due to motion artifacts or significant beam hardening
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from adjacent foreign matter), patients who died sooner than six weeks after surgery or those with
incomplete clinical data were excluded. A total of 103 patients were analyzed. All patients underwent
tumor resection. The follow-up interval began on the 10 October 2006 and ended on the 14 April 2019.
Clinical data were obtained using the hospital’s information system, and survival information was
obtained from the hospital’s information system and from the national cancer registry. The genetic and
histopathological analyses were carried out by the Department of Pathology of the Technical University
of Munich and were available prior to the study commencement. Image-derived parameters data were
collected during the analysis.

The following clinical data was obtained for all patients: sex, age at diagnosis, tumor site (head,
body or tail of the pancreas), type of adjuvant chemotherapy received (gemcitabine-based vs. no
chemotherapy), time to progression, type of progressive disease (local recurrence, metastasis, both),
first-line chemotherapy after progression (gemcitabine, FOLFIRINOX, none/best supportive care) and
overall survival time including censoring.

The following histopathological data was obtained from formalin-fixed paraffin embedded tumor
specimens: tumor size (pT1/2 vs. pT3/4), lymph node status (pN0 vs. pN+), grading (G1/2 vs.
G3, i.e., high vs. low grade), resection status (R0 vs. R+, including positive continuous resection
margins) and molecular subtypes according to Muckenhuber et al. [19] (quasi-mesenchymal (QM)
vs. non-quasi-mesenchymal (Non-QM)); and tumor morphology (conventional vs. combined) and
mutational status of tp53 (wild-type vs. mutated), kras (wild-type vs. mutated), p16 (intact vs. altered)
and smad4 (positive vs. loss), both as described in Schlitter et al. [20].

CT images were exported from the hospital picture archive and processed as previously
described [13,21] and according to current best practices. Segmentation was performed fully
automatically by in-house developed software and manually corrected by an expert observer.
Image-derived features were extracted using PyRadiomics version 2.2.0 [22] with standard settings.
1409 image features were extracted. Features with a variance of less than 1e-5 were excluded, yielding
1384 radiomic features which were included in the analysis. Feature values were normalized to the
(0, 1) interval. A detailed description of the radiomic extraction process can be found in the supplement
(File S1). The PyRadiomics extraction settings file (.yml) can also be found in the supplement (File S2).

To assess the differential contribution of each parameter category, the following four parameter
groups were analyzed: (1) clinical and standard histopathological data (age, sex, chemotherapy, pT,
pN, G, R), (2) morpho-molecular and genetic data (tumor morphology, molecular subtype, and tp53,
kras, smad4 and p16 genetics), (3) image-derived features and (4) all features combined.

Due to the very large number of features compared to the cohort size, an unsupervised machine
learning-based dimensionality reduction and feature selection were performed as follows: linear
principle component analysis (PCA) was employed for radiomic features with the aim of capturing
99% of the parameter variance. A univariate pre-selection was performed on all features using the
log-rank-test statistic with a cut-off of p < 0.1.

The Cox Proportional Hazards model was fit to each parameter group separately at first to assess
the model concordance index (CI) after asserting that the proportional hazards assumptions were
met. Parameters which did not meet the proportional hazards assumptions were excluded from the
final analysis of the combined features. For testing the predictive performance, a five-fold hold-out
cross-validation was employed in all analyses, and the concordance indexes across the five folds were
averaged. 95% confidence intervals were calculated using 100-fold bootstrap resampling. All statistical
analyses were performed in Python v. 3.7.6. using the packages lifelines and scikit-learn. A two-sided
significance level of p < 0.05 was chosen.

3. Results

A total of 103 patients were included in the study. Their clinical characteristics are summarized
in Table 1.
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Table 1. Clinical and histopathological characteristics of the 103 patients included in the study.

n = 103 %

Sex
Male 59 57.2

Female 44 42.8
Age

Mean in years 67.3
Range 32–88

Subtype
QM 16 15.5

Non-QM 87 84.5
pT
1 1 0.9
2 10 9.7
3 80 77.7
4 12 11.7

pN
0 30 30.1
1 73 70.9

Grading
1 5 4.9
2 44 42.8
3 54 52.3

Resection status
0 53 51.4
1 50 48.6

Morphology
Conventional 55 53.4

Combined 48 46.6
Adjuvant Chemotherapy

Gemcitabine 55 53.3
Did not receive 48 46.7
Tumor Location

Head 71 68.9
Body 19 18.4
Tail 13 12.7

TP53
Wild type 21 20.3
mutated 82 79.7

KRAS
wildtype 9 8,8
mutated 94 91.2

CDKN2A/p16
intact 19 81.5

altered 84 18.5
SMAD4

intact 41 39.2
altered 62 60.8

QM, quasi-mesenchymal; pN, nodal status; pT, tumor size.

Of the 103 patients included, 51 patients experienced a progressive disease during the observation
period, and of these 14 (27%) experienced local recurrence, 29 (57%) liver metastasis and 8 (16%) both.
Of those patients, 22 (43%) received first-line gemcitabine, 13 (25%) received first-line FOLFIRINOX
and 16 (31%) received best supportive care. The median progression-free survival was 7.3 months.
The disease progression (experienced vs. did not experience) or type of treatment after progression
were not significantly associated with overall survival and are thus not included in the final analysis.
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The Cox proportional hazards method was used for modelling the overall survival using each of
the parameter categories. The median overall survival was 16.6 months, and 19/103 patients (18.4%)
were censored in the final survival analysis.

The modelling of parameter group 1, i.e., the clinical and standard histopathological data (age,
sex, chemotherapy, pT, pN, G, R) achieved a CI of 0.63 (95% conf. int. 0.60–0.66). The nodal status
(pN), tumor grading (G), tumor size (pT) and chemotherapy regimen were significantly associated
with overall survival (Table 2, Figure 1).

Table 2. Results of the Cox proportional hazards modelling for parameter group 1 (clinical parameters).

HR Lower 95% Conf. Int. Upper 95% Conf. Int. p

T 2.54 1.03 6.27 0.04
N 1.99 1.14 3.47 0.02
G 1.68 1.05 2.71 0.03
R 1.37 0.87 2.16 0.18

Sex 1.04 0.64 1.71 0.86
Age 1.0 0.98 1.02 0.85

Location 0.93 0.56 1.54 0.77
Adjuvant Chemo 0.61 0.37 0.99 0.04

HR, hazard ratio; T, tumor size; N, nodal status; G, tumor grading; R, resection status.
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Figure 1. Hazard ratios and 95% confidence intervals of parameter group 1 (clinical parameters). HR,
hazard ratio; T, tumor size; N, nodal status; G, tumor grading; CI, confidence interval.

In parameter group 2, i.e., the morpho-molecular and genetic data (tumor morphology, molecular
subtype, and pt53, kras, smad4 and p16 genetics), the tumor morphology did not meet the proportional
hazard assumptions and was therefore excluded from the combined analysis. None of the parameters
were significantly associated with overall survival (Table 3, Figure 2). The model resulted in a CI of
0.53 (95% conf. int. 0.47–0.59).

Table 3. Results of the Cox proportional hazards modelling for parameter group 2 (histo-morphologic
and genetic parameters).

HR Lower 95% Conf. Int. Upper 95% Conf. Int. p

Subtype 1.69 0.92 3.13 0.09
P16 1.28 0.74 2.24 0.38

Morphology 1.21 0.76 1.92 0.42
P53 1.09 0.7 1.71 0.7

SMAD4 0.72 0.46 1.14 0.16
KRAS 0.61 0.28 1.34 0.22
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Figure 2. Hazard ratios for parameter group 2 (histo-morphologic and genetic parameters).

The principal component analysis of the imaging features, i.e., parameter group 3, resulted in
71 unique image-derived feature groups representing 99% of the total parameter variance. Their
modelling was preceded by a univariate pre-selection, after which eight image feature groups were
retained for inclusion in the multivariate model. Of these, four were significantly associated with
overall survival (Table 4, Figure 3), three negatively and one positively. The multivariate model
achieved a CI of 0.65 (95% conf. int. 0.62–0.69).

Table 4. Results of the Cox proportional hazards modelling for parameter group 3 (image-derived parameters).

HR Lower 95% Conf. Int. Upper 95% Conf Int. p

Img. Feat. Group 54 7.0 1.91 25.61 <0.001
Img. Feat. Group 47 6.03 2.05 17.72 <0.001
Img. Feat. Group 35 3.67 1.24 10.87 0.02
Img. Feat. Group 56 3.46 1.01 11.81 0.05
Img. Feat. Group 67 1.33 0.44 4.02 0.62
Img. Feat. Group 21 0.58 0.15 2.17 0.42
Img. Feat. Group 27 0.34 0.08 1.39 0.13
Img. Feat. Group 44 0.18 0.05 0.7 0.01
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Figure 3. Hazard ratios and 95% confidence intervals of parameter group 3 (image-derived parameters).

Finally, to assess the predictive performance of the combined feature set and model feature
interactions, the features from parameter groups 1 through 3 which were found to obey proportional
hazards assumptions were jointly included in a Cox proportional hazards model. In total, seven
features, namely three image-derived parameter groups, the tumor subtype, tp53 mutation status,
tumor size (pT) and nodal status (pN), were found to significantly and independently predict overall
survival (Table 5, Figure 4). The final combined model achieved a CI of 0.65 (95% conf. int. 0.60–0.69).
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Table 5. Results of the Cox proportional hazards modelling for parameter group 4 (all parameters combined).

HR Lower 95% Conf Int. Upper 95% Conf Int. p

Img. Feat. Group 47 15.68 4.35 56.45 <0.001
Img. Feat. Group 54 12.56 2.11 74.81 <0.001
Img. Feat. Group 35 3.08 0.86 11.04 0.08

T 3.05 1.17 7.96 0.02
Subtype 2.86 1.38 5.92 <0.001

N 2.01 1.04 3.87 0.04
Img. Feat. Group 56 1.66 0.37 7.42 0.51

P16 1.49 0.82 2.73 0.19
G 1.33 0.79 2.23 0.28
R 1.28 0.71 2.3 0.41

Location 1.08 0.6 1.97 0.79
Sex 1.01 0.59 1.72 0.97
Age 1.0 0.97 1.02 0.82

Img. Feat. Group 67 0.85 0.23 3.1 0.81
SMAD4 0.83 0.48 1.41 0.48
Chemo 0.67 0.37 1.23 0.2
KRAS 0.67 0.24 1.88 0.45

Img. Feat. Group 21 0.58 0.13 2.47 0.46
P53 0.52 0.3 0.91 0.02

Img. Feat. Group 27 0.35 0.07 1.69 0.19
Img. Feat. Group 44 0.17 0.03 0.96 0.04
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4. Discussion

We here present the results of a comprehensive multiparametric analysis for the prediction of
overall patient survival in a group of resected PDAC patients. Our results underscore the potential
of image-derived biomarkers compared to both conventional histopathological and novel molecular,
morphologic and genetic phenotyping in the context of patient risk stratification in PDAC.

In our previous work, we reported on survival prediction based on imaging biomarkers alone and
developed models for the stratification of molecular phenotypes, therapy response and patient survival
from computed tomography and diffusion-weighted magnetic resonance images [12,13,21]. Our current
work expands on these efforts by including broadly available clinical parameters and unestablished,
novel biomarkers in multivariate survival models. Interestingly, both conventional clinical parameters,
such as tumor stage, nodal status and adjuvant chemotherapy, and the imaging-derived biomarkers
introduced in this study outperform morpho-molecular and genetic parameters alone. We believe this
to be an effect of the parameter distribution in this cohort and the overall cohort size. Both previous
work and our own multivariate analysis have shown genetic parameters [20] and molecular tumor
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subtypes [8,19] to significantly predict survival. Furthermore, we believe sampling errors of the
histo-morphological and genetic workup to reduce the representativeness of invasive biomarkers, and
we thus highlight the necessity for a whole tumor analysis. Despite the fact that imaging-derived
biomarkers do not outperform other parameters (0.63 versus 0.65 CI), they are justified due to their
non-invasive nature, which applies especially to the palliative and neo-adjuvant settings.

The recent study by Zhang et al. [17] showed a similar survival model concordance index of
around 0.65 on validation data by applying convolutional neural networks (CNN) to CT imaging data.
The non-inferiority of our approach compared to the more advanced CNN algorithm might be a result
of the limited sample size, a common problem in current imaging studies [23].

To our knowledge, this is the first study to systematically evaluate a broad range of currently
available PDAC risk biomarkers. The sample size studied, and the absence of an external validation
cohort, are a limitation of our study but also an immediate consequence of the high financial
and personnel cost of the extensive morpho-molecular and genetic workup. Considering the lack
of re-imbursement for the detailed tissue analyses presented, biomarkers derived from routine
clinical data—including imaging—are a viable option in the setting of limited healthcare resources.
Nevertheless, our results should be tested prospectively to ascertain their external validity.

5. Conclusions

In summary, this study presents a further step towards the validation of multi-parametric analyses
in the context of clinical patient care. Two conclusions arise from our results: A side-by-side direct
comparison of whole tumor tissue and imaging-data derived features will be required to adequately
compare the true predictive performance of imaging against morpho-molecular tumor constituents.
Furthermore, for multiparametric data integration—as demonstrated in our work—to reach clinical
maturity, multi-centric cooperation will be required to attain sufficient sample sizes.
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