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Abstract: Linked Open Data (LOD) refers to freely available data on the World Wide Web that are
typically represented using the Resource Description Framework (RDF) and standards built on it.
LOD is an invaluable resource of information due to its richness and openness, which create new
opportunities for many areas of application. In this paper, we address the exploitation of LOD
by utilizing SPARQL queries in order to extract social networks among entities. This enables the
application of de-facto techniques from Social Network Analysis (SNA) to study social relations and
interactions among entities, providing deep insights into their latent social structure.
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1. Introduction

This paper is an extension of an already published conference paper [1], where we investigated
how to extract social networks from Linked Open Data. In recent years, the Web has evolved from
a network of linked documents to one where both documents and data are linked, resulting in what is
commonly known as the Web of Data. Underpinning this evolution is a set of best practices known as
Linked Open Data (LOD) [2], which provide mechanisms for publishing and connecting structured
data on the Web in a machine-readable form with explicit semantics. Recently, Linked Open Data has
evolved from an academic endeavor into one that has been embraced by numerous governments and
industrial stakeholders.

Due to the creation of an increasing number of publicly available Linked Open Data resources,
the Web of Data has become a major application area for semantic technologies. Currently, the so-called
LOD cloud contains over 1200 datasets, with billions of facts from many different domains like
geography, media, biology, chemistry, economy, energy, etc., and millions of links among entities
(http://lod-cloud.net). Examples of large LOD datasets are DBpedia [3,4] (3.4 million entities, 1 billion
facts), and YAGO [5] (17 million entities, 150 million facts).

All such data are typically represented using the Resource Description Framework (RDF) which
is the World Wide Web Consortium’s (W3C) standard language for representing information in the
Semantic Web [6,7]. RDF is based on a directed graph data model, where both nodes and edges
are labeled. An RDF graph is a set of triples of the form (s, p, o), which can be interpreted as edges
labeled by p (the predicate) from nodes labeled by s (the subject) to nodes labeled by o (the object).
The elements of a triple are typically Internationalized Resource Identifiers (IRIs)-global names that
uniquely identify resources on the Web. SPARQL, which became a W3C recommendation in 2008,
is the standard query language for RDF [8,9]. Recently, a new version of the SPARQL query language,

Information 2020, 11, 361; doi:10.3390/info11070361 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-2865-2014
https://orcid.org/0000-0002-1677-150X
http://lod-cloud.net
http://dx.doi.org/10.3390/info11070361
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/7/361?type=check_update&version=2


Information 2020, 11, 361 2 of 21

called SPARQL 1.1, has been standardized by W3C. It addresses some of the limitations of the original
language by introducing a wide range of constructs [10].

The increasing adoption of Linked Open Data is turning the Web into a global data space that
connects data from diverse domains and enables genuinely novel applications. The richness and
openness of Linked Open Data make it an invaluable resource of information, and creates new
opportunities for many areas of application. For instance, in this present work, we address the
exploitation of Linked Open Data in order to extract social networks among entities. This will enable
the application of de-facto techniques from Social Network Analysis to study social relations and
interactions among entities, providing deep insights into their latent social structure.

Social Network Analysis (SNA) refers to the collection of methods, techniques, and tools in
sociometry aiming at the analysis of social networks. There is an abundance of tools allowing
for the analysis and visualization of such networks. A social network may be dense or not,
the “social distances” among individuals may be short or long, etc. An individual may be “central”
(directly linked to many other individuals) or an “isolate” (not linked to others). However, more subtle
notions are also possible, e.g., an individual who is only linked to people having many relationships is
considered to be a more powerful node in the network than an individual having many connections to
less connected individuals.

The work presented in this paper is an attempt to bring together the two research areas of Linked
Open Data and Social Network Analysis. The main idea is to derive social networks from large datasets
of linked open data, such that extracted networks become a fresh material for study and analysis,
while at the same time forming an additional asset of knowledge added to linked open data.

The main contributions of this present paper are the following:

• We propose several techniques to extract social networks from linked open data.
• We express those techniques in a formal way using SPARQL algebra.
• We present formal translations into social networks.
• We present several case studies that apply some of the presented techniques.

The paper is organized as follows. Section 2 presents a motivation example that demonstrates
the importance of the proposed approach, while Section 3 gives an overview of relevant previous
work. Section 4 provides a background on social networks and SPARQL algebra. Sections 5 and 6
are the core of this paper, introducing network extraction patterns for complete networks as SPARQL
queries. Then, a generic translation method that transforms query results into networks is presented in
Section 7. Section 8 concludes the paper with an overall discussion.

2. Motivation

To motivate our work, we consider the relation between actors and movies they acted in. In the
YAGO dataset, this relation is expressed using the yago:actedIn predicate, which relates an actor
(subject) to a movie (object) he/she acted in. Table 1 shows a subset of RDF triples from the YAGO
dataset about this relation. Thus, we can visually represent this relation as a two-mode affiliation
network (two types of nodes). Figure 1 demonstrates a smaple of such a network obtained from triples
in Table 1.

More interestingly, indirect relations can be derived from this two-mode affiliation relation. That is,
two-mode networks are often transformed into one-mode networks (only one type of nodes) using
a procedure which is often referred to as projection [11,12]. Projection is done by selecting one of the
sets of nodes and linking two nodes from that set if they are connected to the same node (of the other
kind). In the case of actors and movies, we can derive an actor–actor relationship if they act in the
same movie. For example, Jodie Foster and Matthew McConaughey would be connected as they have
acted in the movie Contact. Traditionally, the ties in projected one-mode networks do not have weights
attached to them. However, recent empirical studies of two-mode networks have created a weighted
one-mode network by defining the weights as the number of co-occurrences (e.g., the number of
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movies in which two actors have co-acted). Figure 2 shows the co-acting network derived from the
actor-movie two-mode network. For instance, the connection between Penolope Cruz and Steve Zahn
has a weight of 2 as they acted in two movies: Sahara and Bandidas.

Table 1. A subset of RDF triples from YAGO with yago:actedIn predicate.

Jodie_Foster actedIn Contact_(1997_US_film)
Matthew_McConaughey actedIn Contact_(1997_US_film)
Matthew_McConaughey actedIn Sahara_(2005_film)
Penélope_Cruz actedIn Sahara_(2005_film)
Steve_Zahn actedIn Sahara_(2005_film)
Penélope_Cruz actedIn Bandidas
Salma_Hayek actedIn Bandidas
Steve_Zahn actedIn Bandidas
· · · · · · · · ·

BandidasSaharaContact

Salma HayekSteve ZahnPenolope CruzMatheo 
McConaugheyJodie Foster

actedInactedIn

actedIn

  actedInactedInactedInactedInactedIn

Figure 1. Sample RDF Graph of yago:actedIn predicate in YAGO.
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Figure 2. Extracted social network of co-acting among actors.

The purpose of this present work is to investigate possible ways to extract such social networks
from linked open data (expressed in RDF), and to present such ways as systematic techniques using:
(1) SPARQL queries formally expressed in SPARQL algebra, and (2) formal transformations of the
query results into networks.

3. Related Work

The richness and openness of Linked Open Data, as well as the inter-linking of the many datasets,
known as LOD cloud, make it an invaluable resource of information, and create new opportunities for
many areas of application. This leads to an increasing adoption of LOD by the scientific community,
and several sectors of industry [13]. Among others, one of the major factors that foster the evolution
and adoption of LOD is the semantic technologies (RDF [7], OWL [14], and SPARQL [10]) standardized
by W3C. Being structured using a standard data format (RDF), the consumption of Linked Open Data is
facilitated with SPARQL, a standard query language, and protocol to access RDF datasets. SPARQL is
based on a solid background with respect to its syntax and semantics [9] (see Section 4.2 below).
The large amount of RDF data available on the Web is exposed by means of (a) Linked Data-enabled
dereferenceable URIs in various formats (such as RDF/XML, Turtle, RDFa, etc.) and by (b) SPARQL
endpoints (SPARQL endpoints are RESTful web services that accept SPARQL queries over HTTP
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adhering to the SPARQL protocol, as defined by the respective W3C recommendations [15]). Most of the
LOD datasets are interlinked, which allows navigating through them and facilitates building complex
queries by combining data from different, sometimes heterogeneous and often physically distributed
datasets. To address this use case, the W3C recommendation defines a federation extension [16]
for SPARQL 1.1 [10], which allows for combining graph patterns that can be evaluated over several
endpoints within a single query [15].

Several areas of application are increasingly benefiting from the large amount of RDF data
available in the Web of Data, and exploiting their potential power. For instance, Recommender Systems
are among such applications consuming Linked Open Data. Passant [17] proposes a Music
recommender system, called drec, which is built on top of DBpedia. Di Noia et al. [18] develop
a content-based recommender system that leverages the data available within Linked Open Data
datasets in order to recommend movies to the end users.

Some works seek to combine social analytics with the Linked Open Data (LOD) cloud.
De Vocht et al. [19] propose a semantically driven aggregation of social data, where they use semantic
technologies, common vocabularies, and Linked Open Data to extract and mine the data about scientific
events out of context of microblogs (e.g., Twitter). As a proof-of-concept, they implement and evaluate
a researcher profiling use case. Razis et al. [20,21] propose an ontology schema towards linking
semantified Twitter social analytics with the Linked Open Data cloud. The ontology is deployed
over a publicly available service that measures how influential a Twitter account is by combining its
social activity in Twitter. They also introduce in [22] a methodology for discovering and suggesting
similar Twitter accounts, based entirely on their disseminated content in terms of used Twitter entities
(mentions, replies, hashtags, URLs). The methodology is based on semantic representation protocols
and related technologies. An ontological schema is also described towards the semantification of the
Twitter accounts and their entities.

Several works in the literature have already attempted to combine Social Network Analysis with
semantic technologies. For instance, Flink [23] is an early system for the extraction, aggregation,
and visualization of online social networks. Flink employs semantic technology for reasoning with
social information aggregated from disparate sources: web pages, emails, publication archives,
and FOAF profiles. Martin et al. [24] propose a model to represent social networks in RDF and
show how SPARQL can be used to query and transform networks. However, the proposed data model
is unnecessarily complex as relations among nodes are represented as RDF resources, hence additional
predicates are introduced to link nodes to the relations. Moreover, at that time, aggregation was
missing in SPARQL, therefore SQL is used in the model. Other works have been proposed to use
SPARQL and other semantic technologies not only to represent social networks, but also to perform
social network analysis [25–27]. However, all the aforementioned works use semantic technologies to
represent social networks and/or to perform social network analysis. Unlike our work, none of them
extract social networks from RDF datasets (LOD). Our work focuses on network extraction patterns
from RDF, not on representing the networks themselves.

Groth and Gil [28] present an approach for extracting networks from Linked Data, where extracted
networks can then be analyzed through network analysis algorithms, and the results of these analyses
can be published back as Linked Data. Zehetner [29] proposes in his dissertation a framework,
called SocioCatcher, to extract and analyze social networks from DBpedia. However, both of these
works focus on the system and its computational workflows, without a solid theoretical basis and
formalism of extraction patterns as we do in our present work.

4. Background

4.1. Social Networks

“A social network consists of a finite set or sets of actors and relation or relations defined on
them.” ([30]). Social networks can be classified based on the set of actors and their environment
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into: (1) complete networks, and (2) ego centered networks. A complete network addresses an entire
population, where the individuals define each other’s environment [11]. Ego-centric networks address
an identified individual (ego) and his environment. When we deal with social networks extracted
from LOD, we also distinguish between complete and partial networks [11]. Complete networks
cover an entire population of individuals in the entire dataset, whereas a partial network would
cover a subset of the population defined by means of a specific context, e.g., time, location, or gender,
etc. For example, let us consider a co-acting relationship among actors who acted in same movies.
When we extract all co-acting relations among all actors (as defined in the dataset), we obtain a complete
network, while when we extract such relations for Indian actors only, or for movies produced in the
1990s, we obtain a partial network. Moreover, when we extract such relations for Jodie Foster and her
co-actors, we obtain an ego-centric network [11].

Typically, networks are represented in terms of graphs. A graph G is a pair (V, E) that consists
of a set V of vertices, and a set E of edges. While the elements of V represent the actors of the
network, the ties among them are represented in E. Therefore, an edge is simply a pair of vertices
E = {(vi , vj) | vi , vj ∈ V}. If the relation between a pair of vertices i, j ∈ V is asymmetric, we say the
edges are directed (and so is the network). Otherwise, the edges are bidirectional and the network is
said to be undirected. Relations among vertices could have a sort of strength, in this case, edges are
given numeric weights, and we say the network is weighted. A weighted network is represented as
a triple G = (V, E, ω) where: ω is a function ω : E→ R that maps edges to their weight values.

In Social Network Analysis literature, many metrics (indices) have been developed to characterize
social networks, at both (a) node level, such as: (in-, out-) degree, and centrality (closeness, betweenness),
and (b) network level, such as: density, diameter, average degree, average path length, and average
clustering coefficient [30]. Moreover, advanced analysis can also be applied onto social networks,
including for example: community detection, diffusion dynamics, and link prediction.

4.2. SPARQL Algebra

Let I, L, and B be pairwise disjoint sets of IRIs, literals, and blank nodes, respectively, where literals
can be numbers, strings, or Boolean values. The set T of (RDF) terms is I∪ L∪ B. An RDF triple is
an element (s, p, o) of (I∪ B)× I× T, with s called the subject, p the predicate, and o the object. An RDF
graph is a finite set of RDF triples.

We adopt the SPARQL algebra from Kaminski et al. [31,32], which is based on the SPARQL 1.1
specification [10], and presents a formalisation that makes ambiguous aspects of the specification
precise. We distinguish three types of building blocks: expressions, patterns, and queries that are built
over terms T and an infinite set X = {? x, ? y, · · ·} of variables, disjoint from T.

Expressions in SPARQL are inductively defined as follows:

• all variables in X and all terms in I∪ L are expressions;
• if ?x ∈ X, then bound(?x) is an expression;
• if t ∈ T∪ X, then isIRI(t), isLiteral(t), and isBlank(t) are expressions;
• if E1 and E2 are expressions, then so are: (E1 + E2), (E1− E2), (E1 ∗ E2), (E1/E2), (E1

.= E2), (E1 < E2),
(E1 > E2), (¬E), (E1 ∧ E2), and (E1 ∨ E2);

• exists(P) is an expression, if P is a pattern.

Patterns in SPARQL are inductively defined as follows:

• a basic graph pattern (BGP) is a set of triple patterns, that is, elements of the set

(I∪ L∪ X)× (I∪ X)× (I∪ L∪ X)

• Join(P1, P2), Union(P1, P2) and SetMinus(P1, P2) are patterns if P1 and P2 are patterns;
• Filter(E, P) is a pattern if P is a pattern and E is an expression;
• Le f tJoin(E, P1, P2) is a pattern if P1 and P2 are patterns and E is an expression;
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• GroupAgg(Z,?x, f , E, P), where Z is a set of variables, called grouping variables, ?x is a variable
called aggregation variable, f is an aggregate function, E is an expression, and P is a pattern;

• Extend(?x, E, P) is a pattern (which captures BIND and VALUES constructs), where ?x is a variable,
E is an expression, and P is a pattern;

The construct GroupAgg is close to the grouping operator in the relational algebra, where Z
represents the set of grouping variables, ? x is the fresh variable storing the aggregation result, f is the
aggregate function (such as: Count, Sum, Avg, Min, or Max), and E is the expression (often a variable) we
are aggregating over.

Queries in SPARQL are expressions of the form Project(X, P) or Distinct(Project(X, P)), for P
a pattern and X a set of variables (called free variables).

The semantics of SPARQL is defined in terms of (solution) mappings that is, partial functions
µ from variables X to terms T. The domain of µ, denoted dom(µ), is the set of variables over which
µ is defined. The solution of a SPARQL query Q over an RDF graph G is a multiset of mappings
M = vPwG, where v.wG is an evaluation function that maps queries and RDF graphs to multisets of
solution mappings.

5. Network Extraction Techniques

In this section and the next one, we introduce techniques for extracting complete social networks
from LOD using SPARQL. Those techniques are basically based on identification of common RDF
triple patterns and how the network ties are inferred from such patterns.

We classify those techniques based on the number of predicates and number of RDF triples in
a pattern. We start in this section with patterns having one predicate p, where we present possible
patterns composed of one and two RDF triples, all having p as predicate (Figure 3). Then, in the next
section, we discuss patterns having two predicates p, q, where we present possible patterns for two,
three, and four RDF triples having p, q predicates.

ChainOut-2-StarIn-2-Star

( d )( c )( b )( a )

Directed Extraction

vu

xv

u

s

u

v

v

u

o
 p  p

p

pp

p

p

Figure 3. Extraction patterns with one predicate. (a) Direct Extraction: one direct connection from u to
v. (b) In-2-Star: two connections are coming-into o from u and v. (c) Out-2-Star: two connections are
going-out s to u and v. (d) Chain: two successive connections between u and v via x.

5.1. Extraction Using One Predicate

We start with patterns having one predicate p ∈ I. We present the possible patterns composed of
one, and two RDF triples, having p as predicate.

5.2. Pattern with One Triple (Direct Extraction)

Given certain predicate p ∈ I, let ? u, ? v ∈ X be two variables, then the BGP (? u, p, ? v) represents
a direct relation (tie) from a node represented by ? u to a node represented by ? v using the predicate p,
as shown in Figure 3a. We call this case: Direct Extraction. Thus, to extract all such ties among nodes in
the RDF graph using p, the following SPARQL query can be used:

Q1 = Project({? u, ? v}, {(? u, p, ? v)}) (1)
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which can be translated into SPARQL syntax as:

SELECT ?u ?v WHERE { ?u p ?v. }

The extracted relation in this case is always directional, i.e., the order of nodes does matter
(Unless the predicate p is symmetric, such as yago:isMarriedTo, then the relation becomes
bidirectional). This means the extracted social network will be a directed network. In this type
of extraction, one tie in the network is extracted from one triple in the RDF graph.

Example 1. The YAGO dataset has a predicate yago:influences that relates persons to others who have
influence on them (on their opinions or work). To extract a social network based on this influence relationship,
we can use this query:

Q = Project({? u, ? v}, {(? u, yago:influences, ? v)}

The extracted network has been analyzed in [33].

5.3. Patterns with Two Triples

Social networks can be indirectly extracted from RDF data when the relation is implicit in the
RDF graph. A tie between two nodes can be derived from several triples, as we saw in the motivation
example (Section 2). When we derive a tie between two nodes using two RDF triples, it does matter
where the positions of those nodes in the RDF triples are: subject–subject, object–object, subject–object,
or object–subject. Therefore, we distinguish three derivation patterns (variants), namely: in-2-star,
out-2-star, and chain.

5.3.1. In-2-Star

A tie between two nodes u, v is derived when both nodes are linked to a third node o, that is,
when u and v are in the subject position of two RDF triples having the same object o and the same
predicate p (Figure 3b). This pattern (u, p, o), (v, p, o) is named in-2-star because it resembles a star
network whose center is o and has 2 peripheries u, v directed in-to the center: u→ o ← v.

The following SPARQL query can be used to extract all such ties among nodes in the RDF graph
using a predicate p ∈ I, and three variables ? u, ? v, ? o ∈ X:

Q2 = Project({? u, ? v}, {(? u, p, ? o), (? v, p, ? o)}), (2)

which can be translated into SPARQL syntax as:

SELECT ?u ?v WHERE { ?u p ?o. ?v p ?o.}

In this case, the derived relation is bidirectional; therefore, in contrast to direct extraction,
derivation using the same predicate with in-2-star pattern always yields undirected networks.

Example 2. The DBpedia dataset has a predicate dbo:almaMater that relates people to academic institutions
they studied in. This predicate can be used to derive a so-called alumni relationship among people who attended
the same university. The following query can be used for this purpose:

Q = Project({? u, ? v}, {(? u, dbo:almaMater, ? o), (? v, dbo:almaMater, ? o)})

Example 3. Our motivation example in Section 2 belongs to this type of derivation. YAGO predicate
yago:actedIn can be used to derive co-acting network among actors who acted in same movies. The query can
be expressed as:

Q = Project({? u, ? v}, {(? u, yago:actedIn, ? o), (? v, yago:actedIn, ? o)})
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Networks derived by the same predicate can be weighted when the number of co-occurrences of
the in-2-star pattern is taken into consideration. For instance, in co-acting network, the weight of a tie
between two actors is the number of movies they commonly acted in. In order to express this relation
in a SPARQL query, we need a group-aggregation algebraic pattern. Kaminski’s SPARQL algebra
provides GroupAgg(Z, ? x, f , E, P) pattern for this purpose, where Z is the set of grouping variables,
? x is aggregation variable, f is aggregation function, E is aggregation expression, and P is a pattern.
Thus, the query needed to extract a weighted network using derivation by the same predicate with
in-2-star pattern can be written as:

Q3 = Project({? u, ? v, ? w}, GroupAgg(〈? u, ? v〉, ? w, Count, 〈? o〉, {(? u, p, ? o), (? v, p, ? o)})) (3)

In this query, the list of grouping variables is Z = 〈? u, ? v〉 (as we want to count the number of
their co-occurrences), the aggregation variable is ? w, a fresh variable to store the weight of the tie,
the aggregation function f is Count, the aggregation expression is simply the variable ? o, and the
pattern P is {(? u, p, ? o), (? v, p, ? o)}. Finally, we select the three variables u, v and w. The query can be
syntactically expressed as:

SELECT ?u ?v (COUNT (?o) AS ?w) WHERE { ?u p ?o. ?v p ?o. } GROUP BY ?u ?v

5.3.2. Out-2-Star

With out-2-star pattern, a tie between two nodes u, v is derived when both nodes have incoming
links from a third node s, that is, when u and v are in the object position of two RDF triples having the
same subject s and the same predicate p (Figure 3c). This pattern (s, p, u), (s, p, v) is named out-2-star
because it resembles a star network whose center is s and has 2 peripheries u, v directed out from the
center: u← s→ v.

The following SPARQL query can be used to extract all such ties among nodes in the RDF graph
using a predicate p ∈ I, and three variables ? u, ? v, ? s ∈ X:

Q4 = Project({? u, ? v}, {(? s, p, ? u), (? s, p, ? v)}) (4)

In this case, the derived relation is also bidirectional, and hence the extracted network is undirected.
This query can be translated into SPARQL syntax as:

SELECT ?u ?v WHERE { ?s p ?u. ?s p ?v.}

The BGP can be shortened further into { ?s p ?u, ?v.} since the two triple patterns share the same
subject and predicate.

Example 4. The DBpedia dataset has a predicate dbo:starring that relates a movie (or TV show) to people
who have a starring role in it. This predicate can be used to derive a relationship among actors who have starring
roles in same movies. The following query can be used for this purpose:

Q = Project({? u, ? v}, {(? s, dbo:starring, ? u), (? s, dbo:starring, ? v)})

Weighted networks can also be extracted using this pattern by taking into consideration the
number of co-occurrences. The corresponding SPARQL query is as follows:

Q5 = Project({? u, ? v, ? w}, GroupAgg(〈? u, ? v〉, ? w, Count, 〈? s〉, {(? s, p, ? u), (? s, p, ? v)})) (5)

Note that the aggregation expression here is 〈? s〉. Syntactically, the query can be expressed as:

SELECT ?u ?v (COUNT (?s) AS ?w) WHERE { ?s p ?u, ?v. } GROUP BY ?u ?v
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5.3.3. Chain

In the chain pattern, a tie between two nodes u, v is derived when there is a chain of two links
starting from one of these nodes, ending at the other, and traversing a third node x. This case for
instance occurs when u is the subject of a triple, v is the object of another triple, and x is the object of the
first triple and the subject of the other, and, of course, p is the predicate in both triples. This pattern
(u, p, x), (x, p, v) is named chain because it resembles to a chain starting at u, traversing x, and ending
at v: u → x → v. The SPARQL query used to extract all such ties using a predicate p ∈ I, and three
variables ? u, ? v, ? x ∈ X is:

Q6 = Project({? u, ? v}, {(? u, p, ? x), (? x, p, ? v)}) (6)

Syntactically, the query can be expressed as:

SELECT ?u ?v WHERE { ?u p ?x. ?x p ?v.}

In this case, the derived relation is directed according to the original direction of links in the RDF
triples. For example, the extracted tie is directed from u to v because u is the subject of the first triple
and v is the object of the other one. Therefore, similar to direct extraction, derivation using the same
predicate with chain pattern always yields directed networks. The two triples {(? u, p, ? x), (? x, p, ? v)}
can be merged using a property sequence path [10], yielding the triple pattern (? u, p/p, ? v) as a result.
This is possible because the variable ? x serves as the object of the first triple, and as the subject of the
second. Hence, the query can be expressed as:

SELECT ?u ?v WHERE { ?u p/p ?v.}

Example 5. The DBpedia dataset has a predicate dbo:parent that relates a person to his parent(s).
This predicate can be used to derive a grandparent relationship among people. A person u has a grandparent v,
when the parent of u is x and the parent of x is v. The corresponding query is:

Q = Project({? u, ? v}, {(? u, dbo:parent, ? x), (? x, dbo:parent, ? v)})

Sometimes, depending on the predicate p, the extracted network using chain pattern could
be weighted. The corresponding SPARQL query is as follows (with the aggregation expression
being 〈? x〉):

Q7 = Project({? u, ? v, ? w}, GroupAgg(〈? u, ? v〉, ? w, Count, 〈? x〉, {(? u, p, ? x), (? x, p, ? v)})) (7)

Syntactically, this query can be expressed as:

SELECT ?u ?v (COUNT (?x) AS ?w) WHERE { ?u p ?x. ?x p ?v } GROUP BY ?u ?v

6. Extraction Using Two Predicates

In this section, we continue with patterns having two predicates p, q ∈ I. We present the possible
patterns composed of two, three, and four RDF triples, having p and q predicates.

6.1. Patterns with Two Triples

In this type of derivation, a tie is extracted from two RDF triples having two different predicates
p, q ∈ I. Similarly to derivation using same predicate, we distinguish three patterns according to the
positions of nodes in the triples, namely: in-2-star, out-2-star, and chain.
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6.1.1. In-2-Star

This pattern is similar to the in-2-star pattern in derivation using same predicate: a tie between
two nodes u, v is derived when both nodes are linked to a third node o, that is, when u and v are in the
subject position of two RDF triples having the same object o (Figure 4a). However, the difference here is
that the two triples have different predicates p and q, thus the basic graph pattern is: {(u, p, o), (v, q, o)}.

ChainOut-2-StarIn-2-Star

( c )( b )( a )

vu

xv

u

s

v

u

o
 q  p

q

p

q

p

Figure 4. Extraction patterns with two predicates p, q and two triples. (a) In-2-Star: two connections
are coming-into o from u (using p) and v (using q). (b) Out-2-Star: two connections are going-out s to u
(using p) and to v (using q). (c) Chain: two successive connections between u and v via x, using p and q
respectively.

The following SPARQL query can be used to extract all such ties among nodes in the RDF graph
using two predicates p, q ∈ I, and three variables ? u, ? v, ? o ∈ X:

Q8 = Project({? u, ? v}, {(? u, p, ? o), (? v, q, ? o)}) (8)

It can be translated into SPARQL syntax as:

SELECT ?u ?v WHERE { ?u p ?o. ?v q ?o.}

In contrast to the in-2-star variant of same-predicate-derivation where the derived relation is
bidirectional, here the in-2-star variant of derivation by different predicates is uni-directional,
not because of the positions of nodes in the RDF triples (as in direct extraction, or chain variant)
but because of the difference of predicates. In fact, one of the predicates can be considered as primary
and the other as secondary, for instance, the primary predicate is more important than, or has a priority
over, the secondary one. Thus, the derived tie between nodes would be directed from the subject of the
triple with the primary predicate to the subject of the triple with the secondary predicate. Let us clarify
this idea with an example.

Example 6. The YAGO dataset has two predicates yago:exports and yago:imports that relate countries
to products they export and import, respectively. These predicates can be used to derive a so-called
commercial-dependency relationship among countries. If we want the relation to be such that a country is
linked to another when the former exports a product imported by the later, then we consider exports predicate
as primary, and imports as secondary, hence, the corresponding query is:

Q = Project({? u, ? v}, {(? u, yago:exports, ? o), (? v, yago:imports, ? o)})

In this case, the tie from u to v means that u has v as dependent. However, we could instead consider imports
as primary and exports as secondary, here the derived tie from u to v would mean that u depends on v.
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A weighted version of in-2-star variant of derivation using different predicates can be given by
the following SPARQL query:

Q9 = Project({? u, ? v, ? w}, GroupAgg(〈? u, ? v〉, ? w, Count, 〈? o〉, {(? u, p, ? o), (? v, q, ? o)})) (9)

which can be syntactically translated into:

SELECT ?u ?v (COUNT (?o) AS ?w) WHERE { ?u p ?o. ?v q ?o } GROUP BY ?u ?v

6.1.2. Out-2-Star

This pattern is similar to the out-2-star pattern in derivation using same predicate: a tie between
two nodes u, v is derived when both nodes have incoming links from a third node s that is, when u
and v are in the object position of two RDF triples having the same subject o. However, the two triples
have different predicates p and q, thus the basic graph pattern is: {(s, p, u), (s, q, v)}.

The following SPARQL query can be used to extract all such ties among nodes in the RDF graph
using two predicates p, q ∈ I, and three variables ? u, ? v, ? s ∈ X:

Q10 = Project({? u, ? v}, {(? s, p, ? u), (? s, q, ? v)}) (10)

It can be written in SPARQL syntax as:

SELECT ?u ?v WHERE { ?s p ?u. ?s q ?v }

Moreover, the BGP can be shortened as: {?s p ?u; q v?.} since the triples share the same subject.
In this type of derivation, the extracted network is directed, and can be weighted. A weighted

network can be extracted using this query:

Q11 = Project({? u, ? v, ? w}, GroupAgg(〈? u, ? v〉, ? w, Count, 〈? s〉, {(? s, p, ? u), (? s, q, ? v)})) (11)

which can be syntactically expressed as:

SELECT ?u ?v (COUNT (?s) AS ?w) WHERE { ?s p ?u; q ?v. } GROUP BY ?u ?v

Example 7. The BNB Linked Data Platform (http://bnb.data.bl.uk/) provides access to the British National
Bibliography published as linked open data and made available through SPARQL services. Bibliographic resources
have creators (authors) and contributors (editors, or publishers, etc.). A resource is related to a creator using the
predicate dc:creator, and to a contributor using dc:contributor, both predicates come from Dublin Core
vocabulary (http://dublincore.org/documents/dcmi-terms/). Thus, a collaboration social network can be derived
such that it relates creators of bibliographic resources to other contributors using this query:

Q = Project({? u, ? v}, {(? s, dc:creator, ? u), (? s, dc:contributor, ? v)})

Example 8. DBpedia has a dbo:director predicate that relates a movie to the person who directed it.
Thus, along with dbo:starring predicate, we can derive a network between actors and directors who have
worked together on a movie. However, we should specify the direction we desire for the ties; if we want the ties to
be from directors to stars, then the pattern should be:

Project({? u, ? v}, {(? s, dbo:director, ? u), (? s, dbo:starring, ? v)}),

whereas, if we want it to be from stars to directors, the pattern should be:

Project({? u, ? v}, {(? s, dbo:starring, ? u), (? s, dbo:director, ? v)})

http://bnb.data.bl.uk/
http://dublincore.org/documents/dcmi-terms/
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6.1.3. Chain

This pattern is similar to the chain pattern in derivation using the same predicate. A node u is tied
to another node v when: (1) u is the subject of a triple, (2) v is the object of another triple, and (3) x is
the object of the first triple and the subject of the other. However, here the predicates of the triples are
different: p and q. Thus, the pattern can be expressed as: (u, p, x), (x, q, v), and the SPARQL query used
to extract all such ties is:

Q12 = Project({? u, ? v}, {(? u, p, ? x), (? x, q, ? v)}) (12)

which can be expressed in SPARQL syntax as:

SELECT ?u ?v WHERE { ?u p/q ?v. } GROUP BY ?u ?v

Here, the network is also directed and can be weighted. The query for the weighted version is:

Q13 = Project({? u, ? v, ? w}, GroupAgg(〈? u, ? v〉, ? w, Count, 〈? x〉, {(? u, p, ? x), (? x, q, ? v)})) (13)

SELECT ?u ?v (COUNT (?x) AS ?w) WHERE { ?u p ?x. ?x q ?v. } GROUP BY ?u ?v

Example 9. In DBpedia, we can use the predicates dbo:spouse and dbo:parent, to derive a social network
where a person is related to his parent-in-low using the following query:

Q = Project({? u, ? v}, {(? u, dbo:spouse, ? x), (? x, dbo:parent, ? v)})

Example 10. DBpedia has the predicate dbo:employer that relates a person (an employee) to an organization
where he is employed, and the predicate dbo:president that relates an organization to its president. Using these
two predicates with chain pattern, we can derive a social network that relates employees to their employers:

Q = Project({? u, ? v}, {(? u, dbo:employer, ? x), (? x, dbo:president, ? v)})

6.2. Patterns with Three Triples

Among different possible patterns of two predicates and three triples, we chose to present two
common patterns as shown in Figure 5.

( b )

Parallel-Out

( a )

Parallel-In

y

vu

xy

vu

x

  p

 q

  p  p

 q

  p

Figure 5. Extraction patterns with two predicates and three triples. (a) Parallel-In: u and v have
in-coming connections (using p) from x and y respectively. (b) Parallel-Out: u and v have out-going
connections (using p) to x and y respectively. In both patterns, x is connected to y using q.

6.2.1. Parallel-In

In this pattern, a tie is extracted from a node u to another one v, when both nodes have in-links
(they are in object position in two triples with predicate p) from two other intermediary nodes x and y
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that are linked to each other using the other predicate q. Thus, the pattern is: (x, p, u), (y, p, v), (x, q, y).
Given the two predicates p, q ∈ I, and four variables u, v, x, y ∈ X, the corresponding query is:

Q14 = Project({? u, ? v}, {(? x, p, ? u), (? y, p, ? v), (? x, q, ? y)}) (14)

which can be syntactically written as:

SELECT ?u ?v WHERE { ?x p ?u. ?y p ?v. ?x q ?y. }

The extracted relation is directional, such that the direction of the extracted tie (from u to v) is the
same direction (parallel) of the relation between the corresponding intermediary nodes (from x to y).

Example 11. The Bibliographic Ontology (http://bibliographic-ontology.org/) provides main concepts and
properties for describing citations and bibliographic references on the Semantic Web. The predicate
dc:contributor relates a document to its author, while bibo:cites relates a document to another document
that cites the first document. Thus, using these predicates, we can extract a citation social network among
authors, such that it relates an author to another one when the first writes a document that cites a document
written by the second author. This network is extracted using the following query:

Q = Project({? u, ? v}, {(? x, dc:contributor, ? u), (? y, dc:contributor, ? v), (? x, bibo:cites, ? y)})

A weighted social network can also be extracted using parallel-in when we consider the number
of co-occurrences of the intermediary relations (?x, q, ?y). The corresponding query is:

Q15 = Project({? u, ? v, ? w}, GroupAgg(〈? u, ? v〉, ? w, Count, 〈? x, ? y〉, {(? x, p, ? u), (? y, p, ? v), (? x, q, ? y)})) (15)

which can be translated into SPARQL syntax as:

SELECT ?u ?v (COUNT (*) AS ?w)
WHERE { ?x p ?u. ?y p ?v. ?x q ?y. }
GROUP BY ?u ?v

6.2.2. Parallel-Out

In this pattern, a tie is extracted from a node u to another one v, when both nodes have out-links
(they are in subject position in two triples with predicate p) to two other intermediary nodes x and y
that are linked to each other using the other predicate q. Thus, the pattern is: (u, p, x), (v, p, y), (x, q, y).
The extracted relation is directional. The corresponding query is:

Q16 = Project({? u, ? v}, {(? u, p, ? x), (? v, p, ? y), (? x, q, ? y)}) (16)

and the weighted version is:

Q17 = Project({? u, ? v, ? w}, GroupAgg(〈? u, ? v〉, ? w, Count, 〈? x, ? y〉, {((? u, p, ? x), (? v, p, ? y), (? x, q, ? y)})) (17)

Corresponding queries in SPARQL syntax are, respectively:

SELECT ?u ?v WHERE { ?u p ?x. ?v p ?y. ?x q ?y. }

SELECT ?u ?v (COUNT (*) AS ?w)
WHERE { ?u p ?x. ?v p ?y. ?x q ?y. }
GROUP BY ?u ?v

http://bibliographic-ontology.org/
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6.3. Patterns with Four Triples

Among different possible patterns of two predicates and four triples, we chose to present four
common patterns as shown in Figure 6. Networks extracted using these patterns are undirected and can
be weighted when the number of co-occurrences is considered; however, we will not provide weighted
versions for the sake of brevity.

Revert Out-2-Star

( d )( c )

Straight Out-2-StarRevert In-2-Star

( b )( a )
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Figure 6. Extraction patterns with two predicates and four triples. (a) Straight In-2-Star: u and v have
out-going connections (using p) to x and y, respectively, while x and y have out-going connections
(using q) to o. (b) Revert In-2-Star: u and v have in-coming connections (using p) from x and y,
respectively, while x and y have out-going connections (using q) to o. (c) Straight Out-2-Star: u and
v have in-coming connections (using p) from x and y, respectively, while x and y have in-coming
connections (using q) from s. (d) Revert Out-2-Star: u and v have out-going connections (using p) to x
and y, respectively, while x and y have in-coming connections (using q) from s.

6.3.1. Straight in-2-Star

In this pattern, we extract a bidirectional tie between two nodes u and v if they are linked
(using one predicate p) to two other nodes x and y that are in turn linked to a fifth node o using
another predicate q (Figure 6a). This pattern (? u, p, ? x), (? v, p, ? y), (? x, q, ? o), (? y, q, ? o) is named so
because the intermediary nodes make an in-2-star pattern, and receive straight links from u, v using p
(same direction as q). The corresponding query is then:

Q18 = Project({? u, ? v}, {(? u, p, ? x), (? v, p, ? y), (? x, q, ? o), (? y, q, ? o)}) (18)

The corresponding syntactic query is written as:

SELECT ?u ?v WHERE { ?u p/q ?o. ?v p/q ?o. }

Example 12. In the DailyMed dataset (https://dailymed.nlm.nih.gov/dailymed/), the predicate
dailymed:producesDrug relates a pharmaceutical company to a drug it produces, and the predicate
dailymed:activeIngredient relates a drug to its active ingredient. Using these two predicates, we can
extract a social network of competing pharmaceutical companies where competition is defined by selling drugs
with the same active ingredient [28]. The required query can be written as:

Q = Project({? u, ? v}, { (? u, dailymed:producesDrug, ? x), (? v, dailymed:producesDrug, ? y),

(? x, dailymed:activeIngredient, ? o), (? y, dailymed:activeIngredient, ? o) } )

where u and v are companies producing x and y drugs, respectively, and the drugs both have the same active
ingredient o.

6.3.2. Revert in-2-Star

In this pattern, we extract a bidirectional tie between two nodes u and v if they have links
(using one predicate p) from two other nodes x and y that are in turn linked to a fifth node o

https://dailymed.nlm.nih.gov/dailymed/
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using another predicate q (Figure 6b), thus the pattern is: (? x, p, ? u), (? y, p, ? v), (? x, q, ? o), (? y, q, ? o).
This pattern is similar to the previous one. However, the links of predicate p are not in the same
direction as those of q (hence the name revert). The corresponding query is then:

Q19 = Project({? u, ? v}, {(? x, p, ? u), (? y, p, ? v), (? x, q, ? o), (? y, q, ? o)}) (19)

The corresponding syntactic query is written as:

SELECT ?u ?v
WHERE { ?x p ?u; q ?o.
?y p ?v; q ?o. }

Example 13. The Bibliographic Ontology has a predicate bibo:presentedAt that relates a document to
an event—for example, a paper to a conference. Thus, using this predicate and dc:contributor that relates
a document to his author, we can extract a social network among authors whose papers are presented at the same
event. The required query can be written as:

Q = Project({? u, ? v}, { (? x, bibo:presentedAt, ? o), (? y, bibo:presentedAt, ? o),

(? x, dc:contributor, ? u), (? y, dc:contributor, ? v) } )

6.3.3. Straight Out-2-Star

In this pattern, we extract a bidirectional tie between two nodes u and v if they have links
(using one predicate p) from two other nodes x and y that in turn have links from a fifth node s using
another predicate q (Figure 6c). This pattern is denoted (? x, p, ? u), (? y, p, ? v), (? s, q, ? x), (? s, q, ? y),
and is named so because the intermediary nodes make an out-2-star pattern, and send straight links
out to u, v using p (same direction as q). The corresponding query then is:

Q20 = Project({? u, ? v}, {(? x, p, ? u), (? y, p, ? v), (? s, q, ? x), (? s, q, ? y)}) (20)

Syntactically, the query can be written as follows, using a property sequence path q/p:

SELECT ?u ?v WHERE { ?s q/p ?u, ?v. }

6.3.4. Revert Out-2-Star

In this pattern, we extract a bidirectional tie between two nodes u and v if they are linked
(using one predicate p) to two other nodes x and y that in turn have links from a fifth node s
using another predicate q (Figure 6d), thus the pattern is: (? u, p, ? x), (? v, p, ? y), (? s, q, ? x), (? s, q, ? y).
The corresponding query then is:

Q21 = Project({? u, ? v}, {(? u, p, ? x), (? v, p, ? y), (? s, q, ? x), (? s, q, ? y)}) (21)

which can expressed using SPARQL syntax as:

SELECT ?u ?v WHERE { ?u p ?x. ?v p ?y. ?s q ?x; q ?y. }

To conclude this section, we summarize the extraction patterns for complete networks in Figure 7
where the patterns are classified based on the number of predicates and number of triples.
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Figure 7. Classification of extraction patterns.

Table 2 also provides an overview of those extraction patterns. Note that, in all these techniques,
an extracted tie is always denoted with variables ? u and ? v, and that when the network is directed the
direction of the tie is always from ? u to ? v.

The list of extraction techniques/patterns presented so far in this paper is not exhaustive.
Many other useful patterns can be added to this list.

Table 2. Summary of extraction techniques for complete networks.

Variant Basic Graph Pattern
Extracted Network

Directed? Weighted?

1-triple direct {(? u, p, ? v)} yes no

1-pred.,
2-triples

in-2-star {(? u, p, ? o), (? v, p, ? o)} no yes

out-2-star {(? s, p, ? u), (? s, p, ? v)} no yes

chain {(? u, p, ? x), (? x, p, ? v)} yes yes

2-pred.,
2-triples

in-2-star {(? u, p, ? o), (? v, q, ? o)} yes yes

out-2-star {(? s, p, ? u), (? s, q, ? v)} yes yes

chain {(? u, p, ? x), (? x, q, ? v)} yes yes

2-pred.,
3-triples

parallel-in {(? x, p, ? u), (? y, p, ? v), (? x, q, ? y)} yes yes

parallel-out {(? u, p, ? x), (? v, p, ? y), (? x, q, ? y)} yes yes

2-pred.,
4-triples

straight in-2-star {(? u, p, ? x), (? v, p, ? y), (? x, q, ? o), (? y, q, ? o)} no yes

revert in-2-star {(? x, p, ? u), (? y, p, ? v), (? x, q, ? o), (? y, q, ? o)} no yes

straight out-2-star {(? x, p, ? u), (? y, p, ? v), (? s, q, ? x), (? s, q, ? y)} no yes

revert out-2-star {(? u, p, ? x), (? v, p, ? y), (? s, q, ? x), (? s, q, ? y)} no yes

7. Translation into Networks

To this end, we have presented several techniques (as extraction patterns) to extract social
networks from Linked Open Data represented using RDF data model. Each of those patterns has
the form of a SPARQL query in its algebraic form. As we saw in Section 4.2, queries in SPARQL are
expressions of the form Project(X, P) where P is a pattern and X is a set of free variables. The result of
a SPARQL query Q over an RDF graph G is a multiset of solution mappingsM = vPwG, where v.wG
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is an evaluation function. In order to obtain the target social network, we need a formal translation
step to specify the results of a query (corresponding to an extraction pattern) as a social network.
We distinguish between two cases:

7.1. Binary Networks

In this case, the query has two returned variables representing connected vertices. Thus, it has
the form: Q = Project({? u, ? v}, P), where P is some pattern (as described in previous section).
LetM = vQwD be a set of solution mappings {µ} of query Q. To translateM to a one-mode network:
H(V, E), we define a translation function tr: tr(M) = H(V, E), where

V = {µ(? u) | µ ∈ M} ∪ {µ(? v) | µ ∈ M}
E = {(µ(? u), µ(? v)) | µ ∈ M}

7.2. Weighted Networks

In this case, the query has three returned variables: the first two represent connected vertices,
and the third is the weight. Thus, the query has the form: Q = Project({? u, ? v, ? w}, P), where P is some
pattern. LetM = vQwD be a set of solution mappings {µ} of query Q. To translateM to a one-mode
weighted network: H(V, E, ω), we define a translation function tr: tr(M) = H(V, E, ω), where:

V = {µ(? u) | µ ∈ M} ∪ {µ(? v) | µ ∈ M}
E = {eµ = (µ(? u), µ(? v)) | µ ∈ M}

ω(eµ) = µ(? w)

8. Discussion

This paper proposes several techniques to extract social networks from Linked Open Data.
The proposed techniques have the form of extraction patterns that can be expressed using SPARQL
queries whose results make up the target social network. The importance of the proposed approach
comes from (1) the importance of Linked Open Data as a rich source of information, and (2) the role of
extraction patterns as guidelines for the process of deriving new latent knowledge (social networks)
from existing one (linked open data).

Linked Open Data is structured information in a machine-processable format, openly published
on the Web, and linked to other datasets. Those properties of LOD make it an invaluable resource
of information, and create new opportunities for many areas of application. Thus, LOD is being
increasingly adopted, not only by the scientific community, but also by several groups of stakeholders
such as media, industry, and governmental organizations and NGOs. LOD is already widely available
in several industries, including libraries, bio-medicine, and government data. “Linking information
from different sources is key for further innovation. If data can be placed in a new context, more and
more valuable applications—and therefore knowledge—will be generated” [13].

From this point of view comes our proposal of mining new information i.e., social networks,
from LOD, and then turning it into knowledge, through social network analysis. Hence, the extraction
techniques/patterns proposed in this paper come to facilitate this process.

Extraction patterns can be considered as guidelines to help the user figure out the appropriate
formulation of the query to extract a desired network, and to understand the outcomes of different
design choices: which predicates are needed, how many triple patterns, which direction of predicate
of each triple pattern (subject-object) is the appropriate, etc. Extraction patterns are used as building
blocks to establish more complex patterns that can be used to extract complex networks (e.g., as in
3-triple and 4-triple patterns). Moreover, they can also be used as building blocks to design extraction
patterns for other types of social networks, such as contextual networks and ego-centered networks.
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A contextual social network differs from a complete network in that it covers a subset of
the population defined by means of a specific context, e.g., entity type, time, location, or gender
(e.g., a co-acting network of Indian actors, or influence network of intellectuals in a specific era).
Given the general extraction patterns presented in this paper, specialized extraction patterns for
contextual social networks can be constructed by applying additional triple patterns and/or filters
that specify the desired context of a target partial network.

On the other hand, an ego-centered network is centered around a specific entity and includes
its surrounding environment, e.g., a co-acting network centered around Jodie Foster, or an influence
network centered around Isaac Newton. Hence, specialized extraction patterns for ego-centered
social networks can be built on top of the general extraction patterns, taking into account whether the
network is directed or not, and considering both ego-alter ties and alter-alter ties, as we demonstrated
in a previous work [34].

In this paper, the focus has been on the case where a single dataset is being queried at a time,
that is, the described patterns have a limited scope to one dataset only (e.g., from a movie subset,
or from a bibliographic resource). However, this work can be extended to tackle the case where
multiple datasets can be used to extract a target social network. This can be done using the interlinking
among LOD datasets, as well as using federated SPARQL queries. One of the main objectives of
Linked Open Data is linking and integration among the LOD cloud datasets. “Connectivity among
two or more datasets can be achieved through common Entities, Triples, Literals, and Schema Elements,
while more connections can occur due to equivalence relationships between URIs, such as owl:sameAs,
owl:equivalentProperty and owl:equivalentClass, since many publishers use such equivalence
relationships, for declaring that their URIs are equivalent with URIs of other datasets” [35]. As most
of LOD datasets are interlinked, there are considerable amounts of overlap of RDF resources within
datasets in the whole LOD cloud. Thus, such overlap is also reflected onto the social networks extracted
from different datasets.

For example, consider the co-acting social network as described in the motivation example
(Section 2). This network can be extracted from YAGO dataset using the predicate yago:actedIn
(which relates an actor to a movie) with the in-2-star extraction pattern (Section 5.3.1) as demonstrated
in Example 3. In this case, the size of the network is 225,790 edges, connecting 26,544 nodes (actors).

It is also possible to extract such a network from DBpedia using the predicate dbo:starring
(which relates a movie to an actor) with the out-2-star extraction pattern (Section 5.3.2) as mentioned
in Example 4. The SPARQL query is shown in Figure 8. In this case, the size of the network is 829,887
edges. This network is different from the one extracted from YAGO, not only in terms of the number of
entities and edges, but also in terms of the entities themselves (RDF resources), as the entities in YAGO
belong to the namespace http://yago-knowledge.org/resource/, whereas the entities in DBpedia
belong to the namespace http://dbpedia.org/resource/.

PREFIX dbo: <http :// dbpedia.org/property/>
SELECT DISTINCT ?actor1 ?actor2
WHERE {
?movie dbo:starring ?actor1.
?movie dbo:starring ?actor2.
FILTER ( isIRI(? actor1) && isIRI(? actor2)
&& STR(? actor1) > STR(? actor2) )
}

Figure 8. SPARQL query to extract co-acting social network from DBpedia.

Despite the differences between the two extracted networks, there are certainly many overlaps
between them. For instance, the entity yago:Brad_Pitt from yago is the same as the entity
dbr:Brad_Pitt from DBpedia (Here, the prefix dbr refers to DBpedia resources namespace: http:
//dbpedia.org/resource/). The good news is that, thanks to the interlinking of DBpedia and YAGO,

http://dbpedia.org/resource/
http://dbpedia.org/resource/
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such equivalences of entities are available via the OWL property owl:sameAs. Thus, the overlap
between the two co-acting social networks (from YAGO and DBpedia) can be easily detected. Figure 9
shows another version of the previous SPARQL query (to extract the network from DBpedia) where
each entity from DBpedia is associated with its equivalent entity from YAGO. The results of this query
consist of 94,311 ties/edges that correspond to the intersection of the the two social networks.

PREFIX dbo: <http :// dbpedia.org/property/>
SELECT DISTINCT ?actor1 ?actor2 ?a1 ?a2
WHERE {
?movie dbo:starring ?actor1.
?movie dbo:starring ?actor2.
?actor1 owl:sameAs ?a1.
?actor2 owl:sameAs ?a2.
FILTER ( isIRI(? actor1) && isIRI(? actor2) && STR(? actor1) > STR(? actor2)
&& strStarts(STR(?a1), ‘‘http ://yago -knowledge.org/resource/’’)
&& strStarts(STR(?a2), ‘‘http ://yago -knowledge.org/resource/’’) )
}

Figure 9. SPARQL query to extract co-acting network from DBpedia, with YAGO equivalent entities.

It is also possible to perform such an overlap investigation using federated SPARQL queries [16]
(through SERVICE operator) which allow for combining graph patterns that can be evaluated over
several endpoints within a single query [15].

Overall, extracting social networks from linked open data enables us to visualize those
networks and study them using prominent tools of social network analysis. Besides usual types
of analysis, such as connectivity and centrality, advanced analysis can be applied on extracted
social networks, including e.g., community detection, diffusion dynamics, and link prediction, etc.
Moreover, being extracted from linked open data, the nodes of an extracted network are LOD entities
and thus can be enriched with their attributes that are readily available in the source LOD dataset.
This process will turn the extracted network into a content-rich network whose nodes are associated
with rich content information. For instance, consider the co-acting network when each actor is
associated with extra metadata, such as country, birth date, and gender. As another example, consider
the influence network of intellectuals when we associate each node (scholar) with the historical period
in which he/she lived; this makes the influence network into a dynamic network and hence enables
longitudinal network studies, i.e., to study how a social network develops or changes over time. In all
cases, new knowledge is being generated which would be of a great interest.
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SPARQL Simple Protocol and RDF Query Language
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OWL Web Ontology Language
URI Uniform Resource Identifier
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