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Summary

In this dissertation, we tackle both theoretical challenges within the field of stochastic partial
differential equations as well as statistical inference problems based on high-frequency estimation
for a new class of stochastic processes.

In Chapter 1, given a sequence L̇ε of Lévy noises, we derive necessary and sufficient conditions
in terms of their variances σ2(ε) such that the solution to the stochastic heat equation with noise
σ(ε)−1L̇ε converges in law to the solution to the same equation with Gaussian noise. This normal
approximation result applies to both equations with additive and multiplicative noise and hence
lifts the findings of S. Asmussen and J. Rosiński [J. Appl. Probab. 38 (2001) 482–493] and S.
Cohen and J. Rosiński [Bernoulli 13 (2007) 195–210] for finite-dimensional Lévy processes to
the infinite-dimensional setting without making distributional assumptions on the solutions such
as infinite divisibility. One important ingredient of our proof is to characterize the solution to
the limit equation by a sequence of martingale problems. To this end, it is crucial to view the
solution processes both as random fields and as càdlàg processes with values in a Sobolev space
of negative real order.

In Chapter 2, we prove the normal approximation for the solution uε to the stochastic wave
equation driven by the Lévy noise σ(ε)−1L̇ε and thus extend the result of Chapter 1 to the class
of hyperbolic stochastic PDEs. Furthermore, uε is shown to have a space–time version with a
càdlàg property determined by the wave kernel, and its derivative ∂tu

ε a càdlàg version when
viewed as a distribution-valued process. These two path properties are essential to our proof of
the normal approximation as the limit is characterized by martingale problems that necessitate
both random elements. Our results apply to additive as well as to multiplicative noises.

In Chapter 3, we consider the problem of estimating volatility for high-frequency data when
the observed process is the sum of a continuous Itô semimartingale and a noise process that
locally behaves like fractional Brownian motion with Hurst parameter H. The resulting class
of processes, which we call mixed semimartingales, generalizes the mixed fractional Brownian
motion introduced by P. Cheridito [Bernoulli 7 (2001) 913–934] to time-dependent and stochas-
tic volatility. Based on central limit theorems for variation functionals, we derive consistent
estimators and asymptotic confidence intervals for H and the integrated volatilities of both the
semimartingale and the noise part, in all cases where these quantities are identifiable. When ap-
plied to recent stock price data, we find strong empirical evidence for the presence of fractional
noise, with Hurst parameters H that vary considerably over time and between assets.

Finally, Chapter 4 consists of a supplementary material that gives in detail all proofs of the
theoretical results of Chapter 3.
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Zusammenfassung

In dieser Dissertation gehen wir sowohl an theoretische Herausforderungen im Bereich stochastis-
che partielle Differentialgleichungen als auch an statistische Inferenzprobleme basierend auf
Hochfrequenzschätzung für eine neue Klasse von stochastischen Prozessen heran.

In Kapitel 1, gegeben eine Folge L̇ε von Lévy Noises leiten wir notwendige und hinre-
ichende Bedingungen für deren Varianzen σ2(ε) her, sodass die Lösung der stochastischen
Wärmeleitungsgleichung mit Noise σ(ε)−1L̇ε in Verteilung gegen die Lösung der gleichen stochas-
tichen PDEs mit Gauss’schem Noise konvergiert. Diese normale Approximation gilt für Gle-
ichungen sowohl mit additivem als auch mit multiplikativem Noise. Sie hebt damit die Be-
funde von S. Asmussen und J. Rosiński [J. Appl. Probab. 38 (2001) 482–493] und S. Cohen
and J. Rosiński [Bernoulli 13 (2007) 195–210] für endlich-dimensionale Lévy Prozesse auf ein
unendlich-dimensionales Setting hoch, ohne Verteilungsannahmen über die Lösungen zu machen
wie unendliche Teilbarkeit. Ein wichtiger Bestandteil unseres Beweises besteht darin, die Lösung
der Grenzwertgleichung durch eine Folge von Martingalproblemen zu charakterisieren. Dazu ist
es entscheidend, die Lösungsprozesse sowohl als Zufallsfelder als auch als càdlàg-Prozesse mit
Werten in einem Sobolev-Raum negativer reeller Ordnung zu betrachten.

In Kapitel 2 weisen wir die normale Approximation für die Lösung uε der stochastischen
Wellengleichung angetrieben durch den Lévy Noise σ(ε)−1L̇ε nach und erweitern damit die Re-
sultate von Kapitel 1 auf die Klasse der hyperbolischen stochastischen PDEs. Außerdem wird
gezeigt, dass uε als Zufallsfeld in Raum und Zeit eine Version mit einer càdlàg-Eigenschaft hat,
welche durch den Wellenkern bestimmt wird, und seine Ableitung ∂tu

ε eine càdlàg-Version,
wenn sie als distributionswertiger Prozess betrachtet wird. Diese beiden Pfadeigenschaften sind
für unseren Beweis der normalen Approximation wesentlich, da der Grenzwert durch Martingal-
probleme charakterisiert ist, welche beide Zufallselemente erfordern. Unsere Ergebnisse gelten
sowohl für additiven als auch für multiplikativen Noise.

In Kapitel 3 betrachten wir das Problem der Volatilitätsschätzung für hochfrequente Daten,
wenn der beobachtete Prozess die Summe eines kontinuierlichen Itô Semimartingals und eines
Noise-Prozesses ist, welcher sich lokal wie eine fraktioniale Brownsche Bewegung mit Hurst-
Parameter H verhält. Die resultierende Klasse von Prozessen, die wir gemischte Semimartingale
nennen, verallgemeinert die von P. Cheridito [Bernoulli 7 (2001) 913-934] eingeführte gemischte
fraktionelle Brownsche Bewegung auf zeitabhängige und stochastische Volatilität . Basierend auf
zentralen Grenzwertsätzen für Variationsfunktionale leiten wir konsistente Schätzer und asymp-
totische Konfidenzintervalle für H und die integrierten Volatilitäten sowohl des Semimartingal-
als auch des Noiseanteils in allen Fällen ab, in denen diese Größen identifizierbar sind. Bei der
Anwendung auf aktuelle Aktienkursdaten finden wir starke empirische Beweise für das Vorhan-
densein von fraktionalem Noise.

Kapitel 4 schließlich besteht aus einem ergänzenden Material, das im Detail alle Beweise der
theoretischen Ergebnisse von Kapitel 3 liefert.
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Introduction

In this thesis, we develop functional central limit theorems for the solutions to stochastic par-
tial differential equations (stochastic PDEs) driven by a pure-jump Lévy space–time white
noise as well as for a new model within financial statistics that we call mixed semimartingale,
in which stock prices observed at high frequency are contaminated by a fractional microstructure
noise. We further develop estimation procedures for the volatility of price processes and perform
an extensive simulation study and data analysis based on high-frequency financial data.

The motivation for the first part of this thesis is the normal (or Gaussian) approximation for
Lévy processes. If we consider a family Lε

t =
∫ t

0
∫
R z (µε −νε)(ds, dz) of Lévy processes consisting

of compensated jumps (µε is a Poisson random measure on R+ × R, νε(ds, dz) = dsQε(dz) its
intensity measure and Qε(dz) a Lévy measure on R) such that the variance of the jumps is finite
(that is, σ2(ε) =

∫
R z

2Qε(dz) < ∞), then it holds that

σ(ε)−1 Lε d−→ W, as ε → 0, (I)

where W is a standard Brownian motion, if and only if the following analytical condition on the
Lévy measure Qε(dz) holds:

lim
ε→0

1
σ2(ε)

∫
|z|>κσ(ε)

z2Qε(dz) = 0 for all κ > 0. (II)

In (I), the convergence takes place in the Skorokhod space D([0,∞),R). This is a well-known
weak convergence result which has been proven in [36] in its full generality. An important
special case of this normal approximation is the so-called small jumps approximation of Lévy
processes; see [9]. In that situation, we have a single Lévy process L with a Lévy measure Q(dz)
and we consider the processes Lε that arise from setting µε(ds, dz) = 1{|z|≤ε}µ(ds, dz) and
Qε(dz) = 1{|z|≤ε}Q(dz), ε > 0. Then, provided (II) holds, the normal approximation (I) has
the following interpretation: As the amplitude ε decreases, the Lévy process σ(ε)−1Lε consisting
only of normalized jumps of amplitude ≤ σ(ε)−1ε tends to look more and more like the Brownian
motion W .

Investigating the condition (II) for prominent examples of Lévy processes, [9] obtains the
following: The normal approximation neither holds for the compound Poisson process (hence,
an infinite activity of jumps is necessary for (I)), nor for the gamma process. It does, however,
for any stable process of index α ∈ (0, 2) and for the normal inverse Gaussian process.

From this starting point, we investigate convergence in law of stochastic PDEs for which the
driving noise is Lε. More precisely, we consider the stochastic heat equation

∂tu
ε(t, x) = ∂xxu

ε(t, x) + f(uε(t, x)) L̇
ε(t, x)
σ(ε) , (t, x) ∈ [0, T ] × [0, π], (III)
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and the stochastic wave equation

∂ttu
ε(t, x) = ∂xxu

ε(t, x) + f(uε(t, x)) L̇
ε(t, x)
σ(ε) , (t, x) ∈ [0, T ] × R, (IV)

the prototypes of parabolic and hyperbolic stochastic PDEs, respectively. In these two equations,
L̇ε(t, x) is a pure-jump Lévy space–time white noise with a representation

Lε(A) =
∫
R+×R

∫
R
1A(t, x)z (µε − νε)(dt, dx, dz), A ∈ Bb(R+ × R). (V)

The components defining Lε are similar to the purely temporal situation: µε is a Poisson random
measure on R+ ×R2 with intensity measure νε(ds, dx,dz) = dsdxQε(dz), and Qε(dz) is a Lévy
measure with σ2(ε) =

∫
R z

2Qε(dz) < ∞. It is important to note that we consider equations with
multiplicative noise f(uε(t, x))σ(ε)−1L̇ε(t, x), that is, the perturbation of the system considered
is modeled as the product of the noise and (some function of) the solution itself.

We then raise the question: Do we have uε(t, x) d−→ u(t, x) where u solves

∂tu(t, x) = ∂xxu(t, x) + f(u(t, x))Ẇ (t, x), (t, x) ∈ [0, T ] × [0, π], (VI)

or
∂ttu(t, x) = ∂xxu(t, x) + f(u(t, x))Ẇ (t, x), (t, x) ∈ [0, T ] × R, (VII)

depending on the stochastic PDE considered? In the equations above, Ẇ (t, x) is a Gaussian
space–time white noise, that is, a centered Gaussian random measure

{
W (A) | A ∈ Bb(R+ × R)

}
with covariance structure E[W (A)W (B)] = LebR+×R(A ∩ B) for bounded Borel sets A,B ⊆
R+ ×R. In Chapter 1 and Chapter 2, which led to the papers [32] and [43], respectively, we give
a positive answer to that question.

As a first step toward our results, it is necessary to find suitable function spaces that support
the solution uε to (III) and to (IV). In particular, we need some sort of càdlàg path regularity for
uε because our proofs are based on the general semimartingale theory. First of all, throughout
this thesis we work with the concept of mild solutions to stochastic PDEs, an approach that
traces back to a seminal work by J. B. Walsh; see [99]. In our setting, this is a predictable
random field uε satisfying for each space–time point (t, x),

uε(t, x) =
∫ t

0

∫
R
Gt−s(x, y)f(uε(s, y))

σ(ε) Lε(ds, dy).

The kernel G is the Green’s function of the heat operator on [0, T ] × [0, π] or of the wave
operator on [0, T ] × R. Recent results guarantee the existence and uniqueness of uε; see [28],
for instance. In the two equations considered, uε is locally square-integrable. Furthermore, for
the heat equation, one issue is that G is singular at the origin, whence each time a jump from
Lε(ds, dy) occurs, it creates an explosion of the solution. So uε cannot have any path regularity
jointly in space and time. An alternative is to view uε as a process with only a time variable
and values in a space of distributions. In doing so it was shown in[31] that the solution has a
càdlàg version uε in the fractional Sobolev space of negative order denoted by H−r([0, π]), for
any r > 1/2. Drawing upon this result, instead of uε only, we consider for the stochastic heat
equation, the pairs

(uε, uε) ∈ L2([0, T ] × [0, π]) ×D([0, T ], H−r([0, π])). (VIII)
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In the main result of Chapter 1, Theorem 1.2.1, we then prove that (uε, uε) d−→ (u, u), where u
is the continuous mild solution to (VI) and u its continuous version in H−r([0, π]), if and only if
the condition (II) is satisfied. It is remarkable that, comparing with the purely temporal case,
no additional assumption on the noise L̇ε is required for that result.

By contrast, the wave kernel in one space dimension has no singularity as it is the indicator
function is the backward light cone. Hence, we can expect the solution to the wave equation to
exhibit some path regularity in space–time. In fact, we show that it has a version uε with a two-
dimensional càdlàg property denoted by ⪯ that fits the shape of the wave kernel. In addition, we
also need the (distributional) time derivative ∂tu

ε. We show that there exists a càdlàg process
vε with values in a distribution space H−r(R) defined similarly as H−r([0, π]) that completely
characterizes ∂tu

ε. We then prove for the wave equation, in Theorem 2.4.1, that the pair

(uε, vε) ∈
(
D⪯([0, T ] × [0, L]) ∩ L2([0, T ] × [0, L])

)
×D([0, T ], H−r(R)) (IX)

converges weakly to the pair (u, v), where u is the continuous mild solution to (VII) and v a
continuous H−r(R)-valued process that characterizes ∂tu. This is the main result of Chapter 2.

We see that the functional setting is different for both equations and, consequently, many
aspects in the proof of the normal approximation differ in the two chapters. However, the general
idea of the proof is the same. It is important to note that because we consider stochastic PDEs
with multiplicative noise, which is a major contribution of our results, the proof is much more
challenging than in the case of additive noise (f constant). For instance, we cannot make use of
weak convergence results for infinitely divisible distributions since we have stochastic integrands.

First, we show tightness of each random element within the function space that supports it.
To that aim, we use various tightness criteria (in particular, the Aldous condition and general-
ization thereof to multi-indexed processes). Next, the identification step of the limit is based on
the fact that we can find a characterization of mild solutions in terms of semimartingales with
known characteristics. For the heat equation, we have for all test functions ϕ ∈ C∞

c ((0, π)),

⟨uε
t , ϕ⟩ =

∫ t

0

∫ π

0
uε(s, x)ϕ′′(x) ds dx+

∫ t

0

∫ π

0

f(uε(s, x))
σ(ε) ϕ(x)Lε(ds, dx). (X)

And for the wave equation, for all ϕ1, ϕ2 ∈ C∞
c (R),∫

R
uε(t, x)ϕ1(x) dx+ ⟨vε

t , ϕ2⟩

=
∫ t

0

∫
R
uε(s, x)ϕ′′

2(x) dxds+ ⟨∂tu
ε(t, ·), ϕ1⟩ +

∫ t

0

∫
R
ϕ2(x)f(uε(s, x))

σ(ε) Lε(ds, dx).
(XI)

By well-known results in [65], the semimartingales in (X) and (XI) are completely character-
ized by martingale problems involving certain complex-valued martingales M ε

HEAT and M ε
WAVE,

respectively. We then construct further processes MHEAT and MWAVE in such a way that if
MHEAT and MWAVE are shown to be martingales as well, then the random field w (obtained
from weak converging subsequences) necessarily is the mild solution to (VI) and (VII), respec-
tively. But under the condition (II) on the Lévy measure, we can show that M ε

HEAT −→ MHEAT
and M ε

WAVE −→ MWAVE as ε → 0 in the Skorokhod topology, from which the desired martin-
gale property of MHEAT and MWAVE can be inferred, hereby yielding our normal approximation
results.

It is important to note the intricate interplay of the different random elements at hand in
(X) and (XI): The semimartingale characteristics of the processes on the left-hand sides do not
directly depend on the processes themselves but on the random field solution uε (and also on
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∂tu
ε for the wave equation). In particular, they are not deterministic. This is precisely the reason

why we need to consider pairs in (VIII) and (IX).
The normal approximation of stochastic PDEs has applications, for instance, in neurophysiol-

ogy: There, the stochastic cable equation is used to describe the propagation of action potentials
within one neuron, from the site of initiation to the end of its axon, which is viewed as a thin
cylinder. We then have for the potential Y ε,

∂tY
ε(t, x) = ∂xxY

ε(t, x) − Y ε(t, x) + σ(Y ε(t, x))L̇ε(t, x)

where L̇ε(t, x) describes the electrical impulses arriving at time t and position x. By our results,
this stochastic PDE can be approximated after appropriate normalization by

∂tY (t, x) = ∂xxY (t, x) − Y (t, x) + σ(Y (t, x))Ẇ (t, x)

with a Gaussian white noise Ẇ , an equation far easier to simulate in practice.

We now turn to the second part of this thesis, that is, Chapter 3 and Chapter 4. Here, we
introduce a new statistical model that we call mixed semimartingale and that we define (in
a somewhat simplified version) as follows:

Yt = Xt +Zt, Xt =
∫ t

0
as ds+

∫ t

0
σs dBs, Zt =

∫ t

0
g(t− s)ρs dWs, g(t) = K−1

H tH− 1
2 (XII)

where 0 < H < 1/2. The process (Xt)t≥0 is a continuous Itō semimartingale and the process
(Zt)t≥0 a continuous moving-average. σ and ρ are volatility processes (possibly dependent), B
and W are independent Brownian motions. Furthermore, if ρ ≡ 1, one sees that Zt is, up to
a process of finite variation, the Mandelbrot–van Ness representation of fractional Brownian
motion (fBM) with a Hurst index H ∈ (0, 1/2). Note that if both σ and ρ in (XII) are constant,
we obtain a special class of models called mixed fractional Brownian motion (mfBM) that was
first introduced by P. Cheridito in [25].

The mixed semimartingale model is motivated by empirical observations in financial data.
Consider the realized volatility V̂ n

0,t = ∑[T/∆n]
i=1 |Yi∆n − Y(i−1)∆n

|2 where Yt in (XII) is now an
observed asset price process, ∆n is a sampling frequency and T a finite time horizon. For each
stock of the DJIA index (log of the mid-quote data) and for each trading day in 2019, we
calculated V̂ n

0,t for several sampling frequencies ∆n. From this, we observed that V̂ n
0,t diverges

as ∆n → 0 at a rate of ∆α
n with α ∈ (−1, 0) in most cases. The reason for this blow-up is the

so-called market microstructure noise. It can be viewed as the difference between the observed
price process Yt and the efficient price, which is the continuous-time process Xt in (XII) that
arises as a scaling limit of prices when transactions occur more and more frequently.

We propose to model the microstructure noise by the fractional component Zt in (XII).
This is interesting for the following reasons. First, as shown by our theoretical results, under
this model we have ∆1−2H

n V̂ n
0,T

P−→
∫ T

0 ρ2
s ds. Since H < 1/2, all scaling exponents between

(−1, 0) can be reproduced via the Hurst index. An analogous observation was made for the
sample variance of price increments. Furthermore, it is a continuous-time model, whereas most
existing microstructure noise models are discrete time series. In a discrete setting, as soon as
the variance of the noise variables goes to 0 as ∆n → 0 (shrinking noise), compatibility issues
between sampling frequencies appear. On the other hand, if the variance of the noise remains
constant when increasing the sampling frequency (non-shrinking noise, i.i.d. noise for example),
then theoretical results show that V̂ n

0,T explodes as ∆n → 0 at a rate of ∆−1
n , which was observed

empirically only in few cases. Our continuous-time model also has the desirable feature that
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the process t 7→ Zt is Lebesgue-measurable. Finally, it allows for serial dependence, since the
increments of fBM are negative correlated (for H < 1/2), or dependence with the price process
Xt via the noise volatility ρ.

With the statistical model (XII) at hand, we pursue a theoretical investigation of the asymp-
totic properties of variation functionals V̂ n

r,T = ∑[T/∆n]
i=1 ∆n

i Y∆n
i+rY where ∆n

i Y = Yi∆n−Y(i−1)∆n

is an increment and r ∈ N0, in order to develop statistical procedures for estimating parame-
ters of interest: The integrated price volatility

∫ T
0 σ2

s ds, the integrated noise volatility
∫ T

0 ρ2
s ds

and the Hurst parameter H ∈ (0, 1/2) of the noise. Our theoretical findings include a law
of large numbers (LLN) and a central limit theorem (CLT) for these functionals: If we set
V̂ n

t = (V̂ n
0,t, . . . , V̂

n
R,t) with R ∈ N0, then we have for all H ∈ (0, 1

2),

∆− 1
2

n

{
∆1−2H

n V̂ n
t − ΓH

∫ t

0
ρ2

s ds− e1

∫ t

0
σ2

s ds∆1−2H
n 1[ 1

4 , 1
2 )(H)

}
st−→ Zt (XIII)

where st−→ denotes stable convergence in law, Zt =
∫ t

0 cs dW s with a standard Brownian motion
W ∈ R1+R (independent of all previous processes) and cs ∈ R(1+R)×(1+R) satisfies csc

T
s = CHρ4

s

and CH further describes the covariance structure of Zt. The numbers (ΓH
r )r≥0 appearing in

(XIII) are

ΓH
0 = 1, ΓH

r = ((r + 1)2H − 2r2H + (r − 1)2H)/2, r ≥ 1, ΓH = (ΓH
0 , . . . ,ΓH

R )

and correspond exactly to the autocorrelation function of the increments of an fBM with Hurst
index H. In fact, both the LLN limit and the CLT limit come from the fractional part Zt. Setting
σ = 0 would thus lead to a CLT for fBM with the same form as in [14], for instance. In the
general situation, however, Xt produces an asymptotic bias term equal to the integrated price
volatility at the rate of ∆1−2H

n for the realized volatility and only if H > 1/4. This is in line
with the results of [96] stating that if H < 1/4, the processes Yt and Zt have equivalent laws
and, thus, the price volatility cannot be estimated consistently. Note also that the knowledge
of the fluctuation process Zt in (XIII) will allow us to construct feasible estimators that are
asymptotically normal. Indeed, one crucial benefit of stable convergence in law is the ability to
combine it with other converging random variables:

Zn
st−→ Z, Yn

P−→ Y =⇒ (Zn, Yn) st−→ (Z, Y ).

A central limit theorem for much more general variation functionals than V̂ n
t , and that are

normalized, constitutes the main result of Chapter 3; see Theorem 3.2.1. It exhibits additional
asymptotic bias terms with a convergence rate of ∆j(1−2H)

n with j = 1, . . . , N(H) (so they
are negligible in the LLN but not in the CLT due to the rate of ∆1/2

n ) and their number
N(H) = [1/(2 − 4H)] can be arbitrarily large depending on the value of the Hurst index.
This shows that a CLT for functionals of a mixed semimartingale is not just the sum of the
purely semimartingale model and the purely fractional model, which are both well studied in
the literature. The proof of our main CLT revolves around two main steps: First, the CLT as
such based on a centering with appropriate conditional expectations and second, the convergence
of the latter to the LLN limit after removing the asymptotic bias terms. Regarding the first part,
it turns out that the semimartingale part Xt is asymptotically negligible and does not play a
role in the shape of the CLT. So the fractional part Zt dominates and in order to analyze it,
we based our approach on martingale approximations for fractional processes and martingale
CLTs as conducted in [27, 29]. We also use constantly size estimates based on the structure of
the mixed semimartingale model and on important regularity assumptions that are commonly
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encountered in the literature: First, σ has the same regularity as Brownian motion, and second,
ρ is the sum of a process with a regularity strictly greater than 1/2 and of an Itō semimartingale.

Based on the CLT (XIII), we construct consistent, asymptotically mixed normal and, hence,
bias-free estimators for the aforementioned parameters of interest. As a matter of fact, the Hurst
index H must be estimated first, which is thus our first focus. Our basic estimator is

H̃n = ϕ−1
(

⟨a, V̂ n
T ⟩

⟨b, V̂ n
T ⟩

)
with ϕ(H) = ⟨a,ΓH⟩

⟨b,ΓH⟩
,

for some weight vectors a = (a0, . . . , aR), b = (b0, . . . , bR) in R1+R (and ⟨·, ·⟩ the standard
inner product on R1+R). In order to deal with the bias term in (XIII), we follow two strategies
that lead to two different estimators. First, we do not consider the realized volatility V̂ n

0,T in
the estimator for H. In that case, it is straightforward to find feasible estimators H̃n,0, C̃n,0

T

and Π̃n,0
T for H, the price and noise volatility, respectively (Theorem 3.3.4). For instance, we

obtain α̃
−1/2
n ∆−1/2

n (H̃n,0 − H) st−→ N (0, 1) as well as β̃−1/2
n ∆1/2−2H̃n,0

n (C̃n,0
T − CT ) st−→ N (0, 1)

if H ∈ (1/4, 1/2) where

C̃n,0
T =

{
V̂ n

0,T − ⟨c, V̂ n
T ⟩

⟨c,ΓH̃n,0⟩

}(
1 − c0

⟨c,ΓH̃n,0⟩

)−1

and c ∈ R1+R is another weight vector. The random variables α̃n and β̃n are known normalization
terms.

However, H̃n,0 above suffers from a serious drawback: If H = 1/2 (which amounts to saying
there is no fractional noise), since V̂ n

0,T is excluded from the computations, it can be shown
that ⟨a, V̂ n

T ⟩/⟨b, V̂ n
T ⟩ converges stably in law to a Cauchy distribution. So H̃n,0 is not consistent

anymore because with positive probability, it can take values on any nonempty open interval.
Therefore, it is necessary to construct an alternate estimator that performs well for high values
of the true parameter H. We can achieve that by including the realized volatility in (XIII). But
then, it turns out that the asymptotic bias term in (XIII) produces further bias terms: The basic
CLT for H̃n becomes

∆− 1
2

n

H̃n −H +
N(H)∑
j=1

Φn
j

(∫ T

0
σ2

s ds
)j
 st−→ N (0, C)

where N(H) = [1/(2 − 4H)], the random variables Φn
j are higher order terms coming from a

Taylor expansion and C > 0. So in order to obtain a bias-free estimator for H, we need to
estimate the price volatility. But as mentioned previously, to estimate

∫ T
0 σ2

s ds we first need
an estimate for H. This leads to a complex iterated estimation procedure for both H and the
price volatility, which ultimately yields feasible estimators for the three quantities of interest
(Theorem 3.3.11). It is important to note that in practice, it becomes increasingly challenging
to compute the terms Φn

j for high values of j as they are higher order derivatives. Hence, for
practical computations N(H) must be fixed. To the value N(H) = 3 we associate the feasible
estimators Ĥn,3, Ĉn,3

T and Π̂n,3
T (this is the highest value that we compute in this dissertation

and it yields the best numerical results).
With these estimators at hand, we perform a simulation study in R, hereby comparing them

with estimators already existing in the literature. Regarding the Hurst index, we consider a
regression estimator H̃n

VS based on a volatility signature plot, the autocorrelation estimator
H̃n

acf = (1 + log2(V̂ n
1,t/V̂

n
0,t + 1))/2 and a change-of-frequency estimator H̃n

DMS developed in [47],
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which was originally constructed for the mfBM model and has an optimal convergence rate of
∆1/2

n . Regarding the price volatility, we consider the two-scale realized variance estimator C̃n
TSRV

introduced in [100] as well as the preaveraging estimator C̃n
preave of [56]. Both are well-known

noise robust estimators in the field of financial econometrics and are already implemented in the
R package highfrequency.

We generate paths corresponding to 20 trading days for the (mfBM) process Y = σB+ρBH

with BH an fBM, for several values of H ranging from 0 to 1/2. Here, H = 0 means that instead
of BH , we generate i.i.d. standard normal variables, and H = 1/2 means that we set ρ = 0.
The simulation results show that our estimators for H outperform the existing estimators in
the whole range (0, 1/2) in terms of root-mean-squared-error (RMSE). The best estimator in
the range H ≤ 0.35 is by far H̃n,0. However, for the reason explained before, H̃n,0 has an ever
increasing standard error for higher values of H (the same goes for H̃n

DMS as it can be shown
that it is equal to H̃n,0 with special weight vectors a, b). But for H ∈ (0.4, 0.5), our estimator
Ĥn,3 has a lower RMSE than H̃n

VS, H̃n
acf and H̃n

DMS. Moreover, we conjecture that computing the
estimator for H with realized volatility and an increasing number of corrected bias terms (that
is, greater than 3) will gradually bring down the sample bias while maintaining the standard
error at a low level, ultimately yielding better estimators for H. Regarding the price volatility,
it turns out that C̃n,0

T performs better than Ĉn,3
T , both in terms of bias and standard error.

Furthermore, C̃n,0
T is better than C̃n

TSRV and C̃n
preave in the range H ∈ (0.15, 0.35) in terms of

RMSE (sometimes exhibiting an RMSE half so big as the other two estimators). However, due
to larger standard errors, C̃n,0

T performs worse than both standard noise-robust estimators for
lower and higher values of H.

Using these findings, we conclude with an empirical analysis. Based on the log mid-quote
data of the 29 companies that were constituents of the DJIA index for the whole year of 2019
and using a sampling frequency ∆n of one second, we produce a daily estimate of H using H̃n,0

and Ĥn,3 as well as a daily estimate of the price volatility using C̃n,0
T and Ĉn,3

T (and similarly
for the noise volatility). For each estimate of H, we also compute a 95%-confidence interval.
Our results for the Hurst index exhibit values varying within the interval (0, 1/2) from one
trading day to the other and differing between companies. Most of the time, the estimate of
H is significantly above 0 and beneath 1/2. This constitutes a strong empirical evidence for
asset- and time-dependent values of H. Moreover, in many cases our estimates of the price
volatility exhibit a similar behavior to the standard noise-robust estimators C̃n

TSRV and C̃n
preave.

For concrete examples, we refer to Section 3.5 of Chapter 3.
The theoretical results regarding our mixed semimartingale model as well as the simulation

study and the empirical analysis are exposed in Chapter 3, which led to the paper [33]. For
the sake of clarity, all proofs related to that chapter were put separately in Chapter 4, which
constitute the supplementary material [34] of the paper [33].

To conclude, we briefly present possible directions of future research that might further
develop/enhance the mixed semimartingale model. First, we can allow the semimartingale part
Xt in (XII) to exhibit jumps and the observed process Yt to be sampled at irregular (random)
observation times. These two topics were analyzed extensively in [64] in the semimartingale
setting. Furthermore, an important component of market microstructure noise is the rounding
error due to the discreteness of the price. In reality, transactions are usually executed up to
the nearest cent, so that prices are often unchanged over several observations. This is not quite
compatible with the continuity of the fractional component Zt. Hence, the rounding error should
be included in the modeling (XII) of the observed price Yt.
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Chapter 1

Normal approximation of the
solution to the stochastic heat
equation with Lévy noise

1.1 Introduction
The importance of the Gaussian distribution in probability theory and its popularity in appli-
cations are manifested in the central limit theorem: The total effect of a large number of small
independent contributions is approximately normal. Therefore, when physical systems governed
by one or several equations are perturbed by white noise (where “white” means stationary and
uncorrelated), it is frequently assumed that the noise is Gaussian.

For example, in his Saint-Flour lecture notes [99], J. B. Walsh discusses an application of
parabolic stochastic PDEs to the modeling of neuron potentials. Subject to impulses arriving
according to a marked Poisson point process (with mean 0 and atoms of size L̇(t, x) at time t
and position x), the electrical potential u(t, x) of the neuron, viewed as a thin cylinder of length,
say, π, is then well described by the stochastic cable equation

∂tu(t, x) = ∂xxu(t, x) − u(t, x) + L̇(t, x), (t, x) ∈ [0, T ] × [0, π], (1.1.1)
with suitable boundary and initial conditions. Arguing that “the impulses are generally small,
and there are many of them, so that in fact L̇ is very nearly a white noise” ([99], p. 311), the
author then approximates (1.1.1) by

∂tu(t, x) = ∂xxu(t, x) − u(t, x) + Ẇ (t, x), (t, x) ∈ [0, T ] × [0, π], (1.1.2)
where Ẇ is a Gaussian space–time white noise.

But of course, the central limit theorem has limitations. In the absence of finite second
moments, stable limits may arise; and if there are rare but large contributions, we may have
a Poisson limit. In general, any infinitely divisible distribution can arise as a possible limit of
compound Poisson laws; see Corollary 3.8 in [91]. This leads us to the following question: If we
have a sequence of noises L̇ε as above where the atom sizes of L̇ε converge to 0 as ε → 0, and if
uε denotes the solution to (1.1.1) with noise σ(ε)−1L̇ε (where σ2(ε) is the variance of L̇ε), do we
have convergence in distribution of uε to the solution u of (1.1.2) with the Gaussian noise Ẇ?
A positive answer for this normal approximation is given in Theorem 7.10 in [99]: If the atoms
of L̇ε are locally summable and the jump measure Qε of L̇ε satisfies

1
σ2+δ(ε)

∫
R

|z|2+δ Qε(dz) −→ 0 as ε → 0 (1.1.3)

1
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for some δ > 0, then uε converges in distribution to u.
The purpose of this work is to substantially generalize this result in two aspects. Given that

(1.1.3) is sufficient but not necessary for uε d−→ u (see Remark 1.2.3 below), our first contribution
is to show that the necessary and sufficient condition for the normal approximation is

lim
ε→0

1
σ2(ε)

∫
|z|>κσ(ε)

z2Qε(dz) = 0 (1.1.4)

for all κ > 0. In fact, if Lε (resp., W ) is a Lévy process (resp., Brownian motion), the same
condition was found to be necessary and sufficient for σ(ε)−1Lε d−→ W in [36]. Somewhat sur-
prisingly, in the special case of small jump approximation, that is, where Qε(dz) = 1{|z|≤ε}Q(dz)
and Q is a given Lévy measure, it was shown in [9] that condition (1.1.4) fails for prominent
examples such as the compound Poisson or the gamma distribution. So in these cases, the small
jump approximation is not true for Lévy processes and by our results, not true for stochastic
PDEs, either.

Our second contribution is to consider equations with multiplicative noise. To our best knowl-
edge, previous works on the normal approximation of stochastic PDEs with jumps have only
considered the situation of additive noise; see, besides the mentioned results in [99], also [70, 98]
(there is, of course, literature concerning approximation of multiplicative Gaussian white noise
by smoother noises [13, 54], but these problems are very different in nature than the one con-
sidered here). The proofs in [70, 98, 99] (as well as those of [9, 36]) are based on characteristic
functions and the Lévy–Khintchine formula for infinitely divisible distributions, which obviously
do not generalize to the situation of multiplicative noise.

Instead, our approach will be to show that uε satisfies martingale problems which, assuming
(1.1.4) only and not the stronger condition (1.1.3), have a limit with a unique solution. But
this leads to several complications. In order to prove convergence of the associated martingales,
we need some sort of uniformity in the time variable (as given, for example, by convergence in
the Skorokhod topology). So taking simply the space L2([0, T ] × [0, π]) to support the solutions
uε and u will not be sufficient. This is why we will draw upon the results of [31] and view the
solution uε (and also u) as a càdlàg process on [0, T ] with values in the Sobolev space H−r for
some r > 1

2 (see Section 1.2.1 for a definition). In order to show tightness in that space with the
Aldous criterion [7], we will use the factorization method from [39, 90] to obtain uniform bounds
in time without taking moments of order higher than two. Another subtlety that arises in the
analysis of the (semi-)martingales mentioned above is that their predictable characteristics are
not given by a function of the former, which distinguishes our proof from the corresponding ones
for (finite- or infinite-dimensional) stochastic differential equations in [48, 75, 76].

We shall also mention that the initial motivation in [9, 36] to study the normal approximation
of Lévy processes comes from numerical simulation. Indeed, for stochastic PDEs as in (1.1.1) with
multiplicative Lévy noise, the rate of convergence of a numerical scheme obtained by removing
the small jumps of the noise is slower for noises with a high intensity of small jumps; see [24].
However, the results in [73] and [94] show that in the case of SDEs, an additional Gaussian
approximation of the otherwise neglected small jumps improves the rate of convergence. We
leave it to future research to examine to what extent this also holds for stochastic PDEs.

The remaining paper is organized as follows. In Section 1.2, we first describe in detail the
considered equations and recall the definition of Sobolev spaces of real order in Section 1.2.1
before we state our main result, Theorem 1.2.1, in Section 1.2.2. Here we also explain the main
steps and ideas behind the proof, whereas the details are given in Section 1.3.
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1.2 Results

1.2.1 Preliminaries

Let T > 0 and consider on a filtered probability space (Ω,F ,F = (Ft)t≤T ,P) that satisfies the
usual conditions, for any ε > 0, the stochastic heat equation on [0, T ] × [0, π] with Dirichlet
boundary conditions:

∂tu
ε(t, x) = ∂xxu

ε(t, x) + f(uε(t, x)) L̇
ε(t, x)
σ(ε) , (t, x) ∈ [0, T ] × [0, π],

uε(t, 0) = uε(t, π) = 0, for all t ∈ [0, T ],
uε(0, x) = 0, for all x ∈ [0, π].

(1.2.1)

The function f : R −→ R in equation (1.2.1) describes the multiplicative part of the noise and
will be assumed to be a Lipschitz continuous function. Concerning the driving noise σ(ε)−1L̇ε,
we assume that L̇ε is a pure-jump Lévy space–time white noise on [0, T ] × [0, π] given by

Lε(A) =
∫ T

0

∫ π

0

∫
R
1A(t, x)z (µε − νε)(dt, dx,dz) (1.2.2)

for all A ∈ B([0, T ]× [0, π]). In this representation, µε is a homogeneous Poisson random measure
on [0, T ] × [0, π] ×R relative to the filtration F , with intensity measure νε = Leb[0,T ]×[0,π] ⊗Qε.
Here Qε is a Lévy measure on R, that is, Qε({0}) = 0 and

∫
R(1 ∧ z2)Qε(dz) < ∞. We refer

to Chapter II in [65] for the definition of stochastic integrals with respect to Poisson random
measures. Furthermore, we assume that for all ε > 0,

0 < σ2(ε) =
∫
R
z2Qε(dz) < ∞. (1.2.3)

Note that this integral is the variance of Lε([0, 1] × [0, 1]). In the special case where we have a
single Poisson random measure µ having intensity measure ν = Leb[0,T ]×[0,π] ⊗Q, setting

Qε(A) =
∫

|z|≤ε
1A(z)Q(dz), A ∈ B(R), ε > 0, (1.2.4)

leads us to the case of small jump approximation considered in [9].
A predictable random field uε = {uε(t, x) | (t, x) ∈ [0, T ] × [0, π]} is called a mild solution

to (1.2.1) if for all (t, x) ∈ [0, T ] × [0, π],

uε(t, x) =
∫ t

0

∫ π

0
Gt−s(x, y)f(uε(s, y))

σ(ε) Lε(ds, dy)

=
∫ t

0

∫ π

0

∫
R
Gt−s(x, y)f(uε(s, y)) z

σ(ε) (µε − νε)(ds, dy,dz)
(1.2.5)

P-almost surely, where

Gt(x, y) = 2
π

∞∑
k=1

sin(kx) sin(ky)e−k2t1{t≥0}, (1.2.6)

for (t, x, y) ∈ [0, T ] × [0, π]2, is the Dirichlet Green’s function of the heat operator on [0, π].
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The existence of a mild solution uε to (1.2.1) is guaranteed by Theorem 3.1 in [28] and
condition (1.2.3) on the Lévy measure Qε and it is, up to modifications, unique among all
predictable random fields satisfying

sup
(t,x)∈[0,T ]×[0,π]

E [|uε(t, x)|p] < ∞ (1.2.7)

for any 0 < p ≤ 2 and ε > 0.
In this paper, we want to examine when the normal approximation holds for uε, that is, when

uε can be approximated in law by the mild solution u to the same stochastic heat equation as
above, but driven by a Gaussian space–time white noise on [0, T ] × [0, π]: ∂tu(t, x) = ∂xxu(t, x) + f(u(t, x))Ẇ (t, x), (t, x) ∈ [0, T ] × [0, π],

u(t, 0) = u(t, π) = 0, for all t ∈ [0, T ],
u(0, x) = 0, for all x ∈ [0, π].

(1.2.8)

The driving noise Ẇ is now a centered Gaussian random field {W (A) | A ∈ B([0, T ] × [0, π])}
with covariance structure E[W (A)W (B)] = Leb[0,T ]×[0,π](A∩B) for any measurable sets A,B ⊆
[0, T ] × [0, π]. It is well-known (see, for example, Theorem 3.2 in [99]) that, up to modifications,
equation (1.2.8) has a unique mild solution u satisfying the corresponding bound in (1.2.7) for
all p > 0.

Throughout this work, we will look at the mild solutions uε and u from two different points
of view. First, they are random elements in the function space L2([0, T ] × [0, π]) as the uniform
bound (1.2.7) shows. But then, as mentioned in the introduction, we will need stronger path
regularity in the time variable for our proofs. This is why we shall consider uε and u also as
stochastic processes with values in an infinite dimensional space, which we will describe in the
following.

Consider for any r > 0, the fractional Sobolev space

Hr([0, π]) =
{
ϕ ∈ L2([0, π])

∣∣∣ ∞∑
k=1

(1 + k2)r⟨ϕ, ϕk⟩2 < ∞
}
,

where ϕk(x) =
√

2/π sin(kx), k ∈ N, form an orthonormal basis of L2([0, π]). This is a Hilbert
space with scalar product

⟨f, g⟩r =
∞∑

k=1
(1 + k2)r⟨f, ϕk⟩⟨g, ϕk⟩, f, g ∈ Hr([0, π]),

and norm ∥ϕ∥r =
√

⟨ϕ, ϕ⟩r for ϕ ∈ Hr([0, π]).
The topological dual H−r([0, π]) of Hr([0, π]) is also a Hilbert space, whose dual norm ∥ · ∥−r

can be expressed, by the Riesz representation theorem, as

∥ϕ′∥2
−r =

∞∑
k=1

⟨ϕ′, ϕr,k⟩2 =
∞∑

k=1
(1 + k2)−r⟨ϕ′, ϕk⟩2, ϕ′ ∈ H−r([0, π]). (1.2.9)

(Note that if φ1, φ2 are elements of the same L2-space, then ⟨φ1, φ2⟩ will always denote the
standard scalar product of that space. If ϕ is an element of a Hilbert space and ϕ′ an element
of its topological dual, then ⟨ϕ′, ϕ⟩ will always denote the dual pairing of ϕ′ with ϕ.)

Coming back to the mild solution to (1.2.1), if we identify uε with the process (uε
t )t≤T where

uε
t : Hr([0, π]) −→ R, ϕ 7→ ⟨uε(t, ·), ϕ⟩ =

∫ π

0
uε(t, y)ϕ(y) dy (1.2.10)
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for all t ≤ T , then by Theorem 2.5 in [31], uε has a càdlàg modification in H−r([0, π]) for
any r > 1/2, which will be denoted by uε = (uε

t )t≤T throughout this work. Similarly, by the
identification (1.2.10) and Corollary 3.4 in [99], the mild solution u to (1.2.8) has a continuous
modification u in H−r([0, π]) for each r > 1/2.

1.2.2 Main result

We now introduce the Cartesian product

Ω∗ = L2([0, T ] × [0, π]) ×D([0, T ], H−r([0, π])), (1.2.11)

with r > 1/2. Let d1 denote the metric induced by the L2-norm on L2([0, T ] × [0, π]) and d2 be
the Skorokhod metric on D([0, T ], H−r([0, π])). We then equip Ω∗ with the product metric

τ((f1, x1), (f2, x2)) = d1(f1, f2) + d2(x1, x2) (1.2.12)

for any f1, f2 ∈ L2([0, T ] × [0, π]) and x1, x2 ∈ D([0, T ], H−r([0, π])). The main result of this
paper is the following limit theorem.

Theorem 1.2.1. Assume that Lε is given by (1.2.2) with a variance σ2(ε) that satisfies (1.2.3)
for all ε > 0. Let uε be the L2([0, T ] × [0, π])-valued mild solution to the stochastic heat equa-
tion (1.2.1) driven by L̇ε/σ(ε) and uε be its càdlàg modification in H−r([0, π]). Similarly, let u
be the L2([0, T ] × [0, π])-valued mild solution to the stochastic heat equation (1.2.8) driven by Ẇ
and u be its continuous modification in H−r([0, π]).

Suppose also that the Lipschitz function f in (1.2.1) satisfies f(0) ̸= 0. Then, as ε → 0,

(uε, uε) d−→ (u, u) in (Ω∗, τ) (1.2.13)

for all r > 1/2 if and only if (1.1.4) holds for all κ > 0.

Remark 1.2.2. We can generalize Theorem 1.2.1 to nonzero initial conditions. Assume that in
both equations (1.2.1) and (1.2.8) we now have uε(0, x) = u(0, x) = u0(x) for all x ∈ [0, π],
where u0 : [0, π] −→ R is a bounded continuous function with u0(0) = u0(π) = 0. Define

u0(t, x) =
∫ π

0
Gt(x, y)u0(y) dy, (t, x) ∈ [0, T ] × [0, π].

Then Theorem 1.2.1 can be shown in a completely analogous manner if we assume that there
exists (t0, x0) ∈ [0, T ] × [0, π] such that f(u0(t0, x0)) ̸= 0 (instead of f(0) ̸= 0), and this as-
sumption is only needed for showing the necessity of (1.1.4). To be more precise, since the mild
solution to (1.2.8) now satisfies

u(t, x) = u0(t, x) +
∫ t

0

∫ π

0
Gt−s(x, y)f(u(s, y))W (ds, dy)

P-almost surely, a similar argument as in Remark 1.3.14 shows that P(f(u(t1, x1)) ̸= 0) > 0 for
some (t1, x1) ∈ [0, T ] × [0, π] and hence, the expectation in (1.3.70) is nonzero.
Remark 1.2.3. Let us relate the two conditions (1.1.3) and (1.1.4) to each other. Using Hölder’s
and Chebyshev’s inequalities, we see from the estimate

1
σ2(ε)

∫
|z|>κσ(ε)

z2Qε(dz) ≤ 1
σ2(ε)

(∫
R

|z|2+δ Qε(dz)
) 2

2+δ

Qε({|z| > κσ(ε)})
δ

2+δ

≤ 1
κδσ2+δ(ε)

∫
R

|z|2+δ Qε(dz)
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that (1.1.3) implies (1.1.4).
The other implication is not true in general. For example, assume that Qε has density

qε(z) = 1
2|z|2

1{|z|≤ε} + ε2

2C|z|3 log(1 + |z|)21{|z|>1}, z ∈ R,

where C =
∫∞

1 z−1 log(1 + z)−2 dz. Then
∫
R |z|2+δ Qε(dz) = ∞ for every ε, δ > 0, so condition

(1.1.3) does not hold. But a direct calculation shows that σ2(ε) = ε + ε2. So given κ > 0, we
have 1 > κσ(ε) > κ

√
ε > ε for small values of ε, which implies (1.1.4) because

lim
ε→0

1
σ2(ε)

∫
|z|>κσ(ε)

z2Qε(dz) = lim
ε→0

1
ε+ ε2

∫
|z|>ε

z2Qε(dz) = lim
ε→0

ε2

ε+ ε2 = 0.

Proof of Theorem 1.2.1. We begin by showing that (1.1.4) implies the weak convergence (1.2.13).
Since Ω∗ is a metric space, we follow the classical scheme of first showing tightness and then
uniqueness of the limiting distribution.

In Theorem 1.3.4, we show that {uε | ε > 0} is tight in L2([0, T ]×[0, π]) and in Theorem 1.3.7
that {uε | ε > 0} is tight in D([0, T ], H−r([0, π])). By the subsequence principle, this immediately
implies that the random elements {(uε, uε) | ε > 0} are tight in (Ω∗, τ). As it turns out, no
assumptions on the Lévy noise L̇ε other than the ones specified in (1.2.2) and (1.2.3) are needed
for this tightness property.

As a consequence, we can apply Prokhorov’s theorem, which provides for any sequence
(εk)k∈N with εk → 0, a subsequence (εkl

)l∈N such that (uεkl , uεkl )l∈N converges weakly to some
distribution on (Ω∗, τ) as l → ∞. For notational simplicity, we will assume without loss of
generality that the whole sequence (uεk , uεk)k∈N converges weakly.

Since (Ω∗, τ) is a complete separable metric space, we can further apply Skorokhod’s repre-
sentation theorem (see Theorem 4.30 in [69]) and obtain random elements

(vk, vk), (v, v) : (Ω,F ,P) −→ (Ω∗, τ), (1.2.14)

defined on a possibly different probability space (Ω,F ,P), satisfying the following properties:

(vk, vk) d= (uεk , uεk) for all k ∈ N and
(vk, vk)(ω) −→ (v, v)(ω) in (Ω∗, τ) as k → ∞ for all ω ∈ Ω.

(1.2.15)

We will show that
(v, v) d= (u, u),

which in turn implies (1.2.13). To do this, we first define a filtration F = (F t)t≤T on Ω by
setting

F t =
⋂
u>t

σ (v(s, x), vs | 0 ≤ x ≤ π, s ≤ u) , t ≤ T. (1.2.16)

We further define for ξ ∈ R, ϕ ∈ C∞
c ((0, π)) and t ≤ T ,

Bt =
∫ t

0
⟨v(s, ·), ϕ′′⟩ ds, Ct =

∫ t

0

∫ π

0
f2(v(s, x))ϕ2(x) ds dx, At = iξBt − 1

2ξ
2Ct (1.2.17)

as well as
M t = eiξ⟨vt,ϕ⟩ −

∫ t

0
eiξ⟨vs,ϕ⟩A(ds). (1.2.18)
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We will then show in Theorem 1.3.12 that, under assumption (1.1.4), the pair (v, v) satisfies
the following martingale problem. For all ξ ∈ R and ϕ ∈ C∞

c ((0, π)), the process (M t)t≤T

is a martingale with respect to (Ω,F ,F ,P). Note that we are able to obtain this property
only because in (1.2.15), we have ω-wise convergence both in the Skorokhod topology and in
L2([0, T ] × [0, π]), which is the reason why we view the solutions to (1.2.1) and (1.2.8) as pairs
in Ω∗.

Next, we will show in Theorem 1.3.13 that this martingale property in turn implies that
there exists a Gaussian space–time white noise ˙̃

W on [0, T ]× [0, π], possibly defined on a filtered
extension (Ω̃, F̃ , F̃ , P̃) of (Ω,F ,F ,P) such that, with probability one, the random field v is equal
in L2([0, T ] × [0, π]) to the mild solution ṽ to the stochastic heat equation ∂tṽ(t, x) = ∂xxṽ(t, x) + f(ṽ(t, x)) ˙̃

W (t, x), (t, x) ∈ [0, T ] × [0, π],
ṽ(t, 0) = ṽ(t, π) = 0, for all t ∈ [0, T ],
ṽ(0, x) = 0, for all x ∈ [0, π],

(1.2.19)

and such that v is indistinguishable from the continuous version in H−r([0, π]) of ṽ, which
concludes the first part of the proof.

For the second part, under the assumption f(0) ̸= 0, Theorem 1.3.15 directly shows that (1.2.13)
implies (1.1.4).

1.3 Details of the proof

In the remainder of this work, the letter C will always denote a strictly positive constant whose
value may change from line to line. Furthermore, by the Lipschitz continuity of the function f ,
there exists a positive constant K that we hold fixed from now on such that |f(x)| ≤ K|x|+|f(0)|
for all x ∈ R.

1.3.1 Tightness

We start with three lemmas that will provide uniform bounds in ε > 0 for the second moments
of uε, which will be crucial for proving tightness of {(uε, uε) | ε > 0} in (Ω∗, τ).

Lemma 1.3.1. The family {uε | ε > 0} of mild solutions to (1.2.1) satisfies

sup
ε>0

sup
(t,x)∈[0,T ]×[0,π]

E
[
|uε(t, x)|2

]
< ∞ (1.3.1)

and this uniform bound only depends on the Lipschitz function f .

Proof. Using Itō’s isometry and the definition (1.2.5) of uε, we have for fixed ε > 0 and
(t, x) ∈ [0, T ] × [0, π],

E
[
|uε(t, x)|2

]
= E

[∫ t

0

∫ π

0

∫
R
G2

t−s(x, y)f
2(uε(s, y))
σ2(ε) z2 νε(ds, dy,dz)

]

= E
[∫ t

0

∫ π

0
G2

t−s(x, y)f2(uε(s, y)) ds dy
]( 1

σ2(ε)

∫
R
z2Qε(dz)

)
=
∫ t

0

∫ π

0
G2

t−s(x, y)E
[
f2(uε(s, y))

]
ds dy.
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Using the Lipschitz continuity of f and the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we then
obtain for ε > 0 and (t, x) ∈ [0, T ] × [0, π],

E
[
|uε(t, x)|2

]
≤ C

∫ t

0

∫ π

0
G2

t−s(x, y)E
[
|uε(s, y)|2

]
ds dy + C

∫ t

0

∫ π

0
G2

t−s(x, y) ds dy. (1.3.2)

Now in order to find a bound for E[|uε(t, x)|2] uniformly in t, x and ε, we will use a comparison
principle for deterministic Volterra equations. By (B.5) in [10], there exists a constant C > 0
such that |Gt(x, y)| ≤ Cgt(x− y) on [0, T ] × [0, π]2, where

gt(x) = 1√
4πt

exp
(

−|x|2

4t

)
1{t≥0} (1.3.3)

is the heat kernel on R. Since
∫ T

0
∫
R |gt(x)|q dtdx < ∞ for all q < 3, we obtain

sup
(t,x)∈[0,T ]×[0,π]

∫ t

0

∫ π

0
G2

t−s(x, y) dsdy ≤ C

∫ T

0

∫
R
g2

t (x) dtdx < ∞.

Recall from (1.2.7) that E[|uε(t, x)|2] is uniformly bounded in (t, x) for fixed ε > 0. Therefore,
by Lemma 6.4 (2) and (3) in [28], the mild solution uε satisfies

E
[
|uε(t, x)|2

]
≤ v(t, x)

for all (t, x) ∈ [0, T ] × [0, π] and ε > 0, where v is the unique nonnegative solution of the
deterministic Volterra equation

v(t, x) = C

∫ t

0

∫ π

0
G2

t−s(x, y)v(s, y) ds dy

+ C

∫ t

0

∫ π

0
G2

t−s(x, y) ds dy, (t, x) ∈ [0, T ] × [0, π],

and satisfies sup(t,x)∈[0,T ]×[0,π] v(t, x) < ∞.

The next lemma gives an alternative integral representation of uε and is an extension of the
factorization method in [39] and [90].

Lemma 1.3.2. For δ ∈ (0, 1/4) define

Y ε
δ (t, x) =

∫ t

0

∫ π

0

Gt−s(x, y)
(t− s)δ

f(uε(s, y))
σ(ε) Lε(ds, dy), (t, x) ∈ [0, T ] × [0, π].

We then have
sup
ε>0

sup
(t,x)∈[0,T ]×[0,π]

E
[
|Y ε

δ (t, x)|2
]
< ∞ (1.3.4)

and for all (t, x) ∈ [0, T ] × [0, π], the representation

uε(t, x) = sin(δπ)
π

∫ t

0

∫ π

0

Gt−s(x, y)
(t− s)1−δ

Y ε
δ (s, y) ds dy (1.3.5)

holds P-almost surely.
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Proof. First, using Itō’s isometry, the Lipschitz continuity of f and Lemma 1.3.1, we have

E
[
|Y ε

δ (t, x)|2
]

= E
[∫ t

0

∫ π

0

G2
t−s(x, y)

(t− s)2δ
f2(uε(s, y)) ds dy

]( 1
σ2(ε)

∫
R
z2Qε(dz)

)

=
∫ t

0

∫ π

0

G2
t−s(x, y)

(t− s)2δ
E
[
f2(uε(s, y))

]
dsdy ≤ C

∫ t

0

∫ π

0

G2
t−s(x, y)

(t− s)2δ
ds dy.

The last integral on the right-hand side is finite if δ < 1/4. Indeed, by (B.5) in [10], it can be
bounded by

C

∫ t

0

∫ π

0

1
(t− s)2δ+1 exp

(
−|x− y|2

t− s

)
ds dy = C

∫ t

0

1
(t− s)2δ+1/2 ds = Ct−2δ+1/2.

The identity (1.3.5) follows in the same way as Lemma 5 in [90].

Lemma 1.3.3. The family {uε | ε > 0} of mild solutions to (1.2.1) satisfies

sup
ε>0

E

(∫ T

0

(∫ π

0
|uε(t, x)|2 dx

)p

dt
)1/p

 < ∞ (1.3.6)

for all p ∈ (1, 4/3).

Proof. We will use the integral representation (1.3.5) of Lemma 1.3.2. Fix δ ∈ (0, 1/4) and
t ∈ [0, T ]. Using Fubini’s theorem, we have∫ π

0
|uε(t, x)|2 dx

= C

∫ π

0

(∫ t

0

∫ π

0

∫ t

0

∫ π

0

Gt−s(x, y)
(t− s)1−δ

Gt−s′(x, y′)
(t− s′)1−δ

Y ε
δ (s, y)Y ε

δ (s′, y′) dy′ ds′ dy ds
)

dx.

By the semigroup property of the Green’s function, the integral on the right-hand side is equal
to ∫ t

0

∫ π

0

∫ t

0

∫ π

0

G2t−s−s′(y, y′)
(t− s)1−δ(t− s′)1−δ

Y ε
δ (s, y)Y ε

δ (s′, y′) dy′ ds′ dy ds

= 2
∫ t

0

∫ π

0

∫ s

0

∫ π

0

G2t−s−s′(y, y′)
(t− s)1−δ(t− s′)1−δ

Y ε
δ (s, y)Y ε

δ (s′, y′) dy′ ds′ dy ds.

Using (B.5) in [10] and (1.3.3), we obtain∫ π

0
|uε(t, x)|2 dx ≤ C

∫ t

0

∫ π

0

∫ s

0

∫ π

0

g2t−s−s′(y − y′)
(t− s)1−δ(t− s′)1−δ

|Y ε
δ (s, y)Y ε

δ (s′, y′)| dy′ ds′ dy ds.

Now let p ∈ (1, 4/3), take the ∥ · ∥Lp([0,T ])-norm of t 7→
∫ π

0 |uε(t, x)|2 dx and apply Minkowski’s
integral inequality to obtain(∫ T

0

(∫ π

0
|uε(t, x)|2 dx

)p

dt
)1/p

≤ C

∫ T

0

∫ π

0

∫ s

0

∫ π

0

(∫ T

0

(
g2t−s−s′(y − y′)1{s≤t}
(t− s)1−δ (t− s′)1−δ

)p

dt
)1/p

|Y ε
δ (s, y)Y ε

δ (s′, y′)| dy′ ds′ dy ds.
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Take expectation, use the Cauchy–Schwarz inequality and (1.3.4) to further obtain

E

(∫ T

0

(∫ π

0
|uε(t, x)|2 dx

)p

dt
)1/p


≤ C

∫ T

0

∫ π

0

∫ s

0

∫ π

0

(∫ T

s

(
g2t−s−s′(y − y′)

(t− s)1−δ(t− s′)1−δ

)p

dt
)1/p

dy′ ds′ dy ds.

(1.3.7)

Note that the right-hand side of (1.3.7) does not depend on ε anymore. We now consider the
integrand ∫ T

s

(
g2t−s−s′(y − y′)

(t− s)1−δ(t− s′)1−δ

)p

dt =
∫ T −s

0

gp
2t+s−s′(y − y′)

t(1−δ)p(t+ s− s′)(1−δ)p dt.

For fixed x ∈ R, the maximum of the function t 7→ gt(x) is C/|x| for some C that is independent
of x. Let η ∈ (0, 1) and consider the estimate

gt(x) = gt(x)1−ηgt(x)η ≤ C
1

|x|1−η

1
tη/2 , t > 0, x ∈ R.

Since s′ ≤ s, we obtain(∫ T −s

0

gp
2t+s−s′(y − y′)

t(1−δ)p(t+ s− s′)(1−δ)p dt
)1/p

≤ C
1

|y − y′|1−η

(∫ T

0

1
t(1−δ)p(t+ s− s′)(1−δ)p(2t+ s− s′)pη/2 dt

)1/p

≤ C
1

|y − y′|1−η

(∫ T

0

1
t((1−δ)+η/2)p(t+ s− s′)(1−δ)p dt

)1/p

.

Moreover, the integral
∫ π

0
∫ π

0 |y − y′|η−1 dy′ dy is finite because η > 0, and the expectation in
(1.3.7) is now bounded by

C

∫ T

0

∫ s

0

(∫ T

0

1
t((1−δ)+η/2)p(t+ s− s′)(1−δ)p dt

)1/p

ds′ ds (1.3.8)

for any δ ∈ (0, 1/4) and η ∈ (0, 1). By assumption, 3/4 < 1/p < 1 and 3/4 < (1−δ)+η/2 < 3/2.
Hence, we can choose δ and η such that (1 − δ) + η/2 < 1/p. As a consequence, by Lemma 2 of
Chapter 1 in [49], the estimate∫ T

0

1
t((1−δ)+η/2)p(t+ s− s′)(1−δ)p dt ≤ C(s− s′)1−((1−δ)+η/2)p−(1−δ)p

holds for 0 ≤ s′ < s ≤ T . We have assumed that ((1 − δ) + η/2)p+ (1 − δ)p > 1 since otherwise,
the last integral is bounded by some constant, which immediately implies that the expectation
in (1.3.7) is uniformly bounded in ε.

Therefore, we further estimate the integral in (1.3.8) by

C

∫ T

0

∫ s

0
(s− s′)1/p−2(1−δ)−η/2 ds′ ds = C

∫ T

0

∫ s

0
r1/p−2(1−δ)−η/2 dr ds,

which is finite because our choice of δ and η implies 2(1 − δ) + η/2 − 1/p < 1. This concludes
the proof.



Normal approximation of the solution to the stochastic heat equation with Lévy noise 11

We can now proceed to showing tightness.

Theorem 1.3.4. The family {uε | ε > 0} of mild solutions to (1.2.1) is tight in the Hilbert
space L2([0, T ] × [0, π]).

Proof. It is easy to see that the functions

ψij(t, x) = ϕi(t)ϕj(x), (t, x) ∈ [0, T ] × [0, π],

where ϕi(t) =
√

2/T sin(itπ/T ) and ϕj(x) =
√

2/π sin(jx) for all i, j ∈ N, form an orthonormal
basis of L2([0, T ] × [0, π]).

First, using the stochastic Fubini theorem (see, for example, Theorem 2.6 in [99]), we have
for all i, j ∈ N,

⟨uε, ψij⟩ =
∫ T

0

∫ π

0

(∫ t

0

∫ π

0
Gt−s(x, y)f(uε(s, y))

σ(ε) Lε(ds, dy)
)
ψij(t, x) dtdx

= 1
σ(ε)

∫ T

0

∫ π

0
f(uε(s, y))

(∫ T

s

∫ π

0
Gt−s(x, y)ψij(t, x) dt dx

)
Lε(ds, dy).

(1.3.9)

Define for all i, j ∈ N,

Hij(s, y) =
∫ T

s

∫ π

0
Gt−s(x, y)ψij(t, x) dtdx, (s, y) ∈ [0, T ] × [0, π].

Using Fubini’s theorem, the expression (1.2.6) of the Green’s function G and the orthogonal
properties of ϕj , we obtain for all (s, y) ∈ [0, T ] × [0, π],

Hij(s, y) =
∫ T

s
ϕi(t)

(∫ π

0
Gt−s(x, y)ϕj(x) dx

)
dt =

∫ T

s
ϕi(t)ϕj(y)e−j2(t−s) dt. (1.3.10)

Using the integral formula
∫

(sin ax)ebx dx = (b sin ax− a cos ax) ebx/(a2+b2)+C, we can further
calculate

Hij(s, y) =
√

2
T
ϕj(y)ej2s

∫ T

s
sin
(
i
π

T
t

)
e−j2t dt

=
√

2
T
ϕj(y) 1

i2(π/T )2 + j4

(
e−j2(T −s)i

π

T
(−1)i+1 + j2 sin

(
i
π

T
s

)
+ i

π

T
cos

(
i
π

T
s

))
≤ C

(
i

i2 + j4 + j2

i2 + j4

)
≤ C

1
i+ j2 for all i, j ∈ N.

For the L2-norm of Hij , we then have∫ T

0

∫ π

0
H2

ij(s, y) ds dy ≤ C
1

i2 + j4

for all i, j ∈ N. Since
∞∑

i,j=2

1
i2 + j4 ≤

∫ ∞

1

∫ ∞

1

1
x2 + y4 dx dy =

∫ ∞

1

arctan y2

y2 dy < ∞,

we obtain from Lemma 1.3.1
∞∑

i,j=1
sup
ε>0

E
[
⟨uε, ψij⟩2

]
≤ C

∞∑
i,j=1

∫ T

0

∫ π

0
H2

ij(s, y) ds dy < ∞,
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which implies that

sup
ε>0

P

 ∑
i,j≥N

⟨uε, ψij⟩2 > δ

 ≤ 1
δ

∞∑
i,j≥N

sup
ε>0

E
[
⟨uε, ψij⟩2

]
−→ 0 as N → ∞

for all δ > 0. Moreover, again by Lemma 1.3.1, we have

sup
ε>0

P

 ∑
i,j<N

⟨uε, ψij⟩2 > δ

 ≤ 1
δ

sup
ε>0

E

 ∑
i,j<N

⟨uε, ψij⟩2

 ≤ 1
δ

sup
ε>0

E

 ∞∑
i,j=1

⟨uε, ψij⟩2


= 1
δ

sup
ε>0

E
[∫ T

0

∫ π

0
uε(t, x)2 dt dx

]
≤ C

δ
−→ 0

as δ → ∞ for all N ∈ N. Therefore, we can conclude from Theorem 1 in [93] that {uε | ε > 0}
is tight in L2([0, T ] × [0, π]).

The next two propositions will imply that {uε | ε > 0} is tight in D([0, T ], H−r([0, π])).

Proposition 1.3.5. The càdlàg processes {uε | ε > 0} satisfy the Aldous condition: Let (εn)n∈N
and (hn)n∈N be sequences of positive numbers with εn → 0 and hn → 0 as n → ∞. For each
n ∈ N, further let τn ∈ [0, T ] be a stopping time with respect to the filtration generated by the
stochastic process (uεn

t )t≤T . Then we have for any r > 1/2,

E
[
∥uεn

τn+hn
− uεn

τn
∥2

−r

]
−→ 0 as n → ∞.

Proof. Recall the expression of the dual norm ∥ · ∥−r in (1.2.9). We have

∥uεn
τn+hn

− uεn
τn

∥2
−r =

∞∑
k=1

(1 + k2)−r
(
⟨uεn

τn+hn
, ϕk⟩ − ⟨uεn

τn
, ϕk⟩

)2
. (1.3.11)

We will find a convenient semimartingale decomposition for the real-valued stochastic process
⟨uε, ϕk⟩ = (⟨uε

t , ϕk⟩)t≤T for any ε > 0 and k ∈ N that will then allow us to estimate the
expectation of the terms appearing in (1.3.11).

First, proceeding as in (1.3.9) and (1.3.10), we have for all t ≤ T ,

⟨uε(t, ·), ϕk⟩ =
∫ π

0

(∫ t

0

∫ π

0
Gt−s(x, y)f(uε(s, y))

σ(ε) Lε(ds, dy)
)
ϕk(x) dx

= 1
σ(ε)

∫ t

0

∫ π

0
f(uε(s, y))ϕk(y)e−k2(t−s) Lε(ds, dy).

If we define
Xk,ε

t =
∫ t

0

∫ π

0
f(uε(s, y))ϕk(y)Lε(ds, dy), t ≤ T,

for all k ∈ N and ε > 0, then
1

σ(ε)

∫ t

0

∫ π

0
f(uε(s, y))ϕk(y)e−k2(t−s) Lε(ds, dy) = 1

σ(ε)

∫ t

0
e−k2(t−s)Xk,ε(ds)

for all t ≤ T , where the last term is the Itō integral of the deterministic function s 7→ e−k2(t−s)

against the square-integrable martingale Xk,ε. Because the integrand is a C∞-function, the
integration by parts formula for semimartingales yields∫ t

0
e−k2(t−s)Xk,ε(ds) = Xk,ε

t −
∫ t

0
Xk,ε

s k2e−k2(t−s) ds.
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Altogether we obtain the semimartingale decomposition

⟨uε(t, ·), ϕk⟩ =
∫ t

0

∫ π

0

f(uε(s, y))
σ(ε) ϕk(y)Lε(ds, dy)

−
∫ t

0

(∫ s

0

∫ π

0

f(uε(r, y))
σ(ε) ϕk(y)Lε(dr, dy)

)
k2e−k2(t−s) ds

(1.3.12)

for all t ≤ T , k ∈ N and ε > 0.
Now the process ⟨uε, ϕk⟩ is the càdlàg version of (⟨uε(t, ·), ϕk⟩)t≤T , so we can infer that

⟨uε, ϕk⟩ and the right-hand side of (1.3.12) are indistinguishable since the latter is also càdlàg.
Coming back to (1.3.11), we can now decompose

⟨uεn
τn+hn

, ϕk⟩ − ⟨uεn
τn
, ϕk⟩ = Ik,n + J1

k,n + J2
k,n,

where

Ik,n =
∫ T

0

∫ π

0

f(uεn(s, y))
σ(εn) ϕk(y)1(τn,τn+hn](s)Lεn(ds, dy),

J1
k,n =

∫ τn

0

(∫ s

0

∫ π

0

f(uεn(r, y))
σ(εn) ϕk(y)Lεn(dr, dy)

)
k2
(
e−k2(τn−s) − e−k2(τn+hn−s)

)
ds,

J2
k,n = −

∫ τn+hn

τn

(∫ s

0

∫ π

0

f(uεn(r, y))
σ(εn) ϕk(y)Lεn(dr, dy)

)
k2e−k2(τn+hn−s) ds

for all k, n ∈ N. We now gather some moment estimates for these three terms. First, for the
martingale term Ik,n, we have by Itō’s isometry,

E[I2
k,n] = E

[∫ T

0

∫ π

0

∫
R
f2(uεn(s, y))ϕ2

k(y)1(τn,τn+hn](s)
z2

σ2(εn) ds dy Qεn(dz)
]

= E
[∫ T

0

∫ π

0
f2(uεn(s, y))ϕ2

k(y)1(τn,τn+hn](s) ds dy
]
.

(1.3.13)

Using the Lipschitz continuity of f , we can bound the last term in (1.3.13) by

CE
[∫ T

0

∫ π

0
uεn(s, y)21(τn,τn+hn](s) ds dy

]
+ CE

[∫ T

0

∫ π

0
1(τn,τn+hn](s) ds dy

]

for any k ∈ N. The second term equals Cπhn, which converges to 0 as n → ∞.
For the first term, choose p ∈ (1, 4/3). Using Hölder’s inequality and Lemma 1.3.3, we obtain

E
[∫ T

0

(∫ π

0
uεn(s, y)2 dy

)
1(τn,τn+hn](s) ds

]

≤ E

(∫ T

0

(∫ π

0
uεn(s, y)2 dy

)p

ds
)1/p(∫ T

0
1(τn,τn+hn](s) ds

)1−1/p


≤ h1−1/p
n sup

ε>0
E

(∫ T

0

(∫ π

0
uε(s, y)2 dy

)p

ds
)1/p

 −→ 0 as n → ∞.

Altogether, this implies E[I2
k,n] → 0 as n → ∞ for all k ∈ N.
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Next, we have∫ τn

0
k2
(
e−k2(τn−s) − e−k2(τn+hn−s)

)
ds =

(
1 − e−k2hn

) ∫ τn

0
k2e−k2(τn−s) ds

=
(
1 − e−k2hn

) (
1 − e−k2τn

)
≤ 1 − e−k2hn ,

and by Itō’s isometry as well as Lemma 1.3.1,

E

(∫ T

0

∫ π

0

f(uεn(s, y))
σ(εn) ϕk(y)Lεn(ds, dy)

)2
 =

∫ T

0

∫ π

0
E
[
f2(uεn(s, y))

]
ϕ2

k(y) ds dy ≤ C

for all k, n ∈ N. Therefore, by Doob’s inequality, E[(J1
k,n)2] is bounded by

E
[

sup
s≤T

∣∣∣∣∣
∫ s

0

∫ π

0

f(uεn(r, y))
σ(εn) ϕk(y)Lεn(dr, dy)

∣∣∣∣∣
2(∫ τn

0
k2
(
e−k2(τn−s) − e−k2(τn+hn−s)

)
ds
)2]

≤
(
1 − e−k2hn

)2
E
[

sup
s≤T

∣∣∣∣∣
∫ s

0

∫ π

0

f(uεn(r, y))
σ(εn) ϕk(y)Lεn(dr, dy)

∣∣∣∣∣
2]

≤ C
(
1 − e−k2hn

)2
−→ 0 as n → ∞

for all k ∈ N.
Finally, with

∫ τn+hn
τn

k2e−k2(τn+hn−s) ds = 1 − e−k2hn and similar calculations, E[(J2
k,n)2] is

bounded by

E
[

sup
s≤T

∣∣∣∣∣
∫ s

0

∫ π

0

f(uεn(r, y))
σ(εn) ϕk(y)Lεn(dr, dy)

∣∣∣∣∣
2(∫ τn+hn

τn

k2e−k2(τn+hn−s) ds
)2]

=
(
1 − e−k2hn

)2
E
[

sup
s≤T

∣∣∣∣∣
∫ s

0

∫ π

0

f(uεn(r, y))
σ(εn) ϕk(y)Lεn(dr, dy)

∣∣∣∣∣
2]

≤ C
(
1 − e−k2hn

)2
−→ 0 as n → ∞

for all k ∈ N. As a consequence, recalling that r > 1/2 and thus ∑∞
k=1 (1 + k2)−r

< ∞, we
obtain by (1.3.11) and dominated convergence,

E
[
∥uεn

τn+hn
− uεn

τn
∥2

−r

]
=

∞∑
k=1

(1 + k2)−rE
[(

⟨uεn
τn+hn

, ϕk⟩ − ⟨uεn
τn
, ϕk⟩

)2
]

≤ 3
∞∑

k=1
(1 + k2)−r

(
E
[
I2

k,n

]
+ E

[
(J1

k,n)2
]

+ E
[
(J2

k,n)2
])

−→ 0

as n → ∞, which is the assertion of the proposition.

Proposition 1.3.6. For any fixed t ≤ T and r > 1/2, the random elements {uε
t | ε > 0} are

tight in H−r([0, π]).

Proof. Proceeding as in the proof of Proposition 1.3.5 and using Lemma 1.3.1, we have

E
[
⟨uε

t , ϕk⟩2
]

=
∫ t

0

∫ π

0
E
[
f2(uε(s, y))

]
ϕ2

k(y)e−2k2(t−s) ds dy ≤ C
1
k2

(
1 − e−2k2t

)
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for any k ∈ N and t ≤ T . Hence, we have for all q < 1/2, t ≤ T and ε > 0,

E
[
∥uε

t ∥2
q

]
=

∞∑
k=1

(1 + k2)qE
[
⟨uε

t , ϕk⟩2
]

≤ C
∞∑

k=1
(1 + k2)q 1

k2 < ∞,

and thus uε
t ∈ Hq([0, π]) P-almost surely.

Because the penultimate term in the inequality above does not depend on ε, by Markov’s
inequality, we can further deduce

lim
δ→∞

sup
ε>0

P
(
∥uε

t ∥q > δ
)

= 0

for all q < 1/2 and t ≤ T . Since the embeddings

Hq([0, π]) ↪→ L2([0, π]) ↪→ H−r([0, π])

are compact for 0 < q < 1/2 < r by Theorem 4.58 in [44], it follows that {uε
t | ε > 0} is tight in

H−r([0, π]) for any fixed t ≤ T and r > 1/2.

Theorem 1.3.7. For any r > 1/2, the càdlàg modifications {uε | ε > 0} are tight in the
Skorokhod space D([0, T ], H−r([0, π])).

Proof. By Theorem 6.8 in [99], this is a direct consequence of Propositions 1.3.5 and 1.3.6.

1.3.2 Characterization of the limit

After proving tightness in Section 1.3.1, our next goal is to characterize the limit distribution of
weakly converging subsequences. Following the outline of the proof of Theorem 1.2.1, the first
step is to show that under condition (1.1.4) on the Lévy measure Qε, the process M in (1.2.18)
is a martingale with respect to the filtration F defined in (1.2.16). In order to achieve this
result, which is Theorem 1.3.12 below, we prove that the pairs (uε, uε) satisfy related martingale
problems (Theorem 1.3.8) and that these “converge” as ε → 0 (Theorem 1.3.9).

Recall that for all test functions ϕ ∈ C∞
c ((0, π)) and fixed t ≤ T ,∫ π

0
uε(t, x)ϕ(x) dx =

∫ t

0

∫ π

0
uε(s, x)ϕ′′(x) ds dx+

∫ t

0

∫ π

0

f(uε(s, x))
σ(ε) ϕ(x)Lε(ds, dx) (1.3.14)

P-almost surely. This follows, in a similar way to Theorem 3.2 in [99], from the fact that in our
situation, we may apply the stochastic Fubini theorem; see, for example, Theorem 2.6 in [99].

Theorem 1.3.8. For each ε > 0, the pair (uε, uε) where uε ∈ L2([0, T ] × [0, π]) is the mild
solution to the stochastic heat equation (1.2.1) and uε is its càdlàg modification in H−r([0, π]),
with r > 1/2, satisfies the following martingale problem. For all ξ ∈ R and ϕ ∈ C∞

c ((0, π)), the
complex-valued stochastic process

M ε
t = eiξ⟨uε

t ,ϕ⟩ − iξ

∫ t

0
eiξ⟨uε

s,ϕ⟩⟨uε(s, ·), ϕ′′⟩ ds

−
∫ t

0

∫ π

0

∫
R
eiξ⟨uε

s,ϕ⟩
(
e

iξ
f(uε(s,x))

σ(ε) ϕ(x)z − 1 − iξ
f(uε(s, x))

σ(ε) ϕ(x)z
)

ds dxQε(dz),
(1.3.15)

with t ≤ T , is a square-integrable F -martingale with the uniform bound

sup
ε>0

sup
t≤T

E
[∣∣M ε

t

∣∣2] < ∞. (1.3.16)
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Proof. First, since uε is the càdlàg version of uε, the stochastic process ⟨uε, ϕ⟩ is indistin-
guishable from the right-hand side of (1.3.14) for any ϕ ∈ C∞

c ((0, π)). This directly implies that
⟨uε, ϕ⟩ is an F -semimartingale without continuous martingale part. Furthermore, one can easily
verify that the F -compensator of the jump measure µε

ϕ of ⟨uε, ϕ⟩ (on [0, T ] × R) is given by

νε
ϕ(A) =

∫ T

0

∫ π

0

∫
R
1A

(
t,
f(uε(t, x))

σ(ε) ϕ(x)z
)

dt dxQε(dz), A ∈ B([0, T ] × R). (1.3.17)

As a consequence, using Itō’s formula (see, for example, Theorem I.4.57 in [65]), (1.3.14) and
the fact that uε(0, x) = 0, we have

eiξ⟨uε
t ,ϕ⟩ = 1 + iξ

∫ t

0
eiξ⟨uε

s,ϕ⟩⟨uε(s, ·), ϕ′′⟩ ds+ iξ

∫ t

0

∫ π

0
eiξ⟨uε

s−,ϕ⟩ f(uε(s, x))
σ(ε) ϕ(x)Lε(ds, dx)

+
∫ t

0

∫
R
eiξ⟨uε

s−,ϕ⟩(eiξx − 1 − iξx)µε
ϕ(ds, dx),

and therefore, by (1.3.15),

M ε
t = 1 + iξ

∫ t

0

∫ π

0
eiξ⟨uε

s−,ϕ⟩ f(uε(s, x))
σ(ε) ϕ(x)Lε(ds, dx)

+
∫ t

0

∫
R
eiξ⟨uε

s−,ϕ⟩(eiξx − 1 − iξx) (µε
ϕ − νε

ϕ)(ds, dx)
(1.3.18)

for all t ≤ T . The two integral processes on the right-hand side of (1.3.18) are square-integrable
F -martingales (for the second, this is implied by the elementary inequalities (cos(x) − 1)2 ≤ x2

and (sin(x) − x)2 ≤ 4x2 for all x ∈ R, together with Lemma 1.3.1) and hence, this is also the
case for M ε. By Itō’s isometry, we further obtain

E
[∣∣∣∣ ∫ t

0

∫
R
eiξ⟨uε

s,ϕ⟩ f(uε(s, x))
σ(ε) ϕ(x)Lε(ds, dx)

∣∣∣∣2
]

= E
[∫ t

0

∫ π

0
f2(uε(s, x))ϕ2(x) ds dx

]

as well as

E
[∣∣∣∣ ∫ t

0

∫
R
eiξ⟨uε

s,ϕ⟩(eiξx − 1 − iξx) (µε
ϕ − νε

ϕ)(ds, dx)
∣∣∣∣2
]

= E
[∫ t

0

∫
R

|eiξx − 1 − iξx|2 νε
ϕ(ds, dx)

]
= E

[∫ t

0

∫
R

(
(cos(ξx) − 1)2 + (sin(ξx) − ξx)2

)
νε

ϕ(ds, dx)
]

for all t ≤ T . We estimate the last expectation, using the elementary inequalities given above as
well as the definition of νε

ϕ, by

5ξ2E
[∫ t

0

∫
R
x2 νε

ϕ(ds, dx)
]

= 5ξ2E
[∫ t

0

∫ π

0

f2(uε(s, x))
σ2(ε) ϕ2(x)z2 ds dxQε(dz)

]

= 5ξ2E
[∫ t

0

∫ π

0
f2(uε(s, x))ϕ2(x) ds dx

]
, t ≤ T.

Altogether, we obtain (1.3.16) from (1.3.18), the Lipschitz continuity of f and Lemma 1.3.1.
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We now switch to the probability space (Ω,F ,F ,P) from the Skorokhod construction in (1.2.14)
and define the process Mk in the same way as M ε in (1.3.15), but with (uε, uε) and Qε replaced
by (vk, vk) in (1.2.15) and Qεk , respectively.

Theorem 1.3.9. Under (1.1.4), we have pointwise on Ω for any ξ ∈ R and ϕ ∈ C∞
c ((0, π)),

M
k −→ M as k → ∞

in the Skorokhod space D([0, T ],C), where M is the process in (1.2.18).

In order to prove this result, we first rewrite Mk in a more convenient form. For any fixed
k ∈ N, ξ ∈ R and ϕ ∈ C∞

c ((0, π)), let

νk(A) =
∫ T

0

∫ π

0

∫
R
1A

(
t,
f(vk(t, x))
σ(εk) ϕ(x)z

)
dtdxQεk(dz),

B
k
t =

∫ t

0
⟨vk(s, ·), ϕ′′⟩ ds−

∫ t

0

∫
R
x1{|x|>1} ν

k(ds, dx),

A
k
t = iξB

k
t +

∫ t

0

∫
R

(
eiξx − 1 − iξx1{|x|≤1}

)
νk(ds, dx)

(1.3.19)

for all A ∈ B([0, T ]×R) and t ≤ T . Note that (Bk
, 0, νk) are the predictable characteristics of the

F -semimartingale ⟨vk, ϕ⟩ and that they are functions of the random field vk and not of ⟨vk, ϕ⟩
itself (which is another reason why we have adopted a dual view on the solutions to (1.2.1)
and (1.2.8) as elements of Ω∗). The process Mk introduced above can thus be written as

M
k
t = eiξ⟨vk

t ,ϕ⟩ −
∫ t

0
eiξ⟨vk

s ,ϕ⟩A
k(ds), t ≤ T. (1.3.20)

Define the truncation functions

ϱh : R −→ R, x 7→ x1{|x|≤h}, h > 0. (1.3.21)

The key idea of the proof of Theorem 1.3.9 is to see that for fixed ω ∈ Ω, t ≤ T and ϕ ∈
C∞

c ((0, π)), the function A
k
t in (1.3.19) (resp., At in (1.2.17)) is the Lévy exponent of the

infinitely divisible distribution ηk (resp., η) with characteristics (Bk
t , 0, νk([0, t] × dx)) (resp.,

(Bt, Ct, 0)) with respect to ϱ1. Then we can make use of the following result, which is the only
place in this work where (1.1.4) will actually be needed.

Theorem 1.3.10. If (1.1.4) holds, then for any ϕ ∈ C∞
c ((0, π)), t ∈ [0, T ] and ω ∈ Ω, we have

ηk
w−→ η as k → ∞.

Proof. As in the proof of Theorem 2.2 in [36] (see also Theorem 2.1 in [9]), it suffices to show
that

(i)
∫

|x|≤h
x2 νk([0, t] × dx) −→ Ct,

(ii) B
k
t −→ Bt,

(iii) νk ([0, t] × {|x| > 1}) −→ 0

(1.3.22)
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as k → ∞ for all h > 0. Starting with (i), we have∫
|x|≤h

x2 νk([0, t] × dx)

=
∫ t

0

∫ π

0
f2(vk(s, x))ϕ2(x) 1

σ2(εk)

∫
R
z21{|z|≤(h/|f(vk(s,x))ϕ(x)|)σ(εk)}Q

εk(dz) ds dx.

We can ignore all points in the domain of integration where |f(vk(s, x))ϕ(x)| = 0. So if we let

Ik
h(s, x) = 1

σ2(εk)

∫
R
z21{|z|≤(h/|f(vk(s,x))ϕ(x)|)σ(εk)}Q

εk(dz) and

Σk
h(s, x) = 1 − Ik

h(s, x) = 1
σ2(εk)

∫
R
z21{|z|>(h/|f(vk(s,x))ϕ(x)|)σ(εk)}Q

εk(dz)
(1.3.23)

for any (s, x) ∈ [0, T ] × [0, π], h > 0 and k ∈ N, then, using the triangle inequality and the fact
that 0 < Ik

h(s, x) ≤ 1, we obtain∣∣∣∣∣
∫

|x|≤h
x2 νk([0, t] × dx) − Ct

∣∣∣∣∣
≤
∣∣∣∣∣
∫ t

0

∫ π

0

(
f2(vk(s, x)) − f2(v(s, x))

)
ϕ2(x)Ik

h(s, x) ds dx
∣∣∣∣∣

+
∣∣∣∣∣
∫ t

0

∫ π

0
f2(v(s, x))ϕ2(x)

(
Ik

h(s, x) − 1
)

ds dx
∣∣∣∣∣

≤
∫ t

0

∫ π

0

∣∣∣f2(vk(s, x)) − f2(v(s, x))
∣∣∣ϕ2(x) ds dx+

∫ t

0

∫ π

0
f2(v(s, x))ϕ2(x)Σk

h(s, x) dsdx.
(1.3.24)

By the Lipschitz continuity of f and Hölder’s inequality, we have for the first integral on the
right-hand side of (1.3.24),∫ t

0

∫ π

0

∣∣∣f2(vk(s, x)) − f2(v(s, x))
∣∣∣ϕ2(x) ds dx

≤ C

∫ t

0

∫ π

0

∣∣∣f(vk(s, x)) − f(v(s, x))
∣∣∣∣∣∣f(vk(s, x)) + f(v(s, x))

∣∣∣ ds dx

≤ C

(∫ t

0

∫ π

0

(
vk(s, x) − v(s, x)

)2
ds dx

)1/2 (∫ t

0

∫ π

0

(
f(vk(s, x)) + f(v(s, x))

)2
ds dx

)1/2
.

(1.3.25)

By (1.2.15), vk −→ v in L2([0, T ]×[0, π]) pointwise on Ω. Hence, the sequence (vk)k∈N is bounded
in L2([0, T ] × [0, π]) and we have∫ t

0

∫ π

0

(
f(vk(s, x)) + f(v(s, x))

)2
ds dx

≤ C

(
1 + sup

k∈N

∫ t

0

∫ π

0
vk(s, x)2 ds dx+

∫ t

0

∫ π

0
v(s, x)2 ds dx

)
< ∞,

(1.3.26)

which implies
∫ t

0
∫ π

0 |f2(vk(s, x)) − f2(v(s, x))|ϕ2(x) ds dx −→ 0 as k → ∞.
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The second integral in (1.3.24) is more difficult to handle. We decompose it into Ik,n
1 +

Ik,n,M
2 + Ik,n,M

3 , where

Ik,n
1 =

∫ t

0

∫ π

0
f2(v(s, x))Σk

h(s, x)1{|vk(s,x)|≤n} dsdx,

Ik,n,M
2 =

∫ t

0

∫ π

0
f2(v(s, x))Σk

h(s, x)1{|vk(s,x)|>n}1{|f(v(s,x))|≤M} ds dx,

Ik,n,M
3 =

∫ t

0

∫ π

0
f2(v(s, x))Σk

h(s, x)1{|vk(s,x)|>n}1{|f(v(s,x))|>M} ds dx

for all k, n,M ∈ N.
Again we will study each of these three integrals separately. On the set {|vk(s, x)| ≤ n}, we

have |f(vk(s, x))ϕ(x)| ≤ (Kn+ |f(0)|)∥ϕ∥∞ and therefore

1{|z|>(h/|f(vk(s,x))ϕ(x)|)σ(εk)} ≤ 1{|z|>(h/(Kn+|f(0)|)∥ϕ∥∞)σ(εk)}.

Thus,

Ik,n
1 ≤

∫ t

0

∫ π

0
f2(v(s, x)) 1

σ2(εk)

∫
R
z21{|z|>(h/(Kn+|f(0)|)∥ϕ∥∞)σ(εk)}Q

εk(dz) dsdx.

Because the term h/(Kn + |f(0)|)∥ϕ∥∞ does not depend on k, we can use condition (1.1.4),
whence

1
σ(εk)

∫
R
z21{|z|>(h/(Kn+|f(0)|)∥ϕ∥∞)σ(εk)}Q

εk(dz) −→ 0 as k → ∞

for all n ∈ N and h > 0. Since v ∈ L2([0, T ] × [0, π]), we obtain by dominated convergence that
Ik,n

1 −→ 0 as k → ∞ for all n ∈ N.
Next, we have by Chebyshev’s inequality,

Ik,n,M
2 ≤ M2

∫ t

0

∫ π

0
1{|vk(s,x)|>n} ds dx ≤ M2

n2 sup
k∈N

∫ t

0

∫ π

0
vk(s, x)2 ds dx,

which tends to 0 as n → ∞, uniformly in k.
Finally, we have by dominated convergence,

Ik,n,M
3 ≤

∫ t

0

∫ π

0
f2(v(s, x))1{|f(v(s,x))|>M} ds dx −→ 0 as M → ∞,

uniformly in n and k. Altogether, we have just shown that the left-hand side of (1.3.24) converges
to 0 as k → ∞, which is condition (i) in (1.3.22).

The two other conditions will follow from our last calculations. Indeed, we have

∣∣Bk
t −Bt

∣∣ ≤
∫ t

0

∣∣∣⟨vk(s, ·), ϕ′′⟩ − ⟨v(s, ·), ϕ′′⟩
∣∣∣ ds+

∣∣∣∣∣
∫ t

0

∫
R
x1{|x|>1} ν

k(ds, dx)
∣∣∣∣∣,

where the first term vanishes because∫ t

0

∣∣∣⟨vk
s , ϕ

′′⟩ − ⟨vs, ϕ
′′⟩
∣∣∣ ds ≤

∫ t

0

∫ π

0

∣∣∣vk(s, x) − v(s, x)
∣∣∣|ϕ′′(x)| dsdx

≤ C

(∫ t

0

∫ π

0

(
vk(s, x) − v(s, x)

)2
ds dx

)1/2
−→ 0

(1.3.27)
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as k → ∞. Furthermore,∫ t

0

∫
R
x1{|x|>1} ν

k(ds, dx) ≤
∫ t

0

∫
R
x21{|x|>1} ν

k(ds, dx)

=
∫ t

0

∫ π

0
f2(vk(s, x))ϕ2(x)Σk

1(s, x) ds dx

≤
∫ t

0

∫ π

0

∣∣f2(vk(s, x)) − f2(v(s, x))
∣∣ϕ2(x) ds dx

+
∫ t

0

∫ π

0
f2(v(s, x))ϕ2(x)Σk

1(s, x) ds dx.

(1.3.28)

These integrals are exactly the same as in the last line of (1.3.24), so we obtain
∣∣Bk

t −Bt

∣∣ −→ 0,
which is condition (ii). From this, condition (iii) immediately follows since

νk ([0, t] × {|x| > 1}) =
∫ t

0

∫
R
1{|x|>1} ν

k(ds, dx) ≤
∫ t

0

∫
R
x1{|x|>1} ν

k(ds, dx). (1.3.29)

The following technical lemma is a direct consequence of Theorem 1.3.10 and will be crucial
for proving Theorem 1.3.9 afterwards.

If t 7→ At is a function of locally finite variation, we denote by Var(A)t the total variation
of the function A on the interval [0, t]. If A is complex-valued, we have Var(A) = Var(ReA) +
Var(ImA).

Lemma 1.3.11. If (1.1.4) holds, then we have pointwise on Ω,

A
k
t −→ At and Var(Ak −A)t −→ 0 as k → ∞

for any ξ ∈ R, ϕ ∈ C∞
c ((0, π)) and t ≤ T , where the processes Ak and A are defined in (1.3.19)

and (1.2.17), respectively.

Proof. For fixed ϕ ∈ C∞
c ((0, π)), t ∈ [0, T ] and ω ∈ Ω, the infinitely divisible distributions ηk

and η, defined before Theorem 1.3.10, have Lévy exponents Ak
t and At, respectively. By that

theorem, ηk
w−→ η as k → ∞. This immediately implies the first claim of the proposition (see,

for example, Equation VII.2.6 in [65]).
For the second claim, we will need the truncation function

ϑ(x) =


−1, x < −1,
x, |x| ≤ 1,
1, x > 1.

The main difference between the function ϱ1(x) = x1{|x|≤1}, used so far, and ϑ is that the latter
is continuous. Since this property will be needed for technical reasons, we replace ϱ1 by ϑ in the
expression of Ak

t in (1.3.19) and thus obtain

A
k
t = iξ

(∫ t

0
⟨vk(s, ·), ϕ′′⟩ ds−

∫ t

0

∫
R

(x− ϑ(x)) νk(ds, dx)
)

+
∫ t

0

∫
R

(
eiξx − 1 − iξϑ(x)

)
νk(ds, dx).

(1.3.30)
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With (1.3.30) and (1.2.17), we then calculate

Re(Ak
t −At) = 1

2ξ
2
∫ t

0

∫ π

0
f2(v(s, x))ϕ2(x) ds dx+

∫
R

(cos(ξx) − 1) νk([0, t] × dx),

Im(Ak
t −At) = ξ

(∫ t

0
⟨vk(s, ·), ϕ′′⟩ ds−

∫ t

0
⟨v(s, ·), ϕ′′⟩ ds−

∫
R

(x− ϑ(x)) νk([0, t] × dx)
)

+
∫
R

(sin(ξx) − ξϑ(x)) νk([0, t] × dx).
(1.3.31)

Consequently,

Var(Re(Ak −A))t ≤ 1
2ξ

2
∫ t

0

∫ π

0

∣∣∣∣∣f2(v(s, x))ϕ2(x) −
∫
R
ϑ2
(
f(vk(s, x))
σ(εk) ϕ(x)z

)
Qεk(dz)

∣∣∣∣∣ dx ds

+
∫
R

∣∣∣ cos (ξx) − 1 + 1
2ξ

2ϑ2(x)
∣∣∣ νk([0, t] × dx).

(1.3.32)

We will show that the two integrals above converge to 0 as k → ∞.
The function | cos(ξx) − 1 + 1

2ξ
2ϑ2(x)| is bounded, continuous (because ϑ is) and o(x2) as

x → 0. Hence, by condition [δ1,3] of Theorem VII.2.9 in [65], we can infer∫
R

∣∣∣ cos(ξx) − 1 + 1
2ξ

2ϑ2(x)
∣∣∣ νk([0, t] × dx) −→ 0 as k → ∞

from Theorem 1.3.10.
Consider now the first integral in (1.3.32), and notice that

ϑ2(x) = x21{|x|≤1} + 1{|x|>1} for all x ∈ R.

Using the triangle inequality, we can therefore estimate this integral by∫ t

0

∫ π

0

∣∣∣∣∣f2(v(s, x))ϕ2(x) −
∫
R

(
f(vk(s, x))ϕ(x)z/σ(εk)

)2
1{|f(vk(s,x))ϕ(x)z|/σ(εk)≤1}Q

εk(dz)
∣∣∣∣∣ dx ds

+
∫
R
1{|x|>1} ν

k([0, t] × dx).

The second integral above converges to 0 as shown in (1.3.29), while the same holds for the first
integral by (1.3.24) (set h = 1). Together with (1.3.32), we conclude that Var(Re(Ak −A))t −→ 0
as k → ∞.

It remains to show that Var(Im(Ak − A))t −→ 0 as k → ∞, which will be done in a similar
manner as before. From (1.3.31), we have

Var(Im(Ak −A))t ≤ |ξ|
∫ t

0

∣∣∣⟨vk(s, ·), ϕ′′⟩ − ⟨v(s, ·), ϕ′′⟩
∣∣∣ ds+ |ξ|

∫
R

∣∣x− ϑ(x)
∣∣ νk([0, t] × dx)

+
∫
R

∣∣∣ sin(ξx) − ξϑ(x)
∣∣∣ νk([0, t] × dx).

The first integral on the right-hand side above converges to 0 by (1.3.27). Furthermore, since∫
R

∣∣x− ϑ(x)
∣∣ νk([0, t] × dx) ≤ 2

∫
R

|x|21{x>1} ν
k([0, t] × dx),
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also the second integral vanishes by (1.3.28). Finally, the function
∣∣ sin(ξx) − ξϑ(x)

∣∣ is bounded,
continuous and o(x2) as x → 0. Hence, we can again apply Theorem VII.2.9 in [65] in order to
obtain ∫

R

∣∣∣ sin(ξx) − ξϑ(x)
∣∣∣ νk([0, t] × dx) −→ 0 as k → ∞.

We conclude that Var(Im(Ak −A))t −→ 0, and altogether Var(Ak −A)t −→ 0 as k → ∞.

Proof of Theorem 1.3.9. According to Proposition VI.1.23 in [65], because the function
t 7→

∫ t
0 exp (iξ⟨vs, ϕ⟩) A(ds) is continuous, Mk converges to M in the Skorokhod topology for

fixed ω ∈ Ω if

eiξ⟨vk,ϕ⟩ −→ eiξ⟨v,ϕ⟩ and
∫ ·

0
eiξ⟨vk

s ,ϕ⟩A
k(ds) −→

∫ ·

0
eiξ⟨vs,ϕ⟩A(ds)

in D([0, T ],C) as k → ∞.
Using the definition of the Skorokhod topology, we can easily infer from the convergence of

(vk)k∈N to v in D([0, T ], H−r([0, π])) given in (1.2.15) that

⟨vk, ϕ⟩ −→ ⟨v, ϕ⟩ in D([0, T ],R) and

eiξ⟨vk,ϕ⟩ −→ eiξ⟨v,ϕ⟩ in D([0, T ],C)

as k → ∞ for all ϕ ∈ Hr([0, π]).
Next, we have

sup
t≤T

∣∣∣∣∣
∫ t

0
eiξ⟨vk

s ,ϕ⟩A
k(ds) −

∫ t

0
eiξ⟨vs,ϕ⟩A(ds)

∣∣∣∣∣
≤ sup

t≤T

∣∣∣∣∣
∫ t

0
eiξ⟨vk

s ,ϕ⟩ (Ak −A)(ds)
∣∣∣∣∣+ sup

t≤T

∣∣∣∣∣
∫ t

0

(
eiξ⟨vk

s ,ϕ⟩ − eiξ⟨vs,ϕ⟩
)
A(ds)

∣∣∣∣∣
≤ Var(Ak −A)T +

∫ T

0

∣∣eiξ⟨vk
s ,ϕ⟩ − eiξ⟨vs,ϕ⟩∣∣Var(A)(ds).

Lemma 1.3.11 then immediately gives us Var(Ak −A)T → 0 as k → ∞. In addition, the Sko-
rokhod convergence of eiξ⟨vk,ϕ⟩ towards eiξ⟨v,ϕ⟩ implies eiξ⟨vk

t ,ϕ⟩ −→ eiξ⟨vt,ϕ⟩ for all continuity
points of eiξ⟨v,ϕ⟩; see, for example, VI.2.3 of [65]. Since a càdlàg function has at most count-
ably many discontinuities, we have eiξ⟨vk

t ,ϕ⟩ −→ eiξ⟨vt,ϕ⟩ for almost all t ∈ [0, T ]. So dominated
convergence implies that also the last term of the previous display converges to 0 as k → ∞.

We have now gathered all the intermediate results needed for the following theorem.

Theorem 1.3.12. If (1.1.4) holds, then (v, v) in (1.2.15) satisfies the following martingale prob-
lem. For all ξ ∈ R and ϕ ∈ C∞

c ((0, π)), the process (M t)t≤T defined in (1.2.18) is a martingale
with respect to the filtration F in (1.2.16).

Furthermore, v has an F -predictable modification and

ess sup
(t,x)∈[0,T ]×[0,π]

E
[
|v(t, x)|2

]
< ∞. (1.3.33)

Finally, for almost all t ∈ [0, T ], vt = ⟨v(t, ·), ·⟩ as well as v0 = 0 holds with probability one.
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Proof. By Theorem 1.3.8, for any ξ ∈ R, ϕ ∈ C∞
c ((0, π)) and k ∈ N, the process M εk defined

in (1.3.15) is a square-integrable F -martingale.
Now define for each k ∈ N, the filtration F

k = (Fk
t )t≤T on Ω by setting

Fk
t =

⋂
u>t

σ
(
vk(s, x), vk

s | 0 ≤ x ≤ π, s ≤ u
)
, t ≤ T. (1.3.34)

Since vk and vk in (1.2.15) are adapted to the filtration F
k, the same holds for Mk from (1.3.20).

Similarly, v, v and M are F -adapted. Since Mk has the same distribution as M εk by (1.2.15),
standard arguments now show that Mk is an F

k-martingale for all ξ ∈ R, ϕ ∈ C∞
c ((0, π)) and

k ∈ N. This is the martingale problem satisfied by the pair (vk, vk).
Using Theorem 1.3.9, we have

M
k(ω) −→ M(ω) in D([0, T ],C) (1.3.35)

as k → ∞ for all ω ∈ Ω. This implies Mk
t (ω) −→ M t(ω) almost everywhere on [0, T ] for all

ω ∈ Ω. Furthermore,
E
[∣∣Mk

t

∣∣2] = E
[∣∣M εk

t

∣∣2] < ∞ (1.3.36)

uniformly in k ∈ N and t ≤ T by Theorem 1.3.8.
Moreover, the convergence in (1.2.15) implies convergence in measure (with respect to the

Lebesgue measure on [0, T ] × [0, π]) of vk(ω) towards v(ω) for all ω ∈ Ω. Hence, we have by
dominated convergence,

P ⊗ Leb[0,T ]×[0,π]
(
|vk − v| ≥ ε

)
= E

[∫ T

0

∫ π

0
1{|vk(ω,t,x)−v(ω,t,x)|≥ε} dt dx

]
−→ 0

as k → ∞, and thus, vk converges to v in P ⊗ Leb[0,T ]×[0,π]-measure. Therefore, there exists a
subsequence (kl)l∈N such that

vkl −→ v P ⊗ Leb[0,T ]×[0,π]-almost everywhere as l → ∞, (1.3.37)

and we will assume without loss of generality that (1.3.37) holds for the whole sequence. In
turn, this implies vk −→ v P-almost surely as k → ∞ for almost all (t, x) ∈ [0, T ] × [0, π]. Using
Fatou’s lemma, we obtain

E
[
|v(t, x)|2

]
≤ lim inf

k→∞
E
[
|vk(t, x)|2

]
Leb[0,T ]×[0,π]-almost everywhere. (1.3.38)

Furthermore,
vk(t, x) d= uεk(t, x) Leb[0,T ]×[0,π]-almost everywhere, (1.3.39)

for all k ∈ N, so (1.3.33) follows from Lemma 1.3.1. (In order to show (1.3.39), consider for
α > 0 the mollified random fields Jαv

k and Jαu
εk on [0, T ] × [0, π], defined exactly as in (1.8) of

Chapter 10 in [49]. Then (1.2.15) implies

(Jαv
k)(t, x) d= (Jαu

εk)(t, x) (1.3.40)

for all (t, x) ∈ [0, T ] × [0, π], α > 0 and k ∈ N. In addition, using Lemma 3 of Chapter 10 in [49],
we have

Jαv
k(ω) −→ vk(ω) and Jαu

εk(ω) −→ uεk(ω) in L2([0, T ] × [0, π]) as α → 0,
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for all k ∈ N, ω ∈ Ω and ω ∈ Ω. As a consequence, we can find a sequence (αl)l∈N converging to
0 such that

Jαl
vk(ω) −→ vk(ω) and Jαl

uεk(ω) −→ uεk(ω) Leb[0,T ]×[0,π]-almost everywhere (1.3.41)

as l → ∞ for all k ∈ N, ω ∈ Ω and ω ∈ Ω. So (1.3.39) follows from (1.3.40) and (1.3.41).)
Finally, since we have vk −→ v in D([0, T ], H−r([0, π])) for all ω ∈ Ω, we also infer that

vk
t −→ vt P-almost surely in H−r([0, π]) for almost all t ≤ T .

Choose continuous bounded functions h : H−r([0, π])M → R and h : RN → R with M,N ∈ N.
Using the F

k-martingale property of Mk, (1.3.36) as well as Vitali convergence theorem, we
now obtain the following: For almost all 0 ≤ s < t ≤ T , s1, . . . , sM ≤ s, r1, . . . , rN ≤ s and
x1, . . . , xN ∈ [0, π], we have as k → ∞,

0 = E
[(
M

k
t −M

k
s

)
h(vk

s1 , . . . , v
k
sM

)h(vk(r1, x1), . . . , vk(rN , xN ))
]

−→ E
[(
M t −M s

)
h(vs1 , . . . , vsM )h(v(r1, x1), . . . , v(rN , xN ))

]
.

(1.3.42)

Next, uε is L2-continuous by Theorem 4.7 in [28] and Lemma B.1 in [10]. This and (1.3.39)
imply that vk is also L2-continuous. Since vk satisfies the uniform bound (1.3.33) and with
Vitali convergence theorem, we can infer that the random field v is L1-continuous. Therefore,
by a density argument, we can further deduce that the right-hand side of (1.3.42) is 0 for even
all choices 0 ≤ s < t ≤ T , si, rj ≤ s and xj ∈ [0, π] with i = 1, . . . ,M , j = 1, . . . , N . Hence,
again by standard arguments, we can deduce that M is an F -martingale for any ξ ∈ R and
ϕ ∈ C∞

c ((0, π)).
Finally, by a straightforward extension of Proposition 3.21 in [83] to two-parameter processes

and since v is stochastically continuous, v has a predictable modification.
The last statement of the theorem is easy and we leave the details to the reader.

We can now finish the proof of the weak convergence (1.2.13). Indeed, the martingale problem
stated in Theorem 1.3.12 and satisfied by (v, v) in (1.2.15) will allow us to identify uniquely the
distribution of (v, v) (from now on we may and will assume that v is predictable).

Note that the next theorem holds independently of all our previous results.

Theorem 1.3.13. On a filtered probability space (Ω,F ,F ,P), let v = {v(t, x) | (t, x) ∈ [0, T ] ×
[0, π]} be an F -predictable random field and v an F -adapted càdlàg process in H−r([0, π]), with
r > 1/2. Assume that for almost all t ∈ [0, T ], vt = ⟨v(t, ·), ·⟩ as well as v0 = 0 holds P-almost
surely and that

ess sup
(t,x)∈[0,T ]×[0,π]

E
[
|v(t, x)|2

]
< ∞. (1.3.43)

In addition, assume that the pair (v, v) satisfies the following martingale problem. For all
ξ ∈ R and ϕ ∈ C∞

c ((0, π)), the process (M t)t≤T defined via (1.2.17) and (1.2.18) is a local
F -martingale.

Then there exists a Gaussian space–time white noise W̃ on [0, T ] × [0, π], possibly defined
on a filtered extension (Ω̃, F̃ , F̃ , P̃) of (Ω,F ,F ,P) such that, with probability one, v is equal
in L2([0, T ] × [0, π]) to the mild solution to the stochastic heat equation (1.2.8) with noise ˙̃

W .
Furthermore, v is indistinguishable from the modification of the latter that is continuous in
H−r([0, π]).
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Proof. The proof is inspired by Lemma 2.4 in [74]. First, Theorem II.2.42 in [65] shows that for
any ϕ ∈ C∞

c ((0, π)), the stochastic process ⟨v, ϕ⟩ is an F -semimartingale with first and second
characteristic given by

t 7→
∫ t

0
⟨v(s, ·), ϕ′′⟩ ds and t 7→

∫ t

0

∫ π

0
f2(v(s, x))ϕ2(x) ds dx,

respectively. Furthermore, the third characteristic of ⟨v, ϕ⟩ equals 0, which implies that ⟨v, ϕ⟩ is
continuous. As v0 = 0 P-almost surely, its canonical decomposition is

⟨v, ϕ⟩ =
∫ ·

0
⟨v(s, ·), ϕ′′⟩ ds+ ⟨v, ϕ⟩c,

where ⟨v, ϕ⟩c denotes the continuous martingale part of ⟨v, ϕ⟩. Since

E
[∫ T

0

∫ π

0
f2(v(s, x))ϕ2(x) ds dx

]
≤ C

(
ess sup

(s,x)∈[0,T ]×[0,π]
E
[
|v(s, x)|2

]
+ 1

)
,

which is finite by assumption, the quadratic variation of ⟨v, ϕ⟩c is integrable, so

Mt(ϕ) = ⟨vt, ϕ⟩ −
∫ t

0
⟨v(s, ·), ϕ′′⟩ ds, t ≤ T, (1.3.44)

is a continuous square-integrable F -martingale with quadratic variation process

t 7→
∫ t

0

∫ π

0
f2(v(s, x))ϕ2(x) ds dx, (1.3.45)

for all ϕ ∈ C∞
c ((0, π)). The specifications (1.3.44) and (1.3.45) define an orthogonal martingale

measure {Mt(A), t ∈ [0, T ], A ∈ B([0, π])} relative to (Ω,F ,F ,P), in the sense of Chapter 2 in
[99], with covariation measure

QM (A×B × [s, t]) =
∫ t

s

∫
A∩B

f2(v(r, x)) dr dx (1.3.46)

for all A,B ∈ B([0, π]).
Now let (Ω′,F ′,F ′,P′) be another filtered probability space on which a Gaussian space–time

white noise W ′ on [0, T ] × [0, π] is defined. Set

Ω̃ = Ω × Ω′, F̃ = F ⊗ F ′, F̃t =
⋂
s>t

Fs ⊗ F ′
s, P̃ = P ⊗ P′,

and extend the random measures M and W ′ as well as the random elements v and v to Ω̃ in the
standard way so that on (Ω̃, F̃ , F̃ , P̃), W ′ is independent of (v, v) and thus of M . In addition,
on this extension, M is still an orthogonal martingale measure satisfying (1.3.44) and (1.3.46)
by Lemma II.7.3 in [65]. Define

W̃t(ϕ) =
∫ t

0

∫ π

0

1
f(v(s, x))1{f2(v(s,x))̸=0}ϕ(x)M(ds, dx)

+
∫ t

0

∫ π

0
1{f2(v(s,x))=0}ϕ(x)W ′(ds, dx)

for all t ≤ T and ϕ ∈ C∞
c ((0, π)). As before, this defines a martingale measure {W̃t(A), t ∈

[0, T ], A ∈ B([0, π])} relative to (Ω̃, F̃ , F̃ , P̃).
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Since M and W ′ are independent, we have from (1.3.46),

Q
W̃

(A×B × [s, t]) =
∫ t

s

∫
A∩B

1
f2(v(r, x))1{f2(v(r,x)) ̸=0}f

2(v(r, x)) dr dx

+
∫ t

s

∫
A∩B

1{f2(v(r,x))=0} dr dx

=
∫ t

s

∫
A∩B

dr dx

for all A,B ∈ B([0, π]). Therefore, it follows from Proposition 2.1 in [99] that W̃ is orthogonal
and from Proposition 2.10 in [99] that the martingale measure W̃ is a Gaussian space–time white
noise on [0, T ] × [0, π] with respect to (Ω̃, F̃ , F̃ , P̃). Moreover, we have∫ t

0

∫ π

0
f(v(s, x))ϕ(x) W̃ (ds, dx) =

∫ t

0

∫ π

0
f(v(s, x)) 1

f(v(s, x))1{f2(v(s,x)) ̸=0}ϕ(x)M(ds, dx)

+
∫ t

0

∫ π

0
f(v(s, x))1{f2(v(s,x))=0}ϕ(x)W ′(ds, dx)

=
∫ t

0

∫ π

0
1{f2(v(s,x))̸=0}ϕ(x)M(ds, dx).

(1.3.47)

Since, by (1.3.46),

E

(∫ T

0

∫ π

0
1{f2(v(s,x))̸=0}ϕ(x)M(ds, dx) −

∫ T

0

∫ π

0
ϕ(x)M(ds, dx)

)2


= E

(∫ T

0

∫ π

0
1{f2(v(s,x))=0}ϕ(x)M(ds, dx)

)2


= E
[∫ T

0

∫ π

0

∫ π

0
ϕ(x)1{f2(v(s,x))=0}ϕ(y)1{f2(v(s,y))=0}QM (ds, dx,dy)

]

= E
[∫ T

0

∫ π

0
ϕ2(x)1{f2(v(s,x))=0}f

2(v(s, x)) dx ds
]

= 0,

the F̃ -martingales t 7→
∫ t

0
∫ π

0 1{f2(v(s,x)) ̸=0}ϕ(x)M(ds, dx) and t 7→
∫ t

0
∫ π

0 ϕ(x)M(ds, dx) are
indistinguishable. This implies, together with (1.3.44) and (1.3.47), that we have for any ϕ ∈
C∞

c ((0, π)),∫ t

0

∫ π

0
f(v(s, x))ϕ(x) W̃ (ds, dx) = Mt(ϕ) = ⟨vt, ϕ⟩ −

∫ t

0
⟨v(s, ·), ϕ′′⟩ ds, t ≤ T, (1.3.48)

P̃-almost surely. By assumption, the equality in (1.3.48) holds also P̃-almost surely for almost
all t ≤ T if we replace ⟨vt, ϕ⟩ with ⟨v(t, ·), ϕ⟩. This and the assumption (1.3.43) imply, by the
proof of Theorem 3.2 in [99], that we have

v(t, x) =
∫ t

0

∫ π

0
Gt−s(x, y)f(v(s, y)) W̃ (ds, dy) P̃-almost surely (1.3.49)

for almost all (t, x) ∈ [0, T ] × [0, π], i.e., v satisfies the mild formulation of (1.2.19) almost
everywhere. Now let ṽ be a mild solution to (1.2.19). Again by Theorem 3.2 in [99] and its
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proof, we can infer that P̃-almost surely, v and ṽ are equal almost everywhere and hence, in
L2([0, T ] × [0, π]).

Finally, let v̂ be the continuous modification in H−r([0, π]) of ṽ, which we obtain from
Corollary 3.4 in [99]. By (1.3.49), v̂t = ⟨v(t, ·), ·⟩ = vt P̃-almost surely for almost all t ≤ T , and
therefore, because v̂ is continuous and v càdlàg, these two processes are indistinguishable.

1.3.3 Necessity of the condition (1.1.4)
Remark 1.3.14. Suppose that the Lipschitz function f satisfies f(0) ̸= 0. Then there must be
(t1, x1) ∈ [0, T ] × [0, π] such that P(f(u(t1, x1)) ̸= 0) > 0, where u is the mild solution to (1.2.8).
Indeed, if we had f(u(t, x)) = 0 P-almost surely for all (t, x), it would imply u = 0 everywhere
on [0, T ] × [0, π] by equation (1.2.8). This in turn would imply f(0) = 0, which contradicts the
assumption.

Theorem 1.3.15. Assume that f(0) ̸= 0. In the setting of Theorem 1.2.1, if (1.2.13) holds,
then we have (1.1.4) for all κ > 0.

Proof. If (1.2.13) holds, we can use Skorokhod’s representation theorem as in the first part
of the proof of Theorem 1.2.1 and obtain for any sequence (εk)k∈N converging to 0, random
elements

(vk, vk), (v, v) : (Ω,F ,P) −→ (Ω∗, τ)
on a probability space (Ω,F ,P) possibly different from (Ω,F ,P) that satisfy (1.2.15). Of course,
we now have

(v, v) d= (u, u). (1.3.50)

Consider the same filtrations F = (F t)t≤T and F
k = (Fk

t )t≤T on Ω as defined in (1.2.16) and
(1.3.34), respectively. For fixed ϕ ∈ C∞

c ((0, π)), define the processes

X
k
t = ⟨vk

t , ϕ⟩ −
∫ t

0

∫ π

0
vk(s, x)ϕ′′(x) dsdx,

Xt = ⟨vt, ϕ⟩ −
∫ t

0

∫ π

0
v(s, x)ϕ′′(x) ds dx

(1.3.51)

for all k ∈ N and t ≤ T . It is straightforward to infer from (1.2.15) that pointwise on Ω,

X
k −→ X in D([0, T ],R) as k → ∞. (1.3.52)

Furthermore, by (1.2.15), (1.3.50) and (1.3.51), Xk and X have the same distribution as the
square-integrable F -martingales

t 7→
∫ t

0

∫ π

0

f(uεk(s, x))
σ(εk) ϕ(x)Lεk(ds, dx) and t 7→

∫ t

0

∫ π

0
f(u(s, x))ϕ(x)W (ds, dx),

respectively, and therefore, by standard arguments, we can deduce that Xk, resp. X, is an
F

k-martingale, resp. F -martingale, and that X is continuous.
Recall the truncation function ϱh introduced in (1.3.21). Using Theorem II.2.21 in [65], we

can further infer that the semimartingale characteristics of Xk and X with respect to F
k and

F , respectively, and relative to ϱh for a fixed but arbitrary h > 0, are given by (Bk,h
, 0, νk) and

(0, C, 0), respectively, where νk is defined as in (1.3.19), C is defined as in (1.2.17) and

B
k,h
t = −

∫ t

0

∫
R
x1{|x|>h} ν

k(ds, dx), t ≤ T. (1.3.53)
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Define Xk(ϱh) = X
k −

∑
s≤· ∆Xk

s1{|∆X
k
s |>h} for all k ∈ N. Then we have, by definition of the

first characteristic,
X

k(ϱh) = M
k,h +B

k,h
, (1.3.54)

where Mk,h is a local F -martingale.
Now since X is continuous, Proposition VI.2.7 in [65] and (1.3.52) imply that ω-wise,

X
k(ϱh) −→ X in D([0, T ],R) as k → ∞. (1.3.55)

We also have
νk([0, t] × {|x| > a}) P−→ 0 as k → ∞ (1.3.56)

for any t ≤ T and a > 0 by Proposition VI.3.26 and Lemma VI.4.22 in [65]. Therefore, there
exists a subsequence of (νk([0, T ] × {|x| > h}))k∈N converging P-almost surely to 0. For the sake
of clarity, assume without loss of generality that this holds for the whole sequence. Applying the
Cauchy–Schwarz inequality to Bk,h in (1.3.53), we further deduce that

sup
t≤T

∣∣Bk,h
t

∣∣2 ≤
(∫ T

0

∫ π

0

∫
R

f2(vk(t, x))
σ2(εk) ϕ2(x)z2 dt dxQεk(dz)

)
νk([0, T ] × {|x| > h})

≤ Cνk([0, T ] × {|x| > h})
(

1 + sup
k∈N

∫ T

0

∫ π

0
vk(t, x)2 dt dx

)

and the last term converges P-almost surely to 0 (note that the supremum is finite because
vk −→ v in L2([0, T ] × [0, π])). This implies

B
k,h −→ 0 in D([0, T ],R) as k → ∞ (1.3.57)

P-almost surely. Using Proposition VI.1.23 in [65], (1.3.54), (1.3.55) and (1.3.57), we obtain

M
k,h −→ X in D([0, T ],R) as k → ∞

as well as

(Mk,h
,−2Mk,h

, (Mk,h)2) −→ (X,−2X,X2) in D([0, T ],R3) as k → ∞ (1.3.58)

P-almost surely. Since the jumps of Mk,h are uniformly bounded by h, we can apply Proposition
VI.6.13 in [65] on the sequence (Mk,h)k∈N and then Theorem VI.6.22 (c) in [65] on the processes
in (1.3.58) in order to obtain(

M
k,h
,−2Mk,h

, (Mk,h)2,−2
∫ ·

0
M

k,h
s M

k,h(ds)
)

P−→
(
X,−2X,X2

,−2
∫ ·

0
XsX(ds)

)
in D([0, T ],R4) as k → ∞. By definition of the quadratic variation, we can therefore deduce
that

(Mk,h
, [Mk,h

,M
k,h]) P−→ (X,C) in D([0, T ],R2) as k → ∞. (1.3.59)

Denoting by µk the jump measure of Xk, we have, since Bk,h is continuous,

[Mk,h
,M

k,h]t =
∫ t

0

∫
R
x21{|x|≤h} µ

k(ds, dx), t ≤ T. (1.3.60)
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Now denote for any k ∈ N,

C̃k
t =

∫ t

0

∫
R
x21{|x|≤h} ν

k(ds, dx) and

Y
k
t = [Mk,h

,M
k,h]t − C̃k

t =
∫ t

0

∫
R
x21{|x|≤h} (µk − νk)(ds, dx).

(1.3.61)

Then Y
k is a square-integrable F

k-martingale with |∆Y k| ≤ h, and for any bounded stopping
time T , we have, by the optional stopping theorem, E[(Y k

T )2] ≤ E[[Y k
, Y

k]T ]. Therefore, by
Lenglart’s inequality (see Lemma I.3.30 in [65]), we obtain for all δ > 0 and η > 0,

P
(

sup
s≤t

|Y k
s |2 ≥ δ

)
≤ 1
δ

(
η + E

[
sup
s≤t

∆[Y k
, Y

k]s

])
+ P([Y k

, Y
k]t ≥ η)

≤ 2η
δ

+
(
h

δ
+ 1

)
P([Y k

, Y
k]t ≥ η).

(1.3.62)

By (1.3.60), we have

[Y k
, Y

k]t =
∫ t

0

∫
R
x41{|x|≤h} µ

k(ds, dx) ≤
(

sup
s≤t

∣∣∆[Mk,h
,M

k,h]s
∣∣) [Mk,h

,M
k,h]t.

Moreover, because [Mk,h
,M

k,h]t
P−→ Ct by (1.3.59) and sups≤t |∆[Mk,h

,M
k,h]s| P−→ 0 by Propo-

sition VI.3.26 (iii) in [65], we deduce from the inequality above that [Y k
, Y

k]t
P−→ 0 and,

by (1.3.62), that
sup
s≤t

|Y k
s | P−→ 0 as k → ∞ (1.3.63)

for all t ≤ T . Finally, combine (1.3.59), (1.3.61) and (1.3.63) to see that

C̃k
t =

∫ t

0

∫
R
x21{|x|≤h} ν

k(ds, dx) P−→ Ct as k → ∞ (1.3.64)

for all t ≤ T and h > 0. Taking a subsequence if necessary, we will from now on assume that
the convergence in (1.3.64) holds even P-almost surely.

Recall now the definition of Σk
h(s, x) in (1.3.23) and that, because vk −→ v in L2([0, T ] ×

[0, π]), we have
∫ t

0
∫ π

0 |f2(vk(s, x)) − f2(v(s, x))|ϕ2(x) dsdx −→ 0 as k → ∞; see the calculations
in (1.3.25) and (1.3.26). Together with (1.3.64) this implies P-almost surely,∫ T

0

∫ π

0
f2(v(s, x))ϕ2(x)Σk

h(s, x) ds dx −→ 0 as k → ∞ (1.3.65)

for all h > 0 and ϕ ∈ C∞
c ((0, π)) by a similar calculation as in (1.3.24) (note that the first

inequality there becomes an equality if | · | is replaced by (·) throughout).
Now on the set {|f(vk(s, x))ϕ(x)| ≥ δ}, where δ > 0, we have

1{|z|≥(h/|f(vk(s,x))ϕ(x)|)σ(εk)} ≥ 1{|z|≥(h/δ)σ(εk)},

and thus
Σk

h(s, x) ≥ 1
σ2(εk)

∫
R
z21{|z|≥(h/δ)σ(εk)}Q

εk(dz).



30 CONTENTS

Therefore, as a consequence of (1.3.65), we obtain P-almost surely,

1
σ2(εk)

∫
R
z21{|z|≥(h/δ)σ(εk)}Q

εk(dz)

×
∫ T

0

∫ π

0
f2(v(s, x))ϕ2(x)1{|f(vk(s,x))ϕ(x)|≥δ, |f(v(s,x))ϕ(x)|>δ} ds dx −→ 0

(1.3.66)

as k → ∞ for all h > 0, δ > 0 and ϕ ∈ C∞
c ((0, π)).

We have seen in (1.3.37) that we can assume (perhaps for a subsequence) that

vk −→ v as k → ∞ P ⊗ Leb[0,T ]×[0,π]-almost everywhere,

which implies, by dominated convergence and continuity of f ,

E
[∫ T

0

∫ π

0
f2(v(s, x))ϕ2(x)1{|f(vk(s,x))ϕ(x)|≥δ, |f(v(s,x))ϕ(x)|>δ} ds dx

]

−→ E
[∫ T

0

∫ π

0
f2(v(s, x))ϕ2(x)1{|f(v(s,x))ϕ(x)|>δ} ds dx

]
as k → ∞.

(1.3.67)

So from (1.2.15), (1.3.66) and (1.3.67), we deduce that

1
σ2(εk)

∫
R
z21{|z|≥(h/δ)σ(εk)}Q

εk(dz)

× E
[∫ T

0

∫ π

0
f2(u(s, x))ϕ2(x)1{|f(u(s,x))ϕ(x)|>δ} ds dx

]
−→ 0 as k → ∞

(1.3.68)

for all h > 0, δ > 0 and ϕ ∈ C∞
c ((0, π)). Moreover,( 1

σ2(εk)

∫
R
z21{|z|≥(h/δ)σ(εk)}Q

εk(dz)
)
E
[∫ T

0

∫ π

0
f2(u(s, x))ϕ2(x) ds dx

]

≤
( 1
σ2(εk)

∫
R
z21{|z|≥(h/δ)σ(εk)}Q

εk(dz)
)

× E
[∫ T

0

∫ π

0
f2(u(s, x))ϕ2(x)1{|f(u(s,x))ϕ(x)|>δ} ds dx

]
+ Tπδ2.

(1.3.69)

So if we choose h = κδ with κ > 0 arbitrary, then by (1.3.68), the first term on the right-hand
side of (1.3.69) converges to 0 as k → ∞ for all κ > 0 and δ > 0. The second term does not
depend on k nor h and converges to 0 as δ → 0. This implies( 1

σ2(εk)

∫
R
z21{|z|≥κσ(εk)}Q

εk(dz)
)
E
[∫ T

0

∫ π

0
f2(u(s, x))ϕ2(x) ds dx

]
−→ 0 (1.3.70)

as k → ∞ for all κ > 0. Since f(0) ̸= 0, there exists (t1, x1) ∈ [0, T ] × [0, π] such that
E[f2(u(t1, x1))] > 0 by Remark 1.3.14. Moreover, the mild solution u is continuous in L2(Ω,F ,P),
which follows from the proof of Corollary 3.4 in [99]. We can thus infer that the expectation
in (1.3.70) is not 0 and we obtain

1
σ2(εk)

∫
R
z21{|z|≥κσ(εk)}Q

εk(dz) −→ 0 as k → ∞

for all κ > 0, which is exactly (1.1.4).



Chapter 2

Normal approximation of the
solution to the stochastic wave
equation with Lévy noise

2.1 Introduction
The wave equation is the prototype of an hyperbolic PDE, widely used e.g. in acoustics and
signal processing ([46]). In the literature of stochastic PDEs, the corresponding equation with
random perturbation has been extensively studied, especially when the driving noise is Gaussian:
See e.g. [99] for the case of a space–time white noise and Chapter 2 of [40] for a noise that is
white in time but spatially correlated. In this paper, we consider the stochastic wave equation

∂ttu(t, x) = ∂xxu(t, x) + f(u(t, x))L̇(t, x), (t, x) ∈ R+ × R, (2.1.1)

where L̇ is a Lévy space–time white noise. We investigate the normal approximation on [0, T ] ×
[0, L] of solutions to (2.1.1) when L̇ has a finite second moment and no Gaussian component,
that is, when can they be approximated in law on compact domains by the solution to

∂ttu(t, x) = ∂xxu(t, x) + f(u(t, x))Ẇ (t, x), (t, x) ∈ R+ × R, (2.1.2)

with a Gaussian space–time white noise Ẇ . The purpose of this work is to show that the
necessary and sufficient condition for this functional convergence is

lim
ε→0

1
σ2(ε)

∫
|z|>κσ(ε)

z2Qε(dz) = 0 (2.1.3)

where σ2(ε) is the variance of a homogeneous Lévy noise L̇ε with Lévy measure Qε, for all κ > 0.
Intuitively, to make such an approximation plausible, L̇ε should be close to Ẇ in distribution.

For Lévy processes having jumps decreasing in size to 0, this was made rigorous in [9] and
more generally in [36], where condition (2.1.3) was first introduced. The passage to an infinite-
dimensional setting has been addressed in such generality, to our best knowledge, only in the case
of parabolic stochastic PDEs like the stochastic heat equation, see [32] and references therein.
We substantially generalize these results to the category of hyperbolic stochastic PDEs. Our
second contribution is that we consider throughout equations with multiplicative noise. As an
application, in the situation of small jumps approximation of [9], if the impulses of the noise L̇ε

decrease too fast to 0 (such as for a gamma noise), then the corresponding stochastic PDE will
not admit a normal approximation, but it will, for instance, if L̇ε is α-stable for any α ∈ (0, 2).

31
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The strategy of proof of our main result, Theorem 2.4.1, is identical to [32]: We show tightness
of the solutions to (2.1.1) via a generalization of the Aldous criterion [59] and then identify
uniquely the limit. Here classical methods relying on the Lévy–Khintchine formula do not apply
due to the multiplicative noise, so we resort to martingale problems that correspond to the
solutions and whose associated martingales converge under condition (2.1.3) to a limit that we
link to the solution to (2.1.2). However, their predictable characteristics do not depend on the
martingale process itself, which makes other well-established techniques, see e.g. Chapter IX
of [65], inapplicable as well. Instead, we prove convergence by hand, so to say, in Skorokhod’s
representation. To this end, we show that all solution processes considered belong to a suitable
Skorokhod space (and to an L2-space as well), a fact we will extensively utilize because, in our
setting, convergence in Skorokhod topology preserves the martingale property.

The random field solution u to (2.1.1) will exhibit a càdlàg property jointly in space and
time, as we show in Theorem 2.3.2, that is directly linked to the shape of the wave kernel.
Now it turns out that to show our normal approximation result, we will need to investigate
two different processes simultaneously: u and its time derivative ∂tu, because both appear in
the weak formulation of the stochastic wave equation that we consider in this work and, hence,
in the aforementioned martingale problems, see Section 2.3.2 for details. This is a substantial
difference with [32] where two different representations of the same process needed to be adopted
due to the singularities of the heat kernel. We show in Theorem 2.3.5 that we can view ∂tu as
a càdlàg process taking values on a space of distributions constructed via Hermite expansions.
We also mention that u becomes a strong martingale after an appropriate change of coordinate
system, a crucial property that we will use to show tightness and the path properties above in
place of the factorization method from [39, 90] (applied in [32]).

As in [9, 32, 36], our motivation comes from numerical simulation: An additional normal
approximation of the small jumps of the noise in (2.1.1) might improve the rate of convergence
of numerical schemes, as suggested by the results in [73] for SDEs and in [24] for SPDEs.

This paper is organized as follows. In Section 2.2, we describe in detail equations (2.1.1) and
(2.1.2). In Section 2.3, we introduce all function spaces needed and show existence of the random
elements that will be studied in Section 2.4, which contains our main result as well as the main
ideas of its proof. The details as well as the proofs for Section 2.3 are postponed to Section 2.5.

2.2 Preliminaries

Consider on a filtered probability space (Ω,F ,F = (Ft)t≤T ,P) that satisfies the usual conditions,
for any ε > 0, the stochastic wave equation on R+ × R with vanishing initial conditions:

 ∂ttu
ε(t, x) = ∂xxu

ε(t, x) + f(uε(t, x)) L̇
ε(t, x)
σ(ε) , (t, x) ∈ R+ × R,

uε(0, x) = ∂tu
ε(0, x) = 0, for all x ∈ R,

(2.2.1)

where L̇ε(t, x) is a pure-jump Lévy space–time white noise on R+ × R given by

Lε(A) =
∫
R+×R

∫
R
1A(t, x)z (µε − νε)(dt, dx, dz) (2.2.2)

for all bounded Borel sets A ∈ Bb(R+ ×R). In this representation, µε is a homogeneous Poisson
random measure on (R+ × R) × R relative to the filtration F , with intensity measure νε =
LebR+×R ⊗Qε. Here Qε is a Lévy measure on R, that is, Qε({0}) = 0 and

∫
R(1∧z2)Qε(dz) < ∞,



Normal approximation of the solution to the stochastic wave equation with Lévy noise 33

see e.g. Chapter II in [65] for the definition of stochastic integrals with respect to Poisson random
measures. Furthermore, we assume that for all ε > 0,

0 < σ2(ε) =
∫
R
z2Qε(dz) < ∞, (2.2.3)

which is the variance of Lε([0, 1] × [0, 1]). The special case

Qε(A) =
∫

|z|≤ε
1A(z)Q(dz), A ∈ B(R), ε > 0,

for a single Poisson random measure µ having intensity measure ν = LebR+×R ⊗ Q, corresponds
to the small jump approximation in [9].

The function f : R −→ R in equation (2.2.1) will be assumed to be Lipschitz continuous
throughout this work.

We are interested in the notion of mild solution to (2.2.1). It is defined as an F -predictable
random field uε = {uε(t, x) | (t, x) ∈ R+ × R} satisfying for all (t, x) ∈ R+ × R,

uε(t, x) =
∫ t

0

∫
R
Gt−s(x, y)f(uε(s, y))

σ(ε) Lε(ds, dy)

=
∫

[0,t]×R

∫
R
Gt−s(x, y)f(uε(s, y)) z

σ(ε) (µε − νε)(ds, dy,dz) P-almost surely.
(2.2.4)

In this equation, G denotes the Green’s function of the wave operator ∂tt − ∂xx and has the
following expression:

Gt−s(x, y) = G(t, x; s, y) = 1
21A+(t,x)(s, y) (2.2.5)

for any (t, x, s, y) ∈ (R+ × R)2, where

A+(t, x) =
{

(s, y) ∈ R+ × R | |y − x| ≤ t− s
}

(2.2.6)

denotes the backward light cone with apex (t, x) restricted to R+×R. In particular, G is bounded
and not differentiable. By Theorem 3.1 in [28], there exists a unique mild solution uε to (2.2.1)
satisfying

sup
(t,x)∈[0,T ]×R

E
[∣∣uε(t, x)

∣∣p] < ∞ (2.2.7)

for all T > 0, 0 < p ≤ 2 and ε > 0. Indeed, from (2.2.3) and

sup
(t,x)∈[0,T ]×R

∫ t

0

∫
R
G(t, x; s, y)p dsdy = (1/2)p T 2 < ∞ (2.2.8)

for all T > 0 and p > 0, Assumption A in [28] is easily seen to be satisfied for p = 2.
We will investigate the normal approximation of uε and for this, we also consider the solution

to the same stochastic PDE as above, but now driven by a Gaussian space–time white noise: ∂ttu(t, x) = ∂xxu(t, x) + f(u(t, x))Ẇ (t, x), (t, x) ∈ R+ × R,
u(0, x) = ∂tu(0, x) = 0, for all x ∈ R. (2.2.9)

The driving noise Ẇ in (2.2.9) is a centered Gaussian random field
{
W (A) | A ∈ Bb(R+ × R)

}
with covariance structure E[W (A)W (B)] = LebR+×R(A ∩ B) for bounded Borel sets A,B ⊆
R+ × R. As is well-known (see e.g. Exercise 3.7 of Chapter 3 in [99]), equation (2.2.9) has a
(unique) continuous mild solution u that satisfies the corresponding bound in (2.2.7) for all
p > 0.
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2.3 Functional setting
In this work, the letter C will always denote a strictly positive constant whose value may change
from line to line. Note that |f(x)| ≤ C|x| + |f(0)| for all x ∈ R by the Lipschitz continuity of f .

If φ1, φ2 are elements of the same L2-space, we will always use the notation ⟨φ1, φ2⟩ for the
standard scalar product of that space and ∥ · ∥ for the induced norm. If ϕ is an element of a
topological vector space and ϕ′ an element of its topological dual, then ⟨ϕ′, ϕ⟩ will always denote
the dual pairing of ϕ′ with ϕ.

2.3.1 Path property of mild solutions

Consider the partial order ⪯ on R2:

(t̃, x̃) ⪯ (t, x) :⇔ t̃ ≤ t and |x̃− x| ≤ t− t̃ (2.3.1)

introduced in Section 5 of [84]. We define a space–time càdlàg property corresponding to ⪯.

Definition 2.3.1. A function ϕ : M → R with M ⊆ R2 is called ⪯-càdlàg if for every (t, x) ∈ M ,

(1) lim(t̃,x̃)→(t,x)
(t̃,x̃)⪰(t,x)

ϕ(t̃, x̃) = ϕ(t, x),

(2) The limits from the flanks, that is,

lim
(t̃,x̃)→(t,x)

t̃<t, |x̃−x|<t−t̃

ϕ(t̃, x̃), lim
(t̃,x̃)→(t,x)

x̃>x, x−x̃≤t̃−t<x̃−x

ϕ(t̃, x̃) and lim
(t̃,x̃)→(t,x)

x̃<x, x̃−x≤t̃−t<x−x̃

ϕ(t̃, x̃) all exist.

We further denote the space of all ⪯-càdlàg functions on M by D⪯(M).

We have the following result.

Theorem 2.3.2. For any ε > 0, let uε be a mild solution to the stochastic wave equation (2.2.1)
with noise σ−1(ε)L̇ε. Then uε has a modification uε in D⪯(R+ × R).

We will investigate the functional convergence of the ⪯-càdlàg version uε of Theorem 2.3.2
towards u and to this end, we need a suitable Skorokhod topology for ⪯-càdlàg functions.

Consider the order-preserving change of basis in R2 obtained by rotating the standard basis
vectors clockwise by 45 degrees

H : (R2,⪯) −→ (R2,≤),
(
t
x

)
7→ 1√

2

(
1 −1
1 1

)(
t
x

)
(2.3.2)

as well as a shifting in R2 by u0 = (−3/2, 1/2) composed with H and then rescaled

J : (R2,⪯) −→ (R2,≤), u 7→
√

2
3 H(u− u0). (2.3.3)

We set u∗ = (3/2, 1/2) and use the following notation for closed rectangles with respect to ⪯:

[(t̃, x̃), (t, x)]⪯ =
{

(s, y) ∈ R2 | (t̃, x̃) ⪯ (s, y) ⪯ (t, x)
}

for (t̃, x̃) ⪯ (t, x). (2.3.4)

We then have [0, 1]2 ⊊ [u0, u
∗]⪯ and J builds a bijection between [u0, u

∗]⪯ and [0, 1]2. This
particular choice of the vectors u0 and u∗ is for simplicity only, it guarantees that the processes
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we consider in the proofs of Theorem 2.3.2 (and Theorem 2.5.1) vanish on the axes, a technical
requirement of strong martingales often seen in the literature.

Now let D([0, 1]2) be the usual Skorokhod space of càdlàg functions on [0, 1]2 with respect
to the partial order ≤ where (t̃, x̃) ≤ (t, x) if and only if t̃ ≤ t and x̃ ≤ x, see e.g. Section 2 in
[58] for a definition. Consider the well-defined bijective transformation

Φ : D([0, 1]2) −→ D⪯([u0, u
∗]⪯), x 7→ x ◦ J. (2.3.5)

We now draw upon the results of [92] on general Skorokhod spaces to obtain the following.

Lemma 2.3.3. There exists a Skorokhod metric, that will be denoted by τ throughout this work,
that makes D⪯([0, 1]2) and D⪯([u0, u

∗]⪯) complete and separable metric spaces and with respect
to which the composition

D([0, 1]2) Φ−→ D⪯([u0, u
∗]⪯) ι

↪→ D⪯([0, 1]2), (2.3.6)

with Φ as in (2.3.5) and ι the restriction map, is continuous. Furthermore, ⪯-càdlàg functions
are continuous except on at most countably many lines and bounded. If xn

τ−→ x with xn, x ∈
D⪯([0, 1]2), then xn(u) −→ x(u) at all continuity points u of x.

An immediate consequence of Lemma 2.3.3 is that tightness of probability measures in
D([0, 1]2), for which there exist criteria in the literature, implies tightness of the transformed
measures (according to (2.3.6)) in D⪯([0, 1]2). This will be of crucial importance for the proof
of Theorem 2.5.1.

A straightforward extension of Lemma 2.3.3, in the proof of which a definition of τ is given,
yields a Skorokhod topology on D⪯([0, T ] × I) with T > 0 and I ⊆ R a finite closed interval.

2.3.2 Weak formulation

The martingale problem approach mentioned in the introduction relies on a suitable weak for-
mulation of the stochastic wave equation on R+ × R that we formally compute from (2.2.1) in
this section. It is inspired by Section 13.1 (together with Definition 9.11) of [83].

Let ϕ1, ϕ2 ∈ C∞
c (R) and ε > 0. Take the scalar multiplication of both sides of (2.2.1) with

ϕ2 and integrate over [0, t] × R. Use the initial condition of ∂tu
ε as well as partial integration

twice to obtain∫
R
∂tu

ε(t, x)ϕ2(x) dx =
∫

[0,t]×R
uε(s, x)ϕ′′

2(x) ds dx+
∫ t

0

∫
R
ϕ2(x)f(uε(s, x)) L̇

ε(s, x)
σ(ε) dsdx.

(2.3.7)
Now add the equation

∫
R u

ε(t, x)ϕ1(x) dx =
∫

[0,t]×R ∂tu
ε(s, x)ϕ1(x) ds dx, which readily follows

from the initial condition of uε, to (2.3.7) in order to obtain for all t ≥ 0,∫
R
uε(t, x)ϕ1(x) dx+

∫
R
∂tu

ε(t, x)ϕ2(x) dx

=
∫ t

0

(∫
R
uε(s, x)ϕ′′

2(x) dx+
∫
R
∂tu

ε(s, x)ϕ1(x) dx
)

ds+
∫ t

0

∫
R
ϕ2(x)f(uε(s, x)) L̇

ε(s, x)
σ(ε) ds dx.

(2.3.8)

It turns out that using equation (2.3.7) alone is enough to prove the necessity of (2.1.3) for
uε d−→ u, but not its sufficiency. For the latter, it is really equation (2.3.8) that will be needed
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in because it yields an equivalence of weak and mild solution to (2.2.1) (and analogously for
(2.2.9)).

Note that in [99], page 309, the author develops a different weak formulation for (2.2.9).
However, it does not yield an equality of stochastic processes by fixed test function (because the
latter must satisfy a condition that depends on the current time point), which is required for
martingale problems.

Because uε is locally integrable on R+ × R by (2.2.7), it is a distribution on R+ × R and so,
∂tu

ε = ∂uε/∂t in (2.3.8) will be the time derivative of uε in the sense of distributions. The aim
of the next section is to find a convenient representation of ∂uε/∂t by means of a distribution-
valued càdlàg process, that we can insert into equation (2.3.8) and thereby use for showing our
normal approximation result.

2.3.3 Distributional time derivative and path property

For simplicity, we write in this paper δy±(t−s)(dx) = δy+(t−s)(dx) + δy−(t−s)(dx) and we use this
notation for functions as well. Let Ψ ∈ C∞

c (R+ × R) and fix (s, y) ∈ R+ × R. Straightforward
computations yield for the Green’s function G,∫

R+×R
G(t, x; s, y)∂tΨ(t, x) dt dx = 1

2

∫
R

∫
R+

1{|y−x|≤t−s}∂tΨ(t, x) dt dx

= −1
2

∫
R

Ψ(s+ |y − x|, x) dx = −1
2

(∫ ∞

s
Ψ(t, y + (t− s)) dt+

∫ ∞

s
Ψ(t, y − (t− s)) dt

)
= −1

2

∫ ∞

0

∫
R

Ψ(t, x) δy±(t−s)(dx)1{s≤t} dt.

Hence, the distributional time derivative of G(·, ·; s, y) on R+ × R is a measure on R+ × R that
we will henceforth denote by ∂G/∂t (dt, dx; s, y) and such that

∂G

∂t
(dt, dx; s, y) = 1

2δy±(t−s)(dx)1{s≤t} dt = dG
dx (t, dx; s, y)1{s≤t} dt (2.3.9)

where dG/dx (t, dx; s, y) denotes the distributional derivative of G(t, ·; s, y) for fixed t, s, y, which
is readily seen to be equal to (1/2)δy±(t−s)(dx) whenever t ≥ s and to 0 otherwise.

Using the expression (2.2.4) of uε, the stochastic Fubini theorem (see, for example, Theorem
2.6 in [99]) and (2.3.9), we further have∫

R+×R
uε(t, x)∂tΨ(t, x) dtdx

=
∫
R+×R

(∫
R+×R

G(t, x; s, y)∂tΨ(t, x) dtdx
)
f(uε(s, y))

σ(ε) Lε(ds, dy)

= −
∫
R+×R

(∫ ∞

0

∫
R

Ψ(t, x) dG
dx (t, dx; s, y)1{s≤t} dt

)
f(uε(s, y))

σ(ε) Lε(ds, dy)

= −
∫ ∞

0

(∫ t

0

∫
R

(∫
R

Ψ(t, x) dG
dx (t, dx; s, y)

)
f(uε(s, y))

σ(ε) Lε(ds, dy)
)

dt P-a.s.

(2.3.10)

Recall now that the Schwartz space S(R) consists of all C∞(R)-functions with rapid decrease, see
e.g. Definition 4.1 in [44]. It has a natural topology induced by the seminorms supx∈R |xjϕ(k)(x)|
with j, k ∈ N and ϕ ∈ S(R). We define for each ε > 0, an S ′(R)-valued stochastic process

vε : R+ −→ S ′(R)

t 7→
[
ϕ 7→

∫ t

0

∫
R

(∫
R
ϕ(x) dG

dx (t, dx; s, y)
)
f(uε(s, y))

σ(ε) Lε(ds, dy)
]
.

(2.3.11)
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This stochastic integral is well-defined because by (2.2.7), the Lipschitz continuity of f and
(2.3.9),

E
[∫ t

0

∫
R2

(∫
R
ϕ(x) dG

dx (t, dx; s, y)
)2 f2(uε(s, y))

σ2(ε) z2 νε(ds, dy,dz)
]

= 1
4

∫ t

0

∫
R
ϕ2(y ± (t− s))E

[
f2(uε(s, y))

]
ds dy

( 1
σ2(ε)

∫
R
z2Qε(dz)

)
≤ C

∫ t

0

∫
R
ϕ2(y ± (t− s)) ds dy ≤ C

∫
R
ϕ2(x) dx < ∞ for all ϕ ∈ S(R) and t ≥ 0.

(2.3.12)

Combining the definition of distributions and of vε, and with (2.3.10), we obtain the following
representation for ∂uε/∂t:〈

∂uε

∂t
,Ψ
〉

=
∫
R+

⟨vε
t ,Ψ(t, ·)⟩ dt for all Ψ ∈ C∞

c (R+ × R). (2.3.13)

Furthermore, using vε, we can now derive mathematically a weak formulation of (2.2.1) corre-
sponding to equation (2.3.8), see Proposition 2.5.6.

Actually, vε
t is not yet a random distribution: We only have for all Schwartz functions ϕ1,

ϕ2 and scalars α1, α2, ⟨vε
t , α1ϕ1 +α2ϕ2⟩ = α1⟨vε

t , ϕ1⟩ +α2⟨vε
t , ϕ2⟩ P-almost surely, so vε

t is not a
linear functional but rather a random linear functional as defined in [99] on page 332. However,
we can show that the random field {⟨vε

t , ϕ⟩ | ϕ ∈ S(R)} has a version with values in S ′(R). For
this, we first recall a few facts on S(R). For q ∈ N, let hq denote the qth Hermite function

hq(x) = (−1)q

(2qq!
√
π)1/2 e

x2/2 dq

dxq
e−x2

, x ∈ R.

As is well-known, hq ∈ S(R) and a possible orthonormal basis of L2(R) is given by {hq | q ∈ N}.
Define now for each r ≥ 0, the function space

Hr(R) =

ϕ ∈ L2(R)
∣∣∣ ∞∑

q=0
(1 + 2q)r⟨ϕ, hq⟩2 < ∞

 . (2.3.14)

Note that this is not the fractional Sobolev space on R of order r which is usually defined via the
Fourier transform. It is a Hilbert space whose topology is induced by the norm ∥ϕ∥r =

√
⟨ϕ, ϕ⟩r

with the scalar product

⟨ϕ, φ⟩r =
∞∑

q=0
(1 + 2q)r⟨ϕ, hq⟩⟨φ, hq⟩ for all ϕ, φ ∈ Hr(R). (2.3.15)

We denote the topological dual of Hr(R) by H−r(R) with dual norm ∥ · ∥−r. For each r ≥ 0 and
q ∈ N, consider the continuous and linear functional

eq,−r : Hr(R) −→ R, ϕ 7→ (1 + 2q)−r/2⟨ϕ, hq⟩r. (2.3.16)

By the Riesz representation theorem, the duality ⟨ϕ′, eq,−r⟩−r = (1 + 2q)−r/2⟨ϕ′, hq⟩ holds, the
set {eq,−r | q ∈ N} forms an orthonormal basis of H−r(R) and for all ϕ′ ∈ H−r(R), we have

ϕ′ =
∞∑

q=0
(1+2q)−r/2⟨ϕ′, hq⟩eq,−r in H−r(R) and ∥ϕ′∥2

−r =
∞∑

q=0
(1+2q)−r⟨ϕ′, hq⟩2. (2.3.17)
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By Example 2 in Chapter 4 of [99], S(R) is then a nuclear space, see e.g. pages 330–332
of that chapter for a definition. In particular, S(R) ⊆ Hr(R) for all r ≥ 0 and the injection
(S(R), ∥ · ∥s) ↪→ (S(R), ∥ · ∥r) is a Hilbert-Schmidt operator if r < s+ 1 (and not r < s+ 1/2 as
indicated in that example, which is a typo). We then obtain the following regularization.

Proposition 2.3.4. For any r > 1, ε > 0 and t ≥ 0, the random field {⟨vε
t , ϕ⟩ | ϕ ∈ S(R)} has

a version which is in H−r(R) and hence, in S ′(R) as well.

Proof. This is a direct application of Theorem 4.1 in [99]: By the calculation in (2.3.12),

E
[∣∣∣⟨vε

t , ϕ⟩ − ⟨vε
t , φ⟩

∣∣∣2] ≤ C

∫
R

∣∣ϕ(x) − φ(x)
∣∣2 dx for all ϕ, φ ∈ S(R),

so vε
t is continuous in probability in the norm ∥ · ∥r for any r ≥ 0.

As a consequence, we may and will assume from now on that vε
t ∈ H−r(R) for arbitrary

r > 1. We then obtain the following path property.

Theorem 2.3.5. For any r > 2 and ε > 0, the process vε introduced in (2.3.11) has a version
vε in D(R+, H−r(R)), the Skorokhod space of H−r(R)-valued càdlàg functions on R+.

In the remainder of this paper, we will work with the càdlàg process vε obtained in Theo-
rem 2.3.5 instead of ∂uε/∂t. Here we point out that even though we will investigate in Section 2.4
convergence in distribution on finite intervals, for technical reasons only (e.g. to avoid tedious
calculations related to the boundaries of the interval), we chose in this work a space of distribu-
tions on the whole of R.

Finally, we follow the same scheme for the continuous mild solution u to (2.2.9) and by the
proofs of Proposition 2.3.4 and Theorem 2.3.5, for any r > 2, there exists a unique continuous
process v with values in H−r(R) such that for all ϕ ∈ S(R) and t ≥ 0,

⟨vt, ϕ⟩ =
∫ t

0

∫
R

(∫
R
ϕ(x) dG

dx (t, dx; s, y)
)
f(u(s, y))W (ds, dy)

= 1
2

∫ t

0

∫
R
ϕ(y ± (t− s))f(u(s, y))W (ds, dy) P-almost surely.

(2.3.18)

2.4 Main result

In this section, we fix T > 0 as well as L > 0. Consider the Cartesian space

Ω† =
(
D⪯([0, T ] × [0, L]) ∩ L2([0, T ] × [0, L])

)
×D([0, T ],R).

Let ϱ be defined as the sum of the metrics τ and d1, where τ is the Skorokhod metric on
D⪯([0, T ] × [0, L]), see Lemma 2.3.3, and d1 the metric induced by the standard L2-norm on
L2([0, T ] × [0, L]). Let also τ † denote the usual Skorokhod metric on D([0, T ],R). We equip Ω†

with the product metric

χ†((f1, g1), (f2, g2)) = ϱ(f1, f2) + τ †(g1, g2) = (τ(f1, f2) + d1(f1, f2)) + τ †(g1, g2) (2.4.1)

for all (f1, g1), (f2, g2) ∈ Ω†. The main result of this paper is the following limit theorem.
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Theorem 2.4.1. Let Lε be as in (2.2.2) with variance σ2(ε) as in (2.2.3) for all ε > 0. Further
let uε be a mild solution to the stochastic wave equation (2.2.1) driven by σ−1(ε)L̇ε, uε its ⪯-
càdlàg version given by Theorem 2.3.2 and vε the càdlàg H−r(R)-valued process obtained in
Theorem 2.3.5 for an arbitrary fixed r > 2.

In addition, let u be the continuous mild solution to the stochastic wave equation (2.2.9)
driven by Ẇ and v the continuous H−r(R)-valued process satisfying (2.3.18).

Suppose the Lipschitz function f satisfies f(0) ̸= 0. We then have

(uε, ⟨vε, ϕ⟩) d−→ (u, ⟨v, ϕ⟩) in
(
Ω†, χ†

)
as ε → 0 for all ϕ ∈ C∞

c ((0, L)) (2.4.2)

if and only if condition (2.1.3) holds for each κ > 0.

Remark 2.4.2. The weak convergence of (⟨uε(t, ·), ϕ⟩, ⟨vε
t , ϕ⟩)t≤T for all ϕ ∈ C∞

c ((0, L)), is needed
to show the necessity of (2.1.3). That is why the distribution-valued processes vε and v were
added to the actual normal approximation of uε by u.

Proof of Theorem 2.4.1. In a first part, we show that (2.1.3) implies (2.4.2). For any fixed ϕ ∈
C∞

c ((0, L)), we will show convergence in distribution of subsequences of {(uε, ⟨vε, ϕ⟩) | ε > 0}
toward the limit distribution (u, ⟨v, ϕ⟩). To this end, we need to consider uε on the larger domain
[0, T ] × [−T, L+ T ]. This is due to the Green’s function G (recall (2.2.5)): The value of u(t, x)
for any (t, x) ∈ [0, T ] × [0, L] depends on values taken by u on {(s, x) ∈ R+ × R | 0 ≤ s ≤
t, dist(x, [0, L]) ≤ t − s} ⊆ [0, T ] × [−T, L + T ]. This larger domain will be necessary for the
proof of Theorem 2.5.7. Since we also need to work with vε, in order to prove (2.4.2), we shall
work with the second Cartesian space

Ω∗ =
(
D⪯ ([0, T ] × [−T, L+ T ]) ∩ L2 ([0, T ] × [−T, L+ T ])

)
×
(
D([0, T ], H−r(R)) ∩ L2([0, T ], H−r(R))

)
.

(2.4.3)

Let ρ be the sum of the usual Skorokhod metric τ∗ on D([0, T ], H−r(R)) and of the standard
L2-metric d2 on L2([0, T ], H−r(R)). We then equip Ω∗ with the product metric

χ∗((f1, g1), (f2, g2)) = ϱ(f1, f2) + ρ(g1, g2) = (τ(f1, f2) + d1(f1, f2)) + (τ∗(g1, g2) + d2(g1, g2))

for all (f1, g1), (f2, g2) ∈ Ω∗.
By Theorem 2.5.1 and Theorem 2.5.2, uε is tight both in D⪯([0, T ] × [−T, L + T ]) and in

L2([0, T ] × [−T, L+ T ]). This readily implies that uε is also tight in (D⪯([0, T ] × [−T, L+ T ]) ∩
L2([0, T ] × [−T, L + T ]), ϱ) (it is easy to see that if K1 and K2 are compact sets, one in each
function space, then K1 ∩K2 is compact in the intersection space considered). Analogously, vε

is tight in (D([0, T ], H−r(R)) ∩ L2([0, T ], H−r(R)), ρ) as a consequence of Theorem 2.5.3 and
Corollary 2.5.5. Since the product of compact spaces is compact, we draw the crucial conclusion
that {(uε, vε) | ε > 0} is tight in (Ω∗, χ∗). Note that no assumptions other than (2.2.2) and
(2.2.3) on the Lévy noise are needed for this result.

Subsequently, apply Prokhorov’s theorem and let without loss of generality (εk)k∈N be a
sequence with εk → 0 such that (uεk , vεk)k∈N converges weakly to some distribution on (Ω∗, χ∗)
as k → ∞. Then we may further apply Skorokhod’s representation theorem, see e.g. Section 1
in [68], and obtain random elements

(wk, θk), (w, θ) : (Ω,F ,P) −→ (Ω∗, χ∗), (2.4.4)
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defined on a common probability space (Ω,F ,P), and satisfying the following properties:

(wk, θk) d= (uεk , vεk) for all k ∈ N and
(wk, θk)(ω) −→ (w, θ)(ω) in (Ω∗, χ∗) as k → ∞ for all ω ∈ Ω.

(2.4.5)

We will show in the following that for any ϕ ∈ C∞
c ((0, L)),

(w, ⟨θ, ϕ⟩) d= (u, ⟨v, ϕ⟩) in (Ω†, χ†), (2.4.6)

which together with (2.4.5) implies

(uεk , ⟨vεk , ϕ⟩) d−→ (u, ⟨v, ϕ⟩) in
(
Ω†, χ†

)
as k → ∞

by the continuous mapping theorem, and altogether, (2.4.2). In this identification step of the
distribution of (w, ⟨θ, ϕ⟩), we will refer to the parts of [32] that are identical.

First, define a filtration F = (F t)t≤T on (Ω,F):

F t =
⋂
u≥t

σ (w(s, x), θs | s ≤ u, −T ≤ x ≤ L+ T ) ∨ N P, 0 ≤ t ≤ T, (2.4.7)

where N P is the set of all P-null sets of F (we assume that F is P-complete), as well as

Bt =
∫ t

0

(∫
R
w(s, x)ϕ′′

2(x) dx+ ⟨θs, ϕ1⟩
)

ds and Ct =
∫ t

0

∫
R
ϕ2

2(x)f2(w(s, x)) ds dx (2.4.8)

for ϕ1, ϕ2 ∈ C∞
c ((−T, L+ T )) and t ≤ T .

Assume now for the time being that the pair (w, θ) satisfies the following martingale problem:
The complex-valued càdlàg process

M t = eiξ(⟨w(t,·),ϕ1⟩+⟨θt,ϕ2⟩) −
∫ t

0
eiξ(⟨w(s,·),ϕ1⟩+⟨θs,ϕ2⟩)A(ds) with At = iξBt − 1

2ξ
2Ct, t ≤ T,

(2.4.9)
is a martingale with respect to (Ω,F ,F ,P) for all ξ ∈ R and ϕ1, ϕ2 ∈ C∞

c ((−T, L+ T )). (Note
that because w is ⪯-càdlàg, the process (⟨w(t, ·), ϕ1⟩)t≤T is càdlàg, and that by a limit argument,
w, θ as well as M are F -adapted.) Using (2.4.5), we also have

ess sup
(t,x)∈[0,T ]×[−T,L+T ]

E
[∣∣w(t, x)

∣∣2] < ∞ and for all x ∈ R, w(0, x) = θ0 = 0 P-a.s.

(2.4.10)
Indeed, the Skorokhod convergence of wk implies for almost all (t, x) ∈ [0, T ] × [−T, L + T ],
wk(t, x) −→ w(t, x) P-almost surely and because the projection maps π(t,x) : D⪯([0, T ]×[−T, L+
T ]) −→ R, f 7→ f(t, x) are measurable, we also have wk(t, x) d= uεk(t, x) for all (t, x). Now the
random fields {uε | ε > 0} satisfy the uniform bound

sup
ε>0

sup
(t,x)∈[0,T ]×R

E
[
|uε(t, x)|2

]
< ∞, (2.4.11)

which only depends on the Lipschitz function f . With (2.2.8) and (2.2.7), the proof of (2.4.11)
goes as Lemma 3.1 in [32]. (Note that (2.4.11) is also crucial for proving the existence of uε and
tightness of {(uε, vε) | ε > 0} in (Ω∗, χ∗).) Apply then Fatou’s lemma to obtain (2.4.10).
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Assumption (2.4.9) enables us, together with (2.4.10), to show that there exists a Gaussian
space–time white noise W̃ on [0, T ]× [−T, L+T ], possibly defined on a complete stochastic basis
(Ω̃, F̃ , F̃ , P̃) extending (Ω,F ,F ,P) such that for all ϕ1, ϕ2 ∈ C∞

c ((−T, L+ T )),∫
R
w(t, x)ϕ1(x) dx+ ⟨θt, ϕ2⟩

=
∫ t

0

(∫
R
w(s, x)ϕ′′

2(x) dx+ ⟨θs, ϕ1⟩
)

ds+
∫ t

0

∫
R
ϕ2(x)f(w−(s, x)) W̃ (ds, dx) ∀t ≤ T

(2.4.12)

holds P̃-almost surely, where we have set w−(s, x) = limr→s, r<sw(r, x). As a consequence, apply
Theorem 2.5.7 to deduce that w is on [0, T ]× [0, L] the continuous mild solution to the stochastic
wave equation ∂ttw(t, x) = ∂xxw(t, x) + f(w(t, x)) ˙̃

W (t, x), (t, x) ∈ R+ × R,
w(0, x) = ∂tw(0, x) = 0, for all x ∈ R,

(2.4.13)

of which (2.4.12) is the weak formulation (on [0, T ] × [−T, L + T ]), and that θ satisfies for all
ϕ ∈ C∞

c ((0, L)) and t ≤ T ,

⟨θt, ϕ⟩ =
∫ t

0

∫
R

(∫
R
ϕ(x)dG

dx (t, dx; s, y)
)
f(w(s, y)) W̃ (ds, dy) P̃-almost surely. (2.4.14)

Recalling (2.3.18), we then infer that (2.4.6) holds.
Now we show how to obtain (2.4.12). Note that C in (2.4.8) only depends on ϕ2, so fix

ϕ1 ∈ C∞
c ((−T, L+T )) and apply Theorem II.2.42 of [65] on the process (M t)t≤T in (2.4.9) to first

see that (B,C, 0), with B in (2.4.8), are the predictable characteristics of the F -semimartingale
(⟨w(t, ·), ϕ1⟩ + ⟨θt, ϕ2⟩)t≤T . Observe that they do not directly depend on the process itself, but
on w and θ, which also explains why we are working on the space (Ω∗, χ∗). Consequently,

Mt(ϕ2) =
∫
R
w(t, x)ϕ1(x) dx+ ⟨θt, ϕ2⟩ −Bt, t ≤ T,

is a continuous square-integrable F -martingale with quadratic variation process C for all ϕ2 ∈
C∞

c ((−T, L + T )). This induces, relative to (Ω,F ,F ,P), an orthogonal martingale measure
{Mt(A), t ∈ [0, T ], A ∈ B([−T, L+ T ])} (see Chapter 2 in [99] for a definition) with covariation
measure QM (A×B × [s, t]) =

∫ t
s

∫
A∩B f

2(w(r, x)) dr dx for all A,B ∈ B([−T, L+ T ]). Now use
the proof of Theorem 3.13 in [32] to define, possibly on a complete filtered extension (Ω̃, F̃ , F̃ , P̃),

W̃t(ϕ2)=
∫ t

0

∫
R
1{f2(w−(s,x)) ̸=0}

ϕ2(x)
f(w−(s, x)) M(ds, dx) +

∫ t

0

∫
R
1{f2(w−(s,x))=0}ϕ2(x)W ′(ds, dx)

(2.4.15)
where W ′ is a Gaussian white noise on [0, T ] × [−T, L+ T ] independent of M , for all t ≤ T and
ϕ2 ∈ C∞

c ((−T, L + T )), and to further deduce that (2.4.15) defines a Gaussian white noise W̃
on [0, T ] × [−T, L+ T ] with respect to (Ω̃, F̃ , F̃ , P̃) such that for all ϕ1, ϕ2 ∈ C∞

c ((−T, L+ T )),
(2.4.12) holds P̃-almost surely.

Of course, it remains to show that M in (2.4.9) is an F -martingale. To this end, consider
first on Ω the càdlàg process (⟨uε(t, ·), ϕ1⟩ + ⟨vε

t , ϕ2⟩)t≤T with ϕ1, ϕ2 ∈ C∞
c ((−T, L + T )) and

ε > 0. By Proposition 2.5.6, it is indistinguishable from the right-hand side of (2.5.27). Replicate
the proof of Theorem 3.8 in [32] and use (2.4.11) to see that for each ε > 0, the pair (uε, vε)
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satisfies the following martingale problem: For all ξ ∈ R and ϕ1, ϕ2 ∈ C∞
c ((−T, L + T )), the

complex-valued process

M ε
t = eiξ(⟨uε(t,·),ϕ1⟩+⟨vε

t ,ϕ2⟩) − iξ

∫ t

0
eiξ(⟨uε(s,·),ϕ1⟩+⟨vε

s,ϕ2⟩) (⟨uε(s, ·), ϕ′′
2⟩ + ⟨vε

s, ϕ1⟩
)

ds

+
∫ t

0

∫
R2
eiξ(⟨uε(s,·),ϕ1⟩+⟨vε

s,ϕ2⟩)
(
e

iξ
f(uε(s,x))

σ(ε) ϕ2(x)z − 1 − iξ
f(uε(s, x))

σ(ε) ϕ2(x)z
)

ds dxQε(dz)

(2.4.16)

is a square-integrable F -martingale satisfying supε>0 supt≤T E[|M ε
t |2] < ∞.

Define now on Ω the filtration F
k = (Fk

t )t≤T with

Fk
t =

⋂
u≥t

σ
(
wk(s, x), θk

s | s ≤ u, −T ≤ x ≤ L+ T
)

∨ N P, 0 ≤ t ≤ T, (2.4.17)

for each k ∈ N, as well as the F
k-adapted process (Mk

t )t≤T in the same way as M ε in (2.4.16), but
with (uε, vε) and Qε replaced by (wk, θk) of (2.4.5) and Qεk , respectively. Furthermore, because
M

k has the same distribution as M εk by (2.4.5), by standard arguments, Mk is a square-
integrable F

k-martingale satisfying supk∈N supt≤T E[|Mk
t |2] < ∞ for all ξ ∈ R and ϕ1, ϕ2 ∈

C∞
c ((−T, L + T )). This is the martingale problem satisfied by the pair (wk, θk). For any fixed

ξ ∈ R and ϕ1, ϕ2 ∈ C∞
c ((−T, L+T )), we can infer that M is an F -martingale, again by standard

arguments, if we have:

for almost all t ≤ T, M
k
t −→ M t as k → ∞ P-almost surely. (2.4.18)

Indeed, with this convergence result and the càdlàg properties of M , θ and w, we can infer that

E
[(
M t −M s

)
h(θs1 , . . . , θsM )h(w(r1, x1), . . . , w(rN , xN ))

]
= 0 (2.4.19)

for all continuous bounded functions h : H−r(R)M → R, h : RN → R with M,N ∈ N and all
0 ≤ s < t ≤ T , si, rj ≤ s and xj ∈ [−T, L+ T ] with i = 1, . . . ,M , j = 1, . . . , N .

Now in order to show (2.4.18), which is the final step, first set for each k ∈ N,

νk(A) =
∫ T

0

∫
R2
1A

(
t,
f(wk(t, x))
σ(εk) ϕ2(x)z

)
dt dxQεk(dz),

B
k
t =

∫ t

0

(
⟨wk(s, ·), ϕ′′

2⟩ + ⟨θk
s , ϕ1⟩

)
ds−

∫ t

0

∫
R
x1{|x|>1} ν

k(ds, dx),

A
k
t = iξB

k
t +

∫ t

0

∫
R

(
eiξx − 1 − iξx1{|x|≤1}

)
νk(ds, dx)

(2.4.20)

for all A ∈ B([0, T ] × R) and t ≤ T , so that Mk can be written as

M
k
t = eiξ(⟨wk(t,·),ϕ1⟩+⟨θk

t ,ϕ2⟩) −
∫ t

0
eiξ(⟨wk(s,·),ϕ1⟩+⟨θk

s ,ϕ2⟩)Ak(ds), t ≤ T. (2.4.21)

Now replicate the proofs of Theorem 3.9, Theorem 3.10 and Lemma 3.11 in [32] to see that the
assumption (2.1.3) on the Lévy measure Qε and (2.4.5) imply

sup
t≤T

∣∣∣∣∣
∫ t

0
eiξ(⟨wk(s,·),ϕ1⟩+⟨θk

s ,ϕ2⟩)Ak(ds) −
∫ t

0
eiξ(⟨w(s,·),ϕ1⟩+⟨θs,ϕ2⟩)A(ds)

∣∣∣∣∣ −→ 0 as k → ∞

(2.4.22)
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pointwise on Ω. Note that it is the only place in our proof where (2.1.3) is actually needed. For
the proofs of the aforementioned theorems to actually hold here, we need the extra convergence∫ t

0⟨θk
s , ϕ1⟩ ds −→

∫ t
0⟨θs, ϕ1⟩ ds. But this readily follows from θk −→ θ in L2([0, T ], H−r(R)) in

(2.4.5). Recalling the expression of M in (2.4.9), resp. of Mk in (2.4.21), it is now easy to see
that (2.4.18) follows from (2.4.22), the Skorokhod convergence of θk and the L2-convergence of
wk.

For the second part of the proof, assume (2.4.2) and fix a sequence (εk)k∈N converging to
0. We apply again Skorokhod’s representation theorem and obtain for each ϕ ∈ C∞

c ((0, L)),
random elements

(wk, ϑk,ϕ), (w, ϑϕ) : (Ω,F ,P) −→ (Ω†, χ†)

on a probability space (Ω,F ,P) possibly different from (Ω,F ,P) but that does not depend on
ϕ, satisfying

(wk, ϑk,ϕ) d= (uεk , ⟨vεk , ϕ⟩) for all k ∈ N, (w, ϑϕ) d= (u, ⟨v, ϕ⟩) and
(wk, ϑk,ϕ)(ω) −→ (w, ϑϕ)(ω) in (Ω†, χ†) as k → ∞ for all ω ∈ Ω.

(2.4.23)

We then define filtrations F
k = (Fk

t )t≤T and F = (F t)t≤T on (Ω,F ,P) by setting

Fk
t =

⋂
u≥t

σ
(
wk(s, x), ϑk,ϕ

s | s ≤ u, 0 ≤ x ≤ L, ϕ ∈ C∞
c ((0, L))

)
∨ N P,

F t =
⋂
u≥t

σ
(
w(s, x), ϑϕ

s | s ≤ u, 0 ≤ x ≤ L, ϕ ∈ C∞
c ((0, L))

)
∨ N P, 0 ≤ t ≤ T,

(2.4.24)

as well as for arbitrary fixed ϕ ∈ C∞
c ((0, L)), the càdlàg processes

X
k
t = ϑk,ϕ

t −
∫ t

0

∫ L

0
wk(s, x)ϕ′′(x) dx ds,

Xt = ϑϕ
t −

∫ t

0

∫ L

0
w(s, x)ϕ′′(x) dx ds

(2.4.25)

for all k ∈ N and t ≤ T . Since v is continuous, this is also the case for the real-valued process
ϑϕ by (2.4.23), hence X is continuous. Now (2.4.23) readily implies

X
k −→ X in D([0, T ],R) as k → ∞

pointwise on Ω. Furthermore, by (the proof of) Proposition 2.5.6, (2.4.23) and (2.4.25), the
processes Xk and X have the same distribution as the square-integrable F -martingales

t 7→
∫ t

0

∫ L

0
ϕ(x)f(uεk(s, x))

σ(εk) Lεk(ds, dx) and t 7→
∫ t

0

∫ L

0
ϕ(x)f(u(s, x))W (ds, dx),

respectively. By standard arguments, we can thus deduce that Xk, resp. X, is an F
k-martingale,

resp. F -martingale.
Consider the truncation functions

ϱh : R −→ R, x 7→ x1{|x|≤h}, h > 0,
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and apply Theorem II.2.21 in [65] to see that the semimartingale characteristics of Xk and X,
relative to ϱh for a fixed but arbitrary h > 0, are given by (Bk,h

, 0, νk) and (0, C, 0), respectively,
where νk is defined as in (2.4.20) and C as in (2.4.8) (with ϕ2 replaced by ϕ), and

B
k,h
t = −

∫ t

0

∫
R
x1{|x|>h} ν

k(ds, dx), t ≤ T.

The remainder of the proof now goes exactly as the proof of Theorem 3.15 in [32] (where
the remaining assumption f(0) ̸= 0 of the theorem is then needed).

2.5 Proofs

2.5.1 Proofs for Section 2.3 and for tightness

We begin by showing that each uε has a ⪯-càdlàg version.

Proof of Theorem 2.3.2. Fix ε > 0 for the whole proof. For each n ∈ N, we introduce a truncated
Lévy space–time white noise L̇ε,n on R+ × R by setting

Lε,n(A) =
∫
R+×R

∫
R
1A(t, x)1{|x|≤n} z1{|z|>1/n} (µε − νε)(dt, dx,dz) (2.5.1)

for all A ∈ Bb(R+ × R). Now let uε,n be a mild solution to the stochastic wave equation (2.2.1)
when σ−1(ε)L̇ε is replaced by σ−1(ε)L̇ε,n. Because L̇ε,n generates on [0, t] × R finitely many
jumps only, we can write for all (t, x) ∈ R+ × R and n ∈ N,

uε,n(t, x) = 1
σ(ε)

∞∑
k=1

Gt−Tk
(x,Xk)f(uε,n(Tk, Xk))1{|Xk|≤n} Zk1{|Zk|>1/n}

−
∫

|z|>1/n z Q
ε(dz)

σ(ε)

∫ t

0

∫
|y|≤n

Gt−s(x, y)f(uε,n(s, y)) ds dy P-almost surely
(2.5.2)

where the Tk indicate the jump times of µε and Xk (resp. Zk) the space locations (resp. ampli-
tudes) of the jumps of µε.

The random field on the right-hand side of (2.5.2) is a ⪯-càdlàg version of uε,n. Indeed,
through the reformulation of the Green’s function

Gt−s(x, y) = 1
21A−(s,y)(t, x), (t, x, s, y) ∈ (R+ × R)2,

where
A−(s, y) =

{
(t, x) ∈ R+ × R | |y − x| ≤ t− s

}
(2.5.3)

denotes the forward light cone with apex (s, y), one sees that (t, x) 7→ Gt−Tk
(x,Xk) is already

⪯-càdlàg and, hence, the finite sum as well as the integral in (2.5.2) are P-almost surely ⪯-càdlàg.
We will show that uε,n converges uniformly on compact sets of R+ × R in probability to uε

as n → ∞. For this, assume first without loss of generality using Theorem 2 in Chapter 3, § 2
in [52], that uε and uε,n are separable random fields. The first step is to obtain the maximal
inequality

E

 sup
(s,y)∈[(t̃,x̃),(t,x)]⪯

∣∣∣uε(s, y) − uε,n(s, y)
∣∣∣2
 ≤ E

[
sup

(s,y)∈A+(t,x)

∣∣∣uε(s, y) − uε,n(s, y)
∣∣∣2]

≤ sup
(s,y)∈A+(t,x)

E
[∣∣∣uε(s, y) − uε,n(s, y)

∣∣∣2] = E
[∣∣∣uε(t, x) − uε,n(t, x)

∣∣∣2] (2.5.4)
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for all (t̃, x̃) ⪯ (t, x) in R+ × R. Choose for simplicity (t̃, x̃) = 0 as well as x = 0 and fix t > 0.
Recall the change of coordinates H introduced in (2.3.2) and define K(u) = H(u − u0) on R2

with u0 = (−t, 0). Then K builds a bijection of [u0, u
∗]⪯ onto [0,

√
2t]2 with u∗ = (0, t). Define

also a two-parameter filtration F ε on R2 with respect to the partial order ⪯ by setting

Fε
(s,y) =

⋂
(s,y)⪯(s̃,ỹ)

σ
(
Lε(A) | A ∈ B(A+(s̃, ỹ))

)
∨ N P for (s, y) ∈ R+ × R, (2.5.5)

with N P the set of all P null-sets of F (and Fε
(s,y) = {∅,Ω} for all (s, y) with s < 0). We further

define ũε(v1, v2) = uε(K−1(v1, v2)) for all v = (v1, v2) ∈ [0,
√

2t]2 (extending uε to 0 whenever
v1 + v2 <

√
2t) as well as a filtration F̃

ε on [0,
√

2t]2 with respect to ≤ by F̃ε
(v1,v2) = Fε

K−1(v1,v2).
With the stochastic integration theory of Cairoli and Walsh in [23], we now show that ũε is a
two-parameter strong martingale with respect to F̃

ε, see e.g. page 115 there for a definition.
Consider on [0,

√
2t]2 the two-parameter process

L̃ε(v1, v2) =
{
Lε
(
A+(K−1(v1, v2))

)
, if v1 + v2 ≥

√
2t,

0, otherwise.

By the properties of the Lévy noise Lε, L̃ε is a Lévy sheet as well as an F̃
ε-strong mar-

tingale (the latter follows exactly as in the proof of Lemma 6.2 in [84]) and F̃
ε satisfies

the commuting condition F4 of [23], see pp. 113–114. Choose the filtration F on [0, t] to be
Fr = ⋂

t≥s≥r σ
(
Lε(A) | A ∈ B(A+(s, 0))

)
∨ N P for all 0 ≤ r ≤ t (note that on A+(s, 0) the mild

solution uε depends on the values of Lε on A+(s, 0) only). Then ũε is a valid integrand (see also
page 121 of [23]) and L̃ε a valid integrator for Theorem 2.2 in [23] to apply, whence∫ v1

0

∫ v2

0
f(ũε(z1, z2)) L̃ε(dz1,dz2) =

∫
R+×R

1A+(K−1(v1,v2))f(uε(s, y))Lε(ds, dy) = ũε(v1, v2)

is an F̃
ε-strong martingale on [0,

√
2t]2. Analogously, ũε,n = uε,n◦K−1 defines an F̃

ε-strong mar-
tingale on [0,

√
2t]2 for each n ∈ N. As a consequence, apply Cairoli’s strong maximal inequality,

see e.g. Corollary 2.3.1 of Chapter 7 in [72] (note that uε and uε,n are also orthomartingales by
Proposition 1.1 in [97] and L2-continuous by Theorem 4.7 in [28]) to obtain

E
[

sup
(v1,v2)∈K([0,(t,0)]⪯)

∣∣∣ũε(v1, v2) − ũε,n(v1, v2)
∣∣∣2] ≤ E

 sup
(v1,v2)∈[0,

√
2t]2

∣∣∣ũε(v1, v2) − ũε,n(v1, v2)
∣∣∣2


≤ sup
(v1,v2)∈[0,

√
2t]2

E
[∣∣∣ũε(v1, v2) − ũε,n(v1, v2)

∣∣∣2] = E
[∣∣∣ũε(

√
2t,

√
2t) − ũε,n(

√
2t,

√
2t)
∣∣∣2] .

By bijectivity, the terms in these inequalities agree exactly with the corresponding ones in (2.5.4).
In a second step, we show that

uε,n(t, x) −→ uε(t, x) in L2(Ω,F ,P) as n → ∞ for all (t, x) ∈ R+ × R. (2.5.6)

Write

uε(t, x) − uε,n(t, x) =
∫ t

0

∫
R
Gt−s(x, y)f(uε(s, y)) − f(uε,n(s, y))

σ(ε) Lε(ds, dy)

+
∫ t

0

∫
R
Gt−s(x, y)f(uε,n(s, y))

σ(ε) (Lε − Lε,n)(ds, dy) =: Iε,n(t, x) + Jε,n(t, x).
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Fix T > 0. Using Itō’s isometry and the Lipschitz continuity of f , we estimate

E
[
Iε,n(t, x)2

]
≤ C

∫ t

0

∫
R
1A+(t,x)(s, y)E

[∣∣∣uε(s, y) − uε,n(s, y)
∣∣∣2] ds dy (2.5.7)

as well as

E
[
Jε,n(t, x)2

]
≤ C

(
1 + sup

(s,y)∈[0,T ]×R
sup

ε>0,n∈N
E
[
|uε,n(s, y)|2

])

× σ−2(ε)
∫ t

0

∫
R2
1A+(t,x)(s, y)z2

(
1 − 1{|y|≤n,|z|>1/n}

)2
ds dy Qε(dz)

(2.5.8)

for all (t, x) ∈ [0, T ] ×R and n ∈ N. Since the uniform bound (2.4.11) also applies to all uε,n and
noting that 1 − 1{|y|≤n,|z|>1/n} = 1{|y|>n} + 1{|y|≤n,|z|≤1/n} pointwise on R2, the right-hand side
of (2.5.8) can further be estimated by C times the function

fε,n(t, x) =
∫ t

0

∫
R
1A+(t,x)(s, y)1{|y|>n} dsdy

+ σ−2(ε)
∫
R
z21{|z|≤1/n}Q

ε(dz)
∫ t

0

∫
R
1A+(t,x)(s, y) ds dy, (t, x) ∈ [0, T ] × R,

which together with (2.5.7) yields:

E
[∣∣∣uε(t, x) − uε,n(t, x)

∣∣∣2] ≤ C

∫ t

0

∫
R
1A+(t,x)(s, y)E

[∣∣∣uε(s, y) − uε,n(s, y)
∣∣∣2]ds dy + Cfε,n(t, x)

(2.5.9)

for all (t, x) ∈ [0, T ] × R and n ∈ N.
Set vε,n(t, x) = E

[
|uε(t, x) − uε,n(t, x)|2

]
and hold from now on C in (2.5.9) fixed. Let t1 > 0

such that t21 < 2/C and set tk = kt1 with k ∈ N. We now show by induction that for all k ∈ N,
vε,n(t, x) −→ 0 as n → ∞ for any (t, x) ∈ [0, tk ∧ T ] × R, which altogether implies (2.5.6). First,
(2.2.5), (2.5.9) and dominated convergence yield for t ≤ t1,

sup
(s,y)⪯(t,x)

vε,n(s, y) ≤ C

1 − Ct21/2
fε,n(t, x) −→ 0 as n → ∞. (2.5.10)

Next, let k ≥ 2 and assume tk < t ≤ tk+1 ≤ T . We have∫ t

0

∫
R
1A+(t,x)(s, y)vε,n(s, y) ds dy ≤

∫ tk

0

∫
R
1A+(t,x)(s, y)vε,n(s, y) ds dy

+ sup
(t̃,x̃)⪯(t,x)

tk<t̃

vε,n(t̃, x̃)
∫ t

tk

∫
R
1A+(t,x)(s, y) ds dy.

Combine this inequality with (2.5.9), note that
∫ t

tk

∫
R 1A+(t,x)(s, y) dsdy = (t− tk)2 ≤ t21 and use

similar calculations as for (2.5.10) to conclude that

sup
(t̃,x̃)⪯(t,x)

tk<t̃

vε,n(t̃, x̃) ≤ C

1 − Ct21/2

(∫ tk

0

∫
R
1A+(t,x)(s, y)vε,n(s, y) dsdy + fε,n(t, x)

)
−→ 0

as n → ∞ by induction hypothesis and dominated convergence.
We infer, using (2.5.4) and (2.5.6), that uε,n − uε converges uniformly on compacts in prob-

ability to 0 as n → ∞ for any ε > 0 and therefore, by standard arguments, the existence of a
⪯-càdlàg version uε of uε on R+ × R.
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We now turn to the Skorokhod topology for ⪯-càdlàg functions.

Proof of Lemma 2.3.3. We first recall a few facts on the usual Skorokhod topology on D([0, 1]2)
that can all be found in Section 5 of [92]. It is induced by the Skorokhod metric

δ′(x, y) = inf
λ∈Λs×Λs

(
sup

v∈[0,1]2

∣∣∣x(v) − y(λ(v))
∣∣∣ ∨ ∥λ∥s

)
, x, y ∈ D([0, 1]2), (2.5.11)

where Λs is the set of all homeomorphisms of [0, 1] onto itself which have 0 as a fixed point,
Λs × Λs the set of all homeomorphisms λ of the form

λ : [0, 1]2 −→ [0, 1]2, v = (v1, v2) 7→ (λ1(v1), λ2(v2))

with λ1, λ2 ∈ Λs, and ∥λ∥s = sup0≤p≤1 (maxi=1,2 |λi(p) − p|) for λ ∈ Λs × Λs. There exists a
Skorokhod metric δ that is equivalent to δ′ and makes D([0, 1]2) a complete and separable metric
space.

Now recall (2.3.3), (2.3.5) and give D⪯([0, 1]2) the topology induced by the metric

τ ′(x, y) = δ′(Φ−1(x),Φ−1(y)), x, y ∈ D⪯([u0, u
∗]⪯).

This is a Skorokhod distance in the sense of [92], see (3.14) of Section 3. Indeed, consider the
group of homeomorphisms from [u0, u

∗]⪯ onto itself Θs := {J−1 ◦ λ ◦ J | λ ∈ Λs × Λs} equipped
with the induced norm ∥J−1 ◦ λ ◦ J∥s := ∥λ∥s, see Section 3 in [92]. Then we can rewrite

τ ′(x, y) = inf
θ∈Θs

(
sup

u∈[u0,u∗]⪯

∣∣∣x(u) − y(θ(u))
∣∣∣ ∨ ∥θ∥s

)
, x, y ∈ D⪯([u0, u

∗]⪯).

Defining τ on D⪯([u0, u
∗]⪯) analogously to τ ′, but with δ instead of δ′, yields an equivalent

Skorokhod metric to τ ′ that makes D⪯([u0, u
∗]⪯) a complete and separable metric space.

Definition 2.3.1 of D⪯([u0, u
∗]⪯) coincides exactly with the construction (3.15) in Section 3

of [92] of the Skorokhod space on the set [u0, u
∗]⪯ relative to the group Θs (in order to see

this, consider all preimages under J of the partitions used in (5.5) and (5.6) of that paper to
construct D([0, 1]2), define the Skorokhod space and use Theorem 5.1 in [92]).

At last, use the exact same procedure to obtain a Skorokhod topology on D⪯
(
[0, 1]2

)
as well

as Skorokhod metrics, denoted by the same letters as before. The map Φ of (2.3.5) is now a
homeomorphic transformation between D(J([0, 1]2)) and D⪯

(
[0, 1]2

)
. For the definition of the

Skorokhod metric on D(J([0, 1]2)), we now use the subgroup Γs = {λ ∈ Λs ×Λs | λ(J([0, 1]2)) =
J([0, 1]2)} equipped with the norm ∥λ∥s′ = sup(v1,v2)∈J([0,1]2) (maxi=1,2 |λi(vi) − vi|). As a conse-
quence, it is easy to see that the restriction map ι : D⪯ ([u0, u

∗]⪯) ↪→ D⪯([0, 1]2) is continuous.
The remaining assertions readily follow from Section 3 and 5 of [92].

Next, we proceed to show that the ⪯-càdlàg version uε is tight.

Theorem 2.5.1. The random fields {uε | ε > 0} where uε is the ⪯-càdlàg version of uε obtained
in Theorem 2.3.2, are tight in the Skorokhod space D⪯ ([0, T ] × I) for any T > 0 and finite closed
interval I ⊆ R.

Proof. Without loss of generality, assume that T = 1 and I = [0, 1] and recall the transformation
J in (2.3.3). Set uε(t, x) = uε(t, x) = 0 whenever t < 0. By Lemma 2.3.3, it suffices to show that
the random elements {uε ◦ J−1 | ε > 0} are tight in D([0, 1]2).
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By (2.4.11), all random variables uε ◦ J−1(v1, v2) are tight. Furthermore, by the same argu-
ments as in the proof of Theorem 2.3.2, the processes uε◦J−1 and uε◦J−1 are strong martingales
in [0, 1]2 with respect to the push-forward of filtration (2.5.5) through J for each ε > 0.

We will apply a generalization of Aldous condition for tightness to strong martingales. First
of all, fix ε > 0 and note that if τ is a natural 1-stopping time for uε ◦J−1 with τ ∈ [0, 1], see page
112 in [59] for a definition, then the processes (uε ◦J−1(τ, v))0≤v≤1 and (uε ◦J−1(τ, v))0≤v≤1 are
versions of one another. To see this, approximate τ from above by a sequence (τn)n∈N of natural
1-stopping times taking on finitely many values only. Then for all 0 ≤ v ≤ 1, uε ◦ J−1(τn, v) =
uε ◦ J−1(τn, v) P-almost surely. Now since uε ◦ J−1 is càdlàg and (τ, v) ≤ (τn, v), by dominated
convergence, uε ◦ J−1(τn, v) −→ uε ◦ J−1(τ, v) in L1(Ω,F ,P) as n → ∞ for any 0 ≤ v ≤ 1.
Finally, by Itō’s isometry, the Lipschitz continuity of f and with 1∅ ≡ 0,

E
[(
uε ◦ J−1(τn, v) − uε ◦ J−1(τ, v)

)2
]

≤ CE
[∫

R+×R
1A+(J−1(τn,v))\A+(J−1(τ,v))(s, y)

(∣∣uε(s, y)
∣∣2 + 1

)
ds dy

] (2.5.12)

for all 0 ≤ v ≤ 1 and n ∈ N. We infer uε ◦ J−1(τn, v) −→ uε ◦ J−1(τ, v) in L2(Ω,F ,P) as n → ∞
for any 0 ≤ v ≤ 1, again by dominated convergence (1A+(J−1(τn,v))\A+(J−1(τ,v)) −→ 0 pointwise
on Ω × R+ × R as n → ∞ and the integrand above may be approximated by the integrable
function 1A+(u∗)(|uε|2 + 1) with u∗ = (3/2, 1/2)).

Now we assume that each uε is separable and let (εn)n∈N, (hn)n∈N be sequences of positive
numbers with εn −→ 0 and hn −→ 0 as n → ∞. Let also (Tn)n∈N be a sequence of natural
1-stopping times for uεn ◦ J−1 with Tn ∈ [0, 1]. As for (2.5.12) and using (2.4.11), we obtain

E
[∣∣∣uεn ◦ J−1(Tn + hn, v) − uεn ◦ J−1(Tn, v)

∣∣∣2]=E
[∣∣∣uεn ◦ J−1(Tn + hn, v) − uεn ◦ J−1(Tn, v)

∣∣∣2]
≤ CE

[(
sup

(s,y)∈A+(u∗)

∣∣uεn(s, y)
∣∣2 + 1

)∫
R+×R

1A+(J−1(Tn+hn,v))\A+(J−1(Tn,v))(s, y) ds dy
]

≤ Chn

(
E
[

sup
(s,y)∈A+(u∗)

∣∣uεn(s, y)
∣∣2]+ 1

)
≤ Chn

(
sup

(s,y)∈A+(u∗)
E
[
|uεn(s, y)|2

]
+ 1

)
≤ Chn,

(2.5.13)

which goes to 0 as n → ∞ for all 0 ≤ v ≤ 1. We used the inverse mapping of H to see that
whenever Tn + v ≥ 1, the surface integral inside the third expectation in (2.5.13) equals

9
2

(
Tn + hn + v − 1√

2

)2
− 9

2

(
Tn + v − 1√

2

)2
= 9hn

(
Tn + hn

2 + v − 1√
2

)
(≤ Chn).

Plus, the maximal inequality on the last line of (2.5.13) is a consequence of (2.5.4). Analogously,
if (Tn)n∈N is a sequence of natural 2-stopping times for uεn ◦ J−1 with Tn ∈ [0, 1],

sup
0≤v≤1

E
[∣∣∣uεn ◦ J−1(v, Tn + hn) − uεn ◦ J−1(v, Tn)

∣∣∣2] ≤ Chn −→ 0 as n → ∞.

Therefore, the random fields uε ◦ J−1 satisfy all conditions for Theorem 4.I in [59] to apply.

We now state a tightness result for uε and uε in L2-space.

Theorem 2.5.2. The family {uε | ε > 0} of mild solutions to (2.2.1) is tight in the Hilbert space
L2([0, T ] × I) for any T > 0 and finite interval I ⊆ R.
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Proof. Let {Ψk | k ∈ N} be a countable orthonormal basis of L2([0, T ] × I). By the stochastic
Fubini theorem (see e.g. Theorem 2.6 in [99]), for all ε > 0 and k ∈ N,

⟨uε,Ψk⟩ =
∫ T

0

∫
I

(∫ T

0

∫
R
G(t, x; s, y)f(uε(s, y))

σ(ε) Lε(ds, dy)
)

Ψk(t, x) dt dx

=
∫ T

0

∫
R

(∫ T

0

∫
I
G(t, x; s, y)Ψk(t, x) dtdx

)
f(uε(s, y))

σ(ε) Lε(ds, dy) P-almost surely.

Using (2.4.11), Parseval’s identity and Fubini’s theorem, we infer

∞∑
k=0

sup
ε>0

E
[
⟨uε,Ψk⟩2

]
≤ C

∫ T

0

∫
R

( ∞∑
k=0

⟨G(·, ·; s, y),Ψk⟩2
)

ds dy

=
∫ T

0

∫
R

(∫ T

0

∫
I
G2(t, x; s, y) dtdx

)
ds dy =

∫ T

0

∫
I

(∫ T

0

∫
R
G2(t, x; s, y) ds dy

)
dt dx,

which is finite since the last inner integral equals t2/4. This implies by Markov’s inequality,

sup
ε>0

P
( ∞∑

k=N

⟨uε,Ψk⟩2 > δ

)
≤ 1
δ

∞∑
k=N

sup
ε>0

E
[
⟨uε,Ψk⟩2

]
−→ 0 as N → ∞

for all δ > 0 as well as

sup
ε>0

P
(

N∑
k=0

⟨uε,Ψk⟩2 > δ

)
≤ 1
δ

∞∑
k=0

sup
ε>0

E
[
⟨uε,Ψk⟩2

]
−→ 0 as δ → ∞

for all N ∈ N. So we can apply Theorem 1 in [93] and conclude the proof.

We turn to the H−r(R)-valued process vε in (2.3.11) and first show that it has a càdlàg
version.

Proof of Theorem 2.3.5. The proof relies on the Hilbert space structure of H−r(R). First, we
show that for any ϕ ∈ S(R) and ε > 0, the real-valued process (⟨vε

t , ϕ⟩)t≥0 has a càdlàg modifi-
cation. Use (2.3.9), (2.3.11) and the fundamental theorem of calculus to rewrite for all t ≥ 0,

⟨vε
t , ϕ⟩ =

∫ t

0

∫
R
ϕ(y)f(uε(s, y))

σ(ε) Lε(ds, dy)

+ 1
2

∫ t

0

∫
R

(∫ t

s
ϕ′(y + (r − s)) dr −

∫ t

s
ϕ′(y − (r − s)) dr

)
f(uε(s, y))

σ(ε) Lε(ds, dy)

P-almost surely, and then the stochastic Fubini theorem on the last double integral to obtain

⟨vε
t , ϕ⟩ =

∫ t

0

∫
R
ϕ(y)f(uε(s, y))

σ(ε) Lε(ds, dy) + 1
2

∫ t

0
Jε

r (ϕ) dr P-almost surely (2.5.14)

where we have set

Jε
r (ϕ) =

∫ r

0

∫
R

(
ϕ′(y + (r − s)) − ϕ′(y − (r − s))

) f(uε(s, y))
σ(ε) Lε(ds, dy), r ≥ 0.

The semimartingale on the right-hand side of (2.5.14), that we will denote by Xε(ϕ), is càdlàg.
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Next, fix an arbitrary T > 0 and ε > 0. Doob’s inequality, Itō’s isometry and (2.2.7) yield

E
[
sup
t≤T

∣∣∣Xε
t (ϕ)

∣∣∣2] ≤ C

∫ T

0

∫
R
ϕ2(y) ds dy + C

∫ T

0

(∫ r

0

∫
R
ϕ′(y ± (r − s))2 dsdy

)
dr (2.5.15)

for all ϕ ∈ S(R). Now the Hermite functions hq satisfy the recursion relation h′
q(x) =

√
q/2hq−1(x)−√

(q + 1)/2hq+1(x) for all q ∈ N and x ∈ R, from which we obtain by orthogonality,∫
R
h′

q(x)2 dx = q

2

∫
R
h2

q−1(x)dx+ q + 1
2

∫
R
h2

q+1(x)dx = q + 1
2 . (2.5.16)

We carry forward the estimation in (2.5.15) for ϕ = hq, whence

E
[
sup
t≤T

∣∣∣Xε
t (hq)

∣∣∣2] ≤ C

(
1 +

∫
R
h′

q(x)2 dx
)

≤ C(1 + 2q) for all q ∈ N. (2.5.17)

Fix r > 2. It is easy to see that for each N ∈ N, the H−r(R)-valued process

N∑
q=0

(1 + 2q)−r/2Xε(hq)eq,−r (2.5.18)

with eq,−r as in (2.3.16), is càdlàg. Recall the Fourier expansion (2.3.17) and use (2.5.17) to
obtain

E

sup
t≤T

∥∥∥∥∥∥
M∑

q=N+1
(1 + 2q)−r/2Xε

t (hq)eq,−r

∥∥∥∥∥∥
2

−r

 ≤
M∑

q=N+1
(1 + 2q)−rE

[
sup
t≤T

∣∣∣Xε
t (hq)

∣∣∣2]

≤ C
M∑

q=N+1
(1 + 2q)−r+1 −→ 0

(2.5.19)

as N,M → ∞ since r > 2. Consequently, standard arguments show that there exists a process
vε ∈ D([0, T ], H−r(R)) such that P-almost surely,

vε
t =

∞∑
q=0

(1 + 2q)−r/2Xε
t (hq)eq,−r in H−r(R) for all t ≤ T. (2.5.20)

By (2.5.14), this process is a version of (vε
t )t≤T in H−r(R).

Next, we show tightness of the càdlàg version vε.

Theorem 2.5.3. The family of processes {vε | ε > 0} where vε is the càdlàg version of vε

obtained in Theorem 2.3.5, is tight in the Skorokhod space D([0, T ], H−r(R)) for any r > 2 and
T > 0.

Proof. We first check that {vε | ε > 0} satisfies the Aldous condition for tightness. To this end,
let (εn)n∈N and (hn)n∈N be sequences of positive numbers with εn → 0 and hn → 0 as n → ∞.
In addition, for each n ∈ N, let τn ∈ [0, T ] be a stopping time with respect to the filtration
generated by the process (vεn

t )t≤T . We will show

E
[
∥vεn

τn+hn
− vεn

τn
∥2

−r

]
−→ 0 as n → ∞. (2.5.21)
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Recall the series representation (2.5.20) of vεn , where Xεn(hq) is the right-hand side of (2.5.14)
with ϕ = hq. We have for each q ∈ N,

Xεn
τn+hn

(hq) −Xεn
τn

(hq) =
∫ τn+hn

τn

∫
R
hq(y)f(uεn(s, y))

σ(εn) Lεn(ds, dy) + 1
2

∫ τn+hn

τn

Jεn
r (hq) dr

=: Iq,n + Jq,n.

(2.5.22)
We estimate the second moment of each of these two terms. For the first one, by Itō’s isometry
and the Lipschitz continuity of f ,

E
[
I2

q,n

]
= E

[∫ T

0

∫
R
h2

q(y)1(τn,τn+hn](s)f2(uεn(s, y)) ds dy
]

≤ CE
[∫ T

0

∫
R
h2

q(y)1(τn,τn+hn](s)|uεn(s, y)|2 dsdy
]

+ CE
[∫ T

0
1(τn,τn+hn](s) ds

]

= C

∫
R
h2

q(y)E
[∫ T

0
1(τn,τn+hn](s)|uεn(s, y)|2 ds

]
dy + Chn.

(2.5.23)

Furthermore, by the maximal inequality (2.5.4) (assuming separability),

E
[

sup
(s,y)∈[(0,x),(T,x)]⪯

∣∣uε(s, y)
∣∣2] ≤ E

[∣∣uε(T, x)
∣∣2] for all x ∈ R and ε > 0. (2.5.24)

Hence, the remaining integral on the right-hand side of (2.5.23) can further be estimated by∫
R
h2

q(y)E
[

sup
(s,z)∈[(0,y),(T,y)]⪯

∣∣uεn(s, z)
∣∣2 ∫ T

0
1(τn,τn+hn](s) ds

]
dy

= hn

∫
R
h2

q(y)E
[

sup
(s,z)∈[(0,y),(T,y)]⪯

∣∣uεn(s, z)
∣∣2] dy ≤ hn

∫
R
h2

q(y)E
[∣∣uεn(T, y)

∣∣2] dy

≤ Chn

∫
R
h2

q(y)dy = Chn for all q, n ∈ N,

(2.5.25)

where (2.4.11) was used for the last inequality. Note a significant difference here with the stochas-
tic heat equation addressed in [32]: The mild solution to that equation is not a multiparameter
martingale, so instead of maximal inequalities as (2.5.24), the factorization method from [39, 90]
was used to prove the Aldous condition, see in particular Lemma 3.3 and (3.13) in [32].

Next, by the same calculations as in (2.5.15) (but using (2.4.11) instead of (2.2.7)) and
(2.5.17), supε>0 E

[
|Jε

r (hq)|2
]

≤ C(1 + 2q) for all q ∈ N and r ≤ T , so using Hölder’s inequality,

E
[
J2

q,n

]
= 1

4E

(∫ T

0
1(τn,τn+hn]J

εn
r (hq) dr

)2
 ≤ CE

[
hn

∫ T

0
|Jεn

r (hq)|2 dr
]

≤ Chn(1 + 2q)

for all n, q ∈ N. Combine this with (2.5.22), (2.5.23) and (2.5.25) to obtain altogether

E
[
∥vεn

τn+hn
− vεn

τn
∥2

−r

]
=

∞∑
q=0

(1 + 2q)−rE
[(
Xεn

τn+hn
(hq) −Xεn

τn
(hq)

)2
]

≤ 2
∞∑

q=0
(1 + 2q)−r

(
E
[
I2

q,n

]
+ E

[
J2

q,n

])
≤ hnC

∞∑
q=0

(1 + 2q)−r+1 −→ 0
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as n → ∞ since r > 2, which is (2.5.21).
In addition, ∑∞

q=0(1 + 2q)−r supε>0 E[Xε
t (hq)2] < ∞ by (2.4.11), (2.5.17) and since r > 2, so

we can readily deduce, as in the proof of Theorem 2.5.2, that the random elements {vε
t | ε > 0}

are tight in H−r(R) for any fixed t ≤ T .
The claim of the theorem now directly follows from Theorem 6.8 in [99].

We end this section with a tightness result for vε and vε in L2-space.

Theorem 2.5.4. The distribution-valued processes {vε | ε > 0} with vε as in (2.3.11), are tight
in the Hilbert space L2([0, T ], H−r(R)) for each r > 1 and T > 0.

Proof. First, each vε is an element of L2([0, T ], H−r(R)) as is seen from

E
[∫ T

0
∥vε

t ∥2
−r dt

]
=

∞∑
q=0

(1 + 2q)−r
∫ T

0
E
[
⟨vε

t , hq⟩2
]

dt ≤ C
∞∑

q=0
(1 + 2q)−r < ∞

which follows from (2.3.12) and r > 1.
The scalar product in L2([0, T ], H−r(R)) is given by ⟨f, g⟩ =

∫ T
0 ⟨ft, gt⟩−r dt and it is easy to

see that an orthonormal basis is formed by {ϕieq,−r | i, q ∈ N} with ϕi(t) =
√

2/T sin(itπ/T )
and eq,−r as in (2.3.16). By (2.3.11) and the stochastic Fubini theorem, for all i, q ∈ N and ε > 0,

∫ T

0
⟨vε

t , hq⟩ϕi(t) dt = 1
2

∫ T

0

∫
R

(∫ T

s
hq(y ± (t− s))ϕi(t) dt

)
f(uε(s, y))

σ(ε) Lε(ds, dy) P-a.s.

Therefore, by duality, Itō’s isometry and (2.4.11), we have

E
[
⟨vε, ϕieq,−r⟩2

]
≤ C(1 + 2q)−r

∫ T

0

∫
R

(∫ T

s
hq(y ± (t− s))ϕi(t) dt

)2

dsdy.

Using Parseval’s identity relative to the orthonormal basis of L2([0, T ]), we obtain altogether

∞∑
i,q=0

sup
ε>0

E
[
⟨vε, ϕieq,−r⟩2

]
≤ C

∞∑
q=0

(1 + 2q)−r
∫ T

0

∫
R

∞∑
i=0

(∫ T

s
hq(y ± (t− s))ϕi(t) dt

)2

ds dy

= C
∞∑

q=0
(1 + 2q)−r

∫ T

0

∫
R

∫ T

s
h2

q(y ± (t− s)) dtdy ds ≤ C
∞∑

q=0
(1 + 2q)−r

(2.5.26)

which is finite since r > 1. We can now conclude analogously to the proof of Theorem 2.3.5.

Corollary 2.5.5. The distribution-valued processes {vε | ε > 0} where vε is the càdlàg version
of vε in Theorem 2.3.5, are tight in L2([0, T ], H−r(R)) for any r > 2 and T > 0.

Proof. Since vε
t lives in H−r(R) for r > 2 only, this is a direct consequence of Theorem 2.5.4.

2.5.2 Proofs for Section 2.4

We first show that a mild solution to (2.2.1) satisfies equation (2.3.8) with ∂tu
ε replaced by vε.
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Proposition 2.5.6. Let uε be a mild solution to (2.2.1) and vε the process defined in (2.3.11).
For each ε > 0, the pair (uε, vε) satisfies the following weak formulation of the stochastic wave
equation on R+ × R: For any ϕ1, ϕ2 ∈ C∞

c (R) and t ≥ 0, we have∫
R
uε(t, x)ϕ1(x) dx+ ⟨vε

t , ϕ2⟩

=
∫ t

0

(∫
R
uε(s, x)ϕ′′

2(x) dx+ ⟨vε
s, ϕ1⟩

)
ds+

∫ t

0

∫
R
ϕ2(x)f(uε(s, x))

σ(ε) Lε(ds, dx) P-a.s.

(2.5.27)

Proof. Recall first (2.3.9) and apply the stochastic Fubini theorem in order to obtain∫ t

0

∫
R
uε(s, x)ϕ′′

2(x) dx ds =
∫ t

0

∫
R

(∫ t

0

∫
R
G(s, x; r, y)ϕ′′

2(x) dsdx
)
f(uε(r, y))

σ(ε) Lε(dr, dy) and∫ t

0
⟨vε

s, ϕ1⟩ ds =
∫ t

0

∫
R

(∫ t

0

∫
R
ϕ1(x)dG

dx (s, dx; r, y) ds
)
f(uε(r, y))

σ(ε) Lε(dr, dy).

(2.5.28)

We further calculate for both inner integrals in (2.5.28) and fixed 0 ≤ r ≤ t and y ∈ R,∫ t

0

∫
R
G(s, x; r, y)ϕ′′

2(x) dx ds = 1
2ϕ2(y ± (t− r)) − ϕ2(y) =

∫
R
ϕ2(x)dG

dx (t, dx; r, y) − ϕ2(y) and∫ t

0

∫
R
ϕ1(x)dG

dx (s, dx; r, y) ds =
∫
R
G(t, z; r, y)ϕ1(z) dz.

Now insert the last integral accordingly in (2.5.28) and apply again the stochastic Fubini theo-
rem.

The next theorem is a converse of Proposition 2.5.6 in the following sense: If a random field
on [0, T ]× [−T, L+T ] satisfies (together with an auxiliary distribution-valued process) the weak
formulation of the stochastic wave equation (on R+ × R) driven by Gaussian noise "restricted"
to [0, T ] × [−T, L+ T ], then it is a mild solution to (2.2.9) on [0, T ] × [0, L].

Theorem 2.5.7. On a complete stochastic basis (Ω̃, F̃ , F̃ , P̃), let W̃ be a Gaussian space–time
white noise on [0, T ] × [−T, L + T ] for some T > 0 and L > 0. Assume we have a ⪯-càdlàg
random field w = {w(t, x) | (t, x) ∈ [0, T ] × [−T, L+ T ]} satisfying

ess sup
(t,x)∈[0,T ]×[−T,L+T ]

E
[∣∣w(t, x)

∣∣2] < ∞ (2.5.29)

and a H−r(R)-valued càdlàg process (θt)t≤T for some r > 2. Assume for any x ∈ [−T, L + T ],
w(0, x) = θ0 = 0 P̃-a.s. and that for all ϕ1, ϕ2 ∈ C∞

c ((−T, L+T )), the pair (w, θ) satisfies (2.4.12)
with probability one. Then w is on [0, T ] × [0, L] the continuous mild solution to the stochastic
wave equation (2.4.13) driven by ˙̃

W , and θ satisfies (2.4.14) for all t ≤ T and ϕ ∈ C∞
c ((0, L)).

For the proof of this theorem, we need the following technical lemma.

Lemma 2.5.8. Let T > 0 and I ⊆ R be a finite open interval. The tensor product C∞([0, T ]) ⊗
C∞

c (I) is dense in C∞
c ([0, T ] × I) with respect to each norm

∑
|α|≤N ∥ · ∥∞,α with N ∈ N and

∥f∥∞,α = ∥f (α)∥∞ = sup
(t,x)∈[0,T ]×I

∣∣∣f (α)(t, x)
∣∣∣ (2.5.30)

and f (α) = ∂α1
t ∂α2

x f with multi-index α = (α1, α2) ∈ N2.
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Proof. Assume for simplicity I = (0, 1), fix f ∈ C∞
c ([0, T ] × I) and a compact set A ⊆ I such

that supp f ⊆ [0, T ] ×A. Furthermore, let b be a C∞
c (R)-function such that 0 ≤ b ≤ 1, b ≡ 1 on

A and A ⊆ supp b ⊊ I. Set K = supp b.
The set of all polynomials on [0, T ]×K is dense in C∞([0, T ]×K) with respect to each norm∑

|α|≤N ∥ · ∥∞,α (with the obvious restriction of domain of definition). We prove this by induction
on the differentiation order N : If N = 0, it is a direct consequence of the Stone–Weierstrass
theorem and if the claim holds for N − 1, choose g ∈ C∞([0, T ] × K) and write g(t, x) =∫ t

0 ∂tg(s, x) ds+
∫ x

a ∂xg(0, y) dy+ g(a, 0) (assuming K = [a, b] for simplicity). By assumption, we
can find polynomials An, resp. Bn, that converge in ∑|α|≤N−1 ∥ · ∥∞,α to ∂tg, resp. ∂xg. Then the
polynomial Cn(t, x) =

∫ t
0 ∂tAn(s, x) ds+

∫ x
a Bn(0, y) dy+g(a, 0) converges to g in∑|α|≤N ∥ · ∥∞,α.

Now fix N ∈ N and choose a sequence of polynomials Pn(t, x) = ∑Nn
i,j=1 αi,nβj,nt

ixj with
αi,n, βj,n ∈ R and Nn ∈ N such that P (α)

n converges to f (α) uniformly on [0, T ]×K for all |α| ≤ N .
We can write b(x)Pn(t, x) = ∑Nn

i,j=0 αi,nβj,nt
i(b(x)xj), so each bPn lies in C∞([0, T ]) ⊗ C∞

c (I)
since b ∈ C∞

c (I). We now make the following calculations on [0, T ] × I. By the Leibniz rule,
∥(f − bPn)(0,k)∥∞ ≤ ∥f (0,k) − bP

(0,k)
n ∥∞ + C

∑k
l=1 ∥b(l)P

(l,k−l)
n ∥∞ for any k ∈ N. The first term

on the right-hand side can further be estimated by

sup
(t,x)∈[0,T ]×A

∣∣∣f (0,k)(t, x) − P (0,k)
n (t, x)

∣∣∣+ sup
(t,x)∈[0,T ]×(K\A)

∣∣∣P (0,k)
n (t, x)

∣∣∣,
which goes to 0 for each k ≤ N by assumption on Pn. On the other hand,

k∑
l=1

∥b(l)P (l,k−l)
n ∥∞ ≤

(
max

l=1,...,k
∥b(l)∥∞

) k∑
l=1

sup
(t,x)∈[0,T ]×(K\A)

∣∣∣P (l,k−l)
n (t, x)

∣∣∣,
which also goes to zero for all k ≤ N . Hence, ∥(f − bPn)(0,k)∥∞ −→ 0 as n → ∞ and the same
holds for multi-indices (k, 0) with k ≤ N as b is time independent. This concludes the proof.

Proof of Theorem 2.5.7. The proof is inspired by Theorem 9.15 in [83]. The key idea is that we
can extend (2.4.12) to test functions with a space and a time variable. To be precise, for any
ψ1, ψ2 ∈ C∞

c ([0, T ] × (−T, L+ T )), we will show that P̃-almost surely,∫
R
w(t, x)ψ1(t, x) dx+ ⟨θt, ψ2(t, ·)⟩

=
∫ t

0

∫
R
w(s, x)

(
∂ψ1
∂t

(s, x) + ∂2ψ2

∂x2 (s, x)
)

dsdx+
∫ t

0

〈
θs, ψ1(s, ·) + ∂ψ2

∂t
(s, ·)

〉
ds

+
∫ t

0

∫
R
ψ2(s, x)f(w−(s, x)) W̃ (ds, dx) for all t ≤ T.

(2.5.31)

First, we show (2.5.31) for special functions

Ψi(t, x) = φ(t)ϕi(x) with φ ∈ C∞([0, T ]) and ϕi ∈ C∞
c ((−T, L+ T )). (2.5.32)

Using the integration by parts formula for càdlàg functions of Proposition 9.16 in [83] and taking
into account the initial conditions of w and θ, we compute for all t ≤ T ,∫

R
w(t, x)ψ1(t, x) dx+ ⟨θt, ψ2(t, ·)⟩ = φ(t)

(∫
R
w(t, x)ϕ1(x) dx+ ⟨θt, ϕ2⟩

)
=
∫ t

0
φ′(s)

(∫
R
w(s, x)ϕ1(x) dx+ ⟨θs, ϕ2⟩

)
ds+

∫ t

0
φ(s) d

(∫
R
w(s, x)ϕ1(x) dx+ ⟨θs, ϕ2⟩

)
.

(2.5.33)
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Now the last integral process in (2.5.33) is indistinguishable from the process

t 7→
∫ t

0
φ(s)

(∫
R
w(s, x)ϕ′′

2(x) dx+ ⟨θs, ϕ1⟩
)

ds+
∫ t

0

∫
R
φ(s)ϕ2(x)f(w−(s, x)) W̃ (ds, dx),

(2.5.34)
since its integrator equals the right-hand side of (2.4.12) by assumption. Inserting (2.5.34) into
(2.5.33) and recombining the functions ψi as well as their derivatives yields exactly (2.5.31).

Next, we prove (2.5.31) for general ψi ∈ C∞
c ([0, T ]×(−T, L+T )) by a density argument. Let

N0 ∈ N to be determined later in the proof. Using Lemma 2.5.8, choose sequences (ψn
i )n∈N ∈

C∞([0, T ])⊗C∞
c ((−T, L+T )) such that ψn

i converges to ψi in ∑|α|≤N0 ∥ · ∥∞,α with each ∥ · ∥∞,α

as in (2.5.30). This implies uniform convergence in [0, T ] of each of the corresponding terms in
(2.5.31) as we show in the following. (Note that by linearity, (2.5.31) readily holds for linear
combinations of special functions (2.5.32).)

Since w is ⪯-càdlàg, and θ is càdlàg in H−r(R), both processes are bounded and therefore,

sup
t≤T

∣∣∣∣∣
∫
R
w(t, x)ψ1(t, x) dx−

∫
R
w(t, x)ψn

1 (t, x) dx
∣∣∣∣∣ ≤ C∥w∥∞∥ψ1 − ψn

1 ∥∞ −→ 0 as n → ∞

as well as

sup
t≤T

∣∣∣⟨θt, ψ2(t, ·)⟩ − ⟨θt, ψ
n
2 (t, ·)⟩

∣∣∣ ≤
(

sup
t≤T

∥θt∥−r

)
sup
t≤T

∥ψ2(t, ·) − ψn
2 (t, ·)∥r < ∞. (2.5.35)

We now show that for any r ≥ 0, ψn
i −→ ψi in all ∥ · ∥∞,α with |α| ≤ N0 and sufficiently large

N0 implies ψn
i −→ ψi and ∂tψ

n
2 −→ ∂tψ2 in supt≤T ∥ · ∥r (thus convergence to 0 of all terms in

(2.5.35)). For this, we use the well-known differential equation satisfied by the Hermite functions

h′′
q (x) + (1 + 2q − x2)hq(x) = 0 for x ∈ R and q ∈ N. (2.5.36)

Let q0 ∈ N be such that
√

1 + 2q > L+ T for all q ≥ q0. Then 1/|x2 − (1 + 2q)| ≤ 1/((1 + 2q) −
(L + T )2) on [−T, L + T ] for all q ≥ q0. Let ϕ ∈ C∞

c ((−T, L + T )). Insert (2.5.36) into ⟨ϕ, hq⟩
and use integration by parts twice, repeat k times this procedure, apply then Hölder’s inequality
and the elementary inequality above to see that for all q ≥ q0 and k ∈ N,

⟨ϕ, hq⟩2 ≤ C

((1 + 2q) − (L+ T )2)2k

( 2k∑
l=0

∥ϕ(l)∥2
∞

)∫ L+T

−T
P4k(x) dx (2.5.37)

with a polynomial P4k of degree 4k (the remaining details of these calculations are left to the
reader). Now choose N0 such that r −N0 < −3 and infer from (2.5.37) that

∥∂tψ
n
i (t, ·) − ∂tψi(t, ·)∥2

r

≤ C

 q0∑
q=0

(1 + 2q)r +
∞∑

q=q0+1

(1 + 2q)r

((1 + 2q) − (L+ T )2)N0−2

N0−2∑
l=0

∥∂t∂
l
x(ψn

i − ψi)∥
2
∞

(2.5.38)

for all t ≤ T and n ∈ N. The series in (2.5.38) is finite since r − N0 < −3 and the last sum
converges to 0 as n → ∞ by assumption on (ψn

i ), which proves the desired convergences.
Finally, by Doob’s inequality, Itō’s isometry, the Lipschitz continuity of f and (2.5.29),

E
[
sup
t≤T

∣∣∣∣∣
∫ t

0

∫
R
ψ2(s, x)f(w−(s, x)) W̃ (ds, dx) −

∫ t

0

∫
R
ψn

2 (s, x)f(w−(s, x)) W̃ (ds, dx)
∣∣∣∣∣
]

≤
∫ T

0

∫
R

(ψ2(s, x) − ψn
2 (s, x))2E

[
f(w−(s, x))2

]
dsdx ≤ C∥ψ2 − ψn

2 ∥2
∞ −→ 0 as n → ∞.
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Analogous arguments for the remaining terms of (2.5.31) finishes the density argument.
We now choose two particular functions to be inserted in (2.5.31). Fix ϕ ∈ C∞

c ((0, L)) as
well as t ≤ T , and define

ψ1(s, y) = 1
2ϕ(y ± (t− s)) and ψ2(s, y) = 1

2

∫ y+(t−s)

y−(t−s)
ϕ(x) dx (2.5.39)

with (s, y) ∈ [0, T ]×(−T, L+T ). Then ψ1, ψ2 ∈ C∞
c ([0, T ]×(−T, L+T )). In addition, ψ1(t, y) =

ϕ(y) and ψ2(t, y) = 0 for all y ∈ R, and straightforward calculus yields

ψ
(1,0)
2 (s, y) = −ψ1(s, y) and ψ

(2,0)
2 (s, y) = ψ

(0,2)
2 (s, y). (2.5.40)

The freedom we have to choose two different functions in (2.5.39) is another reason why we
considered the weak formulation (2.3.8) of the stochastic wave equation in this work: By (2.5.40),
the first two integrals on the right-hand side of (2.5.31) vanish, and (2.5.31) yields at time point
t ∫

R
w(t, x)ϕ(x) dx =

∫ t

0

∫
R
ψ2(s, y)f(w−(s, y)) W̃ (ds, dy) P̃-almost surely,

which, recalling (2.3.9) and using the stochastic Fubini theorem, has the equivalent form∫
R

(
w(t, x) −

∫ t

0

∫
R
G(t, x; s, y)f(w−(s, y)) W̃ (ds, dy)

)
ϕ(x) dx = 0 P̃-almost surely, (2.5.41)

and this holds for all ϕ ∈ C∞
c ((0, L)) and t ≤ T . We can now infer the first claim of the theorem.

Denote by Zt(x) the random field in parenthesis in (2.5.41) with (t, x) ∈ [0, T ] × [0, L]. It is easy
to see that (2.5.29) implies Zt ∈ L2([0, L]) for all t ≤ T . For any ϵ > 0 and t ≤ T , consider
the mollified random field Jϵ(Zt) on [0, L] defined exactly as in (1.8) of Chapter 10 in [49]. By
Lemma 3 of that chapter, Jϵ(Zt) −→ Zt in L2([0, L]) as ϵ → 0. Consequently, we can choose a
sequence (ϵl)l∈N converging to 0 such that ω̃-wise,

Jϵl
(Zt) −→ Zt Leb[0,L]-almost everywhere as l → ∞. (2.5.42)

Now for any fixed y ∈ (0, L), the support of the function ρ((y − ·)/ϵl)/ϵ2l used to mollify Zt

will be contained in (0, L) if ϵl is sufficiently small and, hence, (2.5.41) applies to Jϵl
(Zt)(y) for

those ϵl with ϕ being chosen as ρ((y − ·)/ϵl)/ϵ2l . Combining this with (2.5.42) has the following
outcome: For all t ≤ T and almost all y ∈ (0, L), Zt(y) = 0 P̃-almost surely. We deduce that w−
satisfies the mild formulation of (2.4.13) almost everywhere on [0, T ] × [0, L].

Let ũ be the continuous mild solution to (2.4.13) on (Ω̃, F̃ , F̃ , P̃). We have

E
[∣∣∣ũ(t, x) − w−(t, x)

∣∣∣2] ≤
∫ T

0

∫
R
G2(t, x; s, y)E

[∣∣∣ũ(s, y) − w−(s, y)
∣∣∣2]ds dy a.e.

and by Lemma 6.4 (3) in [28], E
[
|ũ(t, x) − w−(t, x)|2

]
= 0 for almost all (t, x) ∈ [0, T ] × [0, L].

It follows that P̃-almost surely, w and ũ agree almost everywhere on [0, T ] × [0, L] and therefore,
since w is ⪯-càdlàg, they are indistinguishable and w is actually continuous on [0, T ] × [0, L].
Finally, by the usual computations, we obtain for all (t, x) ∈ [0, T ] × [0, L],

w(t, x) = ũ(t, x) =
∫ t

0

∫
R
Gt−s(x, y)f(ũ(s, y)) W̃ (ds, dy) =

∫ t

0

∫
R
Gt−s(x, y)f(w(s, y)) W̃ (ds, dy)

P̃-almost surely.
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For the second claim of the theorem, we define new functions ψ1, ψ2 by

ψ1(s, y) = 1
2
(
ϕ′(y + (t− s)) − ϕ′(y − (t− s))

)
and ψ2(s, y) = 1

2ϕ(y ± (t− s))

with fixed ϕ ∈ C∞
c ((0, L)) and t ≤ T , for all (s, y) ∈ [0, T ] × (−T, L + T ). Again we have

ψ1, ψ2 ∈ C∞
c ([0, T ] × (−T, L + T )). Since w− = w, by straightforward calculus and again with

(2.3.9), inserting ψ1, ψ2 into (2.5.31) yields at time point t exactly (2.4.14). This concludes the
proof.
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Chapter 3

Mixed semimartingales: Volatility
estimation in the presence of
fractional noise

3.1 Introduction
Over the last two decades, a large amount of work has been dedicated to the problem of esti-
mating volatility for a continuous Itô semimartingale X based on high-frequency observations.
Motivated by financial applications, sophisticated methods have been employed to construct
volatility estimators that are robust to, for example, jumps, irregular observation schemes and/or
the presence of market microstructure noise ([3, 64]). Concerning the last point, the type of noises
considered in the literature is usually one of the following two (or a combination thereof): round-
ing errors due to the discreteness of prices ([41, 60, 77, 88, 89]) or additive noise due to data
errors, informational asymmetries, transaction costs etc. In the latter case, one assumes that
observations at high frequency are only available for

Yt = Xt + Zt, (3.1.1)

where (Xt)t≥0 is the efficient price process and (Zt)t≥0 is a noise process, both of which are
unobservable. A common approach in the literature is to model (Zt)t≥0 at the observation times
(say, i∆n for i = 1, . . . , [T/∆n] where ∆n is a small step size and T > 0 is a finite time horizon)
as

Zi∆n = εn
i , (3.1.2)

where for each n, (εn
i )[T/∆n]

i=1 is a discrete time series. Examples for εn
i include i.i.d. noise [11,

15, 16, 35, 85, 87, 100], AR- or ARCH-type noise [5, 95], and nonparametric variants thereof
[56, 61, 62, 63, 67, 78, 79]. We also refer to [12, 51] for overviews of and comparisons between
the estimators developed in the mentioned works.

In these non-shrinking noise models where the (conditional) variance of εn
i is bounded away

from 0 as ∆n → 0, it is known that under mild assumptions on εn
i , the realized variance (RV) of

the noisy process Y , defined as V̂ n
0,T = ∑[T/∆n]

i=1 (Yi∆n − Y(i−1)∆n
)2, diverges at a rate of ∆−1

n as
∆n → 0. While this behavior was empirically confirmed in previous studies1, examining quotes

1For example, [5] found that the average RV estimator of the 30 Dow Jones Industrial Average (DJIA) stocks
during the last ten trading days of April 2004 exploded as ∆n → 0, with a slope coefficient of 1.02 on a log–log
scale.
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Slope estimates of log(V0,T
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Figure 3.1: Top row: Histograms of slope estimates obtained in a linear regression of log V̂ n
0,T (left)

and logS2
n (right) on log ∆n (where ∆n expressed in seconds). Both V̂ n

0,T and S2
n are computed

for the logarithmic mid-quote data of 29 DJIA stocks on all trading days in 2019. Each data
point corresponds to one company and day. Bottom row: One particular asset and day (IBM on
September 16, 2019) including least-square estimates.

data for the individual DJIA stocks in 2019, we found a substantial deviation of the regression
coefficient of log V̂ n

0,T on log ∆n from the theoretical value of −1 implied by non-shrinking noise
models. In fact, for over 90% of the examined assets and days, the estimated slope coefficient
was larger than −0.3; cf. the left histogram depicted in Figure 3.1. This indicates that while the
RV estimator explodes as ∆n → 0, in general, the rate of explosion need not be ∆−1

n and, in
particular, may be asset- and/or time-dependent. Similarly, if we compute the sample variance
S2

n of increments at different frequencies ∆n for the same data set, again in over 90% of the
cases, the slope estimate in a regression of logS2

n on log ∆n was larger than 0.6 (see the right
histogram in Figure 3.1), whereas non-shrinking noise models would predict stabilization of the
variance for small ∆n (i.e., zero slope).

Shrinking noise models, in which the variance of the noise decreases as ∆n → 0, are much
less studied in the literature. In [3, Chapter 7], the noise variables εn

i are allowed to have
vanishing variances as ∆n → 0, but conditionally on the filtration generated by ingredients
of X, they are assumed to be independent of each other for different values of i. In [71], the
noise model is (essentially) ∆α/2

n times i.i.d. variables, where α ∈ [0, 1
2), which can only explain

scaling exponents of log V̂ n
0,T (resp., logS2

n) in the range [−1,−1
2) (resp., [0, 1

2)). In [6], noises
with a variance proportional to ∆γ

n with γ ≥ 3
2 are considered, but this cannot explain the slope

distribution in the top-right panel of Figure 3.1. Moreover, in these three works, the noise is white
and admits no serial dependence, conditionally on the price process. In particular, the increments
of the observed price process are asymptotically uncorrelated at lags 2 or higher. However, in
line with the results of [5], we find a significant second-order autocorrelation coefficient for the
majority of companies and days in our sample; see Figure 3.2.

A considerably more general treatment of shrinking noises with (conditional) serial depen-
dence is found in the recent paper [38], where the authors essentially assume that

Zi∆n = ∆γ
nρi∆nε

n
i , (3.1.3)

where ρ is a noise volatility process, εn
i is a discrete-time infinite moving-average process and γ is
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Figure 3.2: Left: Histogram of second-order autocorrelation coefficients of 1s increments for 29
DJIA stocks and all trading days in 2019. Right: Autocorrelation function for one particular
asset and day (IBM on September 16, 2019).

parameter that determines the speed at which the noise variance shrinks. As noted in [3, Chap-
ter 7.1], a typical issue of discrete-time noise processes with shrinking variance is compatibility
between different frequencies: in (3.1.3), if i∆n = j∆m, we typically do not have Zi∆n = Zj∆m

because the variances are of order ∆γ
n and ∆γ

m, respectively.2 Let us also mention that [38, As-
sumption 5] essentially requires the autocovariances of the noise at lag r decay faster than r−3.
In another recent paper [79], a decay rate of more than r−2 is needed. As we explain below, this,
in fact, cannot hold for a large class of noise models as soon as a natural compatibility condition
between frequencies is assumed.

In view of the previous observations, we will introduce a noise model that

(a) captures market microstructure noise in continuous time without compatibility issues be-
tween different sampling frequencies;

(b) reproduces scaling exponents of log V̂ n
0,T as a function of log ∆n in the full range of (−1, 0);

(c) reproduces decay rates of S2
n in the full range of (0, 1); and

(d) retains desirable features of existing noise models such as serial dependence, dependence on
the price process, cross-sectional dependence between assets and diurnal heteroscedasticity.

3.1.1 Model

On a filtered probability space (Ω,F ,F = (Ft)t≥0,P) satisfying the usual conditions, we assume
that the latent efficient price process X is a d-dimensional continuous Itô semimartingale

Xt = X0 +
∫ t

0
as ds+

∫ t

0
σs dBs, t ≥ 0, (3.1.4)

where B is a standard F-Brownian motion in Rd and a and σ are F-adapted locally bounded
Rd- and Rd×d-valued processes, respectively. Our assumption on the noise is as follows:

Assumption (Z). The process (Zt)t≥0 is given by

Zt = Z0 +
∫ t

0
g(t− s)ρs dWs, t ≥ 0, (3.1.5)

2In the white noise case, to ensure compatibility, (Zt)t≥0 must be a collection of independent variables. But
then a quantity like 1

T

∫ T

0 Zt dt, the average observational error on [0, T ], though meaningful from a practical
point of view, cannot be defined anymore because t 7→ Zt is non-measurable.
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where W is another d-dimensional standard F-Brownian motion, independent of B, and (ρt)t≥0
is an F-adapted locally bounded Rd×d-valued process. The kernel g : (0,∞) → R is of the form

g(t) = K−1
H tH− 1

2 + g0(t) (3.1.6)

where H ∈ (0, 1
2),

KH =
√

1
2H +

∫ ∞

1

(
rH− 1

2 − (r − 1)H− 1
2
)2

dr =
√

2H sin(πH)Γ(2H)
Γ(H + 1

2)
(3.1.7)

is a normalizing constant (the second identity can be found in [81, Theorem 1.3.1]) and the
function g0 : [0,∞) → R is smooth (including at t = 0) with g0(0) = 0.

In other words, we assume that the noise process is a continuous-time moving average process
(with ρ representing diurnal features of the noise) for which the kernel behaves as tH−1/2 as t → 0.
If H ∈ (0, 1

2), then our results show that V̂ n
0,T diverges at a rate of ∆2H−1

n . Hence, the exponent
covers the whole interval (−1, 0). Moreover, the increments of Z over a time interval of length
∆n have variances of order ∆2H

n , so the exponent can be any value in (0, 1). If H = 1
2 , then Z

itself is a semimartingale and there is no way to discern Z from the efficient price process X; if
H > 1

2 , then Z is smoother than X and V̂ n
0,T converges to

∫ t
0 σ

2
s ds, as in the noise-free case. This

is why we exclude the case H ≥ 1
2 in Assumption (Z). Note that X and Z may be dependent

through ρ.
In the special case where g0 ≡ 0 and ρs ≡ ρ is a constant, Z is—up to a term of finite

variation—simply a multiple of a fractional Brownian motion (fBM). If further Xt = σBt with
constant volatility σ, then the resulting observed process Yt = σBt + ρZt is a mixed fractional
Brownian motion (mfBM) as introduced by [25]. Our model for Y , as the sum of X in (3.1.4) and
Z in (3.1.5), can be viewed as a nonparametric generalization of mfBM that allows for stochastic
volatility in both its Brownian and its fractional component. We do keep the parameter H,
though, which we call the Hurst index in analogy with fBM. This is why we refer to our model
for the observation process

Yt = Xt + Zt = X0 +
∫ t

0
as ds+

∫ t

0
σs dBs + Z0 +

∫ t

0
g(t− s)ρs dWs, t ≥ 0, (3.1.8)

as a mixed semimartingale.
To our best knowledge, the mixed semimartingale hypothesis also leads to the first continuous-

time microstructure noise model in which t 7→ Zt is a measurable process and, at the same time,
the divergence of the RV estimator as ∆n → 0 can be explained.3 The condition (3.1.6) on
the kernel g implies that Z locally resembles an fBM with Hurst index H. At first sight, this
might seem restrictive, but actually it is not: Suppose that (Z ′

t)t≥0 is a measurable stationary
noise process. Under mild assumptions, Z ′ admits a continuous-time moving average represen-
tation Z ′

t =
∫ t

−∞ g(t − s)ρs dBs for some g ∈ L2((0,∞)) and stationary ρ; see, for example,
[45, Chapter XII, Theorem 5.3]. If we ignore ρ (i.e., take ρ ≡ 1) and assume that the auto-
correlation functions (ACFs) of the increments of Z ′ are compatible between frequencies, that
is, Γ(n)

r = Corr(Z ′
i∆n

− Z ′
(i−1)∆n

, Z ′
(i+r)∆n

− Z ′
(i+r−1)∆n

) converges to some Γr for all r ≥ 0 as

3In [4, 55], continuous-time noise models are considered for which the noise increments are of the same order as
the efficient price increments. Thus, the RV estimator does not explode at high frequency in these models. In [55],
a moving-average noise model with finite dependence is briefly mentioned in Section 4.1, but only unbiasedness
of an associated estimator is shown subsequently.
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n → ∞, then, as explained in [14, Remark 7], we necessarily have Γr = ΓH
r for some H ∈ (0, 1)

where
ΓH

0 = 1 and ΓH
r = 1

2
(
(r + 1)2H − 2r2H + (r − 1)2H

)
, r ≥ 1. (3.1.9)

This is exactly the ACF of the increments of fractional Brownian motion and, if H ∈ (0, 1
2) and

ρ ≡ 1, the limiting ACF of the increments of Z in (3.1.5) as ∆n → 0. We conclude that Z from
(3.1.5) captures the behavior of a large class of “compatible” stationary noise processes in the
high-frequency limit. Since r 7→ ΓH

r decays like r2H−2 as r → ∞, which is slower than r−2 for
any H ∈ (0, 1), the assumptions imposed on the serial dependence of the noise in [38, 62, 79]
are not satisfied.

Note that fractional Brownian motion and other fractional models were also considered as
asset price models in the mathematical finance literature, often in the context of long-range
dependence; see the seminal work of [80] but also [18, 19, 20], for example. In those works, it is
typically the behavior of the kernel g at t = ∞ that is of primary interest, as this determines
whether the resulting process has short or long memory. Our concern, by contrast, is the behavior
of this kernel around t = 0, which governs the local regularity, or roughness, of the high-frequency
increments of Z. In fact, on a finite time interval [0, T ], there is no way to distinguish between
short- and long-range dependence. Therefore, the Hurst parameter H should really be viewed
as a measure of roughness in this work.

Let us finally mention that mixed semimartingale models are in line with no-arbitrage con-
cepts in mathematical finance. Clearly, as non-semimartingales, they admit arbitrage in the
FLVR sense [42]. However, as shown in [26, 53], mixed fractional Brownian motion does not admit
arbitrage in the presence of transaction costs, which are exactly one of the market inefficiencies
that microstructure noise models are supposed to capture. Also, in the mixed semimartingale
model, the efficient price process is still assumed to follow a continuous semimartingale; it is
only the noise process that exhibits fractional and hence non-semimartingale behavior.

3.1.2 Identifiability

Before we describe the main results in next Section, let us comment on the identifiability of the
involved parameters and processes. The following result, due to [96] (see also [22, 25]), puts a
constraint on estimating volatility in a mixed semimartingale model:

Proposition 3.1.1. Assume that Y is an mfBM, that is, Y = X + Z where X = σB and
Z = ρBH and ρ, σ ∈ (0,∞), B is a Brownian motion and BH is an independent fBM with
Hurst parameter H ∈ (0, 1

2). For any T > 0, the laws of (Yt)t∈[0,T ] and (Zt)t∈[0,T ] are mutually
equivalent if H ∈ (0, 1

4) and mutually singular if H ∈ [1
4 ,

1
2).

In other words, if H ∈ (0, 1
4), there is no way to consistently estimate σ in the presence of Z

on a finite time interval. Against this background, we will first establish a central limit theorem
(CLT) for variation functionals of mixed semimartingales in Section 3.2 and then use this CLT
in Section 3.3 to derive consistent and asymptotically mixed normal estimators for H,

∫ T
0 σ2

s ds
and

∫ T
0 ρ2

s ds if H ∈ (1
4 ,

1
2) and for H and

∫ T
0 ρ2

s ds if H ∈ (0, 1
4). Sections 3.4 and 3.5 contain a

simulation study and an empirical application of our results, respectively. Section 3.6 concludes.

3.2 Central limit theorem for variation functionals
As with most estimators in high-frequency statistics, ours are based on limit theorems for power
variations and related functionals. For semimartingales, this is well studied topic by now; see
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[3, 64] for in-depth treatments of this subject. For fractional Brownian motion or moving-average
processes as in (3.1.5), the theory is similarly well understood; see [14, 21, 37, 50] and the
references therein. Surprisingly, it turns out that the mixed case is more complicated than the
“union” of the purely semimartingale and the purely fractional case. A first instance of this are
additional bias terms that already appear in the central limit theorem for power variations.

3.2.1 The result

Given L,M ∈ N and a test function f : Rd×L → RM , our goal is to establish a CLT for normalized
variation functionals of the form

V n
f (Y, t) = ∆n

[t/∆n]−L+1∑
i=1

f

(∆n
i Y

∆H
n

)
,

where

∆n
i Y = Yi∆n − Y(i−1)∆n

∈ Rd, ∆n
i Y = (∆n

i Y,∆n
i+1Y, . . . ,∆n

i+L−1Y ) ∈ Rd×L. (3.2.1)

This will be achieved under the following set of assumptions:

Assumption (CLT). Let ∥ · ∥ denote the Euclidean norm (in Rn if applied to vectors and in
Rnm if applied to a matrix in Rn×m). We assume that the observation process Y is given by the
sum of X from (3.1.4) and Z from (3.1.5) with the following specifications:

(1) The function f : Rd×L → RM is even and infinitely differentiable. Moreover, all its derivatives
(including f itself) have at most polynomial growth.

(2) The process a is d-dimensional, locally bounded and F-adapted.

(3) The volatility process σ is an F-adapted locally bounded Rd×d-valued process. Moreover, for
every T > 0, there is K1 ∈ (0,∞) such that for all s, t ∈ [0, T ],

E
[
1 ∧ ∥σt − σs∥

]
≤ K1|t− s|

1
2 . (3.2.2)

(4) The noise volatility process ρ takes the form

ρt = ρ
(0)
t +

∫ t

0
b̃s ds+

∫ t

0
ρ̃s dW̃s, t ≥ 0, (3.2.3)

where

(a) ρ(0) is an F-adapted locally bounded Rd×d-valued process such that for all T > 0,

E
[
1 ∧ ∥ρ(0)

t − ρ(0)
s ∥

]
≤ K2|t− s|γ , s, t ∈ [0, T ], (3.2.4)

for some γ ∈ (1
2 , 1] and K2 ∈ (0,∞);

(b) b̃ is d× d-dimensional, locally bounded and F-adapted;
(c) ρ̃ is an F-adapted locally bounded Rd×d×d-valued process (for example, the (ij)th com-

ponent of the stochastic integral in (3.2.3) equals ∑d
k=1

∫ t
0 ρ̃

ijk
s dW̃ k

s ) such that for all
T > 0 there are ε > 0 and K3 ∈ (0,∞) with

E
[
1 ∧ ∥ρ̃t − ρ̃s∥

]
≤ K3|t− s|ε, s, t ∈ [0, T ]. (3.2.5)
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(d) W̃ is a d-dimensional F-Brownian motion that is jointly Gaussian with (B,W ).

(5) The kernel g takes the form (3.1.6) withH ∈ (0, 1
2) and some g0 ∈ C∞([0,∞)) with g0(0) = 0.

To describe the CLT for V n
f (Y, t), we need some more notation. Define µf as the RM -

valued function that maps v = (vkℓ,k′ℓ′) ∈ (Rd×L)2 to E[f(Z)] where Z ∈ (Rd×L)2 follows
a multivariate normal distribution with mean 0 and Cov(Zkℓ,Zk′ℓ′) = vkℓ,k′ℓ′ . Note that µf

is infinitely differentiable because f is. Furthermore, if Z ′ ∈ (Rd×L)2 is such that Z and Z ′

are jointly Gaussian with mean 0, covariances Cov(Zkℓ,Zk′ℓ′) = Cov(Z ′
kℓ,Z ′

k′ℓ′) = vkℓ,k′ℓ′ and
cross-covariances Cov(Zkℓ,Z ′

k′ℓ′) = qkℓ,k′ℓ′ , we define

γfm1 ,fm2
(v, q) = Cov

(
fm1(Z), fm2(Z ′)

)
, m1,m2 = 1, . . . ,M.

We further introduce a multi-index notation adapted to the definition of µf . For χ = (χkℓ,k′ℓ′) ∈
N(d×L)×(d×L)

0 and v as above, we let

|χ| =
d∑

k,k′=1

L∑
ℓ,ℓ′=1

χkℓ,k′ℓ′ , χ! =
d∏

k,k′=1

L∏
ℓ,ℓ′=1

χkℓ,k′ℓ′ , vχ =
d∏

k,k′=1

L∏
ℓ,ℓ′=1

vkℓ,k′ℓ′
χkℓ,k′ℓ′

and
∂χµf = ∂|χ|µf

∂v
χ11,11
11,11 · · · ∂vχdL,dL

dL,dL

.

Finally, recalling (3.1.9), we define for all k, k′ ∈ {1, . . . , d}, ℓ, ℓ′ ∈ {1, . . . , L} and r ∈ N0,

πr(s)kℓ,k′ℓ′ = (ρsρ
T
s )kk′ΓH

|ℓ−ℓ′+r|, c(s)kℓ,k′ℓ′ = (σsσ
T
s )kk′1{ℓ=ℓ′}

and, as a special case,
π(s) = π0(s). (3.2.6)

The following CLT is our first main result. We use st=⇒ (resp., L1
=⇒) to denote functional

stable convergence in law (resp., convergence in L1) in the space of càdlàg functions [0,∞) → R
equipped with the local uniform topology. In the special case where Y follows the parametric
model of an mfBM and the test function is f(x) = x2, the CLT was already obtained by [47].4

Theorem 3.2.1. Grant Assumption (CLT) and let N(H) = [1/(2 − 4H)]. Then we have that

∆− 1
2

n

{
V n

f (Y, t) −
∫ t

0
µf (π(s)) ds−

N(H)∑
j=1

∆j(1−2H)
n

∑
|χ|=j

1
χ!

∫ t

0
∂χµf (π(s)) c(s)χ ds

}
st=⇒ Z,

(3.2.7)

where Z = (Zt)t≥0 is an RM -valued continuous process defined on a very good filtered exten-
sion (Ω,F , (F t)t≥0,P) of the original probability space (Ω,F , (Ft)t≥0,P) which, conditionally on
the σ-field F , is a centered Gaussian process with independent increments and such that the
covariance function Cm1m2

t = E[Zm1
t Zm2

t | F ], for m1,m2 = 1, . . . ,M , is given by

Cm1m2
t =

∫ t

0

{
γfm1 ,fm2

(π(s), π(s)) +
∞∑

r=1

(
γfm1 ,fm2

+ γfm2 ,fm1

)
(π(s), πr(s))

}
ds. (3.2.8)

4The authors also considered f(x) = x4 but only obtained a law of large numbers without a CLT.
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Let us make a few comments on the assumptions and the structure of this CLT.

Remark 3.2.2. From the proofs, one can see that it suffices to require f be 2(N(H) + 1)-times
continuously differentiable with derivatives of at most polynomial growth. A decomposition as
in (3.2.3) is standard for CLTs in high-frequency statistics. But here we need it for ρ (instead
of σ) as the noise process dominates the efficient price process in the limit ∆n → 0. Condition
(3.2.2) on σ is satisfied if, for example, σ is itself a continuous Itô semimartingale. Finally, it
should be possible to allow for an additional slowly varying (at 0) function as a factor in front
of tH−1/2 in (3.1.6) (cf. [14, 37]), but to simplify the exposition, we do not pursue this extra bit
of generality.

Remark 3.2.3. Both the law of large numbers (LLN) limit

Vf (Y, t) =
∫ t

0
µf (π(s)) ds (3.2.9)

and the fluctuation process Z originate from the moving-average process Z. In other words, if
σ ≡ 0 (i.e., in the pure fractional case), we would have (3.2.7) without the ∑N(H)

j=1 -expression;
cf. [14, 37]. Even if σ ̸≡ 0, in the case where H < 1

4 , no additional terms are present because
N(H) = 0. This is in line with Proposition 3.1.1, which states that it is impossible to consistently
estimate Ct =

∫ t
0 σ

2
s ds if H < 1

4 . If H ∈ (1
4 ,

1
2), the “mixed” terms in the ∑N(H)

j=1 -expression will
allow us to estimate Ct.

Remark 3.2.4. Let us consider the special case where d = 1 and f(x) = x2p for some p ∈ N.
Then (3.2.7) reads

∆− 1
2

n

{
V n

f (Y, t) − Vf (Y, t) −
N(H)∑
j=1

∆j(1−2H)
n µ2p

(
p

j

)∫ t

0
ρ2p−2j

s σ2j
s ds

}
st=⇒ Z,

where µ2p is the moment of order 2p of a standard normal variable. Typically, one is interested
in estimating only one of the terms in the sum ∑N(H)

j=1 at a time (e.g.,
∫ t

0 σ
2p
s ds corresponding to

j = p). All other terms (e.g., j ̸= p) have to be considered as higher-order bias terms in this case.
The appearance of (potentially many, if N(H) is large) bias terms for test functions as simple
as powers of even order neither happens in the pure semimartingale nor in the pure fractional
setting.

Remark 3.2.5. The following values for H are special:

H =
{1

2 − 1
4n : n ≥ 1

}
=
{1

4 ,
3
8 ,

5
12 ,

7
16 , . . .

}
. (3.2.10)

Indeed, if H ∈ H, then N(H) = 1/(2 − 4H). In particular, the term in (3.2.7) that corresponds
to j = N(H) is exactly of order ∆1/2

n . So in this case, (3.2.7) can also be viewed as convergence
to a non-central mixed normal distribution.

3.2.2 Overview of the proof

In the following, we describe the main steps of the proof of Theorem 3.2.1 and defer the details to
the supplementary material in [34]. By a standard localization argument (cf. [64, Lemma 4.4.9]),
we may and will assume a strengthened version of Assumption (CLT):
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Assumption (CLT’). In addition to Assumption (CLT), there is a constant C > 0 such that

sup
(ω,t)∈Ω×[0,∞)

{
∥at(ω)∥ + ∥σt(ω)∥ + ∥ρt(ω)∥ + ∥ρ(0)

t (ω)∥ + ∥b̃t(ω)∥ + ∥ρ̃t(ω)∥
}
< C. (3.2.11)

Moreover, for every p > 0, there is Cp > 0 such that for all s, t > 0,

E[∥σt − σs∥p]
1
p ≤ Cp|t− s|

1
2 , E[∥ρ(0)

t − ρ(0)
s ∥p]

1
p ≤ Cp|t− s|γ , E[∥ρ̃t − ρ̃s∥p]

1
p ≤ Cp|t− s|ε.

(3.2.12)

Proof of Theorem 3.2.1. Except for (3.2.17) below, we may and will assume that M = 1. Re-
calling the decomposition (3.1.6), since g0 is smooth with g0(0) = 0, we can use the stochastic
Fubini theorem (see [86, Chapter IV, Theorem 65]) to write∫ t

0
g0(t− r)ρr dWr =

∫ t

0

(∫ t

r
g′

0(s− r) ds
)
ρr dWr =

∫ t

0

(∫ s

0
g′

0(s− r)ρr dWr

)
ds.

This is a finite variation process and can be incorporated in the drift process in (3.1.8). So
without loss of generality, we may assume g0 ≡ 0 and g(t) = K−1

H tH−1/2 in the following. Then

Yt = At +Mt + Zt, At =
∫ t

0
as ds, Mt =

∫ t

0
σs dBs,

and we have ∆n
i Y = ∆n

i A+ ∆n
i M + ∆n

i Z in the notation of (3.2.1). Writing g(t) = 0 for t ≤ 0,
we also define for all s, t ≥ 0 and i, n ∈ N,

∆n
i g(s) = g(i∆n − s) − g((i− 1)∆n − s), ∆n

i g(s) = (∆n
i g(s), . . . ,∆n

i+L−1g(s)), (3.2.13)

such that, in matrix notation,

∆n
i Z =

(∫ ∞

0
∆n

i g(s)ρs dWs, , . . . ,

∫ ∞

0
∆n

i+L−1g(s)ρs dWs

)
=
∫ ∞

0
ρs dWs ∆n

i g(s).

As with most CLTs in high-frequency statistics (cf. [64, Chapters 5.2 and 5.3]), our proof is
divided into two parts: a CLT based on centering with appropriate conditional expectations and
the convergence of the latter to the LLN limit (3.2.9) after removing the asymptotic bias terms
given by the sum over j in (3.2.7). The second part showcases how the mixed setting is different
from both the pure fractional and pure semimartingale framework (in which no asymptotic bias
terms are present). The first part is dominated by the fractional component in the sense that the
contribution from the semimartingale part is asymptotically negligible. This, in fact, is rather
surprising: if H is close to 1

2 , X is only slightly smoother than Z, so one would expect X to have a
non-negligible contribution even if we center by conditional expectations. However, this is not the
case and is related to the special structure of semimartingales. To deal with the fractional part,
we could, in principle, use the methods employed by [14, 37], which involve Malliavin calculus
and fractional calculus. However, one important hypothesis in both works is that ρ, the volatility
of the noise, be strictly smoother than a continuous semimartingale. In order to accommodate
the possibility of modeling ρ by a semimartingale (as in [3, 38, 62, 79], for example), we shall
use an approach developed in [29, 27], which relies on martingale approximations for fractional
processes and martingale CLTs. As the method was developed in the context of stochastic partial
differential equations, we will give most details in the supplement for the reader’s convenience.

The first step in our proof is to shrink the domain of integration for each ∆n
i Z. Let

1
4(1 −H) < θ <

1
2 , (3.2.14)
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which is always possible for H ∈ (0, 1
2), and set θn = [∆−θ

n ]. Further define

∆n
i Y

tr = ∆n
i A+ ∆n

i M + ξn
i , ξn

i =
∫ (i+L−1)∆n

(i−θn)∆n

ρs dWs ∆n
i g(s). (3.2.15)

Lemma 3.2.6. If θ is chosen according to (3.2.14), then

∆− 1
2

n

V n
f (Y, t) − ∆n

[t/∆n]−L+1∑
i=θn+1

f

(
∆n

i Y
tr

∆H
n

) L1
=⇒ 0.

The sum involving the truncated increments can be further decomposed into three parts:

∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

f

(
∆n

i Y
tr

∆H
n

)
= V n(t) + Un(t) + ∆

1
2
n

[t/∆n]−L+1∑
i=θn+1

E
[
f

(
∆n

i Y
tr

∆H
n

) ∣∣∣∣ Fn
i−θn

]
, (3.2.16)

where

V n(t) =
[t/∆n]−L+1∑

i=θn+1
Ξn

i , Ξn
i = ∆

1
2
n

(
f

(
ξn

i

∆H
n

)
− E

[
f

(
ξn

i

∆H
n

) ∣∣∣ Fn
i−θn

])
,

Un(t) = ∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

{
f

(
∆n

i Y
tr

∆H
n

)
− f

(
ξn

i

∆H
n

)
− E

[
f

(
∆n

i Y
tr

∆H
n

)
− f

(
ξn

i

∆H
n

) ∣∣∣∣ Fn
i−θn

]}
.

Lemma 3.2.7. For all H < 1
2 , we have that Un L1

=⇒ 0.

In other words, in the limit ∆n → 0, the impact of the semimartingale component is negli-
gible, except for its contributions to the conditional expectations in (3.2.16). As we mentioned
above, this is somewhat surprising: It is true that L2-norm of the semimartingale increment
∆n

i A+ ∆n
i M , divided by ∆H

n , converges to 0. But the rate ∆1/2−H
n at which this takes place can

be arbitrarily slow if H is close to 1
2 . So Lemma 3.2.7 implies that there is a big gain in conver-

gence rate if one considers the sum of the centered differences f(∆n
i Y

tr/∆H
n ) − f(ξn

i /∆H
n ). In

the proof, we will need for the first time that f has at least 2(N(H) + 1) continuous derivatives.
The process V n only contains the fractional part and is responsible for the limit Z in (3.2.7).

For the sake of brevity, we borrow a result from [29]: For each m ∈ N, consider the sums

V n,m,1(t) =
Jn,m(t)∑

j=1
V n,m

j , V n,m
j =

mθn∑
k=1

Ξn
(j−1)((m+1)θn+L−1)+k,

V n,m,2(t) =
Jn,m(t)∑

j=1

θn+L−1∑
k=1

Ξn
(j−1)((m+1)θn+L−1)+mθn+k,

V n,m,3(t) =
[t/∆n]−L+1∑

j=((m+1)θn+L−1)Jn,m(t)+1
Ξn

j ,

where Jn,m(t) = [([t/∆n] − L+ 1)/((m+ 1)θn + L− 1)]. We then have V n(t) = ∑3
i=1 V

n,m,i(t).
This is very similar to the decomposition in [29, Section 3.2, p. 1161]. With only minimal changes
(cf. Lemma 3.9, Lemma 3.10 and Proposition 3.11 in [29]), we infer that V n(t) st=⇒ Z and, hence,

∆− 1
2

n

∆n

[t/∆n]−L+1∑
i=1

f

(∆n
i Y

∆H
n

)
− ∆n

[t/∆n]−L+1∑
i=θn+1

E
[
f

(
∆n

i Y
tr

∆H
n

) ∣∣∣∣ Fn
i−θn

] st=⇒ Z, (3.2.17)



Mixed semimartingales: Volatility estimation in the presence of fractional noise 69

where Z is exactly as in (3.2.7). Therefore, in order to complete the proof of Theorem 3.2.1, it
remains to show that (recall N(H) = [1/(2 − 4H)])

∆− 1
2

n

{
∆n

[t/∆n]−L+1∑
i=θn+1

E
[
f

(
∆n

i Y
tr

∆H
n

) ∣∣∣∣ Fn
i−θn

]
−
∫ t

0
µf (π(s)) ds

−
N(H)∑
j=1

∆j(1−2H)
n

∑
|χ|=j

1
χ!

∫ t

0
∂χµf (π(s)) c(s)χ ds

}
L1

=⇒ 0.

To that end, we will discretize (“freeze”) the volatility processes σ and ρ in ∆n
i Y

tr. The proof is
technical and will be divided into further smaller steps in the supplement.

Lemma 3.2.8. Assuming (3.2.14), we have that

∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

{
E
[
f

(
∆n

i Y
tr

∆H
n

) ∣∣∣∣ Fn
i−θn

]
− µf (Υn,i)

}
L1

=⇒ 0,

where Υn,i ∈ (Rd×L)2 is defined by

(Υn,i)kℓ,k′ℓ′ = c((i− 1)∆n)kℓ,k′ℓ′ ∆1−2H
n

+
(
ρ(i−1)∆n

ρT
(i−1)∆n

)
kk′

∫ (i+L−1)∆n

(i−θn)∆n

∆n
i+ℓ−1g(s)∆n

i+ℓ′−1g(s)
∆2H

n

ds.
(3.2.18)

The last part of the proof consists of evaluating

∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

µf (Υn,i).

This is the place where the asymptotic bias terms arise and which is different from the pure
(semimartingale or fractional) cases. Roughly speaking, the additional terms are due to fact
that in the LLN limit (3.2.9), there is a contribution of magnitude ∆1−2H

n c(s) coming from
the semimartingale part that is negligible on first order but not at a rate of

√
∆n. Expanding

µf (Υn,i) in a Taylor sum around the point π((i− 1)∆n) up to order N(H), we obtain

µf (Υn,i) = µf (π((i− 1)∆n)) +
N(H)∑
j=1

∑
|χ|=j

1
χ!∂

χµf (π((i− 1)∆n)) (Υn,i − π((i− 1)∆n))χ

+
∑

|χ|=N(H)+1

1
χ!∂

χµf (υn
i )(Υn,i − π((i− 1)∆n))χ,

where υn
i is a point between Υn,i and π((i − 1)∆n). The next lemma shows two things: first,

the term of order N(H) + 1 is negligible, and second, for j = 1, . . . , N(H), we may replace
Υn,i − π((i− 1)∆n) by ∆1−2H

n c((i− 1)∆n).

Lemma 3.2.9. Recall that N(H) = [1/(2 − 4H)]. We have that Xn
1

L1
=⇒ 0 and Xn

2
L1

=⇒ 0, where

Xn
1 (t) = ∆

1
2
n

[t/∆n−L+1∑
i=θn+1

N(H)∑
j=1

∑
|χ|=j

1
χ!∂

χµf (π((i− 1)∆n))

×
{

(Υn,i − π((i− 1)∆n))χ − ∆j(1−2H)
n c((i− 1)∆n)χ

}
,

Xn
2 (t) = ∆

1
2
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ|=N(H)+1

1
χ!∂

χµf (υn
i )(Υn,i − π((i− 1)∆n))χ.

(3.2.19)
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In a final step, we remove the discretization of σ and ρ.

Lemma 3.2.10. If θ is chosen according to (3.2.14), then

∆− 1
2

n

{
∆n

[t/∆n]−L+1∑
i=λn+1

µf (π((i− 1)∆n)) −
∫ t

0
µf (π(s)) ds

}
L1

=⇒ 0 (3.2.20)

and

∆− 1
2

n

∆n

[t/∆n]−L+1∑
i=θn+1

N(H)∑
j=1

∆j(1−2H)
n

∑
|χ|=j

1
χ!∂

χµf (π((i− 1)∆n)) c((i− 1)∆n)χ

−
∫ t

0

N(H)∑
j=1

∑
|χ|=j

1
χ!∂

χµf (π(s)) ∆j(1−2H)
n c(s)χ ds

 L1
=⇒ 0.

(3.2.21)

By the properties of stable convergence in law (see, for example, [64, Equation (2.2.5)]), the
CLT in (3.2.7) follows by combining Lemmas 3.2.6–3.2.10.

3.3 Estimating Hurst index and integrated volatility
In this section, we assume d = 1 for simplicity. We will develop an estimation procedure for H
and the integrated volatilities of the efficient price (if H > 1

4) and of the noise process, that is,
for

Ct =
∫ t

0
σ2

s ds, Πt =
∫ t

0
ρ2

s ds.

To avoid additional bias terms (cf. Remark 3.2.4), we use quadratic functionals only, that is, we
consider

fr(x) = x1xr+1, x = (x1, . . . , xr+1) ∈ Rr+1, r ∈ N0,

and the associated variation functionals

V n
r,t = V n

fr
(Y, t) = ∆n

[t/∆n]−r∑
k=1

∆n
kY∆n

k+rY

∆2H
n

.

Note that V n
r,t is not a statistic as it depends on the unknown Hurst parameter H. Therefore,

we introduce V̂ n
t = (V̂ n

0,t, . . . , V̂
n

R,t), a non-normalized version of V n
r,t that is a statistic:

V̂ n
r,t = V̂ n

fr
(Y, t) =

[t/∆n]−r∑
k=1

∆n
kY∆n

k+rY, r ∈ N0.

Clearly, ∆1−2H
n V̂ n

r,t = V n
r,t, so our main CLT (Theorem 3.2.1) immediately yields:

Corollary 3.3.1. Let V̂ n
t = (V̂ n

0,t, . . . , V̂
n

R,t) for a fixed but arbitrary R ∈ N0. For all H ∈ (0, 1
2),

∆− 1
2

n

{
∆1−2H

n V̂ n
t − ΓH

∫ t

0
ρ2

s ds− e1

∫ t

0
σ2

s ds∆1−2H
n 1[ 1

4 , 1
2 )(H)

}
st=⇒ Z, (3.3.1)

where ΓH = (ΓH
0 , . . . ,ΓH

R ), e1 = (1, 0, . . . , 0) ∈ R1+R and Z is as in (3.2.7). The covariance
process CH(t) = (CH

ij (t))i,j=0,...,R in (3.2.8) is given by

CH
ij (t) = CH

ij

∫ t

0
ρ4

s ds,

CH
ij = ΓH

|i−j| + ΓH
i ΓH

j +
∞∑

r=1

(
ΓH

r ΓH
|i−j+r| + ΓH

|r−j|ΓH
i+r + ΓH

r ΓH
|j−i+r| + ΓH

|r−i|ΓH
j+r

)
.

(3.3.2)
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As we can see, if H ∈ (1
4 ,

1
2), only RV (r = 0) contains information about Ct =

∫ t
0 σ

2
s ds. But

to first order, V n
0,t = ∆1−2H

n V̂ n
0,t estimates Πt =

∫ t
0 ρ

2
s ds, the integrated noise volatility. In order

to obtain Ct, our strategy is to use V̂ n
r,t for r ≥ 1 to remove the first-order limit of V̂ n

0,t . But
here is a problem: both the factor ∆1−2H

n and the vector ΓH contain the unknown Hurst index
H, so we need to estimate H first.

The most obvious estimator for H is the one obtained from regressing log ∆n on log V̂ n
0,t.

This is, in fact, what we did in Figure 3.1 and what volatility signature plots (i.e., plots of V̂ n
0,t

as a function of ∆n; see [5, 8]) are based on. We also refer to [89] for a more general but related
concept. However, as noted by [47, Remark 3.1], already in an mfBM model, this regression
based estimator only has a logarithmic rate of convergence. Indeed, as our simulation study in
Section 3.4 shows, this estimator systematically overestimates H unless H is very close to 0 or
1
2 . In the pure fractional case, better and sometimes even rate-optimal estimators are given by
the so-called change-of-frequency estimators or autocorrelation estimators (see [14, 37] and the
references therein as well as [29, 47]). Both types of estimators extract information about H by
considering the ratio of (different combinations of) V̂ n

r,t for different values of r. For example,
the simplest autocorrelation estimator is

H̃n
acf = 1

2

[
1 + log2

(
V̂ n

1,t

V̂ n
0,t

+ 1
)]

, (3.3.3)

which is based on the fact that V̂ n
1,t/V̂

n
0,t = V n

1,t/V
n

0,t
P→ ΓH

1 = 22H−1 − 1. While this estimator
converges faster than logarithmically, the convergence rate is still not optimal because of the
bias term that appears in (3.3.1) when r = 0. The first rate-optimal estimator for H in the case
of mfBM was constructed in [47, Theorem 3.2] by using a variant of (3.3.3) that cancels out the
contribution from V̂ n

0,t. However, this estimator suffers from a potentially large constant in the
asymptotic variance. For example, in [47, Remark 3.2], the authors do not recommend using it
in practice even though it has a better convergence rate than the regression-based estimator.
This point is further confirmed in the simulations in Section 3.4.

To do better, our strategy is to use linear combinations of V̂ n
r,t for multiple values of r. To

this end, we choose two weight vectors a = a(R) = (a0, . . . , aR) and b = b(R) = (b0, . . . , bR) in
R1+R and consider the statistic

H̃n = ϕ−1
(

⟨a, V̂ n
t ⟩

⟨b, V̂ n
t ⟩

)
with ϕ(H) = ⟨a,ΓH⟩

⟨b,ΓH⟩
, (3.3.4)

where ⟨·, ·⟩ denotes the standard inner product on R1+R and a and b are assumed to be such
that ϕ is invertible. The further analysis is now dependent on whether H ∈ (0, 1

4) or H ∈ (1
4 ,

1
2)

and, in the latter case, whether a0 = b0 = 0 or at least one of a0 and b0 is not zero.

3.3.1 Estimation without quadratic variation or if H ∈ (0, 1
4)

If a0 = b0 = 0, we exclude quadratic variation from our estimation procedure for H. This has the
advantage that the term e1

∫ t
0 σ

2
s ds∆1−2H

n in (3.3.1), which is only nonzero for r = 0, disappears.
The same holds true (even for r = 0) if H < 1

4 : there is no asymptotic drift term in (3.3.1).

Theorem 3.3.2. Assume that H ∈ (0, 1
2) and choose R ∈ N and a, b ∈ R1+R such that ϕ from

(3.3.4) is invertible. If H ∈ (1
4 ,

1
2), further assume that a0 = b0 = 0.
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(1) The estimator H̃n introduced in (3.3.4) satisfies

∆− 1
2

n (H̃n −H) st−→ N
(

0,VarH,0

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
, (3.3.5)

where Z is the same as in (3.3.1) and

VarH,0 = VarH,0(R, a, b,H) =
(

(ϕ−1)′(ϕ(H))
⟨b,ΓH⟩

)2

{aT − ϕ(H)bT }CH{a− ϕ(H)b}. (3.3.6)

(2) If H ∈ (1
4 ,

1
2), choose c ∈ R1+R and define

Ĉn
t =

{
V̂ n

0,t − ⟨c, V̂ n
t ⟩

⟨c,ΓH̃n⟩

}(
1 − c0

⟨c,ΓH̃n⟩

)−1

. (3.3.7)

Then
∆

1
2 −2H
n

{
Ĉn

t − Ct

} st−→ N
(

0,VarC

∫ t

0
ρ4

s ds
)
, (3.3.8)

where
VarC = VarC(R, a, b, c,H) = uT CHu,

u =
(
e1 − c

⟨c,ΓH⟩
+ ⟨c, ∂HΓH⟩

⟨c,ΓH⟩
(ϕ−1)′(ϕ(H))

⟨b,ΓH⟩
(a− ϕ(H)b)

)(
1 − c0

⟨c,ΓH⟩

)−1 (3.3.9)

and the vector ∂HΓH = (∂HΓH
0 , . . . , ∂HΓH

R ) is given by

∂HΓH
0 = 0, ∂HΓH

r = log(r+1)(r+1)2H−2 log(r)r2H+log(r−1)(r−1)2H , r ≥ 1. (3.3.10)

(3) The estimator

Π̂n
t = ∆1−2H̃n

n

⟨a, V̂ n
t ⟩

⟨a,ΓH̃n⟩
(3.3.11)

satisfies
∆− 1

2
n

|log ∆n|
(Π̂n

t − Πt) st−→ N
(

0, 4VarH,0

∫ t

0
ρ4

s ds
)
. (3.3.12)

Remark 3.3.3. To construct the estimator Ĉn
t , we allow for the possibility of choosing a new

weight vector c. Therefore, a and b should be thought of as weights that one can choose to, for
example, minimize VarH,0(R, a, b,H), while c can then be chosen to minimize VarC(R, a, b, c,H).
Alternatively, one may decide to choose a, b and c to minimize VarC(R, a, b, c,H) directly (if
H > 1

4).
In order to obtain feasible CLTs, we replace the unknown quantities in VarH,0 and VarC by

consistent estimators thereof. To this end, consider f(x) = x4 and

Qn
t = V n

f (Y, t) = ∆n

[t/∆n]∑
i=1

∣∣∣∣∣∆n
i Y

∆H
n

∣∣∣∣∣
4

, Q̂n
t =

[t/∆n]∑
i=1

(∆n
i Y )4.

By Theorem 3.2.1, we have the LLN

Qn
t

L1
=⇒ 3

∫ t

0
ρ4

s ds. (3.3.13)

Therefore, the following theorem is a direct consequence of Theorem 3.3.2 and well-known prop-
erties of stable convergence in law (see [64, Equation (2.2.5)]).
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Theorem 3.3.4. Grant the assumptions of Theorem 3.3.2. For (3.3.15) below, further assume
that H ∈ (1

4 ,
1
2). Then

∆− 1
2

n (H̃n −H)

√√√√ 3∆n(V̂ n
0,t)2

VarH,0(R, a, b, H̃n)Q̂n
t

st−→ N (0, 1), (3.3.14)

∆
1
2 −2H̃n

n (Ĉn
t − Ct)

√√√√ 3∆4H̃n−1
n

VarC(R, a, b, c, H̃n)Q̂n
t

st−→ N (0, 1), (3.3.15)

∆− 1
2

n

|log ∆n|
(Π̂n

t − Πt)

√√√√ 3∆4H̃n−1
n

4VarH,0(R, a, b, H̃n)Q̂n
t

st−→ N (0, 1). (3.3.16)

3.3.2 Estimation with quadratic variation if H ∈ (1
4 , 1

2)

The estimators based on weight vectors a and b with a0 = b0 = 0 were easy to construct but
suffer from a serious shortcoming: Let us consider the simple case where Y = σB for some
constant σ > 0 (i.e., there is no noise). Then, by standard CLTs for Brownian motion, the ratio
⟨a, V̂ n

t ⟩/⟨b, V̂ n
t ⟩ converges stably in law to the ratio Z1/Z2 of two centered (possibly correlated)

normals that are independent of B. In particular, because Z1/Z2 has a density supported on
R, the asymptotic probability that the estimator H̃n from (3.3.4) falls into any nonempty open
subinterval of (0, 1) is nonzero. Therefore, based on H̃n only, it is impossible to tell whether
there is evidence for the presence of fractional noise or whether an estimate produced by H̃n is
simply the result of chance!

To solve this problem, we have to include lag 0 in our estimation of H. If H ∈ (1
4 ,

1
2), this

significantly complicates the estimation procedure: By the discussion at the beginning of Sec-
tion 3.3, in order to estimate Ct, we need to estimate H first. At the same time, as Corollary 3.3.1
shows, using V̂ n

0,t to estimate H induces an asymptotic bias term coming from the
∫ t

0 σ
2
s ds term,

which can only be corrected with an estimator of Ct. In other words, in order to estimate Ct,
we need to first estimate H, but in order to (precisely) estimate H, we need to estimate Ct.
Resolving this circular dependence necessitates a complex iterated estimation procedure for H
and Ct that we describe in the following. In particular, as H ↑ 1

2 , even though there is only
one intermediate limit e1Ct∆1−2H

n between the LLN limit ΓHΠt and the CLT, we obtain an
increasing number of higher-order bias terms as a result of the interdependence between the H-
and the Ct-estimators.

A consistent but not asymptotically normal estimator of H

To simplify the exposition, we assume that at least one of a0 and b0 is zero. By symmetry, we
shall consider the case where

a0 ̸= 0, b0 = 0. (3.3.17)

Also, again to simplify the argument and because this is not really a severe restriction from a
statistical point of view, we shall assume that the true value of H satisfies

H ∈ (1
4 ,

1
2) \ H, (3.3.18)

where H is the set from (3.2.10).
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Proposition 3.3.5. Let H ∈ (1
4 ,

1
2) \ H and suppose that a, b ∈ R1+R satisfy (3.3.17) and are

such that ϕ from (3.3.4) is invertible. Recalling that N(H) = [1/(2 − 4H)], we further define

Φn
j = Φn

j (R, a, b, V̂ n
t , H̃

n) = (−1)j

j! (ϕ−1)(j)(ϕ(H̃n)) aj
0

⟨b, V̂ n
t ⟩j

, j = 1, . . . , N(H). (3.3.19)

Then H̃n, as defined in (3.3.4), satisfies

∆− 1
2

n

H̃n −H +
N(H)∑
j=1

Φn
jC

j
t

 st−→ N
(

0,VarH,0

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
, (3.3.20)

where VarH,0 is defined in (3.3.6).

For each j, the term Φn
j is of order ∆j(1−2H)

n . As a result, while H̃n is consistent for H, it is
affected by many higher-order asymptotic bias terms that depend on Ct. So our next goal is to
find consistent estimators of Ct that we can use to correct H.

A consistent but not asymptotically normal estimator of Ct

With a first estimator of H at hand, we can now construct an estimator of Ct by removing the
first-order limit of V̂ n

0,t, hereby replacing H by H̃n throughout. Doing so, we have to employ an
estimator of Πt, the integrated noise volatility. To avoid even more higher-order bias terms, we
need one with convergence rate

√
∆n. One possibility is to use the estimator from Theorem 3.3.2,

constructed from an additional pair of weights a0 and b0 with a0
0 = b0

0 = 0. Note that even in
the case where ρ = 0, the estimator Π̂n

t from Theorem 3.3.2, in contrast to H̃n, converges to the
desired limit (i.e., 0) in probability.

Proposition 3.3.6. In addition to a, b ∈ R1+R satisfying (3.3.17), choose a0, b0 ∈ R1+R with
a0

0 = b0
0 = 0 and let

P̂n
t = ⟨a0, V̂ n

t ⟩
⟨a0,ΓH̃n,0⟩

, H̃n,0 = φ−1
(

⟨a0, V̂ n
t ⟩

⟨b0, V̂ n
t ⟩

)
. (3.3.21)

Further define

C̃n,1
t =

{
V̂ n

0,t − ⟨a, V̂ n
t ⟩

⟨a,ΓH̃n⟩

}
Θ(V̂ n

t , H̃
n, H̃n,0)−1 (3.3.22)

where

Θ(V̂ n
t , H̃

n, H̃n,0) = Θ(R, a, b, a0, b0, V̂ n
t , H̃

n, H̃n,0) = 1 − a0

⟨a,ΓH̃n⟩
+ P̂n

t

⟨b, V̂ n
t ⟩

a0ψ
′(ϕ(H̃n))

⟨a,ΓH̃n⟩
(3.3.23)

and
ψ(y) = ⟨a,Γϕ−1(y)⟩, y ∈ R. (3.3.24)

Then, under the assumptions made in Proposition 3.3.5,

∆
1
2 −2H
n

C̃n,1
t − Ct +

N(H)∑
j=2

Ψn
jC

j
t

 st−→ N
(

0,VarC,1

∫ t

0
ρ4

s ds
)
, (3.3.25)
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where

Ψn
j = Ψn

j (R, a, b, a0, b0, V̂ n
t , H̃

n, H̃n,0)

= (−1)j

j! ψ(j)(ϕ(H̃n)) aj
0

⟨a,ΓH̃n⟩
P̂n

t

⟨b, V̂ n
t ⟩j

Θ(V̂ n
t , H̃

n, H̃n,0)−1 (3.3.26)

for j = 2, . . . , N(H) and

VarC,1 = VarC,1(R, a, b,H) = uT
1 CHu1, (3.3.27)

u1 =
(
e1 − a

⟨a,ΓH⟩
+ ψ′(ϕ(H))

⟨a,ΓH⟩⟨b,ΓH⟩
(a− ϕ(H)b)

)(
1 − a0

⟨a,ΓH⟩
+ ψ′(ϕ(H))

⟨a,ΓH⟩⟨b,ΓH⟩
a0

)−1
,

and CH is the matrix in (3.3.2).

Note that Ψn
j is of magnitude ∆(j−1)(1−2H)

n . Thus, just as for the initial estimator of H, the
estimator C̃n,1

t is consistent but has higher-order bias terms.

The first asymptotically normal estimators of H and Ct

What is different between the two initial estimators of H and Ct is that in (3.3.25) the bias terms
only hinge on Ct, the quantity that C̃n,1

t is supposed to estimate in the first place. Therefore,
we can set up an iteration procedure and use C̃n,1

t to correct itself.

Proposition 3.3.7. Recall that N(H) = [1/(2 − 4H)] and define

C̃n,ℓ+1
t = C̃n,1

t +
ℓ+1∑
j=2

Ψn
j

(
C̃n,ℓ−j+2

t

)j
, ℓ ≥ 0, (3.3.28)

and
Ĉn,1

t = C̃
n,N(H̃n)
t . (3.3.29)

Then we have that

∆
1
2 −2H
n

C̃n,1
t − Ct +

N(H̃n)∑
j=2

Ψn
j

(
C̃

n,N(H̃n)−j+1
t

)j

 = ∆
1
2 −2H
n (Ĉn,1

t − Ct)

st−→ N
(

0,VarC,1

∫ t

0
ρ4

s ds
)

with the same VarC,1 as in (3.3.27).

The corrected estimator Ĉn,1
t is our first consistent and asymptotically mixed normal esti-

mator for Ct and has a convergence rate of ∆2H−1/2
n . According to work in progress by F. Mies5,

this rate is optimal. With a bias-free estimator of Ct at hand, we can now proceed to correcting
the initial estimator H̃n of H.

Proposition 3.3.8. Recall H̃n in (3.3.4) and define

Ĥn
1 = H̃n +

N(H̃n)∑
j=1

Φn
j

(
Ĉn,1

t

)j
(3.3.30)

5Private communication.
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with Φn
j as in (3.3.19). We have the central limit theorem

∆− 1
2

n (Ĥn
1 −H) st−→ N

(
0,VarH,1

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
,

where

VarH,1 = VarH,1(R, a, b,H) = wT
1 CHw1, w1 = (ϕ−1)′(ϕ(H))

⟨b,ΓH⟩
{a− ϕ(H)b− a0u1}

and the vector u1 is exactly as in (3.3.27) and the matrix CH as in (3.3.2).

A multi-step algorithm

Even though Ĉn,1
t and Ĥn

1 from Propositions 3.3.7 and 3.3.8 are rate-optimal and asymptotically
bias-free estimators of Ct and H, respectively, we can still do better: The estimator Ĉn,1

t is based
on the initial estimator C̃n,1

t from (3.3.22), which in turn is based on the initial estimator H̃n of
H. Now that we have a better estimator of H, namely Ĥn

1 , the idea is to use Ĥn
1 to construct

an updated estimator, say, C̃n,2
t , of Ct. And with this updated estimator of Ct, we next update

Ĥn
1 to, say, Ĥn

2 , which we can then use again to update C̃n,2
t , and so on. A related approach was

used in [78].

Proposition 3.3.9. For k = 2, . . . ,m where m ≥ 2 is an integer, we define iteratively

Ĉn,k
t =

V̂ n
0,t − ⟨a, V̂ n

t ⟩

⟨a,ΓĤn
k−1⟩


1 − a0

⟨a,ΓĤn
k−1⟩

−1

(3.3.31)

and

Ĥn
k = H̃n +

N(Ĥn
k−1)∑

j=1
Φn

j

(
Ĉn,k

t

)j
. (3.3.32)

Then

∆− 1
2

n (Ĥn
k −H) st−→ N

(
0,VarH,k

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
, (3.3.33)

∆
1
2 −2H
n (Ĉn,k

t − Ct) st−→ N
(

0,VarC,k

∫ t

0
ρ4

s ds
)
, (3.3.34)

where, for each k = 2, . . . ,m,

VarH,k = VarH,k(R, a, b,H) = wT
k CHwk, VarC,k = VarC,k(R, a, b,H) = uT

k CHuk,

and

uk =
(
e1 − a

⟨a,ΓH⟩
+ ⟨a, ∂HΓH⟩

⟨a,ΓH⟩
wk−1

)(
1 − a0

⟨a,ΓH⟩

)−1
,

wk = (ϕ−1)′(ϕ(H))
⟨b,ΓH⟩

{a− ϕ(H)b− a0uk}.
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Our final estimator of H is
Ĥn = Ĥn

m. (3.3.35)

For later references, let us define

VarH = VarH(R, a, b,H) = VarH,m(R, a, b,H). (3.3.36)

The next theorem exhibits our final estimators for Ct and Πt

Theorem 3.3.10. Choose c ∈ R1+R and define

Ĉn
t =

{
V̂ n

0,t − ⟨c, V̂ n
t ⟩

⟨c,ΓĤn⟩

}(
1 − c0

⟨c,ΓĤn⟩

)−1

(3.3.37)

and

Π̂n
t =

{
⟨a, V̂ n

t ⟩
⟨a,ΓĤn⟩

− a0

⟨a,ΓĤn⟩
Ĉn

t

}
∆1−2Ĥn

n . (3.3.38)

Then

∆
1
2 −2H
n (Ĉn

t − Ct) st−→ N
(

0,VarC

∫ t

0
ρ4

s ds
)
, (3.3.39)

∆− 1
2

n

|log ∆n|
(Π̂n

t − Πt) st−→ N
(

0, 4VarH

∫ t

0
ρ4

s ds
)
, (3.3.40)

where

VarC = VarC(R, a, b, c,H) = uT CHu,

u =
(
e1 − c

⟨c,ΓH⟩
+ ⟨c, ∂HΓH⟩

⟨c,ΓH⟩
wm

)(
1 − c0

⟨c,ΓH⟩

)−1
.

(3.3.41)

Feasible CLTs

Finally, we replace unknown parameters that appear in VarH and VarC by consistent estimators
to obtain feasible CLTs. The following theorem is a direct consequence of (3.3.13), Proposi-
tion 3.3.9 and Theorem 3.3.10.

Theorem 3.3.11. Assume that H ∈ (1
4 ,

1
2). Choose R ≥ 0, m ≥ 2 and a, b, c ∈ R1+R such

that (3.3.17) is satisfied and ϕ from (3.3.4) is invertible. Further choose a0, b0 ∈ R1+R as in
Proposition 3.3.6. Then

∆− 1
2

n (Ĥn −H)

√√√√ 3∆n(V̂ n
0,t)2

VarH(R, a, b, Ĥn)Q̂n
t

st−→ N (0, 1), (3.3.42)

∆
1
2 −2Ĥn

n (Ĉn
t − Ct)

√√√√ 3∆4Ĥn−1
n

VarC(R, a, b, c, Ĥn)Q̂n
t

st−→ N (0, 1), (3.3.43)

∆− 1
2

n

|log ∆n|
(Π̂n

t − Πt)

√√√√ 3∆4Ĥn−1
n

4VarH(R, a, b, Ĥn)Q̂n
t

st−→ N (0, 1). (3.3.44)
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3.4 Simulation study
All results reported in this Section are based on 5,000 simulations from the mfBM

Yt = Xt + Zt = σBt + ρBH
t , t ∈ [0, T ],

where σ = 0.01, ρ = 0.001, B and BH are independent and T = 1 or T = 20 trading days, each
consisting of 6.5 hours or n = 23,400 seconds. Accordingly, we choose ∆n = 1/n = 1/23,400.
The values of H will be taken from the set

H ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.275, 0.3, 0.325, 0.35, 0.4, 0.45}. (3.4.1)

We additionally consider the cases “H = 0.5”, which means ρ = 0, and “H = 0”, which means
that (B0

t )t∈[0,T ] is a collection of i.i.d. standard normal noise variables.6

3.4.1 Choosing the tuning parameters

We fix the number of iterations in the multi-step algorithm of Section 3.3.2 at m = 50. In fact,
for an overwhelming majority of estimates obtained in the simulation and the empirical analysis
of Section 3.5, a precision of 10−5 was attained after fewer than 50 steps. We further make the
choice R = 60, which corresponds to considering quadratic variations with time lags up to one
minute. In order to tune the remaining parameters, we want to choose the vectors a, b, c ∈ R1+R

in such a way that (a, b, c) 7→ VarC(R, a, b, c,H) is as small as possible. Due to the complexity
of how VarC depends on a, b and c, we were not able to find (and doubt there is) an analytical
expression for the minimizers. In addition, VarC depends on H, which is unknown. Pretending
we knew H for the moment and H ∈ (1

4 ,
1
2), in order to resolve the first issue, we choose7

a = c = ΓH − ⟨ΓH , b⟩b
∥ΓH − ⟨ΓH , b⟩b∥

, b = ∂HΓH

∥∂HΓH∥
(3.4.2)

as initial values and run the R function fminsearch() from the package pracma to find (local)
minimizers a(H), b(H) and c(H) of (a, b, c) 7→ VarC(R, a, b, c,H) from (3.3.41). Similarly, we
obtain a0(H), b0(H) and c0(H) as minimizers of (a, b, c) 7→ VarC(R, a, b, c,H) from (3.3.9) by
taking the same initial weights b and c from (3.4.2) for b0 and c0 and the vector obtained
by substituting 0 for the first component of a from (3.4.2) for a0. As H is unknown in this
process, one could, in principle, plug in a consistent estimator of H (e.g., Ĥn, computed for
some initial choice of a, b and c), determine the minimizing vectors, use them to construct an
update of Ĥn, and repeat this procedure. However, such an adaptive scheme of constructing
Ĥn makes the weight vectors dependent on the latest estimator of H and therefore changes
its asymptotic variance in every step. Unfortunately, we see no way of keeping track of those
changes, in particular because we do not know the precise form of how a(H), b(H) and c(H)
depend on H. Instead, we take the minimizers at H0 = 0.35, that is, we let

a0 = a0(0.35), b0 = b0(0.35), c0 = c0(0.35), (3.4.3)
a = a(0.35), b = b(0.35), c = c(0.35). (3.4.4)

6Caution: The law of BH does not tend to that of i.i.d. noise as H → 0. We formally set H = 0 only because
the variance of i.i.d. noise is non-shrinking, which is what the order ∆2H

n of fBM increments yields when H is set
to 0.

7This is a heuristic choice: with these vectors, ⟨c, ∂HΓH⟩ = 0 in (3.3.41) and ⟨u, ΓH⟩ = 0. Consequently, if CH
0,1

and CH
0,2 denote the two zeroth-order terms in (3.3.2), then uT CH

0,2u = 0 and, in uT CH
0,1u =

∑R

i,j=0 uiuj(CH
0,1)ij ,

the part of the sum where i = j is 0.
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(b) T = 20

Figure 3.3: RMSE, bias and standard error of Ĥn,i, i = 0, 1, 2, 3 and H̃n,0.

The resulting variances VarC(R, a0(H0), b0(H0), c0(H0), H) and VarC(R, a(H0), b(H0), c(H0), H)
at other values of H turn out to be reasonably close to the H-dependent minimal values given by
VarC(R, a0(H), b0(H), c0(H), H) and VarC(R, a(H), b(H), c(H), H), respectively (no more than
2.1% larger in the former case; no more than 8.1% larger in the latter case for all H in (3.4.1)
except for H = 0.45, where the variance based on (3.4.4) is 2.6 times larger).

3.4.2 Performance of estimators and comparison with existing estimators

For H, we first compare our estimator H̃n,0 = H̃n from (3.3.4), constructed with a0 and b0 from
(3.4.3), with four variants of Ĥn from (3.3.35), denoted by Ĥn,i for i = 0, 1, 2, 3. For each i,
Ĥn,i is defined in the same way as Ĥn in (3.3.35) [constructed with a and b from (3.4.4) and,
in step (3.3.22), with a0 and b0 from (3.4.3)] except that N(H̃n) in (3.3.29) and (3.3.30) and
N(Ĥn

k−1) in (3.3.32) are replaced by the fixed number i. In particular, if n is large, then with
high probability,

Ĥn =


Ĥn,0 if H ∈ (0, 0.25),
Ĥn,1 if H ∈ (0.25, 0.375),
Ĥn,2 if H ∈ (0.375, 0.416),
Ĥn,3 if H ∈ (0.416, 0.4375).

(3.4.5)

We do not include four or more correction terms as it becomes increasingly intractable to com-
pute higher-order derivatives of composite functions like ϕ−1 and ψ in (3.3.19) or (3.3.26) by
hand.

As Figure 3.3 shows, Ĥn,3 has a lower root-mean-square error (RMSE) than Ĥn,i for any
i = 0, 1, 2, although, according to the theory in Section 3.3.2, it suffices for asymptotic normality
to only include i corrections and consider Ĥn,i in the ranges of H specified in (3.4.5). In fact,
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Figure 3.4: RMSE, bias and standard error of Ĥn,3, H̃n,0, H̃n
VS, H̃n

DMS and H̃n
acf.

taking i = 3 decreases the finite sample bias considerably compared to i = 0, 1, 2, while increasing
the standard error only moderately, so that, in total, i = 3 is best in terms of RMSE among the
four variants in (3.4.5). Moreover, if T = 1 (resp., T = 20), H̃n,0 is superior to Ĥn,3 in terms
of RMSE if H ≤ 0.3 (resp., H ≤ 0.35) and inferior to Ĥn,3 if H ≥ 0.325 (resp., H ≥ 0.4).
The better/worse performance of H̃n,0 on the respective range of H is due to a considerably
smaller bias / larger standard error. Also, taking T = 20 instead of T = 1 significantly reduces
the RMSE of H̃n,0 for H ≤ 0.35, but the RMSE of Ĥn,i is largely unaffected. Extrapolating
from these results, we conjecture that including an even higher number of correction terms in
(3.4.5) would gradually bring down the finite sample bias while keeping the standard error low.
As we mentioned, computing higher-order correction terms is computationally challenging, so
examining this conjecture is beyond the scope of the current paper.

In Figure 3.4, we further compare Ĥn,3 and H̃n,0 with

• the regression estimator H̃n
VS based on a volatility signature plot, that is,

H̃n
VS = 1

2(β̃n
VS + 1),

where β̃n
VS is the slope estimate in a linear regression of log V̂ n/i

0,t on log i for i = 1, . . . , 10;

• the rate-optimal estimator from [47, Theorem 3.2] given by (log2+ x = log2 x if x > 0 and
log2+ x = 0 otherwise)

H̃n
DMS = 1

2

(
log2+

V̂
n/4

0,t − V̂
n/2

0,t

V̂
n/2

0,t − V̂ n
0,t

+ 1
)

;

• the autocorrelation estimator H̃n
acf from (3.3.3) (cf. [47, Proposition 3.1]).
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Figure 3.5: RMSE, bias and standard error of (a) Ĉn,3, C̃n,0, C̃n
TSRV and C̃n

preave, and (b) of Π̂n,3

and Π̃n,0. Negative volatility estimates were replaced by 0 in the evaluation.

Comparing the values for RMSE for T = 1, we see that Ĥn,3 performs better than H̃n
VS, H̃n

DMS
and H̃n

acf for all values of H except when there is no noise (“H = 0.5”). When T = 20, Ĥn,3 is
still better than H̃n

VS and H̃n
acf but is not as good as H̃n

DMS when H ∈ {0.25, . . . , 0.35}. When
T = 20, the best estimator in the range H ≤ 0.35 is H̃n,0; but if H ≥ 0.4, just like H̃n

DMS which
does not use quadratic variation, either, the RMSE of H̃n,0 becomes large.

Finally, we study the performance of our volatility estimators. To this end, we implement
C̃n,0 = Ĉn

20 − Ĉn
19 and Π̃n,0 = Π̂n

20 − Π̂n
19 from (3.3.7) and (3.3.11) on the last simulated day,

using the estimator H̃n,0 = H̃n from (3.3.4) that is based on the whole simulated period of 20
days. Similarly, we consider Ĉn,3 = Ĉn

20 − Ĉn
19 and Π̂n,3 = Π̂n

20 − Π̂n
19 from (3.3.37) and (3.3.38),

using, instead of Ĥn, the estimator Ĥn,3 from above computed again based on the whole period
of 20 simulated days. We further compare C̃n,0 and Ĉn,3 with the two-scale realized variance
estimator C̃n

TSRV of [100] and the pre-averaging estimator C̃n
preave of [56], as implemented by the

functions rTSCov() and rMRC() in the R package highfrequency.

From Figure 3.5, we find that C̃n,0 (resp., Π̃n,0) performs better than Ĉn,3 (resp., Π̂n,3),
both in terms of bias and standard error. Furthermore, in terms of RMSE, C̃n,0 outperforms
both C̃n

TSRV and C̃n
preave for H ∈ {0.15, . . . , 0.35}, but is inferior to the latter two when H is

small (H ∈ {0, 0.05, 0.1}) or large (H ∈ {0.4, 0.45, 0.5}). Interestingly, the poorer performance of
C̃n

TSRV and C̃n
preave in the range H ∈ {0.15, . . . , 0.35} is due to larger biases, while C̃n,0 performs

worse for H ∈ {0, 0.05, 0.1, 0.4, 0.45, 0.5} due to larger standard errors.
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Figure 3.6: Histogram of estimates for H and boxplot of signal–to–noise ratios. Each data point
corresponds to one company and day. Signal–to–noise ratios where the volatility or the noise
volatility estimate is negative are omitted. Outliers in the boxplot are not shown.

3.5 Empirical analysis

We apply the estimators from Theorems 3.3.2 and 3.3.11 to (logarithmic) mid-quote data for
each of the 29 stocks that were constituents of the DJIA index for the whole year of 2019. The
data source is the TAQ database. For each trading day in 2019, we collect all quotes8 on the
NYSE or NASDAQ from 9:00 am until 4:00 pm Eastern Time and preprocess them using the
quotesCleanup() function from the R package highfrequency. We sample in calendar time
every second.

To reduce the variability of the resulting estimates, we calculate, for each trading day from
January 31 to December 31, the estimators Ĥn,3 and H̃n,0 based on the previous 20 trading
days. Afterwards, based on the insights from the simulation study of Section 3.4, we calculate
an estimate of H using Ĥn,3 if its asymptotic 95%-confidence interval contains 0.5 or is a subset
of (0.4, 0.5); otherwise, we report the estimate produced by H̃n,0. Correspondingly, we either
take Ĉn,3 or C̃n,0 (resp., Π̂n,3 or Π̃n,0) to estimate the daily integrated volatility (resp., noise
volatility). Figure 3.6 shows the empirical distribution of the daily estimators of H and a boxplot
of the daily signal–to–noise ratios (i.e., of Ĉn,3/Π̂n,3 or C̃n,0/Π̃n,0). The top row of Figure 3.7
shows the daily H-estimates for the two individual stocks, American Express (AXP) and IBM,
including 95%-confidence intervals. In the second and third row, we show the daily volatility and
noise volatility estimates for the month of May (AXP) and September (IBM). In these months,
the respective H-estimates are all above 0.25.

3.6 Discussion

In this paper, we introduced mixed semimartingales as a natural class of microstructure noise
models for high-frequency financial data. Defined as a sum of a continuous semimartingale and
a continuous-time moving average process that locally resembles fractional Brownian motion,
mixed semimartingales are nonparametric extensions of the mixed fractional Brownian motion of
[25] that include (possibly dependent) stochastic volatility and noise volatility. From a modeling
point of view, mixed semimartingales can capture microstructure noise in continuous time and,

8We also examined transaction data for the same stocks in 2019. But sampled at five seconds, many daily
estimators for H were not significantly different from 1

2 at the 5% level. This is in line with other research (see,
for example, [6]) demonstrating that transaction data of DJIA stocks have become less and less noisy over the
recent years.
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Figure 3.7: Top row: Estimates of H with asymptotic 95%-confidence intervals. Middle and
bottom row: Volatility and noise volatility estimates for May 2019 (AXP) and September 2019
(IBM).

at the same time, allow for varying rates at which the variance of price increments shrinks or at
which realized variance explodes as the sampling frequency increases.

Based on central limit theorems for variation functionals, we constructed consistent and
asymptotically (mixed) normal estimators for the Hurst parameter, the integrated volatility
and the integrated noise volatility—in all cases where these quantities are identifiable. Our
analysis showed profound differences to the pure semimartingale or fractional process setting:
the interplay between the two gives rise to a possibly large number of intermediate limits (or
higher-order bias terms), whose removal is intricate and necessitates an iteration procedure. In a
simulation study, we found that our estimators of the Hurst index H outperform existing ones in
the literature, for all considered values of H. Our volatility estimators perform best in the region
H ∈ (0.15, 0.35) and are superior to standard noise-robust volatility estimators in this range in
terms of RMSE. For smaller and higher values of H, even though one of our volatility estimators
shows almost no bias, they suffer from large standard errors. How to tackle these problems and
perhaps combine them with existing techniques such as pre-averaging remain open problems.
Also, in this first paper, we did not examine the effect of, for example, jumps [1, 2, 66] or
irregular observation times [17, 57, 62] on our estimators. While our estimators of H and noise
volatility from Theorem 3.3.4 might not be affected by jumps too much, as they do not use
quadratic variation, certainly the volatility estimators and all estimators from Theorem 3.3.11
are. We leave it to future research to develop estimators that are fully robust to jumps and
asynchronous sampling.

We further applied our estimators to 2019 quote data of DJIA stocks. We found strong
empirical evidence for asset- and time-dependent values of H, which further underpins the
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need to model the roughness of noise in a flexible manner. Allowing for time-dependent and/or
stochastic Hurst parameters (“multifractality”) is yet another challenge to be explored in the
future.



Chapter 4

Supplement to: “Mixed
semimartingales: Volatility
estimation in the presence of
fractional noise”

We gather some frequently used moment estimates in Section 4.1 before moving in Section 4.2
to the details of proof of the main result of Chapter 3, which is Theorem 3.2.1. Section 4.3
contains the proofs of the results announced in Section 3.3 of Chapter 3 and Section 4.4 lists
some estimates on fractional kernels needed in the proofs.

We use the notation from Chapter 3. In addition, we write A ≲ B if there is a constant C
that is independent of any quantity of interest such that A ≤ CB.

4.1 Size estimates
In the following, we repeatedly make use of so-called standard size estimates (cf. [30, Ap-
pendix D]). Under the strengthened hypotheses of Assumption (CLT’), consider for fixed indices
j, k ∈ {1, . . . , d} and ℓ ∈ {1, . . . , L} an expression like

Sn(t) = ∆
1
2
n

[t/∆n]∑
i=θn+1

h(ζn
i )
(

∆n
i+ℓ−1A

k

∆H
n

+ 1
∆H

n

∫ (i+ℓ−1)∆n

(i+ℓ−2)∆n

(
σkj

s − σkj
(i−θ′′

n)∆n

)
dBj

s

+
∫ ∞

0

∆n
i+ℓ−1g(s)

∆H
n

(
ρkj

s − ρkj
(i−θn)∆n

)
1((i−θn)∆n,(i−θ′

n)∆n)(s) dW j
s

)
,

(4.1.1)

where θn = [∆−θ
n ], θ′

n = [∆−θ′
n ], θ′′

n = [∆−θ′′
n ] and −∞ ≤ θ′, θ′′ < θ ≤ ∞. In addition, h is a

function such that |h(x)| ≲ 1 + ∥x∥p for some p > 1, and ζn
i are random variables with

sup
n∈N

sup
i=1,...,[T/∆n]

E[∥ζn
i ∥p] < ∞.

For any q ≥ 1, because a is uniformly bounded by (3.2.11), Minkowski’s integral inequality yields

E

∥∥∥∥∥∆n
i+ℓ−1A

∆H
n

∥∥∥∥∥
q
 1

q

≤ 1
∆H

n

∫ (i+ℓ−1)∆n

(i+ℓ−2)∆n

E [∥as∥q]
1
q ds ≲ ∆1−H

n . (4.1.2)
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Similarly, using the Burkholder–Davis–Gundy (BDG) inequality and (3.2.11) and (3.2.12), we
obtain

E

∣∣∣∣∣ 1
∆H

n
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dBj
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q
 1

q

≲ (θ′′
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1
2 ∆

1
2 −H
n . (4.1.3)

Combining (3.2.11) and (3.2.12) with Lemma 4.4.1, we deduce that

E
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) 1
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1
2 ∆θ′(1−H)
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(4.1.4)

Finally, using Hölder’s inequality to separate h(ζn
i ) from the subsequent expression in (4.1.1),

we have shown that

E
[
sup
t≤T

∣∣∣Sn(t)
∣∣∣] ≲ ∆

1
2
n
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2
n + ∆θ′(1−H)−θ

n .

(4.1.5)

The upshot of this example is that the absolute moments of sums and products of more or
less complicated expressions can always be bounded term by term: for example, in (4.1.1), the
terms

[t/∆n]∑
i=θn+1

, h(ζn
i ), ∆n

i+ℓ−1A
k,

∫ (i+ℓ−1)∆n
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(· · · ) dBj
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have sizes (i.e., their Lq-moments, for any q, can be uniformly bounded by a constant times)

∆−1
n , 1, ∆n,

√
∆n, (θ′′

n∆n)
1
2 , ∆θ′(1−H)

n , (θn∆n)
1
2 ,

respectively. The final estimate (4.1.5) is then obtained by combining these bounds. Clearly, size
estimates can be estimated to variants of (4.1.1), too, for example, when the stochastic integral
in (4.1.1) is squared, when we have products of integrals, when Sn(t) is matrix-valued, etc.

Even though size estimates are optimal in general, better estimates may be available in
specific cases. One such case occurs when sums have a martingale structure. To illustrate this,
let Fn

i = Fi∆n and consider

S′
n(t) = ∆

1
2
n

[t/∆n]−L+1∑
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i
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we observe that each S′
n,j is a martingale in t (albeit relative to different filtrations), so the BDG

inequality (applied to S′
n,j) and Minkowski’s inequality (applied to the sum over j) yields

E
[
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t≤T

|S′
n(t)|

]
≲ (θ′′′

n )
1
2 ∆ϖ

n . (4.1.6)

Very often, ϖn
i will actually only be Fn

i+L−1-measurable. However, a shift by L increments will
not change the value of the above estimate. Following [27, Section 4], we refer to (4.1.6) as a
martingale size estimate.

4.2 Details for the proof of Theorem 3.2.1

This section is devoted to proving the lemmas that appear in Section 3.2.2. Assumption (CLT’)
is in force throughout.

Proof of Lemma 3.2.6. By the calculations in (4.1.2), (4.1.3) and (4.1.4), we have E[∥∆n
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1 for all p ≥ 1. As f grows at most polynomially, we see that E[|f(∆n
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By our choice (3.2.14) of θ and since H < 1
2 , the lemma is proved once
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are established. To this end, let
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By Assumption (CLT), we have |f(z) − f(z′)| ≲ (1 + ∥z∥p−1 + ∥z′∥p−1)∥z − z′∥. In addition,
E[|f(∆n

i Y/∆H
n )|] is of size 1, so
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i )2] ≲ E[(Λn

i )2] ≲ E[∥λn
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n ,

where we used (4.1.4) for the last estimation. By construction, Λn
i is Fn

i+L−1-measurable and
has conditional expectation 0 given Fn

i−θn
. Therefore, we can further use an estimate of the kind

(4.1.6) to derive
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which is the first property in (4.2.3).
Next, we define the following random matrices
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Since f is smooth by Assumption (CLT), we can apply Taylor’s theorem twice to obtain the
following decomposition:
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∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

E[Λn
i | Fn

i−θn
] =

3∑
j=1

Ln
j (t), Ln

j (t) = ∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

E[Λn,j
i | Fn

i−θn
].

As λn
i is Fn

i−θn
-measurable,

E
[
∂χf

(
ψn

i

∆H
n

)
(λn

i )χ
∣∣∣ Fn

i−θn

]
= (λn

i )χ E
[
∂χf

(
ψn

i

∆H
n

) ∣∣∣ Fn
i−θn

]
= 0

because ψn
i is centered normal given Fn

i−θn
and f has odd partial derivatives of first orders (since

f is even). It follows that Ln
1 (t) = 0.

Writing 1n
i (s) = (1((i−1)∆n,i∆n)(s), . . . ,1((i+L−2)∆n,(i+L−1)∆n)(s)), we further have that

∆n
i Y

tr − ψn
i = ∆n

i A+
∫ t

0
(σs − σ(i−θn)∆n

) dBs 1
n
i (s) +

∫ (i+L−1)∆n

(i−θn)∆n

(ρs − ρ(i−θn)∆n
) dWs ∆n

i g(s).

By a standard size estimate, it follows that

E
[
sup
t≤T

∣∣Ln
2 (t)

∣∣] ≲ (∆
1
2
n ∆−1

n )
(

∆1−H
n + θ

1
2
n ∆1−H

n + (θn∆n)
1
2

)
∆θ(1−H)

n

≲ ∆− 1
2

n ∆θ(1−H)
n (θn∆n)

1
2 = ∆θ( 1

2 −H)
n ,

E
[
sup
t≤T

∣∣Ln
3 (t)

∣∣] ≲ ∆− 1
2

n

(
∆θ(1−H)

n

)2
= ∆2θ(1−H)− 1

2
n ,

proving the second property in (4.2.3) and thus the lemma.
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Proof of Lemma 3.2.7. Recall the definition of ξn
i in (3.2.15) and let

ξn,dis
i =

∫ (i+L−1)∆n

(i−θn)∆n

ρ(i−θn)∆n
dWs ∆n

i g(s).

In a first step, we shall show that Un can be approximated by

U
n(t) = ∆

1
2
n

[t/∆n]−L+1∑
i=θn+1

{
f

(
σ(i−1)∆n

∆n
i B + ξn,dis

i

∆H
n

)
− f

(
ξn,dis

i

∆H
n

)

− E
[
f

(
σ(i−1)∆n

∆n
i B + ξn,dis

i

∆H
n

)
− f

(
ξn,dis

i

∆H
n

) ∣∣∣∣ Fn
i−θn

]}
.

By (3.2.12) and a size estimate as in (4.1.4), the difference ξn
i − ξn,dis

i is of size (θn∆n)1/2.
Together with (4.1.2) and (4.1.3), we further have that ∆n

i Y
tr − σ(i−1)∆n

∆n
i B − ξn,dis

i is of size
∆n +

√
∆n + (θn∆n)1/2. By the mean-value theorem, these size bounds imply that

E

∣∣∣∣∣f
(

∆n
i Y

tr

∆H
n

)
− f

(
σ(i−1)∆n

∆n
i B + ξn,dis

i

∆H
n

)∣∣∣∣∣
p

+
∣∣∣∣∣f
(
ξn

i

∆H
n

)
− f

(
ξn,dis

i

∆H
n

)∣∣∣∣∣
p
1/p

≲ (θn∆n)
1
2

for any p > 0. Moreover, the ith term in the definition of Un(t) is Fn
i+L−1-measurable with zero

mean conditionally on Fn
i−θn

. Therefore, employing a martingale size estimate as in (4.1.6), we
obtain

E
[
sup
t≤T

∣∣Un(t) − U
n(t)

∣∣] ≲
√
θn(θn∆n)

1
2 ≤ ∆

1
2 −θ
n ,

which converges to 0 by (3.2.14).
Next, because B and W are independent, we can apply Itô’s formula with ξn,dis

i as starting
point and write

f

(
σ(i−1)∆n

∆n
i B + ξn,dis

i

∆H
n

)
− f

(
ξn,dis

i

∆H
n

)

= ∆−H
n

d∑
j,k=1

L∑
ℓ=1

∫ (i+ℓ−1)∆n

(i+ℓ−2)∆n

∂

∂zkℓ
f

(
∆Y n,dis

i (s)
∆H

n

)
σkj

(i−1)∆n
dBj

s

+ 1
2∆−2H

n

d∑
k,k′=1

L∑
ℓ=1

∫ (i+ℓ−1)∆n

(i+ℓ−2)∆n

∂2

∂zkℓ∂zk′ℓ
f

(
∆Y n,dis

i (s)
∆H

n

)
(σσT )kk′

(i−1)∆n
ds,

(4.2.4)

where ∆Y n,dis
i (s) =

∫ s
(i−1)∆n

σ(i−1)∆n
dBr 1

n
i (r)+ξn,dis

i . Clearly, the stochastic integral is Fn
i+L−1-

measurable and conditionally centered given Fn
i−1. Therefore, by a martingale size estimate, its

contribution to U
n(t) is of magnitude ∆1/2−H

n , which is negligible because H < 1
2 . For the

Lebesgue integral, we need to apply Itô’s formula again and write

∂2

∂zkℓ∂zk′ℓ
f

(
∆Y n,dis

i (s)
∆H

n

)
= ∂2

∂zkℓ∂zk′ℓ
f

(
ξn,dis

i

∆H
n

)

+ ∆−H
n

d∑
j2,k2=1

L∑
ℓ2=1

∫ s∧(i+ℓ2−1)∆n
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∂3

∂zkℓ∂zk′ℓ∂zk2ℓ2

f

(
∆Y n,dis

i (r)
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)
σk2j2
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r

+ 1
2∆−2H

n

d∑
k2,k′

2=1

L∑
ℓ2=1

∫ s∧(i+ℓ2−1)∆n

(i+ℓ2−2)∆n

∂4

∂zkℓ∂zkℓ∂zk2ℓ2∂zk′
2ℓ2

f

(
∆Y n,dis

i (r)
∆H

n

)
(σσT )k2k′

2
(i−1)∆n

dr.
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By the same reason as before, the stochastic integral [even after we plug it into the drift in
(4.2.4)] is Fn

i+L−1-measurable with zero Fn
i−1-conditional mean and therefore negligible. The

Lebesgue integral is essentially of the form as the one from (4.2.4). Because f is smooth, we
can repeat this procedure as often as we want. What is important, is that we gain a net factor
of ∆1−2H

n in each step (we have ∆−2H
n times a Lebesgue integral over an interval of length at

most ∆n). After N applications of Itô’s formula, the final drift term yields a contribution of size√
θn∆N(1−2H)

n to Un(t). As θ < 1
2 , it suffices to take N = N(H) + 1 to make this convergent to

0.

Proof of Lemma 3.2.8. We begin by discretizing ρ on a finer scale and let

Θn
i =

∫ (i+L−1)∆n

(i−θn)∆n

 Q∑
k=1

ρ(i−θ
(q−1)
n )∆n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)(s)

 dWs ∆n
i g(s), (4.2.5)

where θ(q)
n = [∆−θ(q)

n ] for q = 0, . . . , Q−1, θ(Q)
n = −(L−1) and the numbers θ(q), q = 0, . . . , Q−1

for some Q ∈ N, are chosen such that θ = θ(0) > θ(q) > · · · > θ(Q−1) > θ(Q) = 0 and

θ(q) >
γ

1 −H
θ(q−1) −

γ − 1
2

1 −H
, q = 1, . . . , Q, (4.2.6)

where γ describes the regularity of the volatility process ρ(0) in (3.2.12). Because H < 1
2 and

we can make γ arbitrarily close to 1
2 if we want, there is no loss of generality to assume that

γ/(1 − H) < 1. In this case, the fact that a choice as in (4.2.6) is possible can be verified by
solving the associated linear recurrence equation. Defining

∆n
i Y

dis = σ(i−1)∆n
∆n

i B + Θn
i ,

we will show in Lemma 4.2.1 below that

∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

{
E
[
f

(
∆n

i Y
tr

∆H
n

) ∣∣∣∣ Fn
i−θn

]
− E

[
f

(
∆n

i Y
dis

∆H
n

) ∣∣∣∣ Fn
i−θn

]}
L1

=⇒ 0. (4.2.7)

Next, we define another matrix Υn,0
i ∈ (Rd×L)2 by

(Υn,0
i )kℓ,k′ℓ′ = c((i− 1)∆n)∆1−2H

n +
Q∑

q=1

(
ρ(i−θ

(q−1)
n )∆n

ρT

(i−θ
(q−1)
n )∆n

)
kk′

×
∫ (i+L−1)∆n

(i−θn)∆n

∆n
i+ℓ−1g(s)∆n

i+ℓ′−1g(s)
∆2H

n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)(s) ds.

(4.2.8)

Observe that this is the covariance matrix of ∆n
i Y

tr/∆H
n if all discretized values of c and ρ are

deterministic. Also notice that the only difference to Υn
i are the discretization points for ρ. The

next step is to show the convergence

∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

{
E
[
f

(
∆n

i Y
dis

∆H
n

) ∣∣∣∣ Fn
i−θn

]
− µf

(
E
[
Υn,0

i | Fn
i−θn

])}
L1

=⇒ 0, (4.2.9)
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where µf is the mapping defined after Assumption (CLT). This will be achieved through suc-
cessive conditioning in Lemma 4.2.2. Finally, as we show in Lemma 4.2.3, we have

E

sup
t≤T

∣∣∣∣∣∆ 1
2
n

[t/∆n]−L+1∑
i=θn+1

{
µf

(
E[Υn,0

i |Fn
i−θn

]
)

− µf (Υn,0
i )

} ∣∣∣∣∣
 → 0 (4.2.10)

and

E

sup
t≤T

∣∣∣∣∣∆ 1
2
n

[t/∆n]−L+1∑
i=θn+1

{
µf (Υn,0

i ) − µf (Υn,i)
} → 0, (4.2.11)

which completes the proof of the current lemma.

Lemma 4.2.1. The convergence (4.2.7) holds true.

Proof. Denote the left-hand side by Qn(t). By Taylor’s theorem, we can write Qn(t) = Qn
1 (t) +

Qn
2 (t) with

Qn
1 (t) = ∆

1
2
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ|=1

E
[
∂χf

(
∆n

i Y
dis

∆H
n

)
(κn

i )χ

∣∣∣∣ Fn
i−θn

]
,

Qn
2 (t) = ∆

1
2
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ|=2

1
χ!E[∂χf(κn

i )(κn
i )χ | Fn

i−θn
],

where κn
i = (∆n

i Y
tr − ∆n

i Y
dis)/∆H

n and κn
i is some point on the line between ∆n

i Y
tr/∆H

n and
∆n

i Y
dis/∆H

n . By definition,

(κn
i )kℓ =

∆n
i+ℓ−1A

k

∆H
n

+ 1
∆H

n

∫ (i+ℓ−1)∆n

(i+ℓ−2)∆n

d′∑
ℓ′=1

(
σkℓ′

s − σkℓ′

(i−1)∆n

)
dBℓ′

s

+
Q∑

q=1

∫ (i+L−1)∆n

(i−θn)∆n

∆n
i+ℓ−1g(s)

∆H
n

1((i−θ
(q−1)
n )∆n,((i−θ

(q)
n )∆n)(s)

d′∑
ℓ′=1

(
ρkℓ′

s − ρkℓ′

(i−θ
(q−1)
n )∆n

)
dW ℓ′

s .

(4.2.12)

Using Hölder’s inequality, the estimates (4.1.2), (4.1.3) and (4.1.4) and polynomial growth as-
sumption on ∂χf , we see that ∆n

i Y
dis/∆H

n is of size one and, therefore, that

E
[
sup
t≤T

∣∣Qn
2 (t)

∣∣] ≲ ∆− 1
2

n

∆2(1−H)
n + ∆2(1−H)

n +
Q∑

q=1
∆(1−θ(q−1))+2θ(q)(1−H)

n

 → 0 (4.2.13)

as n → ∞ since 0 < θ(q) < 1
2 .

Next, we further split Qn
1 (t) = Qn

11(t) + Qn
12(t) + Qn

13(t) into three terms according to the
decomposition (4.2.12). Using again the estimates (4.1.2) and (4.1.3), we see that both Qn

11(t) and
Qn

12(t) are of size ∆−1/2+(1−H)
n = ∆1/2−H

n . We now tackle the term Qn
13(t), which requires a more

careful analysis. Here we need assumption (3.2.3) on the noise volatility process ρ. First, since
the process t 7→

∫ t
0 b̃s ds satisfies a better regularity condition than (3.2.12), we may incorporate

the drift term in ρ(0) for the remainder of the proof. Then we further decompose Qn
13(t) into

Rn
1 (t) + Rn

2 (t) where Rn
1 (t) and Rn

2 (t) correspond to taking only ρ(0) and t 7→
∫ t

0 ρ̃s dW̃s instead
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of ρ, respectively. Using the estimate (4.1.4) and taking into account the regularity condition of
ρ(0), we find that Rn

1 (t) is of size

Q∑
q=1

∆− 1
2 +γ(1−θ(q−1))+θ(q)(1−H)

n , (4.2.14)

which goes to 0 as θ(q), q = 0, . . . , Q, are chosen according to the recursion formula (4.2.6).
Concerning Rn

2 (t), we fix χ ∈ Nd×L
0 such that |χ| = 1 and χkℓ = 1 for some k and ℓ. We then

resolve to a final decomposition:
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We now use the BDG and Minkowski’s integral inequality alternatingly to obtain for any
p ≥ 2,
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× E
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n ,

where ε′ is as in (3.2.5). We thus infer that Rn,χ
21 (t) is of size
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2 +ε′)(1−θ(q−1))+θ(q)(1−H)
n .

This is almost the same as (4.2.14); the only difference is that γ is replaced by 1
2 + ε′. Since we

can assume without loss of generality that 1
2 + ε′ < γ, the formula (4.2.6) implies that we have

−1
2 + (1

2 + ε′)(1 − θ(q−1)) + θ(q)(1 − H) > 0 for all q = 1, . . . , Q, which means that Rn,χ
21 (t) is

asymptotically negligible.
Next, using Lemma 4.4.1 (3) and a similar estimate to the previous display, we see that

(Θn
i −∆n

i Y
dis,q)/∆H

n is of size ∆θ(q−1)(1−H)
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n . Hence, with the two estimates (4.1.2)
and (4.1.3) at hand, we deduce that Rn,χ
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The last term clearly goes to 0 because θ(q−1) ≤ θ < 1
2 by (3.2.14). Without loss of generality,

we can assume that γ > 1
2 is sufficiently close to 1

2 such that the first term is negligible as well.
With this particular value, we then make sure that

γ − 1
2

γ + 1
2 −H

< θ(Q−1) <
γ − 1

2
γ

,

which, on the one hand, is in line with (4.2.6) and, on the other hand, guarantees that the second
term in the preceding display tends to 0 for all q = 1, . . . , Q.

Finally, to compute Rn,χ
23 (t), we first condition on Fn

i−θ
(q−1)
n

. Because f is even and ∆n
i Y

dis,q/∆H
n

has a centered normal distribution given Fn

i−θ
(q−1)
n

, if follows that ∂χf(Θn,q
i /∆H

n ) is an element
of the direct sum of all odd-order Wiener chaoses. At the same time, the double stochastic in-
tegrals in Rn,χ

23 (t) belongs to the second Wiener chaos; see [82, Proposition 1.1.4]. Since Wiener
chaoses are mutually orthogonal, we obtain Rn,χ

23 (t) = 0. Because this reasoning is valid for all
multi-indices with |χ| = 1, we have shown that Rn

2 (t) is asymptotically negligible.

Lemma 4.2.2. The convergence (4.2.9) holds true.
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Proof. For r = 0, . . . , Q (where Q is as in Lemma 4.2.1), define

Yn,r
i =

∫ (i+L−1)∆n

(i−θn)∆n

 r∑
q=1

ρ(i−θ
(q−1)
n )∆n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)(s)

 dWs
∆n

i g(s)
∆H

n

,

Υn,r
i = c((i− 1)∆n)∆1−2H

n +
Q∑

q=r+1
ρ(i−θ

(q−1)
n )∆n

ρT

(i−θ
(q−1)
n )∆n

×
∫ (i+L−1)∆n

(i−θn)∆n

∆n
i g(s)T ∆n

i g(s)
∆2H

n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)(s) ds

Note that Yn,r
i ∈ Rd×L, Υn,r

i ∈ R(d×L)×(d×L) and that Yn,Q
i = Θn

i /∆H
n from (4.2.5). In order to

show (4.2.9), we need the following approximation result for each r = 1, . . . , Q− 1:

∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

E
[
µf(Yn,r

i +·)

(
E[Υn,r

i | F
i−θ

(r)
n

]
)

− µf(Yn,r
i +·)

(
E[Υn,r

i | F
i−θ

(r−1)
n

]
) ∣∣∣∣ Fn

i−θn

]
L1

=⇒ 0.

(4.2.15)
Let us proceed with the proof of (4.2.9), taking the previous statement for granted. Defining

Yn
i =

∫ (i−1)∆n

(i−θn)∆n

( Q∑
q=1

ρ(i−θ
(q−1)
n )∆n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)(s)

)
dWs

∆n
i g(s)
∆H

n

,

we can use the tower property of conditional expectation to derive

E
[
f

(
∆n

i Y
dis

∆H
n

) ∣∣∣∣ Fi−θn

]
= E

[
E
[
f

(
∆n

i Y
dis

∆H
n

) ∣∣∣∣ Fi−1

] ∣∣∣∣ Fi−θn

]

= E
[
µf(Yn

i +·)

(
c((i− 1)∆n)∆1−2H

n

+ ρ(i−θ
(Q−1)
n )∆n

ρT

(i−θ
(Q−1)
n )∆n

∫ (I+L−1)∆n

(i−1)∆n

∆n
i g(s)T ∆n

i g(s)
∆2H

n

ds
) ∣∣∣∣ Fi−θn

]

= E
[
E
[
µf(Yn

i +·)

(
c((i− 1)∆n)∆1−2H

n

+ ρ(i−θ
(Q−1)
n )∆n

ρT

(i−θ
(Q−1)
n )∆n

∫ (i+L−1)∆n

(i−1)∆n

∆n
i g(s)T ∆n

i g(s)
∆2H

n

ds
) ∣∣∣∣ F

i−θ
(Q−1)
n

] ∣∣∣∣ Fi−θn

]

= E
[
µ

f(Yn,Q−1
i +·)

(
Υn,Q−1

i

) ∣∣∣ Fi−θn

]
.

Thanks to (4.2.15) and in view of (4.2.9), we can replace Υn,Q−1
i = E[Υn,Q−1

i | F
i−θ

(Q−1)
n

] in
the last line by E[Υn,Q−1

i | F
i−θ

(Q−2)
n

], because the error resulting from this approximation is
asymptotically negligible. We can then further compute

E
[
E
[
µ

f(Yn,Q−1
i +·)

(
E
[
Υn,Q−1

i | F
i−θ

(Q−2)
n

]) ∣∣∣ F
i−θ

(Q−2)
n

] ∣∣∣ Fi−θn

]
= E

[
µ

f(Yn,Q−2
i +·)

(
E
[
Υn,Q−2

i | F
i−θ

(Q−2)
n

]) ∣∣∣ Fi−θn

]
= E

[
E
[
µ

f(Yn,Q−2
i +·)

(
E
[
Υn,Q−2

i | F
i−θ

(Q−2)
n

]) ∣∣∣ F
i−θ

(Q−3)
n

] ∣∣∣ Fi−θn

]
.

(4.2.16)
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Again by (4.2.15), we may replace E[Υn,Q−2
i | F

i−θ
(Q−2)
n

] by E[Υn,Q−2
i | F

i−θ
(Q−3)
n

] in (4.2.16). Re-
peating this procedure Q times, we obtain at the end µ

f(Yn,0
i +·)(E[Υn,0

i | F
i−θ

(0)
n

]) = µf (E[Υn,0
i |

Fi−θn ]), which shows (4.2.9).
So it remains to prove (4.2.15). For the function (u, v) 7→ µf(u+·)(v), we use ∂χ′ to denote

differentiation with respect to u (where χ′ ∈ Nd×L
0 ) and ∂χ′′ to denote differentiation with respect

to v (where χ′′ ∈ N(d×L)×(d×L)
0 ). A Taylor expansion of µf(Yn,r

i +·)(E[Υn,r
i | F

i−θ
(r)
n

]) around the
point (Yn,r

i ,E[Υn,r
i | F

i−θ
(r−1)
n

]) decomposes the difference inside E[· | Fn
i−θn

] in (4.2.15) into

∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ′′|=1

E
[
∂χ′′

µf(Yn,r
i +·)(E[Υn,r

i | F
i−θ

(r−1)
n

])

×
{
E[Υn,r

i | F
i−θ

(r)
n

] − E[Υn,r
i | F

i−θ
(r−1)
n

]
}χ′′ ∣∣∣∣ Fn

i−θn

]

+ ∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ′′|=2

1
χ′′!E

[
∂χ′′

µf(Yn,r
i +·)(υn

i )

×
{
E[Υn,r

i | F
i−θ

(r)
n

] − E[Υn,r
i | F

i−θ
(r−1)
n

]
}χ′′ ∣∣∣∣ Fn

i−θn

]
(4.2.17)

with some υn
i between E[Υn,r

i | F
i−θ

(r)
n

] and E[Υn,r
i | F

i−θ
(r−1)
n

]. Write

E
[
ρ(i−θ

(q−1)
n )∆n

ρT

(i−θ
(q−1)
n )∆n

∣∣∣ Fn

i−θ
(r)
n

]
− E

[
ρ(i−θ

(q−1)
n )∆n

ρT

(i−θ
(q−1)
n )∆n

∣∣∣ Fn

i−θ
(r−1)
n

]
= E

[
ρ(i−θ

(q−1)
n )∆n

ρT

(i−θ
(q−1)
n )∆n

− ρ(i−θ
(r−1)
n )∆n

ρT

(i−θ
(r−1)
n )∆n

∣∣∣ Fn

i−θ
(r)
n

]
− E

[
ρ(i−θ

(q−1)
n )∆n

ρT

(i−θ
(q−1)
n )∆n

− ρ(i−θ
(r−1)
n )∆n

ρT

(i−θ
(r−1)
n )∆n

∣∣∣ Fn

i−θ
(r−1)
n

]
,

(4.2.18)

and note that, because of (3.2.11), (3.2.12) and the identity

xy − x0y0 = y0(x− x0) + x0(y − y0) + (x− x0)(y − y0), (4.2.19)

the two conditional expectations on the right-hand side of (4.2.18) are both of size (θ(r−1)
n ∆n)1/2.

The same holds true if we replace ρ(i−θ
(q−1)
n )∆n

by σ(i−1)∆n
. Therefore, we deduce that

E
[∥∥∥E[Υn,r

i | F
i−θ

(r)
n

] − E[Υn,r
i | F

i−θ
(r−1)
n

]
∥∥∥p
] 1

p

≲ (θ(r−1)
n ∆n)

1
2 . (4.2.20)

As a consequence, the second expression in (4.2.17) is of size ∆−1/2
n ((θ(r−1)

n ∆n)1/2)2 = ∆1/2−θ(r−1)
n

which goes to 0 as n → ∞ since all numbers θ(r) are chosen to be smaller than 1
2 ; see (4.2.6).

Next, we expand ∂χµf(Yn,r
i +·)(E[Υn,r

i | F
i−θ

(r−1)
n

]) around (0,E[Υn,r
i | F

i−θ
(r−1)
n

]) and write
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the first expression in (4.2.17) as Sn
1 (t) + Sn

2 (t) + Sn
3 (t), where

Sn
1 (t) = ∆

1
2
n

[t/∆n]−L+1∑
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∑
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E
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,

Sn
2 (t) = ∆

1
2
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E
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∂χ′

∂χ′′
µf (E[Υn,r

i | F
i−θ

(r−1)
n

])

× (Yn,r
i )χ′
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i−θ

(r)
n
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i−θ
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n

]
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i−θn

]
,

Sn
3 (t) = ∆

1
2
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ′|=2, |χ′′|=1

1
χ′!E

[
∂χ′

∂χ′′
µf(ςn

i +·)(E[Υn,r
i | F

i−θ
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n

])
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{
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i−θ
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n

]
}χ′′ ∣∣∣∣ Fn

i−θn

]
,

and ςn
i is a point between 0 and Yn,r

i . Observe that ∂χ′′
µf (E[Υn,r

i | F
i−θ

(r−1)
n

]) is F
i−θ

(r−1)
n

-
measurable and that the Fn

i−θ
(r−1)
n

-conditional expectation of E[Υn,r
i | F

i−θ
(r)
n

]−E[Υn,r
i | F

i−θ
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n

]
is 0. Hence,

E
[
∂χ′′

µf (E[Υn,r
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n

])
{
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i | F
i−θ

(r)
n

] − E[Υn,r
i | F

i−θ
(r−1)
n

]
}χ′′ ∣∣∣∣ Fn

i−θn

]
= 0

and it follows that Sn
1 (t) vanishes.

By [30, Equation (D.46)], given |χ′| = |χ′′| = 1, we can find α, β, γ ∈ {1, . . . , d} × {1, . . . , L}
such that

∂χ′
∂χ′′

µf(u+·)(v) =
∂µf(u+·)
∂uγ∂vα,β

(v) = 1
21{α=β}

µ∂αβγf(u+·)(v).

If u = 0, since f has odd third derivatives, we have that µ∂αβγf (v) = 0. Therefore, the ∂χ′
∂χ′′

µf -
expression in Sn

2 (t) is equal to 0 and Sn
2 (t) vanishes as well. Finally, we use the generalized Hölder

inequality as well as the estimates (4.2.20) and (4.1.4) to see that

E
[
sup
t≤T

∣∣Sn
3 (t)

∣∣] ≲ ∆
1
2
n

[T/∆n]−L+1∑
i=θn+1

E
[
∥Yn,r

i ∥4
] 1

2 E
[∥∥∥E[Υn,r

i | F
i−θ

(r)
n

] − E[Υn,r
i | F

i−θ
(r−1)
n

]
∥∥∥4
] 1

4

≲ ∆− 1
2

n ∆2θ(r)(1−H)
n (θ(r−1)

n ∆n)
1
2 .

This converges to 0 as n → ∞ if 2θ(r)(1 − H) − 1
2θ

(r−1) > 0 for all r = 1, . . . , Q − 1, which is
equivalent to θ(r) > 1

4(1−H)θ
(r−1). Because 1

4(1−H) < 1, this condition means that θ(r) must not
decrease to 0 too fast. By adding more intermediate θ’s between θ(0) and θ(Q−1) if necessary,
which does no harm to (4.2.6), we can make sure that this is satisfied.

Lemma 4.2.3. The convergences (4.2.10) and (4.2.11) hold true.
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Proof. We perform a Taylor expansion of µf (Υn,0
i ) around E[Υn,0

i | Fn
i−θn

] and we write

µf (Υn,0
i ) − µf (E[Υn,0

i | Fn
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]) =
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1
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i − E[Υn,0
i | Fn

i−θn
]
)χ

(4.2.21)

with some υ̃n
i on the line between Υn,0

i and E[Υn,0
i | Fn

i−θn
]. The expression Υn,0

i −E[Υn,0
i | Fn

i−θn
]

contains the difference

ρ(i−θ
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n )∆n

ρT

(i−θ
(q−1)
n )∆n

− E
[
ρ(i−θ

(q−1)
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ρT

(i−θ
(q−1)
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∣∣∣ Fn
i−θn

]
and a similar one with ρ(i−θ

(q−1)
n )∆n

replaced by σ(i−1)∆n
. Inserting ρρT or σσT at (i − θn)∆n

artificially [cf. (4.2.18)], we can use (4.2.19) and the assumptions (3.2.11) and (3.2.12) on both ρ
and σ to find that the term in the display above is of size at most (θn∆n)1/2. This immediately
leads to the bound E[∥Υn,0

i − E[Υn,0
i | Fn

i−θn
]∥2]1/2 ≲ (θn∆n)1/2, which in turn shows that

the second-order term in (4.2.21) is oP(
√

∆n) by (3.2.14). Therefore, in (4.2.10), it remains to
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.

For each i, the ∑|χ|=1-expression is Fn
i -measurable and has a vanishing conditional expectation

given Fn
i−θn

. We can therefore use a martingale size estimate of the type (4.1.6) to show that

E
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1
2 ,

which tends to 0 by (3.2.14). This proves (4.2.10).
For (4.2.11), recall Υn,i in (3.2.18) and define ∆n

i Υ = Υn,i − Υn,0
i . Then

(∆n
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for all k, k′ = 1, . . . , d and ℓ, ℓ′ = 1, . . . , L. By Taylor’s theorem,
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(4.2.22)

where υ̂n
i is some point between Υn,i and Υn,0

i . Hölder’s inequality together with the identity
(4.2.19) as well as the moment and regularity assumptions on ρ show that the last sum in the
above display is of size

∆− 1
2

n

Q∑
q=1

(θ(q−1)
n ∆n)∆4θ(q)(1−H)

n ,
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which goes to 0 as n → ∞ [compare with (4.2.13)]. Next, recall the decomposition (3.2.3) of
the noise volatility process ρ. As before, we incorporate the drift t 7→

∫ t
0 b̃s ds into ρ(0) so that

ρ = ρ(0) + ρ(1) with ρ
(1)
t =

∫ t
0 ρ̃s dW̃s. By (4.2.19),
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The remaining term ∆1/2
n
∑[t/∆n]−L+1

i=θn+1
∑

|χ|=1 ∂
χµf (Υn,i)(∆n

i Υ)χ in (4.2.22) can thus be written
as Tn

1 (t)+Tn
2 (t)+Tn

3 (t) according to this decomposition. By Hölder’s inequality and the moment
and regularity assumptions on ρ, we see that Tn

3 (t) is of size at most

∆− 1
2

n
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(θ(q−1)
n ∆n)∆2θ(q)(1−H)

n , (4.2.23)

which goes to 0 as n → ∞ as we saw in (4.2.13). Similarly, thanks to the regularity property
(3.2.12) of ρ(0), we further obtain

E
[
sup
t≤T

∣∣Tn
1 (t)

∣∣] ≲ ∆− 1
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n ,

and this also goes to 0 as n → ∞ by our choice (4.2.6) of the numbers θ(q−1)
n . Finally,

Tn
2 (t) = ∆

1
2
n

[t/∆n]−L+1∑
i=θn+1

Q∑
q=1

∑
|χ|=1

∂χµf (Υn,i)

×
{
πn,i

q−1

∫ (i+L−1)∆n

(i−θn)∆n

∆n
i g(s)T ∆n

i g(s)
∆2H

n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)(s) ds

}χ

,

where

πn,i
q = ρ(i−θ

(q)
n )∆n

(
ρ

(1)
(i−1)∆n

− ρ
(1)
(i−θ

(q)
n )∆n

)T

+
(
ρ

(1)
(i−1)∆n

− ρ
(1)
(i−θ

(q)
n )∆n

)
ρT

(i−θ
(q)
n )∆n

.

Let T̃n
2 (t) be defined in the same way as Tn

2 (t) except that in the previous display, Υn,i is
replaced by Υ̃n,i

q−1, obtained from Υn,i by substituting (i− θ
(q−1)
n )∆n for (i− 1)∆n everywhere.

By the generalized Hölder inequality and the regularity assumptions on ρ and σ, the difference



Supplementary material 99

Tn
2 (t) − T̃n

2 (t) is of the same size (4.2.23) as Tn
2 (t) and hence asymptotically negligible. Next,

T̃n
2 (t) =

Q∑
q=1

∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ|=1

∂χµf (Υ̃n,i
q−1)

{(
πn,i

q−1 − E
[
πn,i

q−1

∣∣∣ Fn

i−θ
(q−1)
n

])

×
∫ (i+L−1)∆n

(i−θn)∆n

∆n
i g(s)T ∆n

i g(s)
∆2H

n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)(s) ds

}χ

+ ∆
1
2
n

[t/∆n]−L+1∑
i=θn+1

Q∑
q=1

∑
|χ|=1

∂χµf (Υ̃n,i
q−1)

{
E
[
πn,i

q−1

∣∣∣ Fn

i−θ
(q−1)
n

]

×
∫ (i+L−1)∆n

(i−θn)∆n

∆n
i g(s)T ∆n

i g(s)
∆2H

n

1((i−θ
(q−1)
n )∆n,(i−θ

(q)
n )∆n)(s) ds

}χ

.

(4.2.24)

For fixed q, the first term on the right-hand side of (4.2.24) is a sum where the ith summand is
Fn

i+L−1-measurable and has, by construction, a zero Fn

i−θ
(q−1)
n

-conditional mean. By a martingale
size estimate of the type (4.1.6), that first term is therefore of size

Q∑
q=1

√
θ

(q−1)
n (θ(q−1)

n ∆n)
1
2 ∆2θ(q)(1−H)

n =
Q∑

q=1
∆

1
2 −θ

(q−1)
n +2θ(q)(1−H)

n → 0

as n → ∞ since all θ(q)
n < 1

2 . Since stochastic integrals have mean 0,

E
[
(ρ(1),kℓ

(i−1)∆n
− ρ

(1),kℓ

(i−θ
(q−1)
n )∆n

)
∣∣∣ Fn

i−θ
(q−1)
n

]
=

d∑
m=1

E
[∫ (i−1)∆n

(i−θ
(q−1)
n )∆n

ρ̃kℓm
s dW̃m

s

∣∣∣∣ Fn

i−θ
(q−1)
n

]
= 0,

which means that, in fact,

E
[
πn,i

q−1

∣∣∣ Fn

i−θ
(q−1)
n

]
= ρ(i−θ

(q−1)
n )∆n

E
[
(ρ(1)

(i−1)∆n
− ρ

(1)
(i−θ

(q−1)
n )∆n

)T
∣∣∣ Fn

i−θ
(q−1)
n

]
+ E

[
(ρ(1)

(i−1)∆n
− ρ

(1)
(i−θ

(q−1)
n )∆n

)
∣∣∣ Fn

i−θ
(q−1)
n

]
ρT

(i−θ
(q−1)
n )∆n

= 0.

Therefore, Tn
2 (t) is asymptotically negligible and the proof of (4.2.11) is complete.

Proof of Lemma 3.2.9 . Recall the expressions Xn
1 (t) and Xn

2 (t) defined in (3.2.19). For a given
multi-index χ ∈ N(d×L)×(d×L)

0 , let

Qχ(x) = xχ, x ∈ R(d×L)×(d×L), (4.2.25)

which is a polynomial of degree |χ|. By Taylor’s theorem,

Xn
1 (t) = ∆

1
2
n

[t/∆n]−L+1∑
i=θn+1

N(H)∑
j=1

∑
|χ|=j

1
χ!∂

χµf (π((i− 1)∆n))
j∑

k=1

∑
|χ′|=k

∆(j−k)(1−2H)
n

χ′!

× ∂χ′
Qχ(c((i− 1)∆n))

{
Υn,i − π((i− 1)∆n) − ∆1−2H

n c((i− 1)∆n)
}χ′

.

(4.2.26)
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The key term in (4.2.26) is the expression in braces and we have [recall (3.2.6) and (3.1.9)]

Υn,i − π((i− 1)∆n) − ∆1−2H
n c((i− 1)∆n)

= ρ(i−1)∆n
ρT

(i−1)∆n

{∫ (i+L−1)∆n

(i−θn)∆n

∆n
i g(s)T ∆n

i g(s)
∆2H

n

ds−
(
ΓH

|ℓ−ℓ′|

)L,L

ℓ,ℓ′=1

}

= −ρ(i−1)∆n
ρT

(i−1)∆n

∫ (i−θn)∆n

−∞

∆n
i g(s)T ∆n

i g(s)
∆2H

n

ds,

(4.2.27)

because ΓH
|ℓ−ℓ′| = ∆−2H

n

∫∞
−∞ ∆n

i+ℓg(s)∆n
i+ℓ′g(s) ds by (4.4.2). The last integral is ≲ ∆2θ(1−H)

n by
Lemma 4.4.1 (3). Consequently, if we apply the generalized Hölder inequality to (4.2.26) and
take into account the moment conditions (3.2.11) on ρ and σ, we obtain

E
[
sup
t≤T

∣∣Xn
1 (t)

∣∣] ≲ ∆− 1
2

n

N(H)∑
j=1

j∑
k=1

∆(j−k)(1−2H)
n ∆k2θ(1−H)

n ≲ ∆− 1
2 +2θ(1−H)

n → 0

by (3.2.14). Using (4.2.27) as well as (3.2.11), we further see that the magnitude of Υn,i −π((i−
1)∆n) is ≲ ∆1−2H

n +∆2θ(1−H)
n . Thus, again by the generalized Hölder inequality, we deduce that

E
[
sup
t≤T

∣∣Xn
2 (t)

∣∣] ≲ ∆− 1
2

n

{
∆(N(H)+1)(1−2H)

n + ∆(N(H)+1)2θ(1−H)
n

}
→ 0

by the definition of N(H).

Proof of Lemma 3.2.10. The first convergence (3.2.20) can be shown analogously to [64, Equa-
tion (5.3.24)] and is omitted. For (3.2.21), we write the left-hand side as ∑N(H)

j=1 Zn
j (t) − Zn(t)

where

Zn
j (t) = ∆− 1

2 +j(1−2H)
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ|=j

1
χ!

∫ i∆n

(i−1)∆n

{
∂χµf (π((i− 1)∆n)) c((i− 1)∆n)χ

− ∂χµf (π(s)) c(s)χ

}
ds,

Zn(t) = ∆− 1
2

n

∫ t

0

(
1{0≤s≤θn∆n} + 1{([t/∆n]+L−1)∆n≤s≤t}

)N(H)∑
j=1

∑
|χ|=j

1
χ!∂

χµf (π(s)) ∆j(1−2H)
n c(s)χ ds.

Using the moment assumptions on σ and ρ, since t− ([t/∆n] −L+ 1)∆n ≤ L∆n, we readily see
that

E
[
sup
t≤T

∣∣Zn(t)
∣∣] ≲ ∆− 1

2
n (θn∆n + L∆n) ≲ ∆

1
2 −θ
n + ∆

1
2
n → 0.

Let j = 1, . . . , N(H) (in particular, everything in the following can be skipped if H < 1
4)

and consider, for χ ∈ N(d×L)×(d×L)
0 , again the polynomial Qχ introduced in (4.2.25). Using the

mean-value theorem, we can write

Zn
j (t) = ∆− 1

2 +j(1−2H)
n

[t/∆n]−L+1∑
i=θn+1

∑
|χ|=j

1
χ!

∫ i∆n

(i−1)∆n

∑
|χ1+χ2|=1

∂χ+χ1µf (ζ1
n,i)∂χ2Qχ(ζ2

n,i)

× {π((i− 1)∆n) − π(s)}χ1{c((i− 1)∆n) − c(s)}χ2 ds
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for some matrices ζ1
n,i and ζ2

n,i. By the generalized Hölder inequality as well as the moment and
regularity assumptions on σ and ρ, we deduce that

E
[
sup
t≤T

∣∣Zn
j (t)

∣∣] ≲ ∆− 1
2 +j(1−2H)

n ∆−1
n ∆n∆

1
2
n = ∆j(1−2H)

n → 0

for any H < 1
2 . This concludes the proof of the lemma.

4.3 Proofs for Section 3.3

Proof of Theorem 3.3.2. Since φ is invertible, we can write

H = φ−1
(

⟨a,ΓH⟩Πt

⟨b,ΓH⟩Πt

)
= G(⟨a,ΓH⟩Πt, ⟨b,ΓH⟩Πt),

H̃n = G(⟨a, V̂ n
t ⟩, ⟨b, V̂ n

t ⟩) = G(⟨a, V n
t ⟩, ⟨b, V n

t ⟩), G(x, y) = φ−1
(
x

y

)
.

(4.3.1)

As G is infinitely differentiable on R × (R \ {0}), we can expand H̃n in a Taylor sum around
(⟨a,ΓH⟩Πt, ⟨b,ΓH⟩Πt) and obtain

H̃n −H =
∑

|χ|=1
∂χG(⟨a,ΓH⟩Πt, ⟨b,ΓH⟩Πt)

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt, ⟨b, V n
t ⟩ − ⟨b,ΓH⟩Πt

)χ
+ Hn,

Hn =
∑

|χ|=2

∂χG(αn)
χ!

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt, ⟨b, V n
t ⟩ − ⟨b,ΓH⟩Πt

)χ
,

(4.3.2)

where χ ∈ N2
0 and αn is a random vector between (⟨a, V n

t ⟩, ⟨b, V n
t ⟩) and (⟨a,ΓH⟩Πt, ⟨b,ΓH⟩Πt).

By straightforward computations,

∂(1,0)G(x, y) = (φ−1)′
(
x

y

) 1
y

and ∂(0,1)G(x, y) = −(φ−1)′
(
x

y

)
x

y2 . (4.3.3)

Therefore, (4.3.2) becomes

H̃n −H = (φ−1)′
(

⟨a,ΓH⟩
⟨b,ΓH⟩

)
1

⟨b,ΓH⟩Πt

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

)
− (φ−1)′

(
⟨a,ΓH⟩
⟨b,ΓH⟩

)
⟨a,ΓH⟩Πt

(⟨b,ΓH⟩Πt)2

(
⟨b, V n

t ⟩ − ⟨b,ΓH⟩Πt

)
+ Hn

= (φ−1)′(φ(H))
⟨b,ΓH⟩Πt

{(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

)
− φ(H)

(
⟨b, V n

t ⟩ − ⟨b,ΓH⟩Πt

)}
+ Hn.

(4.3.4)

Because H ∈ (0, 1
4) or a0 = b0 = 0, the first expression on the right-hand side of (4.3.4) can

further be written as

(φ−1)′(φ(H))
⟨b,ΓH⟩Πt

{
aT − φ(H)bT

}{
V n

t − ΓH
∫ t

0
ρ2

s ds− e1

∫ t

0
σ2

s ds∆1−2H
n 1[ 1

4 , 1
2 )(H)

}
,
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Moreover, by Corollary 3.3.1, the term Hn is of magnitude ∆n and hence,

∆− 1
2

n (H̃n −H) = (φ−1)′(φ(H))
⟨b,ΓH⟩Πt

{
aT − φ(H)bT

}
× ∆− 1

2
n

{
V n

t − ΓH
∫ t

0
ρ2

s ds− e1

∫ t

0
σ2

s ds∆1−2H
n 1[ 1

4 , 1
2 )(H)

}
+ ∆− 1

2
n Hn

st−→ (φ−1)′(φ(H))
⟨b,ΓH⟩Πt

{
aT − φ(H)bT

}
Zt ∼ N

(
0,VarH,0

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
,

which proves (3.3.5).
We now turn to the convergence stated in (3.3.7) when H > 1

4 . We decompose

V n
0,t − ⟨c, V n

t ⟩
⟨c,ΓH̃n⟩

= {V n
0,t − Πt} − 1

⟨c,ΓH̃n⟩

{
⟨c, V n

t ⟩ − ⟨c,ΓH⟩Πt

}
+ Πt

⟨c,ΓH̃n⟩

{
⟨c,ΓH̃n⟩ − ⟨c,ΓH⟩

}

= {V n
0,t − Πt} − 1

⟨c,ΓH̃n⟩
cT {V n

t − ΓHΠt} + Πt
⟨c, ∂HΓH̃n⟩

⟨c,ΓH̃n⟩
{H̃n −H} + Vn,

Vn = 1
2Πt

⟨c, ∂HHΓβn⟩
⟨c,ΓH̃n⟩

{H̃n −H}2,

(4.3.5)

where ∂HHΓH is the second derivative of H 7→ (ΓH
0 , . . . ,ΓH

R ) evaluated at H and βn is somewhere
between H̃n and H. Since c0 ̸= 0, the first two terms in the second line of (4.3.5) are of magnitude
∆1−2H

n , while the third is of magnitude ∆1/2
n by our first result (3.3.5). Finally, Vn is of magnitude

∆n, so using Corollary 3.3.1, we deduce

∆2H−1
n

{
V n

0,t − ⟨c, V n
t ⟩

⟨c,ΓH̃n⟩

}
P→ Ct − 1

⟨c,ΓH⟩
⟨c, e1⟩Ct =

(
1 − 1

⟨c,ΓH⟩
c0

)
Ct. (4.3.6)

Reusing the Taylor expansion of H̃n from (4.3.4) and recalling that a0 = b0 = 0, we further have
that

∆− 1
2

n

{
V n

0,t − ⟨c, V n
t ⟩

⟨c,ΓH̃n⟩
−
(

1 − 1
⟨c,ΓH̃n⟩

c0

)
Ct ∆1−2H

n

}

= ∆− 1
2

n {V n
0,t − Πt − Ct ∆1−2H

n } − ∆− 1
2

n cT {V n
t − ΓHΠt − e1Ct ∆1−2H

n }
⟨c,ΓH̃n⟩

+ Πt
⟨c, ∂HΓH̃n⟩

⟨c,ΓH̃n⟩
∆− 1

2
n {H̃n −H} + ∆− 1

2
n Vn

=

eT
1 − cT

⟨c,ΓH̃n⟩
+ Πt

⟨c, ∂HΓH̃n⟩
⟨c,ΓH̃n⟩

(φ−1)′(φ(H))
⟨b,ΓH⟩Πt

{
aT − φ(H)bT

}
× ∆− 1

2
n

{
V n

t − ΓHΠt − e1Ct ∆1−2H
n

}
+ ∆− 1

2
n

Πt
⟨c, ∂HΓH̃n⟩

⟨c,ΓH̃n⟩
Hn + Vn


st−→
(
eT

1 − cT

⟨c,ΓH⟩
+ ⟨c, ∂HΓH⟩

⟨c,ΓH⟩
(φ−1)′(φ(H))

⟨b,ΓH⟩

{
aT − φ(H)bT

})
Zt.
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It remains to normalize the left-hand side of (4.3.6) in order to obtain (3.3.7):

∆− 1
2 +(1−2H)

n


(
V̂ n

0,t − ⟨c, V̂ n
t ⟩

⟨c,ΓH̃n⟩

)(
1 − 1

⟨c,ΓH̃n⟩
c0

)−1

− Ct


st−→
(

1 − 1
⟨c,ΓH⟩

c0

)−1
(
eT

1 − cT

⟨c,ΓH⟩
+ ⟨c, ∂HΓH⟩

⟨c,ΓH⟩
(φ−1)′(φ(H))

⟨b,ΓH⟩

{
aT − φ(H)bT

})
Zt

∼ N
(

0,VarC

∫ t

0
ρ4

s ds
)
.

Finally, we tackle (3.3.12). We use the mean-value theorem to decompose

∆− 1
2

n

(
⟨a, V n

t ⟩
⟨a,ΓH̃n⟩

− Πt

)

= ∆− 1
2

n
1

⟨a,ΓH̃n⟩

{
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

}
− Πt

⟨a,ΓH̃n⟩
∆− 1

2
n

{
⟨a,ΓH̃n⟩ − ⟨a,ΓH⟩

}

= aT

⟨a,ΓH̃n⟩
∆− 1

2
n

{
V n

t − ΓHΠt

}
− Πt

⟨a,ΓH̃n⟩
⟨a, ∂HΓβ̃n⟩∆− 1

2
n

{
H̃n −H

}
(4.3.7)

where β̃n is between H̃n and H and therefore satisfies β̃n P→ H. As before, because 1
4 < H < 1

2
or a0 = b0 = 0, we prefer to write

aT

⟨a,ΓH̃n⟩
∆− 1

2
n

{
V n

t − ΓHΠt

}
= aT

⟨a,ΓH̃n⟩
∆− 1

2
n

{
V n

t − ΓHΠt − Ct ∆1−2H
n 1[ 1

4 , 1
2 )(H)

}
.

Using Corollary 3.3.1 and our first result (3.3.5), we infer that ∆−1/2
n (⟨a, V n

t ⟩/⟨a,ΓH̃n⟩−Πt) con-
verges stably in distribution. Applying again the mean-value theorem, this time on the function
H 7→ ∆−2H

n , and recalling the identity ∆1−2H
n V̂ n

r,t = V n
r,t, we further obtain

∆− 1
2

n (Π̂n
t − Πt) = ∆− 1

2
n

(
⟨a, V n

t ⟩
⟨a,ΓH̃n⟩

− Πt

)
+ ∆− 1

2
n

⟨a, V̂ n
t ⟩

⟨a,ΓH̃n⟩

{
∆1−2H̃n

n − ∆1−2H
n

}

= ∆− 1
2

n

(
⟨a, V n

t ⟩
⟨a,ΓH̃n⟩

− Πt

)
− 2 ⟨a, V̂ n

t ⟩
⟨a,ΓH̃n⟩

∆1−2H
n log(∆n)∆2(H−β

n)
n ∆− 1

2
n

{
H̃n −H

}

and β
n is again some point between H̃n and H. Observe that by (3.3.5), βn converges to H at

a rate of ∆1/2
n . Therefore, ∆2(H−β

n)
n → 1 as n → ∞. Normalizing by log(∆n), we conclude from

(3.3.5) that

∆− 1
2

n

log(∆n)(Π̂n
t − Πt) = ∆− 1

2
n

log(∆n)

(
⟨a, V n

t ⟩
⟨a,ΓH̃n⟩

− Πt

)
− 2 ⟨a, V n

t ⟩
⟨a,ΓH̃n⟩

∆2(H−β
n)

n ∆− 1
2

n

{
H̃n −H

}
st−→ −2Πt N

(
0,VarH,0

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
∼ N

(
0, 4VarH,0

∫ t

0
ρ4

s ds
)
.
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Proof of Proposition 3.3.5. Starting from (4.3.1), we expand

∆− 1
2

n

(
H̃n −H

)
= −

N(H)∑
j=1

∑
|χ|=j

∂χG(⟨a, V n
t ⟩, ⟨b, V n

t ⟩)
χ! (−1)j

× ∆− 1
2

n

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt, ⟨b, V n
t ⟩ − ⟨b,ΓH⟩Πt

)χ
− In,

In =
∑

|χ|=N(H)+1

∂χG(αn)
χ! (−1)|χ|∆− 1

2
n

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt, ⟨b, V n
t ⟩ − ⟨b,ΓH⟩Πt

)χ
,

(4.3.8)

where χ ∈ N2
0 and αn is a point between (⟨a,ΓH⟩Πt, ⟨b,ΓH⟩Πt) and (⟨a, V n

t ⟩, ⟨b, V n
t ⟩). In contrast

to the proof of (3.3.5), we expanded H̃n around (⟨a,ΓH⟩Πt, ⟨b,ΓH⟩Πt) and not (⟨a, V n
t ⟩, ⟨b, V n

t ⟩).
We consider the terms where χ = (j, 0) for some j = 1, . . . , N(H) or χ = (0, 1) separately. In
the first case, ∂χG takes a simple form, namely

∂χG(x, y) = (φ−1)(j)
(
x

y

) 1
yj
, χ = (j, 0), j ≥ 1;

in the second case, ∂χG(x, y) was computed in (4.3.3). With that in mind, and recalling (3.3.19),
we have that

∆− 1
2

n

H̃n −H +
N(H)∑
j=1

Φn
jC

j
t


= (ϕ−1)′(ϕ(H̃n)) 1

⟨b, V n
t ⟩

{
aT − φ(H̃n)bT

}
∆− 1

2
n

{
V n

t − ΓHΠt − e1Ct ∆1−2H
n

}
+

N(H)∑
j=2

(−1)j+1

j! (ϕ−1)(j)(ϕ(H̃n)) 1
⟨b, V n

t ⟩j
∆− 1

2
n

{(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

)j
− aj

0C
j
t ∆j(1−2H)

n

}

−
N(H)∑
j=2

∑
χ ̸=(j,0)

∂χG(⟨a, V n
t ⟩, ⟨b, V n

t ⟩)
χ! (−1)j∆− 1

2
n

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt, ⟨b, V n
t ⟩ − ⟨b,ΓH⟩Πt

)χ

− In. (4.3.9)

By the mean-value theorem and Corollary 3.3.1, one can easily see that ∆−1/2
n {(⟨a, V n

t ⟩ −
⟨a,ΓH⟩Πt)j − aj

0C
j
t ∆j(1−2H)

n } is of magnitude ∆(j−1)/2
n . Thus, the second term on the right-

hand side of (4.3.9) is asymptotically negligible. And so are the third term in (4.3.9) and In:
For any χ = (j− i, i) ∈ N2

0, Corollary 3.3.1 and assumption (3.3.17) imply that ∆−1/2
n (⟨a, V n

t ⟩ −
⟨a,ΓH⟩Πt, ⟨b, V n

t ⟩ − ⟨b,ΓH⟩Πt)χ is of magnitude ∆(j−i)(1−2H)+i/2−1/2
n and therefore asymptoti-

cally negligible as soon as i ≥ 1 and j−i ≥ 1. Similarly, In is of magnitude at most ∆(N(H)+1)(1−2H)−1/2
n ,

which goes to 0 by the definition of N(H). Altogether, we obtain by Corollary 3.3.1,

∆− 1
2

n

H̃n −H +
N(H)∑
j=1

Φn
jC

j
t


st−→ (ϕ−1)′(ϕ(H)) 1

⟨b,ΓH⟩Πt

{
aT − φ(H)bT

}
Zt ∼ N

(
0,VarH,0

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
,

which concludes the proof.
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Proof of Proposition 3.3.6. We start similarly to the proof of (3.3.8) and decompose

V n
0,t − ⟨a, V n

t ⟩
⟨a,ΓH̃n⟩

= {V n
0,t − Πt} − 1

⟨a,ΓH̃n⟩

{
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

}
+ Πt

⟨a,ΓH̃n⟩

{
⟨a,ΓH̃n⟩ − ⟨a,ΓH⟩

}
.

(4.3.10)

We further analyze the last term in the above display and write

⟨a,ΓH̃n⟩ = K(⟨a, V̂ n
t ⟩, ⟨b, V̂ n

t ⟩) = K(⟨a, V n
t ⟩, ⟨b, V n

t ⟩),
⟨a,ΓH⟩ = K(⟨a,ΓH⟩, ⟨b,ΓH⟩) = K(⟨a,ΓH⟩Πt, ⟨b,ΓH⟩Πt),

where K(x, y) = ψ(x/y) and ψ is the function from (3.3.24). The following derivatives will be
needed in the course of the proof:

∂(j,0)K(x, y) = ψ(j)
(
x

y

) 1
yj
, j ≥ 1,

∂(0,1)K(x, y) = −ψ′
(
x

y

)
x

y2 .

We now expand ⟨a,ΓH⟩ in a Taylor sum around the point (⟨a, V n
t ⟩, ⟨b, V n

t ⟩) up to order N(H),
singling out the two first-order derivatives as well as the derivatives ∂(j,0):

⟨a,ΓH̃n⟩ − ⟨a,ΓH⟩

= ψ′(ϕ(H̃n)) 1
⟨b, V n

t ⟩

({
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

}
− ϕ(H̃n)

{
⟨b, V n

t ⟩ − ⟨b,ΓH⟩Πt

})
−

N(H)∑
j=2

(−1)j

j! ψ(j)(ϕ(H̃n)) 1
⟨b, V n

t ⟩j

{
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

}j
− Jn,

(4.3.11)

where

Jn =
N(H)∑
j=2

∑
χ ̸=(j,0)

∂χK(⟨a, V n
t ⟩, ⟨b, V n

t ⟩)
χ! (−1)j∆− 1

2
n

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt, ⟨b, V n
t ⟩ − ⟨b,ΓH⟩Πt

)χ

+
∑

|χ|=N(H)+1

∂χK(α̃n)
χ! (−1)|χ|∆− 1

2
n

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt, ⟨b, V n
t ⟩ − ⟨b,ΓH⟩Πt

)χ

and α̃n is between (⟨a,ΓH⟩Πt, ⟨b,ΓH⟩Πt) and (⟨a, V n
t ⟩, ⟨b, V n

t ⟩). Using (4.3.10) for the first and
(4.3.11) for the second equality, we find that

∆− 1
2

n

({
V n

0,t − ⟨a, V n
t ⟩

⟨a,ΓH̃n⟩

}
−
(

1 − a0

⟨a,ΓH̃n⟩
+ Πt

⟨a,ΓH̃n⟩
a0ψ

′(ϕ(H̃n))
⟨b, V n

t ⟩

)
Ct ∆1−2H

n

+ Πt

⟨a,ΓH̃n⟩

N(H)∑
j=2

(−1)j

j! ψ(j)(ϕ(H̃n)) aj
0

⟨b, V n
t ⟩j

Cj
t ∆j(1−2H)

n

)

= ∆− 1
2

n

{
V n

0,t − Πt − Ct∆1−2H
n

}
− 1

⟨a,ΓH̃n⟩
∆− 1

2
n

{
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt − a0Ct ∆1−2H
n

}
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+ Πt

⟨a,ΓH̃n⟩
∆− 1

2
n

⟨a,ΓH̃n⟩ − ⟨a,ΓH⟩ +
N(H)∑
j=1

(−1)j

j! ψ(j)(ϕ(H̃n)) aj
0

⟨b, V n
t ⟩j

Cj
t ∆j(1−2H)

n


=
{
eT

1 − aT

⟨a,ΓH̃n⟩
+ Πt

⟨a,ΓH̃n⟩
ψ′(ϕ(H̃n))

⟨b, V n
t ⟩

(aT − ϕ(H̃n)bT )
}

∆− 1
2

n

{
V n

t − ΓHΠt − e1Ct∆1−2H
n

}

− Πt

⟨a,ΓH̃n⟩

N(H)∑
j=2

(−1)j

j! ψ(j)(ϕ(H̃n)) 1
⟨b, V n

t ⟩j
∆− 1

2
n

{{
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

}j
− aj

0C
j
t ∆j(1−2H)

n

}

− Πt

⟨a,ΓH̃n⟩
∆− 1

2
n Jn. (4.3.12)

For the exact same reasons as explained after (4.3.8), the term involving Jn is asymptotically
negligible: (⟨a, V n

t ⟩−⟨a,ΓH⟩Πt, ⟨b, V n
t ⟩−⟨b,ΓH⟩Πt)χ is of magnitude ∆(j−i)(1−2H)+i/2

n ≤ ∆3/2−2H
n

if |χ| = 2, . . . , N(H) and χ ̸= (j, 0), and it is of magnitude ≤ ∆(N(H)+1)(1−2H)
n if |χ| = N(H)+1;

in both cases, the exponent is strictly bigger than 1
2 . Moreover, by Corollary 3.3.1,

∆−j(1−2H)
n

(
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt

)j P−→ aj
0C

j
t ,

which implies that the second term on the right-hand side of (4.3.12) is of magnitude ∆(j−1)1/2
n

for j = 2, . . . , N(H). Thus, by Corollary 3.3.1, the left-hand side of (4.3.12) converges stably in
law to

Z ′
t =

{
eT

1 − aT

⟨a,ΓH⟩
+ Πt

⟨a,ΓH⟩
ψ′(ϕ(H))
⟨b,ΓH⟩Πt

(aT − ϕ(H)bT )
}

Zt. (4.3.13)

Next, we replace Πt in the first two lines of (4.3.12) by ∆1−2H
n P̂n

t , where P̂n
t was introduced

in (3.3.21). The resulting difference is given by

∆− 1
2

n {∆1−2H
n P̂n

t − Πt}
⟨a,ΓH̃n⟩

N(H)∑
j=1

(−1)j

j! ψ(j)(ϕ(H̃n)) aj
0

⟨b, V n
t ⟩j

Cj
t ∆j(1−2H)

n . (4.3.14)

By the proof of Theorem 3.3.2 [see (4.3.7) in particular], the term ∆−1/2
n {∆1−2H

n P̂n
t − Πt} con-

verges stably in distribution. As a consequence, the expression in the previous display converges
to 0 in probability as n → ∞. By (3.3.23), (3.3.26) and (4.3.13), it follows that

∆− 1
2 +(1−2H)

n

({
V n

0,t − ⟨a, V n
t ⟩

⟨a,ΓH̃n⟩

}
∆2H−1

n Θ(V̂ n
t , H̃

n, H̃n,0)−1 − Ct +
N(H)∑
j=2

Ψn
jC

j
t

)

= Θ(V̂ n
t , H̃

n, H̃n,0)−1∆− 1
2

n

({
V n

0,t − ⟨a, V n
t ⟩

⟨a,ΓH̃n⟩

}
− Θ(V̂ n

t , H̃
n, H̃n,0)Ct ∆1−2H

n

+ ∆1−2H
n P̂n

t

⟨a,ΓH̃n⟩

N(H)∑
j=2

(−1)j

j! ψ(j)(ϕ(H̃n) aj
0

⟨b, V n
t ⟩j

Cj
t ∆j(1−2H)

n

)

st−→
(

1 − a0
⟨a,ΓH⟩

+ ψ′(ϕ(H))
⟨a,ΓH⟩⟨b,ΓH⟩

a0

)−1
Z ′

t ∼ N
(

0,VarC,1

∫ t

0
ρ4

s ds
)
.

(4.3.15)

The CLT stated in (3.3.25) is proved.
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Proof of Proposition 3.3.7. We first prove by induction that for ℓ = 0, . . . , N(H) − 2, the differ-
ence C̃n,ℓ+1

t −Ct converges in probability with a convergence rate of ∆(1+ℓ)(1−2H)
n . If ℓ = 0, then

C̃n,ℓ+1
t = C̃n,1

t , so by (4.3.15),

∆2H−1
n

(
C̃n,1

t − Ct

) P−→ −1
2ψ

(2)(ϕ(H)) a2
0

⟨a,ΓH⟩
1

⟨b,ΓH⟩2

(
1 − a0

⟨a,ΓH⟩
+ ψ′(ϕ(H))

⟨a,ΓH⟩⟨b,ΓH⟩
a0

)−1
C2

t .

Suppose now that C̃n,ℓ+1
t − Ct converges at a rate of ∆(1+ℓ)(1−2H)

n for ℓ = 0, . . . , ℓ′ − 1. Decom-
posing

C̃n,ℓ′+1
t − Ct =

C̃n,1
t − Ct +

ℓ′+1∑
j=2

Ψn
jC

j
t

+
ℓ′+1∑
j=2

Ψn
j

{
(C̃n,ℓ′−j+2

t )j − Cj
t

}
, (4.3.16)

we note that the first term on the right-hand side converges at a rate of ∆(ℓ′+1)(1−2H)
n by (4.3.15).

The second term can be rewritten as

ℓ′+1∑
j=2

Ψn
j

{
(C̃n,ℓ′−j+2

t )j − Cj
t

}
=

ℓ′+1∑
j=2

j∑
m=1

j!
(j −m)!C

j−m
t

{
Ψn

j (C̃n,ℓ′−j+2
t − Ct)m

}
. (4.3.17)

By assumption, C̃n,(ℓ′−j+1)+1
t −Ct is of magnitude ∆(ℓ′−j+2)(1−2H)

n . Furthermore, by the definition
(3.3.26) of Ψn

j , the product Ψn
j ∆(1−j)(1−2H)

n converges in the probability. Thus, Ψn
j is of magni-

tude ∆(j−1)(1−2H)
n and we conclude that Ψn

j (C̃n,ℓ′−j+2
t −Ct)m is of magnitude ∆(j−1+m(ℓ′−j+2))(1−2H)

n ≤
∆(ℓ′+1)(1−2H)

n . Altogether, we have shown that C̃n,ℓ′+1
t − Ct is of magnitude ∆(ℓ′+1)(1−2H)

n .
We can now complete the proof of the proposition. By an analogous decomposition to (4.3.16)

with ℓ′ = N(H) − 1,

C̃
n,N(H)
t − Ct =

C̃n,1
t − Ct +

N(H)∑
j=2

Ψn
jC

j
t

+
N(H)∑
j=2

Ψn
j

{
(C̃n,N(H)−j+1

t )j − Cj
t

}
. (4.3.18)

We know that C̃n,N(H)−j+1
t − Ct is of magnitude ∆(N(H)−j+1)(1−2H)

n . Therefore, proceeding ex-
actly as in (4.3.17), we see that the right-hand side of (4.3.18) times ∆1/2−2H

n is of magnitude
∆(N(H)+1)(1−2H)−1/2

n which goes to 0 as n → ∞ since the exponent is positive by the defini-
tion of N(H). Therefore, ∆1/2−2H

n {C̃n,N(H)
t − Ct} converges stably to the same distribution as

∆1/2−2H
n {C̃n,1

t − Ct} does.
Finally,

∆− 1
2

n {C̃n,N(H̃n)
t − Ct} = ∆− 1

2
n {C̃n,N(H)

t − Ct} + ∆− 1
2

n {C̃n,N(H̃n)
t − C̃

n,N(H)
t }.

Since H̃n is a consistent estimator for H and H /∈ H, for small enough ε > 0 (such that the
event {|H̃n −H| ≤ ε} ⊆ {N(H̃n) = N(H)}), we have

P(∆− 1
2

n |C̃n,N(H̃n)
t − C̃

n,N(H)
t | > ε) ≤ P(|H̃n −H| > ε) → 0 (4.3.19)

as n → ∞. Thus, the CLT of {C̃n,N(H)
t −Ct} is not affected whenN(H) is replaced byN(H̃n).
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Proof of Proposition 3.3.8. We first decompose

∆− 1
2

n

H̃n −H +
N(H)∑
j=1

Φn
j

(
Ĉn,1

t

)j


= ∆− 1

2
n

H̃n −H +
N(H)∑
j=1

Φn
jC

j
t

+ Φn
1 ∆− 1

2
n

{
C̃

n,N(H)
t − Ct

}

+
N(H)∑
j=2

Φn
j ∆− 1

2
n

{
(C̃n,N(H)

t )j − Cj
t

}
+

N(H)∑
j=1

Φn
j ∆− 1

2
n

{(
C̃

n,N(H̃n)
t

)j

−
(
C̃

n,N(H)
t

)j
}

= ∆− 1
2

n

H̃n −H +
N(H)∑
j=1

Φn
jC

j
t

+ Φn
1 ∆− 1

2
n

C̃n,1
t − Ct +

N(H)∑
k=2

Ψn
kC

k
t

+ In
1 ,

(4.3.20)

where

In
1 =

N(H)∑
k=2

Φn
1 Ψn

k∆− 1
2

n

{
(C̃n,N(H)−k+1

t )k − Ck
t

}
+

N(H)∑
j=2

Φn
j ∆− 1

2
n

{
(C̃n,N(H)

t )j − Cj
t

}

+
N(H)∑
j=1

Φn
j ∆− 1

2
n

{(
C̃

n,N(H̃n)
t

)j

−
(
C̃

n,N(H)
t

)j
}
.

By the proof of Proposition 3.3.7 and the mean-value theorem, (C̃n,N(H)−k+1
t )k − Ck

t is of size
∆(N(H)−k+1)(1−2H)

n and (C̃n,N(H)
t )j −Cj

t is of size ∆2H−1/2
n . Furthermore, recalling the definition

(3.3.19) of Φn
j , we see that Φn

j ∆−j(1−2H)
n converges in probability. Hence, Φn

j {(C̃n,N(H)
t )j − Cj

t }
is of size ∆1/2+(j−1)(1−2H)

n . Also, Ψn
k is of size ∆(k−1)(1−2H)

n , so Φn
1 Ψn

k∆−1/2
n {(C̃n,N(H)−k+1

t )k −
Ck

t } of size ∆(N(H)+1)(1−2H)−1/2
n . Recall also that ∆−1/2

n {C̃n,N(H̃n)
t − C̃

n,N(H)
t } is asymptotically

negligible by the last part of the proof of Proposition 3.3.7. Altogether, we obtain that In
1 is

asymptotically negligible.

Now recall the precise definition (3.3.22) of C̃n,1
t as well as that of Θ(V̂ n

t , H̃
n, H̃n,0) and Ψn

k
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given in (3.3.23) and (3.3.26), respectively. With those definitions at hand, we can decompose

∆
1
2 −2H
n

C̃n,1
t − Ct +

N(H)∑
k=2

Ψn
kC

k
t


= ∆

1
2 −2H
n Θ(V̂ n

t , H̃
n, H̃n,0)−1

{{
V n

0,t − ⟨a, V n
t ⟩

⟨a,ΓH̃n⟩

}
∆2H−1

n − Θ(V̂ n
t , H̃

n, H̃n,0)Ct

+ ∆1−2H
n P̂n

t

⟨a,ΓH̃n⟩

N(H)∑
j=2

(−1)j

j! ψ(j)(ϕ(H̃n)) aj
0

⟨b, V n
t ⟩j

Cj
t ∆(j−1)(1−2H)

n

}

= ∆− 1
2

n Θ(V̂ n
t , H̃

n, H̃n,0)−1
{{

V n
0,t − ⟨a, V n

t ⟩
⟨a,ΓH̃n⟩

}

−
(

1 − a0

⟨a,ΓH̃n⟩
+ Πt

⟨a,ΓH̃n⟩
a0ψ

′(ϕ(H̃n))
⟨b, V n

t ⟩

)
Ct∆1−2H

n

+ Πt

⟨a,ΓH̃n⟩

N(H)∑
j=2

(−1)j

j! ψ(j)(ϕ(H̃n)) aj
0

⟨b, V n
t ⟩j

Cj
t ∆j(1−2H)

n

}

+ Θ(V̂ n
t , H̃

n, H̃n,0)−1 ∆− 1
2

n {∆1−2H
n P̂n

t − Πt}
⟨a,ΓH̃n⟩

N(H)∑
j=1

(−1)j

j! ψ(j)(ϕ(H̃n)) aj
0

⟨b, V n
t ⟩j

Cj
t ∆j(1−2H)

n .

(4.3.21)

The last term in the above display is asymptotically negligible as already seen in the discus-
sion following (4.3.14), while the first term on the right-hand side of (4.3.21) was analyzed
in the (4.3.12). Combining this with the Taylor expansion (4.3.9) of H̃n, we can continue the
computations started in (4.3.20). We have

∆− 1
2

n

H̃n −H +
N(H)∑
j=1

Φn
j

(
Ĉn,1

t

)j


= (ϕ−1)′(ϕ(H̃n)) 1

⟨b, V n
t ⟩

{
aT − φ(H̃n)bT

}
∆− 1

2
n

{
V n

t − ΓHΠt − e1Ct ∆1−2H
n

}
+ (Φn

1 ∆2H−1
n )Θ(V̂ n

t , H̃
n, H̃n,0)−1

{
eT

1 − aT

⟨a,ΓH̃n⟩
+ Πt

⟨a,ΓH̃n⟩
ψ′(ϕ(H̃n))

⟨b, V n
t ⟩

(aT − ϕ(H̃n)bT )
}

× ∆− 1
2

n

{
V n

t − ΓHΠt − e1Ct∆1−2H
n

}
+ În

1

= w1(H̃n, H̃n,0, V n
t )∆− 1

2
n

{
V n

t − ΓHΠt − e1Ct∆1−2H
n

}
+ În

1 , (4.3.22)

where

w1(H̃n, H̃n,0, V n
t ) = (ϕ−1)′(ϕ(H̃n))

⟨b, V n
t ⟩

{
aT − ϕ(H̃n)bT − a0u1(H̃n, H̃n,0, V n

t )
}
,

u1(H̃n, H̃n,0, V n
t ) = 1

Θ(V̂ n
t , H̃

n, H̃n,0)

(
eT

1 − aT

⟨a,ΓH̃n⟩
+ Πtψ

′(ϕ(H̃n))
⟨b, V n

t ⟩⟨a,ΓH̃n⟩
(aT − ϕ(H̃n)bT )

)
.

(4.3.23)

In În
1 , we have incorporated the last three terms on the right-hand side of (4.3.9), the last

two terms on the right-hand side of (4.3.12), the last expression in (4.3.21) as well as In
1 from
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(4.3.20). By the discussions following these equations, we know that În
1 is asymptotically negli-

gible. Therefore, we obtain

∆− 1
2

n

H̃n −H +
N(H)∑
j=1

Φn
j

(
Ĉn,1

t

)j

 st−→ wT
1

Πt
Zt ∼ N

(
0,VarH,1

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
.

To conclude, it remains to observe that this CLT is not affected when N(H) is replaced by
N(H̃n) because H /∈ H; cf. the argument used to show (4.3.19).

Proof of Proposition 3.3.9. For k = 2, . . . ,m, define

uk(Ĥn
k−1, H̃

n, V n
t ) =

eT
1 − aT

⟨a,ΓĤn
k−1⟩

+ Πt

⟨a,ΓĤn
k−1⟩

⟨a, ∂HΓH⟩wk−1(Ĥn
k−2, H̃

n, V n
t )


×
(

1 − a0

⟨a,ΓĤn
k−1⟩

)−1

,

wk(Ĥn
k−1, H̃

n, V n
t ) = (ϕ−1)′(ϕ(H̃n))

⟨b, V n
t ⟩

{
aT − ϕ(H̃n)bT − a0uk(Ĥn

k−1, H̃
n, V n

t )
}
.

In the definition of u2(Ĥn
k−1, H̃

n, V n
t ), the term w1(Ĥn

k−1, H̃
n, V n

t ) is replaced by w1(H̃n, H̃n,0, V n
t )

from (4.3.23). By induction over k, we are going to show for all k = 1, . . . ,m that

∆− 1
2

n (Ĥn
k −H) = wk(Ĥn

k−1, H̃
n, V n

t )∆− 1
2

n

{
V n

t − ΓHΠt − e1Ct∆1−2H
n

}
+ În

k (4.3.24)

for some asymptotically negligible expression În
k and

uk(Ĥn
k−1, H̃

n, V n
t ) P→ uT

k , wk(Ĥn
k−1, H̃

n, V n
t ) P→ wT

k

Πt
, (4.3.25)

where, for k = 1, we take the expressions in (4.3.23) instead. Since (4.3.24) was already shown
in (4.3.22) and (4.3.25) is obvious for k = 1, we may consider k ≥ 2 now and assume (4.3.24)
and (4.3.25) for k − 1. In particular,

∆− 1
2

n

{
Ĥn

k−1 −H
} st−→

wT
k−1
Πt

Zt ∼ N
(

0,VarH,k−1

∫ t
0 ρ

4
s ds

(
∫ t

0 ρ
2
s ds)2

)
.

It is straightforward to see that

uk(Ĥn
k−1, H̃

n, V n
t ) P→ uT

k and wk(Ĥn
k−1, H̃

n, V n
t ) P→ wT

k

Πt
, (4.3.26)

so we can proceed to showing (4.3.24) for k. Expanding ⟨a,ΓĤn
k−1⟩ around H and using the
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induction hypothesis, we can find βn
k−1 between Ĥn

k−1 and H such that

∆− 1
2

n

V n
0,t − ⟨a, V n

t ⟩

⟨a,ΓĤn
k−1⟩

−

1 − a0

⟨a,ΓĤn
k−1⟩

Ct∆1−2H
n


= ∆− 1

2
n

{
V n

0,t − Πt − Ct∆1−2H
n

}
− 1

⟨a,ΓĤn
k−1⟩

∆
1
2
n

{
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt − a0Ct∆1−2H
n

}
+ Πt

⟨a,ΓĤn
k−1⟩

∆− 1
2

n

{
⟨a,ΓĤn

k−1⟩ − ⟨a,ΓH⟩
}

= ∆− 1
2

n

{
V n

0,t − Πt − Ct∆1−2H
n

}
− 1

⟨a,ΓĤn
k−1⟩

∆
1
2
n

{
⟨a, V n

t ⟩ − ⟨a,ΓH⟩Πt − a0Ct∆1−2H
n

}
+ Πt

⟨a,ΓĤn
k−1⟩

⟨a, ∂HΓH⟩
{
wk−1(Ĥn

k−2, H̃
n, V n

t )∆− 1
2

n

{
V n

t − ΓHΠt − e1Ct∆1−2H
n

}
+ În

k−1

}

+ 1
2!

Πt

⟨a,ΓĤn
k−1⟩

⟨a, ∂HHΓξ
n

⟩∆− 1
2

n

{
Ĥn

k−1 −H
}2

= uk(Ĥn
k−1, H̃

n, V n
t )
(

1 − a0

⟨a,ΓĤn
k−1⟩

)
∆− 1

2
n

{
V n

t − ΓHΠt − e1Ct∆1−2H
n

}
+ Jn

k ,

(4.3.27)

where Jn
k is given by

Πt

⟨a,ΓĤn
k−1⟩

⟨a, ∂HΓH ⟩̂In
k−1 + 1

2!
Πt

⟨a,ΓĤn
k−1⟩

⟨a, ∂HHΓβn
k−1⟩∆− 1

2
n

{
Ĥn

k−1 −H
}2
.

Because În
k−1 is asymptotically negligible by induction hypothesis and Ĥn

k−1 −H is of size ∆1/2
n ,

we see that Jn
k

P→ 0. Recall the definition of Ĉn,k
t given in (3.3.31). From (4.3.27) and (4.3.26),

we infer that

∆
1
2 −2H
n (Ĉn,k

t − Ct) st−→ uT
k Zt ∼ N

(
0,VarC,k

∫ t

0
ρ4

s ds
)
,

which (3.3.34). Now recall the definitions (3.3.31) and (3.3.32). Using (4.3.9) and the formula
Φn

1 = −∆1−2H
n (ϕ−1)(ϕ(H̃n))a0/⟨b, V n

t ⟩ for the second equality and (4.3.27) for the third, we
obtain

∆− 1
2

n

{
Ĥn

k −H
}

= ∆− 1
2

n

{
H̃n −H +

N(Ĥn
k−1)∑

j=1
Φn

jC
j
t

}
+ Φn

1 ∆− 1
2

n

{
Ĉn,k

t − Ct

}

+
N(Ĥn

k−1)∑
j=2

Φn
j ∆− 1

2
n

{(
Ĉn,k

t

)j
− Cj

t

}

= (ϕ−1)′(ϕ(H̃n))
⟨b, V n

t ⟩

{
aT − ϕ(H̃n)bT − a0uk(Ĥn

k−1, H̃
n, V n

t )
}

× ∆− 1
2

n

{
V n

t − ΓHΠt − e1Ct∆1−2H
n

}
+ În

k

= wk(Ĥn
k−1, H̃

n, V n
t )∆− 1

2
n

{
V n

t − ΓHΠt − e1Ct∆1−2H
n

}
+ În

k .

(4.3.28)
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In the last line, În
k contains the last three terms on the right-hand side of (4.3.9) as well as

Jn
k

(
1 − a0

⟨a,ΓĤn
k−1⟩

)−1

+
N(H)∑
j=2

Φn
j ∆− 1

2
n

{(
Ĉn,k

t

)j
− Cj

t

}
+ ∆− 1

2
n

N(H)∨N(Ĥn
k−1)∑

j=N(H)∧N(Ĥn
k−1)

Φn
j

(
Ĉn,k

t

)j
.

The term Φn
j ∆−1/2

n {(Ĉn,k
t )j −Cj

t } is of size ∆(j−1)(1−2H)
n because Φn

j is of size ∆j(1−2H)
n . Also, the

last sum goes to 0 in probability by a similar argument to (4.3.19). Therefore, În
k is asymptotically

negligible. This together with (4.3.28) implies (4.3.24) and our induction argument is complete.
From (4.3.24), we immediately obtain (3.3.33).

Proof of Theorem 3.3.10. The proof of (3.3.39) is completely analogous to that for (3.3.34)
in Theorem 3.3.9. while the proof of (3.3.40) follows the same steps as that for (3.3.12) in
Theorem 3.3.2.

4.4 Estimates for fractional kernels
Here we gather some useful results about the kernel g(t) = K−1

H tH−1/2 introduced in (3.1.6) [we
consider the case g0 ≡ 0 here].
Lemma 4.4.1. Recall the notation ∆n

i g introduced in (3.2.13). Also recall the constant KH in
(3.1.7) and the numbers (ΓH

r )r≥0 in (3.1.9).
(1) For any k, n ∈ N,∫ ∞

0
∆n

kg(t)2 dt = K−2
H

{
1

2H +
∫ k

1

(
rH− 1

2 − (r − 1)H− 1
2
)2

dr
}

∆2H
n ≤ ∆2H

n . (4.4.1)

(2) For any k, ℓ, n ∈ N with k < ℓ,∫ ∞

0
∆n

kg(t)∆n
ℓ g(t) dt = ∆2H

n K−2
H

∫ k

0

(
rH− 1

2 − (r − 1)H− 1
2

+

)
×
(
(r + ℓ− k))H− 1

2 − (r + (ℓ− k) − 1)H− 1
2
)

dr,∫ ∞

−∞
∆n

kg(t)∆n
ℓ g(t) dt = ∆2H

n ΓH
ℓ−k ≲ ∆2H

n ΓH
ℓ−k

(4.4.2)

where
ΓH

r = 1
(r − 1)2(1−H) , r ≥ 2, ΓH

1 = ΓH
1 . (4.4.3)

(3) For any θ ∈ (0, 1), setting θn = [∆−θ
n ], we have for any i > θn and r ∈ N,∫ (i−θn)∆n

−∞
∆n

i g(s)∆n
i+rg(s) ds ≲ ∆2H

n ∆2θ(1−H)
n . (4.4.4)

Proof. Let k ≤ ℓ. By direct calculation,∫ ∞

0
∆n

kg(t)∆n
ℓ g(t) dt

= K−2
H

∫ k∆n

0

(
sH− 1

2 − (s− ∆n)H− 1
2

+

)(
(s+ (ℓ− k)∆n)H− 1

2 − (s+ (ℓ− k)∆n − ∆n)H− 1
2

+

)
ds

= ∆2H
n K−2

H

∫ k

0

(
rH− 1

2 − (r − 1)H− 1
2

+

)(
(r + (ℓ− k))H− 1

2 − (r + (ℓ− k) − 1)H− 1
2

+

)
dr,
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which is the first equality in (4.4.2). If further k = ℓ, then∫ ∞

0
∆n

kg(t)2 dt = ∆2H
n K−2

H

(∫ 1

0
r2H−1 dr +

∫ k

1

(
rH− 1

2 − (r − 1)H− 1
2
)2

dr
)
,

which shows (4.4.1).
Now let (BH)t≥0 be a fractional Brownian motion with Hurst index H. Then BH has the

Mandelbrot–van Ness representation

BH
t = K−1

H

∫
R

(
(t− s)H− 1

2
+ − (−s)H− 1

2
+

)
dBs, t ≥ 0,

where B is a two-sided standard Brownian motion. Then

∆n
i B

H =
∫
R

∆n
i g(s) dBs

for any i. Therefore, by well-known properties of fractional Brownian motion,∫ ∞

−∞
∆n

kg(s)∆n
ℓ g(s) ds = E

[
∆n

kB
H∆n

ℓB
H
]

= E
[
BH

∆n
∆n

ℓ−k+1B
H
]

= E
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∆n
BH
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]
− E

[
BH

∆n
BH
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]
= 1

2

{
∆2H

n + ((ℓ− k + 1)∆n)2H − ((ℓ− k)∆n)2H

− ∆2H
n − ((ℓ− k)∆n)2H + ((ℓ− k − 1)∆n)2H

}
= ∆2H

n ΓH
ℓ−k,

which is the second equality in (4.4.2). Next, use the mean value theorem twice on ΓH
r in order

to obtain for all r ≥ 2,

ΓH
r = 1

2
({

(r + 1)2H − r2H
}

−
{
r2H − (r − 1)2H

})
≤ 1

2 (2H)
(
(r + 1)2H−1 − (r − 1)2H−1

)
≤ H(2H − 1)(r − 1)2H−2,

which completes the proof of (4.4.3). Finally,∫ (i−θn)∆n

−∞
∆n

i g(s)∆n
i+rg(s) ds

= ∆2H
n K−2

H
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tH− 1
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2
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n ,

which yields (4.4.4).
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