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Abstract— Grasp planning for multi-fingered hands is still
challenging due to the high nonlinear quality metrics, the high
dimensionality of hand posture configuration, and complex ob-
ject shapes. Analytical-based grasp planning algorithms formu-
late the grasping problem as a constraint optimization problem
using advanced convex optimization solvers. However, these are
not guaranteed to find a globally optimal solution. Data-driven
based algorithms utilize machine learning algorithm frame-
works to learn the grasp policy using enormous training data
sets. This paper presents a new approach for grasp generation
by formulating a global optimization problem with Bayesian
optimization. Furthermore, we parameterize the object shape
utilizing the Gaussian Process Implicit Surface (GPIS) to
integrate the object shape information into the optimization
process. Moreover, a chart defined on the object surface is
used to refine the palm pose locally. We introduced a dual
optimization stage to optimize the palm pose and contact points
separately. We further extend the Bayesian optimization by uti-
lizing the alternating direction method of multipliers (ADMM)
to eliminate contact optimization constraints. We conduct the
experiments in the graspit! Simulator that demonstrates the
effectiveness of this approach quantitatively and qualitatively.
Our approach achieves a 95% success rate on various common
objects with diverse shapes, scales, and weights.

I. INTRODUCTION

Only a limited number of small and medium-sized enter-
prises in Europe use robot systems in production, mainly
dealing with small lot sizes and requiring a more flexible
production process. It is, however, very time-consuming and
expensive to adapt a robot system to a new production line,
and it requires expert knowledge for deploying such a sys-
tem, which, however, is not commonly available in shop floor
workers [1]. Intuitive programming is currently proposed on
the market for accelerating programming and remedying the
problems caused by a lack of expert knowledge. Moreover,
the service robots use semantic knowledge combined with
reasoning and inference to solve the declarative goal. Auto-
matically synthesizing a robot program based on the semantic
product, process, and resource descriptions enable automatic
adaptation to new processes. In this process, the recognition
of objects and parts in the environments is involved, which
is typically designed in CAD systems and described via a
boundary representation [2]. Due to SMEs’ small lot size
production, it is not feasible to train the objects over a
long period of time by using data-driven approaches. Based
on this observation, it will accelerate the deploying time if
we grasp the object firstly in a simulator with the CAD
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models and then transfer the preplanned grasp to the real
world with a 6D pose estimation [3]. Dexterous robotic
grasping planning has been an active research subject in
the robotic community over the past decades. Grasping is
essential in many areas, such as industrial factories and
household scenarios. There have many different kinds of
robotic hands, i.e., traditional parallel-jaw grippers, complex
multi-fingered hands, or even vacuum-based end effectors.
The goal of grasp planning aims to find a proper contact
on the object and an appropriate posture of the hand re-
lated to the object to maximize grasp quality. This is a
challenging task, especially for multi-fingered hands, due to
different kinds of object shapes, the complicated geometric
relationship between robotic hands and objects, and the high
dimensionality of hand configurations. Grasp planning can
be divided into analytic approaches [4] on the one side and
empirical or data-driven approaches on the other side [5]. The
analytical grasp synthesis approach is usually formulated as
a constrained optimization problem over criteria that measure
dexterity, equilibrium, and stability and exhibit a certain dy-
namic behavior. Besides, it requires the analysis of statically-
indeterminate grasps [4] and under-actuated systems. The
latter describes hands, in which the number of the controlled
degrees of freedom is fewer than the number of contact
forces, further increasing the complexity of grasp synergies.
One common assumption made in analytic methods is that
precise geometric and physical models are available to the
robot. Furthermore, optimizing grasp quality with constraints
based on a convex optimization solver such as SQP can
not guarantee to find a good grasp. In contrast to analytic
approaches, the empirical or data-driven methods rely on
sampling the grasp candidate either from a data set or
by first learning a grasp quality and then selecting the
best by ranking them according to some specific metric.
This work will study how to optimize the palm pose and
contact point in the same framework by utilizing a global
Bayesian optimization solver under consideration constraints.
Gaussian Process Implicit Surface Atlas (GPIS-Atlas) is used
to parameterize the diverse shape. Therefore the geometry
information can be integrated into the Bayesian optimization
framework. Furthermore, GPIS-Atlas has the capability to
describe the perfect geometry model in the form of a CAD
model or the noisy point clouds [6]. In the work [3], the
6D pose is estimated between an object in the form of a
CAD model and the corresponding point clouds taken from
an Ensenso Camera. Therefore, for finding an appropriate
grasp pose for this object, we can directly apply our Bayesian
optimization framework with the CAD model instead of



working on noisy point clouds. After that, we transform the
grasp pose using the 6D pose transformation from [3].

II. RELATED WORK

Multi-fingered hand grasp planning is still challenging due
to the high dimensionality of hand structure and complex
graspable object shapes. Automatic grasp planning is a
difficult problem because of the vast number of possible
hand configurations. Several different approaches have been
proposed to find an optimal grasp pose over the past decades.
Goldfeder et al. [7] introduced a database-backed grasp
planning, which uses shape matching to identify known
objects in a database with are likely to have similar grasp
poses [7]. Ciocarlie et al. presented [8] Eigengrasp planning
defines a subspace of a given hand’s DOF space and utilizes
the Simulated Annealing planner to find an optimized grasp.
Miller et al. [9] proposed a primitive shape-based grasp
planning which generates a set of grasps by modeling an
object as a set of shape primitives, such as spheres, cylinders,
cones, and boxes. Pelosso et al. [10] use an approach based
on Support Vector Machines that approximate the grasp
quality with a new set of grasp parameters. It considers grasp
planning as a regression problem by given a feature vector,
which should be defined heuristically.

With the continuous success of deep learning vision,
researchers utilize deep learning, also in combination with re-
inforcement learning, to learn a grasp quality directly from an
image via large training data sets [11]. Levine et al. [12] used
between 6 and 14 robots at any given point in time to collect
data in two months and train a convolutional neural network
to predict grasp success for a pick-and-place task with a
parallel-jaw gripper. Mahler et al. [13] proposed a Dex-Net-
based deep learning framework using a parallel-jaw gripper
or vacuum-based end effector learn a grasp policy based on
millions of grasp experiments. Kalashnikov et al. [14] intro-
duced a scalable self-supervised vision-based reinforcement
learning framework to train a deep neural network Q-function
by leveraging over 580k real-world grasp attempts. However,
the deep learning-based algorithm can only take the 2d
image as an input, and the trained neural network cannot
be easily transferred to another robotic hand configuration.
Varley et al. [15] obtained the geometry representation of
grasping objects from point clouds using a 3D-CNN. Ten
et.al [16] is the state of the art 6 DOF grasp planner (GPD).
Liang et.al. [17] proposed an end-to-end PointNetGPD to
detect the grasp configuration from a point sets. Mousavian
et al. introduced a 6DOF GraspNet by sampling a set of
grasping using a variational autoencoder. In addition to
deep learning, the Bayesian optimization-based algorithm
in [18] can consider uncertainty in input space to find a safe
grasp region by optimizing the grasp quality. Furthermore, it
utilizes unscented transformation-based Bayesian optimiza-
tion (UBO), a popular nonlinear approximation method,
to explore the safe region. However, UBO considers only
the palm pose optimization without considering the contact
point. We present a grasp planning approach in this work,
where we combine Bayesian optimization with an analytical

approach. We use the Grasp Wrench Space (GWS) [19] as
grasp quality metric, which calculates the convex hull over
discretized friction cones from the individual contact wrench
spaces of all contacts. Due to the GWS metric’s complexity,
we explore the potential of Bayesian optimization to optimize
this highly-nonlinear grasp quality problem. Since the hand
posture (hand palm pose) and hand configuration can be
considered separately because the finger’s contact points on
the object surface only depend on the hand posture and
forward kinematics of hand joints, we propose a dual-stage
approach: In the first stage, we optimize the hand palm pose
without considering hand configuration, and in the second
stage, we use the result of the first stage and optimize the
contact points on the object surface. Our approach optimizes
a hand palm pose T ∈ SE(3) regarding its grasp quality. For
this, we present the rotation in hyperspherical coordinates
instead of a rotation matrix or quaternion. We further pa-
rameterize the object surface as a Gaussian Process Implicit
Surface (GPIS) [6] and use a k-D tree to find the closest
point between the current palm pose and object surface.
Based on GPIS, we can further compute a chart  and
the corresponding normal vector N on this nearest point.
Utilizing this chart, we can make a local adaption of the palm
pose to find a better location concerning the object’s surface.
In the second stage, we convert the problem of solving
constraints between the contact points and the object surface
to querying the GPIS given a known contact point. Since the
standard framework of Bayesian optimization cannot solve
this constraint optimization problem, we use the Alternating
Direction Method of Multipliers (ADMM) [20] to assist
the contact point optimization by decomposing the whole
problem into a set of subproblems.

III. PROBLEM FORMULATION

In general, to define a grasp, we need two sets of variables:
the intrinsic variables to define the hand degrees of free-
dom (DOF) and the extrinsic variables to define the hand’s
position relative to the target object. Grasp planning is used
to find the optimized contact points and an associated hand
configuration to maximize grasp quality. The contact point
on the object surface is denoted as c = [c1,⋯ , cn], where
ci ∈ SE(3), and n is the number of fingers. We will assume
that contact happens on the fingertip, and one finger only has
one contact on the object surface . The finger joint of the
hand configuration is described as q = [q1,⋯ , qm], where m
is the DOF. Note that some finger joints are under-actuated
(passive joint). Therefore the number of finger joints is not
equal to the DOF. The pose of the palm is represented by
Tpalm(R, t). We formulate the problem as:

max
c,q,Tpalm

Q(c, q,Tpalm) (1a)

s.t. c = FKpalm2c(q,Tpalm) ∈  (1b)
qmin,i ≤ qi ≤ qmax,i, i = 1⋯m , (1c)

where Q(c, q,Tpalm) is the GWS, which is a 6-dimensional
convex polyhedron, the epsilon and volume quality metric
introduced by Ferrari and Canny [19]. The epsilon quality



is defined as the minimum distance from the origin to any
of the hyperplanes defining the boundary of the GWS. In
contrast, the volume quality is the volume of GWS. FKpalm2c
is the forward kinematics from the palm pose to the contact
points. The formulation (1b) constrains all contact points on
the object surface . Furthermore, a contact is defined as any
point where two bodies are separated by less than the contact
threshold �c , but not interpenetrating. In this work, the object
surface will be parameterized by using GPIS to easily check
if the contact point satisfies the constraint (1b). The problem
in (1) is a high-dimensional nonlinear constraint problem,
besides the gradient of the objective function and constraints
cannot be analytically computed. Further, the convex opti-
mization solver can only find a local minimum. Bayesian
optimization is applied to find a near-global optimization
solution for these problems. Since the optimization of palm
pose is independent of optimization of contact point, we
switch between optimizing the palm pose and the contact
point.

IV. BAYESIAN OPTIMIZATION FOR GRASP PLANNING

Bayesian optimization is a global optimization method,
which can be used to solve the problem

xoptimized = maxx∈
fobj(x) , (2)

where the objective function fobj(x) is a black-box function
or a function which is expensive to evaluate and  ⊆ ℝD

is a bounded domain. We use the Latin Hypercube Sam-
pling (LHS) to get the initial sampling, and save it as
data set 0∶t−1 =

{(

x0, y0
)

,… ,
(

xt−1, yt−1
)}

, and learn a
Gaussian process model (GP). The essential step is to choose
an appropriate acquisition function. Here, we use Expected
Improvement [21], which is defined as

EI(x) = E
[

max
(

fobj(x) − fobj(x+), 0
)]

, (3)

where E is the expectation function, fobj(x+) is the best
observation with the location x+ so far. The EI(x) can be
evaluated analytically under the GP model as

EI(x) = 1
(

�(x)
)

(

(

�(x) − fobj(x+) − �
)

Φ(Z) + �(x)�(Z)
)

,

with Z = 1
(

�(x)
)

(�(x)−fobj(x+)−�
�(x)

)

, where 1(x) is the
indicator function that is equal to 0 for x ≤ 0 and equal
to 1 otherwise. The mean �(x) and standard deviation �(x)
are defined in the GP posterior at x, and Φ and � are the
CDF (cumulative distribution function) and PDF (probability
density function) of the standard normal distribution. � is
a parameter which balances between the exploration and
exploitation. The objective function in our algorithm for
optimizing the grasp contact points is grasp quality which
consist of epsilon and volume quality.

fobj(x) =
(

1(q�)q� + � qvolume
)

, (4)

where � is a predefined parameter. The Matérn covariance
function (� = 5∕2) is chosen as kernel function for the Gaus-
sian process model in the Bayesian optimization and can be

described as: K5∕2(d) = �2
(

1 +
√

5d
� + 5d2

3�2

)

exp
(

−
√

5d
�

)

with hyper parameter � and length-scale �. The parameter d
is the distance between two query points. Since we need to
optimize the palm pose, which is interpreted as a transfor-
mation. We define the distance between two transformation
matrices as ΔT = ‖

‖

t1 − t2‖‖ +
‖

‖

‖

log(RT
1R2)

‖

‖

‖F
∕
√

2, where

the term ‖

‖

‖

log(RT
1R2)

‖

‖

‖F
∕
√

2 is the geodesic distance defined
in the Riemann manifold. We use the RProp (Resilient
Propagation) [22] for optimizing the hyperparameter.

The object surface in our algorithm is described as a GPIS
and every point lying on the surface in the set ′ should sat-
isfy the equality constraints ′ =

{

x ∈ ℝ3 ∶ fGPIS(x) = 0
}

.
Furthermore, the tangent space of each point on these surface
will be computed by using

[

∇fTGPIS(xi)

�T
i (xi)

]

�i(xi) =
[

0
I

]

, (5)

where �i(xi) ∈ ℝ3×2 is the basis of tangent space at the
location x and ∇fGPIS(xi) ∈ ℝ3×1 is the gradient of implicit
function for x. By using �i(x), we can map xi to x′i
with x′i = xi +�i(xi) ui, where ui ∈ ℝ2×1 is a point in the
local coordinate on this chart. The sample value x′i is shown
as black dots in Fig. 1a, the tangent vector on the chart is
shown as red and green arrows, while the blue arrow shows
the normal vector.

A. Hand Palm Pose Optimization (HPP-Opt)

To optimize the palm pose, we need to take the transfor-
mation Tpalm(R, t) ∈ SE(3) into account, where the rotation
matrix R can be interpreted by using a unit quaternion q.
Since the unit quaternion manifold ℍ is an Riemannian
manifold, by virtual equality of ℍ and 4D unit hyper-
sphere 3 =

{

x ∈ ℝ3+1 ∶ ‖x‖ = 1
}

, the quaternion q can
be represented in the hyperspherical coordinates with �,  , �
where �,  range over [0, �] and � ranges over [0, 2�).
Employing hyperspherical coordinates, the constraints of q
disappear. Therefore, the palm pose optimization is converted
to an unconstrained optimization:

max
�, ,�,tpalm

fobj
(

q,Tpalm(R(�,  , �), tpalm)
)

. (6)

To reduce the search space, we constrain the palm pose
between two bounding boxes, represented by an axis-aligned

(a)

Fig. 1: Visualization of (a) Tangent space on a mug surface



minimum bounding box (AABB), denoted as AABB,i with
i ∈ {1, 2}. The smaller one is shown as an orange cube
in Fig. 1a. We define the variable xpalm = [t, �,  , �]T ∈
ℝ6×1. Sampling a point between two bounding box cannot
be formulated mathematically, therefore, we use an ellip-
soid 1 = (a1, b1, c1, a0, b0, c0) to approximate AABB,1 and
another ellipsoid 2 = (a2, b2, c2, a0, b0, c0) to approximate
the bigger bounding box AABB,2. As the result, the palm
pose sample t = [tx, ty, tz] can be formulated as

tx = a0 + r ∗ a1 sin(�) cos(�)
ty = b0 + r ∗ b1 sin(�) sin(�)
tz = c0 + r ∗ c1 cos(�) ,

where m0 =
kmin,1+kmax,1

2 , m1 =
kmax,1−kmin,1

2 , m ∈ {a, b, c},
and k ∈ {x, y, z}. The parameter r is a random variable
which ranges over [1, rmax], where

rmax =
√

√

√

√

1
( a1 sin(�) cos(�)

a2

)2 +
( b1 sin(�) sin(�)

b2

)2 +
( c1 cos(�)

c2

)2
.

The parameter � ranges over [0, �] and � ranges over [0, 2�).
The problem in (6) can be solved by using Bayesian opti-
mization.The solution found by BO is based on the probabil-
ity of best grasp distribution. To improve the performance,
a local adaption based on GPIS-Atlas is proposed.

1) GPIS-Atlas based local adaption: The first step is to
find the closest point from the current palm pose to the
object using k-D tree algorithm. Assuming we found the
pose tclosest , a chart i with the center point tclosest is created
by solving (5). We denoted the outward unit normal vector
of this chart i as Nclosest and the robot hand posture is
designed to orient to the direction of a chart normal N . We
apply the following approaches to get the pose T . Assuming
that the normal vector of hand in the initial state points
to the z-axis nz, the hand is currently in local frame 1
with rotation matrix R1

with respect to the world frame
 . The next hand configuration should point to the normal
direction N in local frame i , therefore the corresponding
rotation matrix Ri

can be interpreted in angle-axis repre-
sentation [naxis, �axis] with �axis = atan2(‖‖nz ×N‖‖ ,nz ⋅N)
and naxis = nz × N . As a result, we can transform the
local frame 1 to i with the rotation transformation
as 1Ri

= RT
1

Ri
. Furthermore, the translation

of the palm pose is defined as tpalm = tclosest + �Nclosest .
This means that the new palm pose xpalm is parallel to the
chart i with the distance ‖�‖, as shown in Fig. 1a. The
parameter is optimized so that the hand is not colliding
with the object. The whole transformation is defined as
Tpalm = T (I , tpalm)T (Ri

, 0)T (Rz, 0). The transforma-
tion T (Rz, 0) is used to further guarantee no collision.
Furthermore, we can define a point set on the chart i as
i and randomly choose a sample tsample ∈ i as tclosest .

B. ADMM-Based Contact Point Optimization (ADMM-CP-
Opt)

The contact point optimization is used to find a set of
desired joints q for each finger and the contact points c on
the object surface. It can be described as

max
c,q

fobj(q,Tpalm) (7a)

s.t. c = FK(q,Tpalm), (7b)
|fGPIS(ck)| ≤ �c , k = 1⋯ n (7c)
qk ∈ [qmin,k, qmax,k], k = 1⋯m , (7d)

where FK calculates the forward kinematics, and n represents
the number of contact points on the object surface. The
parameter m is the DOF of a hand. A contact point is
represented as a transformation Tci . However, each finger has
fewer joints than 6, which results in an underestimated sys-
tem. Consequently, we cannot directly calculate the inverse
kinematics based on the contact points, and it is not possible
to arbitrarily move the fingertip on the object surface. To
relax the constraints, we will not fix the palm pose, but
constrain the palm pose on the chart palm,i, which is parallel
to chart i on the object surface, therefore Tpalm ∈ palm,i.
Since the equality constraints cannot be solved by using
Bayesian optimization, the Alternating Direction Method of
Multipliers (ADMM) based Bayesian optimization [20] is
utilized to solve the contact pose optimization problem (7)
with the new formulation

max
q∈B

fobj(q,Tpalm) + gc(q,Tpalm) , (8)

with gc(q,Tpalm) = �
∑n
i=0 ci(q,Tpalm)

2 and ci(q,Tpalm) =
|

|

|

|

fGPIS
(

FKi
(

q,Tpalm(R, t)
)

)

|

|

|

|

− �c . In order to solve (8),

ADMM introduces an auxiliary variable z, resulting in

max
q,z∈B

fobj(q,Tpalm) + gc(z,Tpalm) (9a)

s.t. q = z . (9b)

In the following, we neglect Tpalm in fobj and gc . By applying
Augmented Lagrangian function for equation (9), a new
objective function is formulated as

�(q, z, y) = fobj(q) + gc(z) +
�
2
‖

‖

‖

‖

q − z +
y
�
‖

‖

‖

‖

2

2
(10)

Therefore, we can solve fobj(q) and gc(z) by alternating over
the following sub problems:

qk+1 = argmax
q

fobj(q) +
�
2

‖

‖

‖

‖

‖

q − zk +
yk

�

‖

‖

‖

‖

‖

2

2
(11a)

zk+1 = argmax
z

gc(z) +
�
2

‖

‖

‖

‖

‖

qk+1 − z +
yk

�

‖

‖

‖

‖

‖

2

2
(11b)

yk+1 = yk + �(qk+1 − zk+1) . (11c)

The optimal condition is defined as ‖‖
‖

qk+1 − zk+1‖‖
‖2

≤ �primal

and ‖

‖

‖

�(zk+1 − zk)‖‖
‖2

≤ �dual, where �primal and �dual are two
predefined optimality tolerances. Each sub problem is solved
by using Bayesian optimization.



(a) Mug: Initial (b) Random Alg (c) EigenGrasp (d) HPP-Opt

(e) Flask: Initial (f) Random Alg (g) EigenGrasp (h) HPP-Opt

Fig. 2: Comparison of different Grasp planning Algorithm
examples for different objects with the multi-fingered hand

V. EXPERIMENT

Simulation results are introduced in this section to verify
the effectiveness of our algorithm. The experiment is exe-
cuted in the platform Graspit! [23] by using Barret hand
Barret hand hat three fingers: finger one hat two joints, where
the last joint is under-actuated. Finger two and three have
one common joint. Each finger has three joints where both
fingers have a passive joint. Therefore the Barret hand fingers
have totaled 4 DOFs. The hand palm pose is denoted as a
6-dimensional vector. Consequently, the whole Barret hand
system has totaled 10 DOFs. The experiment’s graspable
object is stored in the mesh file The GPIS describes the
object by using the mesh triangle verities as the input. Our
approach achieves a 95% success rate on various commonly
used objects with diverse appearances, scales, and weights
compared to the other algorithm. All evaluations were per-
formed on a laptop with a 2.6GHz Intel Core i7-6700HQ
and 16GB of RAM.

A. Experiment on HPP-Opt

In this section, the algorithm HPP-Opt is compared with
other grasp planning. The first grasp planning approach is a
simulated annealing grasp planner using an auto grasp quality
energy as a search strategy, which behaves like a random
grasp planning. The second approach uses an EigenGrasp
planner combined with a simulated annealing solver to guide
potential quality energy. The Bayesian optimization and
simulated annealing are both global optimization solvers,
where the latter is a probabilistic technique for approximating
the global optimum of a given function. We compare the
algorithms with different kinds of shapes. The experiment is
conducted in a fixed time of 20 seconds, and we average the
first 20 best grasp candidates. The best grasp candidate of
mug and flask from whole grasp candidates are visualized
in Fig. 2. The initial state of Barret hand and object are
randomly defined, shown in Fig. 2a and 2e. It can be seen that
the hand configuration selected by random grasp planning is
skewed to the object, and contact points on the surface are
not properly, and the resulting quality is also worse. The

TABLE I: Evaluation of different grasp planning algorithm
for all data sets. The results is an average of first 20 best
Grasp Candidates. A greater value of epsilon and volume
means a more stable grasp. The best result is highlighted in
green

Algorithms

random Alg EigenGrasp HPP-Opt ADMM-CP-Opt

quality q� qvolume q� qvolume q� qvolume q� qvolume
Mug 0 9.5352e-05 1.7281e-04 7.1981e-04 0.0555 0.0097 0.06 0.0161
Flask 0 3.9603e-05 4.9050e-04 2.0142e-04 0.0107 0.0014 0.0107 0.0026
Phone 0 3.9209e-05 0.0017 4.6942e-04 0.0142 0.0035 0.0142 0.0042
Sphere 0.0042 0.0019 0 0.0011 0.0495 0.0121 0.050 0.0279
Bishop 0 8.1935e-05 0.0012 9.7708e-05 0.0094 0.0011 0.0094 0.0016

TABLE II: The best grasp from 20 grasp candidates. The
best result is highlighted in green

Algorithms

random Alg EigenGrasp HPP-opt ADMM-CP-Opt

quality q� qvolume q� qvolume q� qvolume q� qvolume
Mug 0 0.0012 0.0065 0.0011 0.1039 0.0151 0.1158 0.0340
Flask 0 0.0004 0.0130 0.0031 0.0449 0.0018 0.0452 0.0019
Phone 0 0.0004 0.0310 0.0007 0.0208 0.0198 0.0335 0.0006
Sphere 0.0844 0.0301 0 0.0086 0.0914 0.0362 0.1676 0.0728
Bishop 0 0.0012 0.0164 0.0004 0.0390 0.0020 0.0444 0.0045

results of EigenGrasp show a better solution where the palm
pose is trying to parallel to the object surface. The palm
pose selected by HPP-Opt is more reasonable in comparison
to the other two algorithms. We show the quantitative result
is in table (I). In different kinds of geometry shapes, our
algorithm can achieve a much more stable grasp than other
algorithms. The epsilon quality achieved by the first approach
is almost zero besides in the case of a sphere. The epsilon
quality by Eigen grasps a minimal value. On average, the
epsilon quality of HPP-Opt is 28.5 times greater than Eigen
grasp’s epsilon quality. And the HPP-Opt’s volume quality
is 32.1417 times greater than Eigen Grasp’s volume quality.
Furthermore, we show the best grasp candidate from the first
20 best grasp candidates in Table II.

B. Experiment of integration HPP-Opt and ADMM-CP-Opt

In section V-A, hand palm pose is optimized based on
the Bayesian optimization algorithm combing with local
adaption, and hand finger configuration is set based on the
function of AutoGrasp from Graspit [23]. The principle of
AutoGrasp is to close each hand finger DOF at a rate equal
to a predefined speed factor multiple with its default velocity,
and the movement is stopped at the contact point. Therefore
ADMM-CP-Opt is used to assist the HPP-Opt to find a
better hand finger configuration. The comparison result is
visualized in Fig. 3. In the case (3a), fingers two and
three are too close and grasp the bottom of the flask. As
a consequence, the resulting triangle has a small internal
angle. Applying ADMM-CP-Opt splits the fingers two and
three by maximizing epsilon and volume quality and makes
the resulting triangle closer to the equilateral triangle with
a more stable grasp. The same improvement happen in the
Fig. 3b - Fig. 3f as well. The solution founded by ADMM-
CP-Opt is trying to make the resulting triangle as closer as



the equilateral triangle. In Table I, ADMM-CP-Opt improves
the volume quality of HPP-Opt. And In table II, ADMM-
CP-Opt shows a better grasp than HPP-Opt in most cases
under epsilon and volume quality metrics.

(a) (b) (c)

(d) (e) (f)

Fig. 3: The comparison result of HPP-Opt and ADMM-CP-
Opt. In each sub figure, the left one is result of HPP-Opt,
and the right one is improved by using ADMM-CP-Opt

VI. CONCLUSION AND OUTLOOK

We propose a new algorithm for grasp planning with
multi-fingered hands by optimizing the hand palm pose and
hand finger configuration separately. No initial configuration
is required using a global Bayesian optimization solver,
which shows superiority over the convex optimization solver.
We propose a dual-stage optimization process by considering
the independence of the hand palm pose and finger con-
figuration. In the first stage, we utilize a GPIS to describe
the graspable object so that collision checking of contact
points can be integrated into the optimization framework.
Furthermore, the chart on the object surface can be computed
using the GPIS, which can be used to explore the local
information of objects. Two ellipsoids are used to define
the palm pose constraints domain. Relying on the first stage
result, we apply an ADMM based Bayesian optimization to
optimize the contact points. The whole process will switch
between HPP-Opt and ADMM-CP-Opt. We collect the best
20 Grasps, and the final grasp is selected by ranking the
grasp candidates under consideration of epsilon and volume
quality. In this work, we describe only the object in GPIS.
In future work, we can describe the hand part into GPIS so
that the collision checking can be converted to a problem
by querying the distance between two surfaces. Besides,
the robot arm is not considered in the grasping scenario.
It will be interesting to integrate the constraints of robot arm
manipulability in the objective function.
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