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Abstract— This paper presents two different approaches
to generate a time local-optimal and jerk-limited trajectory
with blends for a robot manipulator under consideration of
kinematic constraints. The first approach generates a trajectory
with blends based on the trapezoidal acceleration model by
formulating the problem as a nonlinear constraint and a
non-convex optimization problem. The resultant trajectory is
locally optimal and approximates straight-line movement while
satisfying the robot manipulator’s constraints. We apply the
bridged optimization strategy to reduce the computational
complexity, which borrows an idea from model predictive
control by dividing all waypoints into consecutive batches with
an overlap of multiple waypoints. We successively optimize each
batch. The second approach is a combination of a trapezoidal
acceleration model with a 7-degree polynomial to form a path
with blends. It can be efficiently computed given the specified
blending parameters. The same approach is extended to Carte-
sian space. Furthermore, a quaternion interpolation with a high
degree polynomial under consideration of angular kinematics
is introduced. Multiple practical scenarios and trajectories are
tested and evaluated against other state-of-the-art approaches.

I. INTRODUCTION

Trajectory generation is a fundamental topic in the robotics
community that deals with the calculation of a time-optimal,
smooth, jerk-limited, and accurate motion for a well-defined
task. Manually programming and optimizing paths for com-
plex robot systems is no longer viable when it comes to
flexible production with small lot sizes and multiple robot
manipulators, a common use case in small and medium-
sized enterprises [1]. In order to quickly adapt to new
processes, new paths have to be generated automatically by
modern path planning algorithms that are able to calculate
complex motions for multiple manipulators in a narrow
space. As cycle times should be as short as possible, globally
optimal path planning algorithms [2] present a consider-
able advantage over classical algorithms that are followed
by a local optimization step. In order to avoid stopping
at every waypoint in a path, supporting various forms of
blending is a desired property in a trajectory generation
algorithm to further increase the performance of a robot
system. Kinodynamic path planning algorithms with velocity
information however are proven to be PSPACE hard [3]
and therefore lead to a large increase in computation time.
Industrial robot controllers and open-source implementations
commonly support blending via linear parabolic motions
and cubic spline interpolation. Trajectories based on linear

Jianjie Lin, Markus Rickert, Alois Knoll are with Robotics, Artificial
Intelligence and Real-Time Systems, Department of Informatics, Technis-
che Universität München, Munich, Germany jianjie.lin@tum.de
{rickert,knoll}@in.tum.de

parabolic blending, that only limit the acceleration, suffer
from infinite jerk around the blend waypoints [4]. Although
cubic spline interpolation can improve the smoothness of a
path by limiting the jerk, it can result in a more significant
deviation of the straight-line movement. This is especially
important when calculating trajectories for position-based
solutions in robot path planning. Trajectory generation with-
out explicit error bounds in the path deviation can lead to
undesired behavior. Deviating too far from the collision-
free solution path can result in collisions. Based on these
observations, we present two different approaches to generate
a trajectory for following multiple waypoints. They support
an explicit upper bound in deviation and are jerk-limited
around the blended waypoints. In our previous work [4],
we consider the situation of performing an accurate motion
for a robot manipulator by forcing the trajectory to pre-
cisely pass through all waypoints, which are either manually
specified or generated via a path planning algorithm. In
this work, we extend this to a more general application by
considering blending around the waypoints. In contrast to
most state-of-the-art blending algorithms, the jerk limitation
is followed throughout the trajectory. In the same way as
Haschke et al. [5] and Kröger et al. [6], the trapezoidal
acceleration profile is used to generate the trajectory between
two consecutive waypoints. As stated in [4], the trapezoidal
acceleration profile increases the optimization complexity
while considering phase synchronization. In comparison to
our previous work [4], we relaxed the objective function by
introducing two additional weights to control the distribution
of acceleration, deceleration, and cruising phases, which
reduces the optimization complexity and shows a better
performance from the perspective of straight-line movement.
We continue to utilize the principle of model predictive
control [4] for optimizing all waypoints by decomposing
them into many consecutive waypoint batches and bridging
each two adjacent batches with an overlapping waypoint. In
addition to the optimization approach, we present another
new approach that combines the trapezoidal acceleration
model with a high-degree polynomial to perform a blending
trajectory in joint and Cartesian space. Notably, quaternion
interpolation is integrated and extended to a high degree
polynomial, which considers the angular jerk and results in
a smooth quaternion trajectory.

II. RELATED WORK

Generating time-optimal and smooth trajectories has been
studied extensively for decades in the robotics community.



The proposed trajectory planning techniques are roughly
divided into two categories: online and offline planning.

Online real-time trajectory generation is mainly used to
deal with unforeseen events and a dynamic and fast modifica-
tion of the planned trajectory. Macfarlane et al. [7] proposed
a jerk-bounded fifth-order polynomial with parabolic blends
between two waypoints. Haschke et al. [5] presented an
online trajectory planner by considering arbitrary initial
kinematics and stopping at each waypoint. Kröger et al. [6]
extended the online planner in a more general approach,
which can handle arbitrary start and goal states. Lange
et al. [8] proposed a path-accurate and jerk-limited online
trajectory generation in configuration space. However, this
cannot be easily extended to multiple waypoints and it is
also not possible to blend the trajectory around the target.

Offline trajectory planning is suitable for a well-defined
task, such as assembly or welding applications. The standard
trajectory generator utilizes polynomials based on splines
such as cubic splines or polynomials of higher degrees to
provide a jerk-bound smooth trajectory. B-splines and their
extension method [9] are also widely used to generate smooth
trajectories. Although polynomial-based and B-spline-based
algorithms can generate a smooth trajectory, they cannot
fully explore the robot’s capabilities and show a significant
deviation from a straight line. Pham et al. [10] proposed a
new approach based on reachability analysis for the time-
optimal path parameterization (TOPP) problem. Similarly,
Nagy and Vajk [11] applied a linear programming-based (LP)
solver to tackle TOPP. Furthermore, Barnett et al. [12] intro-
duced a bisection algorithm (BA) by extending the dynamic
programming approaches to generate a trajectory. However,
those algorithms are expensive to perform a trajectory with
blends. Kunz et al. [13] proposed a path-following algorithm
by adding circular blends that consider the acceleration
bounds in joint space. Dantam et al. [14] presented spher-
ical, parabolic blends by using the SLERP function, where
no interpolation in a Cartesian pose is considered. These
algorithms however do not take jerk limitation into account.

III. PROBLEM FORMULATION

The goal is to find a time-optimal, jerk-limited, and smooth
trajectory that blends an intermediate waypoint without vi-
olating kinematic constraints. Furthermore, it is required to
minimize the deviation to a straight line in either joint or
Cartesian space. The trapezoidal acceleration-based trajec-
tory model [4], also called seven-segment model, has the
capability to generate a smooth and jerk-limited trajectory.
At segment ℎ ∈ [0,⋯ , 6], the kinematics are formulated as
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at the waypoint i in the axis k. The parameter Δti,ℎ is
the time difference, defined as ti,ℎ+1 − ti,ℎ. For a phase

synchronization [15] trajectory, position, velocity, acceler-
ation, and jerk in each axis at the same segment should
be synchronized. The time evolution of a position is in-
terpreted by a third-order polynomial, which can increase
the smoothness of trajectories by bounding the jerk. In this
paper, we present two approaches: In the first approach, we
extend our previous work, which enforces a precise pass
through all waypoints, denoted as TrajOpt-Pass-Joint (TOPJ),
to generate a blending trajectory by formulating it as a non-
linear constraint optimization problem, indicated as TrajOpt-
Blend-Joint (TOBJ). In the second approach, we combine
the trapezoidal acceleration model with a high-dimensional
polynomial (7-degree) to generate a blending trajectory both
in joint space TrajPoly-Blend-Joint (TPBJ) and Cartesian
space TrajPoly-Blend-Cart (TPBC).

A. Blending by Optimization in Joint Space (TOBJ)

A blending trajectory is formulated as a nonlinear con-
straint optimization problem by applying a nonlinear op-
timization solver (SQP) [16]. The work presented in this
paper introduces a newly designed objective function and
additional inequality and equality constraints. We follow the
same optimization strategy as introduced in [4].

1) Objective Function: The purpose of the objective func-
tion f is to find a trajectory that is optimal in time and moves
as linearly as possible in joint space as
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where n is the number of waypoints, m are the degrees
of freedom of a robot. The time interval of the accel-
eration phase is indicated as Δti,acc, the cruising phase
as Δti,cruis, and the deceleration phase as Δti,dec. The weight
values �1 and �2 are used to control the distribution of
the acceleration/deceleration and cruising phase. The choice
of

(

(Δti,acc + Δti,dec)�1
)2 + (Δti,cruis�2)2 has advantages

over the formulation
(

(Δti,acc + Δti,dec)�1 + Δti,cruis�2
)2,

which avoids the product of (Δti,acc+Δti,dec)Δti,cruis, so that
acceleration/deceleration phase and cruising phase cannot
affect each other. On top of this, �3 is used to minimize
the whole trajectory time. In this formulation, �3 and �1∕�2
conflict with each other. �1∕�2 is used to achieve a straight-
line motion, while minimizing the time with �3 requires a
longer acceleration/deceleration phase that can lead to an
overshooting trajectory. In [4], the straight-line deviation
bound is added in the objective function. In this work, we
relax this constraint by emphasizing a straight-line in joint
space. Furthermore, the overshooting is observed with
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ative, the reached position overshoots the target. To elim-
inate this undesired behavior, the cruising phase should
be omitted. Since Δpki,acc + Δp

k
i,dec has a longer distance

than pki,target − pki−1,0, we can reduce the cruising veloc-
ity vki,3 to shorten Δpki,acc. Besides, the trapezoidal end
velocity vi,7 influences the position Δpki,dec, which can be
automatically tuned by the optimization solver. We add a

regular term (vki,3)
2 exp(−
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2�2 ) in the objective function

with �, which controls the decay rate. It can be shown
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is approximated as (vki,3)
2, and the velocity is reduced by

minimizing the objective function. In the case of Δti,cruis > 0,

the Gaussian value exp(−
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2�2 ) is exponentially decayed to

zero, which has no effect on the cruising phase.
2) Kinematic Constraints: Instead of passing through

the waypoints, we define a blending bound between two
consecutive line segments. Furthermore, we set a non-zero
velocity and acceleration for each waypoint, except for the
first and last waypoint. The constraints are described as
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where pki+1,bl,start is the start blending segment position at
waypoint i + 1 in axis k and pki+1,bl,end is the end blending
segment position at waypoint i + 1 in axis k. The vari-
able pki,bl,lower , p

k
i,bl,upper is a lower and upper blending bound,

respectively. The corresponding optimized blending way-
point at i + 1 in axis k is indicated as pki+1,bl. The variable ℎ1
and ℎ2 are predefined values that depend on the blending
percentage. One relaxation of the jerk j constraint [5] is
made by allowing double acceleration or deceleration phases:
sign(j) is no longer strictly defined as [±, 0,∓, 0,∓, 0,±]
but changed to sign(j) = [±, 0,±, 0,±, 0,±]. This relaxation
allows reaching the next waypoint without slowing down.

3) Blending Bound Constraints: The blending con-
straint pi,bl,con is computed as pi+1+ ŷr�, where ŷ is defined
as ŷ2−ŷ1
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and li = min

{

‖pi+1−pi‖
2 , ‖pi+2−pi+1‖2 , � sin(�i+1∕2)

(1−cos(�i+1∕2))

}

, where �
is the predefined blending distance from qi+1. � is the per-
centage value for controlling the blending bound. The devi-
ation �bl = ‖

‖

pi,bl,con − p(ti,7)‖‖ is bound. Utilizing the blend-
ing constraints, we have pki,bl,lower = min{pki,bl,con, p

k(ti,7)}
and pki,bl,upper = max{p

k
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B. Blending with Polynomial in Joint Space (TPBJ)

The second approach combines the trapezoidal with a
high-dimensional polynomial to form a blending path. The
blending segment is described as a high-degree polynomial
under consideration of initial f0 = (p0, v0, a0, j0) and
final f1 = (p1, v1, a1, j1) kinematic constraints. These
require a total of eight coefficients, therefore we utilize
a 7-degree polynomial function in one dimension: f (t) =
b7t7 + b6t6 +⋯ + b2t2 + b1t + b0. The coefficients b0 - b3
can be computed using f0 with b0 = p0, b1 = v0, b2 =

a0
2
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j0
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Due to this, x1(t1, f0, f1) = A−11 (y1 − A2y2) with time
matrices A1, A2. The polynomial is simplified as

f (t, f0, f1) = [t7, t6, t5, t4]x1(t1, f0, f1) + ℎ2(t, f0) , (5)

where ℎ2(t, f0) is described as 1
6 j0t

3 + 1
2a0t

2 + v0t + p0.
Firstly, we assume that the initial f0 and final f1 kinematic
constraints are available. Therefore, f (t) depends only on the
time t. To find a polynomial blending trajectory that satisfies
all kinematic constraints, we need to verify the extreme point
of the polynomial by computing the root of its derivative.
For example, the extreme point of jerk can be found at the
position where the first derivative of the jerk (snap) is equal
to zero. In addition, a n-degree polynomial has at most n real
roots. The constraints can be mathematically formulated as

|f (n−1)(�(f (n)))��(�(f (n)))| ≤ kmax , (6)

where f (n) is n-th derivative of f with n ∈ [1, 4] and the
corresponding constraints kmax ∈ [pmax, vmax, amax, jmax].
The root-finding function �(f (n)) for a given polynomial is
used to find the extreme value position for f (n−1). �A(x) is
the indicator function of A and will be set to one if x ∈
[0, t], otherwise to zero. Note that if the �A(x) function
is not derivable, the gradient-based optimization solver will
diverge. To find a time-optimal polynomial trajectory that
satisfies initial/final conditions and lies within the kinematic
constraints, we iteratively check the constraints (6) by adding
a small delta to t = t + Δt, where in our case Δt is set
to 0.001. Furthermore, to obtain the initial f0 and final f1
kinematics, we compute a Point to Point (P2P) trapezoidal
acceleration profile movement between each two waypoints,
which can be in joint space or Cartesian space, with zero
initial and end conditions, and the computed traveling time
is indicated as ti−>i+1. After that, we predefine a blending
percentage � to set a start blending time tbstart = (1−�)ti−>i+1
and end blending time tbend = �ti+1−>i+2 for each two
consecutive trajectories. By querying the trapezoidal model
at tbstart and tbend , we obtain the kinematics f0 and f1.



C. Blending with Polynomial in Cartesian Space (TPBC)

Utilizing the same principle, we extend the algorithm to
the Cartesian space, which is widely used in industrial appli-
cations. The blending trajectory in Cartesian space requires
separate blending for position and orientation. Interpolation
of the Cartesian space is executed in the same way as de-
scribed in Section III-B. For the orientation part, which has to
consider a spherical interpolation, we apply the formulation:

h(t) = hiΔh(t) = hi
(

u(t) sin(�(t)∕2)
cos(�(t)∕2) ,

)

(7)

where hi is the initial quaternion, and Δh(t) transforms the
quaternion from hi to h(t). The Eigen axis between two
quaternions is defined as u(t) = �(t)∕ ‖�(t)‖ ∈ 3 with a
rotation angle �(t) = ‖�(t)‖. Therefore, the quaternion inter-
polation depends only on �(t) ∈ 3. To consider the angular
velocity !, angular acceleration !̇, and angular jerk !̈ at
the start and end state for the quaternion blending, the time
evolution function �(t) is described as: �(t) = a1(x − 1)7 +
a2x(x−1)6+⋯+a8x7 with x = t

tf−t0
∈ [0, 1]. Its roots and

its derivative are computed at point x = 0 and x = 1. Based
on ḣ = 1

2h!, we can derive the relationship between ! ∈ 3

and �̇ ∈ 3 as ! = u�̇ + sin(�)w × u − (1 − cos(�))w,
where w = (u×�̇)

� ∈ 3 and �̇ = uT �̇ is a scalar value. We
further simplify ! with the skew-symmetric matrix (⋅)× as
! = (uuT − sin(�)

� u×u× − (1−cos(�))
� u×)�̇ = A!,1�̇. In the same

way, we can compute the angular acceleration !̇ and jerk !̈.
We combine Cartesian position and quaternion interpolation
to form a trajectory with blends.

IV. EXPERIMENTAL EVALUATION

We compare the performance of the presented approaches
in this paper with the work by Kunz et al. [13] (TO-BAV),
Pham et al. [10] (TOPP-RA) and our previous work [4].
The work in [13] generates a trajectory with a designed cir-
cular blend under consideration of velocity and acceleration
bounds and the work [10] used the reachability-analysis (RA)
to solve the time optimal path parameterization (TOPP)
problem. Our previous work [4] generates a trajectory by
forcing a precise pass through all desired waypoints without
stopping. For the evaluation of the motion planning scene,
the collision-free paths in the examples are computed using
the Robotics Library [17], which is also used for kinematic
calculations and simulation. In the evaluation, we set the
weights in [4] and TOBJ as �1 = 1.2, �2 = 1, �3 = 5000,
and �4 = 10. All evaluations were performed on a laptop
with a 2.6GHz Intel Core i7-6700HQ and 16GB of RAM.

A. Evaluation of Deviation from Straight-Line in Joint Space

For the first evaluation, we consider a subset of the well-
known ISO 9283 [18] cube industrial benchmark as shown in
Fig. 1. Here, the robot’s end effector has to follow a number
of waypoints that are part of a two-dimensional rectangle
inside a three-dimensional cube while applying blending.
The corresponding results are shown in Fig. 1. The previous
work TOPJ [4] in Fig. 1a completed the ISO cube task

within 6.26 s by passing through all waypoints and the gener-
ated trajectory has to deviate from the straight-line movement
to avoid stopping at each waypoint. For improving the quality
of the trajectory, TOBJ presented in this work extends the
TOPJ by blending around the target position, which results
in a better straight-line movement and completed the ISO
cube task with a shorter time of 6.1 s due to a shortened
path length. The polynomial based algorithm (TPBJ) can
further reduce the completion time to 5.94 s by setting a
bigger blending circle radius.

B. Comparison between TO-BAV, TOPP-RA and TPBJ

In this section, we compare the algorithm of [10], [13] and
our polynomial-based one, as using an extreme jerk value
in the optimization-based one may not converge since the
gradient value in jerk direction is not at the same order
of magnitude with other gradient values in the gradient
vector. The results are shown in Figs. 2a to 2o. The first
column shows the results from TO-BAV [13], where the
velocity arrives at the peak value very quickly with execution
time 2.2577 s. The second column illustrates the results of
TOPP-RA [10], which is forced precisely to pass through
desired waypoints with the traveling time 2.88 s. The other
columns show the results of the polynomial-based algorithm
with increasing jerk limits, starting from 5, to 100, and
finally 10 000 times the maximum velocity value. The re-
spective trajectory travel time reduces from a value of 3.577 s
to 2.28 s and our algorithm gradually approaches the profile
of [13], while still limiting the jerk. We plot the first and third
DOF path without loss of generality, shown in the first row.
TOPP-RA produces a trajectory shown in Fig. 2b which has
a noticeably bigger straight-line deviation in joint space than
other two algorithms. The bigger straight-line deviation can
lead to a collision, which is not desirable for the industrial
application. From the perspective of velocity and acceleration
performance, the velocity profile from TOPP-RA shown
in Figs. 2g and 2l is less smooth than TO-BAV and TPBJ
and exhibits several vibration points.

C. Evaluation of the Algorithm in a Real Robot Workcell

We evaluate our algorithms on a Universal Robots UR5
robot manipulator by looking at the actual velocity and
current measured by the UR5 controller with an update rate
of 125Hz over the native Real-Time Data Exchange protocol.
We compare our approaches against the algorithm developed

(a) (b) (c)

Fig. 1: Comparison of joint space trajectories for the ISO
cube scenario. The plots show the first and second DOF of
different algorithms. The straight line reference in joint space
is shown in red, the calculated joint trajectory in blue with
(a) TOPJ [4], (b) TOBJ, (c) TPBJ.



(a) Pos. (TO-BAV) (b) Pos. (TOPP-RA) (c) Pos. (TPBJ) (d) Pos. (TPBJ) (e) Pos. (TPBJ)

0 s 2.257 s
−2.6 rad∕s

2.2 rad∕s

(f) Vel. (TO-BAV)

0 s 2.887 s
−2.7 rad∕s

2.2 rad∕s

(g) Vel. (TOPP-RA)

0 s 3.578 s

−1.31 rad∕s

1.13 rad∕s

(h) Vel. (TPBJ)

0 s 2.328 s
−2.52 rad∕s

2.19 rad∕s

(i) Vel. (TPBJ)

0 s 2.28 s
−2.25 rad∕s

1.94 rad∕s

(j) Vel. (TPBJ)

0 s 2.257 s
−6.3 rad∕s2

6.3 rad∕s2

(k) Acc. (TO-BAV)

0 s 2.887 s
−6.3 rad∕s2

6.3 rad∕s2

(l) Acc. (TOPP-RA)

0 s 3.578 s

−3.3 rad∕s2
4.17 rad∕s2

(m) Acc. (TPBJ)

0 s 2.328 s
−6.9 rad∕s2

6.31 rad∕s2

(n) Acc. (TPBJ)

0 s 2.28 s
−6.27 rad∕s2

6.32 rad∕s2

(o) Acc. (TPBJ)

Fig. 2: Comparison of results from TO-BAV [13], TOPP-RA [10] and TPBJ with increasing jerk constraints. (a)–(e) show the
plot of first and third DOF with generated trajectory (blue) and target straight-line path (red). (f)–(j) is the velocity profile. (k)–
(o) is the acceleration profile. In our approach, TPBJ gradually increases jerk constraints from jmax = {5, 100, 10000}vmax.

(a) TO-BAV (b) TOPJ (c) TOBJ (d) TPBJ (e) TPBC

0 s 3.30 s
−1.8 rad∕s

1.6 rad∕s

(f) TO-BAV

0 s 3.83 s

−1.4 rad∕s

1.1 rad∕s

(g) TOPJ

0 s 3.80 s

−1.1 rad∕s

1.0 rad∕s

(h) TOBJ

0 s 3.56 s

−1.3 rad∕s

1.2 rad∕s

(i) TPBJ

0 s 4.36 s

−1.2 rad∕s

0.9 rad∕s

(j) TPBC

0 s 3.30 s
−4 rad∕s

0 rad∕s

4 rad∕s ⋅10−2

(k) TO-BAV

0 s 3.83 s

−2 rad∕s
0 rad∕s
2 rad∕s

⋅10−2

(l) TOPJ

0 s 3.80 s

−2.1 rad∕s
0 rad∕s

2.1 rad∕s
⋅10−2

(m) TOBJ

0 s 3.56 s

−2.5 rad∕s
0 rad∕s

2.5 rad∕s
⋅10−2

(n) TPBJ

0 s 4.36 s

−2 rad∕s
0 rad∕s
2 rad∕s

⋅10−2

(o) TPBC

Fig. 3: A comparison of different trajectory profiles for the UR5 example. The individual plots show (a)–(e) position, (f)–
(j) velocity with the controller’s target (red) and actual (blue) value, and (k)–(o) corresponding velocity differences.

by TO-BAV [13]. The evaluation results are illustrated in
Fig. 3. The maximum velocity and acceleration values are
identical for all trajectory generators. The only difference
is that [13] does not consider any jerk limitation. The
remaining algorithms limit the maximum jerk to a value of
five times faster than the maximum velocity. We evaluate
the computational complexity of each algorithm by running
the experiment 40 times. The computed trajectories are
visualized in a 3D environment [17] as shown in Figs. 3a
to 3e. The blending directly implemented in Cartesian space
follows a straight line. The other four algorithms have a sim-
ilar trajectory performance. It needs be pointed out that the
blending mode in [4] is different from the other algorithms,
as it can pass precisely through all desired waypoints without

stopping. From the perspective of velocity performance, the
result from [13] indicates a large gap between desired and
real velocity which occurs at each turning point, shown in
Fig. 3k, as the robot controller is not able immediately to
execute a trajectory that contains an infinite jerk. If the
maximum specified acceleration is further increased, the
additional burden on the motors may lead to hardware issues
and a reduced lifetime. In contrast to this, the algorithm
presented in this work considers the jerk limitation. The robot
controller can follow the desired waypoints continuously
and demonstrates reduced motor current values. Figures 3g
and 3h exhibit a clear period of cruising phase in comparison
to the other algorithms, as the objective function in the
optimization step emphasizes a longer constant velocity



TABLE I: Benchmark results of path planning scenarios. The best results are highlighted in bold and smaller values are
better. The maximum blending deviation � is set to 0.1. The jerk limitation used by TPBJ is set to 100x and 500x of the
maximal velocity constraints, denoted as TPBJ1 and TPBJ5, respectively. TOBJ is set to 100x. Npoint describes the number
of waypoint, tcomp is the computation time, and ttra is the traveling time. Lalg is the traveling length, Lstra is the base
straight-line length, and we present the percentage.

Scenario 1 (Npoint = 42) Scenario 2 (Npoint = 55) Scenario 3 (Npoint = 42) Scenario 4 (Npoint = 181)

Alg. TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5

tcomp [s] 0.23 0.28 54.15 0.15 0.088 0.28 0.186 65.7 0.65 0.319 0.32 0.45 149.52 0.41 0.25 1.68 0.54 231.68 0.70 0.41
ttra [s] 4.08 3.759 7.09 7.02 5.95 3.67 3.40 6.35 6.58 5.88 25.20 23.95 26.17 26.32 25.48 11.75 10.55 26.48 26.44 18.91

Lalg∕Lstra 0.999 1.0027 0.997 1.0001 0.999 0.999 1.003 0.998 1.0001 0.998 0.998 1.174 0.997 1.001 0.997 0.996 1.001 1.001 1.001 0.997

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Fig. 4: Benchmarks on different motion planning scenarios. (a) a Comau Racer 7-1.4 moves to a workstation with a parallel
gripper. (b) a UR5 moving between two walls. (c)–(d) a Kuka KR60-3 next to a wall and 3 columns with a vacuum gripper.

phase over the acceleration and deceleration phases. This
behavior is desirable in certain industrial robot task such
as welding and gluing, as the cruising segments show a
smoother overall behavior compared to the other segments.

D. Evaluation of Computation Complexity in Motion Plan-
ning Scenarios

We evaluate the algorithms for generating trajectories in
different path planning scenarios with an increasing number
of waypoints (from 42 to 181) and different point distribution
characteristics, as illustrated in Fig. 4. We compare our
approaches against TO-BAV, which is currently a standard
trajectory generator in the MoveIt! framework, and TOPP-
RA. We summarize the results in Table I. Regarding com-
putation time, TPBJ is faster in most scenarios apart from
scenario 2. In comparison to TOBJ and TPBJ under the same
jerk limitation (100x of maximal velocity constraints), they
show a similar performance. However, if the jerk limitation is
bigger than 100x, TOBJ has a convergence problem, because
jerk and time have huge differences in numerical magnitude.
In comparison to TO-BAV and TPBJ with jerk limitation set
to 100x and 500x of the maximum velocity constraint, we
can conclude that with a higher jerk limitation, TPBJ can sig-
nificantly reduce the traveling time. This conclusion can be
drawn from subsection IV-B as well. The trajectory optimizer
TOPP-RA without jerk limitation generates a trajectory with
minimal traveling time. From the perspective of straight-line
deviation, TOPP-RA generated a trajectory with significant
overshooting in scenario 3 with 117.4% path length with
respect to a straight-line movement, since TOPP-RA utilizes
cubic spline interpolation for path parameterization. The
drawbacks of using cubic spline interpolation are shown
in [4].

V. CONCLUSION

In this work, we have extended our previous work by
including the capability to blend around the target position.
We have presented two different approaches to finding a
time-optimal and jerk-limited trajectory. In the first approach,
the algorithm follows the same principle as in our previous
work by using a bridged optimization procedure, which
reduces the computational complexity to a linear complexity
with respect to the number of waypoints and degrees of
freedom. In contrast to our previous work, we redesigned
the objective function and blending constraints to achieve
a better straight-line movement in joint space and allow
the trajectory to blend around the target position. However,
TOBJ has a convergence problem when the jerk constraint
exceeds 100x of the maximum velocity constraint due to
the huge differences in numerical magnitude between jerk
und time. Further improvement will be left to future work
by using more advanced optimization strategies. The second
approach combines a trapezoidal trajectory with a seven-
degree polynomial. In this approach, we compute a point-
to-point motion for every two waypoints by using a stan-
dard trapezoidal acceleration model. By specifying a blend
percentage, the seven-degree polynomial can be used to
find a curve segment around the target position. To find
a time-optimal trajectory that fully considers all kinematic
constraints, we iteratively increase the trajectory time until
these constraints are no longer violated for all degrees of
freedom. The second approach can be directly extended
to the Cartesian space by using the introduced quaternion
interpolation algorithm. These two approaches do not suffer
from convergence problems and show good performance
in our experiments when compared against state-of-the-art
approaches without jerk limitations.
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