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Abstract
Every sector needs to minimize GHG emissions to limit climate change. Emissions from transport, however, have remained
mostly unchanged over the past thirty years. In particular, air travel for short‐haul flights is a significant contributor to trans‐
port emissions. This article identifies factors that influence the demand for domestic air travel. An agent‐based model was
implemented for domestic travel in Germany to test policies that could be implemented to reduce air travel and CO2
emissions. The agent‐based long‐distance travel demand model is composed of trip generation, destination choice, mode
choice and CO2 emission modules. The travel demand model was estimated and calibrated with the German Household
Travel Survey, including socio‐demographic characteristics and area type. Long‐distance trips were differentiated by trip
type (daytrip, overnight trip), trip purpose (business, leisure, private) and mode (auto, air, long‐distance rail and long‐
distance bus). Emission factors by mode were used to calculate CO2 emissions. Potential strategies and policies to reduce
air travel demand and its CO2 emissions are tested using this model. An increase in airfares reduced the number of air
trips and reduced transport emissions. Even stronger effects were found with a policy that restricts air travel to trips that
are longer than a certain threshold distance. While such policies might be difficult to implement politically, restricting air
travel has the potential to reduce total CO2 emissions from transport by 7.5%.
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1. Introduction

According to the UN emissions gap report from 2019
(UN Environment Programme, 2019), emissions need to
be reduced by 7.6% every year from 2020 to 2030 to
limit global warming to 1.5°C. Otherwise, temperatures
are expected to rise 3.2°C above pre‐industrial levels,
with severe impacts on the environment, agriculture,
and human well‐being. While many sectors in Germany
were able to reduce greenhouse gas emissions over
the past 20 years (including agriculture, manufacturing,

and energy), emissions from the transport sector stag‐
nated over the past 28 years (Umwelt Bundesamt, 2020).
Aviation generated 2.4% of all CO2 emissions in 2018
(Graver, Zhang, & Rutherford, 2019), with a growth rate
of 32% over the past five years. In Germany alone, the
amount of CO2 equivalent emissions (CO2eq) from interna‐
tional aviation increased 2.5‐times over the last 30 years,
while emissions from domestic aviation showed a 10%
reduction in CO2eg (Umwelt Bundesamt, 2020). Air travel
needs to be an important contributor to reduce green‐
house gas emissions to achieve climate protection goals.
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At the time of writing this article, the airline indus‐
try has been decimated by an ongoing pandemic that
severely restricted long‐distance travel. Most airlines
were only able to survive with massive governmental
subsidies. Passenger air travel in Europe dropped by 89%
(Nižetić, 2020), and emissions were reduced accordingly.
IATA predicts, however, that air travel will recover by
2024 with an annual global growth rate of 3.7% over the
next 20 years (IATA, 2020). Despite the severe impacts of
the pandemic on the airline industry, the concern about
growing emissions from air travel remains unchanged in
the long run.

Transport studies, on the other hand, tend to focus
on urban travel (Aultman‐Hall, Harvey, & Jeffrey, 2015).
Transport modeling in particular has a long tradition of
focusing on shorter distances only (Moeckel, Fussell, &
Donnelly, 2015). There is a need to study policies and reg‐
ulations that help reduce emissions from long‐distance
travel. Long‐distance transportmodelsmay help to quan‐
tify the impact on greenhouse gas emissions. Hence, this
article focuses on the investigation of different policies
that could be applied in the aviation sector to shift travel
from air to ground modes.

2. Literature Review

2.1. Long‐Distance Mode Choice Modelling

Typically, long‐distance travel demand refers to non‐
recurrent trips over a certain distance threshold. There
is no common definition of the boundary between long‐
distance and short‐distance travel demand. For instance,
the Travel Survey of Residents of Canada (Statistics
Canada, 2011) defines a long‐distance trip as a trip that
is an overnight trip, or a trip that is longer than 40 km,
but Nordenholz, Winkler, and Knörr (2017) define long‐
distance travel starting at 100 km. Motivated by several
references (Creemers et al., 2012; Llorca, Ji, & Molloy,
2018; Sandow & Westin, 2010), a threshold of 40 km
was selected to differentiate between long and short‐
distance trips in this study

Although most trips are short‐distance trips, long‐
distance trips are very relevant for the transport system.
According to Shiffer (2012), 75% of all trips are shorter
than 15 km, but they account for only around 30% of
the vehicle‐distance travelled. Moreover, the number
of long‐distance auto trips in Germany is expected to
grow further by 13–16% by 2030, depending on the pur‐
pose of the trips. Similarly, distances are expected to
grow by 12% (Federal Ministry of Transport and Digital
Infrastructure, 2014).

Traditionally, most transportation studies focused on
short‐distance trips because of their higher frequency,
better data sources, and the higher number of urban
and regional planning studies. Therefore, many trans‐
port models omitted long‐distance travel demand. Long‐
distance travel behavior is different from short‐distance
travel, thus the second one cannot be extrapolated from

the first one (for instance, they include different trans‐
portation modes, such as bike and walk versus air and
high‐speed rail, respectively).

The development of statewide models was a mile‐
stone for long‐distance modelling (Miller, 2004). The
statewide model of Ohio (US) includes a long‐distance
travel demand module (Erdhardt, Freedman, & Stryker,
2007). A long‐distance travel demand model for Europe
was presented by Rich and Mabit (2012). This very large‐
scale model was (according to the authors) not accurate
enough because the resolution was too coarse. Runtime
issues were also reported. Lu, Zhu, Luo, and Lei (2015)
developed a nested logit formulation for trip generation,
destination, and mode choice that was applied for inter‐
city trips among a set of seven Chinese cities. In the
US, Outwater, Bradley, Ferdous, Trevino, and Lin (2015)
developed a national long‐distance model by jointly esti‐
mating destination and mode choice. Recently, Zhang
et al. (2020) applied another US‐wide model to test the
impact of high‐speed rail at the national level. Similarly,
Outwater et al. (2010) described a long‐distance model
for the state of California that was used to estimate
the impact of new high‐speed railway lines. Llorca et al.
(2018) estimated trip generation, destination choice, and
mode choice inmultinomial logitmodels for the province
of Ontario (Canada) based on domestic and international
travel survey data. The authors added data of visitors’
check‐ins (Foursquare, 2017) to better characterize the
variety of attractions of the destinations (e.g., to differ‐
entiate touristic ski resorts from industrial or business
areas, as described in Molloy & Moeckel, 2017).

The following issues are commonly reported by
the above‐mentioned studies. Firstly, the quality of
the long‐distance travel demand data is lower com‐
pared to the detailed travel dairies used for short‐
distance travel. In Germany, the German Household
Travel Survey (Mobilität in Deutschland in German; see
Federal Ministry of Transport and Digital Infrastructure,
2017) only reports up to three overnight trips for the
last three months and does not even identify their des‐
tination. For short‐distance travel, on the other hand, all
respondents report a full‐detail travel diary for one day.
Zhang et al. (2020) used data from the largest US long‐
distance travel survey from 1995, which was already 25
years old. Secondly, transport supply data limited the
model development as well, especially with regard to
public transport schedules. The use of General Transit
Feed Specification (GTFS) has partially solved these data
issues, although these data are not available everywhere.
The supply data of air travel is not provided inmost cases.
Moreover, the data of destination attractions, relevant
for discrete choice models for destination choice, is lim‐
ited as well (Van Nostrand, Sivaraman, & Pinjari, 2013)
and needs to be more specific than population or num‐
ber of jobs of alternative zones. Nordenholz et al. (2017)
evaluated modal shifts for long‐distance passengers in
Germany.With an aggregatedmodel of about 400 zones,
the authors modelled changes in modal share due to
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changes in cost or travel times. Changes were described
to be very moderate. Third, due to the large scale of the
models, the resolution is often too coarse to evaluate
local changes (Llorca et al., 2018; Rich & Mabit, 2012),
where the importance of access and egress trips would
be more relevant (i.e., the model zones are too large to
differentiate travel patterns of travelers who live close
to public transport facilities from others). Lastly, travel
demand models are rarely used to evaluate the impact
of transport policies and investments on emissions.

2.2. Greenhouse Gas Emission Estimation

Previous studies show many alternative methods to esti‐
mate transport‐related emissions, from complete life‐
cycle analyses to only tailpipe emissions. In this section,
we summarize methods for emission estimation for
ground and air transport.

The emissions produced by ground transportation
are usually calculated as the product of a vehicle emis‐
sion factor and the distance travelled. The energy con‐
sumption of a vehicle depends on the age of the
vehicle, its engine, type of fuel, but also on exter‐
nal factors such as road type and homogeneity of the
road segments, the road surface, slope, idling, conges‐
tion, or weather conditions (Brand & Preston, 2010;
Llopis‐Castello, Camacho‐Torregrosa, & Garcia, 2019;
Reichert, Holz‐Rau, & Scheiner, 2016).

Thanks to a microscopic simulation it is possible to
assign different emission factors to different vehicles and
different driving situations. The Multi‐Agent Transport
Simulation (MATSim) emission extension implements
this approach (Hülsmann, Gerike, Kickhöfer, Nagel, &
Luz, 2011). Simpler large‐scale emission estimations are
based only on the product of emission factors and
the total amount of fuel used or the total number of
kilometers travelled by mode. The emission calculation
for public modes follows a similar approach but addi‐
tionally considers the number of seats and the aver‐
age occupancy on the public transport vehicle (Reichert
et al., 2016). Such emission factors allowed nationwide
emission calculations, based on distances travelled as
reported by household survey data (Brand & Preston,
2010; Heinen & Mattoili, 2019; Hoyer & Holden, 2003;
Pagoni & Psaraki‐Kalouptsidi, 2016; Reichert et al., 2016).

In aviation, the emissions are typically separated into
two parts: (1) landing/take‐off emissions (LTO), includ‐
ing all activities around the airport and (2) climb‐cruise‐
descent emissions (CCD or non‐LTO) for activities above
1,000 m. This is done to account for the high differ‐
ence in energy consumption and related fuel burn dur‐
ing the LTO part of the flight compared to the CCD
part. After the cruise altitude has been reached, the
aircraft’s engines burn less fuel per kilometer due to
the thinner atmosphere and flying at a stable altitude
(Miyoshi & Mason, 2009; Pagoni & Psaraki‐Kalouptsidi,
2018; Pejovic, Noland, & Williams, 2008). This divi‐
sion follows the Tier 2 methodology provided by the

Intergovernmental Panel on Climate Change (IPCC, 2019).
As an example, Mayor and Tol (2008) used the emission
factor of 6.5 kg of CO2 per passenger during LTO and
0.02 kg of CO2 per passenger‐kilometer during CCD.

Due to the difference in emissions in the LTO and
CCD parts of the flight, the amount of emissions per
km on long and short distance flights varies as well.
Therefore, some studies define separate emission fac‐
tors for short or domestic flights and for international
(long‐distance) flights (Brand & Preston, 2010;Miyoshi &
Mason, 2009; Pejovic et al., 2008; Reichert et al., 2016).
The distance threshold for this separation varies. It is
difficult to argue which flight length is more harmful in
terms of emissions released because short flights spend
a smaller part of the flight in high altitudes where con‐
trails can occur, but they consume more fuel per passen‐
ger and km (Aamaas, Borken‐Kleefeld, & Peters, 2013;
Hofer, Dresner, & Windle, 2010; Reichert et al., 2016).
The short‐haul flights CO2 emissions are so high com‐
pared to ground modes that, in general, the shift from
short‐haul aviation to ground transportation results in
reductions of CO2 emissions (Hofer et al., 2010).

The most common fuel used in civil aviation is
kerosene (Lee, Pirati, & Penner, 2009). Nevertheless, the
emission factor depends not only on the amount of fuel
burned but also on aircraft and engine type and the
distance of the flight. The carbon dioxide emission has
been usually calculated based on the amount of fuel
burned multiplied by a factor of 3.157 kg CO2 per kg
of fuel (International Civil Aviation Organization [ICAO],
2016). This emission factor is used in various studies
(ICAO, 2016; Larsson, Kamb, & Akerman, 2018; Pagoni
& Psaraki‐Kalouptsidi, 2016, 2018; Pejovic et al., 2008).
Some studies introduce additionally a factor of 1.9 while
calculating CO2 emissions to include the magnitude of
radiative forcing effect (Boussauw & Vanoutrive, 2019;
Caset, Boussaw, & Storme, 2018; DEFRA, 2016, 2020;
Larsson & Kamb, 2019). Due to high uncertainty, this fac‐
tor may vary (Foster, Berntsen, & Betts, 2007; Lee, Fahey,
& Skowron, 2020; Rädel & Shine, 2008).

3. Methodology

This research applied an agent‐based model to simulate
long‐distance travel behavior during an average week‐
day day in Germany. The approach follows the trip‐based
travel demand model framework and includes the first
three steps: trip generation, destination choice, mode
choice. Travel demand is simulated at the agent‐based
(microscopic) scale, thus the individual behavior of trav‐
elers is explicitly represented. The model structure is
shown in Figure 1.

Our study area covers all of Germany. It is divided into
11,717 number of zones to allocate structural data, such
as population, employment, schools and shops. Zones
correspond to municipalities (Gemeinde in German)
and the boroughs of the 14 most populated cities
(Hamburg, Hanover, Bremen, Dortmund, Düsseldorf,
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Figure 1.Model framework.

Duisburg, Essen, Cologne, Frankfurt, Stuttgart, Munich,
Berlin, Dresden, and Leipzig), shown in Figure 2. The num‐
ber of zones is substantially larger than in previous
Germany‐wide models. Winkler and Mocanu (2017), for
example, included 412 zones corresponding to the coun‐
ties (Landkreis in German) for their Germany model.

A synthetic population of persons and households
was generated. This synthetic population matches socio‐
demographic attributes at the aggregate as reported by
census data. During the generation of the synthetic pop‐
ulation, census microdata records are selected to match
the control totals of the study area. We used Iterative
Proportional Updating (Konduri, You, & Garikapati, 2016)
with three geographical levels (borough,municipality and

county) and two personal levels (person, household), as
described by Moreno and Moeckel (2018). The synthetic
population has around 80 million persons in 53 million
households. The information of socio‐demographic data
(control totals) is obtained from the German Household
Census and the GENESIS online database (for municipal‐
ities and counties; see Statistische Ämter des Bundes
und der Länder, 2011; Statistisches Bundesamt, 2019).
Additionally, census data at the borough level were col‐
lected from the websites of the 14 most populated cities.
These include, for example, persons by gender and age,
employment by sector or households by size. As an exam‐
ple, Table 1 shows the average of the absolute error of all
controlled attributes by municipalities. The average error

(1) (2)

(3)

Munich

Berlin

Figure 2. Zone system: (1) Germany, (2) Berlin, (3) Munich.
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Table 1. Average absolute error of controlled attributes by municipalities.

Average error Number and share of municipalities Average population by municipalities

0%—5% 9,689 (85.47%) 7,617.03
5%—10% 1,135 (10.01%) 4,778.17

10%—15% 282 (2.49%) 2,580.20
15%—20% 126 (1.11%) 737.55
20%—30% 104 (0.92%) 521.96

Total 11,336 (100%) 7,065.94

by municipalities ranges between 0% and 30%. Smaller
municipalities tend to be more difficult to match.

The synthetic population was used as input for
the long‐distance travel demand model. First, the long‐
distance trip generation module simulates whether a
person makes a long‐distance trip or not on a given day
usingmultinominal logitmodel. Among those individuals
who make a long‐distance trip, we distinguish individu‐
als making daytrips (outbound and inbound trips on the
same day), overnight trips (either the outbound or the
inbound trip is made during the observed day), and indi‐
viduals who are away on the simulated day (since they
started an overnight trip before and return after the sim‐
ulated day). A threshold value of 40 km was chosen to
distinguish short‐ and long‐distance trip for all non‐work
trip purposes (Llorca et al., 2018). Commute trips of any
length are treated as habitual travel and not included as
long‐distance trips. Long‐distance trips distinguish three
purposes: business, leisure and private. Business trips
are trips to see customers or business partners and con‐
ference visits (travel costs are commonly paid by the
employer). Leisure trips contain trips for recreational pur‐
poses. Private trips cover long‐distance trips to visits fam‐
ily and friends, shopping, seeing a doctor, and others.

The second module is the long‐distance destination
choice model, which selects the destination for the
long‐distance trips with a multi‐nominal logit model.
The 11,717 zones described above form the choice set.
The last component is the long‐distance mode choice
model. Fourmodes are considered by amultinomial logit
model: auto, air, rail, and long‐distance bus. For long‐
distance bus and rail, local transit is considered for access
and egress trips, while autowas chosen for airport access
and egress.

These models are estimated and calibrated based
on the household travel survey described in Section 4.1.
The multinomial logit model calculates the utility for
a traveler to select a given alternative. In the case of
trip generation, the alternatives are, for example, no
long‐distance travel, long‐distance daytrip, long‐distance
overnight trip, or being away on a long‐distance trip.
The main assumption of the multinomial logit model is
that the alternatives are irrelevant and independent from
each other and that people can make rational choices
by differentiating the utility of each alternative (Ortuzar,
Hensher, & Jara‐Diaz, 1999). The probability of choosing
an alternative is shown in Equation 1 and Equation 2:

Ppj =
eVpj

∑k=K
k=1 V eVpk

(1)

Here, the following applies:

• Ppj is the probability for individual p to select alter‐
native j.

• Vpj is the utility for individual p to select the alter‐
native j, as described in Equation 2.

• k = 1, 2, … K is the set of alternatives.

Vpj =
s=S
∑
s=1
𝛽s xs (2)

Here, the following applies:

• s = 1, 2, … S is a set of explanatory variables for the
number of trips.

• 𝛽s is the coefficient of the explanatory variables s.
• xs is the value of the explanatory variables s.

Explanatory variables that were highly correlated were
excluded from the models. If two variables correlated by
more than R2 = 0.5, only one of the two was retained.

4. Data

In the following paragraphs, household travel sur‐
vey, transportation networks, and attraction data are
presented.

4.1. Household Travel Survey

We used the latest household travel survey available
in Germany—the German Household Travel Survey—
which is a nationwide survey conducted by the German
Federal Ministry of Transport and Digital Infrastructure
(2017). The survey includes household and person char‐
acteristics, as well as daily travel diaries during one day.
The surveyed days are distributed equally across sea‐
sons, months, and days of week, allowing to analyze the
behavior in relation to weekdays/weekends, vacation/
non‐vacation days and seasons. In total, 156,420 house‐
holds (around 0.38% of all households in Germany)
participated. Every household member was invited to
answer this survey regardless of their age, gender, or
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occupation status. This survey included 316,361 peo‐
ple (0.38% of the population) and 960,619 trip records.
The survey includes a second dataset of overnight trips
in the last threemonths. This dataset, however, does not
specify trip origins or destinations and includes a maxi‐
mum of three overnight trips per person.

We use the daily travel diary dataset of the survey
for our model estimation. This dataset provides trip ori‐
gin, destination,mode, time of day, and purpose of every
trip made on the surveyed day.

4.2. Network

The network provides travel time and distances by mode
for both selected and non‐selected destinations and
modes. Travel times and distances by mode between all
zones are stored in skim matrices. The following data
sources were used to generate the skim matrices:

• Road network: The road network was downloaded
from OpenStreetMap (wiki.openstreetmap.org).
For Germany, it includes freeways, trunk roads, as
well as primary, secondary and tertiary roads. For
each link, length, speed limit, number of lanes and
capacity are provided by OpenStreetMap (2021).
In exceptional cases where these attributes were
missing, default values were used. To obtain the
travel time by auto for each trip of the German
Household Travel Survey, we used the simulation
model MATSim (Axhausen, Nagel, & Horni, 2016).
MATSim was also used to calculate skim matrices.

• Ground public transport network: Networks for
all public transport modes were obtained from
GTFS (Brosi, 2019). Stop locations, lines (in the
sequence of stops) and journeys (individual ser‐
vices of each line on a selected day) were available
for download. Timetable information represents
a complete all‐day timetable. We distinguished
between long‐distance rail (intercity rail, interre‐
gional rail) and long‐distance bus services, covered
by the Deutsche Bahn and by Flixbus or BlaBlaBus,
respectively. Local public transportation such as
commuter rail, subway, tram, interregional bus,
and local bus were used as access/egress modes
to long‐distance travel modes. Using GTFS data,
travel times from point to point were calculated
using the SBB router withinMATSim (Swiss Federal
Railways, 2018).

• Air network: flight data from before the COVID‐19
pandemic were used to construct the air network.
The data were downloaded from OpenFlights
(github.com/jpatokal/openflights) and contain
flight connections between airports, including
departure and destination, airline and aircraft
type. Connections that are not covered by a direct
flight were calculated in a second step by calculat‐
ing the route from the starting point to the des‐
tination via all possible hubs. Access and egress

time by car were added to the total trip duration.
To obtain the total travel time by air, we also added
an average pre‐boarding waiting time (90 min‐
utes), post‐landing processing time (15 minutes),
and transfer time (between 30 and 100 minutes
depending on the hub).

4.3. Trip Attraction

To estimate the long‐distance destination choice model,
information about destinationswas required. Apart from
population and employment, and to better reflect the
attractiveness of places for leisure trips, we also included
the number of hotels in each potential destination
(Statistische Ämter des Bundes und der Länder, 2020).

5. Model Estimation

This section summarizes themodel estimation results for
trip generation, destination choice and mode choice.

5.1. Trip Generation Model

German Household Travel Survey provides 316,361 per‐
son records. After removing records with missing or non‐
plausible values (7.32% removed), there were 293,216
records available for model estimation. The results for
long‐distance trip generation are summarized in the
Supplementary File (Table A1). In this model, there are
four alternatives: not to conduct long‐distance travel,
long‐distance daytrip, long‐distance overnight trip and
being away.

Car ownership has a positive impact on the genera‐
tion of long‐distance daytrips of all trip purposes, but it
has a negative impact on private overnight trips and no
impacts on other overnight trips. People living in house‐
holds with a higher economic status are more likely to
make any forms of long‐distance trips, especially for pri‐
vate and leisure purposes. Employed people tend to be
less likely to conduct long‐distance private and leisure
trips than non‐employed, but more likely to make long‐
distance business trips. Presumably, this is related to the
availability of time for long‐distance travel.

After the model was estimated, it was implemented
with the synthetic population for Germany and cali‐
brated tomatch the share of alternatives observed in the
German Household Travel Survey. The calibration factors
were added to the utility function. In Table 2, the mod‐
eled and observed (in the survey) shares of the differ‐
ent trip types are compared, showing a closematch after
calibration. The majority of the population (around 94%)
does not make long‐distance trips on a given day.

5.2. Destination Choice Models

While the German Household Travel Survey has
960,619 trip records (including short‐ and long‐distance),
only 12,451 records describe long‐distance trips with
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Table 2. Long‐distance trip generation results.

No long‐distance trip Daytrip Overnight trip Being away

Trip purpose Model Survey 2017 Model Survey 2017 Model Survey 2017 Model Survey 2017

Private 98.14% 98.16% 1.11% 1.11% 0.68% 0.70% 0.07% 0.04%
Business 97.93% 97.96% 1.65% 1.65% 0.35% 0.35% 0.07% 0.04%
Leisure 98.11% 98.12% 0.88% 0.89% 0.89% 0.88% 0.12% 0.11%
Total 94.18% 94.23% 3.64% 3.65% 1.92% 1.93% 0.26% 0.19%

complete origin and destination information (applying
the 40 km threshold for non‐commute trips, as described
above). The distance by car is assigned for each trip
record using the MATSim model for estimating and cali‐
brating the destination choice model. The model estima‐
tion result of long‐distance destination choice is shown
in the Supplementary File (Table A2). Three attributes
were included in this model: the logarithm with base 10
of car distance, total population and employment at
destination, and the number of hotels at the destina‐
tion. Ideally, the model should be estimated with the full
choice set of 11,717 alternatives. Due to the computa‐
tional limitations, we selected 500 random alternatives
and the actually chosen alternative for each trip to con‐
duct model estimation.

The results show, as expected, that the probability of
a destination decreases as the distance increases. Total
population and employment and the number of hotels
have a positive impact on the utility, which means desti‐
nations with more population, employment and hotels
are more likely to be chosen. The model was imple‐
mented and calibrated to match the average one‐way
distance between survey and model. The calibration fac‐
tors of the destination choice model, as shown in the
Supplementary File (Table A2), are multiplied with the
distance parameter. The calibrated results are summa‐
rized in Table 3. Overall, the model matches the aver‐
age one‐way travelled distance, as it should be expected
from a calibrated model. The modeled standard devia‐
tion is slightly smaller than observed, which indicates
that the model has a tendency to slightly underestimate
rather short and very long long‐distance trips.

5.3. Mode Choice Model Estimation

The mode choice model considers four modes: auto, air,
long‐distance bus, and long‐distance rail. The complete

data set for mode choice model estimation consists of
7,098 records, with 5,125 records for day trips and 1,973
records for overnight trips. Two separate mode choice
models were estimated for domestic day and overnight
trips, assuming that a decision of choosing a mode is
influenced by the duration of the trip. The results of the
multinomial logit model estimation are presented in the
Supplementary File (Tables A3 and A4). To include the
sensitivity to travel time and cost, and to avoid the strong
correlation between the two, we convert both terms into
generalized travel time, as described in Equation 3:

gTime = time + cost
VOT

× 60 (3)

Here, the following applies:

• time is the travel time in hours;
• cost is the cost of the trip in euro;
• VOT is the value of time (65 EUR/h for business trip,

32 EUR/h for private and leisure trips; see Llorca
et al., 2018)

According to Equation 3, business trips are less sensitive
to price increases than leisure or private trips, where the
value of time is smaller. This reflects that business trips
are commonly paid by the employer, making those trips
less price sensitive. Generalized travel cost and socio‐
economic attributes are included in the utility calculation
for each mode and purpose.

The model was calibrated to match the observed
modal shares in the survey (FederalMinistry of Transport
and Digital Infrastructure, 2017). As shown in Table 4,
auto is the predominant mode for long‐distance travel.
The model estimation results for day and overnight trips
are summarized in the Supplementary File (Tables A3 and
A4) and consist of 18 attributes. Autowas selected as the
base alternative (with an alternative specific constant set

Table 3. Long‐distance destination choice model results.

One‐way average travelled distance and standard
deviation (in parenthesis) by car (km)

Daytrip Overnight trip

Private Business Leisure Private Business Leisure

Model 204.97 180.50 174.56 226.78 257.13 229.79
(162.35) (147.48) (146.07) (171.37) (179.09) (173.07)

Survey 2017 206.94 179.78 176.09 226.69 258.21 229.18
(187.13) (154.60) (172.71) (187.50) (193.18) (189.32)
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Table 4. Summary of the choice results.

Daytrip Overnight trip Total

Travel Mode Model Survey 2017 Model Survey 2017 Model Survey 2017

Auto 86.05% 87.53% 81.19% 74.69% 83.54% 81.11%
Air 0.39% 0.80% 3.96% 5.71% 2.23% 3.26%
Bus 3.13% 2.34% 3.13% 4.63% 3.13% 3.49%
Train 10.44% 9.32% 11.71% 14.96% 11.10% 12.14%

to zero). Although the coefficients vary slightly among
purposes and trip types, we generally observed that
females and persons of single‐person households are
more likely to choose rail. This is also observed for both
young and elderly travelers. Bus and train tend to be
preferred by low‐income households. As expected, gen‐
eralized time negatively affect the utility, making closer
destinations more attractive.

6. Calculation of Greenhouse Gas Emissions

This study focuses on calculating CO2 emissions of all con‐
sidered long‐distance modes. Unfortunately, it was not
feasible to work with CO2 equivalent emissions (CO2eq),
as CO2eq takes into account the commonly‐known GWP
(global warming potential) of CO2, CH4, and N2O gases
(Brander, 2012). In this study, we estimate emission fac‐
tors for the air mode based on the distance flown, and
information about the amounts of CH4 and N2O emitted
per km depending on the flight distance was not found.

The emission factor for auto was taken from HBEFA
for the year 2020 for diesel and gasoline light‐duty vehi‐
cles (HBEFA, 2020). The share of gasoline and diesel‐
powered vehicles was 65.9% and 31.7%, respectively
(Kraftfahrt‐Bundesamt, 2020). The emission factor for
auto trips used for this study is 170.89 gCO2/km travelled.
This emission factor does not account for start emissions.
To account for the presence ofmultiple passengers in the
car, the amount of CO2 emissions released by auto was
divided by 2.25 (Federal Ministry of Transport and Digital
Infrastructure, 2017). The coefficient 2.25 represents the
average occupancy rate for domestic auto long‐distance
trips in Germany. The emission factor for a long‐distance
bus was taken from HBEFA as well for the year 2020 and
it is equal to 1,291.847 gCO2/km travelled (HBEFA, 2020).
Considering the average occupancy of long‐distance
buses of 60% and the average number of available seats
of 49, a long‐distance bus carries 29 passengers on the
average. Therefore, the emission factor per passenger
on a long‐distance bus is 44.55 gCO2/km. In Germany,
there are several types of trains operating long‐distance
travel and the energy consumption varies for each train

type. Most trains are electrically powered and the aver‐
age energy consumption per passenger is 28.33 Wh/km
(DeutscheBahn, 2010). Considering Germany´s federal
electricity mix, the emission factor per passenger travel‐
ling by train is 14 gCO2/km (DeutscheBahn, 2010).

Asmentioned earlier the emission factor for air travel
depends on the distance travelled. The shorter the trav‐
elled distance, the higher the emission factor per km.
The ICAO carbon emission calculator was used to calcu‐
late flight CO2 emissions for almost 800 city pairs (ICAO,
2016). Based on the data collected, we estimated the
amount of CO2 emissions released per passenger per
kilometer travelled subject to the total travelled trip dis‐
tance. For flights that require a transfer, emission factors
were derived for each leg. Table 5 shows the emission
factor for each air trip based on trip distance. The esti‐
mated CO2 emission factor was multiplied by 1.9 to
account for the radiative forcing effect (DEFRA, 2016,
2020; Larsson & Kamb, 2019). We recognize that this
factor of 1.9 is an overestimate for short‐distance air
trips and an underestimate for the long‐distance trips.
However, to the authors’ knowledge, there is no method
to take into account the trip length and adjust the 1.9 fac‐
tor accordingly (Larsson& Kamb, 2019). As explained ear‐
lier (Section 4.2), auto was set as the access and egress
mode to and from airports and the emission factor by
auto was used to account for access and egress emis‐
sions. Flight emissions and auto emissions were added
to calculate total emissions. All the presented emission
factors are summarized in Table 5 andwereused for emis‐
sion calculations in this study.

7. Scenario Analysis

We tested different scenarios with policies that aim at
reducing air travel. We studied restrictions of air trips
below a distance threshold and increases of the airfare.
We considered four different thresholds for air trips:
300, 500, 700, and 900 km, below which the air mode
was made unavailable. Regarding the airfare increase,
we considered three scenarios with 100%, 300%, and
500% increase.

Table 5. Emission factors for long‐distance modes.

Mode Auto Air Bus Rail

Emission factor, kg/passenger‐km 0.171 1.8453 × air traveled distance−0.401 × 1.9 0.045 0.014
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As the model is agent‐based, a random number is
needed to select a discrete travel choice for each agent.
Therefore, every model run is slightly different. We run
the model 8 times with different random seeds and
calculated the average to obtain more reliable results.
The results of the base scenario are presented in Table 6.
A total of 4,512,610 domestic long‐distance trips were
simulated for an average day for Germany. Air trips
accounted for 0.39% of daytrips in Germany and for
3.96% of overnight trips. However, the total amount
of CO2 emissions released by aviation was significantly
larger: 8.54% of daytrip CO2 emissions and 43.30% of
overnight trip emissions. Long‐distance bus and rail, on
the other hand, produced lower shares of CO2 compared
to their shares in the number of trips.

After analyzing the base scenario, we run the above‐
mentioned policy scenarios and calculated CO2 emis‐
sions by air and ground modes. The results of scenarios
that restrict air travel below a certain distance are sum‐
marized in Figure 3. The amount of air emission steadily
decreases as the threshold is increased. When the dis‐

tance threshold is 900 km, air travel is strongly reduced
and emissions drop by 93.1%with the number of air trips
dropping to 4,917 trips. At the same time, the emissions
of the remaining long‐distance ground modes increase
due to the shift from the air mode, with the highest
increase of 3.6% in the 900 km scenario. Overall, emis‐
sions are reduced by 24.2% in this scenario. In reality,
some travel might be suppressed by this scenario, which
could reduce emissions even further but is not accounted
for by the model.

With respect to the scenarios with higher airfares,
an increase of 100% already reduced CO2 emissions
from aviation by 28.42% compared to the base scenario
(11,086.95 tons of CO2 per day), as seen in Figure 4. As
airfarewas increased by 500%, the reduction in CO2 emis‐
sions was 53.2% (equivalent to 20,745.64 tons of CO2).
The emissions from ground transportation increased due
to the shift from air mode (up to a 2.1%, when air fares
increase by 500%). The total emissions are reduced by up
to 13.8% with the highest airfare increase.

Table 6. Base scenario modal share of domestic long‐distance trips and CO2 emissions by mode.

Travel Mode

Auto Air Bus Train Total

Number of trips

Day Trip 1,879,515 (86.05%) 8,449 (0.39%) 68,315 (3.13%) 227,990 (10.44%) 2,184,269 (100%)
Overnight Trip 1,890,301 (81.19%) 92,304 (3.96%) 72,950 (3.13%) 272,748 (11.71%) 2,328,303 (100%)
Total 3,769,815 (83.54%) 100,793 (2.23%) 141,264 (3.13%) 500,737 (11.10%) 4,512,610 (100%)

CO2 emissions, tons

Day Trip 49,134.10 (87.34%) 4,762.05 (8.46%) 1,226.62 (2.18%) 1,133.54 (2.01%) 56,256.31 (100%)
Overnight Trip 42,969.60 (54.01%) 34,253.56 (43.06%) 1,080.48 (1.36%) 1,249.39 (1.57%) 79,553.02 (100%)
Total 92,103.70 (67.01%) 39,015.61 (28.39%) 3,937.06 (2.86%) 2,382.93 (1.73%) 137,439.30(100%)
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Figure 3. Change in CO2 emissions due to minimum distance restriction for air travel.
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Figure 4. Change in CO2 emissions based on air fare increase.

8. Conclusion

This research evaluated the potential of policies to
reduce CO2 emissions produced by long‐distance travel.
Specifically, we used an agent‐based travel demand
model to estimate the demand for long‐distance travel
and coupled the model with a CO2 emissions calculator.
It was shown that policies that restrict air travel below
a defined threshold distance were more effective in CO2
emissions reduction than increasing airfares. Compared
to urban travel, air travelers are less sensitive to price
increases due to higher values of time in long‐distance
travel. Also, many domestic air trips in Germany are busi‐
ness trips for which the employer covers the travel costs,
which tends to reduce price sensitivity.

Another important aspect of this study is to quan‐
tify the shift from air mode to ground modes, and the
corresponding levels of emissions. Traveling by auto is
often more economical than other public groundmodes,
particularly when traveling with more than one person.
Overall, the best CO2 emission reduction with almost
33,000 tons per day was achieved with the scenario that
restricted air travel to trips above 900 km. While polit‐
ically difficult to implement, the strict air travel restric‐
tions are most powerful in reducing the number of air
trips and associated CO2 emissions.

One aspect that sets this model apart from most
other existing long‐distance models is that it is built as
an agent‐based model. Agent‐based models introduce a
lot of flexibility to design scenarios (Donnelly, Erhardt,
Moeckel, & Davidson, 2010). If someone wanted to test
the impact of increasing eligibility for telework on long‐
distance travel, it is simple to add the attribute “eligible
for telework” to each agent and adjust the choicemodels
accordingly. However, agent‐based modeling comes at a
price. Such models require a random number generator

to simulate choices of individual agents. Depending on
the random numbers chosen, every model run produces
slightly different results. The differences between model
runs are marginal if a large number of agents is simu‐
lated or if a lot of choices of these agents are simulated,
as a large number of events averages out. Whenever
a small number of agents or rare events are studied,
agent‐based models need to be run many times and the
average across many model runs needs to be calculated
(Wegener, 2011).

Long‐distance travel is not as rare that it would be dif‐
ficult to study it with an agent‐based model, at least not
for common destinations and modes. In this application,
however, agent‐based models proofed to be challenging.
Some scenarios tested to limit air travel to trips above a
certain threshold distance only. While the number of air
trips eliminated by these policies was stable across dif‐
ferent model runs, the alternative modes chosen were
not. If 100 air travelers with trips under 300 km switch to
ground modes due to this policy, it makes a large differ‐
ence in terms of CO2 emissions if 30 of them chose bus in
one model run and 35 in another model run. While both
results might be perfectly plausible outcomes, it would
be invalid to assess this policy based on a single model
run. Therefore, the model had to be run multiple times
to calculate the average of every scenario presented in
this article.

A limitation is that the effects of congestion of the
road network were not considered. If congestion on the
network was considered, travelers shifting from air to
car could impact the congestion of the road network
and affect travel times and emissions. The selected trip‐
based sequential travelmodel does not take into account
the interaction between the steps. The application of
copula models could better account for this issue, but a
study area with 11,717 zones makes a joint destination
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and mode choice unfeasible. An improvement could be
to include mode choice logsums as terms of the utility of
destinations in the destination choice model. This would
affect destination of trips after modal restrictions are
introduced (e.g., if flights under 500 km are prohibited,
former air travelers may decide to travel to closer desti‐
nations). Last but not least, induced demand due to new
modes or dampened travel demand due to restrictive
scenarios are not considered in this model, as they are
difficult to quantify.

It is planned to test more policies to reduce total CO2
emissions including tolls on freeways and ride‐sharing
solutions. International travel will be added. This would
allow to implement additional policies that promote
more local travel and penalize short‐duration overseas
trips. More detailed emission factors for cars and buses
that account for traffic conditions are planned to be used
to account for the negative impacts of road congestion.

The policies analyzed in this article explored the
potential to reduce CO2 emissions of long‐distance travel.
It was shown that certain policies would significantly
reduce long‐distance emissions. The most impactful sce‐
nario tested was to limit air travel to destinations with
a distance of 900 km or more, which led to a reduc‐
tion of 32,900 tons of CO2 per day. In a country like
Germany where decent rail connections are available
between all major cities, this might not be too much of
a burden for travelers (even though travel times would
increase for many trips). This policy would reduce the
total emissions from the transport sector in Germany
(160million tons CO2 per year in 2018; see Statista, 2018)
by 7.5%. Given that the emissions of the transport sec‐
tor were rather constant over the past 30 years, such
a policy could be an important start to reduce trans‐
port emissions.
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