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Abstract
For decades, limited computing power has been a major bottleneck for large scale in-silico stud-
ies of complex multiphysics problems. Today, advanced processor architectures provide the re-
quired computational resources to enable sophisticated analyses of such problems. Nevertheless,
the development of efficient computational approaches that are required to model relevant phys-
ical phenomena, remains challenging and far from trivial. This is aggravated by the fact that
a variety of multiphysics applications in science and engineering, in particular, in some areas
of biomechanics, are governed by complex physical phenomena, such as multiphase flow, dy-
namic phase transitions, geometrically complex and continually changing interface topologies,
and fluid-structure interaction (FSI) problems.

This thesis presents accurate, robust, and computationally efficient numerical formulations
for multiphysics problems of the aforementioned kind using smoothed particle hydrodynamics
(SPH) and the finite element method (FEM) as discretization schemes. SPH in particular, as
a mesh-free scheme and due to its Lagrangian nature, is well suited for applications involving
multiphase flow, phase transitions, and complex interface topologies.

The major scientific contributions of this thesis can be summarized as follows: A high-
performance computational framework is developed that enables large scale analyses of mul-
tiphysics applications involving SPH and the FEM. This computational framework establishes
the basis for two methodological novelties. First, a numerical formulation for the solution of
FSI problems in which the fluid domain is spatially discretized using SPH and the structural
domain using the FEM is introduced. The proposed formulation enables an accurate represen-
tation of fluid quantities nearby strongly curved and deformable interface topologies. Second, a
numerical formulation for highly dynamic motions of arbitrarily-shaped rigid bodies embedded
in a multiphase flow is presented. Herein, SPH is applied for the spatial discretization of all
involved domains. Thus, rigid bodies are resolved as clusters of particles. Thermal conduction
and reversible phase transitions between fluid and solid rigid bodies is considered.

Altogether, both formulations present powerful tools for advanced studies of multiphysics
problems. Of its numerous possible applications, mesoscale melt pool modeling in metal pow-
der bed fusion additive manufacturing (PBFAM) processes and the digestion of food in the hu-
man stomach are chosen as exemplary problems in this thesis. However, the groundwork for
more sophisticated studies on these complex phenomena is laid and the transfer of the presented
methods to other highly relevant multiphysics applications is possible.
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Zusammenfassung
Begrenzte Rechenleistung stellte jahrzehntelang einen wesentlichen Engpass für detaillierte in-
silico Studien komplexer Multiphysik-Probleme dar. Heute sind mit modernen Prozessorarchi-
tekturen die erforderlichen Ressourcen vorhanden, um anspruchsvollere Analysen solcher Pro-
bleme zu ermöglichen. Dennoch bleibt die Entwicklung effizienter numerischer Methoden, die
zur Modellierung der relevanten physikalischen Phänomene erforderlich sind, eine große Her-
ausforderung und ist alles andere als trivial. Dies wird erschwert durch die Tatsache, dass eine
Vielzahl von Multiphysik-Anwendungen in Wissenschaft und Technik, insbesondere in eini-
gen Bereichen der Biomechanik, von komplexen physikalischen Phänomenen wie Mehrphasen-
strömungen, dynamischen Phasenübergängen, geometrisch komplexen Grenzflächentopologien
und Fluid-Struktur-Interaktionsproblemen (FSI) geprägt sind.

In dieser Arbeit werden robuste und effiziente numerische Methoden für die Simulation von
Multiphysik-Problemen der oben genannten Art unter Verwendung von Smoothed Particle Hy-
drodynamics (SPH) und der Methode der Finiten Elemente (FEM) entwickelt. Insbesondere
SPH ist als netzfreie Methode und aufgrund seiner Lagrangeschen Betrachtungsweise hervorra-
gend geeignet für Anwendungen mit Mehrphasenströmungen, Phasenübergängen und komple-
xen Grenzflächentopologien.

Die wichtigsten wissenschaftlichen Beiträge dieser Arbeit lassen sich wie folgt zusammen-
fassen: Es wurde eine hocheffiziente Simulationsumgebung unter Einbeziehung von SPH und
FEM entwickelt, welche aufwändige Studien von Multiphysik-Anwendungen ermöglicht. Die-
se Simulationsumgebung bildet die Grundlage für zwei methodische Neuerungen. Erstens wird
eine numerische Formulierung für die Lösung von FSI-Problemen eingeführt, bei der die Fluid-
domäne mit SPH und die Strukturdomäne mit der FEM räumlich diskretisiert wird. Die vor-
geschlagene Formulierung ermöglicht eine genaue Darstellung von Fluidgrößen in der Nähe
stark gekrümmter und deformierbarer Grenzflächen. Zweitens wird eine numerische Formulie-
rung zur Simulation der Bewegung von beliebig geformten Starrkörpern in einer Mehrphasen-
strömung vorgestellt, wobei SPH zur räumlichen Diskretisierung aller beteiligten Domänen ver-
wendet wird. Folglich sind die Starrkörper als Verbund von Partikeln voll aufgelöst. Außerdem
werden Wärmeleitung und reversible Phasenübergänge in Form von Schmelzen und Erstarren
berücksichtigt.

Insgesamt stellen beide Formulierungen wirkungsvolle Werkzeuge für fortgeschrittene Studi-
en von Multiphysik-Problemen dar. Von den zahlreichen möglichen Anwendungsfeldern werden
in dieser Arbeit die Modellierung des Schmelzbades in der additiven pulverbettbasierten Ferti-
gung sowie die Modellierung der Verdauung im menschlichen Magen als beispielhafte Probleme
betrachtet. Die Grundlage für anspruchsvollere Studien zu diesen komplexen Phänomenen ist
damit gelegt. Darüber hinaus ist die Anwendung der vorgestellten Methoden auf andere hochre-
levante Multiphysik-Anwendungen möglich.

ii



Danksagung

Die vorliegende Dissertation ist im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter
am Lehrstuhl für Numerische Mechanik der Technischen Universität München in den Jahren
von 2016 bis 2021 entstanden. Dieser Zeitraum war für mich geprägt von den mit der Promotion
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1 Introduction

A variety of applications in science and engineering, in particular, in some areas of biomechan-
ics, are characterized by multiphase flow and dynamic phase transitions, or by fluid-structure
interaction phenomena subject to large interface deformations, and may thus be classified as
so-called multiphysics problems. While nowadays numerical simulations are considered as a
common tool to investigate standard engineering problems, the development of advanced com-
putational approaches to model the aforementioned class of multiphysics problems is still chal-
lenging and far from trivial. One reason for this may certainly result from the fact, that ”a
multiphysics system consists of more than one component governed by its own principle(s) for
evolution or equilibrium, typically conservation or constitutive laws” [1]. Most commonly, pur-
suing a bottom-up approach, this requires combining individual components to form the big
picture of a comprehensive computational multiphysics model. For a considerable time, compu-
tational capabilities have been the limiting factor for studies of multiphysics problems at a large
scale. However, recently advanced processor architectures with increased computing power are
available, and thus, open up new possibilities and pave the way for more sophisticated studies of
multiphysics problems.

Against this background, this cumulative thesis is devoted to the development of novel compu-
tational approaches for multiphysics applications in the fields of engineering and biomechanics.
To this end, this chapter presents two research projects of the author and colleagues in the fields
of engineering and biomechanics, defines the relevant physical phenomena to be considered in
a computational model, and motivates the development of novel computational approaches to
investigate this class of multiphysics problems. In addition, an overview of the author’s contri-
butions and accomplishments within the presented research projects is given and the publications
which form the core of this cumulative thesis are stated. Finally, this chapter concludes with a
short outline of the remainder of this cumulative thesis.

1.1 Research objectives

In the following, two research projects of the author and colleagues are briefly presented. The
first research project resides in the field of biomechanics and aims at the development of a com-
putational multiphysics model of the human stomach. The second research project in the field of
engineering is, among others, concerned with the development of a mesoscale melt pool model
in metal powder bed fusion additive manufacturing (PBFAM) processes.

Multiphysics modeling of the human stomach

Mathematical and computational modeling of the human stomach constitutes an emerging field
of biomechanics that requires to address several complex phenomena as, e.g., gastric electro-
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1 Introduction

physiology, solid mechanics of the gastric wall, and fluid mechanics of the digesta. This trend is
reflected by the increasing amount of literature recently published in this field. However, for the
sake of brevity, it is abstained from giving a detailed literature review herein, referring the reader
to [2] instead. The ultimate goal of this research project is the development of a computational
multiphysics model of the human stomach to

• allow for in-silico studies of the complex interplay between the different physiological
parameters governing the mechanics of the stomach and the digestion of food, and

• examine the relation between gastric mechanics and gastric disorders and pathologies.

Modeling of biological systems naturally requires deep knowledge and understanding of its es-
sential structure and functioning. To this end, a brief introduction into the anatomy and the
physiology of the human stomach is given in the following, with the purpose to identify the key
components of a comprehensive multiphysics model.

fundus

antrum

corpus

pylorus

duodenum

esophagus

gastric

peristalsis

Figure 1.1: Schematic representation of a human stomach with gastric peristalsis and retropul-
sive flow mixing and grinding the digesta into chyme.

The human stomach is a J-shaped muscular bag, that constitutes a vital organ of the gastrointesti-
nal tract, and mainly consists of three anatomical regions, namely the fundus, the corpus, and
the antrum. The physiology of the human stomach can be categorized into gastric motility pat-
terns, that are gastric accommodation, gastric peristalsis, and gastric emptying. After ingestion
of food through the mouth and the esophagus, the stomach stores the digesta, that is diluted with
gastric juice, in the fundus. To increase the storage capacity while maintaining a low intragastric
pressure [3], the tension of smooth muscle in the gastric wall of the fundus decreases, i.e., the
fundus relaxes. This is also called gastric accommodation and results in an increase in volume
of up to 1500 mL in the fed state, compared to the initial 25 mL of volume in the fasted state [4].
The digesta in the lumen of the postprandial stomach is characterized by a multiphasic nature
consisting of gastric juice, chyme, and solid food boluses [2]. During gastric peristalsis, larger
food boluses are mechanically as well as chemically disintegrated into chyme upon absorption
of gastric juice [5]. Gastric peristalsis is characterized by so-called antral contraction waves

2



1.1 Research objectives

(ACWs), i.e., ring-shaped contraction and relaxation of smooth muscle in the gastric wall con-
trolled by electric slow waves. The ACWs are initiated at the pacemaker region and propagate
along the greater curvature towards the pylorus [6], while mixing and grinding the digesta in the
corpus and antrum. At low viscosity of the digesta, that is after dilution with gastric juice, typical
intragastric fluid motion can be observed in the form of retropulsive flow through the circular
constrictions of the gastric wall caused by the ACWs [7–9]. For the purposes of illustration, a
schematic representation of a human stomach with gastric peristalsis and resulting retropulsive
flow that are mixing and grinding the digesta into chyme, is given in Figure 1.1. Finally, during
gastric emptying the chyme is pushed from the antrum through the pylorus into the duodenum
and a normal smooth muscle tension is restored in the gastric wall of the fundus [10].

In conclusion, recapitulating the anatomy and physiology of the human stomach with a focus
on gastric motility, allows to define the following key components [2] of a computational multi-
physics model of the human stomach: gastric electrophysiology, solid mechanics of the gastric
wall, and fluid mechanics of the digesta. Coupling all these individual components following
a bottom-up approach to form the big picture of a comprehensive multiphysics model of the
human stomach still remains one of the greatest challenges in the field and is part of ongoing
research.

Mesoscale melt pool modeling in metal PBFAM processes
In metal PBFAM processes, such as, e.g., selective laser melting (SLM) or electron beam melt-
ing (EBM), a laser or electron beam is utilized as a local heat source to melt and fuse a granular
metal powder, layer per layer, to finally form a complex structural part. In consequence, metal
PBFAM opens up entirely new opportunities in product design and manufacturing, e.g., in med-
ical technology or aerospace engineering [11]. However, the overall metal PBFAM process is
affected by several physical phenomena on different length scales, and due to this complexity
still not completely understood. In addition, high-production costs as well as low production
rates characterize the metal PBFAM process. This is were physic-based modeling and predictive
simulation of metal PBFAM processes has the potential

• to shed light on governing process physics, e.g., melt pool thermo-hydrodynamics, and

• to give insights on optimal processing conditions, e.g., to maintain process stability and to
prevent the creation of defects.

Thus, it can help to improve processing hardware, strategies, and materials [12]. An overview of
several recent modeling approaches of the powder bed, the melt pool, and the solidified structural
part on different length scales while considering important physical phenomena in metal PBFAM
is given in [12]. In the following, the focus is set on mesoscale melt pool modeling in metal
PBFAM processes. For the sake of brevity, no detailed literature review is provided herein,
instead the interested reader is referred to [11–13].

For the purposes of illustration, Figure 1.2 gives a schematic representation of a melt pool in
a metal PBFAM process putting the spotlight on several relevant physical phenomena, which
are briefly described in the following. A laser beam moves over a thin layer of granular metal
powder and heats up metal powder particles located beneath. Once the melting temperature at
the surface of the metal powder particles is exceeded, localized melting into a liquid metal phase
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metal powder

ejected powder

particles

melt spatter

solidi�cation

evaporation
surface

tension

recoil

pressure

gas flow

melting

Figure 1.2: Schematic representation of a melt pool in a metal PBFAM process with melting
of granular metal powder to liquid metal due to a laser beam heat source, evaporation-induced
effects, temperature-induced surface tension forces, and solidification (adapted from [11]).

occurs along with the formation of a so-called melt pool. Due to the movement of the laser beam
a (continuous) melt track lags behind the position of the laser beam until the liquid metal cools
down and resolidifies. Altogether, melt pool thermo-hydrodynamics is dominated by strong
temperature-dependent surface tension, wetting, and capillary forces, that dynamically reshape
the formed melt pool [14, 15]. Besides, evaporation of melt takes place in case the boiling
temperature is exceeded [16]. Additionally, this induces a gas flow and high recoil pressure
forces further influencing melt pool thermo-hydrodynamics. Recoil pressure forces may evoke
the formation of so-called keyholes and thus, in combination with gas flow eventually lead to
spatter of melt drops or metal powder grains being ejected away [11, 17, 18]. Naturally, the
aforementioned effects influence the process stability in metal PBFAM and (negatively) affect
the quality of the solidified structural part.

In sum, mesoscale melt pool modeling in metal PBFAM processes requires to consider mul-
tiple phases (i.e., a solid metal, a liquid metal, and a gaseous phase), reversible phase transitions
in the form of melting and solidification, temperature-induced surface tension and wetting forces
as well as capillary forces, and evaporation-induced recoil pressure forces.

1.2 Computational methods

In conclusion, the aforementioned multiphysics applications, that are, the development of a com-
putational multiphysics model of the human stomach, and the development of a mesoscale melt
pool model in metal PBFAM processes, are, among others, characterized by multiphase flow,
(reversible) phase transitions, and geometrically complex and continually changing interface
topologies. In addition, fluid-structure interaction (FSI) phenomena, e.g., subject to large inter-
face deformations, often play an essential role. However, these phenomena can not be captured
sufficiently by the most commonly applied mesh- or grid-based approaches without substan-
tial methodological and computational efforts. By contrast, the method of smoothed particle

4



1.3 Contributions and accomplishments

hydrodynamics (SPH) offers some promising advantages. SPH is a mesh-free discretization
scheme that was independently introduced by Gingold and Monaghan [19] and Lucy [20] in
the year 1977, initially to study astrophysical problems. However, since then SPH has gained
increasing importance in other fields of computational fluid dynamics (CFD), and also, e.g.,
in computational solid dynamics (CSD). Due to its Lagrangian nature and mesh-free charac-
ter, SPH is particularly suitable for multiphysics problems involving multiphase flow, dynamic
phase transitions, and continually changing interface topologies subject to large deformations,
and, in consequence, very appropriate for a wide range of applications in both engineering and
biomechanics. For these reasons, SPH is selected as discretization scheme for the fluid and un-
deformable solid phases. In contrast, the deformable structures are, as most commonly done
in engineering, discretized using the finite element method (FEM), thereby profiting from the
method’s advantages in this use case, e.g., high accuracy compared to other methods, straight-
forward application of boundary conditions, etc. To this end, a robust and efficient coupling
scheme for SPH and the FEM is required. To summarize, this thesis proposes novel compu-
tational approaches for multiphysics applications in the fields of engineering and biomechanics
using SPH and the FEM. The focus is set on modeling of complex fluids, e.g., including multiple
phases and dynamic phase transition, and its coupling with deformable structures. Accordingly,
an introduction into viscous fluid flow and structural mechanics, and its numerical solution using
SPH and the FEM is given in Chapter 2.

1.3 Contributions and accomplishments
This section highlights the author’s contributions and accomplishments within the multiphysics
applications as presented in Section 1.1, and defines the publications which form the core of this
cumulative thesis. To this end, an overview of the author’s publications [2,6,12,21–23] is given
in Figure 1.3. The two publications illustrated in the orange box (and listed below) form the
major accomplishments of this cumulative thesis, along with the content presented in Chapter 2,
and are in the remainder of this thesis denoted as Paper A [21] and Paper B [22]:

• S. L. Fuchs, C. Meier, W. A. Wall, and C. J. Cyron. A novel smoothed particle hydro-
dynamics and finite element coupling scheme for fluid-structure interaction: The sliding
boundary particle approach. Computer Methods in Applied Mechanics and Engineering,
383:113922, 2021

• S. L. Fuchs, C. Meier, W. A. Wall, and C. J. Cyron. An SPH framework for fluid-solid and
contact interaction problems including thermo-mechanical coupling and reversible phase
transitions. Advanced Modeling and Simulation in Engineering Sciences, 8(1):15, 2021

A brief summary of the major accomplishments presented in this cumulative thesis is given in
the following:

• A high-performance SPH framework is developed and implemented in the in-house paral-
lel multiphysics research code BACI (Bavarian Advanced Computational Initiative) [24].
The details including the mathematical description, the numerical formulation, and the
computational framework as well as numerical examples for the purposes of validation
are presented in Chapter 2.
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mod
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Figure 1.3: Overview of the author’s publications [2, 6, 12, 21–23] within the research projects.

• In Paper A [21], the novel sliding boundary particle approach to achieve an accurate rep-
resentation of fluid quantities close to strongly curved and deformable interface topologies
when using SPH as the discretization scheme for the fluid domain is proposed.

• Furthermore, Paper A [21] introduces an SPH and FEM coupling scheme for FSI problems
that are characterized by large deformations of the domain.

• Finally, a computational approach for fluid-solid and contact interaction problems includ-
ing thermo-mechanical coupling and reversible phase transitions using SPH is presented
in Paper B [22].

A summary of the publications Paper A [21] and Paper B [22] is given in Chapter 3 along
with the author’s individual contributions. The full texts of these publications are reprinted in
Appendix A.

1.4 Outline
The remainder of this thesis consist of three main parts: First, an introduction into viscous fluid
flow and structural mechanics, and its numerical solution using SPH and the FEM is given in
Chapter 2. This includes presenting the mathematical descriptions and the numerical formula-
tions along with the computational framework applied within this thesis. For validation purposes,
the accuracy and robustness of the numerical formulation and the efficiency and scalability of
the parallel computational framework are demonstrated examining several numerical examples
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1.4 Outline

including a strong scaling analysis. A brief summary of the publications Paper A [21] and Paper
B [22] (full texts reprinted in Appendix A) which form the core of this cumulative thesis, is given
in Chapter 3 along with the author’s individual contributions. Finally, Chapter 4 concludes this
thesis with a brief discussion and outlines perspectives for future research.
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2 Governing equations and numerical
methods

This chapter gives an introduction into viscous fluid flow and structural mechanics, and its nu-
merical solution using the method of smoothed particle hydrodynamics and the finite element
method. After briefly presenting the mathematical descriptions, the focus is set on the numer-
ical formulations and the parallel computational framework as applied within this cumulative
thesis. Accordingly, the remainder of this chapter is structured as follows: Section 2.1 presents
the instationary Navier-Stokes equations in space-continuous form. The fundamentals of SPH
are briefly recapitulated in Section 2.2, followed by a weakly compressible SPH formulation for
modeling fluid flow in Section 2.3. Section 2.4 presents the nonlinear initial boundary value
problem of structural mechanics in local material form. The principals of the FEM for structural
mechanics are given in Section 2.5. Next, the details on the parallel computational framework
with a focus on an efficient particle neighbor pair detection and a parallel load distribution strat-
egy are provided in Section 2.6. Finally, the accuracy of the formulation and the efficiency of the
parallel computational framework are demonstrated in Section 2.7 examining several numerical
examples of fluid flow problems in two and three dimensions. Note that parts of this chapter are
adapted from the author’s publications: Paper A [21], Paper B [22], and [23].

2.1 Instationary Navier-Stokes equations for fluid flow

At each time t ∈ [0, T ] the fluid domain Ωf with the fluid boundary Γf = ∂Ωf is considered.
In general, the fluid domain Ωf may consist of multiple (liquid and gas) phases, however, for
ease of notation, it will not be distinguished between different fluid phases in the following. The
fluid domain is governed by the instationary Navier-Stokes equations in the domain Ωf , which
consist in convective form of the mass continuity equation and the momentum equation

dρf

dt
= −ρf∇ · uf in Ωf , (2.1)

duf

dt
= − 1

ρf
∇pf + fν + bf in Ωf , (2.2)

with viscous force fν and body force bf each per unit mass. For a Newtonian fluid the viscous
force is given as

fν = νf∇2uf , (2.3)

with kinematic viscosity νf , which is defined as the ratio of dynamic viscosity ηf and fluid
density ρf as νf = ηf

/
ρf . The mass continuity equation (2.1) and the momentum equation (2.2)
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2 Governing equations and numerical methods

represent a system of d + 1 equations with the d + 2 unknowns, velocity uf , density ρf , and
pressure pf , in d-dimensional space. The system of equations is closed with an equation of state
of the form

pf = pf
(
ρf
)

(2.4)

relating fluid density ρf and pressure pf . The Navier-Stokes equations (2.1) and (2.2) are subject
to the following initial conditions

ρf = ρf0 and uf = uf0 in Ωf at t = 0 , (2.5)

with initial density ρf0 and initial velocity uf0 . In addition, Dirichlet and Neumann boundary
conditions are applied on the fluid boundary Γf

uf = ûf on ΓfD and tf = t̂f on ΓfN , (2.6)

with prescribed boundary velocity ûf and boundary traction t̂f , and the two disjoint subsets ΓfD
and ΓfN for the Dirichlet and Neumann part of the fluid boundary Γf , defined as

Γf = ΓfD ∪ ΓfN and ΓfD ∩ ΓfN = ∅ . (2.7)

Remark 2.1 In the equations (2.1) and (2.2) governing the fluid domain all time derivatives fol-
low the motion of material points, i.e., are material derivatives d(·)

dt
= ∂(·)

∂t
+u·∇(·). Accordingly,

∇(·) denotes derivatives with respect to spatial coordinates.

2.2 Spatial discretization via smoothed particle
hydrodynamics

A promising approach to model complex fluids is given with the method of smoothed particle
hydrodynamics. SPH is a mesh-free discretization scheme that was originally and independently
of one another introduced by Gingold and Monaghan [19] and Lucy [20] in 1977. While initially
intended to study astrophysical problems, SPH gained increasing importance in other fields of
CFD since then. Due to its Lagrangian nature, SPH is very well suited for flow problems involv-
ing multiple phases, dynamic phase transitions, as well as complex interface topologies. The
fundamental concept of SPH is based on the approximation of a field quantity f via a smoothing
operation and on the discretization of a domain Ω with discretization points, so-called particles.
In the following, the basics of SPH are recapitulated briefly referring the interested reader to the
literature [25–30].

2.2.1 Approximation of field quantities via a smoothing kernel

To begin with, a field quantity f on a domain Ω can be expressed exactly in integral form as

f(r) =

∫
Ω

f(r′)δ(|r− r′|) dr′ (2.8)

10



2.2 Spatial discretization via smoothed particle hydrodynamics

making use of the Dirac delta function δ(r). Replacing the latter by a so-called smoothing
kernel W (r, h), that fulfills certain consistency properties [27, 28], cf. Section 2.2.3, leads to an
approximation of the field quantity f in smoothed integral form

f(r) ≈
∫

Ω

f(r′)W (|r− r′|, h) dr′ (2.9)

while committing a smoothing error.

2.2.2 Discretization of the domain with particles

In a next step, the domain Ω is filled with discretization points, so-called particles j, each occu-
pying a volume Vj . Thus, the smoothed integral form of field quantity f reduces in discretized
form to a summation of contributions from all particles j in the domain Ω, cf. Figure 2.1,

f(r) ≈
∑
j

Vjf(rj)W (|r− rj|, h) (2.10)

adding a discretization error [31]. A straightforward approach in SPH to determine the gradient
of a field quantity f follows directly by differentiation of equation (2.10) resulting in

∇f(r) ≈
∑
j

Vjf(rj)∇W (|r− rj|, h) . (2.11)

Note that this (simple) variant for an approximation of the gradient shows some particular
disadvantages. Hence, more advanced approximations for gradients are given in the litera-
ture [25, 27–29] and will also be applied in the following.

domain Ω

support radius rc

r
rj

W (r, h)

W (|r− rj|, h)
rκh−κh

Figure 2.1: Approximation of a field quantity f in the domain Ω via a smoothing kernel W (r, h)
with support radius rc = κh based on discrete field quantities stemming from neighboring parti-
cles j.

In sum, the concept of SPH allows to reduce partial differential equations to a system of cou-
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2 Governing equations and numerical methods

pled ordinary differential equations (with as many equations as particles) that is solved in the
domain Ω. The transient positions of particles are advected with the velocity resembling the La-
grangian nature of the method. As a result, all field quantities are evaluated at and associated with
particle positions, meaning each particle carries its corresponding field quantities. Finally, in a
post-processing step the continuous field quantity f is recovered from the discrete field quan-
tities f(rj) of particles j in the domain Ω using the approximation (2.10) and the commonly
known Shepard filter

f̂(r) ≈
∑

j Vjf(rj)W (|r− rj|, h)∑
j VjW (|r− rj|, h)

. (2.12)

Note that the denominator typically takes on values close to one inside the domain and is mainly
relevant for boundary regions with reduced support due to a lack of neighboring particles.

2.2.3 Consistency properties of standard smoothing kernels

The smoothing kernel W (r, h) is a monotonically decreasing, smooth function that depends on
a distance r and a smoothing length h. The smoothing length h together with a scaling factor κ
define the support radius of the smoothing kernel rc = κh, cf. Figure 2.1. This allows for
definition of two typical properties of standard smoothing kernels [32], namely positivity

W (r, h) ≥ 0 (2.13)

and compact support
W (r, h) = 0 for r > rc . (2.14)

In general, all particles in the domain Ω contribute to the SPH approximation of a field quantity f ,
cf. equation (2.10). However, in practice only the neighboring particles within the support ra-
dius rc need to be considered due to the compact support of the smoothing kernel, cf. Figure 2.1.
This property is very beneficial as it reduces the computational effort of the method. In addition,
the normalization property ∫

Ω

W (|r− r′|, h) dr′ = 1 (2.15)

enables exact interpolation of constant field quantities, while the Dirac delta function property

lim
h→0

W (r, h) = δ(r) (2.16)

ensures an exact representation of a field quantity f in the limit h→ 0, cf. Section 2.2.1.

Remark 2.2 In their original work [19] Gingold and Monaghan employed a Gaussian smooth-
ing kernel for the smoothing of field quantities defined as

W (r, h) = αde
−( r

h)
2

(2.17)

with normalization factor αd given as α1 = 1
π 1/2 h

, α2 = 1
πh2

, and α3 = 1
π 3/2 h3

in one-, two-,
and three-dimensional space. Note that compact support of the Gaussian smoothing kernel is in
the mathematical sense not met for a finite support radius rc, although, practically applicable as
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2.2 Spatial discretization via smoothed particle hydrodynamics

it approaches zero in a numerical sense [28]. However, this requires a larger support radius rc
resulting in increased computational costs compared to constructed smoothing kernels, e.g., the
quintic spline smoothing kernel, cf. Remark 2.3. For this reason, constructed smoothing kernels
are often the preferred choice.

Remark 2.3 Within this work, the smoothing of field quantities is carried out using a quintic
spline smoothing kernel W (r, h) [28, 33, 34], with smoothing length h and support radius rc =
κh with scaling factor κ = 3, defined as

W (r, h) = αd


(
3−

(
r
h

))5 − 6
(
2−

(
r
h

))5
+ 15

(
1−

(
r
h

))5
, 0 ≤
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h

)
< 1 ,(

3−
(
r
h

))5 − 6
(
2−

(
r
h

))5
, 1 ≤

(
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h

)
< 2 ,(

3−
(
r
h

))5
, 2 ≤

(
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h

)
< 3 ,

0, 3 ≤
(
r
h

)
.

(2.18)

with normalization factor αd given as α1 = 1
120h

, α2 = 7
478πh2

, and α3 = 3
359πh3

in one-, two-,
and three-dimensional space. A plot of the quintic spline smoothing kernel and its first derivative
are given in Figure 2.2.
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Figure 2.2: Quintic spline smoothing kernel W (r, h) and its first derivative ∂W (r, h)/∂r .

Remark 2.4 In the following, a field quantity f evaluated for particle i at position ri is written
as fi = f(ri). In addition, the short notation Wij = W (rij, h) denotes the smoothing kernel
evaluated for particle i at position ri with neighboring particle j at position rj , where rij =
|rij| = |ri − rj| is the absolute distance between particles i and j. Similarly, the derivative
of the smoothing kernel with respect to the absolute distance rij is denoted by ∂W/∂rij =
∂W (rij, h)/∂rij .

2.2.4 Uniform initial particle spacing in the domain

Within this contribution, the domain Ω is initially filled with particles located on a regular grid
with initial particle spacing ∆x, thus in d-dimensional space each particle initially occupies an
effective volume Veff = (∆x)d. Consequently, the mass of a particle is initially assigned using
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2 Governing equations and numerical methods

the reference density ρ0 of the respective phase and the effective volume Veff . As stated in [33],
this approach is quite beneficial as it ensures a consistent initialization of relevant field quantities.
Naturally, the choice of the initial particle spacing ∆x, together with the smoothing length h
of the smoothing kernel, influences the accuracy of SPH. In consequence, for a convergence
analysis often the smoothing length h and the ratio ∆x/h are considered as length scales [31].

Remark 2.5 Within this work, the smoothing length h of the smoothing kernel W (r, h), cf. Re-
mark 2.3, is set equal to the initial particle spacing ∆x. Consequently, in a convergence analysis
with decreasing particle spacing ∆x the ratio ∆x/h remains constant [31].

2.3 Modeling fluid flow via weakly compressible
smoothed particle hydrodynamics

The fluid domain governed by the instationary Navier-Stokes equations (2.1) and (2.2) is dis-
cretized using smoothed particle hydrodynamics following a weakly compressible approach [27–
29]. For modeling fluid flow using SPH, several different formulations each with its own char-
acteristics and benefits can be derived as reflected by the vast amount of literature. The aim of
this section is to give an overview of the formulation applied throughout the author’s publica-
tions: Paper A [21], Paper B [22], and [23]. For ease of notation, in the following the index (·)f
denoting fluid quantities, as introduced in Section 2.1, is dropped.

2.3.1 Smoothed density field via summation

The density of a particle i is determined via summation of the respective smoothing kernel
contributions of all neighboring particles j within the support radius rc

ρi = mi

∑
j

Wij (2.19)

with mass mi of particle i. This approach is typically denoted as density summation and results
in an exact conservation of mass in the fluid domain, which can be shown in a straightforward
manner considering the commonly applied normalization of the smoothing kernel to unity. It
shall be noted that the density field may alternatively be obtained by discretization and inte-
gration of the mass continuity equation (2.1) [25, 27, 28, 35]. This approach is also denoted
as density integration and has advantages when considering free surface flows [36, 37], where
naturally regions with reduced support due to a lack of neighboring particles occur. Moreover,
density correction schemes, e.g., utilizing a Shepard filter or a moving-least-square interpolation,
are proposed in [26, 38, 39].

2.3.2 Discretization of the momentum equation

The momentum equation (2.2) is discretized following [40, 41] including a transport velocity
formulation to suppress the problem of tensile instability. The latter will be briefly recapitulated
in the following. The transport velocity formulation relies on a constant background pressure pb
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2.3 Modeling fluid flow via weakly compressible smoothed particle hydrodynamics

that is applied to all particles and results in a contribution to the particle accelerations for in
general disordered particle distributions. However, these additional acceleration contributions
vanish for particle distributions fulfilling the partition of unity of the smoothing kernel, thus
fostering these desirable configurations. For the sake of brevity, the definition of the modified
advection velocity and the additional terms in the momentum equation from the aforementioned
transport velocity formulation are not discussed in the following and the reader is kindly referred
to the original publication [41]. Altogether, the acceleration ai = dui/dt of a particle i results
from summation of all acceleration contributions due to interaction with neighboring particles j
and a body force bi as

ai =
1

mi

∑
j

(
V 2
i + V 2

j

)[
−p̃ij

∂W

∂rij
eij + η̃ij

uij
rij

∂W

∂rij

]
+ bi , (2.20)

with volume Vi = mi/ρi of particle i, unit vector eij = ri − rj/|ri − rj| = rij/rij , relative
velocity uij = ui − uj , and (density-weighted) inter-particle averaged pressure and dynamic
viscosity

p̃ij =
ρjpi + ρipj
ρi + ρj

and η̃ij =
2ηiηj
ηi + ηj

. (2.21)

In the following, the acceleration contribution of a neighboring particle j to particle i is, for ease
of notation, denoted as aij , where ai =

∑
j aij+bi. The above given momentum equation (2.20)

exactly conserves linear momentum due to pairwise anti-symmetric particle forces

miaij = −mjaji , (2.22)

which can easily be verified considering the property ∂W/∂rij = ∂W/∂rji of the smoothing
kernel.

2.3.3 Equation of state

Following a weakly compressible approach, density ρi and pressure pi of a particle i are linked
via the equation of state

pi(ρi) = c2(ρi − ρ0) = p0

(
ρi
ρ0

− 1

)
(2.23)

with reference density ρ0, reference pressure p0 = ρ0c
2, and artificial speed of sound c. Note that

this commonly applied approach can only capture deviations from the reference pressure, i.e.,
pi(ρ0) = 0, and not the total pressure. To limit density fluctuations to an acceptable level, while
still avoiding too severe time step restrictions, cf. Section 2.3.5, strategies are discussed in [33]
on how to choose a reasonable value for the artificial speed of sound c. Accordingly, in this work
the artificial speed of sound c is set allowing an average density variation of approximately 1 %.

2.3.4 Boundary conditions

Modeling boundary (and coupling) conditions using SPH in an accurate and robust manner plays
a crucial role and still poses a challenge. This is reflected by the vast amount of literature being
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2 Governing equations and numerical methods

published in this field of research. The purpose of this section is to give an overview of the
formulations applied to model boundary conditions within this work. Furthermore, formulations
to model coupling conditions for fluid-structure and fluid-solid interaction problems are treated
in Paper A [21] and Paper B [22].

Rigid wall boundary conditions

Herein, rigid wall boundary conditions are modeled utilizing boundary particle methods based
on fixed layers of particles resembling rigid walls [33, 40, 42]. Consequently, to maintain full
support of the smoothing kernel, at least q = floor(rc/∆x) layers of boundary particles b are
placed parallel to the fluid boundary ΓfD with a distance of ∆x/2 outside of the fluid domain Ωf .
A boundary particle b contributes to the density summation (2.19) and to the momentum equa-
tion (2.20) evaluated for a fluid particle i considered as neighboring particle j. To this end, the
respective quantities of boundary particles b are extrapolated from the fluid domain based on a
local force balance as described in [40]. For more details the interested reader is referred to the
aforementioned literature. For the sake of completeness, it shall be mentioned that several al-
ternative formulations for modeling rigid wall boundaries in SPH are proposed in the literature.
Among them are, e.g., penalty-like repulsive force formulations [27, 37, 43], ghost particle for-
mulations [44, 45], or semi-analytical methods considering non-vanishing surface integrals due
to missing kernel support [46–49]. For an overview on the advantages and disadvantages of all
aforementioned formulations refer to [28,50–52]. Besides, note that rigid wall boundaries could
also be modeled utilizing the sliding boundary particle approach as proposed in Paper A [21].

Remark 2.6 The floor operator used herein is defined by floor(x) := max {k ∈ Z | k ≤ x} and
returns the largest integer that is less than or equal to its argument x.

Inflow and outflow boundary conditions

Open boundaries are modeled similar to [53,54] via defined inflow and outflow zones occupying
so-called inflow particles k respectively outflow particles l. Thereby, full support of the interior
fluid particles i is maintained for density summation (2.19) and evaluation of the momentum
equation (2.20) when evaluating contributions from inflow and outflow particles considered as
neighboring particles j. At the inflow, i.e., the Dirichlet boundary, the desired inflow velocity û
is prescribed directly to all inflow particles k as uk = û. The pressure field is extrapolated from
the interior fluid particles i to the inflow particles k following

pk =

∑
i VipiWki∑
i ViWki

. (2.24)

At the outflow, i.e., the Neumann boundary, a zero pressure field is prescribed to all outflow
particles l following pl = 0. The density field of both inflow and outflow particles is determined
from the pressure field with the equation of state (2.23). Finally, to determine consistent veloci-
ties ul of the outflow particles l, the momentum equation (2.20) is also evaluated for all outflow
particles with contributions from fluid, boundary, and outflow particles considered as neighbor-
ing particles j, and integrated in time. Alternative formulations to prescribe inflow and outflow
boundary conditions, e.g., based on semi-analytical methods, are given in the literature [55, 56].
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2.4 Nonlinear initial boundary value problem of structural mechanics

Periodic boundary conditions

Imposing a periodic boundary condition in a specific spatial direction allows for particle interac-
tion evaluation across opposite domain borders. Moreover, particles leaving the domain on one
side are re-injecting on the opposite side. Periodic boundary conditions are commonly applied
in SPH modeling of channel or shear flow.

2.3.5 Explicit velocity-Verlet time integration scheme

The (discretized) momentum equation (2.20) is integrated in time applying an explicit velocity-
Verlet time integration scheme in kick-drift-kick form [57,58], also denoted as leapfrog scheme.
The velocity-Verlet time integration scheme is known to be of second order accuracy and re-
versible in time when dissipative effects are absent [27]. In a first kick-step, the accelera-
tions ani = (dui/dt)n, as determined in the previous time step n, are used to compute the
intermediate velocities

u
n+1/2
i = uni +

∆t

2
ani (2.25)

of fluid particles i, where ∆t is the time step size. Next, in a drift-step, the positions of fluid
particles i are updated to time step n+ 1 using the intermediate velocities un+1/2

i as

rn+1
i = rni + ∆tu

n+1/2
i . (2.26)

Using the positions rn+1
i and the intermediate velocities u

n+1/2
i , the densities ρn+1

i and, subse-
quently, the accelerations an+1

i of fluid particles i are computed applying the density summa-
tion (2.19) and evaluating the momentum equation (2.20). In a final kick-step, the velocities of
fluid particles i at time step n+ 1 are computed as

un+1
i = u

n+1/2
i +

∆t

2
an+1
i . (2.27)

To maintain stability of the explicit velocity-Verlet time integration scheme, the time step size ∆t
is restricted by the Courant-Friedrichs-Lewy (CFL) condition, the viscous condition, and the
body force condition, as

∆t ≤ min

{
0.25

h

c+ |umax|
, 0.125

h2

ν
, 0.25

√
h

|bmax|

}
, (2.28)

with maximum fluid velocity umax and maximum body force bmax, refer to [33, 41].

2.4 Nonlinear initial boundary value problem of
structural mechanics

At each time t ∈ [0, T ] the structural domain Ωs with the structural boundary Γs = ∂Ωs is
considered. In the regime of finite deformations, the structural domain Ωs is governed by the
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balance of linear momentum in the following local material form

ρs0
d2ds

dt2
=∇0 · (FS) + ρs0b

s
0 in Ωs , (2.29)

with the material density ρs0 and body force bs0. The structural displacement ds are the primary
unknowns. The deformation of the structure is described by the deformation gradient F =∇0d

s

defining the Green-Lagrange strains E = 1
2

(
FTF− I

)
. For simplicity, and due to their general

applicability in engineering and biomechanics, the second Piola-Kirchhoff stresses S are chosen
to follow from a constitutive relation of the form S = ∂Ψ/∂E based on a hyperelastic strain
energy function Ψ = Ψ(E). The partial differential equation (2.29) is subject to the following
initial conditions

ds = ds0 and
dds

dt
=

dds0
dt

in Ωs at t = 0 , (2.30)

with initial displacement ds0 and initial velocity dds0/dt . Dirichlet and Neumann boundary con-
ditions are applied on the structural boundary Γs as

ds = d̂s on ΓsD and (FS) ·N = t̂s0 on ΓsN , (2.31)

with prescribed boundary displacement d̂s, boundary traction t̂s0, and outward pointing unit nor-
mal vector N in material configuration. The structural boundary Γs is partitioned into the two
disjoint subsets ΓsD and ΓsN defining the Dirichlet and Neumann part as

Γs = ΓsD ∪ ΓsN and ΓsD ∩ ΓsN = ∅ . (2.32)

Remark 2.7 In the equation (2.29) governing the structural domain all time derivatives follow
the motion of material points, i.e., are material derivatives d(·)

dt
= ∂(·)

∂t
+ u · ∇(·). Accordingly,

∇(·) denotes derivatives with respect to spatial coordinates while ∇0(·) denotes derivatives
with respect to material coordinates.

2.5 Modeling deformable structures via the finite
element method

The discretization of the structural domain, governed by the balance of linear momentum (2.29),
is based on the finite element method. Since it is not the focus of this work, the basics of the FEM
are presented here only very briefly. For further information the interested reader is referred to
the literature, e.g., [59–62].

2.5.1 Principle of virtual work

Applying the method of weighted residuals, in the following interpreted as the principle of virtual
work, the weak form of the initial boundary value problem for the structural domain can be
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obtained as

δWs =

(
δds, ρs0

d2ds

dt2

)
Ωs

+
(
∇0δd

s, FS
)

Ωs
−
(
δds, ρs0b

s
0

)
Ωs
−
(
δds, t̂s0

)
Γs
N

= 0 (2.33)

with the variation δds of the primary unknown, i.e., the structural displacement ds. The varia-
tion δds is required to be zero on the Dirichlet boundary ΓsD in compliance with the Dirichlet
boundary condition (2.31). Accordingly, the following trial and test space can be introduced

U =
{
ds |ds ∈ H1(Ωs), ds(rs, t) = d̂s(rs, t) on ΓsD

}
, (2.34)

V =
{
δds | δds ∈ H1(Ωs), δds(rs) = 0 on ΓsD

}
. (2.35)

Herein, H1(Ωs) denotes the Sobolev space of functions with square-integrable values and first
derivatives. Besides, rs is the current position of the structural domain. Note that the trial
space U in contrast to the test space V may depend on the time t. A solution ds ∈ U of the weak
form (2.33) needs to satisfy

δWs = 0 ∀ δds in V . (2.36)

As a result, the weak form (2.33) is equivalent to the strong form of the balance of linear mo-
mentum (2.29).

2.5.2 Discretization in space and time

The structural domain Ωs is approximated by non-overlapping finite elements e with nodes i.
Hence, the structural displacement field ds is discretized introducing nodal displacements dsi of
nodes i. Accordingly, the displacement field is approximated via

ds(rs, t) ≈
∑
j

N e
j (rs)dsj(t) (2.37)

using Lagrange polynomials N e
j with compact support inside an element e. Within a Bubnov-

Galerkin approach, the same Lagrange polynomials for trial and test functions are employed.
Following the iso-parametric concept, the parameter coordinates ξ used for the definition of the
shape functions within a standard element geometry are mapped onto the physical coordinates
applying the same shape functions also used for the displacement interpolation. With the ap-
proximated displacement field (2.37) the weak form (2.33) can be written in terms of the nodal
displacements dsi and evaluated elementwise by evaluating the spatial integrals numerically us-
ing Gaussian quadrature. The contributions of each element are assembled resulting in a spatially
discretized balance of inertia forces, internal forces, and external forces, depending on the nodal
displacements dsi and its time derivatives. Subsequently, the semi-discrete form is discretized
in time applying a generalized-alpha time integration scheme. Finally, the resulting system of
nonlinear equations in residual form is solved for the unknown nodal displacements dsi with a
Newton-Raphson scheme.

Remark 2.8 Within this work, finite elements based on a first-order interpolation are employed.
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However, within the scope of the proposed formulation also finite elements based on a higher-
order interpolation could be applied.

2.6 Parallel computational framework
The numerical solution of flow problems, as studied herein, with spatial discretization of the
domain via SPH, cf. Section 2.2, requires an efficient parallel computational framework ca-
pable of handling systems constituted of a large number of particles. This requires addressing
in particular two aspects, namely, an efficient particle neighbor pair detection, and a parallel
load distribution strategy, while keeping the communication overhead at an acceptable level. In
the literature, several approaches for parallel computational frameworks utilizing particle-based
methods have been proposed, e.g., [57,63–72]. In the present parallel computational framework,
a spatial decomposition approach with particle neighbor pair detection utilizing a combination of
cell-linked lists and Verlet-lists based on [65] is applied, cf. Section 2.6.1. In addition, the par-
allel computational framework is extended to enable surface coupling of the particle field with
a volume mesh being spatially discretized using the finite element method, cf. Section 2.6.2, in
particular with regard to Paper A [21]. Besides, the proposed parallel computational framework
supports the motion of rigid bodies that are fully resolved, that is, spatially discretized as clusters
of particles, as demonstrated in Paper B [22].

Remark 2.9 The presented parallel computational framework is implemented in the in-house
parallel multiphysics research code BACI (Bavarian Advanced Computational Initiative) [24]
taking advantage of third party libraries such as the Message Passing Interface (MPI) [73, 74]
for distributed-memory parallel programming, the Trilinos Project [75, 76], and the Zoltan
toolkit [77, 78] for partitioning and load balancing. Existing functionality within BACI, es-
pecially regarding structural analysis with the FEM, is re-used.

Remark 2.10 The proposed concept for an efficient parallel computational framework is ap-
plicable not only when using SPH as a discretization scheme, but also for other particle-based
methods such as, e.g., the discrete element method (DEM) [79–82], the molecular dynamics
(MD) method [69, 83], or the dissipative particle dynamics (DPD) method [84, 85], each with
its own problem-specific geometrically limited interaction distance.

2.6.1 Spatial decomposition of the computational domain
The general idea of the spatial decomposition approach is briefly explained in the following. For
detailed information, the interested reader is referred to the original publication [65].

Particle neighbor pair detection

The evaluation of particle interactions in SPH requires knowledge of neighboring particles within
a geometrically limited interaction distance, i.e., within the support radius rc of the smoothing
kernel, cf. Section 2.2. Following [65], the computational domain is divided into several cubic
cells forming a uniform lattice. Each particle is uniquely assigned to one cell according to its
current spatial position, cf. Figure 2.3. This information is stored in so-called cell-linked lists.
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2.6 Parallel computational framework

The size of the cells rs is chosen such that the neighboring particles of a particle are either located
in the same cell or in adjacent cells. Consequently, to detect all neighboring particles, the cell
size rs is required to be larger than or at least equal to the support radius rc of the smoothing
kernel, i.e., rs ≥ rc. Next, making use of the predefined cell-linked lists, for each particle a
Verlet-list is built storing potential neighboring particles within a search radius that is set equal
to the cell size rs, cf. Figure 2.3. The Verlet-list of a particle is valid over time as long as no other
particle that was previously located outside the search radius rs is now located inside the support
radius rc. As a result, this allows to evolve particle positions and to correctly evaluate all particle
interactions without the necessity to regularly rebuild the cell-linked lists and the Verlet-lists.

Remark 2.11 It shall be noted, that generally an optimal size of the search radius rs, i.e., the cell
size rs, depends on problem-specific parameters. While a search radius rs close to the support
radius rc requires to rebuild the Verlet-lists more frequently, a larger search radius rs makes
the Verlet-lists contain more potential neighboring particles and increases the communication
overhead. Within this work, setting the cell size respectively the search radius to rs ≈ 1.1 · rc
proved to be a good choice balancing the overall computational effort.

processor p

processor p̃

processor p̂
support radius rc

search radius rs

cell size rs

particle with support radius rc

particle

processor domain boundary

cell boundary

ghosted cell on processor p

Figure 2.3: Parallel distribution of particles over several processors according to a spatial de-
composition approach with particle neighbor pair detection for a single particle with support
radius rc.

Parallel load distribution strategy

Following a spatial decomposition approach, the cells together with assigned particles are dis-
tributed over all involved processors, i.e., forming so-called processor domains, cf. Figure 2.3.
To keep the computational load balanced between all processors and to minimize the commu-
nication overhead, ideally cubic processor domains are defined such that each contains (nearly)
the same number of particles. This is achieved via a (coordinate-based) geometric partition-
ing approach, e.g., based on recursive coordinate bisection [78, 86], considering certain weights
assigned to each cells. An adaptive repartitioning strategy ensures that the computational load
remains balanced also in the case of large particle movement. The cells occupied by each pro-
cessor are called owned cells. On each processor the position of particles located in its processor
domain, i.e., the position of so-called owned particles, is evolved. Accordingly, this requires the
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2 Governing equations and numerical methods

evaluation of particle interactions of owned particles with their neighboring particles. However,
the correct evaluation of particle interactions close to processor domain boundaries requires that
each processor has information not only about its owned particles but also about particles in cells
adjacent to its processor domain. To this end, each processor is provided full information not
only about its own domain but additionally about a layer of ghosted cells (with ghosted particles)
around its own domain. Keeping the information about ghosted cells and particles continuously
updated requires communication between processors.

Remark 2.12 To exemplify the cost of communication overhead, consider a perfectly cubic pro-
cessor domain occupying no owned cells. Consequently, assuming one layer of ghosted cells
surrounding the processor domain, a total of ng =

(
3
√
no + 2

)3 − no cells are ghosted. That
is, the communication overhead scales with the ratio ng/no of ghosted cells ng to owned cells
no. Furthermore, the (average) number of particles per cell, and, consequently, also the com-
munication overhead, scale with the ratio rc/∆x of the support radius rc and the initial particle
spacing ∆x.

hypergraph partitioning

geometric partitioning

interface mesh

particle

interface element

volumetric element

processor domain boundary

cell boundary

Figure 2.4: Parallel distribution of a volume mesh via a (connectivity-based) hypergraph par-
titioning approach, and of a particle field via a (coordinate-based) geometric partitioning ap-
proach, over several processors with a conforming interface mesh introduced to facilitate the
exchange of kinematic and kinetic quantities.

2.6.2 Surface coupling of the particle field with a volume mesh
A numerical formulation for solving FSI problems, where the fluid domain is spatially dis-
cretized using SPH and the structural domain using the FEM, is proposed in Paper A [21].
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2.7 Numerical examples of fluid flow problems

For this purpose, the parallel computational framework is extended to enable surface coupling
of the particle field with a volume mesh. In contrast to the particle field, that is distributed to
the processors via a (coordinate-based) geometric partitioning approach, the volume mesh is dis-
tributed based on a (connectivity-based) hypergraph partitioning approach, e.g., [87, 88], within
this parallel computational framework. Accordingly, Figure 2.4 illustrates the concept applied
for the parallel distribution of the volume mesh and the particle field over several processors.
To facilitate the exchange of kinematic and kinetic quantities between the particle field and the
volume mesh, e.g., as required for the evaluation of the surface coupling condition, an extraction
of the volume mesh at the surface respectively interface is introduced. A clone of this so-called
interface mesh is, along with the particle field, distributed to the processors, cf. Figure 2.5. In
a next step, each interface element is assigned to the cells according to a spatial decomposition
approach. Consequently, particle to interface element neighbor pair detection can then be per-
formed very similarly as described in Section 2.6.1, i.e., based on a combination of cell-linked
lists and Verlet-lists. Finally, it shall be stated that the exchange of kinematic and kinetic quanti-
ties of the particle field and the volume mesh at the interface mesh may require communication
between processors due to potentially different parallel distribution, cf. Figure 2.4.

processor p

processor p̃

processor p̂ interface mesh

particle

interface element

processor domain boundary

cell boundary

ghosted cell on processor p

Figure 2.5: Parallel distribution of an interface mesh and particles over several processors ac-
cording to a spatial decomposition approach.

Remark 2.13 Note that volume coupling of the particle field with a volume mesh could be re-
alized with the proposed parallel computational framework in a straightforward manner. To
reduce the cost of communication, this would require to distribute the volume mesh, along with
the particle field, via a (coordinate-based) geometric partitioning approach to the processors.

2.7 Numerical examples of fluid flow problems
The purpose of this section is to demonstrate the accuracy of the applied formulation and the
efficiency of the parallel computational framework examining several numerical examples of
fluid flow problems in two and three dimensions. The obtained results are compared to analytical
and reference solutions given in the literature both in quantitative and qualitative manner. The
parameter values in the numerical examples are given in a consistent set of units and presented
in non-dimensional form.
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2 Governing equations and numerical methods

2.7.1 Poiseuille and Couette flow

In the following a Poiseuille and a Couette flow are examined. The obtained results are compared
with the analytical solution as given, e.g., in [33]. A rectangular channel of length L = 0.5
and height H = 1.0 is occupied by a Newtonian fluid with density ρf = 1.0 and kinematic
viscosity νf = 1.0 × 10−2. The coordinate axes ex and ey are pointing in longitudinal and
transversal direction of the channel. Periodic boundary conditions are applied at the left and
right end of the channel. No-slip boundary conditions are applied at the bottom and top channel
wall. In the case of a Poiseuille flow, a gravitational acceleration of magnitude |g| = 0.1 is acting
in positive x-direction set as body force (per unit mass), while in the case of a Couette flow, the
top wall of the channel moves with a velocity uw = 1.25 in positive x-direction. The Reynolds
number of the problem is given as Re = umaxH

/
νf = 125 for both Poiseuille and Couette flow

with maximum velocity umax = 1.25 as obtained from the analytical solution [33]. For the fluid
phase, an artificial speed of sound c = 12.5 is chosen, resulting in a reference pressure p0 =
156.25 of the weakly compressible model. The background pressure pb of the transport velocity
formulation is set equal to the reference pressure p0. The walls of the box are modeled using
boundary particles. The problem is solved for different values of the initial particle spacing ∆x
for times t ∈ [0, 80.0] with time step size ∆t obeying respective conditions (2.28).
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Figure 2.6: Poiseuille and Couette flow: velocity profile ux across the channel obtained with the
proposed formulation and an initial particle spacing of ∆x = 2.0 × 10−2 (red dashed line) and
1.0×10−2 (black solid line) compared to analytical solution (crosses) at different points in time.

The results are post-processed applying SPH approximation (2.12) also considering the quanti-
ties of boundary particles. The obtained velocity profile ux across the channel is displayed for
the cases of a Poiseuille and a Couette flow in Figure 2.6 for different values of the initial particle
spacing ∆x at different points in time. The obtained results are in very good agreement with the
analytical solution [33]. At time t = 80 a steady state has developed that is characterized by
a parabolic velocity profile for Poiseuille flow and a linear velocity profile for Couette flow in
accordance with the analytical solution.
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2.7 Numerical examples of fluid flow problems

2.7.2 Shear-driven cavity flow
In the following, a shear-driven cavity flow is considered representing a well-known CFD bench-
mark problem for viscous fluid flow [89–91]. The geometry and boundary conditions of the
benchmark problem are relatively simple, though it is characterized by complex flow patterns.
For validation, the results obtained with the proposed formulation are compared to [89] applying
a finite-difference method to discretize the fluid domain. A closed quadratic cavity with edge
length B = 0.1 is filled by a Newtonian fluid initially at rest with density ρf = 1.0. The co-
ordinate axes ex and ey are pointing in horizontal and vertical direction. The top wall of the
cavity moves with a velocity uw = 1.0 in positive x-direction, while the remaining walls of the
cavity are spatially fixed. No-slip boundary conditions are applied on all walls of the cavity.
Accordingly, the Reynolds number of the problem is given as Re = uwB

/
νf . In the follow-

ing, two different cases characterized by the Reynolds numbers Re = 100 and Re = 1000 are
considered, achieved by varying the kinematic viscosity νf accordingly. For the fluid phase, an
artificial speed of sound c = 10.0 is chosen, resulting in a reference pressure p0 = 100.0 of the
weakly compressible model. The background pressure pb of the transport velocity formulation is
set equal to the reference pressure p0. The walls of the box are modeled using (moving) bound-
ary particles. The problem is solved for different values of the initial particle spacing ∆x for
times t ∈ [0, 25.0] with time step size ∆t obeying respective conditions (2.28).
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Figure 2.7: Shear-driven cavity flow: velocity profiles ux and uy along the vertical and horizontal
centerline obtained with the proposed formulation and an initial particle spacing of ∆x = 2.0×
10−2 (blue dashed line), ∆x = 1.0× 10−2 (red dashed line), and ∆x = 5.0× 10−3 (black solid
line) compared to the reference solution [89] (crosses).

The results are post-processed applying SPH approximation (2.12) also considering the quanti-
ties of boundary particles. The obtained velocity profiles ux and uy along the vertical and hori-
zontal centerline of the cavity in the steady state are displayed in Figure 2.7 for different values
of the initial particle spacing ∆x and different Reynolds numbers Re compared to the reference
solution [89]. The results for Reynolds number Re = 100 obtained with different initial particle
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2 Governing equations and numerical methods

(a) Re = 100 (b) Re = 1000

Figure 2.8: Shear-driven cavity flow: magnitude of the fluid velocity field ranging from 0.0
(blue) to 1.0 (red) obtained with the proposed formulation and an initial particle spacing of
∆x = 5.0× 10−3.

spacing ∆x show only minor differences and are in very good agreement to the reference solu-
tion [89]. For Reynolds number Re = 1000, the results obtained with different initial particle
spacing ∆x show good convergence against the reference solution [89]. Finally, the magnitude
of the fluid velocity field in the steady state is displayed in Figure 2.8 obtained with an initial
particle spacing of ∆x = 5.0 × 10−3 for different Reynolds numbers Re. The fluid flow in the
cavity is characterized by a large primary vortex induced by shear forces in the fluid due to the
movement of the top wall of the cavity. In addition, for Reynolds number Re = 1000, secondary
vortices in the bottom corners of the cavity emerge. Furthermore, these results are qualitatively
in very good agreement with the results of [41], confirming accurate implementation of the SPH
formulation.

2.7.3 Three-dimensional Rayleigh-Taylor instability

The purpose of this example is to demonstrate the capability and efficiency of the parallel com-
putational framework in handling systems constituted of a large number of particles. To this end,
a three-dimensional Rayleigh-Taylor instability consisting of a total of approximately 3.54×106

particles is examined on a parallel system, and conclusions are drawn concerning the parallel
behavior of the parallel computational framework. A Rayleigh-Taylor instability is initiated at
the interface of a lighter and a heavier fluid phase under the influence of gravity due to a distur-
bance. Consider a rectangular domain of height H = 2.0 and widths B = 1.0 with coordinate
system in the center. The coordinate axes ex and ey are pointing in lateral direction, and the
coordinate axis ez in vertical direction. The domain is occupied by a Newtonian fluid initially
at rest consisting of two fluid phases: a lighter fluid phase with density ρl = 1.0 at the bottom
and a heavier fluid phase with density ρh = 1.8 on top. The interface between the two fluid
phases is described as z = 0.15 sin (2πx) sin (2πy). Periodic boundary conditions are applied in
x- and y-direction and no-slip boundary conditions are applied at the bottom and top faces of the
domain. A gravitational acceleration of magnitude |g| = 1.0 is acting in negative z-direction.
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2.7 Numerical examples of fluid flow problems

The Reynolds number and the Froude number of the problem are similarly to [41, 92] set to

Re = urefH
/
νf = 420 and Fr = uref

/√
|g|H = 1.0 , (2.38)

resulting in the reference velocity uref =
√
|g|H and defining the kinematic viscosity νf of

both fluid phases. The reference pressure of the weakly compressible model is set to pl0 =
200.0 and ph0 = 360.0 for the lighter and heavier fluid phase with artificial speed of sound c =
10uref ≈ 14.14. The background pressure pb of the transport velocity formulation is set equal
to the reference pressure of each phase. No-slip boundary conditions at the bottom and top
faces are modeled using boundary particles. The complete domain is discretized by particles
with initial particle spacing ∆x = 0.025/3 resulting in a total of approximately 3.54 × 106

particles, thereof 3.46 × 106 fluid particles and 8.64 × 104 boundary particles. Following a
spatial decomposition approach, the computational domain is divided into 36 × 36 × 76 cubic
cells resulting in approximately 36 particles per cell. The problem is solved for times t ∈ [0, 10.0]
with a time step size of ∆t = 1.0× 10−4.

(a) time t = 0.0 (b) time t = 2.0 (c) time t = 4.0 (d) time t = 5.2

(e) time t = 6.4 (f) time t = 7.6 (g) time t = 8.8 (h) time t = 10.0

Figure 2.9: Three-dimensional Rayleigh-Taylor instability: time series of the obtained results
with density field ranging from ρl = 1.0 (red) to

(
ρl + ρh

)/
2 = 1.4 (blue).

For the purposes of illustration, a time series of the obtained results is given in Figure 2.9. The
density field of both phases is post-processed applying SPH approximation (2.12) and visualized
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Figure 2.10: Three-dimensional Rayleigh-Taylor instability: solver time per time step (left) and
parallel efficiency given in percent of linear scaling (right) for a problem consisting of approx-
imately 3.54 × 106 particles on up to 768 cores (Intel Xeon E5-2680 v3 Haswell, 2.5 GHz)
compared to optimal linear scaling (red dashed line).

by a specific color code with opacity. Next, a strong scaling analysis is performed to showcase
the capability and efficiency of the parallel computational framework, utilizing a parallel system
consisting of up to 32 nodes with 2 × 12 cores (Intel Xeon E5-2680 v3 Haswell, 2.5 GHz).
The parallel behavior of the computational framework is shown in Figure 2.10, illustrating the
obtained solver time per time step and the parallel efficiency given in percent of linear scaling.
The parallel efficiency is computed as t1/(n · tn) · 100 %, where t1 and tn are the times to solve
the problem on one node respectively n nodes. Almost linear scaling is observed for up to 192
cores on the considered parallel system with a parallel efficiency of more than 65 %. Finally,
for larger number of cores, the scalability deteriorates and the parallel efficiency drops to under
50 % due to an increasing communication overhead, cf. Remark 2.12. Similar results of a
strong scaling analysis of an SPH framework are given, e.g., in [70] (rc/∆x = 2.5) and [93]
(rc/∆x = 2.4), however, in contrast to this example (rc/∆x = 3.0) with a smaller ratio of
the support radius rc and the initial particle spacing ∆x, thus, resulting in a lower influence on
the communication overhead, cf. Remark 2.12. The obtained results confirm, that the parallel
computational framework is capable of efficiently solving three-dimensional systems constituted
of a large number of particles on multiple cores.
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3 Summary of publications

This chapter gives a brief summary of the publications Paper A [21] and Paper B [22] which
form the core of this cumulative thesis and highlights the author’s individual contributions:

• S. L. Fuchs, C. Meier, W. A. Wall, and C. J. Cyron. A novel smoothed particle hydro-
dynamics and finite element coupling scheme for fluid-structure interaction: The sliding
boundary particle approach. Computer Methods in Applied Mechanics and Engineering,
383:113922, 2021

• S. L. Fuchs, C. Meier, W. A. Wall, and C. J. Cyron. An SPH framework for fluid-solid and
contact interaction problems including thermo-mechanical coupling and reversible phase
transitions. Advanced Modeling and Simulation in Engineering Sciences, 8(1):15, 2021

The full texts of these publications are reprinted in Appendix A.
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3 Summary of publications

3.1 Paper A

A novel smoothed particle hydrodynamics and finite element coupling scheme
for fluid-structure interaction: The sliding boundary particle approach

Sebastian L. Fuchs, Christoph Meier, Wolfgang A. Wall, Christian J. Cyron

Summary

This publication proposes a novel numerical formulation for solving fluid-structure interaction
(FSI) problems. The fluid domain is spatially discretized using smoothed particle hydrodynamics
(SPH) and the structural domain using the finite element method (FEM). Due to the Lagrangian
nature and the mesh-free character of SPH, this approach provides some significant benefits as
compared to fully mesh- or grid-based FSI frameworks: That is, SPH simplifies the treatment
of large deformations of the fluid domain without additional methodological and computational
effort. Besides, the proposed formulation can be easily extended to account for multiphase flow
and dynamic phase transitions.

The coupling of both sub-domains is based on a Dirichlet-Neumann partitioned approach,
where the fluid domain is the Dirichlet partition with prescribed interface displacements and ve-
locities, and the structural domain is the Neumann partition subject to interface forces. Hence,
the interface forces are evaluated by the fluid solver utilizing the current interface displacements
and velocities which are directly extracted from the structural domain. Afterwards, the inter-
face forces are applied to the structural solver enforcing conservation of linear momentum. An
iterative fixed-point coupling scheme [94] is employed to satisfy dynamic equilibrium at the
fluid-structure interface with respect to a predefined convergence criterion. This so-called strong
coupling of fluid and structural domain is crucial to overcome instabilities, e.g., due to the arti-
ficial added mass effect, that are known to occur for weakly coupled schemes in FSI [95, 96].

Introducing the sliding boundary particle approach for the treatment of highly deformable and
strongly curved boundaries of the fluid domain in an accurate, robust, and computationally effi-
cient manner, constitutes an important aspect of the proposed numerical formulation for solving
FSI problems. The concept of the proposed sliding boundary particle approach is based on a
transient set of virtual boundary particles that are regularly arranged around the current projec-
tion point of a fluid particle onto the fluid domain boundary. Accordingly, the transient set of
virtual boundary particles ensures full support of the smoothing kernel. Moreover, a generalized
formulation for the extrapolation of field variables from fluid to virtual boundary particles is
proposed, which is inspired by the procedure of [40].

Finally, the accuracy and robustness of the novel sliding boundary particle approach and the
proposed numerical formulation for solving FSI problems are demonstrated studying several
numerical examples, among others, in the form of well-known CFD and FSI benchmark prob-
lems [97, 98]. Altogether, the obtained numerical results are in very good agreement with ana-
lytical or reference solutions. Finally, a three-dimensional, application-focused example is con-
sidered reaping the full benefits of the novel sliding boundary particle approach and confirming
the applicability of the proposed formulation to capture large deformations of the fluid domain.

In conclusion, the proposed numerical formulation for solving FSI problems has the ability to

30



3.1 Paper A

accurately model a host of complex multiphysics problems involving dynamic effects and large
interface displacements for detailed studies in engineering and biomechanics.

Contribution
Sebastian L. Fuchs and Christoph Meier derived the model equations and conceived the general
concept of the proposed modeling approach. Sebastian L. Fuchs carried out the specific code
implementation in the in-house parallel multiphysics research code BACI (Bavarian Advanced
Computational Initiative) [24] and performed the numerical simulations. Sebastian L. Fuchs
prepared the draft for the manuscript. All authors provided critical feedback and contributed to
the final version of the manuscript.

Reference
S. L. Fuchs, C. Meier, W. A. Wall, and C. J. Cyron. A novel smoothed particle hydrodynamics
and finite element coupling scheme for fluid-structure interaction: The sliding boundary particle
approach. Computer Methods in Applied Mechanics and Engineering, 383:113922, 2021
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3.2 Paper B

An SPH framework for fluid-solid and contact interaction problems including
thermo-mechanical coupling and reversible phase transitions

Sebastian L. Fuchs, Christoph Meier, Wolfgang A. Wall, Christian J. Cyron

Summary

Fluid-solid and contact interaction problems that are characterized by a large number of solid
bodies immersed in a fluid flow while undergoing (reversible) phase transitions are of great in-
terest in many applications in engineering and biomechanics. In most cases, explicitly modeling
the deformation of solid bodies is not required and thus it is sufficient to consider undeformable
but mobile rigid bodies as it reduces the complexity of the problem and simplifies the modeling
approach.

To this end, a computational approach for fluid-solid and contact interaction problems includ-
ing thermo-mechanical coupling and reversible phase transitions is presented in this publication.
The solid domain consists of several arbitrarily-shaped, undeformable but mobile rigid bodies
that are evolved in time separately, and thus, may get into mechanical contact with each other.
The fluid domain generally consist of multiple (liquid and gas) phases. A temperature field is
evaluated for both fluid and solid domain by solving the heat equation, and thus, allows for eval-
uation of reversible phase transitions in the form of melting and solidification between the fluid
and solid domain. Consequently, the shape and also the total number of rigid bodies may vary
over time.

Most current mesh- or grid-based methods require substantial methodological and computa-
tional efforts to model continually changing interface topologies, reversible phase transitions,
and dynamic motion of rigid bodies in fluid flow. The method of smoothed particle hydro-
dynamics (SPH), being a mesh-free discretization scheme and due to its Lagrangian nature, is
particularly well suited to capture such phenomena. For this reason, in the proposed computa-
tional approach all domains are spatially discretized using SPH. Accordingly, the rigid bodies
are fully resolved, that is, spatially discretized as clusters of particles. This allows to utilize ad-
vanced boundary particle methods, e.g., based on the extrapolation of field quantities from fluid
to boundary particles [33, 40, 42], to accurately model momentum exchange at the fluid-solid
interface. Proposing a detailed concept for the parallelization of the computational approach,
especially for a computationally efficient evaluation of rigid body motion, is far from trivial
but indispensable when examining numerical examples that are of practical relevance, and thus,
constitutes an essential part of this publication.

Finally, the accuracy and robustness of the proposed computational approach for fluid-solid
and contact interaction problems including thermo-mechanical coupling and reversible phase
transitions is shown by several numerical examples in two and three dimensions, among others,
involving multiple rigid bodies, two-phase flow, and reversible phase transitions. A focus is set
on two potential application scenarios in the fields of engineering and biomechanics: powder
bed fusion additive manufacturing (PBFAM) and disintegration of food boluses in the human
stomach. Above that, the parallel behavior and efficiency of the proposed computational ap-
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3.2 Paper B

proach is demonstrated by a strong scaling analysis of a three-dimensional example, confirming
that detailed studies at a large scale are possible.

Altogether, highly dynamic motion of arbitrarily-shaped rigid bodies embedded in a multi-
phase flow and simultaneously occurring reversible phase transitions can be captured by the
proposed computational approach in an accurate, robust, and computationally efficient manner.
In conclusion, the proposed computational approach has the ability to model a host of complex
multiphysics problems, and is thus expected to become a valuable tool for advanced studies in
the fields of engineering and biomechanics.

Contribution
Sebastian L. Fuchs and Christoph Meier contributed to the derivation of model equations and
worked out the general concept of the proposed modeling approach. Sebastian L. Fuchs per-
formed the specific code implementation in the in-house parallel multiphysics research code
BACI (Bavarian Advanced Computational Initiative) [24] and conducted the numerical simula-
tions. Sebastian L. Fuchs prepared the draft for the manuscript. All authors contributed to the
discussion of results and approved the final manuscript.

Reference
S. L. Fuchs, C. Meier, W. A. Wall, and C. J. Cyron. An SPH framework for fluid-solid and con-
tact interaction problems including thermo-mechanical coupling and reversible phase transitions.
Advanced Modeling and Simulation in Engineering Sciences, 8(1):15, 2021
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4 Discussion and conclusion
Computational modeling of multiphysics problems in science and engineering, especially in
biomechanics, is a challenging task. Applications in these fields are often characterized by
multiphase flow, (reversible) phase transitions, geometrically complex and continually changing
interface topologies, or fluid-structure interactions. To allow for sophisticated in-silico studies of
multiphysics applications, advanced computational approaches are required which capture these
phenomena. However, the most commonly applied mesh- or grid-based methods necessitate
substantial methodological and computational efforts, e.g., for interface tracking, to model the
aforementioned class of multiphysics problems. By contrast, SPH, as a mesh-free discretization
scheme and due to its Lagrangian nature, is particularly suitable for applications involving mul-
tiphase flow, phase transitions, as well as complex interface topologies. In recent years, SPH has
been applied to a wide range of applications, e.g., in biomechanics, to model vascular [99, 100]
and cardiac hemodynamics [101–103], intestinal [104–106] and gastric peristalsis [107], or cere-
brospinal fluid [108]. This showcases the method’s general applicability to simulate complex
fluid flow.

This cumulative thesis is devoted to the development of accurate, robust, and computationally
efficient numerical formulations for multiphysics problems in science and engineering using
SPH and the FEM. In general, the numerical solution of realistic coupled multiphysics problems
at a large scale with spatial discretizations via SPH and the FEM requires an efficient parallel
computational framework that can handle systems containing a large number of particles and
finite elements. To this end, a highly efficient SPH framework is developed and presented in
Section 2.6 and (with an extension for the motion of rigid bodies) in Paper B [22]. Moreover,
Paper A [21] proposes a computational framework for solving FSI problems, in which the fluid
domain is spatially discretized using SPH and the structural domain using the FEM, to accurately
model complex multiphysics problems involving dynamic effects and large interface displace-
ments. Finally, a numerical formulation to model highly dynamic motions of arbitrarily-shaped
rigid bodies embedded in a multiphase flow is presented in Paper B [22]. In this formulation,
SPH is used for the spatial discretization of all domains, thus, the rigid bodies are fully resolved
as clusters of particles. In addition, thermal conduction and reversible phase transitions between
the fluid and the rigid bodies is considered. In summary, the computational methods proposed in
Chapter 2, Paper A [21], and Paper B [22] can be applied to problems ranging from classical en-
gineering to biomechanics. This includes, for example, mesoscale melt pool modeling in metal
PBFAM processes and the digestion of food in the human stomach.

In metal PBFAM, complex structural components are created by melting and fusing a metal
powder layer per layer to form the final part. This process is expected to open up entirely new
opportunities in product design, manufacturing, and supply chains. However, the overall metal
PBFAM process is still not completely understood due to its complexity, giving rise to the need
for detailed physics-based modeling and predictive simulations, among others in the field of
computational melt pool modeling. A detailed literature review on metal PBFAM is given, e.g.,
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in [11–13]. Additionally, [12] gives an overview of several modeling approaches of the powder
bed, the melt pool, and the solidified structural part. The melt pool dynamics in metal PBFAM
are characterized by thermo-capillary flow [109,110] involving solid, liquid, and gaseous phases
as well as continuous phase transitions. Recently, a promising SPH formulation that captures
these physical phenomena has been proposed [23], with a special focus on evaporation-induced
recoil pressure forces, temperature-dependent surface tension and wetting forces, Gaussian laser
beam heat sources, and evaporation-induced heat losses. Other SPH formulations for mesoscale
melt pool modeling in metal PBFAM are presented in [111–114]. For simplicity, all the afore-
mentioned approaches are restricted to immobile powder grains. However, in the real physical
process induced gas flow and high recoil pressure forces may evoke the formation of keyholes
and lead to spatter of melt drops or powder grains being ejected away [11, 17, 18]. This con-
siderably affects the process stability in metal PBFAM, and thus, the quality of the solidified
structural part. The formulation presented in Paper B [22] captures the motion and interaction
of arbitrarily-shaped powder grains, the liquid melt phase, and a surrounding gas phase while
undergoing reversible phase transitions in the form of melting and solidification. Accordingly,
this formulation represents a useful extension of the formulation for mesoscale melt pool model-
ing [23] or other state-of-the-art approaches [111–114]. Such a combined approach is expected
to become a powerful tool for detailed studies of melt pool thermo-hydrodynamics in metal
PBFAM processes.

Modeling the digestion of food in the human stomach constitutes an emerging field of biome-
chanics [2] and requires to address several complex phenomena, such as gastric electrophysiol-
ogy, solid mechanics of the gastric wall, and fluid mechanics of the digesta. However, coupling
of all of these individual components to a comprehensive multiphysics model of the human stom-
ach still remains open. Large scale in-silico analyses of digestion in the stomach are expected to
give significant insights into gastric mechanics and allow conclusive studies of motility both in
health and disease. A state-of-the-art review on multiphysics modeling of the human stomach is
given, e.g., in [2]. Significant progress has been achieved considering the interplay of (gastric)
electrophysiology and mechanics of the wall [6, 115–117]. Nevertheless, these coupled elec-
tromechanical models of the human stomach do not incorporate fluid mechanics of the digesta,
thus, neglect its effect on the deformation of the gastric wall. To this end, an FSI formulation is
presented in Paper A [21], which is deemed especially suitable for applications in biomechanics
that are subject to large interface deformations, as they occur, e.g., during gastric peristalsis. Fur-
thermore, it is known that gastric fluid mechanics plays an important role for modeling digestion
of food in the human stomach. The digesta is characterized by a multiphasic nature consisting
of gastric juice, chyme, and solid food boluses. The propagation of ACWs during gastric peri-
stalsis initiates intragastric fluid motion, such as retropulsive flow [7–9] that fosters mechanical
and chemical disintegration of food [5]. A valuable tool to model the digesta in the human stom-
ach is proposed in Paper B [22]. Herein, disintegration of food boluses is modeled in a first
phenomenological approach considering chemically-induced phase transitions based on a con-
centration field, which resembles moisture penetration. The employed model does not explicitly
resolve the influence of chemical and mechanical breakdown, however, an extension is possible
in a straightforward manner. Altogether, capturing gastric electrophysiology, solid mechanics of
the gastric wall, and fluid mechanics of the digesta in a comprehensive multiphysics model of
the human stomach remains part of ongoing research and marks a significant milestone toward
a better understanding of the digestion processes in the human gastrointestinal tract.
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To conclude, efficient computational methods for multiphysics problems using SPH and the
FEM are presented in this cumulative thesis. Of the numerous possible applications of the de-
veloped framework in engineering and biomechanics, mesoscale melt pool modeling in metal
PBFAM and the digestion of food in the stomach have been chosen as exemplary problems.
This thesis lays the groundwork for more sophisticated studies on these phenomena, or for a
transfer of the methods to other highly relevant questions in multiphysics applications.
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Abstract

A novel numerical formulation for solving fluid–structure interaction (FSI) problems is proposed where the fluid field is
spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method
(FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can
be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover,
this approach facilitates the handling of large deformations of the fluid domain respectively the fluid–structure interface without
additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces
between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle
approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural
field is based on a Dirichlet–Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed
interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities
inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form
of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation.
Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close
to potential application scenarios of the proposed scheme in the field of biomechanics.
c⃝ 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Fluid–structure interaction; Smoothed particle hydrodynamics; Finite element method; Iterative Dirichlet–Neumann coupling; Large
deformation; Incompressible flow

1. Introduction

In many applications in science and engineering fluid–structure interaction (FSI) phenomena play an essential
role in modeling and simulation, in particular, in some areas of biomechanics, e.g., digestion of food in the human
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stomach [1,2], referring to the authors target application. Besides the challenge to deal with large deformations of
both fluid and structural domain, accurate modeling of fluid flow in biomechanics is even more demanding in the
case of complex fluids including, e.g., multiple fluid phases and dynamic phase transitions (e.g. due to chemical
reactions). Most current FSI frameworks utilize mesh- or grid-based methods, e.g., the finite element method (FEM),
finite difference method (FDM), or finite volume method (FVM), which often require additional methodological and
computational effort to capture the aforementioned phenomena. A promising approach to model complex fluids,
e.g., the content of gastric lumen in the human stomach [1,2], is the method of smoothed particle hydrodynamics
(SPH). SPH is a mesh-free discretization scheme that was originally and independently of one another introduced
by Gingold and Monaghan [3] and Lucy [4] in 1977. While initially intended to study astrophysical problems,
SPH gained increasing importance in other fields of computational fluid dynamics (CFD) since then. Due to its
Lagrangian nature, SPH is very well suited for flow problems involving multiple phases, dynamic phase transitions,
as well as complex interface topologies. Especially for many fluid–structure interaction scenarios in biomechanics
it would therefore be desirable to discretize the fluid field with SPH whereas the solid field is often easier to handle
with finite elements. To this end, a robust and efficient algorithm coupling SPH and FEM for the simulation of
fluid–structure interactions is required.

On these grounds, this contribution proposes a novel numerical formulation for solving FSI problems where
the fluid field is modeled using SPH and the structural field using FEM. Both sub-fields are coupled following
a Dirichlet–Neumann partitioned approach. The fluid field is the Dirichlet partition with prescribed interface
displacements or interface velocities, respectively, and the structural field is the Neumann partition subject to
interface forces. That means, the interface forces are evaluated by the fluid solver utilizing the current interface
displacements and interface velocities that are directly extracted from the structural field. Afterwards, the interface
forces are applied to the structural solver enforcing conservation of linear momentum. An iterative fixed-point
coupling scheme [5] is employed to satisfy dynamic equilibrium at the fluid–structure interface with respect
to a predefined convergence criterion. This so-called strong coupling of both sub-fields is crucial to overcome
instabilities, e.g., due to the artificial added mass effect, that are known to occur for weakly coupled schemes in
FSI [6,7].

One focus of this work lies on the crucial aspect of the treatment of deformable and strongly curved boundaries
of the SPH domain as especially required for many FSI applications. In the literature several different formulations
for modeling (rigid) boundaries in SPH are proposed. Among them are penalty-like repulsive force formulations
[8–10], ghost particle formulations [11], boundary particle methods based on fixed layers of particles resembling
rigid walls [12,13], or semi-analytical methods considering non-vanishing surface integrals due to missing kernel
support [14–16]. For an overview on the advantages and disadvantages of the aforementioned methods the interested
reader is referred to the literature, e.g., in [17,18]. In principle, all those methods modeling rigid boundaries in
SPH naturally have the potential to serve as a basis also for the treatment of flexible structural boundaries in
the context of FSI problems [19–23]. However, FSI applications, especially in biomechanics, are characterized
by large deformations at the fluid–structure interface including strong curvature and large stretch. This requires a
special treatment of boundaries in order to prevent loss of accuracy at the fluid–structure interface. To the best of
the authors’ knowledge, the existing methods are either missing the required accuracy, computationally expensive,
or not capable of modeling deforming interfaces undergoing strong curvature and large stretch. To address this
shortcoming of existing approaches, the novel sliding boundary particle approach is proposed. It is based on a
transient set of virtual boundary particles regularly arranged around the current projection point of a fluid particle
onto the fluid domain boundary. Moreover, a generalized formulation for the extrapolation of field variables from
fluid to virtual boundary particles is proposed, which is inspired by the procedure of [13].

The present publication is organized as follows: To begin with, the governing equations for FSI problems
are briefly introduced in Section 2, followed by a detailed presentation of the numerical methods and the
computational framework being utilized with a focus on the evaluation of the interface forces and the coupling
scheme, cf. Section 3. Finally, numerical results obtained with the proposed novel numerical formulation for solving
FSI problems are shown in Section 4. For validation purposes, well-known CFD respectively FSI benchmark
tests are studied confirming the accuracy and robustness of the proposed formulation. This is followed by an
application-motivated academic example examining the filling process of a highly flexible thin-walled container.
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Fig. 1. Domain Ω of a fluid–structure interaction problem consisting of two disjunct sub-domains for the fluid field Ω f and the structural
field Ω s with shared common interface Γ f s .

2. Governing equations

At all times t ∈ [0, T ] the domain Ω of a fluid–structure interaction problem consists of a non-overlapping fluid
domain Ω f and a structural domain Ω s that share a common interface Γ f s , with Ω = Ω f

∪Ω s and Ω f
∩Ω s

= Γ f s ,
refer to Fig. 1. This leads to the so-called geometric coupling condition that restricts the fluid and structural domains
to perfectly match without any holes or gaps at the fluid–structure interface Γ f s . In the following, the (standard)
governing equations of the fluid and structural field as well as the respective coupling condition for FSI are briefly
given.

Remark 1. In Eqs. (1)–(2) governing the fluid field and (5) governing the structural field all time derivatives follow
the motion of material points, i.e., the material derivative reads d(·)

dt =
∂(·)

∂t + u · ∇(·). Furthermore, ∇(·) denotes
within the setting of nonlinear continuum mechanics derivatives with respect to spatial coordinates while ∇0(·)

denotes derivatives with respect to material coordinates.

2.1. Fluid field

The fluid field is governed by the instationary Navier–Stokes equations in the domain Ω f in convective form
consisting of the mass continuity equation and the momentum equation

dρ f

dt
= −ρ f

∇ · u f in Ω f , (1)

du f

dt
= −

1
ρ f

∇ p f
+ fν + b f in Ω f , (2)

with viscous force fν and body force b f each per unit mass. For a Newtonian fluid the viscous force is fν = ν f
∇

2u f

with kinematic viscosity ν f . The mass continuity equation (1) and the momentum equation (2) represent a system
of four equations with the five unknowns, velocity u f , density ρ f , and pressure p f . The system of equations is
closed with an equation of state p f

= p f
(
ρ f

)
relating fluid density ρ f and pressure p f , cf. Section 3.1.5. The

Navier–Stokes equations (1) and (2) are subject to the following initial conditions

ρ f
= ρ

f
0 and u f

= u f
0 in Ω f at t = 0 (3)

with initial density ρ
f

0 and initial velocity u f
0 . In addition, Dirichlet and Neumann boundary conditions are applied

on the fluid boundary Γ f
= ∂Ω f

\ Γ f s

u f
= û f on Γ

f
D and t f

= t̂ f on Γ
f

N , (4)

with prescribed boundary velocity û f and boundary traction t̂ f , where Γ f
= Γ

f
D ∪ Γ

f
N and Γ

f
D ∩ Γ

f
N = ∅.
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2.2. Structural field

Considering the regime of finite deformations, the structural field is governed by the balance of linear momentum
in the following local material form

ρs
0

d2ds

dt2 = ∇0 · (FS)+ ρs
0bs

0 in Ω s (5)

with the material forms of density ρs
0 and body force bs

0, and the structural displacement ds as primary unknowns.
The deformation of the structure is described by the deformation gradient F = ∇0ds defining the Green–Lagrange
strains E = 1

2

(
FT F− I

)
. For simplicity, and as applicable and most often used in biomechanical problems, the

second Piola–Kirchhoff stresses S are chosen to follow from a constitutive relation of the form S = ∂Ψ/∂E based on
a hyperelastic strain energy function Ψ = Ψ(E). The partial differential equation (5) is subject to initial conditions
for the structural displacement and velocity

ds
= ds

0 and
dds

dt
=

dds
0

dt
in Ω s at t = 0 . (6)

On the structural boundary Γ s
= ∂Ω s

\ Γ f s , Dirichlet and Neumann boundary conditions are prescribed

ds
= d̂s on Γ s

D and (FS) · N = t̂s
0 on Γ s

N , (7)

with prescribed boundary displacement d̂s , boundary traction t̂s
0, and outward pointing unit normal vector N on Γ s

in material description, where Γ s
= Γ s

D ∪ Γ
s
N and Γ s

D ∩ Γ
s
N = ∅.

2.3. Coupling conditions

A geometric coupling condition results from restricting both the fluid and structural domain to match at the
fluid–structure interface Γ f s as already described in the beginning of this section. In addition, the so-called
kinematic coupling condition (or no-slip boundary condition) enforces a continuous fluid and structural velocity
at the interface Γ f s . Consequently, these two conditions can be expressed as

r f
= rs and u f

=
dds

dt
on Γ f s , (8)

with the current position r f respectively rs of the fluid and structural field. Finally, the dynamic coupling condition
ensures equilibrium of fluid and structural traction across the interface Γ f s

t f
= ts on Γ f s . (9)

3. Numerical methods and computational framework

The purpose of this section is to present the methods for discretization and numerical solution of the fluid–
structure interaction problem as described in Section 2. The discretization of the fluid field is based on smoothed
particle hydrodynamics while the discretization of the structural field is based on the finite element method, as
illustrated in Fig. 2 (left).

While in Sections 3.1 and 3.2 the basics of these two methods are recapitulated, the focus of this publication
is set on the specific evaluation of interaction forces, cf. Section 3.3, introducing the sliding boundary particle
approach, and the employed coupling algorithm, cf. Section 3.4, in terms of underlying methods. The presented
computational framework is implemented in the in-house parallel multiphysics research code BACI (Bavarian
Advanced Computational Initiative) [24].

3.1. Discretization of fluid field via smoothed particle hydrodynamics

The fluid field governed by the instationary Navier–Stokes equations (1) and (2) is solved using smoothed particle
hydrodynamics following a weakly compressible approach [9,17,25]. For modeling fluid flow using SPH, several
different formulations each with its own characteristics and benefits can be derived as reflected by the vast amount
of literature. The aim of this section is to give a brief introduction into the basics of SPH and an overview of the

4
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Fig. 2. Discretized domain Ω of a fluid–structure interaction problem with structural mesh and fluid particles (left) and separated sub-domains
as seen by the fluid solver (SPH) and the structural solver (FEM) each with interface mesh for interaction handling and exchange of interface
displacements d f s and interface forces f f s in the sense of a Dirichlet–Neumann partitioned coupling approach (right).

formulation applied throughout this work. Note that the contribution resulting from the coupling condition of the
fluid and structural field at the interface Γ f s , refer to Section 2.3, is omitted in this section and described in detail
in Section 3.3. For ease of notation, in the following the index (·) f denoting fluid quantities, as used in Section 2,
is dropped.

3.1.1. Approximation of field quantities via smoothing kernel
The fundamental concept of SPH is based on the approximation of a field quantity f via a smoothing operation

and on the discretization of the domain Ω with discretization points, so-called particles. To begin with, a field
quantity f on a domain Ω can be expressed exactly in integral form as

f (r) =
∫
Ω

f
(
r′

)
δ
(
|r− r′|

)
dr′ (10)

making use of the Dirac delta function δ(r). Replacing the latter by a so-called smoothing kernel W (r, h), that
fulfills certain required properties, cf. Remark 2 and [17], leads to an approximation of the field quantity f in
smoothed integral form

f (r) ≈
∫
Ω

f
(
r′

)
W

(
|r− r′|, h

)
dr′ (11)

while committing a smoothing error.

Remark 2. The smoothing kernel W (r, h) is a monotonically decreasing, smooth function that depends on
a distance r and a smoothing length h. The smoothing length h together with a scaling factor κ define the
support radius of the smoothing kernel rc = κh. Compact support, i.e., W (r, h) = 0 for r > rc, as well
as positivity, i.e., W (r, h) ≥ 0 for r ≤ rc, are typical properties of standard smoothing kernels W (r, h). In
addition, the normalization property requires that

∫
Ω W

(
|r− r′|, h

)
dr′ = 1. The Dirac delta function property

limh→0 W (r, h) = δ(r) ensures an exact representation of a field quantity f in the limit h → 0.

In a next step, the computational domain Ω is filled with discretization points or so-called particles j , each
occupying a volume V j . Thus, the smoothed integral form of quantity f reduces in discretized form to a summation

5
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of contributions from all particles j in the domain Ω , cf. Remark 3,

f (r) ≈
∑

j

V j f
(
r j

)
W

(
|r− r j |, h

)
(12)

adding a discretization error [26]. A straightforward approach in SPH to determine the gradient of a quantity f
follows directly by differentiation of Eq. (12) resulting in

∇ f (r) ≈
∑

j

V j f
(
r j

)
∇W

(
|r− r j |, h

)
. (13)

Note that this (simple) variant for an approximation of the gradient shows some particular disadvantages, hence,
more advanced approximations for gradients are given in the literature [9] and also applied in this work [13,27],
cf. Section 3.1.4.

Remark 3. In general, contributions from all particles in the domain Ω are considered in the SPH approximation of
a field quantity f , cf. Eq. (12). However, note that in practice due to the compact support of the smoothing kernel W
only neighboring particles within the support radius rc need to be considered. This property is very beneficial as it
reduces the computational effort of the method.

Applying the concept of SPH reduces the partial differential equations (1) and (2) to ordinary differential
equations that are solved, i.e., evaluated and integrated in time, for all particles in the domain Ω (cf. Sections 3.1.4
and 3.1.7). The transient positions of particles are advected with the fluid velocity resembling the Lagrangian nature
of the method. As a result, all fluid quantities are evaluated at and associated with particle positions, meaning each
particle carries its corresponding fluid quantities.

Finally, in a post-processing step the continuous field quantity f is recovered from the discrete fluid quantities
carried by each particle in the domain based on approximation (12) and the commonly known Shepard filter

f̂ (r) ≈
∑

j V j f
(
r j

)
W

(
|r− r j |, h

)∑
j V j W

(
|r− r j |, h

) . (14)

Note that the denominator typically takes on values close to one inside the fluid domain and is mainly relevant for
boundary regions with reduced support due to a lack of neighboring particles.

Remark 4. In the following, a quantity f evaluated for particle i at position ri is written as fi = f (ri ). In
addition, the short notation Wi j = W

(
ri j , h

)
denotes the smoothing kernel W evaluated for particle i at position ri

with neighboring particle j at position r j , where ri j = |ri j | = |ri − r j | is the absolute distance between particles i
and j . Similarly, the derivative of the smoothing kernel W with respect to the absolute distance ri j is denoted by
∂W/∂ri j = ∂W

(
ri j , h

)
/∂ri j .

Remark 5. Herein, the smoothing of fluid quantities is carried out using a quintic spline smoothing kernel W (r, h)

as defined in [12] with smoothing length h and compact support of the smoothing kernel with support radius rc = κh
and scaling factor κ = 3.

3.1.2. Initial particle spacing
Within this contribution, the fluid domain is initially filled with particles located on a regular grid with particle

spacing ∆x , thus in a d-dimensional space each particle initially occupies an effective volume of (∆x)d . The mass
of a particle i is then set using the reference density according to mi = ρ0(∆x)d and remains constant throughout
the simulation. In general, the initial particle spacing ∆x can be freely chosen, however, within this work the initial
particle spacing ∆x is set equal to the smoothing length h = rc/κ .

3.1.3. Density summation
The density of a particle i is determined via summation of the respective smoothing kernel contributions of all

neighboring particles j within the support radius rc

ρi = mi

∑
j

Wi j . (15)

6
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This approach is typically denoted as density summation and results in an exact conservation of mass in the fluid
domain, which can be shown in a straightforward manner considering the commonly applied normalization of the
smoothing kernel to unity. It shall be noted that the density field may alternatively be obtained by discretization
and integration of the mass continuity equation (1) [17].

3.1.4. Momentum equation
The momentum equation (2) is discretized following [13,27] including a transport velocity formulation to

suppress the problem of tensile instability. It will be briefly recapitulated in the following. The transport velocity
formulation relies on a constant background pressure pb that is applied to all particles and results in a contribution
to the particle accelerations for in general disordered particle distributions. However, these additional acceleration
contributions vanish for particle distributions fulfilling the partition of unity, thus fostering these desirable config-
urations. For the sake of brevity, the definition of the modified advection velocity and the additional terms in the
momentum equation from the aforementioned transport velocity formulation are not discussed in the following and
the reader is kindly referred to the original publication [27]. Altogether, the acceleration ai = ui/t of a particle i
results from summation of all acceleration contributions due to interaction with neighboring particles j and a body
force as

ai =
1

mi

∑
j

(
V 2

i + V 2
j

)[
− p̃i j

∂W
∂ri j

ei j + η̃i j
ui j

ri j

∂W
∂ri j

]
+ bi , (16)

with volume Vi = mi/ρi of particle i , unit vector ei j = ri − r j/|ri − r j | = ri j/ri j pointing from particle j to
particle i , relative velocity ui j = ui − u j , density-weighted inter-particle averaged pressure

p̃i j =
ρ j pi + ρi p j

ρi + ρ j
, (17)

and inter-particle averaged dynamic viscosity

η̃i j =
2ηiη j

ηi + η j
. (18)

In the following the acceleration contribution of a neighboring particle j to particle i is, for ease of notation, denoted
as ai j , where ai =

∑
j ai j + bi . Note that the above given momentum formulation, cf. Eq. (16), exactly conserves

linear momentum due to pairwise anti-symmetric particle forces

mi ai j = −m j a j i , (19)

which can easily be verified by using the property ∂W/∂ri j = ∂W/∂r j i of the smoothing kernel.

3.1.5. Equation of state
Following a weakly compressible approach, density ρi and pressure pi of a particle i are linked via the equation

of state

pi (ρi ) = c2(ρi − ρ0) = p0

(
ρi

ρ0
− 1

)
(20)

with reference density ρ0, reference pressure p0 = ρ0c2 and artificial speed of sound c. Note that this commonly
applied approach only represents deviations from the reference pressure, i.e., pi (ρ0) = 0, and not the total pressure.
Thus, free boundaries can be modeled by setting p = 0 (see also Section 3.1.6). To limit density fluctuations to
an acceptable level, while still avoiding too severe time step restrictions, strategies are discussed in [12] on how to
determine an appropriate value of the artificial speed of sound.

3.1.6. Boundary conditions
Rigid wall boundary conditions. Following the approach of [13], rigid wall boundary conditions are modeled using
fixed boundary particles with quantities extrapolated from the fluid field based on a local force balance. For more
details the interested reader is referred to the aforementioned literature. In the numerical examples in Section 4 the
channel walls are modeled using rigid wall boundary conditions.

7
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Inflow and outflow boundary conditions. Open boundaries are modeled similar to [28] via defined inflow and
outflow zones occupying so-called inflow respectively outflow particles. Thereby, full support of the interior fluid
particles is maintained for density summation (15) and evaluation of the momentum equation (16) when considering
contributions from neighboring inflow and outflow particles. At the inflow, i.e., the Dirichlet boundary, the desired
inflow velocity is prescribed directly to all inflow particles, while the pressure field is extrapolated from the interior
fluid particles i to the inflow particles k following

pk =

∑
i Vi pi Wki∑

i Vi Wki
. (21)

At the outflow, i.e., the Neumann boundary, a zero pressure field is prescribed to all outflow particles. The density
field of both inflow and outflow particles is determined from the pressure field with the equation of state (20).
Finally, to determine consistent velocities of the outflow particles, the momentum equation (16) is evaluated for
outflow particles considering interactions with neighboring fluid particles, boundary particles, and outflow particles.

Periodic boundary conditions. Imposing a periodic boundary condition in a specific spatial direction allows for
particle interaction evaluation across opposite domain borders. Moreover, particles leaving the domain on one side
are re-injecting on the opposite side. Periodic boundary conditions are commonly applied in SPH modeling of
channel or shear flow.

3.1.7. Time integration scheme
The momentum equation (16) is integrated in time applying an explicit velocity-Verlet time integration scheme in

kick–drift–kick form, also denoted as leapfrog scheme, as proposed by Monaghan [9]. In the absence of dissipative
effects, the velocity-Verlet scheme is of second order accuracy and reversible in time [9].

In a first kick-step the particle accelerations an
i = (ui/t)n determined in the previous time step n are used to

compute intermediate particle velocities at n + 1/2

un+1/2
i = un

i +
∆t
2

an
i , (22)

where ∆t is the time step size, before the particle positions at n + 1 are updated in a drift-step

rn+1
i = rn

i +∆tun+1/2
i . (23)

Using the particle positions rn+1
i and intermediate velocities un+1/2

i , the particle densities ρn+1
i and accelerations an+1

i
are updated following Eqs. (15) and (16). In a final kick-step the particle velocities at n + 1 are determined

un+1
i = un+1/2

i +
∆t
2

an+1
i . (24)

To maintain stability of the time integration scheme, the time step size ∆t is restricted by the Courant–Friedrichs–
Lewy (CFL) condition, the viscous condition, and the body force condition, refer to [12,27] for more details,

∆t ≤ min

{
0.25

h
c + |umax |

, 0.125
h2

ν
, 0.25

√
h
|bmax |

}
, (25)

with maximum fluid velocity umax and maximum body force bmax .

3.2. Discretization of structural field via the finite element method

The discretization of the structural field, governed by the strong form of the balance of linear momentum (5),
is based on the finite element method. Since it is not the focus of this work, the basics of the FEM are presented
here only very briefly. For further informations the reader is referred to, e.g., [29,30].

Applying the method of weighted residuals, in the following interpreted as principle of virtual work, the weak
form of the initial boundary value problem for the structural field is obtained as

δW s
=

(
δds, ρs

0
d2ds

dt2

)
Ωs
+

(
∇0δds, FS

)
Ωs
−

(
δds, ρs

0bs
0

)
Ωs
−

(
δds, t̂s

0

)
Γ s

N

= 0 (26)
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Fig. 3. A structural domain initially discretized by a regular and equidistant set of boundary particles fixed to material points of the structure
(left) undergoing strong curvature and large stretch (right). Clearly, the support of the smoothing kernel of fluid particles close to regions
of large structural displacements is disturbed.

with the variation δds of the primary unknown structural displacement ds . Herein, the contribution to the weak
form resulting from the coupling condition of the fluid and structural field at the interface Γ f s (cf. Section 2.3) is
omitted and instead treated in Section 3.3.

By introducing the trial space V =
{
ds
|ds
∈ H1, ds

= d̂s onΓ s
D

}
as well as the test space W =

{
δds
| δds
∈

H1, δds
= 0 onΓ s

D

}
, where H1 denotes the Sobolev space of functions with square-integrable first derivatives, the

weak form (26) is equivalent to the strong form of the balance of linear momentum (5).
The computational domain of the structural field Ω s is sub-divided into non-overlapping finite elements with

nodes i . Hence, the structural displacement field ds is discretized introducing nodal displacements ds
i of nodes i .

The displacement field is approximated via

ds(r) ≈
∑

j

N e
j (r)d

s
j (27)

using the Lagrange polynomials N e
j with compact support inside element e. Within a Bubnov–Galerkin approach,

the same Lagrange polynomials for trial and test functions are employed. Following the iso-parametric concept,
the parameter coordinates ξ used for the definition of the shape functions within a standard element geometry
are mapped onto the physical coordinates applying the same shape functions also used for the displacement
interpolation. Specifically, in the numerical examples in Section 4 finite elements based on first-order interpolation
are employed.

Subsequently, the semi-discrete form is discretized in time applying a generalized-alpha time integration scheme.
The resulting system of nonlinear equations in residual form is finally solved for the nodal structural displacements
using a Newton–Raphson method.

3.3. SPH-FE interaction: a novel sliding boundary particle approach

In this section, a novel sliding boundary particle approach for the application in a fluid–structure interaction
framework coupling SPH and FEM is proposed. In contrast to existing methods modeling boundaries in SPH,
e.g., boundary particle methods, cf. Fig. 3, the proposed method can handle also deforming interfaces undergoing
strong curvature and large stretch, as typical for some FSI applications especially in biomechanics, while keeping
the computational costs at a reasonable level. The following is mainly concerned with the evaluation of the
interface force f f s at the fluid–structure interface Γ f s . The coupling of fluid and structural field following a
Dirichlet–Neumann partitioned approach is subsequently described in Section 3.4.

3.3.1. Conforming interface mesh
Introducing an interface mesh on the fluid–structure interface Γ f s allows for exchange of interface displace-

ment d f s and interface force f f s between the fluid and the structural field, cf. Fig. 2, while keeping the fluid and
structural solvers separated. For convenience, the interface mesh, which is purely introduced as one possibility to
facilitate the displacement and load transfer between the solvers, can be chosen as an extraction or clone of the
structural mesh at the fluid–structure interface Γ f s . But the proposed approach also works for non-matching meshes.

9



S.L. Fuchs, C. Meier, W.A. Wall et al. Computer Methods in Applied Mechanics and Engineering 383 (2021) 113922

Fig. 4. Fluid particle i with closest projection point ce
i to the interface Γ f s on interface element e within support radius rc of the smoothing

kernel W and corresponding set of virtual boundary particles ke
i associated with fluid particle i and ensuring full support of the smoothing

kernel W .

For the interface mesh, again the iso-parametric concept is employed to describe the standard element geometry
of interface elements e via parameter coordinates ξ and Lagrange polynomials N e

j of corresponding nodes j . Note
that for interface elements the parameter coordinates ξ are of one dimension lower compared to structural elements.
Deduced from the geometric coupling condition (8) the current interface position is in the following depicted by r f s .

In case of a conforming mesh, the transfer of quantities between interface and structure is straightforward and
is, hence, just briefly sketched here. Both, interface position r f s and interface displacement d f s can be extracted
directly from the respective structural position rs and structural displacement ds . Similarly, the interface force f f s

can be added directly to the respective structural force fs . In case non-matching interfaces are preferred or needed,
e.g., because of special resolution demands of the two involved physical fields, the transfer of quantities between
interface and structure could simply be done via a Mortar technique [31]. In comparison to the interface structure
transfer, the transfer of quantities to the fluid field is more elaborate and will be covered in the following subsections.

3.3.2. Detection of closest projection point
The interaction evaluation is performed between fluid particles and interface elements. Consider a fluid particle i

with support radius rc of the smoothing kernel W that is close to the fluid–structure interface Γ f s , cf. Fig. 4.
In general, the closest projection point ce

i of fluid particle i to the interface Γ f s is located on interface element e
and lies within the support radius, i.e., |rce

i
− ri | < rc. The position rce

i
of point ce

i can be described in iso-
parametric coordinates ξ ce

i
on interface element e. As a result, the shape functions N e

j

(
ξ ce

i

)
of all nodes j of

interface element e evaluated at the closest projection point ce
i can be utilized to interpolate kinematic quantities,

e.g., positions, velocities, and accelerations, at the closest projection point using nodal quantities and to distribute
kinetic quantities, e.g., interaction forces, from the closest projection point to adjacent nodes. The closest projection
point ce

i of a fluid particle i to a neighboring interface element e is detected solving the following minimization
problem

|rce
i
− ri | = min

ξ

⏐⏐⏐⏐⏐⏐
∑

j

N e
j

(
ξ
)

r f s
j − ri

⏐⏐⏐⏐⏐⏐ (28)

10
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Fig. 5. Special cases of a convex angle (left) and a concave angle (right) between neighboring interface elements for the treatment of closest
projection points of a fluid particle, cf. Remark 6 (legend similar to Fig. 4).

with position ri of fluid particle i and positions r f s
j of nodes j of interface element e. The solution of the

minimization problem gives the iso-parametric coordinates ξ ce
i

of the closest projection point ce
i on interface

element e. Hence, the position of the closest projection point ce
i results in

rce
i
=

∑
j

N e
j

(
ξ ce

i

)
r f s

j . (29)

As stated above only closest projection points ce
i located within the support radius of fluid particle i are considered

in the interaction evaluation, meaning in addition |rce
i
− ri | < rc must be fulfilled. By definition, when evolving

the position of a fluid particle i over time, also the position of the closest projection point ce
i is changing, i.e., is

sliding on the interface Γ f s .

Remark 6. In the general case, the closest projection point of a particle is located on the surface of an interface
element, as illustrated for instance in Fig. 4. In addition, the two special cases of a convex and a concave angle
between two neighboring interface elements are worth being discussed here. In the case a particle is located within
the perpendicular straight lines of neighboring interface elements at a convex angle, cf. Fig. 5 (left), a single closest
projection point is considered that is located on the node respectively the edge being shared by those interface
elements. For a particle located at a concave angle, cf. Fig. 5 (right), multiple closest projection points on the
surface of each of the interface elements are considered.

Remark 7. Note that very similar to typical contact problems in finite element analysis an extension to a
C1-continuous representation of the structural geometry, e.g., by employing Hermite polynomials [32] or B-
Splines [33,34] as shape functions, could be beneficial within the proposed sliding boundary particle approach
in terms of a smoother interaction force evolution and help to abstain from the aforementioned case distinctions,
cf. Remark 6.

3.3.3. Virtual boundary particles
The support of the smoothing kernel of a fluid particle i close to the fluid–structure interface Γ f s is truncated,

i.e., fluid particle i experiences reduced contributions from neighboring fluid particles, cf. Fig. 4. To overcome this
issue, full support of the smoothing kernel of fluid particle i is retained by considering a set of virtual boundary
particles ke

i that contribute to the interaction evaluation of fluid particle i and are regularly and equidistantly arranged
behind the closest projection point ce

i as illustrated in Fig. 4. This is achieved by a certain number of layers of virtual
boundary particles with spacing ∆x among them. Accordingly, together with the closest projection point ce

i , the
set of virtual boundary particles ke

i are sliding along the fluid–structure interface Γ f s following the movement of a
fluid particle i , giving rise to the name of the proposed method: sliding boundary particle approach.

11
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Remark 8. Within this work, as stated in Sections 3.1.1 and 3.1.2 , a quintic spline smoothing kernel with support
radius rc = 3h is applied with initial particle spacing ∆x equal to the smoothing length h. As a consequence,
three layers of virtual boundary particles are positioned behind the closest projection point ce

i , thus, maintaining
full support of the smoothing kernel W of fluid particle i , cf. Fig. 4.

All layers of virtual boundary particles are positioned perpendicular to the connection vector rce
i
− ri of

fluid particle i and its closest projection point ce
i , where the first layer is at a distance of ∆x/2 behind the

closest projection point ce
i on interface element e. An orthonormal basis (er , es, et ) with first base vector er =(

rce
i
− ri

)
/|rce

i
− ri | is constructed [35]. Consequently, the position of all virtual boundary particles ke

i can be
given in terms of the particle spacing ∆x and the constructed orthonormal basis (er , es, et ) as

rke
i
= rce

i
+ (mr + 1/2)∆x er + ms ∆x es + m t ∆x er (30)

with integers mr ∈ {0, 1, . . . , (q − 1)} and ms, m t ∈ {−(q − 1), . . . , (q − 1)} where q = floor(rc/∆x) defines the
number of particles necessary to maintain full support of the smoothing kernel. Finally, the vector from fluid particle
i to virtual boundary particle ke

i is rke
i
− ri , cf. Fig. 4.

Remark 9. The floor operator used herein is defined by floor(x) := max {k ∈ Z | k ≤ x} and returns the largest
integer that is less than or equal to its argument x .

3.3.4. Interaction forces on fluid particles
A fluid particle i close to the fluid–structure interface Γ f s , i.e., for which the closest projection point ce

i
on interface element e is within the support radius |rce

i
− ri | < rc of fluid particle i , additionally experiences

contributions to the density summation (15) and the momentum evaluation (16) from all virtual boundary particles ke
i

for which |rke
i
− ri | < rc holds, cf. Fig. 4.

As described in Section 3.1.3 the density field is computed via summation of the respective smoothing kernel
contributions of neighboring fluid particles j , refer to Eq. (15). Hence, considering the additional contributions of
virtual boundary particles ke

i , the density summation for a fluid particle i reads

ρi = mi

∑
j

Wi j + mi

∑
e

∑
ke

i

Wike
i

(31)

ensuring full support of the smoothing kernel.
Inspired by the treatment of boundary particles for rigid walls [13] the properties of virtual boundary particles ke

i ,
i.e., density, pressure, and velocity, are extrapolated based on the corresponding quantities from neighboring fluid
particles j of closest projection point ce

i on interface element e. The goal is to achieve an undisturbed pressure
field of fluid particles close to the interface. Satisfying the kinematic coupling condition on the fluid–structure
interface Γ f s , cf. Eq. (8), also called no-slip boundary condition, viscous forces are considered in the momentum
equation. It shall be noted, that some boundary particle formulations in SPH are based on the assumption of zero
normal pressure gradients close to the interface. However, in [13] it is shown, that including the pressure gradient
obtained from a local force balance is beneficial to accurately model the pressure field of fluid particles close to
the boundary. Therefore, a similar strategy is pursued in the following.

In a first step, the pressure pke
i

of virtual boundary particles ke
i is approximated based on a first order Taylor

series expansion with center of expansion at

⟨r⟩ f =

∑
j r j Wce

i j∑
j Wce

i j
. (32)

The position ⟨r⟩ f can be interpreted as smoothed or averaged centroid position of the domain covered by the
neighboring fluid particles j as illustrated in Fig. 6. Hence, the pressure of virtual boundary particles ke

i is determined
following

pke
i
= ⟨p⟩ f +

(
rke

i
− ⟨r⟩ f

)
· ⟨∇ p⟩ f (33)

12
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Fig. 6. Averaged centroid position f of the domain covered by neighboring fluid particles j of closest projection point ce
i .

with smoothed pressure ⟨p⟩ f =
∑

j p j Wce
i j/

∑
j Wce

i j and smoothed pressure gradient

⟨∇ p⟩ f =

∑
j ρ j Wce

i j∑
j Wce

i j

(
bi − ace

i

)
. (34)

The latter is approximated based on a local force balance neglecting viscous forces as proposed in [13], cf. Eq. (2),
with acceleration ace

i
of the closest projection point ce

i , cf. Remark 11. Applying the equation of state (20) of the
respective interacting fluid particle i together with pressure pke

i
, the density ρke

i
of virtual boundary particles ke

i

follows as

ρke
i
=

pke
i

c2 + ρ0 . (35)

Remark 10. Note that the approximation of the smoothed pressure gradient ⟨∇ p⟩ f , cf. Eq. (34), could be improved
considering viscous forces in the local force balance, e.g., [36], however, at the cost of additional computational
and algorithmic effort.

Remark 11. Similar to the position rce
i

of the closest projection point ce
i , cf. Eq. (29), the velocity and acceleration

are obtained following uce
i
=

∑
j N e

j

(
ξ ce

i

)
u f s

j and ace
i
=

∑
j N e

j

(
ξ ce

i

)
a f s

j , where u f s
j and a f s

j are the velocities and
accelerations of nodes j of interface element e.

In a next step, the velocity uke
i

of virtual boundary particles ke
i is approximated considering the kinematic coupling

condition on the fluid–structure interface Γ f s , cf. Eq. (8), prescribing the velocity uce
i

of closest projection point ce
i ,

cf. Remark 11. Applying a first order Taylor series expansion with center of expansion at ⟨r⟩ f according to (32)
gives the relation

uce
i
= ⟨u⟩ f +

(
rce

i
− ⟨r⟩ f

)
· er

⟨
∇er u

⟩
f (36)

with smoothed velocity ⟨u⟩ f =
∑

j u j Wce
i j/

∑
j Wce

i j and unit vector er pointing from particle i to closest projection
point ce

i thus representing the wall normal vector as defined in Section 3.3.3. The quantity
⟨
∇er u

⟩
f denotes the

13
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smoothed directional derivative of the velocity in direction of er and follows from Eq. (36) as⟨
∇er u

⟩
f =

uce
i
− ⟨u⟩ f(

rce
i
− ⟨r⟩ f

)
· er

(37)

exploiting the velocity uce
i

of the closest projection point ce
i . Finally, the velocity uke

i
of virtual boundary particles ke

i
is approximated again applying a Taylor series expansion with center of expansion at ⟨r⟩ f resulting in

uke
i
= ⟨u⟩ f +

(
rke

i
− ⟨r⟩ f

)
· er

⟨
∇er u

⟩
f . (38)

In addition to the acceleration contributions ai j of neighboring fluid particles j , the momentum equation (16) for
a fluid particle i is extended by the acceleration contributions aike

i
of virtual boundary particles ke

i related to the
closest projection points ce

i on interface elements e

ai =
∑

j

ai j +
∑

e

∑
ke

i

aike
i
+ bi (39)

with

aike
i
=

1
mi

(
V 2

i + V 2
ke

i

)[
− p̃ike

i

∂W
∂rike

i

eike
i
+ ηi

uike
i

rike
i

∂W
∂rike

i

]
(40)

and density-weighted inter-particle averaged pressure p̃ike
i

as defined in (17).

Remark 12. The extrapolation of pressure and velocity for virtual boundary particles ke
i by the Taylor series

expansions (33) and (38) requires the quantities ⟨·⟩ f to be evaluated only once for each closest projection point ce
i ,

which is the main advantage of this procedure regarding computational costs.

Remark 13. Note that the contributions of virtual boundary particles ke
i resulting from a background pressure pb

as part of the transport velocity formulation [27] are also considered for fluid particles i , however, similar to
Section 3.1.4 for ease of notation not pointed out here.

3.3.5. Nodal interface forces on interface elements
The coupling of the fluid and the structural field, cf. Fig. 2, following a Dirichlet–Neumann partitioned approach

(as discussed in more detail in Section 3.4) requires the evaluation of interface forces f f s . To enforce conservation
of linear momentum at the fluid–structure interface Γ f s , in accordance with (19), the interface forces f f s can be
computed directly from the resulting acceleration contributions of fluid particles interacting with virtual boundary
particles, as described in the previous section. Consequently, the resulting force fe

ce
i

acting on an interface element e
at the closest projection point ce

i due to interaction of virtual boundary particles ke
i with fluid particle i reads

fe
ce

i
= −mi

∑
ke

i

aike
i

(41)

with mass mi of fluid particle i and acceleration contribution aike
i

of virtual boundary particle ke
i on fluid particle i .

Note that the above given formulation of the resulting force fe
ce

i
guarantees conservation of linear momentum between

fluid particle i and interface element e. The resulting force fe
ce

i
(being a point force acting on interface element e

at closest projection point ce
i ) is distributed to the nodes j of interface element e using its shape functions N e

j

(
ξ ce

i

)
evaluated at the closest projection point ce

i given in iso-parametric coordinates ξ ce
i
. Finally, the interface force f f s

j
of a node j results from summation over all force contributions fe

ce
i

of fluid particles i acting on various interface
elements e connected to node j

f f s
j =

∑
e

∑
i

N e
j

(
ξ ce

i

)
fe
ce

i
. (42)
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3.4. Partitioned coupling approach

The fluid and the structural field are coupled following a Dirichlet–Neumann partitioned approach, where the fluid
field is the Dirichlet partition with prescribed interface displacements d f s and the structural field is the Neumann
partition subject to interface forces f f s , as illustrated in Fig. 2 (right).

Introducing the field operators F and S for the fluid and the structural problem [5] both mapping the interface
displacements d f s to interface forces

f f s
F = F

(
d f s) and f f s

S = S
(
d f s) , (43)

equilibrium at the interface Γ f s is satisfied in case the condition

F
(
d f s)
= S

(
d f s) (44)

holds. The inverse fluid and structural field operators mapping interface forces f f s to interface displacements are
consequently defined as

d f s
F = F−1(f f s) and d f s

S = S−1(f f s) . (45)

In [7] it is shown that weakly coupled schemes exhibit instabilities in FSI problems with incompressible flows due
to the artificial added mass effect. To overcome those instabilities, a fixed-point coupling algorithm is employed to
iteratively reach dynamic equilibrium of the fluid and the structural field at the interface with respect to a predefined
convergence criterion, i.e., fluid and structural field are strongly coupled. Following a synchronous time stepping
scheme the same time step size ∆t is set for both fluid and structural solver and is based on the in general more
severe restrictions of the SPH time integration scheme, cf. Eq. (25).

Remark 14. Note that the applied generalized alpha time integration scheme for the structural field being an
implicit method in general allows for a larger time step size ∆t than possible for the fluid field solved using
SPH. Thus, future research may focus on asynchronous time stepping and sub-stepping schemes in order to reduce
computational costs.

The coupling algorithm applied herein is described in detail below as Algorithm 1. Convergence of the iterative
coupling loop in Algorithm 1 is achieved in case the following criterion based on the increment of interface
displacements ∆d f s

n+1,i+1 is fulfilled⏐⏐∆d f s
n+1,i+1

⏐⏐
∆t

√
n f s

dof

< ϵ (46)

with time step size ∆t , number of interface degrees of freedom n f s
dof , and predefined tolerance for convergence ϵ.

Remark 15. In general, applying dynamic relaxation of the interface displacements d f s in each iteration of
the coupling algorithm [5] can have a stabilizing effect and accelerate the convergence of the partitioned coupling.
However, it shall be noted, that due to the restrictions of the time step size ∆t resulting from the SPH time integration
scheme, an accelerating effect is not required with the proposed formulation, cf. examples 4.2.2 and 4.2.3.

4. Numerical examples

The purpose of this section is to validate the novel sliding boundary particle approach and the proposed numerical
formulation for solving fluid–structure interaction problems examining several numerical examples in two and three
dimensions. The obtained results are assessed on the basis of analytical solutions and reference solutions given in
the literature.

4.1. Validation of the sliding boundary particle approach

At first, the capabilities of the proposed method considering fluid flow in the presence of rigid and undeformable
structures with a focus on the validation of the novel sliding boundary particle approach as presented in Section 3.3
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Algorithm 1 Time loop of a Dirichlet–Neumann partitioned fixed-point fluid–structure interaction algorithm

while t < T do
t ← t +∆T ▷ increment time
i ← 1 ▷ reset iteration counter
d f s

n+1,i ▷ predict interface displacements
while true do

f f s
n+1,i+1 = F

(
d f s

n+1,i

)
▷ solve fluid field

d f s
n+1,i+1 = S−1

(
f f s
n+1,i+1

)
▷ solve structural field

∆d f s
n+1,i+1 = d f s

n+1,i+1 − d f s
n+1,i ▷ compute increment of interface displacements

if
⏐⏐∆d f s

n+1,i+1

⏐⏐/∆t
√

n f s
dof < ϵ then ▷ check convergence criterion, cf. equation (46)

break
end if
i ← i + 1 ▷ increment iteration counter

end while
n← n + 1 ▷ increment step counter

end while

are shown. The obtained results are compared to analytical solutions and reference solutions given in the literature
both in a quantitative and qualitative manner. Additionally, as rigid and undeformable structures are considered, these
examples can also be examined utilizing an implementation of the rigid wall boundary condition proposed in [13].
As a result, this allows for validation of the proposed sliding boundary particle approach against the established
rigid wall boundary condition [13] within the context of rigid and undeformable structures. Finally, an example
demonstrates the advantages of the proposed sliding boundary particle approach in the regime of large structural
deformations. In all examples discussed in this section, the structural field is not solved, though, the fluid–structure
interface is explicitly described either via an interface mesh or analytically by parameterization.

4.1.1. Hydrostatic pressure in a fluid between two parallel plates
The gap between two spatially fixed and undeforming parallel plates being a distance of L = 0.2 apart is filled

with a Newtonian fluid of density ρ f
= 1.0 and kinematic viscosity ν f

= 1.0 × 10−2. A coordinate axis eq is
introduced pointing in the direction perpendicular to the parallel plates with origin centered between the latter, cf.
Fig. 7(a). Finally, a body force of magnitude bq = 0.1 acting in direction eq is applied on the fluid. For this simple
example the analytical solution for the pressure profile in the static equilibrium state is given to p(q) = ρ f bqq
showing linear behavior.

The fluid domain between the two parallel plates is discretized by 40 layers of fluid particles, i.e., with an initial
particle spacing ∆x = 5.0×10−3. The smoothing length h of the smoothing kernel is set equal to the initial particle
spacing ∆x resulting in a support radius rc = 1.5× 10−2. For the fluid phase, an artificial speed of sound c = 1.0
is chosen, leading to a reference pressure p0 = 1.0. The background pressure pb is set equal to the reference
pressure p0. The two parallel plates are modeled by a surface element each. The problem is solved with time step
size ∆t = 3.125× 10−4, cf. Eq. (25), until a static equilibrium state is reached.

Fig. 7(b) shows the hydrostatic pressure in the fluid at time t = 10.0. The results compared to the analytical
solution are post-processed applying SPH approximation (14). The results are in very good agreement with the
analytical solution showing the capability of the proposed sliding boundary particle approach to capture linear
pressure profiles near the boundary, cf. Eq. (33). In addition, the example is computed with an implementation of
the rigid wall boundary condition [13] modeling the two parallel plates via fixed boundary particles. Comparing
the result to those obtained with the proposed sliding boundary particle approach, cf. Fig. 7(b), delivers apart from
roundoff errors equivalent results for this example. Finally, a detailed view of the boundary region at q = 0.1 is given
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Fig. 7. Hydrostatic pressure in a fluid between two parallel plates: particle distribution colored with fluid pressure ranging from −0.01 (blue)
to 0.01 (red) with illustration of coordinate axis and body force (left) and numerical result using the proposed sliding boundary particle
approach (black solid line) and the rigid wall boundary condition [13] (red dashed line) compared to analytical solution (crosses) (right) in
static equilibrium state at time t = 10.0. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 8. Hydrostatic pressure in a fluid between two parallel plates: detailed view of boundary region with pressure values of fluid particles and
(virtual) boundary particles using the proposed sliding boundary particle approach with (black circles) and without (blue circles) considering
the pressure gradient (34) in Eq. (33), and the rigid wall boundary condition [13] also considering the pressure gradient (red circles) compared
to analytical solution (black solid line). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

in Fig. 8 showing the pressure values of fluid particles and (virtual) boundary particles obtained with the proposed
sliding boundary particle approach and the rigid wall boundary condition [13]. In addition, a modified variant of the
sliding boundary particle approach without considering the pressure gradient (34) in Eq. (33) is examined. With this
modified variant, the pressure value of the fluid particle closest to the boundary, cf. Fig. 8, clearly deviates from the
expected linear pressure profile. Thus, considering the improved accuracy and the fact that the computational costs
required for the extrapolation of pressure (and velocity) for virtual boundary particles are negligible, cf. Remark 12,
in the following, the standard variant as proposed in Section 3.3.4 is applied.

4.1.2. Planar Taylor–Couette flow
In this example, a laminar, planar Taylor–Couette flow is considered. The gap between two coaxial cylinders with

radii r1 = 1.0 and r2 = 2.0 is filled with a Newtonian fluid of density ρ f
= 1.0 and kinematic viscosity ν f

= 1.0.
The inner cylinder is fixed, i.e., its angular velocity is ω1 = 0.0, while the outer cylinder rotates with angular
velocity ω2 = 2.0 around its axis of symmetry. No-slip boundary conditions are applied between the fluid and the
surfaces of the cylinders. The geometry and boundary conditions of the problem are illustrated in Fig. 9(a). The
Reynolds number of the problem is Re = ω2r2(r2 − r1)/ν

f
= 4.0 with maximum velocity ω2r2 and gap (r2 − r1)

between the coaxial cylinders.
The fluid domain is discretized by fluid particles with initial particle spacing ∆x = 5.0× 10−2. The smoothing

length h is equal to the initial particle spacing ∆x resulting in a support radius rc = 1.5×10−1. The artificial speed
of sound is set to c = 40.0, hence the reference pressure is p0 = 1600.0. The background pressure pb is set equal
to the reference pressure p0. In this example, the structural surfaces are described analytically by parameterization
of the cylindrical surfaces in order to show the capabilities and flexibility of the proposed sliding boundary particle
approach. However, it shall be noted that the geometry naturally could have been discretized by a finite element
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Fig. 9. Planar Taylor–Couette flow: geometry and boundary conditions of the problem (left) and stationary velocity of the fluid in angular
direction using the proposed sliding boundary particle approach (black solid line) and the rigid wall boundary condition [13] (red dashed
line) compared to analytical solution [37] (crosses) (right). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. Planar Taylor–Couette flow: particle distribution at time t = 2.0 colored with magnitude of the fluid velocity ranging from 0.0 (blue)
to 4.0 (red) using the sliding boundary particle approach with parameterization of the cylindrical shape (left) and the rigid wall boundary
condition [13] with fixed boundary particles approximating the cylindrical shape (right). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

mesh. The problem is solved with time step size ∆t = 3.125× 10−4, cf. Eq. (25), until a nearly stationary state is
reached at time t = 2.0.

In Fig. 9(b) the stationary velocity of the fluid in the gap between the cylinders, post-processed applying SPH
approximation (14), is plotted over the radius r in angular direction θ at time t = 2.0. The result obtained with
the proposed sliding boundary particle approach is compared to the result obtained with an implementation of the
rigid wall boundary condition [13] and to the analytical solution of the problem [37]. Both methods show a high
degree of conformity with the analytical solution. The deviation of the velocity in Fig. 9(b) close to the cylindrical
surfaces, i.e., at r = r1 and r = r2, results from missing kernel support during post-processing. This phenomenon
likewise occurs for both methods, but at a varying degree. Finally, the particle distribution at time t = 2.0 is
shown in Fig. 10 comparing the results of the sliding boundary particle approach with the rigid wall boundary
condition [13]. In contrast to the rigid wall boundary condition with fixed boundary particles approximating the
cylindrical shape, the sliding boundary particle approach does not suffer from geometry discretization errors thus
resulting in an improved preservation of the solution symmetry (cf. Fig. 10) and a decreased deviation from the
analytical velocity profile (cf. Fig. 9(b)). On the other hand, approaches were the cylindrical shape is discretized
by boundary particles in ring-shaped arrangement suffer from a disturbed support of the smoothing kernel of fluid
particles close to the cylindrical surface, similar than in Fig. 3.
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Fig. 11. Laminar flow around a rigid cylinder: geometry and boundary conditions of the benchmark problem as proposed by Schäfer and
Turek et al. [38].

4.1.3. Laminar flow around a rigid cylinder
A prominent CFD benchmark problem was proposed by Schäfer and Turek et al. [38] in the year 1996 and since

then was considered in a huge variety of publications. The benchmark is concerned with the laminar flow around a
rigid cylinder in a channel. Within this publication, the problem is utilized to validate the momentum exchange at
the fluid–structure interface, i.e., at the surface of the cylinder, examining characteristic quantities such as the drag
and the lift coefficient or the cycle duration of the time-periodic solution. In the following the focus is set on the
two-dimensional, unsteady test case 2D-2 [38].

Consider a rigid cylinder of diameter D = 0.1 with center fixed at position (0.2, 0.2) in a rectangular channel of
length L = 2.2 and height H = 0.41, as illustrated in Fig. 11. The channel is filled by a Newtonian fluid initially
at rest with density ρ f

= 1.0 and kinematic viscosity ν f
= 1.0 × 10−3. It shall be noted that the problem setup

is designed intentionally non-symmetric in order to initiate unsteady vortex shedding behind the cylinder. No-slip
boundary conditions are applied at the bottom and top channel wall and on the surface of the cylinder. At the
channel inflow, a parabolic, time dependent velocity profile uin = u(x = 0, y, t) is prescribed with components

ux (x = 0, y, t) = umax
4y(H − y)

H 2 τ(t) and u y(x = 0, y, t) = 0.0 (47)

where

τ(t) =

{
1
2

(
1− cos

(
π
2 t

))
if t < 2.0

1.0 otherwise
. (48)

The maximum inflow velocity is set to umax = 1.5 resulting in a Reynolds number Re = umean D/ν f
= 100 with

mean velocity umean = 2/3umax = 1.0 for all times t ≥ 2.0. At the channel outflow a zero pressure condition
pout = p(x = L , y, t) = 0.0 is applied.

The fluid domain is discretized by fluid particles with initial particle spacing ∆x = 2.0× 10−3. The smoothing
length h is set equal to the initial particle spacing ∆x resulting in a support radius rc = 6.0 × 10−3 of the
smoothing kernel. An artificial speed of sound c = 12.5 is chosen for the fluid phase leading to a reference
pressure p0 = 156.25. The background pressure is set to pb = 312.5 and is on the order of the reference pressure as
proposed by [27]. The bottom and top channel walls are modeled utilizing boundary particles according to [13] with
spacing equal to the initial particle spacing ∆x . On account of the fact that the cylinder is fixed and undeformable
only the surface of the cylinder is regularly discretized by 48 surface elements of same size that are considered
in the computation of the fluid field, i.e., the structural field is not solved. The unsteady flow simulation is solved
for times t ∈ [0, 8.0] with a time step size of ∆t = 4.0 × 10−5 based on the time step size conditions defined
in Eq. (25).

To allow for a quantitative comparison of the obtained results with existing reference solutions, the drag and the
lift coefficient are defined as

cdrag =
2 fdrag

ρ f u2
mean D

and cli f t =
2 fli f t

ρ f u2
mean D

(49)
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Fig. 12. Laminar flow around a rigid cylinder: drag coefficient cdrag and lift coefficient cli f t using the proposed sliding boundary particle
approach (black solid line) and the rigid wall boundary condition [13] (red dashed line) compared to the upper bounds given in reference
solution [38] (blue dashed line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

where fdrag and fli f t denote the forces in x- respectively y-direction acting on the cylinder obtained from the sum
of all force contributions of fluid particles acting on interface elements of the discretized surface of the cylinder, cf.
Eq. (41). Fig. 12 shows the drag coefficient cdrag and the lift coefficient cli f t obtained for the fully developed time-
periodic solution after approximately t = 5.0. Both drag and lift coefficient show typical fluctuations as common
in SPH-based simulations (similar to an example in [27]), that result from disturbances of the density field [12]
due to relative particle movement. Besides that, the obtained results are in good agreement to the lower bound
(cdrag = 3.2200, cli f t = 0.9900) and upper bound (cdrag = 3.2400, cli f t = 1.0100) of the maximum drag and
lift coefficient given by [38]. The shape of the curve of lift coefficient cli f t allows identifying periodic cycles of
the solution with approximate cycle duration tcycle = 0.33 in close agreement to the result of [39]. In addition,
the example is computed discretizing the cylinder with fixed boundary particles based on an implementation of the
rigid wall boundary condition [13]. The results in form of the drag coefficient cdrag and the lift coefficient cli f t

are compared to those obtained with the proposed sliding boundary particle approach, cf. Fig. 12, and likewise
show the observed typical fluctuations. Note that the visible phase shift in the time-periodic solution of the lift
coefficient cli f t is stemming from roundoff errors that influence the initiation of vortex shedding. Finally, Fig. 13
shows the magnitude of the fluid velocity field for a periodic cycle from t0 = 6.90 to t1 = 7.23 at four equidistant
points in time. At time t = 6.98 the present results of the velocity field visualized in Fig. 13 are qualitatively in good
agreement to the results of [39]. Altogether, the results of the CFD benchmark problem obtained with the sliding
boundary particle approach represent the given reference solutions [38,39] both quantitatively and qualitatively
in good approximation and further showcase the capabilities of the novel formulation to accurately model the
momentum exchange at the fluid–structure interface.

4.1.4. Isochoric deformation of a box filled with a fluid
This example aims to demonstrate the advantages of the proposed sliding boundary particle approach over fixed

(material) boundary particle methods in the case of large deformations at the fluid–structure interface. To this end, an
academic example is examined utilizing both the proposed sliding boundary particle approach and an implementation
of the rigid wall boundary condition [13] with boundary particles fixed to material points of the structure.

An initially quadratic structural box with inner edge length b = 0.1 and wall thickness d = 0.015 is filled by
a Newtonian fluid initially at rest with density ρ f

= 1.0 and kinematic viscosity ν f
= 1.0 × 10−2. An isochoric

deformation of the structural box to obtain a rectangular shape (with final edge lengths bx = 0.2 and by = 0.05
starting from t = 2.5) is prescribed, defined by the deformation gradient

F =
[
λ(t) 0

0 1.0/λ(t)

]
where λ(t) =

{
1.0+ 0.4t if t < 2.5
2.0 otherwise

, (50)
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Fig. 13. Laminar flow around a rigid cylinder: magnitude of the fluid velocity field ranging from 0.0 (blue) to 2.2 (red) for a periodic cycle
from t0 = 6.90 to t1 = 7.23 at four equidistant points in time. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

and accordingly with det F = 1.0. It follows, that also the volume of the fluid within the structural box remains
constant at all times. Consequently, in the final static equilibrium state the fluid density is expected to be constant
throughout the entire fluid domain.

The fluid domain within the structural box is discretized by fluid particles with initial particle spacing ∆x =
5.0× 10−3. The smoothing length h of the smoothing kernel is set equal to the initial particle spacing ∆x resulting
in a support radius rc = 1.5× 10−2. For the fluid phase, an artificial speed of sound c = 1.0 is chosen, leading to a
reference pressure p0 = 1.0. The background pressure pb is set equal to the reference pressure p0. The walls of the
structural box are either modeled by surface elements when using the proposed sliding boundary particle approach
or by boundary particles fixed to material points of the structure when using the rigid wall boundary condition [13].
The problem is solved for times t ∈ [0, 10.0] with time step size ∆t = 3.125× 10−4, cf. Eq. (25).

Fig. 14 shows the particle distribution obtained using the rigid wall boundary condition [13] with fixed (material)
boundary particles in the initial configuration and at time t = 10.0. Prescribing the deformation of the structural box
naturally also distorts the initially regular arrangement of boundary particles fixed to material points of the structure,
i.e., the boundary particle spacing is stretched in horizontal direction and compressed in vertical direction, which is
clearly visible at time t = 10.0. As a consequence, the support of the smoothing kernel of a fluid particle close to
the interface is disturbed, also influencing the density (and pressure) field in the deformed fluid domain. Eventually,
leakage of fluid particles through the fluid–structure interface occurs when the boundary particle spacing becomes
too large, and accordingly, the fluid density within the structural box is significantly reduced with an average density
error of approximately 7.5%. The results obtained with the proposed sliding boundary particle approach are shown
in Fig. 15. For the purposes of illustration, at time t = 10.0 the virtual boundary particles belonging to a fluid
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Fig. 14. Isochoric deformation of a box filled with a fluid: particle distribution obtained using the rigid wall boundary condition [13] with
fixed (material) boundary particles in the initial configuration with fluid particles (gray) and boundary particles (black) (left) and in the final
configuration with fluid particles colored with fluid density ranging from 0.9 (blue) to 1.1 (red) and boundary particles (black) (right). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Isochoric deformation of a box filled with a fluid: particle distribution obtained using the proposed sliding boundary particle approach
in the initial configuration with fluid particles (gray) and surface elements (blue) (left) and in the final configuration with fluid particles
colored with fluid density ranging from 0.9 (blue) to 1.1 (red) and an illustration of the virtual boundary particles (black) belonging to
two characteristic fluid particles (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

particle close to the upper edge and to a fluid particle close to the right edge are shown. Here the full benefits of
the proposed sliding boundary particle approach become obvious: full support of the smoothing kernel of a fluid
particle close to the interface is retained by a transient set of regularly arranged virtual boundary particles. As
a result, an undisturbed density (and pressure) field is achieved in the deformed fluid domain, and consequently,
no leakage of fluid particles through the fluid–structure interface occurs. Altogether, this example illustrates the
advantages of the proposed sliding boundary particle approach over fixed (material) boundary particle methods
when considering large deformations of the fluid–structure interface.

4.2. Validation of the fluid–structure interaction framework

Additional complexity is added by considering freely moving and deformable structures stressing the coupling
of fluid and structural field following a Dirichlet–Neumann partitioned approach. Consequently, in the following
examples also the structural field is solved. Analytical solutions and reference solutions given in the literature are
used to validate the obtained results in quantitative and qualitative manner.

4.2.1. A rigid cylinder floating in a shear flow
The following example is based on the studies [40,41] stating that a rigid cylinder floating in a shear flow in

a channel always migrates to the center of the channel independent of its initial position and velocity. Here, this
example serves as a further validation of the proposed method considering rigid body motion of the structural field.
For validation, the obtained results are compared to [36] where both the fluid and the solid field are discretized
using SPH.

A rigid cylinder of diameter D = 0.0025 allowed to move freely is initially placed at position (0.002, 0.0075)

in a rectangular channel of length L = 0.1 and height H = 0.01, as illustrated in Fig. 16. The remainder of the
channel is occupied by a Newtonian fluid with density ρ f

= 1.0 and kinematic viscosity ν f
= 5.0 × 10−6. The
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Fig. 16. A rigid cylinder floating in a shear flow: geometry and boundary conditions of the problem.

Fig. 17. A rigid cylinder floating in a shear flow: vertical position ry of the center of the cylinder in the channel computed by the method
developed in this article (solid line) compared to reference solution [36] (crosses).

bottom and top channel walls move with a velocity uw/2 = 0.01 in opposite direction inducing a shear flow in the
channel under consideration of no-slip boundary conditions on all fluid–structure interfaces. The Reynolds number
of the problem is Re = uw D2/4ν f H = 0.625 [36,41] taking into account the diameter of the cylinder D and the
channel height H . At the left and right end of the channel, periodic boundary conditions are applied.

In this example, the fluid domain is discretized by fluid particles with initial particle spacing ∆x = 1.0× 10−4.
The smoothing length h is equal to the initial particle spacing ∆x leading to a support radius rc = 3.0×10−4 of the
smoothing kernel. An artificial speed of sound c = 0.25 is chosen, resulting in a reference pressure p0 = 0.0625
for the fluid phase. The background pressure pb is set equal to the reference pressure p0. The motion of the bottom
and top channel walls is modeled using moving boundary particles according to [13]. A Saint Venant–Kirchhoff
model with relatively high Young’s modulus E s

= 1.0×106 and Poisson’s ratio νs
= 0.4 is applied for the structure

in order to penalize deformation of the cylinder and allow primarily rigid body motions. The cylinder is regularly
discretized by 144 first-order elements with 48 surface elements on the surface of the cylinder. Convergence of the
iterative coupling algorithm is checked based on the tolerance ϵ = 1.0× 10−8 in Eq. (46). The problem is solved
for times t ∈ [0, 60.0] with a time step size of ∆t = 1.0× 10−4.

The vertical position of the center of the cylinder in the channel over time t is displayed in Fig. 17. The cylinder
migrates to the center line of the channel as expected. In addition, a quantitative comparison to the results given
in [36] shows good agreement for the dynamics of the solution.

4.2.2. Flow-induced oscillations of a flexible beam attached to a rigid cylinder
Based on the benchmark problem of a laminar flow around a rigid cylinder in a channel [38], cf. Section 4.1.3,

a FSI benchmark was proposed by Turek and Hron [42] as modification of an example first described in [43]. The
purpose of the example is to study flow-induced oscillations of a flexible beam attached to a rigid cylinder in a
channel flow. In the following the two-dimensional test case FSI2 [42] is considered that is characterized by large
structural displacements.

The problem setup (rectangular channel of length L = 2.2 and height H = 0.41, rigid cylinder of diameter D =
0.1 with center fixed at position (0.2, 0.2)) is very equal to the example of a laminar flow around a rigid cylinder
discussed in Section 4.1.3. In addition, in this example a flexible beam of length l = 0.35 and height h = 0.02 is
attached at the downstream end of the rigid cylinder, i.e., at position (0.25, 0.2) as illustrated in Fig. 18. Note
that also the length of the channel remains equal to the example in Section 4.1.3 and is thus slightly shorter
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Fig. 18. Flow-induced oscillations of a flexible beam attached to a rigid cylinder: geometry and boundary conditions of the benchmark
problem as proposed by Turek and Hron [42].

than originally proposed for the benchmark [42]. A control point needed for evaluation of the results, e.g., in
Fig. 19, is placed at the tip of the flexible beam, i.e., at position (0.6, 0.2) in the undeformed configuration. The
fluid properties (Newtonian fluid, density ρ f

= 1.0, kinematic viscosity ν f
= 1.0 × 10−3) remain unchanged

compared to the previous example. The density of the flexible structure is set to ρs
0 = 10.0 resulting in a density

ratio of ρs
0/ρ

f
= 10.0. A Saint Venant–Kirchhoff model with Young’s modulus E s

= 1.4 × 103 (resp. shear
modulus µs

= 0.5 × 103) and Poisson’s ratio νs
= 0.4 is utilized to describe the constitutive behavior of the

flexible beam. The same boundary conditions as in the example in Section 4.1.3 (no-slip boundary conditions on
all surfaces including the flexible beam, parabolic and time dependent velocity profile at channel inflow with mean
velocity umean = 1.0 for all times t ≥ 2.0, zero pressure conditions at channel outflow) are prescribed. The Reynolds
number of this example is given to Re = umean D/ν f

= 100.
The fluid domain is discretized with fluid particles similar than in the example in Section 4.1.3 (initial particle

spacing ∆x = 2.0×10−3, support radius rc = 6.0×10−3 of the smoothing kernel, artificial speed of sound c = 12.5,
reference pressure p0 = 156.25). In this example, the background pressure is set to pb = 1250.0. Boundary
particles according to [13] are utilized to model the bottom and top channel walls. The flexible beam as part of
the structural domain is discretized by 35 × 3 first-order elements. The surface of the cylinder exposed to the fluid
field, i.e., without considering the part where the flexible beam is attached, is discretized by 20 surface elements.
Convergence of the iterative coupling of fluid and structural field is based on the tolerance ϵ = 1.0 × 10−8, cf.
Eq. (46). The FSI problem is solved for times t ∈ [0, 12.0] with a time step size of ∆t = 4.0 × 10−5. In this
example, convergence of the partitioned coupling loop, cf. Algorithm 1, is reached after an average number of
approximately 5.45 iterations per time step, when averaging over all time steps of the given problem.

The vertical displacement dy of the control point at the tip of the flexible beam is displayed in Fig. 19. In
the present results the minimum and maximum displacement of the control point at the tip of the flexible beam
in y-direction are approximately −0.08269 and 0.08309. This is in good agreement with the results given in the
literature: [42] and [44] report a minimum and maximum displacement of −0.07937 and 0.08183 respectively
−0.0803 and 0.0829. The solution of the FSI problem shows time-periodic cycles of the beam deflection after
approximately t = 8.0 with a cycle duration tcycle ≈ 0.525 and a frequency f = 1/tcycle ≈ 1.905 (averaged over
all time-periodic cycles), which is in good agreement with [42,44] ( f = 1.90). In Fig. 20 the magnitude of the
fluid velocity field and the deformation of the structure for a periodic cycle from t0 = 10.32 to t1 = 10.84 at four
equidistant points in time are shown. Especially, at times t = 10.45 and t = 10.71 the flexible beam experiences
strong curvature. This is where approaches discretizing the structural domain by boundary particles fixed to structural
material points suffer from a disturbed support of the smoothing kernel of neighboring fluid particles, cf. Fig. 3. The
novel sliding boundary particle approach by definition is not prone to that issue. In summary, the results of the FSI
benchmark problem obtained with the sliding boundary particle approach are both quantitatively and qualitatively
in good agreement with the given reference solutions [42,44].

4.2.3. Inflation of an academic balloon-like problem
The filling process of a highly flexible thin-walled balloon-like container undergoing large deformations is studied

in this example, representing a model problem close to potential application scenarios of the proposed scheme in
the field of biomechanics.
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Fig. 19. Flow-induced oscillations of a flexible beam attached to a rigid cylinder: vertical displacement dy of the control point at the tip
of the flexible beam using the proposed sliding boundary particle approach (black solid line) compared to the minimum and maximum
displacements given in reference solution [44] (blue dashed line).

Fig. 20. Flow-induced oscillations of a flexible beam attached to a rigid cylinder: magnitude of the fluid velocity field ranging from 0.0
(blue) to 2.5 (red) and deformation of structure for a periodic cycle from t0 = 10.32 to t1 = 10.84 at four equidistant points in time. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

An initially cubical structural geometry with inner edge length B = 3.0 and wall thickness d = 0.2 is inflated via
a quadratic inlet of width and length b = 1.0 by a Newtonian fluid that is initially at rest with density ρ f

= 1.0 and
kinematic viscosity ν f

= 5.0×10−1, cf. Fig. 21(a). The constitutive behavior of the structure with density ρs
0 = 1.0

is described by a Saint Venant–Kirchhoff model with Young’s modulus E s
= 1.0×102 and Poisson’s ratio νs

= 0.45.
A similar problem was first proposed in [45] with the purpose to study and solve the incompressibility dilemma
in partitioned fluid–structure interaction with pure Dirichlet fluid domains. This dilemma does not exist in our
approach, given that SPH uses a weakly compressible approach. Here, the example is recapitulated on a three-
dimensional geometry with modified fluid and structural material parameters. No-slip boundary conditions are
applied at all fluid–structure interfaces. At the inflow of the balloon-like problem, a parabolic, time dependent
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Fig. 21. Inflation of an academic balloon-like problem: geometry and boundary conditions of the problem based on [45] (left) and volume
inside the academic balloon (solid line) compared to analytical solution (crosses) (right).

velocity profile uin = u(x = 0, y, z, t) with components

ux (x = 0, y, z, t) = umax
4y(b − y)

b2

4z(b − z)
b2 τ(t) and u y(x = 0, y, z, t) = uz(x = 0, y, z, t) = 0.0 (51)

and maximum inflow velocity umax = 5.0 and

τ(t) =

{
1
2 (1− cos (π t)) if t < 1.0
1.0 otherwise

(52)

is prescribed. Note that the origin of the coordinate system (x, y, z) is located at the bottom left corner of the
inflow area. Accordingly, the volume inside the academic balloon (without considering the volume of the inlet) can
be determined analytically via

V (t) = V0 +

∫
t

∫
Ain

ux dA dt (53)

for each time t with initial volume V0 = B3 and inflow area Ain = b2.
The fluid domain is discretized by fluid particles with initial particle spacing ∆x = 4.0× 10−2. The smoothing

length h is set equal to the initial particle spacing ∆x resulting in a support radius rc = 1.2×10−1 of the smoothing
kernel. The artificial speed of sound is set to c = 40.0, hence the reference pressure is p0 = 1600.0. The background
pressure pb is equal to the reference pressure p0. The walls of the fixed inlet are modeled utilizing boundary
particles according to [13] with spacing equal to the initial particle spacing ∆x . The balloon-like structural domain
is discretized by first-order elements with a cubic shape in the initial configuration and a characteristic element
length of d resulting in one element over the wall thickness. This discretization is justified since the focus of this
example is set on the coupling of fluid and structural field at the interface rather than a precise prediction of structural
quantities such as the deformation field of the tank. The tolerance ϵ = 1.0 × 10−8 in Eq. (46) is applied for the
iterative coupling of fluid and structural field. The FSI Problem is solved for times t ∈ [0, 14.0] with a time step
size of ∆t = 2.5× 10−4. In this example, convergence of the partitioned coupling loop, cf. Algorithm 1, is reached
after an average number of approximately 5.88 iterations per time step, when averaging over all time steps of the
given problem.

The volume inside the academic balloon is determined summing up the effective volumes of respective particles j
following V =

∑
j m j/ρ j and compared to the analytical solution (53), cf. Fig. 21(b). The resulting volume is

slightly below the analytically determined volume. This can be explained by the weakly compressible approach,
cf. Section 3.1.5, applied in this SPH formulation leading in this example to a minor compression of the fluid
phase with an average density error of approximately 1%. Note that conservation of mass and accordingly (within
the limits of a weakly compressible approach) conservation of volume is a characteristic property of SPH. By
definition, this means that also the number of fluid particles is conserved. Therefore, the obtained results, among
others, demonstrate that no leakage of fluid particles through the fluid–structure interface occurs. The rear half of
the (inflated) structural geometry and a quarter section of the fluid domain are displayed in Fig. 22 in the initial
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Fig. 22. Inflation of an academic balloon-like problem: magnitude of the fluid velocity field ranging from 0.0 (blue) to 5.0 (red) visualized on
a quarter section of the fluid domain and deformation of structure at points in time t0 = 0.0 (left) and t1 = 12.65 (right). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

state and at time t = 12.65. The fluid velocity is post-processed applying SPH approximation (14). Note that at
time t = 12.65 the volume inside the academic balloon has doubled, cf. analytical solution (53). In conclusion, this
example is characterized by large structural deformations in form of strong curvature and stretch reaping the full
benefits of the proposed sliding boundary particle approach in contrast to fixed (material) boundary particle methods.
In the presence of large structural deformations, the latter class of boundary particle methods is characterized by
insufficient kernel support, and eventually such methods are prone to leakage of fluid particles.

5. Conclusion and outlook

A novel smoothed particle hydrodynamics (SPH) and finite element (FE) coupling scheme for fluid–structure
interaction, the sliding boundary particle approach, is presented in this publication. The coupled problem is solved
via a Dirichlet–Neumann partitioned approach, with the fluid field (discretized via SPH) being the Dirichlet partition
and the structural field (discretized via FE) being the Neumann partition. SPH is a mesh-free computational method
that simplifies the treatment of both large deformations in the fluid domain as well as complex flow while avoiding
additional methodological and computational effort compared to fully mesh-based methods. Introducing the sliding
boundary particle approach for the treatment of deformable and strongly curved boundaries of the SPH domain in
an accurate, robust, and computationally cheap manner, constitutes an important aspect of the proposed numerical
formulation for solving FSI problems.

Several numerical examples showcase the capabilities of the novel numerical formulation. To begin with, the
sliding boundary particle approach is validated examining two-dimensional examples driving certain characteristics
of the proposed formulation. The numerical results obtained for the examples of a hydrostatic pressure in a fluid
between two parallel plates, cf. Section 4.1.1, and a planar Taylor–Couette flow, cf. Section 4.1.2, are in very good
agreement with the respective analytical solutions confirming the capability of the proposed method to model linear
pressure profiles near the boundary and to account for no-slip boundary conditions at the boundary as required
for high accuracy of the fluid velocity field. In a next step, numerical examples involving dynamic effects and
large structural deformations are studied confirming the accuracy and robustness of the proposed formulation. This
is, among others, demonstrated showing the results of well-known CFD respectively FSI benchmark problems,
cf. Sections 4.1.3 and 4.2.2, as proposed in [38,42]. Altogether, the obtained numerical results are in very good
agreement with the results given in the literature. Finally, a three-dimensional, application-focused example is
considered examining the filling process of a highly flexible thin-walled container (cf. Section 4.2.3).

Future work may focus on an asynchronous time stepping scheme, e.g., a sub-cycling scheme of fluid and
structural field, cf. Remark 14. Such an approach would allow to evolve the solution of the sub-fields with
different time step sizes each best suitable for the underlying method respectively solver while reducing the overall
computational effort. Besides that, the FSI framework may be extended to multiphase flow including the motion of
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rigid bodies. The framework developed herein will be a valuable tool for detailed studies of biomechanical problems
involving complex flow, e.g., the human stomach during digestion [1,2].
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Abstract

The present work proposes an approach for fluid–solid and contact interaction
problems including thermo-mechanical coupling and reversible phase transitions. The
solid field is assumed to consist of several arbitrarily-shaped, undeformable but mobile
rigid bodies, that are evolved in time individually and allowed to get into mechanical
contact with each other. The fluid field generally consists of multiple liquid or gas
phases. All fields are spatially discretized using the method of smoothed particle
hydrodynamics (SPH). This approach is especially suitable in the context of continually
changing interface topologies and dynamic phase transitions without the need for
additional methodological and computational effort for interface tracking as compared
to mesh- or grid-based methods. Proposing a concept for the parallelization of the
computational framework, in particular concerning a computationally efficient
evaluation of rigid body motion, is an essential part of this work. Finally, the accuracy
and robustness of the proposed framework is demonstrated by several numerical
examples in two and three dimensions, involving multiple rigid bodies, two-phase flow,
and reversible phase transitions, with a focus on two potential application scenarios in
the fields of engineering and biomechanics: powder bed fusion additive manufacturing
(PBFAM) and disintegration of food boluses in the human stomach. The efficiency of
the parallel computational framework is demonstrated by a strong scaling analysis.

Keywords: Rigid body motion, Two-phase flow, Reversible phase transitions,
Smoothed particle hydrodynamics, Metal additive manufacturing, Gastric fluid
mechanics

Introduction
In many applications in science and engineering, like for example in some areas of biome-
chanics, fluid–solid and contact interaction problems characterized by a large number
of solid bodies immersed in a fluid flow and undergoing reversible phase transitions,
are of great interest. Often, explicitly considering the deformation of solid bodies can
be neglected, which reduces the complexity of the problem to the treatment of unde-
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formable but mobile rigid bodies, in favor of simplified modeling. Most current mesh- or
grid-based methods, e.g., the finite element method (FEM), the finite difference method
(FDM), or the finite volumemethod (FVM), require substantial methodological and com-
putational efforts to model the motion of rigid bodies in fluid flow. To overcome those
issues, several approaches, e.g., based on the particle finite elementmethod (PFEM) [1–3],
on the discrete element method (DEM) [4–7], or on smoothed particle hydrodynamics
(SPH) [8–14], have been proposed. SPH as a mesh-free discretization scheme is, due to its
Lagrangian nature, very well suited for flow problems involving multiple phases, dynamic
and reversible phase transitions, and complex interface topologies. This makes SPH very
appropriate for a wide range of applications in engineering, e.g., in metal additive manu-
facturing melt pool modeling [15,16], or in biomechanics, e.g., for modeling the digestion
of food in the human stomach [17]. For the former application, an SPH formulation for
thermo-capillary phase transition problems involving solid, liquid, and gaseous phases
has recently been proposed [18], amongst others, focusing on evaporation-induced recoil
pressure forces, temperature-dependent surface tension andwetting forces,Gaussian laser
beam heat sources, and evaporation-induced heat losses. However, for simplicity, this and
also other current state-of-the-art approaches, e.g., [19,20] are restricted to immobile
powder grains.
All aforementioned SPH formulations formodeling rigid bodymotion in fluid flow have

in common, that rigid bodies are fully resolved, that is spatially discretized as clusters of
particles. It is generally accepted that advanced boundary particle methods, e.g., based
on the extrapolation of field quantities from fluid to boundary particles [21–23], are
beneficial, because one canmodel the fluid field close to the boundary with high accuracy.
In many of the aforementioned applications, an exact representation of the fluid–solid
interface plays an important role. Therefore, herein a formulation of this kind proposed
in [23] is utilized. To the best of the authors’ knowledge none of the aforementioned SPH
formulations modeling rigid body motion in fluid flow simultaneously consider thermal
conduction, reversible phase transitions, and multiple (liquid and gas) phases.
To help close this gap, this contribution proposes a fully resolved smoothed particle

hydrodynamics framework for fluid–solid and contact interaction problems including
thermo-mechanical coupling and reversible phase transitions. The solid field is assumed
to consist of several arbitrarily-shaped, undeformable but mobile rigid bodies, that are
evolved in time individually. Based on a temperature field, provided by solving the
heat equation, reversible phase transitions, i.e., melting and solidification, are evaluated
between the fluid and the solid field. As a result, the shape and the total number of rigid
bodies may vary over time. In addition, contact between rigid bodies is considered by
employing a spring-dashpotmodel.Note that some characteristic phenomena for thermo-
capillary flow [24,25] and, especially, formetal PBFAMmelt poolmodeling [18–20,26–28]
are not addressed in this work, thus, referring to the literature.
While parallel implementation aspects along with detailed scalability studies are not in

the focus of the aforementioned references, in this work, a concept for the parallelization
of the computational framework is proposed, setting the focus in particular on an efficient
evaluation of rigid body motion. The parallel behavior is demonstrated, confirming that
detailed studies at a large scale become possible. It shall be noted, that the parallel imple-
mentation of such a computational framework is far from trivial but indispensable when
examining numerical examples that are of practical relevance. Note that the introduced
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Fig. 1 Domain � consisting of several disjunct domains, the fluid domain �f and the solid sub-domains �s
k

representing rigid bodies k, with fluid–solid interface �fs
k and solid-solid interface �ss

k,k̂
in the event of contact

between the rigid bodies k and k̂

concept for the parallelization of the computational framework is applicable not only
when using SPH as a discretization scheme, but also for other particle-based methods,
e.g., discrete element method (DEM), or molecular dynamics (MD).
The remainder of this work is organized as follows: To begin with, the governing equa-

tions for a fluid–solid and contact interaction problem including thermo-mechanical
coupling and reversible phase transition are outlined. Next, the numerical methods are
presented and the details of the computational framework are discussed. Finally, the accu-
racy and robustness of the proposed formulation is demonstrated by several numerical
examples.

Governing equations
Consider a domain � of a fluid–solid interaction problem that consists at each time t ∈
[0, T ] of the non-overlapping fluid domain �f and solid domain �s that share a common
interface �fs, with � = �f ∪ �s and �f ∩ �s = �fs. In general, the fluid domain �f

may consist of multiple (liquid and gas) phases. For ease of notation, in the following
it will not be distinguished between the different fluid phases. The solid domain �s is
composed of several non-overlapping sub-domains �s

k , which represent rigid bodies k ,
such that �s = ⋃

k �s
k . In the event of contact between two rigid bodies k and k̂ , a

common interface �ss
k,k̂

= �s
k ∩ �s

k̂
exists, separating the two solid sub-domains �s

k and
�s

k̂
. A detailed illustration of the problem is given in Fig. 1. In the following the (standard)

governing equations of the fluid and the solid field as well as the respective coupling
conditions are briefly given. In addition, reversible phase transitions between the fluid
and the solid field, e.g., temperature-induced melting and solidification, may occur. For
this reason, the temperature field is modeled solving the heat equation.

Fluid field

The fluid field is governed by the instationary Navier–Stokes equations in the domain�f ,
which consist in convective form of the mass continuity equation and the momentum
equation

dρf

dt
= −ρf ∇ · uf in �f , (1)

duf
dt

= − 1
ρf ∇pf + fν + bf in �f , (2)
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with viscous force fν and body force bf each per unit mass. For a Newtonian fluid the
viscous force is fν = νf ∇2uf with kinematic viscosity νf . Themass continuity equation (1)
and the momentum equation (2) represent a system of d + 1 equations with the d + 2
unknowns, velocity uf , density ρf , and pressure pf , in d-dimensional space. The system
of equations is closed with an equation of state pf = pf (ρf ) relating fluid density ρf and
pressure pf . The Navier–Stokes equations (1) and (2) are subject to the following initial
conditions

ρf = ρ
f
0 and uf = uf0 in �f at t = 0 (3)

with initial densityρ
f
0 and initial velocityu

f
0. In addition,Dirichlet andNeumannboundary

conditions are applied on the fluid boundary �f = ∂�f \ �fs

uf = ûf on �
f
D and tf = t̂f on �

f
N , (4)

with prescribed boundary velocity ûf and boundary traction t̂f , where �f = �
f
D ∪ �

f
N

and �
f
D ∩ �

f
N = ∅. Furthermore, on the fluid–solid interface �fs = ⋃

k �
fs
k the so-called

kinematic and dynamic coupling conditions are

uf = ufsk and tf = tfsk on �
fs
k ∀k , (5)

resembling a no-slip boundary condition and ensuring equilibrium of fluid and solid
traction across the interface�fs. Herein,ufsk and t

fs
k denote the velocity respectively traction

of a rigid body k on the fluid–solid interface �
fs
k .

Remark 1 In Eqs. (1)–(2) governing the fluid field, all time derivatives follow the motion
of material points, i.e., are material derivatives d(·)

dt = ∂(·)
∂t + u · ∇(·). Besides, ∇(·) denotes

derivatives with respect to spatial coordinates.

Solid field

The solid field is assumed to consist of several mobile rigid bodies k each represented by
a sub-domain �s

k embedded in the fluid domain �f . Thus, the interface of a rigid body k
is �s

k = �
fs
k ∪

(⋃
k̂ �ss

k,k̂

)
with contacting rigid bodies k̂ , cf. Fig. 1. The kinematics of each

rigid body k are uniquely defined by three respectively six degrees of freedom in two- and
three-dimensional space, i.e., the position of the center of mass rsk and the orientationψs

k .
As a result, the equations of motion of an individual rigid body k are described by the
balance of linear and angular momentum

ms
k
d2rsk
dt2

= f fsk +
∑

k̂

f ssk,k̂ + ms
kbsk in �s

k , (6)

Isk
dωs

k
dt

= mfs
k +

∑

k̂

mss
k,k̂ in �s

k , (7)

withmassms
k andmassmoment of inertia Isk with respect to the center ofmass position rsk .

Herein, ωs
k denotes the angular velocity of a rigid body k , cf. Remark 2. Furthermore, f fsk

and mfs
k describe the resultant coupling force respectively torque acting on the fluid–

solid interface �
fs
k of rigid body k . Contacting rigid bodies k and k̂ exchange the resultant
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contact force f ss
k,k̂

respectively torquemss
k,k̂

at the solid-solid interface�ss
k,k̂
. Finally, the body

force bsk given per unit mass is contributing to the balance of linear momentum.

Remark 2 The orientation ψs
k is expressed by a (pseudo-)vector whose direction and

magnitude represent the axis and angle of rotation. Note that in general, the angular
velocity ωs

k of a rigid body k is different from the time derivative of the orientation ψs
k ,

i.e., ωs
k �= dψs

k/dt, due to the non-additivity of large rotations [29–32]. Direct evolution
of the orientationψs

k of a rigid body k requires a special class of time integration schemes,
so-called Lie group time integrators [33,34].

Thermal conduction

Thermal conduction in the combined fluid and solid domain � = �f ∪ �s in the absence
of heat sources or heat sinks (which are neglected herein for simplicity) is governed by
the heat equation

cφp
dT
dt

= 1
ρφ

∇(κφ∇T ) in � , (8)

with temperature T and heat flux q = −κφ∇T . The material parameters heat capacity cφp
and thermal conductivity κφ are in general different for fluid and solid field, and hence
for clarity are denoted by the index (·)φ with φ ∈ {f, s}. The heat equation (8) is subject to
the following initial condition

T = T0 in � at t = 0 (9)

with initial temperature T0. In addition, Dirichlet and Neumann boundary conditions are
required on the domain boundary � = ∂�

T = T̂ on �D and q = q̂ on �N , (10)

with prescribed boundary temperature T̂ and boundary heat flux q̂, where � = �D ∪ �N
and �D ∩ �N = ∅.

Reversible phase transition

Reversible phase transitions, i.e., melting and solidification, are considered between the
solid and the fluid field.Within this publication, solid material points that exceed a transi-
tion temperature Tt undergo a phase transition to a fluid material point and vice versa, cf.
Remark 3. Consequently, the shape of a rigid body k , i.e., its sub-domain �s

k , is changing
due to a loss or gain of material points resulting in a varying mass mk , center of mass
position rk , and mass moment of inertia Ik .

Remark 3 For the sake of simplicity, only temperature-independent parameters are con-
sidered herein, and latent heat is neglected. Latent heat could be included by an apparent
capacity scheme relying on an increased heat capacity cp within a finite temperature
interval [35] in a straightforward manner.

Remark 4 The proposed framework is general enough to model also chemically-induced
phase transitions based on a concentration field. For this purpose, the diffusion equation



Fuchs et al. Adv. Model. and Simul. in Eng. Sci.           (2021) 8:15 Page 6 of 33

dC/dt = 1/ρφ∇(Dφ∇C) with diffusivityDφ modeling the transport of a concentration C
is solved. Considering the similarity between the heat equation (8) and the diffusion equa-
tion, the latter can be discretized following a similar SPH discretization [36,37] as applied
for the heat equation. Similarly, modeling phase transitions a transition concentration Ct
is defined.

Numerical methods and parallel computational framework
This section presents the methods applied for discretization and numerical solution of
fluid–solid and contact interaction problems including thermo-mechanical coupling and
reversible phase transitions. The presented parallel computational framework is imple-
mented in the in-house parallel multiphysics research code BACI (Bavarian Advanced
Computational Initiative) [38] using the Message Passing Interface (MPI) for distributed-
memory parallel programming.

Spatial discretization via smoothed particle hydrodynamics

For the spatial discretization smoothed particle hydrodynamics (SPH) is used, allowing
for a straightforward particle-based evaluation of fluid–solid coupling conditions. In the
following, the basics of this method are recapitulated briefly.

Approximation of field quantities applying a smoothing kernel

The fundamental concept of SPH is based on the approximation of a field quantity f via a
smoothing operation and on the discretization of the domain�with discretization points,
so-called particles j, each occupying a volume Vj . Introducing a smoothing kernelW (r, h)
that fulfills certain consistency properties [36,39], cf. Remark 5, leads to an approximation
of the field quantity f based on summation of contributions from all particles j in the
domain �

f (r) ≈
∫

�

f (r′)W (|r − r′|, h)dr′ ≈
∑

j
Vjf (rj)W (|r − rj|, h) (11)

which includes a smoothing error and a discretization error [40].

Remark 5 The smoothing kernelW (r, h) is a monotonically decreasing, smooth function
that depends on a distance r and a smoothing length h. The smoothing length h together
with a scaling factor κ define the support radius rc = κh of the smoothing kernel. Com-
pact support, i.e., W (r, h) = 0 for r > rc, as well as positivity, i.e., W (r, h) ≥ 0 for r ≤ rc,
are typical properties of standard smoothing kernelsW (r, h). In addition, the normaliza-
tion property requires that

∫
�
W (|r − r′|, h)dr′ = 1. The Dirac delta function property

limh→0W (r, h) = δ(r) ensures an exact representation of a field quantity f in the limit
h → 0.

A straightforward approach in SPH to determine the gradient of a quantity f follows
directly by differentiation of (11) resulting in

∇f (r) ≈
∫

�

f (r′)∇W (|r − rj|, h) dr′ ≈
∑

j
Vjf (rj)∇W (|r − rj|, h) . (12)
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Note that this (simple) gradient approximation shows some particular disadvantages.
Hence, more advanced approximations for gradients are given in the literature [36] and
will also be applied in the following. In sum, the concept of SPH allows to reduce partial
differential equations to a system of coupled ordinary differential equations (with as many
equations as particles) that is solved in the domain �. Thereby, all field quantities are
evaluated at and associated with particle positions, meaning each particle carries its cor-
responding field quantities. Finally, in a post-processing step a continuous field quantity
f is recovered from the discrete quantities f (rj) of particles j in the domain � using the
approximation (11) and the commonly known Shepard filter

f̂ (r) ≈
∑

j Vjf (rj)W (|r − rj|, h)
∑

j VjW (|r − rj|, h) . (13)

Note that the denominator typically takes on values close to one inside the fluid domain
and is mainly relevant for boundary regions with reduced support due to a lack of neigh-
boring particles.

Remark 6 In the following, a quantity f evaluated for particle i at position ri is writ-
ten as fi = f (ri). The short notation Wij = W (rij , h) denotes the smoothing kernel W
evaluated for particle i at position ri with neighboring particle j at position rj , where
rij = |rij| = |ri − rj| is the absolute distance between particles i and j. The deriva-
tive of the smoothing kernel W with respect to the absolute distance rij is denoted by
∂W /∂rij = ∂W (rij , h)/∂rij .

Remark 7 Herein, a quintic spline smoothing kernel W (r, h) as defined in [21] with
smoothing lengthh and compact support of the smoothing kernelwith support radius rc =
κh and scaling factor κ = 3 is used.

Initial particle spacing

Within this contribution, the domain� is initially filled with particles located on a regular
grid with particle spacing 
x, thus in the d-dimensional space each particle initially
occupies an effective volume Veff = (
x)d . A particle in the fluid domain �f is called
a fluid particle i, whereas a particle in the solid domain �s

k of a rigid body k is called a
rigid particle r. It follows, that each rigid body is fully resolved being spatially discretized
as clusters of particles. Naturally, the choice of the particle spacing 
x influences the
accuracy of the interface representation between fluid and solid domain. The mass of a
particle is initially assigned using the reference density of the respective phase, i.e., ρf

0 for
the fluid phase and ρs

0 for the solid phase, and the effective volume Veff .

Remark 8 Within this work, the smoothing length h of the smoothing kernelW (r, h), cf.
Remark 7, is set equal to the initial particle spacing 
x. Consequently, in a convergence
analysis with decreasing particle spacing 
x the ratio 
x/h remains constant [40].

Parallelization via spatial decomposition of the domain

For the problems studied herein, an efficient parallel computational framework capable
of handling systems constituted of a large number of particles is required. This requires
addressing in particular two aspects, namely, an efficient particle neighbor pair detection,
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Fig. 2 A fluid–solid interaction problem consisting of a rigid body k with affiliated rigid particles r and
surrounding fluid particles i distributed over several processors p according to a spatial decomposition
approach

and a parallel load distribution strategy while keeping the communication overhead at an
acceptable level. In the literature, several approaches for parallel computational frame-
works utilizing particle-based methods have been proposed, e.g., [41–47]. In the present
work, a spatial decomposition approach with neighbor pair detection utilizing a combi-
nation of cell-linked lists and Verlet-lists based on [42] is applied. The general idea of the
spatial decomposition approach is briefly explained in the following, however, for detailed
information, the interested reader is referred to the original publication [42]. In addition,
the concept is extended herein to consider the motion of rigid bodies spatially discretized
as clusters of particles.
The evaluation of particle interactions in SPH requires knowledge of neighboring par-

ticles within a geometrically limited interaction distance, i.e., within the support radius rc
of the smoothing kernel. Thus, the computational domain is divided into several cubic
cells forming a uniform lattice, while each particle is uniquely assigned to one of those
cells according to its current spatial position, cf. Fig. 2. The size of the cells is chosen such
that neighboring particles are either located in the same cell or in adjacent cells, i.e., the
size of the cells is at least equal to the support radius rc of the smoothing kernel.
Following a spatial decomposition approach, the cells together with assigned particles

are distributed over all involved processors, i.e., forming so-called processor domains.
To keep the computational load balanced between all processors and to minimize the
communication overhead, cubic processor domains are defined such that each contains
(nearly) the same number of particles. The cells occupied by each processor are called
owned cells. On each processor the position of particles located in its processor domain,
i.e., the position of so-called owned particles, is evolved. This requires the evaluation of
interactions of owned particles with their neighboring particles. However, the correct
evaluation of particle interactions close to processor domain boundaries requires that
each processor has information not only about its owned particles but also about particles
in cells adjacent to its processor domain. To this end, each processor is provided full
information not only about its own domain but additionally about a layer of ghosted cells
(with ghosted particles) around its own domain. Keeping the information about ghosted
cells and particles continuously updated requires communication between processors.
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Remark 9 To exemplify the cost of communication overhead, consider a perfectly cubic
processor domain occupying no owned cells. Consequently, assuming one layer of ghosted
cells surrounding the processor domain, a total of ng = ( 3√no + 2)3 −no cells are ghosted.
That is, the communication overhead scales with the ratio ng/no of ghosted cells ng to
owned cells no. Furthermore, the (average) number of particles per cell, and, consequently,
also the communication overhead, scale with the ratio rc/
x of the support radius rc and
the initial particle spacing 
x.

As a consequence of the spatial decomposition approach, the affiliated rigid particles r
of a rigid body k might be distributed over several processors, cf. Fig. 2. However, note that
the balance of linear and angular momentum, cf. Eqs. (6)–(7), describing the motion of a
rigid body k are givenwith respect to the center ofmass position rsk . Thus, the evaluation of
mass quantities, i.e., massmk , center of mass position rsk , and mass moment of inertia Ik ,
as well as the evaluation of resultant force fk and torque mk acting on a rigid body k ,
requires special communication between all processors hosting rigid particles r belonging
to rigid body k and the single processor owning rigid body k .

Modeling fluid flow using weakly compressible SPH

For modeling fluid flow using SPH, several different formulations each with its own char-
acteristics and benefits can be derived. Here, the instationary Navier–Stokes equations (1)
and (2) are discretized by a weakly compressible approach [36,39,48]. This section gives
a brief overview of this formulation applied already in [18,49]. For ease of notation, in the
following the index (·)f denoting fluid quantities is dropped.

Density summation

The density of a particle i is determined via summation of the respective smoothing kernel
contributions of all neighboring particles j within the support radius rc

ρi = mi
∑

j
Wij (14)

with mass mi of particle i. This approach is typically denoted as density summation
and results in an exact conservation of mass in the fluid domain, which can be shown
in a straightforward manner considering the commonly applied normalization of the
smoothing kernel to unity. It shall be noted that the density field may alternatively be
obtained by discretization and integration of the mass continuity equation (1) [39].

Momentum equation

Themomentumequation (2) is discretized following [23,50] including a transport velocity
formulation to suppress the problem of tensile instability. It will be briefly recapitulated
in the following. The transport velocity formulation relies on a constant background
pressure pb that is applied to all particles and results in a contribution to the particle
accelerations for in general disordered particle distributions. However, these additional
acceleration contributions vanish for particle distributions fulfilling the partition of unity
of the smoothing kernel, thus fostering these desirable configurations. For the sake of
brevity, the definition of the modified advection velocity and the additional terms in the
momentum equation from the aforementioned transport velocity formulation are not
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discussed in the following and the reader is referred to the original publication [50].
Altogether, the acceleration ai = dui/dt of a particle i results from summation of all
acceleration contributions due to interaction with neighboring particles j and a body
force as

ai = 1
mi

∑

j
(V 2

i + V 2
j )

[

−p̃ij
∂W
∂rij

eij + η̃ij
uij
rij

∂W
∂rij

]

+ bi , (15)

with volume Vi = mi/ρi of particle i, unit vector eij = ri − rj/|ri − rj| = rij/rij , relative
velocity uij = ui − uj , and density-weighted inter-particle averaged pressure and inter-
particle averaged viscosity

p̃ij = ρjpi + ρipj
ρi + ρj

and η̃ij = 2ηiηj
ηi + ηj

. (16)

In the following, the acceleration contribution of a neighboring particle j to particle i is,
for ease of notation, denoted as aij , where ai = ∑

j aij + bi. The above given momentum
equation (15) exactly conserves linearmomentumdue to pairwise anti-symmetric particle
forces

miaij = −mjaji , (17)

which follows from the property ∂W /∂rij = ∂W /∂rji of the smoothing kernel.

Equation of state

Following a weakly compressible approach, the density ρi and pressure pi of a particle i
are linked via the equation of state

pi(ρi) = c2(ρi − ρ0) = p0
(

ρi
ρ0

− 1
)

(18)

with reference density ρ0, reference pressure p0 = ρ0c2 and artificial speed of sound c.
Note that this commonly applied approach can only capture deviations from the reference
pressure, i.e., pi(ρ0) = 0, and not the total pressure. To limit density fluctuations to an
acceptable level, while still avoiding too severe time step restrictions, cf. Eq. (41), strategies
are discussed in [21] how to choose a reasonable value for the artificial speed of sound c.
Accordingly, in this work the artificial speed of sound c is set allowing an average density
variation of approximately 1%.

Boundary and coupling conditions

Herein, both rigid wall boundary conditions as well as rigid body coupling conditions, are
modeled following [23]. In the former case, at least q = floor(rc/
x) layers of boundary
particles b are placed parallel to the fluid boundary �

f
D with a distance of 
x/2 outside

of the fluid domain �f in order to maintain full support of the smoothing kernel. In the
latter case, rigid particles r of rigid bodies k are considered, while naturally describing the
fluid–solid interface�fs. In both cases, a boundary particle b or a rigid particle r contribute
to the density summation (14) and to the momentum equation (15) evaluated for a fluid
particle i considered as neighboring particle j. The respective quantities of boundary
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Fig. 3 Orientation of a rigid body k with rigid particles r and their relative position rrk described via a unit
quaternion qk at different times

particles b respectively rigid particles r are extrapolated from the fluid field based on a
local force balance as described in [23]. Consequently, striving for conservation of linear
momentum, cf. Eq. (17), the force acting on a rigid particle r stemming from interaction
with fluid particle i, cf. Eq. (15), is given as

fri = −miair . (19)

Remark 10 The floor operator is defined by floor(x) := max {k ∈ Z | k ≤ x} and returns
the largest integer that is less than or equal to its argument x.

Modeling the motion of rigid bodies discretized by particles

Within this formulation, each rigid body k is composed of several rigid particles r that are
fixed relative to a rigid body frame, i.e., there is no relative motion among rigid particles of
a rigid body. Thus, the rigid particles of a rigid body are not evolved in time individually,
but follow the motion of the rigid body described by the balance of linear and angular
momentum, cf. Eqs. (6)–(7). As a consequence of the spatial decomposition approach,
special communication between all processors hosting rigid particles r of a rigid body k
in terms of the evaluation of mass quantities, or resultant forces and torques, is required.
For ease of notation, in the following the index (·)s denoting solid quantities is dropped.

Orientation of rigid bodies

The orientation ψk of a rigid body k , described by one respectively three degrees of free-
dom in two- and three-dimensional space, is previously introduced without explicitly
defining a specific parameterization of the underlying rotation, e.g., via Euler angles or
Rodriguez parameters. Moreover, as stated in Remark 2, explicit evolution of the ori-
entation ψk requires special Lie group time integrators. A straightforward approach to
overcome aforementioned issues is to describe the orientation of a rigid body via quater-
nion algebra, cf. Remark 12. Consequently, in the following it is assumed that at all times
the orientation ψk of a rigid body k can be uniquely described by a unit quaternion qk ,
cf. Fig. 3. Once a local rigid body frame is defined, this allows to transform the relative
position of rigid particles rrk , cf. Remark 11, from that rigid body frame to the reference
frame, e.g., a global cartesian system.
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Remark 11 Note that the relative position of rigid particles rrk expressed in the rigid body
frame is, in general, a known (and constant) quantity, that only needs to be updated in
case the center of mass position rk changes, i.e., due to phase transitions.

Remark 12 For the sake of brevity, the principals of quaternion algebra are not delineated
herein. It remains the definition of operator ◦ denoting quaternion multiplication as used
in the following.

Parallel evaluation ofmass-related quantities

In a first step, on each processor p the processor-wise mass pmk and center of mass
position prk of a rigid body k are computed as

pmk =
∑

r
mr and prk =

∑
r mrrr

∑
r mr

(20)

considering the mass mr and position rr of all affiliated rigid particles r being located in
the computational domain of processor p, cf. Fig. 4 for an illustration. Accordingly, the
processor-wise mass moment of inertia pIk of a rigid body k follows componentwise (in
index notation) as

pIk,ij =
∑

r

⎡

⎣Ir δij +
⎡

⎣
∑

q
(prk,q − rr,q)2δij − (prk,i − rr,i)(prk,j − rr,j)

⎤

⎦mr

⎤

⎦ (21)

with mass mr and mass moment of inertia Ir of a rigid particle r, cf. Remark 13, and
Kronecker delta δij , cf. Remark14.The computedprocessor-wise quantities, i.e.,mass pmk ,
center of mass position prk , and mass moment of inertia pIk , are communicated to the
owning processor of rigid body k . In a second step, on the owning processor the total
massmk and center of mass position rk of rigid body k are computed over all processors p
as

mk =
∑

p
pmk and rk =

∑
p pmkprk

∑
p pmk

(22)

making use of the received processor-wise quantities. Similar to (21) the mass moment of
inertia Ik of rigid body k follows componentwise (in index notation) as

Ik,ij =
∑

p

⎡

⎣pIk,ij +
⎡

⎣
∑

q
(rk,q − prk,q)2δij − (rk,i − prk,i)(rk,j − prk,j)

⎤

⎦ pmk

⎤

⎦ (23)

again considering the received processor-wise quantities. Finally, the determined global
quantities, i.e., mass mk , center of mass position rk , and mass moment of inertia Ik , are
communicated from the owning processor to all hosting processors of rigid body k .

Remark 13 The mass moment of inertia Ir of a rigid particle r with mass mr is com-
puted based on the effective volume Veff = (
x)d with initial particle spacing 
x.
In two-dimensional space (d = 2) assuming circular disk-shaped particles results in
Ir = 0.5mrreff with effective radius reff = 
x/

√
π . Accordingly, in three-dimensional

space (d = 3) assuming spherical-shaped particles results in Ir = 0.4mrreff with effective
radius reff = 3√0.75/π
x.
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Fig. 4 Parallel distribution of a rigid body k with rigid particles r over several processors p illustrating the
evaluation of massmk , center of mass position rk , and mass moment of inertia Ik via processor-wise
mass pmk , center of mass position prk , and mass moment of inertia pIk

Remark 14 The Kronecker delta δij used in Eqs. (21) and (23) to compute the mass

moments of inertia is defined by δij =
⎧
⎨

⎩

1 if i = j ,

0 otherwise.

Remark 15 The computation of themassmoment of inertia, cf. Eqs. (21) respectively (23),
is based on the Huygens-Steiner theorem, also called parallel axis theorem.

Parallel evaluation of resultant force and torque

To begin with, the resultant coupling and contact force acting on a rigid particle r of rigid
body k is given as

fr =
∑

i
fri +

∑

k̂

∑

r̂
frr̂ (24)

with coupling forces fri stemming from interaction with neighboring fluid particles i,
cf. Eq. (19), and contact forces frr̂ stemming from interaction with rigid particles r̂ of
contacting rigid bodies k̂ , cf. Eq. (27). Similar to the computationofmass-relatedquantities
as described previously, the resultant force fk and torque mk acting on a rigid body k
are determined considering the parallel distribution of the affiliated rigid particles r on
hosting processors p, cf. Fig. 4. Thus, in a first step the processor-wise resultant force pfk
and torque pmk acting on rigid body k are computed as

pfk =
∑

r
fr and pmk =

∑

r
rrk × fr (25)

with rrk = rr − rk while considering the resultant forces fr acting on all rigid particles r
being located in the computational domain of processor p. For correct computation of
the processor-wise resultant torque pmk the knowledge of the global center of mass
position rk is required on all processors. Finally, the computed processor-wise forces pfk
and torques pmk are communicated to the owning processor of rigid body k and summed
up to the global resultant force and torque acting on rigid body k

fk =
∑

p
pfk and mk =

∑

p
pmk . (26)
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Remark 16 In the case of a computation on a single processor, the evaluation of massmk ,
center of mass position rk , and mass moment of inertia Ik of a rigid body k follow directly
from Eqs. (20) and (21), while the resultant force fk and torque mk directly follow from
Eq. (25), in each case without the need for special communication.

Contact evaluation between neighboring rigid bodies

For the modeling of frictionless contact between neighboring rigid bodies k and k̂ , a
contact normal force law based on a spring-dashpot model, similar to [29], is employed.
Thecontact force is actingbetweenpairs of neighboring rigidparticles r and r̂ of contacting
rigid bodies, i.e., for distances rrr̂ < 
x with rrr̂ = |rrr̂ | = |rr − rr̂ |. Accordingly, the
contact force acting on a particle r of rigid body k due to contact with a particle r̂ of
neighboring rigid body k̂ is given as

frr̂ =
⎧
⎨

⎩

−
[
min

(
0, kc(rrr̂ − 
x) + dc(err̂ · urr̂)

)]
err̂ if rrr̂ < 
x ,

0 otherwise,
(27)

with unit vector err̂ = rrr̂/rrr̂ , stiffness constant kc, and damping constant dc. The min
operator in Eq. (27) ensures that only repulsive forces between the rigid particles are
considered, also known as tension cut-off.

Remark 17 Contact between a rigid body k and a rigid wall is modeled similar to Eq. (27)
considering rigid particles r of a rigid body k and boundary particles b of a discretized
rigid wall.

Remark 18 The applied contact evaluation between rigid bodies is for simplicity based
on a contact normal force law evaluated between rigid particles while neglecting fric-
tional effects. Generally, following a macroscopic approach of contact mechanics with
non-penetration constraint, the normal distance between the contacting bodies, typi-
cally determined via closest point projections, is the contact-relevant kinematic quantity.
Accordingly, the concept applied in this work, can be interpreted as amicroscale approach
based on a repulsive/steric interaction potential [51] defined between pairs of rigid par-
ticles of contacting rigid bodies. In the current work, this approach has been chosen for
reasons of simplicity and numerical robustness. An extension to a macroscale approach,
i.e., a normal distance-based contact interaction [12,52,53], is possible in a straightforward
manner. In addition, also a momentum-based energy tracking method [54] was recently
applied for collision modeling of fully resolved rigid bodies [55,56].

Discretization of the heat equation using SPH

Thermal conduction in the combined fluid and solid domain governed by the heat equa-
tion (8) is discretized using smoothed particle hydrodynamics following a formulation
proposed by Cleary and Monaghan [57]

cp,a
dTa
dt

= 1
ρa

∑

b
Vb

4κaκb
κa + κb

Tab
rab

∂W
∂rab

(28)

with volumeVb = mb/ρb of particle b and temperature differenceTab = Ta−Tb between
particle a and particle b. The discretization of the conductive term is especially suited for
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problems involving a different thermal conductivity among the fields [57]. In the equation
above, the index (·)φ with φ ∈ {f, s} for fluid and solid field is dropped for ease of notation.
Accordingly, the particles a and b may denote fluid particles i as well as rigid particles r,
respectively.

Modeling thermally driven reversible phase transitions

Due to the Lagrangian nature of SPH, each (material) particle carries its phase informa-
tion. This allows for direct evaluation of the discretized heat equation (28) for fluid and
rigid particles with corresponding phase-specific parameters of the particle a itself and of
neighboring particles b. Phase transitions in the form of melting of a rigid body occurs,
in case the temperature Tr of a rigid particle r exceeds the transition temperature Tt .
The former rigid particle r changes phase to become a fluid particle i. Conversely, phase
transitions in form of solidification occurs, in case the temperature Ti of a fluid particle i
falls below the transition temperature Tt and the former fluid particle i becomes a rigid
particle r.
Consequently, each time a rigid body k is subject to phase transition, its massmk , center

ofmass position rk , andmassmoment of inertia Ik are updated. In addition, the velocityuk
after phase transition is determined based on quantities prior to phase transition indicated
by index (·)′ as

uk = u′
k + ωk × (rrk − r′rk ) (29)

following rigid body motion with (unchanged) angular velocity ωk .

Time integration following a velocity-Verlet scheme

The discretized fluid and solid field are both integrated in time applying an explicit
velocity-Verlet time integration scheme in kick-drift-kick form, also denoted as leapfrog
scheme, that is of second order accuracy and reversible in timewhen dissipative effects are
absent [36]. Again, for ease of notation, in the following the indices (·)f and (·)s denoting
fluid respectively solid quantities are dropped. Altogether, for the fluid field the posi-
tions ri of fluid particles i are evolved in time, while for the solid field the center of mass
positions rk and the orientationsψk of all rigid bodies k are evolved in time. However, the
positions rr of rigid particles r are not evolved in time but directly follow the motion of
corresponding affiliated rigid bodies k .
In a first kick-step, the accelerations ani = (dui/dt)n, as determined in the previous time

step n, are used to compute the intermediate velocities

un+1/2
i = uni + 
t

2
ani (30)

of fluid particles i, where 
t is the time step size. Similar, for rigid bodies k the linear and
angular accelerations ank = (d2rk/dt2)n respectively αn

k = (dωk/dt)n are used to compute
the intermediate linear and angular velocities

un+1/2
k = unk + 
t

2
ank and ω

n+1/2
k = ωn

k + 
t
2

αn
k . (31)

In a drift-step, the positions (and orientations) of fluid particles i and rigid bodies k are
updated to time step n + 1 using the intermediate velocities. Accordingly, the positions
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of fluid particles i follow as

rn+1
i = rni + 
t un+1/2

i (32)

and the center of mass positions of rigid bodies k as

rn+1
k = rnk + 
t un+1/2

k . (33)

The orientations of rigid bodies k are updatedmaking use of quaternion algebra. First, the
angular orientation increments from time step n to time step n + 1 are determined using
the intermediate angular velocities of rigid bodies k following

φ
n,n+1
k = 
t ω

n+1/2
k . (34)

Next, the angular orientation increments are described by so-called transition quater-
nions qn,n+1

k . Finally, quaternion multiplication, cf. Remark 12, gives the updated orien-
tations of rigid bodies k at time step n + 1

qn+1
k = qn,n+1

k ◦ qnk . (35)

Once the updated orientations (and thus also the updated rigid body frames) are known,
the relative positions of rigid particles rn+1

rk can be transformed from the rigid body frame
to the reference frame. The velocities and the positions of rigid particles r are updated,
considering the underlying rigid body motion of the corresponding rigid bodies k , in
consistency with the applied time integration scheme following

un+1/2
r = un+1/2

k + ω
n+1/2
k × rn+1

rk and rn+1
r = rn+1

k + rn+1
rk . (36)

Using the positions rn+1
a and the intermediate velocities un+1/2

a of fluid and rigid par-
ticles a ∈ {i, r}, the densities ρn+1

i of fluid particles i are computed via Eq. (14). The
densities ρr of rigid particles r are not evolved and remain constant. The temperature
rates (dTa/dt)n+1 of fluid and rigid particles a are then updated on the basis of Eq. (28)
with the temperatures Tn

a as well as the positions rn+1
a and densities ρn+1

a . Finally, the
temperatures of fluid and rigid particles a are computed as

Tn+1
a = Tn

a + 
t
(
dTa
dt

)n+1
. (37)

The accelerations an+1
i of fluid particles i, cf. Eq. (15), and the forces fn+1

r acting on rigid
particles r, cf. Eq. (24), are concurrently computed using the positions rn+1

a , the interme-
diate velocities un+1/2

a , and the densities ρn+1
a of fluid and rigid particles a. Consequently,

the resultant forces fn+1
k and torques mn+1

k acting on rigid bodies k together with mass-
related quantities give the linear and angular accelerations an+1

k respectively αn+1
k , cf.

Eqs. (6) and (7). In a final kick-step, the velocities of fluid particles i at time step n+ 1 are
computed as

un+1
i = un+1/2

i + 
t
2

an+1
i , (38)
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while the linear and angular velocities of rigid bodies k are

un+1
k = un+1/2

k + 
t
2

an+1
k and ωn+1

k = ω
n+1/2
k + 
t

2
αn+1
k . (39)

Accordingly, the velocities of rigid particles r are determined following the motion of the
corresponding rigid bodies k to

un+1
r = un+1

k + ωn+1
k × rn+1

rk . (40)

To maintain stability of the time integration scheme, the time step size 
t is restricted
by the Courant–Friedrichs–Lewy (CFL) condition, the viscous condition, the body force
condition, the contact condition, and the conductivity condition, refer to [21,50,58,59]
for more details,


t ≤ min
{

0.25
h

c + |umax| , 0.125
h2

ν
, 0.25

√
h

|bmax| , 0.22
√
mr
kc

, 0.1
ρcph2

κ

}

,

(41)

with maximum fluid velocity umax and maximum body force bmax.

Numerical examples
The purpose of this section is to investigate the proposed numerical formulation for solv-
ing fluid–solid and contact interaction problems examining several numerical examples
in two and three dimensions involving multiple mobile rigid bodies, two-phase flow, and
reversible phase transitions. To begin with, several numerical examples of a single rigid
body in a fluid flow, considering different spatial discretizations, are studied and com-
pared to reference solutions. In a next step, two examples close to potential application
scenarios of the proposed formulation in the fields of engineering and biomechanics are
investigated. Finally, the capabilities of theproposedparallel computational framework are
demonstrated performing a strong scaling analysis. The parameter values in the numerical
examples, unless indicated otherwise, are given in a consistent set of units and presented
in non-dimensional form.

Spatial discretization of a rigid circular disk

In the following, a rigid circular disk of diameter D = 2.5 × 10−3 with density ρs =
1.0 × 103, motivated by two subsequent examples, is discretized with different values of
the initial particle spacing 
x. The mass ms and the mass moment of inertia I s (with
respect to the axis of symmetry) of the circular disk are computed with the proposed
formulation and shown in Fig. 5. With decreasing initial particle spacing 
x the values
for massms and mass moment of inertia I s converge to the analytical solution confirming
the proposed formulation. To illustrate, the resulting spatial discretizations of the circular
disk with rigid particles are shown in Fig. 6. Clearly, the approximation of the circular
shape of the disk is of better accuracy for decreasing initial particle spacing 
x. To keep
the computational effort at a feasible level, in the two subsequent examples the domain is
discretized with an initial particle spacing of 
x = 2.0 × 10−4 and 
x = 1.0 × 10−4.
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Fig. 5 Spatial discretization of a rigid circular disk: massms and mass moment of inertia Is of a rigid circular
disk for different values of the initial particle spacing 
x (solid line) compared to the analytical solution
(dashed line)

Fig. 6 Spatial discretization of a rigid circular disk: resulting spatial discretization of a rigid circular disk with
rigid particles for selected values of the initial particle spacing 
x

A rigid circular disk floating in a shear flow

The following numerical examples are concerned with the motion of a rigid circular disk
floating in a shear flow. First, the principal setup of the problem along with numerical
parameters is described, thereafter, two distinct cases are considered in detail. For valida-
tion, the results obtainedwith the proposed formulation are compared to [8] also applying
SPH to discretize the fluid and the solid field.
A rigid circular disk of diameterD = 2.5×10−3 with density ρs = 1.0×103 is allowed to

move freely in a rectangular channel of length L = 5.0×10−2 and heightH = 1.0×10−2,
cf. Fig. 7. The remainder of the channel is occupied by aNewtonian fluidwith density ρf =
1.0 × 103 and kinematic viscosity νf = 5.0 × 10−6. The bottom and top channel walls
move with velocity uw/2 in opposite direction inducing a shear flow in the channel. The
Reynolds number of the problem is given as Re = uwD2/4νf H [8,60] taking into account
the diameter of the circular disk D and the channel height H . At the left and right end of
the channel, periodic boundary conditions are applied, cf. Remark 19.
For the fluid phase, an artificial speed of sound c = 0.25 is chosen, resulting in a reference

pressure p0 = 62.5 of the weakly compressible model. The background pressure pb of the
transport velocity formulation is set equal to the reference pressure p0. The motion of the
bottom and top channel walls is modeled using moving boundary particles. The problem
is solved for different values of the initial particle spacing 
x for times t ∈ [0, 60.0] with
time step size 
t obeying respective conditions (41).

Remark 19 Imposing a periodic boundary condition in a specific spatial direction allows
for particle interaction evaluation across opposite domain borders. Moreover, particles
leaving the domain on one side are re-entering on the opposite side.
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Fig. 7 A rigid circular disk floating in a shear flow: geometry and boundary conditions of two different cases

Fig. 8 Migration of a floating rigid circular disk to the center line of a channel: vertical position ry and
horizontal velocity ux of the center of the floating circular disk in the channel computed with the proposed
formulation and an initial particle spacing of 
x = 2.0 × 10−4 (red dashed line) and 
x = 1.0 × 10−4 (black
solid line) compared to the reference solution [8] (crosses)

Case 1: Migration of a floating rigid circular disk to the center line of a channel

This case is based on studies [60,61] stating that a rigid circular disk floating in a shear
flow in a channel migrates to the center line of the channel independent of its initial
position and initial velocity. Herein, the rigid circular disk is initially at rest placed at
vertical position ry = 2.5 × 10−3 in the channel, cf. Fig. 7. The channel walls move in
opposite direction with a velocity magnitude of uw/2 = 0.01 resulting in the Reynolds
number Re = 0.625 of the problem.
The obtained vertical position ry and the horizontal velocity ux of the center of the

circular disk in the channel over time t are displayed in Fig. 8 for two different values of
the initial particle spacing 
x. The circular disk migrates to the center line of the channel
as expected, showing no significant difference between the results obtained with different
initial particle spacings
x. In addition, a comparison to the results of [8] shows very good
agreement for the dynamics of the solution.

Case 2: Interaction of a floating rigid circular disk with a fixed rigid circular disk

In the presence of a rigid circular disk that is fixed at the center line of the channel, a
rigid circular disk floating in a shear flow migrates to a specific position of equilibrium
independent of its initial position and velocity as stated in [62]. Herein, the fixed and the
floating rigid circular disks are initially placed on the center line of the channel at horizon-
tal position rx = ±3.75 × 10−3, cf. Fig. 7. The channel walls move in opposite direction
with a velocity magnitude of uw/2 = 0.012 resulting in the Reynolds number Re = 0.75
of the problem.
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Fig. 9 Interaction of a floating rigid circular disk with a fixed rigid circular disk: trajectory and horizontal
velocity ux of the center of the floating circular disk in the channel computed with the proposed formulation
and an initial particle spacing of 
x = 2.0 × 10−4 (red dashed line) and 
x = 1.0 × 10−4 (black solid line)
compared to the reference solution [8] (crosses)

Figure 9 shows the obtained trajectory, i.e., vertical position ry over horizontal posi-
tion rx, and horizontal velocity ux of the center of the floating circular disk in the channel
for two different values of the initial particle spacing 
x. The results obtained with initial
particle spacing
x = 1.0×10−4 are in good agreement to the reference solution [8].How-
ever, the results obtained with initial particle spacing 
x = 2.0× 10−4 show fluctuations
of the horizontal velocity ux, which is why also the trajectory deviates from the reference
solution [8]. This can be explained with disturbances of the density field due to relative
particle movement [21], that are more pronounced with a coarser spatial discretization,
i.e., with larger initial particle spacing 
x.

A rigid circular disk falling in a fluid column

A rigid circular disk of diameter D = 2.5 × 10−3 with density ρs = 1.25 × 103 is initially
at rest placed on the y-axis at vertical position ry = 1.0 × 10−2 in a closed rectangular
box of height H = 6.0 × 10−2 and width W = 2.0 × 10−2, cf. Fig. 10. The remainder
of the box is occupied by a Newtonian fluid with density ρf = 1.0 × 103 and kinematic
viscosity νf = 1.0 × 10−5. A gravitational acceleration of magnitude |g| = 9.81 shall act
on both the fluid and solid field in negative y-direction. Following [8] this is modeled
considering the buoyancy effect, i.e., body force bs = (ρs − ρf )/ρsg is acting on the solid
field while no body force bf = 0.0 is applied on the fluid field (each per unit mass). It
is worth noting that, naturally, it would also be possible to directly set the gravitational
acceleration for the fluid and solid field. For validation, the results obtained with the
proposed formulation are compared to [8] also applying SPH to discretize the fluid and
the solid field.
For the fluid phase, an artificial speed of sound c = 0.5 is chosen, resulting in a reference

pressure p0 = 250.0 of the weakly compressible model. The background pressure pb of
the transport velocity formulation is set equal to the reference pressure p0. The stiffness
and damping constant applied for contact evaluation are set to kc = 1.0 × 108 and
dc = 1.0 × 102. The walls of the box are modeled using boundary particles. The problem
is solved for different values of the initial particle spacing 
x for times t ∈ [0, 0.8] with
time step size 
t obeying respective conditions (41).
The obtained vertical velocity and horizontal position of the center of the circular disk

in the box over time t are displayed in Fig. 11 for two different values of the initial particle
spacing 
x compared to the reference solution [8]. The results obtained with different
initial particle spacing 
x show only minor differences. The terminal velocity of the rigid
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Fig. 10 A rigid circular disk falling in a fluid column: geometry and boundary conditions of the problem

Fig. 11 A rigid circular disk falling in a fluid column: vertical position ry and vertical velocity uy of the center
of the circular disk in the fluid column computed with the proposed formulation and an initial particle
spacing of 
x = 2.0 × 10−4 (red dashed line) and 
x = 1.0 × 10−4 (black solid line) compared to the
reference solution [8] (crosses)

circular disk is slightly smaller than given in the reference solution [8]. It shall be noted
that, in contrast to [8], contact of the rigid circular disk and the wall of the box is explicitly
considered. Consequently, the rigid circular disk comes at rest when approaching the
bottom wall of the box.

Melting and solidification of powder grains in a melt pool

In metal powder bed fusion additive manufacturing (PBFAM), structural components are
created utilizing a laser or electron beam tomelt and fusemetal powder, layer per layer, to
form the final part. PBFAM has the potential to enable new paradigms of product design,
manufacturing and supply chains. However, due to the complexity of PBFAM processes,
the interplay of process parameters is not completely understood, creating the need for
further research, amongst others in the field of computationalmelt poolmodeling [15,16].
For this purpose, an SPH formulation for thermo-capillary phase transition problems
with a focus on metal PBFAM melt pool modeling has recently been proposed [18]. For
simplicity, this and other state-of-the-art approaches [18–20] in the field consider powder
grains that are spatially fixed. In the real physical process, however, it is observed that,
depending on the processing conditions, melt evaporation and thereby induced vapor and
gas flows in the build chamber may result in powder grains entrainment and ejection, i.e.,
a considerable degree of material re-distribution during the melting process. On the one
hand, this effect considerably affects process stability and mechanisms of defect creation,
on the other hand, it can not be represented by state-of-the-art approaches restricted
to immobile powder grains [18–20]. In the following, a two- and a three-dimensional
example each with different geometry, boundary conditions, and material parameters
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are considered. The purpose of these examples is not to study PBFAM in detail but to
showcase the general applicability of the proposed formulation to capture the dynamics
of mobile powder grains undergoing temperature-induced phase transitions, i.e., melting
and solidification, while being exposed to gravitational acceleration and gas flow. To this
end, surface tension and wetting effects as well as the influence of evaporation-induced
recoil pressure, as discussed in [18], are neglected. The focus is set on the investigation of
highly dynamic motion and interaction of powder grains with each other, the liquid melt
phase and a surrounding gas phase, undergoing reversible phase transitions, i.e., melting
and solidification.

Powder grains exposed to a highly dynamic gas flow

This two-dimensional example is solely intended to demonstrate themodel capabilities for
this type of application, while keeping the overall example simple in this method-focused
contribution. For this reason, non-physical parameter values and boundary conditions are
chosen in the following.
A rectangular box is composed of two chambers, each with width 20.0 and height 12.0,

that are connected by an opening spanning the upper half of the box. An inlet and outlet
of width 3.0 are located at the top left and top right end of the box. Powder grains of a solid
metal phase (densityρs = 1.0, heat capacity csp = 1.0, thermal conductivityκs = 10.0)with
diameters between 2.5 and 4.4 are placed initially at rest inside the left chamber of the box.
The initial positions of the powder grains can, e.g., be obtained in a pre-processing step
based on the discrete element method (DEM) and a cohesive powder model [29,63]. The
remainder of the box is initially filled with a gas phase (Newtonian fluid, density ρg = 0.1,
kinematic viscosity νg = 100.0, heat capacity cgp = 0.01, thermal conductivity κg = 0.1).
The temperature is initialized to Ts

0 = 25.0 within the solid metal phase and to Tg
0 = 50.0

within the gas phase. In the upper half of the boxwalls the temperature is fixed to T̂ = 50.0
at all times. In the lower half of the boxwalls the temperature is set to T̂ = 100.0 until time
t ≤ 0.5, and to T̂ = 0.0 for time t > 0.5. Refer to Figs. 12 and 13 containing an illustration
of the initial configuration. Reversible phase transitions between solid metal phase and
liquid metal phase (Newtonian fluid, density ρl = 1.0, kinematic viscosity νl = 100.0,
heat capacity clp = 1.0, thermal conductivity κ l = 10.0) is assumed to occur at a transition
temperature of Tt = 50.0.With the goal to evoke drag forces acting on the powder grains,
for times t > 0.25 a parabolic inflow respectively outflow of the gas phase with mean
velocity 420.0 is prescribed at the inlet and outlet of the box. A gravitational acceleration
of magnitude |g| = 1.0× 104 is acting downwards, set as body force (per unit mass) of all
involved phases.
For both fluid phases (liquid metal and gas), the reference pressure of the weakly com-

pressible model is set to p0 = 16.0×106, and the background pressure pb of the transport
velocity formulation is set equal to the reference pressure p0. The stiffness and damping
constant applied for contact evaluation are set to kc = 1.0 × 108 and dc = 1.0 × 102.
The wall of the box is modeled using boundary particles. The inflow and outflow condi-
tions are modeled similar as described in [49]. The problem is solved with initial particle
spacing 
x = 0.1 for times t ∈ [0, 0.75] with a time step size of 
t = 0.625 × 10−5.
A time series of illustrations of the obtained results is given in Figs. 12 and 13. The solid

metal phase is visualized in gray color. The particles discretizing the liquid metal phase
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Fig. 12 Powder grains exposed to a highly dynamic gas flow: time series of the obtained results with
temperature field ranging from 0.0 (blue) to 100.0 (red)

Fig. 13 Powder grains exposed to a highly dynamic gas flow: time series of the obtained results with
magnitude of the velocity field ranging from 0.0 (blue) to 600.0 (red)
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are displayed in black color. In the background, the temperature respectively velocity
field of the combined liquid metal and gas phase are displayed. Thereto, both fields were
post-processed applying SPH approximation (13) and visualized by a color code. In Fig. 12
additionally the temperature of the walls is shown. First, the powder grains are heated and
gradually start melting into liquid metal where in close contact to the hot wall. Eventually,
after time t = 0.25, powder grains are subjected to the gas flow through the box. Some
(partiallymelted) powder grains are swept into the right chamberof thebox,wheremelting
after contact with the hot wall continues. A non-smooth and strongly distorted interface
topology between liquid metal and gas phase develops, especially in the right chamber
of the box, because surface tension and wetting effects are neglected. Finally, with the
temperature in the lower half of the box set to T̂ = 0.0 after time t = 0.5, the liquid metal
phase is cooled down drastically and eventually resolidifies.

Three-dimensional powdermelting setupwith representativematerial parameters

In this example, the focus is set on a three-dimensional setup while considering represen-
tativematerial parameters for stainless steel and the surrounding gas phase taken from [18]
with the purpose to demonstrate the general applicability of the proposed formulation for
metal PBFAM melt pool modeling. However, note that some characteristic phenomena
relevant for the latter, e.g., surface tension and wetting effects, are still neglected.
Powder grains of a solid metal phase (density ρs = 7430 kgm−3, heat capacity csp =

965 J kg−1 K−1, thermal conductivity κs = 35.95Wm−1 K−1) with diameters between
16µm and 20µm are placed initially at rest inside a cuboid box with dimensions of
50µm×50µm×30µm.The initial positions of the powder grains can, e.g., be obtained in
a pre-processing step based on the discrete elementmethod (DEM) and a cohesive powder
model [29,63]. The remainder of the box is initially filledwith a gas phase (Newtonianfluid,
density ρg = 74.3 kgm−3, dynamic viscosity ηg = 6.0e − 4 kgm−1s−1, heat capacity cgp =
10 J kg−1K−1, thermal conductivity κg = 2.6 × 10−2 Wm−1K−1). The temperature is
initialized toTs

0 = 500K andTg
0 = 500Kwithin the solidmetal phase and the gas phase. In

all boxwalls the temperature is set to T̂ = 1800K until time t ≤ 0.15ms, and to T̂ = 500K
for time t > 0.15ms. Refer to Fig. 14 containing an illustration of the initial configuration.
Reversible phase transitions between solidmetal phase and liquidmetal phase (Newtonian
fluid, density ρl = 7430 kgm−3, dynamic viscosity ηl = 6.0 × 10−3 kgm−1s−1, heat
capacity clp = 965 J kg−1K−1, thermal conductivity κ l = 35.95Wm−1K−1) is assumed
to occur at a transition temperature of Tt = 1700K. A gravitational acceleration of
magnitude |g| = 9.81ms−2 is acting downwards, set as body force (per unit mass) of all
involved phases.
For both fluid phases (liquid metal and gas), the reference pressure of the weakly com-

pressible model is set to p0 = 1.0 × 107 Nm−2 and the background pressure of the
transport velocity formulation to pb = 5p0. The stiffness and damping constant applied
for contact evaluation are set to kc = 1.0 kg s−2 and dc = 1.0 × kg s−1. The wall of the
box is modeled using boundary particles. The complete domain is discretized by par-
ticles with initial particle spacing 
x = 1.0µm resulting in a total of approximately
1.13×105 particles. The problem is solved for times t ∈ [0, 0.175]ms with a time step size
of 
t = 5.0 × 10−7ms.
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Fig. 14 Three-dimensional powder melting setup with representative material parameters: time series of the
obtained results with temperature field ranging from 1700 K (blue) to 1800 K (red)

A time series of illustrations of the obtained results is given in Fig. 14. The particles
discretizing the solid metal phase are displayed in gray color. The particles discretizing
the liquid metal phase are colored based on the temperature field with transition temper-
ature Tt = 1700K as lower value and temperature of the hot box walls T̂ = 1800K as
upper value. In the background, the temperature field of the combined liquid metal and
gas phase is post-processed applying SPH approximation (13) and visualized by a color
code until time t ≤ 0.15ms. The powder grains in close contact to the hot box walls are
heated and gradually start melting into liquid metal. Under the influence of gravity the
(partially melted) powder grains are gradually displacing the liquid metal. A non-smooth
and strongly distorted interface topology between the liquidmetal and gas phase develops.
This can be explained by the fact that surface tension and wetting effects are neglected in
this specific example. After time t = 0.15ms the temperature of the box walls is suddenly
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set to T̂ = 500K. As a consequence, the liquid metal close to the cool box walls rapidly
resolidifies.
In sum, both examples demonstrates that highly dynamic motion of arbitrarily-shaped

powder grains as relevant, e.g., for metal PBFAM melt pool modeling, can be captured
along with melting and solidification by the proposed formulation in a robust manner.
Consequently, the proposed formulation can be recommended as a useful extension of the
SPH formulation for mesoscale melt pool modeling [18], or other current state-of-the-art
approaches, e.g., [19,20], allowing for more detailed studies of PBFAM processes.

Gastric disintegration of food boluses

Examination of gastric fluid mechanics plays an important role for modeling digestion
of food in the human stomach. The digesta are characterized by a multiphasic nature
consisting of fluid (gastric juice and chyme) and solid (food boluses) phases [17]. Intra-
gastric fluid motion is driven by the propagation of so-called antral contraction waves
(ACWs), i.e., circular constrictions of the gastric wall due to smooth muscle contrac-
tions [64]. The ACWs are initiated at the pacemaker region of the stomach and travel
along the greater curvature towards the pylorus both mixing and grinding the digesta.
Concurrently, absorption of gastric juice fosters chemical and mechanical breakdown of
food boluses into chyme [65]. At low viscosity, i.e., following intragastric dilution of the
digesta with gastric juice, retropulsive jet-like fluid motion between the ACWs can be
observed [66–68].
This example aims to demonstrate the capability of the proposed formulation to repli-

cate typical gastric flowpatterns including phase transitions. As compared to this complex
application scenario, the configuration of the example is kept simple to focus on the prin-
cipal effects. Consequently, non-physiological parameter values and boundary conditions
are applied. Consider a rectangular box of width 40.0 and height 16.0 (coordinate system
in the center) with a mobile constriction. A total of 60 food boluses (density ρs = 1.0,
diffusivityDs = 0.25), represented by mobile rigid bodies with diameters between 1.6 and
2.8, are placed at random positions inside the box. The remainder of the box is initially
filledwith gastric juice (Newtonian fluid, density ρg = 1.0, kinematic viscosity νg = 100.0,
diffusivity Dg = 1.0). Both the food boluses and the gastric juice are initially at rest. The
initial configuration of the example is contained in Fig. 15. Over time, food boluses dis-
integrate into chyme (Newtonian fluid, density ρc = 1.0, kinematic viscosity νc = 200.0,
diffusivity Dc = 0.25). Herein, this is modeled considering the transport of a concentra-
tionC within the food boluses and chyme, resembling some kind of moisture penetration,
by solving a diffusion equation, cf. Remark 4. Accordingly, the concentration within the
food boluses is initialized with C0 = 0.0, while the concentration within the gastric juice
is fixed to Ĉ = 1.0 at all times. Phase transitions from food boluses to chyme is assumed to
occur at a transition concentration of Ct = 0.8. The propagation of an ACW is modeled
by the movement of the mobile constriction in the box with a time dependent horizontal
velocity of −14.5π sin(π t) from horizontal position 14.5 to −14.5, cf. Fig. 15.
For both fluid phases (gastric juice and chyme), an artificial speed of sound c = 1.0×103

is chosen, resulting in a reference pressure p0 = 1.0 × 106 of the weakly compressible
model, with background pressure of the transport velocity formulation set to pb = 5p0.
The stiffness and damping constant applied for contact evaluation are set to kc = 1.0×108
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Fig. 15 Gastric disintegration of food boluses: time series of the obtained results with magnitude of the
velocity field ranging from 0.0 (blue) to 120.0 (red)

and dc = 1.0 × 102. The wall of the box and the mobile constriction are modeled using
(moving) boundary particles. The problem is solved with initial particle spacing 
x = 0.1
for times t ∈ [0, 1.0] with a time step size of 
t = 1.25 × 10−5.
Figure 15 shows a time series of illustrations of the obtained results. The food boluses are

visualized in gray color. The particles discretizing the chyme are displayed in black color.
In the background, the velocity field of both gastric juice and chyme is post-processed
applying SPH approximation (13) and visualized by a color code. Clearly, the typical
retropulsive jet-like fluid motion induced by the moving constriction can be observed. As
a consequence, the food boluses are entrained with the fluid flow through the opening
while coming into contactwith eachother.At the same time, disintegrationof foodboluses
into chyme gradually takes place. After time t = 0.875 some food boluses are completely
dissolved. A detailed view of the region at the mobile constriction is given in Fig. 16 for
selected points in time. Here, the particles discretizing the food boluses and the chyme
are colored based on the concentration field, for distinction, utilizing two different color
maps with transition concentration Ct as upper respectively lower value. A progressive
mixing of gastric juice and chyme can be observed primarily driven by the fluid motion.
Note that the main purpose of this example is to show the robustness of the proposed

formulation in the context of highly dynamic fluid flow and phase transitions, e.g., as
occurring in the form of retropulsive jet-like fluid motion during digestion of food in
the human stomach. For the sake of simplicity, non-physiological parameter values are
applied. Amongst others, the time scales of ACW propagation and disintegration of food
boluses are in a mismatch. In addition, the employed phenomenological digestion model
does not explicitly resolve the influence of chemical and mechanical breakdown taking
place in reality. In conclusion, this example demonstrates that typical gastric flow patterns
including phase transitions are fully captured in a stable and robust manner.
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Fig. 16 Gastric disintegration of food boluses: detailed view of region at the mobile constriction for selected
points in time. The concentration C is ranging from 0.0 (black) to Ct = 0.8 (white) within the food boluses and
from Ct = 0.8 (blue) to 1.0 (red) within the chyme. In the background, the magnitude of the velocity field is
ranging from 0.0 (blue) to 120.0 (red)

Strong scaling analysis of parallel computational framework

Thepurpose of this example is to demonstrate the capability and efficiency of the proposed
parallel computational framework in handling systems constituted of a large number of
particles. To this end, a three-dimensional example consisting of a total of approximately
3.79× 106 particles is examined on two different parallel systems. Conclusions are drawn
concerning the parallel behavior of the parallel computational framework in three dimen-
sions.
A total of 216 spherical-shaped mobile rigid bodies with diameter D = 2.5 and den-

sity ρs = 10.0 are placed on a regular grid in a cubic box of edge length L = 30.0. The rigid
bodies are initially at rest and not in contact with each other or the walls of the box. The
remainder of the box is occupied by aNewtonian fluid initially at restwith densityρf = 1.0
and kinematic viscosity νf = 1.0. A gravitational acceleration of magnitude |g| = 1.0 is
acting in downward direction, i.e., the body forces (per unit mass) of fluid and solid field
are given to bf = g and bs = g.
For the fluid phase, an artificial speed of sound c = 50.0 is chosen, resulting in a

reference pressure p0 = 2.5 × 103 of the weakly compressible model, with background
pressure pb of the transport velocity formulation set equal to the reference pressure p0.
The stiffness and damping constant applied for contact evaluation are set to kc = 1.0×103

and dc = 1.0×102. Thewall of the box ismodeled using boundary particles. The complete
domain is discretized by particles with initial particle spacing
x = 0.2 resulting in a total
of approximately 3.79 × 106 particles, thereof 3.15 × 106 fluid particles, 2.20 × 105 rigid
particles, and 4.21×105 boundary particles. Following a spatial decomposition approach,
the computational domain is divided into 48 × 48 × 48 cubic cells of edge length 0.65
resulting in approximately 34particles per cell. Theproblem is solved for times t ∈ [0, 30.0]
with a time step size of 
t = 1.0 × 10−3.
For the purposes of illustration, the spherical-shaped rigid bodies within the box are

shown in Fig. 17 for the initial setup at t = 0.0 and later points in time. In addition, the
velocity field of the surrounding fluid is post-processed applying SPH approximation (13)
and visualized by a color codewith opacity. The rigid bodies are falling freely in the viscous
fluid under gravity due to density ratio ρs/ρf = 10.0 until contact with the bottom wall
of the box occurs, as first observed after t ≈ 2.5, or with neighboring rigid bodies, as first
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Fig. 17 Strong scaling analysis of parallel computational framework: position of spherical-shaped rigid
bodies within the box for different points in time with magnitude of the velocity field ranging from 0.0 (blue)
to 1.25 (red)

Fig. 18 Strong scaling analysis of parallel computational framework: solver time per time step (left) and
parallel efficiency given in percent of linear scaling (right) for a three-dimensional problem consisting of
approximately 3.79 × 106 particles on up to 768 cores

observed after t ≈ 5.0. The rigid bodies begin piling up at the bottom wall of the box and
are nearly at rest at t = 30.0.
To showcase the capability and efficiency of the parallel computational framework, a

strong scaling analysis is performed utilizing two different parallel systems: The first one
consisting of 32 nodes with 2 × 12 cores (Intel Xeon E5-2680 v3 Haswell, 2.5 GHz) and
the second one consisting of 8 nodes with 2 × 8 cores (Intel Xeon E5-2630 v3 Haswell,
2.4 GHz). The parallel behavior of the proposed computational framework is given in
Fig. 18, illustrating the obtained solver time per time step and the parallel efficiency given
in percent of linear scaling. The parallel efficiency is computed as t1/(n · tn) · 100%, where
t1 and tn are the times to solve the problem on one node respectively n nodes.
The parallel computational framework scales almost linearly on both parallel systems

for up to 128 cores respectively 192 cores. In this regime a parallel efficiency of more than
60% can be observed. For larger numbers of cores, the scalability deteriorates and the
parallel efficiency drops to under 50%. This can be explained with an increasing commu-
nication overhead, cf. Remark 9. Comparable results of a strong scaling analysis for an SPH
implementation are given, e.g., in [45] (rc/
x = 2.5) and [69] (rc/
x = 2.4), however,
in contrast to this example (rc/
x = 3.0) with a smaller ratio of the support radius rc
and the initial particle spacing 
x, resulting in a lower influence on the communication
overhead, cf. Remark 9. As a conclusion one can state that the parallel computational
framework is capable of efficiently solving systems constituted of a large number of parti-
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cles in three dimensions on multiple cores. Looking at the parallel behavior, the obtained
results confirm that the proposed frameworkmeets all requirements necessary for detailed
and accordingly computationally expensive studies.

Conclusion
In this work, an approach for fluid–solid and contact interaction problems including
thermo-mechanical coupling and reversible phase transitions is presented. All fields are
spatially discretized using smoothed particle hydrodynamics (SPH). Being a mesh-free
discretization scheme, SPH is, compared to mesh-based methods, especially suitable in
the context of continually changing interface topologies and dynamic phase transitions by
avoiding additionalmethodological and computational effort to capture such phenomena.
A detailed concept for the parallelization of the computational framework, especially for
an efficient evaluation of rigid body motion, is an essential part of this work.
The accuracy and robustness of the proposed formulation are demonstrated by several

numerical examples studying a single rigid body in fluid flow. The obtained numerical
results are in very good agreement with the literature. Also two complex examples close
to potential applications scenarios in the fields of engineering and biomechanics were
studied. First, motivated by metal PBFAMmelt pool modeling, melting and solidification
of powder grains subject to highly dynamic fluid motion was simulated. Second, inspired
by multiphysics modeling of the human stomach, gastric disintegration of food boluses is
considered. Both examples confirm that highly dynamicmotion of arbitrarily-shaped rigid
bodies embedded in a complex fluid flow and including reversible phase transitions can be
captured by the proposed framework in a stable and robust manner. Finally, the parallel
computing abilities of the proposed computational framework were demonstrated by a
strong scaling analysis of a three-dimensional example with 3.79× 106 particles revealing
a parallel efficiency of more than 60% on up to 192 cores.
To the best of the authors’ knowledge, the proposed parallel computational framework

is the first of its kind modeling rigid body motion while simultaneously considering ther-
mal conduction, reversible phase transitions, andmultiple (liquid and gas) phases. For the
sake of simplicity, some characteristic phenomena for thermo-capillary flow and, espe-
cially, for metal PBFAMmelt pool modeling are not yet addressed in this work, however,
straightforward to include considering the authors’ previous work. Besides, the applied
contact evaluation between rigid bodies is based on a contact normal force law evaluated
between rigid particles while neglecting frictional and adhesive effects. An extension to
a more sophisticated contact evaluation is part of ongoing research. In summary, the
proposed formulation has the ability to accurately model a host of complex multiphysics
problems, and it can thus be expected to become a valuable tool for detailed studies in
engineering, e.g., metal additive manufacturing, and biomechanics, e.g., digestion of food
in the human stomach.
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