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Zusammenfassung

Polarcodes sind die ersten nachweislich kapazitätserreichbar Codes für binäre diskrete
gedächtnislose Kanäle (B-DMCs) und haben aufgrund ihrer geringen Codierungs- und
Decodierungskomplexität beträchtliche akademische und industrielle Aufmerksamkeit er-
halten. Der 5G Mobilfunk Standard implementiert Polarcodes als eines seiner Kanal-
codierungsschemata. Diese Arbeit untersucht Decodieralgorithmen, Ratenanpassung,
Kanalschätzung und Modulationen höherer Ordnung für Polarcodes.
Für die Dekodierung wird ein komplexitätsadaptiver Suchalgorithmus vorgeschlagen, der

als Successive-Cancelling-Ordered-Search (SCOS) bezeichnet wird und eine Maximum-
Likelihood (ML)-Dekodierung implementiert. Vergleiche mit existierenden Dekodierern
zeigen, dass SCOS eine geringere Komplexität und eine bessere Zuverlässigkeit aufweist
und robuster gegenüber Änderungen der Kanalparameter ist. Einfache Modifikatio-
nen des Algorithmus begrenzen Komplexität des Worst Case mit geringem Leistung-
seinbußen. Für die Ratenanpassung wird eine Erweiterung der plarcodes mit variabler
Länge (VLPE) eingeführt, welche auf dynamischen eingefrorenen Bits als ein hybrides
automatisches Wiederholungsanfragesystem basiert. Numerische Ergebnisse zeigen, dass
die von der VLPE erzeugten Polarcodes ähnlich wie klassische Polarcodes funktionieren.
Schließlich wird für Block-Fading-Kanäle ein Kanalschätzungsschema vorgeschlagen, das
die Codebeschränkungen der eingefrorenen Bits verwendet. Dieses Schema wird für die
zweistufige polarcodierte Übertragung (PCT) ohne Pilotsymbole verwendet, um Kanal
und Nachricht gemeinsam zu schätzen. Numerische Ergebnisse zeigen, dass PCT Übertra-
gungsschemen mit Pilotsymbolen und ähnlicher Komplexität deutlich übertrifft und sich
der Leistung eines kohärenten Empfängers annähert.
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Abstract

Polar codes are the first provably capacity-achieving codes for binary-input discrete mem-
oryless channels (B-DMCs) and have attracted considerable attention in academia and
industry due to their low encoding and decoding complexity. The 5-th generation wireless
system (5G) standardized polar codes as one of its channel coding schemes. This thesis
investigates decoding algorithms, rate adaptation, channel estimation, and higher-order
modulation for polar codes.
For decoding, a complexity-adaptive tree search algorithm called successive cancellation

ordered search (SCOS) is proposed that implements maximum-likelihood (ML) decoding.
Comparisons with existing decoders show that SCOS has lower complexity and better re-
liability, and is more robust to changes in the channel parameters. Simple modifications
to the algorithm limit the worst-case complexity with only small degradations in perfor-
mance. For rate adaptation, a variable-length polar extension (VLPE) based on dynamic
frozen bits is introduced as a hybrid automatic repeat request scheme. Numerical results
show that the polar codes generated by the VLPE perform similar to classic polar codes.
Finally, for block fading channels a channel estimation scheme is proposed that uses the
code constraints imposed by the frozen bits. This scheme is used for a pilot-free two-stage
polar-coded transmission (PCT) to jointly estimate the channel and message. Numerical
results show that PCT significantly outperforms pilot-assisted transmission with a similar
complexity and approaches the performance of a coherent receiver.
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Introduction

Shannon provided the blueprint for digital communications in his landmark work [99].
However, Shannon’s proof that reliable communication is possible over noisy channels was
based on random coding that does not specify a good code with low decoding complexity.
Algebraic coding dominated the first decades of coding theory. Research focused on

linear codes with good algebraic properties, e.g., large minimum Hamming distance. Im-
portant examples include Golay [39], Hamming [40], Reed-Muller (RM) [77,84], and Reed-
Solomon (RS) [85] codes. The year 1993 saw the announcement of turbo codes with
iterative decoding [9,10] that achieve near-Shannon-limit performance with reasonable de-
coding complexity. Shortly thereafter, low-density parity-check (LDPC) codes [36,37] were
rediscovered [63,100] that also have a low complexity iterative decoder.
Polar codes were proposed in [5, 101] and Arıkan proved in [5] that they achieve the

capacity of binary-input discrete memoryless channels (B-DMCs) asymptotically in the
code length with low encoding and decoding complexity. The origin of polar codes stems
from the computational cutoff rate of channels [4]. Consider two uses of a B-DMC pY1|X1 =
pY2|X2 = pY |X . The simple linear transform X1 = U1 + U2, X2 = U2 converts the original
channel to two (virtual) bit channels pY1Y2|U1 and pY1Y2U1|U2 with a larger average cutoff
rate than the original channel. By recursively repeating the transform, the capacity of the
bit channels polarizes to either zero or one as the code length tends to infinity. Moreover,
the proportion of virtual channels with capacity close to one converges to the capacity of
the original channel. Arıkan called this phenomenon channel polarization.
This thesis focuses on three problems and applications of polar codes:

. Low complexity decoding of polar (and polar-like) codes.
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. Retransmission protocols of polar coded communication systems.

. Channel estimation that exploits the imperfection of channel polarization.

The “core” of the thesis is Chapters 4-6 that introduce most of the findings and contri-
butions. The thesis is structured as follows:

. Chapter 2 describes notation, reviews information theory, and provides basic tools
for subsequent chapters.

. Chapter 3 reviews polar coding from both theoretical and practical points of view.
We start with the basic linear transform and use it to develop the channel polariza-
tion phenomenon. We then consider practical decoding schemes, code design, rate
adaptation and higher-order modulation.

. Chapter 4 introduces a complexity-adaptive tree search decoding algorithm for polar
(and polar-like) codes that implements maximum-likelihood (ML) decoding by using
a successive decoding schedule. We provide a complexity analysis and compare with
existing decoders.

. Chapter 5 deals with retransmission protocols with polar coding. A variable-length
retransmission scheme based on dynamic frozen bits is proposed. This scheme is
extended to higher-order modulation.

. Chapter 6 discusses polar coding over block fading channels. We propose a channel
estimation method by using the code constraints imposed by the frozen bits. We
further introduce a pilot-free two-stage polar-coded transmission scheme to jointly
estimate the channel state and message.

. Chapter 7 concludes the thesis by summarizing the main contributions of each chap-
ter.

. Appendix A provides contributions on outer code design and non-binary kernels.



2
Preliminaries

This chapter introduces notation and information theory for channel coding. Section 2.1
specifies set, probability, and information theory notation. Section 2.2 describes a com-
munication model for channel coding and modulation. Section 2.3 reviews the capacity of
discrete and additive white Gaussian noise (AWGN) channels. Finally, Section 2.4 reviews
log-likelihood ratio (LLR) computation.

2.1. Notation

Sets and Numbers

Sets are generally written as calligraphic letters, e.g., X , F or A. The cardinality of X is
|X |. A∪B and A∩B denote the union and intersection of A and B, respectively. The set
difference of A and B is written as A \ B.

The sets of natural, real, and complex numbers are written as N, R, and C, respectively.
For N, we write [k] = {i : i ∈ N, 1 ≤ i ≤ k}. For R, we write x ∈ [a, b] and x ∈ [a, b) for
the intervals a ≤ x ≤ b and a ≤ x < b, respectively. The notation d·e and b·c refers to
the ceiling and floor functions, respectively. For C, the imaginary unit is j. The operators
<(·), =(·), | · | and (·)∗ return the real part, the imaginary part, the magnitude and the
conjugate of a complex number, respectively.
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Vectors and Matrices

Row vectors are written as xn = x = (x1, x2, . . . , xn). The all-zeros row vector of dimension
n is 0 = 0n. The i-th entry of x is xi and we write xji = (xi, . . . , xj). If j < i then xji
is void. We write xA for the row vector formed by the ordered elements with indices in
A. A matrix is written as X and the all-zeros matrix as 0, where we reuse notation. The
transpose and conjugate transpose of X are XT and XH, respectively.
x denotes the bit-flipped version of a binary scalar x. The notation xi refers to the

element-wise bit-flipped version of a vector xi with binary entries. x⊕ y denotes the XOR
of two binary scalars. The element-wise XOR of two binary vectors is written as xn ⊕ yn.

Probability

Pr (E) is the probability of event E . The probability of E1 conditioned on E2 with Pr (E2) > 0
is Pr (E1|E2) = Pr (E1 ∩ E2) /Pr (E2).
A random variable (RV) is written with an uppercase letter such as X. A realization

of X is written with the corresponding lowercase letter x. A vector of RVs is written as
Xn = X = (X1, X2, . . . , Xn).1 The probability mass function (PMF) of a discrete RV X

evaluated at x is

PX(x) , Pr (X = x) . (2.1)

For continuous RVs with a density, the probability density function (PDF) evaluated at x
is pX(x). The support sets are

supp (PX) = {x : PX(x) > 0} (2.2)
supp (pX) = {x : pX(x) > 0} . (2.3)

The expectation value of a real-valued function f(·) of a discrete RV X is

E [f (X)] =
∑

x∈supp(PX)
f (x)PX (x) . (2.4)

For a continuous RV X, we have

E [f (X)] =
∫
x∈supp(pX)

f (x) pX (x) dx. (2.5)

1The dimension of a vector is denoted as a superscript, if it is important, i.e., xn = x, Xn = X.
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The variance of a real-valued X is

Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 . (2.6)

The continuous RV X is Gaussian if it has the density

pX (x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , x ∈ R (2.7)

where µ = E [X] is the mean and σ2 = Var [X] is the variance. We write real Gaussian
RVs as X ∼ N (µ, σ2). Similarly, we write X ∼ CN (µ, 2σ2) for a complex-valued RV X

whose real and imaginary parts are independent and Gaussian with means <(µ) and =(µ),
respectively, and that each have variance σ2, i.e., we have

< (X) ∼ N
(
<(µ), σ2

)
= (X) ∼ N

(
=(µ), σ2

)
pX(a+ bj) = p<(X)(a) · p=(X)(b), ∀a, b ∈ R.

(2.8)

We write X ∼ U (X ) if X is uniformly distributed on X . For example, X ∼ U ([a, b)) is
a real-valued RV X that is uniformly distributed on [a, b), i.e., we have

pX (x) = 1
b− a

, a ≤ x < b. (2.9)

Similarly, for discrete and finite X the notation X ∼ U (X ) means

PX (x) = 1
|X |

, x ∈ X . (2.10)

Information Theory

Consider discrete X and Y . The entropy of X is

H (X) = E [− log2 PX(X)] =
∑

x∈supp(PX)
−PX(x) log2 PX(x). (2.11)

The joint entropy of X and Y is

H (XY ) = E [− log2 PXY (XY )] =
∑

xy∈supp(PXY )
−PXY (xy) log2 PXY (xy). (2.12)
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Source
wk

/
Encoder
fenc(·)

cn

/
Modulator
fmod(·)

xnc

/

Channel

ync

/
Demodulator
fdemod(·)

Decoder
fdec(·)

ŵk

/Sink

Transmitter

Receiver

Figure 2.1.: A discrete-time coded modulation model.

The conditional entropy of X given Y is

H (X|Y ) = E
[
− log2 PX|Y (X|Y )

]
=

∑
xy∈supp(PXY )

−PXY (xy) log2 PX|Y (x|y). (2.13)

The mutual information of X and Y is

I (X;Y ) = H (X)−H (X|Y ) = H (Y )−H (Y |X) . (2.14)

For a continuous RV X, the differential entropy is

h (X) = E [− log2 (pX(X))] = −
∫
x∈supp(PX)

pX(x) log2 pX(x)dx. (2.15)

Other information-theoretic quantities for continuous RVs can be formulated in terms of
the differential entropy, as done above for discrete RVs.

2.2. Communication Model

The coded modulation model described in [66] and shown in Figure 2.1 is widely recognized
as a fundamental model of digital communications. We consider discrete-time block-based
transmission, i.e., we treat continuous-time waveforms as part of a channel.
The model has five main parts:

. The source puts out a string wk of symbols called the message. We consider a binary
symmetric source (BSS), i.e., wk has entries that are independent and identically
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distributed (i.i.d.) with a uniform distribution on {0, 1}, i.e., we have

PWk

(
wk
)

=
k∏
i=1

PWi
(wi)

PWi
(wi) = PW (w) , i ∈ [k]

PW (0) = PW (1) = 0.5.

(2.16)

. The transmitter consists of an encoder and a modulator. We consider an (n, k) bi-
nary linear encoder, where n and k are the code length and dimension, respectively.
The code rate is R = k/n. The encoder fenc(·) associates each message wk with a
codeword cn of the codebook C, where |C| = 2k. The modulator fmod(·) takes the
codeword cn as input and converts it to a sequence of length nc with entries taken
from a constellation X .

. The string xnc of modulated signal points is transmitted over a channel pY nc |Xnc and
the receiver sees ync .

. The receiver consists of a demodulator and a decoder. The demodulator fdemod(·)
converts ync to soft (or hard) information. The decoder fdec(·) has the task to estimate
the message. Depending on the receiver criteria, the demodulator and the decoder
can operate separately or jointly.

. The decoded message ŵk is sent to the sink.

We are interested in three properties of a transmission system:

. Transmission rate: The rate is measured by a so-called spectral efficiency (SE)2 in
bits per channel use (bpcu):

SE , number of transmitted bits
number of channel uses . (2.17)

For example, the SE of the model in Figure 2.1 is given by

SE = k

nc
bpcu. (2.18)

. Reliability: We measure reliability by the block error probability defined as

block error probability , Pr
(
Ŵ k 6= W k

)
. (2.19)

2The terminology is based on the assumption that we have a bandlimited linear channel with “sinc”
pulses and Nyquist-rate signaling.
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. Power efficiency: The average transmission power per channel use is

Es = E
[
|X|2

]
. (2.20)

2.3. Channel Capacity

The channel capacity [99] specifies the supremum of rates for which one can communicate
reliably over a communication channel. Shannon developed the simple-looking capacity
formula

C = max
X

I (X;Y ) (2.21)

where X and Y are the channel input and output, respectively.
We consider only memoryless channels, i.e., for discrete inputs and outputs we have

PYi|XiY i−1

(
yi
∣∣∣xiyi−1

)
= PYi|Xi (yi |xi ) , i ∈ [nc] (2.22)

and similarly for continuous outputs. The memoryless channel is time-invariant if PYi|Xi =
PY |X for all i. On the other hand, if we repeatedly use length-L blocks of a discrete
memoryless channel then the capacity is

C = 1
L

max
P
XL

I
(
XL;Y L

)
= 1
L

L∑
i=1

max
PXi

I (Xi;Yi) . (2.23)

For example, a binary erasure channel (BEC) has X = {0, 1}, Y = {0, 1, e}, and the
transition probabilities PY |X (0|0) = PY |X (1|1) = 1− p

PY |X (e|0) = PY |X (e|1) = p
(2.24)

where p is the erasure probability. A uniform input distribution gives

C = 1− p. (2.25)

For continuous outputs, a symmetric binary-input channel with continuous outputs has

pY |X (y|0) = pY |X (−y|1) , y ∈ R (2.26)

and a uniform input distribution again achieves the capacity.
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Real-Alphabet AWGN Channel

The output of a real-alphabet AWGN channel is given by

Y = X + Z (2.27)

where X = Y = R and Z ∼ N (0, σ2) is independent of X. We have

pY |X (y|x) = pZ (y − x) = 1√
2πσ2

e−
(y−x)2

2σ2 . (2.28)

The noise power spectral density N0 is defined as N0 , σ2 and the signal-to-noise ratio
(SNR) is

SNR = Es

N0
= Es

σ2 = E [X2]
σ2 . (2.29)

The AWGN channel capacity is (see [23, Section 9.2])

C = 1
2 log2 (1 + SNR) . (2.30)

For discrete inputs and continuous outputs, the capacity is

C = max
PX

[H (X)−H (X|Y )] (2.31)

= max
PX

[h (Y )− h (Y |X)] (2.32)

=
[
max
PX

h (Y )
]
− 1

2 log2

(
2πeσ2

)
. (2.33)

For example, the binary-input additive white Gaussian noise (biAWGN) channel has X ={
−
√
Es,+

√
Es
}
, the optimal X has H (X) = 1, and the capacity is

C = 1−
∫ ∞
−∞

pY |X

(
y
∣∣∣∣+√Es

)
log2

(
1 + e−

2
σ2
√
Esy
)
dy. (2.34)

We remark that real-alphabet channels can be treated as complex-alphabet channels by
grouping the real symbols into pairs as complex symbols.
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Complex-Alphabet Fading Channel

The output of a complex-alphabet fading AWGN channel is

Y = HX + Z (2.35)

where X = Y = Z = H = C, Z ∼ CN (0, 2σ2), and H,X,Z are mutually independent.
The noise power spectral density N0 is defined as N0 , 2σ2. Suppose the receiver knows
H = h and computes

1
h
y = h∗

|h|2
y = x+ h∗

|h|2
z. (2.36)

Thus, the receiver can form the equivalent channel

ỹ = x+ z̃ (2.37)

where

ỹ = h∗y

|h|2
, Z̃ ∼ CN

(
0, 2σ2

|h|2

)
. (2.38)

Channel Degradation

Consider two channels pYI|X and pYII|X . If X − YI − YII forms a Markov chain, then we
say that the channel pYII|X is physically degraded (or simply degraded) with respect to the
channel pYI|X . We write this as pYII|X � pYI|X . For example, an AWGN with higher noise
power is degraded with respect to an AWGN with lower noise power. The data-processing
inequality [23, Theorem 2.8.1] gives

I (X;YII) ≤ I (X;YI) . (2.39)

2.4. Decoding

A block-wise maximum-a-posteriori (MAP) decoder puts out the codeword that maximizes
the a-posteriori probability (APP) of the channel output, i.e., we have

ĉ = argmax
c∈C

PC|Y (c|y) . (2.40)
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A block-wise ML decoder instead puts out the codeword

ĉ = argmax
c∈C

pY |C (y|c) . (2.41)

Of course, the likelihood function is PY |C (y|c) for discrete Y .
Bayes’ theorem gives

PC|Y (c|y) = pY |C (y|c) PC (c)
pY (y) . (2.42)

Block-wise MAP decoding is thus the same as block-wise ML decoding if PC (c) = 1/|C|.

Log-Likelihood Ratios

Consider a binary codeword c and a B-DMC with transition probability pYi|Ci . The LLR
based on the channel output is defined as3

` (ci) , log PCi|Yi(0|yi)
PCi|Yi(1|yi)

. (2.43)

By using Bayes’ theorem, we have

log PCi|Yi(0|yi)
PCi|Yi(1|yi)

= log pYi|Ci(yi|0)PCi(0)
pYi|Ci(yi|1)PCi(1) (2.44)

= log pYi|Ci(yi|0)
pYi|Ci(yi|1) + log PCi(0)

PCi(1) . (2.45)

If Ci is uniformly distributed on {0, 1}, then we have

` (ci) = log pYi|Ci(yi|0)
pYi|Ci(yi|1) . (2.46)

Binary Message Passing

Binary message passing algorithms are discussed in [36, 37, 53, 87, 91, 104]. We consider
messages output by decoders for the check nodes (CNs) and variable nodes (VNs) of a
LDPC code.

3We use the common LLR notation that has a lowercase argument although the LLR is actually a
property of the corresponding random variable.
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We begin with the CNs. Consider a B-DMC pYi|Xi and suppose

S = X1 ⊕ · · · ⊕Xn. (2.47)

The LLR of Xi based on Yi is

` (xi) = log PXi|Yi(0|yi)
PXi|Yi(1|yi)

, i ∈ [n]. (2.48)

A degree-n CN update outputs the LLR of S based on Y n, i.e., we have

` (s) = log PS|Y
n(0|yn)

PS|Y n(1|yn) = 2 tanh−1
(

n∏
i=1

tanh ` (xi)
2

)
(2.49)

where tanh (·) denotes the hyperbolic tangent

tanh
(
a

2

)
= ea − 1
ea + 1 . (2.50)

We now consider the VNs. Consider a B-DMC pYi|Xi and suppose

S = X1 = · · · = Xn. (2.51)

The LLR of Xi based on Yi is again (2.48). A degree-n VN update outputs the LLR of S
based on Y n:

` (s) = log PS|Y
n(0|yn)

PS|Y n(1|yn) =
n∑
i=1

` (xi) . (2.52)



3
Polar Coding and Decoding

This chapter reviews binary polar codes and decoding as proposed in [5,101]. Non-binary
polar codes are developed in [18, 76, 95, 112, 124]. Polar codes with non-binary 2 × 2
kernels [124] are introduced in Section A.2.

3.1. Basic Transform

Consider a rate-one binary code of length N = 2 over a stationary time-invariant sym-
metric B-DMC pYi|Ci = pY |C , i ∈ [N ]. The generator matrix is a size-2 transform

F =
1 0

1 1

 (3.1)

and the encoding is represented by

(c1, c2) = (u1, u2)
1 0

1 1

 = (u1 ⊕ u2, u2) (3.2)

as visualized in Figure 3.1, where Ui and Ci are uniformly distributed on {0, 1}. The
decoder initializes by computing the LLRs

` (ci) = log PCi|Yi(0|yi)
PCi|Yi(1|yi)

, i = 1, 2. (3.3)
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+u1 c1

u2 c2

y1

y2

pY |C

pY |C

Figure 3.1.: A size-2 transform F .

The message is estimated as follows via successive cancellation (SC) decoding as visualized
in Figure 3.2.

Step 1. Compute the LLR of u1 by a degree-2 CN update function

f− (` (c1) , ` (c2)) , ` (u1) = log PU1|Y1Y2(0|y1y2)
PU1|Y1Y2(1|y1y2) (3.4)

= 2 tanh−1
(

tanh ` (c1)
2 · tanh ` (c2)

2

)
(3.5)

= sign (` (c1)) · sign (` (c2)) ·min {|` (c1) |, ` (c2) |} (3.6)
+ log

(
1 + e−|`(c1)+`(c2)|

)
− log

(
1 + e−|`(c1)−`(c2)|

)
. (3.7)

where sign(·) is the signum function. With the approximation

log (1 + x) ≈

x, if x > 0
0, if x ≤ 0

(3.8)

we have a hardware friendly version1 [7]

f− (` (c1) , ` (c2)) ≈ sign (` (c1)) · sign (` (c2)) ·min {|` (c1) |, ` (c2) |} . (3.9)

Step 2. Perform a hard decision

û1 =

0, if ` (u1) ≥ 0
1, if ` (u1) < 0.

(3.10)

Step 3. Suppose the estimate û1 is correct. u2 now has two independent constraints:

u2 =

c2

u1 ⊕ c1 = û1 ⊕ c1
(3.11)

1The simulation results in this thesis are by default with the approximation. Note that the approximation
(3.8) is the same as the rectified linear activation function (ReLU) of neural networks.



3.1. Basic Transform 15

+`1 ` (c1)

` (c2)

f− operation

+û1 ` (c1)

`2 (û1) ` (c2)
f+ operation

Figure 3.2.: An SC decoder of size-2.

Thus, the LLR of u2 based on û1 is computed by a degree-2 VN update function

` (u2 |û1 ) , log PU2|Y1Y2U1(0|y1y2û1)
PU2|Y1Y2U1(1|y1y2û1) (3.12)

= ` (c2) + ` (c1 ⊕ û1) (3.13)

=

` (c2) + ` (c1) , if û1 = 0
` (c2)− ` (c1) , if û1 = 1.

(3.14)

We define the function

f+ (` (c1) , ` (c2) , û1) = (1− 2û1) ` (c1) + ` (c2) . (3.15)

Step 4. Perform a hard decision

û2 =

0, if ` (u2 |û1 ) ≥ 0
1, if ` (u2 |û1 ) < 0

(3.16)

Effectively, the size-2 transform converts the B-DMC to two symmetric bit channels

pY |C
F−−→

pY1Y2|U1

pY1Y2U1|U2 .
(3.17)

We further have

2 · I (C;Y ) = I (C1;Y1) + I (C2;Y2) (3.18)
= I (C1C2;Y1Y2) (3.19)
(a)= I (U1U2;Y1Y2) (3.20)
= I (U1;Y1Y2) + I (U2;Y1Y2|U1) (3.21)
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where (a) follows because the transform F is bijective. We have [5, Proposition 4]

I (U1;Y1Y2) ≤ I (C;Y ) ≤ I (U2;Y1Y2|U1) (3.22)

where the equalities hold if I (C;Y ) = 0 or 1.

Example 3.1. Consider a size-2 transform for a BEC with erasure probability p. We use
the notation I for the channel capacity before the transform:

I , I (C;Y ) = 1− p. (3.23)

By using density evolution (DE) [87], the bit channel capacities after the transform are

I− , I (U1;Y1Y2) = (1− p)2

I+ , I (U1;Y1Y2|U2) = 1− p2.
(3.24)

Obviously, we have I− ≤ I ≤ I+ and the equalities hold if and only if p = 0 or 1.

3.2. Channel Polarization

A transform with larger size is recursively constructed with the kernel F :

F⊗t =
F⊗t−1 0

F⊗t−1 F⊗t−1

 (3.25)

where ⊗ denotes the Kronecker product of matrices and (·)⊗ denotes the Kronecker power.
F⊗t is a 2t × 2t matrix and thus F⊗ log2N is a size-N transform for N a power of 2. For
example, for N = 8 we have

F⊗ log2 N =
F⊗ log2 N−1 0

F⊗ log2 N−1 F⊗ log2 N−1

 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



(3.26)
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F⊗ log2N−1

F⊗ log2N−1

+

+

+

...

...

c+

c−

...

...

u1

uN/2

uN/2+1

uN

pY |C

pY |C

...

pY |C

pY |C

pY |C

...

pY |C

F⊗ log2N

Figure 3.3.: Recursive structure of a size-N transform F⊗ log2N (N > 2), the output cN =(
c− ⊕ c+, c+)

and the matrix has the lower-diagonal structure shown in Figure 3.4 where the shaded areas
represent the locations where the 1’s occur. This structure plays an important role, e.g.,
for shortening polar codes in Section 3.7 and for hybrid automatic repeat request (HARQ)
in Chapter 5.

The encoding of uN is represented by

cN = uNF⊗ log2N (3.27)

as visualized in Figure 3.3, where Ui and Ci are uniformly distributed on {0, 1}.

The decoder computes the LLRs ` (ci), i ∈ [N ], based on the channel outputs. The
message is estimated via recursive SC decoding using Algorithm 3.1 and visualized in
Figure 3.5. We perform Plotkin-decomposition [82] recursively until we have length-one
codes and perform hard decisions [101, Section 5.2.2] with the LLRs. Effectively, the
size-N transform converts the B-DMC to N symmetric bit channels

pY |C
F⊗ log2 N−−−−−→ pY NU i−1|Ui , i ∈ [N ]. (3.28)

We have

N · I (C;Y ) = I
(
CN ;Y N

)
(3.29)
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F⊗ log2 N

F⊗ log2N−1 F⊗ log2 N−1

F⊗ log2N−1

Figure 3.4.: Lower-diagonal matrix structure of F⊗ log2N .

= I
(
UN ;Y N

)
(3.30)

=
N∑
i=1

I
(
Ui;Y N

∣∣∣U i−1
)

(3.31)

where I
(
Ui;Y N |U i−1

)
is the bit channel capacity of the i-th bit channel pY NU i−1|Ui with

uniform input distribution.

Theorem 3.1. The transform F⊗ log2 N converts a symmetric B-DMC to N polarized
symmetric bit channels [5], i.e., for any 0 < a < b < 1, we have

lim
N→∞

1
N

∣∣∣{i : 0 ≤ I
(
Ui;Y N

∣∣∣U i−1
)
< a

}∣∣∣ = 1− I (C;Y )

lim
N→∞

1
N

∣∣∣{i : a ≤ I
(
Ui;Y N

∣∣∣U i−1
)
≤ b

}∣∣∣ = 0

lim
N→∞

1
N

∣∣∣{i : b < I
(
Ui;Y N

∣∣∣U i−1
)
≤ 1

}∣∣∣ = I (C;Y ) .

(3.32)

Example 3.2. Consider a BEC with p = 0.5, the bit channel capacities are recursively
computed by DE with (3.24). A numerical example is shown in Figure 3.6. Observe that
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size-N/2
SC decoder

size-N/2
SC decoder

+

+
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` (c1)

` (cN)
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`−

size-N/2
SC decoder

size-N/2
SC decoder

+

+

...

...

` (c1)

` (cN)

...

ĉ−

`+

Figure 3.5.: Recursive structure of a size-N SC decoder.

almost all bit channel capacities are close to either 0 or 1 with growing code length N , i.e.,
almost every bit channel is either completely noisy or noiseless.

Definition 3.1. A polar code [5, 101] is defined by a 3-tuple (N, k,A), where N and k

denote the code length and the number of message bits. The elements of the information
set A are the indices of the least noisy bit channels. The elements of the frozen set F are
the indices of the noisiest bit channels. We have |A| = k and [N ] \ A = F . The encoding
procedure is given by

cN = uNF⊗ log2N (3.33)

where the vector uN contains k message bits and n− k frozen bits, i.e., we choose

uA = wk, uF = 0n−k. (3.34)

Algorithm 3.2 shows the SC decoding for a polar code, where

`
(
ui
∣∣∣ûi−1

)
, log

PUi|Y NU i−1

(
0
∣∣∣yN , ûi−1

)
PUi|Y NU i−1

(
1
∣∣∣yN , ûi−1

) (3.35)

is the LLR of ui based on all channel outputs yN and all previous estimates ûi−1. The
pseudo codes of an SC decoder are given in Section A.3. Note that the estimate ûA is in a
one-to-one correspondence with an estimate ĉN because the transform F⊗ log2N is bijective.
Theorem 3.1 implies that polar codes achieve the capacity of symmetric2 B-DMCs

2If the channel is asymmetric, then the polar coding introduced in Definition. 3.1 achieves only the mutual
information with uniform input distributions. A modified polar code is introduced in [45,73,117] that
achieves the capacity of asymmetric channels.
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Algorithm 3.1: Size-N recursive SC decoding: fsc,N

Input : the LLRs of ci based on channel outputs ` (ci) , i ∈ [N ]
Output: the estimated codeword ĉN

1 if N = 1 then
/* perform hard decision for length-one code */

2 û1 = ĉ1 =
{

0, if ` (c1) ≥ 0
1, if ` (c1) < 0

3 return ĉ1
4 else

/* perform Plotkin-decomposition */
5 for i = 1, 2, . . . , N/2 do
6 `−i = f−

(
` (ci) , `

(
ci+N/2

))
7 ĉ− = fsc,N/2 (`−), where `− =

(
`−1 , . . . , `

−
N/2

)
8 for i = 1, 2, . . . , N/2 do
9 `+

i = f+
(
` (ci) , `

(
ci+N/2

)
, ĉ−i

)
10 ĉ+ = fsc,N/2 (`+), where `+ =

(
`+

1 , . . . , `
+
N/2

)
11 return ĉN = (ĉ− ⊕ ĉ+, ĉ+)

asymptotically under SC decoding. The complexity of encoding and SC decoding are
both O (N logN), where O (·) is the Landau notation.

3.3. Code Constructions

3.3.1. Construction for a Fixed Channel

The polar code construction finds the most reliable positions of uN under SC decoding.
For BECs, simple DE can be used to compute the bit channel capacities as in Example 3.2.
For general B-DMCs, a Monte Carlo (MC) based construction was introduced in [5, 101]
but this requires extensive simulations. Quantized DE based constructions were proposed
in [74,75,102]. One first computes the bit error probabilities of the bit channels assuming
the previous bits were correctly decoded via MC or DE. Let

pi , Pr
(
Ûi 6= Ui

∣∣∣Û i−1 = U i−1
)
, i ∈ [N ] (3.36)

be the probability that the first bit error occurred for ui in SC decoding. The information
set A consists of the indices of the most reliable channels. The block error rate (BLER)
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Figure 3.6.: Bit channel capacities on a BEC with p = 0.5.

of the polar code under SC decoding is estimated by

BLERSC,est = Pr
(⋃
i∈A

{
Ûi 6= Ui

})

= 1− Pr
(⋂
i∈A

{
Ûi = Ui

})

≈ 1−
∏
i∈A

(1− pi) . (3.37)

For biAWGN channels, DE with Gaussian approximation (GA) [108] has much lower
complexity and performs similar to the MC construction. The update rule for mutual
information of a single level transform is

I− = 1− J
(√

[J−1(1− I1)]2 + [J−1(1− I2)]2
)

I+ = J
(√

[J−1(I1)]2 + [J−1(I2)]2
) (3.38)

where I− and I+ are the mutual information values after a single level evolution with
inputs I1 and I2, see Figure 3.7. The J-function is given by
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Algorithm 3.2: SC decoding for polar codes
Input : the LLRs of ci based on channel outputs ` (ci) , i ∈ [N ]
Output: the estimated message bits ûi, i ∈ A

1 for i = 1, 2, . . . , N do
2 compute `i (ûi−1) // recursively computed via Algorithm 3.1
3 if i ∈ A then

4 ûi =


0, if `i

(
ûi−1

)
≥ 0

1, if `i
(
ûi−1

)
< 0

5 else
6 ûi = 0

7 return ûA

+I− I1

I+ I2

Figure 3.7.: The mutual information evolution of a single level transform.

J(σ) = 1−
∫ +∞

−∞

e−(ξ−σ2/2)2
/2σ2

√
2πσ

· log2

(
1 + e−ξ

)
dξ. (3.39)

We use the numerical approximations in [15]:

J(σ) ≈
(
1− 2−H1σ2H2

)H3

J−1(I) ≈
(
− 1
H1

log2

(
1− I

1
H3

)) 1
2H2

(3.40)

where H1 = 0.3073, H2 = 0.8935 and H3 = 1.1064, and we compute I (C;Y ) via (2.34).
By recursively applying (3.38), we obtain the bit channel capacity I

(
Ui;Y N |U i−1

)
. The

corresponding probability can be derived from the bit channel capacity, i.e., we have

pi,GA = Q
(1

2J
−1
(
I
(
Ui;Y N

∣∣∣U i−1
)))
≈ pi, i ∈ [N ] (3.41)

where

Q(x) = 1√
2π

∫ ∞
x

e
u2
2 du. (3.42)
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Figure 3.8.: Comparison of MC, DE and GA based constructions for N = 128 and a biAWGN
channel at SNR = 2 dB.

Example 3.3. Consider a length-128 polar code transmitted over a biAWGN channel
at SNR = 2 dB. The reliabilities of the bit channels under SC decoding are shown in
Figure 3.8. We provide the results with the exact f− operation (3.5) and the approximated
f− operation (3.9). We observe that

. The approximated f− operations are conservative (give higher pi). However, the
reliability order is the same.

. Quantized DE closely approximates the reliabilities of the optimal DE.

. The GA construction gives the same reliability order as MC and DE, i.e., the GA
construction outputs the same information set A as MC and DE.

3.3.2. Universal Construction

The structure of F⊗ log2 N leads to two universal (channel quality independent) properties
of the bit channels:
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. nesting property [58] (asymptotic);

. universal partial order (UPO) [97] (non-asymptotic).

Theorem 3.2. Consider two B-DMCs pYI|C and pYII|C where pYII|C is degraded with respect
to pYI|C , i.e., we have pYII|C � pYI|C . By applying a transform F⊗ log2N we have

pY NII U
i−1|Ui � pY NI U i−1|Ui , i ∈ [N ]. (3.43)

With an infinite code length N , we have the sets AYI and AYII containing the indices of
the noiseless bit channels for pYI|C and pYII|C , respectively. For any index i, we have

. The bit channel pY NI U i−1|Ui is noiseless if pY NII U
i−1|Ui is noiseless.

. The bit channel pY NII U
i−1|Ui is completely noisy if pY NI U i−1|Ui is completely noisy.

Therefore, we have the nesting property [58], i.e., AYII ⊆ AYI .

Remark. This property leads to a universal reliability ordering of the polarized bit channels.
However, the nesting property generally does not hold for finite code lengths.

Theorem 3.3. Consider a B-DMC and a size-N transform, and label the bit channel i
with the binary representation of i− 1:

i 7→
(
b1, . . . , blog2N

)
. (3.44)

Then we have the following properties called UPO [97]:

. the bit channel (a1, 1, a2) is more reliable than (a1, 0, a2)

. the bit channel (a1, 1, a2, 0, a3) is more reliable than (a1, 0, a2, 1, a3)

where a1, a2 and a3 are any bit strings including empty strings.

Example 3.4. For a polar code with N = 4, we have

i = 1 7→ (0, 0)
i = 2 7→ (0, 1)
i = 3 7→ (1, 0)
i = 4 7→ (1, 1)

(3.45)

Theorem 3.3 states that for any B-DMC we have
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. The bit channel 2 7→ (0, 1) is more reliable than 1 7→ (0, 0).

. The bit channel 3 7→ (1, 0) is more reliable than 2 7→ (0, 1).

. The bit channel 4 7→ (1, 1) is more reliable than 3 7→ (1, 0).

There thus exists only one possible ascending reliability order:

(1, 2, 3, 4) . (3.46)

However, more generally the reliabilities are not determined by the UPO. For example,
consider N = 8 and

4 7→ (0, 1, 1) and 5 7→ (1, 0, 0) . (3.47)

Definition 3.2. Consider a length-N polar code and label bit channel i by the binary
representation of i− 1:

i 7→
(
b1, . . . , blog2 N

)
. (3.48)

The polarization weight (PW) [41] of bit channel i is defined as

PWi =
log2 N∑
j=1

bjβ
j, i ∈ [N ] (3.49)

where β is a real number with β > 1.

This notation is called a β-expansion [81,86]. PWs fulfill the properties in Theorem 3.3 and
we use them to find a universal reliability order by carefully choosing β. An asymptotically
optimal β for SC decoding is [41]

β = 2 1
4 ≈ 1.1892. (3.50)

Remark. The nesting property and the UPO generally do not hold for (non-stationary)
time-varying channels.

3.4. Decoding Latency and Memory Requirements

The decoding latency describes the required number of time steps assuming that all paral-
lelizable operations are completed at the same time step. The serial nature of SC decoding
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Figure 3.9.: Memory requirement for an SC decoder of length 8.

makes the latency scale as O (N). Simplified SC decoding is proposed in [3], where one
performs Plotkin-decomposition (see Figure 3.5) recursively up to code length N = 1 and
makes hard decisions. With simplified SC decoding, we make hard decisions for special
codes whose code lengths are larger than one. Four such codes3 are suggested in [3]: rate-0
code, rate-1 code, repetition code, and single parity-check code. The algorithm is discussed
and improved in [72, 92–94]. The authors of [72] show that the latency of simplified SC
decoding is O

(
N1−1/µ

)
, where µ is the scaling exponent of the channel.

An SC decoder of length N must store computations at N · (log2 N + 1) nodes (the
red circles in Figure 3.9). A memory-efficient SC decoding is proposed in [103]. Consider
layer 1 in Figure 3.9. To compute the LLRs in the (lower) dashed blue block one does
not need the LLRs of the (upper) solid blue block. Thus, only N/2j nodes are needed at
layer j. The memory requirement of an SC decoder is thus reduced to 2N − 1 (the solid
blue blocks in Figure 3.9).

3.5. Improved Decoding Algorithms

Although polar codes achieve capacity asymptotically under SC decoding, the finite length
performance of polar codes with SC decoding is not competitive. This section introduces

3The suggested codes have simple and optimal decoding algorithms.
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three classes of improved decoding algorithms.

3.5.1. List Decoding

The authors of [28,103] propose successive cancellation list (SCL) decoding that improves
the performance of SC decoding by deploying L parallel SC decoding paths. At each
decoding phase i ∈ A, instead of performing a hard decision on ui, we create two decoding
paths and continue decoding in two parallel threads, i.e., we have 2k decoding paths at
the end of decoding. In order to avoid the exponential growth of the number of decoding
paths, only the L most reliable paths survive at each step. At the end of decoding, the
most reliable path is selected as the output. The reliability of a length-i decoding path vi

is described by PU i|Y N
(
vi
∣∣∣yN ) and we have the recursive update rule

PU i|Y N
(
vi
∣∣∣yN ) = PUi|Y NU i−1

(
vi
∣∣∣yN , vi−1

)
PU i−1|Y N

(
vi−1

∣∣∣yN ) (3.51)

where the reliability is initialized to 1, i.e., PU0|Y N
(
v0
∣∣∣yN ) = 1. An LLR-based path

metric (PM) [7] is defined by

M
(
vi
)
, − logPU i|Y N

(
vi
∣∣∣yN ) (3.52)

= − logPUi|Y NU i−1

(
vi
∣∣∣yN , vi−1

)
− logPU i−1|Y N

(
vi−1

∣∣∣yN ) (3.53)

= − logPUi|Y NU i−1

(
vi
∣∣∣yN , vi−1

)
+M

(
vi−1

)
. (3.54)

From the definition of ` (ui |vi−1 ) in (3.35), we have

− logPUi|Y NU i−1

(
0
∣∣∣yN , vi−1

)
= log

(
1 + e−`(ui|vi−1 )

)
− logPUi|Y NU i−1

(
1
∣∣∣yN , vi−1

)
= log

(
1 + e`(ui|vi−1 )

)
.

(3.55)

Therefore, the recursive PM update rule is

M
(
vi
)

= M
(
vi−1

)
+ log

(
1 + e−(1−2vi)`(ui|vi−1 )

)
(3.56)
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whereM (v0) = − log (1) = 0. By applying the approximation in (3.8), we have a hardware
friendly version [7],

M
(
vi
)
≈


M
(
vi−1

)
, if sign

(
`
(
ui
∣∣∣vi−1

))
= 1− 2vi

M
(
vi−1

)
+
∣∣∣` (ui ∣∣∣vi−1

)∣∣∣ , if sign
(
`
(
ui
∣∣∣vi−1

))
6= 1− 2vi

. (3.57)

The complexity of a direct implementation of an SCL decoder is O (LN2). In [103], a
lazy copy technique based on memory sharing is proposed to reduce the number of copy
operations. The complexity of SCL decoding is thereby reduced to O (LN logN).

3.5.2. Flip Decoding

The serial nature of SC decoding may cause an erroneous bit decision through error propa-
gation. The main idea of successive cancellation flip (SCF) decoding [2] is to try to correct
the first erroneous bit decision by sequentially flipping unreliable decisions.

An error detection outer code, e.g., a cyclic redundancy check (CRC) code, checks
whether the output is a valid codeword. The SCF decoder starts by performing SC de-
coding for the inner code to generate the first estimate vN and stores the soft information
` (ui |vi−1 ), i ∈ [N ]. If vN passes the CRC, it is declared as the output ûN . In case the
CRC fails, the SCF algorithm attempts to correct the first bit error at most T times. At
the t-th attempt, t ∈ [T ], the decoder finds the index it of the t-th least reliable decision.
The SCF algorithm restarts the SC decoder by flipping the estimate vit to vit = vit ⊕ 1.
The CRC is checked after each attempt. This decoding process continues until the CRC
passes or T is reached.

In [2], the authors suggest to used metric

Q1(i) =
∣∣∣` (ui ∣∣∣vi−1

)∣∣∣ , i ∈ A (3.58)

to describe the reliability of the decision vi. The flipping position is selected by

i∗ = argmin
i∈[N ]

Q1(i). (3.59)

Because the target is to find the first erroneous decision, the reliabilities of the previous
decisions should be taken into consideration. A new metric is proposed in [16] to find the
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first erroneous decision more efficiently

Q2(i) =
∣∣∣` (ui ∣∣∣vi−1

)∣∣∣+ ∑
j∈A
j≤i

1
α

log
(

1 + e−α|`(uj|vj−1 )|
)
, i ∈ A (3.60)

where α > 0 is a scaling factor to be optimized by MC simulation.

In [16], dynamic successive cancellation flip (DSCF) decoding is introduced as a gener-
alization of SCF decoding. DSCF decoding finds and flips multiple bit estimates simulta-
neously. The reliability of the decisions ûE is described by

Q2(E) =
∑
i∈E

∣∣∣` (ui ∣∣∣vi−1
)∣∣∣+ ∑

j∈A
j≤imax

1
α

log
(

1 + e−α|`(uj|vj−1 )|
)
, E ⊆ A (3.61)

where imax is the largest element in E . The flipping set is selected by

E∗ = argmin
E

Q2(E) (3.62)

and is constructed progressively. A hardware friendly version of (3.61) is introduced in [26]:

Q3(E) =
∑
i∈E

∣∣∣` (ui ∣∣∣vi−1
)∣∣∣+ ∑

j∈A, j≤imax

|`(uj|vj−1 )|<β

(
β −

∣∣∣` (uj ∣∣∣vj−1
)∣∣∣) , E ⊆ A (3.63)

where β > 0 is a perturbation factor to be optimized by MC simulation. The complexity
of DSCF decoding is adaptive and upper bounded by O ((1 + T )N logN). The latency of
DSCF decoding is not stable.

3.5.3. Sequential Decoding

Sequential decoding does not deploy L parallel decoding paths and thereby avoids con-
structing many low probability paths in the decoding tree. Two prominent sequential
decoding algorithms are successive cancellation sequential (SCS) decoding [71, 110] and
successive cancellation Fano (SC-Fano) decoding [6, 50].

Sequential decoding compares paths with different lengths. However, the probabilities
PU i|Y N

(
vi
∣∣∣yN ) cannot capture the effect of the path’s length. This effect was taken into

account first by [110]. Similar approach was used by [50] to account for the expected error
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rate of the future bits as

S
(
vi
)
, − log

PU i|Y N
(
vi
∣∣∣yN )∏i

j=1 (1− pj)
(3.64)

= M
(
vi
)

+
i∑

j=1
log (1− pj) (3.65)

where pi is defined by (3.36) and S (v0) , 0. The probabilities pi can be computed via
MC or approximated via DE offline.
SCS decoding stores the L most reliable paths of (possibly) different length and discards

paths as needed. At each step, the decoder selects the most reliable path and creates two
possible decoding paths based on it. The winning word is declared once a path length
becomes N . SC-Fano decoding deploys a Fano search [33] that allows to move backward
in the decoding tree. The decoder tries to find the most reliable path with the help of
a dynamic threshold. The dynamic threshold is initialized to T = 0. During the Fano
search, if one cannot find a path with score less than T then the dynamic threshold is
updated to T + ∆, where ∆ is called the threshold spacing and controls the tradeoff
between performance and complexity.
Both SCS and SC-Fano decoding are complexity-adaptive, i.e., their average decoding

complexity is close to that of SC decoding for reliable channels. However, the single thread
nature of SCS and SC-Fano decoding can make the latency unstable. Furthermore, SCS
decoding needs a large list size to achieve the same performance as SCL decoding. Also,
SC-Fano decoding has a relatively high worst case complexity.

3.6. Improved Code Designs

The polar code construction discussed in Section 3.3 finds the most reliable positions under
SC decoding, i.e., the original code construction is optimal for SC decoding only. Moreover,
for short and moderate code lengths, polar codes with improved decoding algorithms still
perform worse than existing codes, e.g., Turbo and LDPC codes, because of their poor
distance properties. This section introduces some improved code designs.
In [103], the distance property of polar codes is enhanced by serially concatenating a

CRC outer code. We proposed an algorithm in [123] to find the good CRC generator
polynomial for a given CRC length, the details are discussed in Section A.1.
RM-polar [57] codes combine the code constructions of RM codes and polar codes.

Observe that RM and polar codes are obtained from the matrix F⊗ log2 N . While polar codes
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select information bits according to the bit reliability under SC decoding, RM codes [77,84]
select the information bits according to the row weight. The bits with the largest weights
of their corresponding rows are selected as information bits, and the other bits are chosen
as frozen bits. The construction of RM-polar codes sacrifices some reliable bits under SC
decoding in order to guarantee better distance properties. In [30, 31], a genetic algorithm
is proposed to obtain a balance between RM and polar code constructions.
In [111,112], dynamic frozen bits are proposed to improve the distance properties. Such

bits are defined as linear combinations of previous message bits instead of predetermined
values, and thus using dynamic frozen bits does not change the performance under SC
decoding. A method to construct polar codes with guaranteed distance properties based
on dynamic frozen bits is proposed in [112]. The main idea is to force polar codes to be
subcodes of the higher rate codes with known distance properties. Dynamic frozen bits
with random linear combinations are discussed in [21, 59, 60, 115, 123]. The polarization-
adjusted convolutional (PAC) codes proposed in [6] are based on dynamic frozen bits with
convolutional linear combinations. For instance, suppose we have a length-d vector g.
Then the (dynamic) frozen bit ui is computed via

ui =
d∑
j=1

gjui−j, if i ∈ F and i− j ≥ 1 (3.66)

where ∑ denotes an XOR sum.
To conclude, two methods are jointly used to improve the distance property of polar

codes, namely changing the information set and using dynamic frozen bits. These methods
tradeoff the performance under SC decoding (determined by the choice information set)
and ML decoding (determined by the distance properties). The best design of polar codes
strongly depends on the target decoding complexity [21,22,90,123].

3.7. Rate Adaptation

The recursive structure of the transform F⊗ log2N gives polar codes a code length that is a
power of two. The classic techniques of puncturing and shortening can be used to modify
the code length and rate.
Punctured polar codes were introduced in [32]. Consider a length-N mother polar code

and suppose the coded bits cP are not transmitted, where P is the puncturing pattern.
The effective code length is thus N − |P|. The receiver uses the decoder of the mother
polar code where the LLRs ` (ci), i ∈ P , are set to zero.
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Shortened polar codes are proposed in [114]. Consider a length-N mother polar code
and fix the coded bits cS to zeros, where S is a shortening pattern. These coded bits no
longer need to be transmitted and the effective code length becomes N −|S|. The receiver
uses the decoder of the mother polar code where the LLRs ` (ci), i ∈ S, are set to infinity
because the decoder knows that ci = 0, i ∈ S.
Puncturing and shortening cause time-varying B-DMCs, i.e., the coded bits are trans-

mitted over channels with various qualities. The universal properties introduced in Sec-
tion 3.3.2 thus do not hold. If we consider punctured and shortened polar codes constructed
by GA, then we set the channel mutual information as follows:

I (Ci;Yi) = 0, if i ∈ P
I (Ci;Yi) = 1, if i ∈ S.

(3.67)

So far in literature, there is no method to find the optimal puncturing and shortening
patterns efficiently. A low complexity suboptimal algorithm is proposed in [70]. The quasi-
uniform puncturing (QUP) and reversal quasi-uniform puncturing (RQUP) are introduced
in [78, 114] and have been adopted for enhanced mobile broadband (eMBB) in the 5-th
generation wireless system (5G) standard [12].

Definition 3.3. An (n, k,N) QUP polar code with length-n and dimension k is obtained
from a (N, k) mother polar code by using the puncturing pattern P = [N − n], i.e., the
first N − n coded bits are not transmitted.

Definition 3.4. A length-n RQUP polar code is obtained from a length-N mother polar
code by using the shortening pattern S = {n+ 1, . . . , N}, i.e., we set

ui = 0, n+ 1 ≤ i ≤ N. (3.68)

Because F⊗ log2 N is a lower triangular matrix, the last N − n coded bits cNn+1 are fixed to
zeros and not transmitted.

Practically, RQUP polar codes outperform QUP polar codes if the code rate is higher
than 0.5, and vice versa.

Remark. The QUP and RQUP methods are generally suboptimal but perform close to
the best patterns that we found. The algorithms are called quasi-uniform because the
punctured/shortened positions in a bit-reversal representation [5] are almost uniformly
distributed on [N ].
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Algorithm 3.3: Encoding procedure of MLPC.
Input : message bits wk

information set A
Output: modulated signal points xN

/* Put k message bits in a vector of length mN */
1 uA = wk, u[mN ]\A = 0mN−k

/* partition the vector into m binary vectors of length N */
2 for j = 1, 2, . . . ,m do
3 u[j]N = ujN(j−1)N+1

/* perform m parallel transforms */
4 for j = 1, 2, . . . ,m do
5 c[j]N = u[j]NF⊗ log2N

/* map the coded bits to signal point with SP labeling */
6 for i = 1, 2, . . . , N do
7 (c[1]i, c[2]i, . . . , c[m]i) SP7→ xi

8 return xN

3.8. Polar-Coded Modulation

Higher-order modulation increases the SE of coded modulation systems. Consider a 2m-
ary modulation with binary codes. Each signal point x in the constellation X is uniquely
addressed by the label (b1, . . . , bm) in the manner

(b1, . . . , bm) 7→ x, x ∈ X , |X | = 2m. (3.69)

Several polar-coded modulation (PCM) schemes are discussed in [64, 98, 107] and their
performance is compared in [14]. Efficient design algorithms are presented in [13, 14].
In [98], multilevel polar coding (MLPC) with set partitioning (SP) labeling is proposed
and provides the best performance. A MLPC system with output length N consists of m
component polar codes of length N . We denote the input and output of the j-th transform
by u[j]N and c[j]N for j ∈ [m], respectively. Algorithm 3.3 shows the encoding procedure
of MLPC.

The receiver applies multi-stage decoding [48,113], see Figure 3.10. The codeword c[j]N

is effectively transmitted over the binary-input channel PBj |Y Bj−1 . One successively per-
forms demodulation and decoding as in Algorithm 3.4 where the level-j demodulating
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fdemod,1 fdec,1

fdemod,2 fdec,2

fdemod,m fdec,m

yN

ĉ[1]N

ĉ[2]N

ĉ[m]N

... ... ...

Figure 3.10.: Multi-stage decoding for MLPC.

Algorithm 3.4: Decoding procedure of MLPC.
Input : channel outputs yN
Output: decoded codewords ĉ[j]N , j ∈ [m]

1 for j = 1, 2, . . . ,m do
/* demodulation */

2 for i = 1, 2, . . . , N do
3 ` (c[j]i) = fdemod,j (yi, ĉ[1]i, . . . , ĉ[j − 1]i)

/* SC decoding */
4 ĉ[j]N = fdec,j (` (c[j]1) , ` (c[j]2) , . . . , ` (c[j]N))
5 return ĉ[j]N , j ∈ [m]

function is

fdemod,j (yi, ĉ[1]i, . . . , ĉ[j − 1]i) = log
PBj |Y Bj−1 (0|yi, ĉ[1]i, . . . , ĉ[j − 1]i)
PBj |Y Bj−1 (1|yi, ĉ[1]i, . . . , ĉ[j − 1]i)

, i ∈ [N ]. (3.70)

We have

I (X;Y ) = I (B1B2 · · ·Bm;Y ) =
m∑
j=1

I
(
Bj

∣∣∣Y Bj−1
)
. (3.71)

Thus, the SE of the system k/N achieves I (X;Y ) for a uniform input distribution.
The MLPC is often design by MC methods [98]. In [14], we proposed a surrogate channel

based GA to find the information set A for MLPC efficiently, see Algorithm 3.5.
SCF, SCS and SC-Fano decoding can be directly applied to a MLPC system. Figure 3.11
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Algorithm 3.5: Surrogate channel based GA.
Input : channel pY |X

modulation order m and constellation X
labeling (b1, . . . , bm) 7→ x, x ∈ X
component code length N

Output: information set A
1 compute I (Bj|Y Bj−1)
2 for j = 1, 2, . . . ,m do

/* GA for the j-th component code */
3 compute I

(
Ui;Y N |U i−1

)
via GA based on I (Bj |Y Bj−1 ) for (j − 1)N < i ≤ jN

4 put the indices i of the k largest I
(
Ui;Y N |U i−1

)
in set A

5 return A

shows the SCL decoding for MLPC. The component decoders inherit all decoding paths
and their PMs from the previous decdoing levels. One proceeds as follows.

. After SCL decoder fSCL,j−1 completes its computations, all active paths are passed
to the demodulator fdemod,j. The corresponding PMs of the paths are passed to the
decoder fSCL,j.

. The demodulator fdemod,j computes the LLRs for all possible paths and gives them
to the decoder fSCL,j.

. Initialize the SCL decoder fSCL,j with the LLRs for all possible paths and the corre-
sponding PMs from the previous decoder.
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...

fdemod,2 (·)

... fSCL,2 (·)

fdemod,1 (·)

... fSCL,1 (·)

Figure 3.11.: SCL decoding tree for MLPC (L = 4).



4
Complexity-Adaptive Decoding of
Polar Codes

This chapter proposes successive cancellation ordered search (SCOS) decoding [121] as a
complexity-adaptive ML decoder for polar codes. The decoder is extended to limit the
worst-case complexity while still achieving near-ML performance.

4.1. Successive Cancellation Ordered Search
Decoding

SCOS decoding borrows ideas from SC-based flip [2,16], sequential [33,50,71,110] and list
decoders [27, 35, 103, 118]. It is a tree search algorithm that flips the bits of valid paths
to find a leaf (i.e., a path of length-N) with higher likelihood than other leaves, if such a
leaf exists, and repeats until the ML decision is found. The search stores a list of branches
that is updated progressively by flipping the bits of the most likely leaf at each iteration.
The order of the candidates is decided according to the probability that they provide the
ML decision. SCOS does not require an outer code (as for flip-decoders) or parameter
optimization to adjust the tradeoff between performance and complexity (as for sequential
decoders).
In the proposed SCOS algorithm, metrics (3.52) and (3.64) are used. We first define

M
(
vi
)
,M

(
vi−1vi

)
= − logPU i|Y N

(
vi−1vi

∣∣∣yN ) (4.1)
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S
(
vi
)
, S

(
vi−1vi

)
= − logPU i|Y N

(
vi−1vi

∣∣∣yN )+
i∑

j=1
log (1− pj) (4.2)

An exemplary decoding process is illustrated in Figure 4.1 for N = 4 (also K = 4).
SCOS decoding starts by SC decoding to provide an output vN as the current most likely
leaf, e.g., the black path (0111) in Figure 4.1. The initial SC decoding computes and stores
the PM M (vi) and the score S (vi) associated with the flipped versions of the decisions
vi for all i ∈ A, e.g., illustrated as the red paths in Figure 4.1. Every index i ∈ A with
M (vi) < M(vN) is a flipping set.1 The collection of all flipping sets forms a list L. Each
list member is visited in ascending order according to the score associated with it.

Upon deciding on a flipping set E in the list L, let index j ∈ [N ] be the deepest common
node of the current most likely leaf and the branch node defined by E in the decoding
tree (see the brown dot in Figure 4.1(a)). Then, the decoder flips the decision vj and SC
decoding continues. The set E is popped from the list L. The PMs (3.52) and scores (3.64)
are calculated again for the flipped versions for decoding phases with i > j, i ∈ A, and the
list L is enhanced by new flipping sets progressively (similar to [16]). The branch node,
including all of its child nodes, is discarded if at any decoding phase its PM exceeds that of
the current most likely leaf, i.e., M(vN).2 Such a branch cannot output the ML decision,
since for any valid path vi the PM (3.52) is non-decreasing for the next stage, i.e., we have

M
(
vi
)
≤M

(
vi+1

)
,∀vi+1 ∈ {0, 1}. (4.3)

For instance, suppose that M(11) > M(0111) in Figure 4.1(g). Then, any path ṽN , with
ṽ2 = (1, 1) cannot be the ML decision; hence, it is pruned. If a leaf with lower PM is
found, then it replaces the current most likely leaf. The procedure is repeated until it is
impossible to find a more reliable path by flipping decisions, i.e., until L = ∅. Hence,
SCOS decoding implements an ML decoder.

Remark. The score (3.64) dominates the search priority of SCOS, while the tree pruning
and final decisions are based on the PM (3.52).

1Each set is a singleton at this stage.
2This pruning method is similar to the adaptive skipping rule proposed in [118] for ordered-statistics
decoding [27,35].
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Current most likely leaf: 0111
{1}

(a)

Current most likely leaf: 0111
{1, 00, 010, 0110}

(b)

Current most likely leaf: 0111
L = {010, 1}

(c)

•

Current most likely leaf: 0111
L = {1}

(d)

Current most likely leaf: 0100
L = {1, 0101}

(e)

Current most likely leaf: 0100
L = {1}

(f)
•

Current most likely leaf: 0100
L = ∅

(g)

Current most likely leaf: 0100
L = {10}

(h)

Current most likely leaf: 0100
L = ∅

(i)

Figure 4.1.: (a) Initial SC decoding outputs vN = 0111 with the corresponding PM M(vN ). (b)
During the initial SC decoding, the PMs and scores are computed for branch nodes
{1, 00, 010, 0110}. (c) The branch nodes with PMs larger than that of the current
most likely leaf are pruned, e.g., we have M(00),M(0110) > M(0111). Suppose
now that S(010) < S(1) and the members of L are ordered in the ascending order
according to their scores. (d) The first candidate is popped from the list and the
decoder returns to the deepest (or nearest) common node. (e) The decision is flipped
and SC decoding continues. During the decoding, the list L and the current most
likely leaf are updated. (f) The branch nodes with PMs larger than that of the
current most likely leaf are pruned as in (c) (in this case, a leaf node is removed). (g)
Repeat the procedure as in step (d), where we assume M (11) > M (0100). (h) The
list L is updated when the branch (11) was visited. (i) The decoder examines the
last member of the list L, pops it from L. After reaching the N -th decoding phase,
suppose that there is no branch node left, which has a smaller PM than that of the
current most likely leaf, i.e., L = ∅. The current most likely leaf is declared as the
decision ûN .
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λSCL (2, {3, 4}) = 6

û1

û2

û3

û4

λSCL (2, {2, 4}) = 7

û1

û2

û3

û4

Figure 4.2.: SCL decoding trees for (4, 2) polar codes with L = 2. The black nodes are the visited
nodes by decoding.

4.2. Complexity Analysis

The decoding complexity is measured by the number of node-visits. For instance, the
number λSC of node-visits for SC decoding is simply the code length N independent of
the channel output yN . For a given code construction, the number of node-visits for SCL
decoding with list size L, denoted as λSCL(L,A), is also constant and upper bounded as
λSCL(L,A) ≤ LN . An example is shown in Figure 4.2.

On the other hand, the complexity of SCOS decoding, denoted as λ
(
yN
)
, depends on

the channel output as for other sequential decoders [49]; hence, it is a RV defined as
Λ , λ

(
Y N

)
. In the following, we are interested in the average behaviour of Λ.

SCOS decoding may visit the same node more than once and these visits are included
in the comparison. To understand the minimum required complexity for SCOS decoding,
we consider the set of partial input sequences vi with i ∈ [N ] with a smaller PM than the
ML decision ûNML.3

Definition 4.1. For a given channel output yN and any binary sequence vN , we define
the string set

V
(
vN , yN

)
,

N⋃
i=1

{
ui ∈ {0, 1}i : M

(
ui
)
≤M

(
vN
)}
. (4.4)

3There are i node-visits for SC decoding for any decoding path vi.
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Lemma 4.1. For a particular realization yN , we have

λ
(
yN
)
≥
∣∣∣V (ûNML

(
yN
)
, yN

)∣∣∣ (4.5)

and the expected complexity is lower bounded as

1
λSC

E [Λ] ≥ 1
N
E
[∣∣∣V (ûNML

(
Y N

)
, Y N

)∣∣∣] . (4.6)

Proof. The inequality (4.5) follows from the definition (4.4) and the description of SCOS
decoding. Since (4.5) is valid for any yN , the bound (4.6) follows by λSC = N . �

Remark. Recall that the PM (3.52) is calculated using the SC decoding schedule, i.e., it
ignores the frozen bits coming after the current decoding phase i. This means the size of
the set (4.4) tends to be smaller for codes more suited for SC decoding, e.g., polar codes,
while it gets larger for others, e.g., RM codes.

The computational complexity of SCOS decoding can be limited by imposing a con-
straint on λ

(
yN
)
, e.g., λ

(
yN
)
≤ λmax, at the expense of suboptimality. To also limit the

space complexity, one can impose a list size, e.g., we relate the space complexity to the
number of node-visits heuristically as

|L| ≤ η , log2 N ×
λmax

N
. (4.7)

4.3. Detailed Description

This section gives pseudo codes4 and the details of the proposed SCOS decoder. The
required data structures together with their size are listed in Table 4.1. Note that arrays
L and C both store (log2 N + 1) × N elements in contrary to [103], where only 2N − 1
elements are stored, since we reuse some decoding paths to decrease the computational
complexity (this is similar to the SC-Fano decoder). In the pseudo codes, the notation
v [i] refers to the i-th entry of an array v. Similarly, the entry in position (i, j) of array C
is denoted as C [i, j]. The entries of bias vector b are computed offline via

b[i] =
i∑

j=1
log (1− pj) , i ∈ [N ] (4.8)

4In the pseudo codes, we use type-writer font for the data structures (with an exception for sets) and
1-based indexing arrays.



42 4. Complexity-Adaptive Decoding of Polar Codes

name size data type description

b N float precomputed bias term
L (log2 N + 1)×N float LLR
C (log2 N + 1)×N binary hard decision

û, v N binary decoding path
M, M, S N float metric
Mcml 1 float PM of the current most likely leaf
E , Ep 1 set (of indices) flipping set

F 1 〈set, float, float〉 structure of a flipping set
L ≤ η type of F list of flipping structures

Table 4.1.: Data structures for SCOS decoding.

Algorithm 4.1: InsertList (F)
Input : structure F of a flipping set

1 i = |L|+ 1
2 while i > 1 and F.SE < L [i− 1] .SE do
3 i = i− 1
4 insert F in list L at position i
5 if |L| > η then
6 pop the last element of L

unless otherwise is stated explicitly. We implement the approximated f− function (3.9)
and PM update rule (3.57) to avoid non-linear operations.
A list L containing flipping structures F = 〈E , ME , SE〉 is constructed,5 where E is the set

of flipping indices. Then, ME and SE are the path metric and the score function associated
to the flipping set E , respectively, as defined in (4.1) and (4.2). The size of L is constrained
by a parameter η, e.g., (4.7). Algorithm 4.1 is used to insert a new member into the list and
the members are kept in ascending ordered by their score, i.e., for any pair of i and j such
that 1 ≤ i < j ∈ [η], it holds that L[i].SE ≤ L[j].SE . Given two flipping sets, Algorithm 4.2
finds the decoding stage where the decoder should return, e.g., see Figure 4.1(d). The
Algorithm 4.3 takes a real-valued PM, a binary decision and a real-valued LLR as inputs
and updates the PM using (3.57).

5Observe that the list in Figure 4.1 is slightly different, which was needed for simplicity.
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Algorithm 4.2: FindStartIndex (E , Ep)
Input : current flipping set E and previous flipping set Ep
Output: first different index

1 for i = 1, 2, . . . , N do
2 if (i ∈ E)⊕ (i ∈ Ep) then
3 return i

Algorithm 4.3: CalcPM (m, v, `)
Input : input PM m, hard decision v, LLR `
Output: updated PM

1 if v = HardDec (`) then
2 return m
3 else
4 return m+ |`|

Algorithm 4.4 is a modified SC decoder. Compared to the regular SC decoding (Algo-
rithm A.2), it is modified as follows (highlighted as blue in the pseudo code).

. One can start at any decoding phase istart. The starting index istart is found by
Algorithm 4.2, which returns the first index that differs between the current and
previous flipping sets.

. It keeps updating the PM M (line 13).

. The decisions are flipped at the decoding phases in E (line 6-8).

. The values M[i] and S[i] for i ∈ A, i > maximum (E) (line 10-12).

. If a more likely leaf is found, update û and Mcml (line 19-23).

. If the PM M[i] is larger than Mcml, stop SCDec function and return the current phase
i as iend (line 14-15).

Algorithm 4.5 is the main loop of the proposed SCOS decoder. The metric Mcml is
initialized to +∞. After the initial SC decoding (line 6), Mcml is updated to the PM of
the SC estimate. Then, a tree search is performed, where the candidates are ordered by
their score functions S. Many subtrees are pruned because of the threshold Mcml, i.e., PM
of the current most likely leaf. The stopping condition of the “while loop” (line 10), i.e.,
L = ∅, implies that the most likely codeword is found, i.e., there cannot be any other
codeword with a smaller PM. The estimate corresponding to Mcml is output as the decision.
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Algorithm 4.4: SCDec (istart, E)
Input : start index istart, flipping set E
Output: end index iend

1 for i = istart, . . . , N do
2 recursivelyCalcL (log2 N + 1, i− 1)
3 if i /∈ A then
4 v [i] = 0 // compute v [i] if dynamically frozen
5 else
6 if i ∈ E then
7 v [i] = HardDec (L [log2 N + 1, i])⊕ 1
8 else
9 v [i] = HardDec (L [log2 N + 1, i])

10 if i > maximum (E) then
11 M [i] = CalcPM (M [i− 1] , v [i]⊕ 1, L [log2 N + 1, i])
12 S [i] = M [i] + b [i]

13 M [i] = CalcPM (M [i− 1] , v [i] , L [log2 N + 1, i])
14 if M [i] ≥ Mcml then
15 return i

16 C [log2 N + 1, i] = v [i]
17 if i mod 2 = 0 then
18 recursivelyCalcC (log2 N + 1, i− 1)

19 if M [N ] < Mcml then
20 Mcml = M [N ]
21 for i = 1, 2, . . . , N do
22 û [i] = v [i]
23 return N

Remark. SCOS decoding stores only the flipping set and the corresponding metrics in L.
Alternatively, one may store the memory (see Section 3.4 and Figure 3.9) of all decoding
paths in L as for SCS decoding [71, 110] to prevent node-revisits, which trades memory
requirement for computational complexity. The size of the arrays L and C is then increased
to η × (2N − 1).
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Algorithm 4.5: SCOS
(
`N
)

Input : LLRs `N
Output: estimates û

1 L = ∅, Ep = ∅, Mcml = +∞
2 if non bit-reversed polar code then
3 `N = BitReverse

(
`N
)

4 for i = 1, 2, . . . , N do
5 L [1, i] = `i

6 SCDec (1,∅)
7 for i = 1, 2, . . . , N do
8 if i ∈ A and M [i] < Mcml then
9 InsertList (〈{i}, M [i] , S [i]〉)

10 while L 6= ∅ do
11 〈E , ME , SE〉 = popfirst (L) // pop the first element of L
12 if ME < Mcml then
13 istart = FindStartIndex (E , Ep)
14 iend = SCDec (istart, E)
15 for i = maximum (E) + 1, . . . , iend do
16 if i ∈ A and M [i] < Mcml then
17 InsertList (〈E ∪ {i}, M [i] , S [i]〉)

18 Ep = E

19 return û

4.4. Numerical Results

4.4.1. Comparison with Existing Decoders

This section provides simulation results for biAWGN channels. The complexity is normal-
ized by the complexity of SC decoding. The bias term b for SCOS decoding is precomputed
by DE for every single SNR point. The random coding union bound (RCUB) and meta-
converse bound [83] are plotted as benchmarks. The empirical ML lower bounds of [103]
are also plotted: for SCOS decoding with the largest maximum complexity constraint,
each time a decoding failure occurred the decision ûN was checked. If

M(ûN) ≤M(uN) (4.9)
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Figure 4.3.: SCOS decoding for a (512, 256) polar code with PW construction over biAWGN
channel.

then even an ML decoder would make an error.

The decoding performance of a (512, 256) polar code under SCOS decoding is shown in
Figure 4.3. The polar code is designed by PW (Definition 3.2). The decoding performance
of a (128, 64) RM under SCOS decoding is shown in Figure 4.4. Figure 4.5 shows the
performance of a (128, 64) PAC code [6] under SCOS decoding. The frozen set F is the
same as for an RM code. The polynomial of the convolutional code is given by g =
(0, 1, 1, 0, 1, 1), i.e., we have dynamic frozen bits

ui = ui−2 ⊕ ui−3 ⊕ ui−5 ⊕ ui−6, i ∈ F and i > 6. (4.10)
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Figure 4.4.: SCOS decoding for a (128, 64) RM code over biAWGN channel.

We compare SCOS decoding with SCL [7,103] and SC-Fano [50] decoding. We observe
the following behaviors,

. SCOS decoding with unbounded complexity matches the ML lower bound since it
implements an ML decoder.

. The average complexity E [Λ] of an SCOS decoder approaches the complexity of an
SC decoder at high SNR. Indeed, it reaches the ultimate limit given by Lemma 4.1,
which is not the case for SC-Fano decoding. The difference to the RCUB bound [83]
is at most 0.2 dB for the entire SNR regime for the PAC code in Figure 4.5.

. The lower bound on the average given by (4.6) is validated and is tight for high SNR.
However, the bound appears to be loose at low SNR mainly for two reasons:

(i) Usually the initial SC decoding estimate vN is not the ML decision and some
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Figure 4.5.: SCOS decoding for a (128, 64) PAC code with information set of an RM code and
polynomial g = (0, 1, 1, 0, 1, 1).

extra nodes in the difference set V
(
vN , yN

)
\ V

(
ûNML

(
yN
)
, yN

)
are visited.

(ii) SCOS decoding visits the same node multiple times and this cannot be tracked
by a set definition.

Considering (ii), it may be possible to reduce the number of revisits by improving
the search schedule.

. A parameter ∆ must be optimized carefully for SC-Fano decoding to achieve ML
performance and this usually requires extensive simulations. Setting it small enough
without any bound on the complexity would also practically achieve ML performance;
however, the complexity then explodes for longer codes. As seen from Figure 4.5,
∆ = 1 matches the ML performance, but the average complexity is almost double
that of SC decoding near BLERs of 10−5 or below. Moreover, under a maximum
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complexity constraint, the average complexity of SC-Fano decoding is not closer to
that of SC decoding than SCOS decoding for similar performance.

. The parameter ∆ must be optimized again for a good performance once a maximum
complexity constraint is imposed. Otherwise, the performance degrades significantly.
Even so, SCOS decoding outperforms SC-Fano decoding for the same maximum
complexity constraint. However, SC-Fano decoding has a lower average complexity
for high BLERs (if ∆ is optimized) with a degradation in the performance. In
contrast, SCOS decoding does not require such an optimization.

By applying an outer CRC code, we compare the proposed method with DSCF [16] and
adaptive successive cancellation list (ASCL) [56] decoding in Figure 4.6. The (256, 139)
polar code is designed by PW and the CRC polynomial is g(x) = x11 + x10 + x9 + x5 + 1.
The ASCL decoder starts by performing SCL decoding with list size L = 1. In case none
of the candidates in the output list pass the CRC, the ASCL decoder restarts an SCL
decoder with doubled list size. This decoding process continues until the CRC passes or
the maximum list size Lmax is reached. The worse-case complexity of an ASCL decoder
with maximum list size Lmax is close to an SCL decoder with list size L = 2× Lmax. The
SCOS decoder treats the CRC-aided polar codes as polar codes with dynamic frozen bits,
i.e., the last 11 bits in uN are dynamically frozen with the CRC constraints.
In Table 4.2, we compare the following details of the decoders:

. Worse-case complexity: The worse-case complexity is given by the maximum number
of node-visits in the decoding tree.

. Space complexity: We consider only the most critical matrix containing the soft
information (2-D array L). By using the structure proposed in [103], the memory
requirement of an SC decoder is reduced from N · (log2 N + 1) to 2N − 1. An
SCL decoder needs memory L · (2N − 1). Because the SCOS and SC-Fano decoders
allow moving backward, the structure in [103] does not work. Thus, the memory
requirement of an SCOS or SC-Fano decoder is approximately 1

2 log2 N times higher
than for an SC decoder.

. Decoding latency: The decoding latency describes the required number of time steps
assuming all parallelizable operations are done at the same time step. The SC and
SCL decoders have stable decoding latencies. The SCOS, DSCF, ASCL and SC-Fano
decoders have variable latency since they restart the decoder multiple times or allow
to move back to an earlier decoding phase.
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Figure 4.6.: SCOS decoding for a (256, 128 + 11) polar code with 11 bits CRC (generator poly-
nomial g(x) = x11 + x10 + x9 + x5 + 1) designed by PW over biAWGN channel.

4.4.2. Bias Term Robustness

Consider the bias terms b given in (4.8), which impacts the search priority but not the
performance. This means that a suboptimal bias term does not change the performance
of SCOS decoding with unbounded complexity (which is still ML decoding), but increases
its complexity. Figure 4.7 illustrates the effect of various bias terms, outlined below, on
the performance of SCOS decoding.

. The bias terms are computed via (4.8) using density evolution for each SNR point.

. The bias terms are set to zero, i.e., b [i] = 0, i ∈ [N ].

As mentioned earlier, the changes in the bias terms do not affect the performance if there is
no complexity constraint. The reduction in the complexity is also limited for the considered
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Worst-case complexity Space complexity Decoding latency
SC N 2N − 1 fixed

SCL (L) λSCL (L,A) L · (2N − 1) fixed
DSCF (α, Tmax) (Tmax + 1) ·N 2N − 1 varying
ASCL (Lmax)

∑log2 Lmax
i=0 λSCL (2i,A) Lmax · (2N − 1) varying

SC-Fano (∆, λmax) λmax N · (log2 N + 1) varying
SCOS (λmax) λmax N · (log2 N + 1) varying

Table 4.2.: Comparison among polar decoders.

case when (4.8) is used instead of setting the bias terms to zero. Nevertheless, setting them
to zero causes a small degradation in the performance (approximately 0.12 dB) when the
maximum complexity is constraint to five times that of SC decoding with almost no savings
in the average complexity. Hence, we conclude that SCOS decoding is not very sensitive
to the choice of the bias terms.

4.5. Further Improvements

Via Monte Carlo simulation, one can approximate the PDF of the PM for the transmitted
message at a given SNR by using genie-aided SC decoding [5].6 Figure 4.8 provides the
PDF for the case of the (128, 64) PAC code at SNR = 3.5 dB. We have

Pr
(
M
(
uN
)
> ζ

)
≈


0.0217, if ζ = 25
0.0003, if ζ = 35

0, if ζ = 50.
(4.11)

Observe, for instance, that we have Pr
(
M
(
uN
)
> 50

)
≈ 0. This means that, if the

decoder discards the paths having PMs larger than 50, the performance degradation is
negligible while providing savings in the computational complexity. Such a modification
is relevant, in particular, for the case where a maximum complexity constraint is imposed
to SCOS decoding. In this case, unnecessary node-visits drains the budget and leads to a
suboptimal decision more often. In addition, such a threshold test enables the decoder to

6Note that M
(
uN
)
is a RV where the source of randomness is the channel output. Since we consider

symmetric B-DMCs and a linear code with uniform distribution, the PDF ofM
(
uN
)
could be approx-

imated with an all zero codeword assumption.
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Figure 4.7.: SCOS decoding with various bias terms and maximum complexity constraints for a
(128, 64) PAC code with RM construction and polynomial g = (0, 1, 1, 0, 1, 1) over
biAWGN channel.

reject a decision when it is not reliable enough, which reduces the number of undetected
errors if the threshold is carefully optimized (see, e.g., [34]).
In the following, we modify SCOS decoding by setting a maximum PM Mmax, which

forces the decoder to consider paths with PMs lower than Mmax. This modification is
provided as Algorithm 4.6. We choose Mmax heuristically so that

Pr
(
M
(
uN
)
> Mmax

)
≈ target BLER. (4.12)

Figure 4.9 compares the performance and the complexity of the modified algorithm to
those of the conventional one, where the former outperforms the latter by approximately
0.25 dB with the same maximum complexity constraint λmax = 5N ifMmax = 35 via (4.12).
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Figure 4.8.: Empirical PDF (from 107 samples) of the M
(
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)
for a (128, 64) PAC code with

RM construction and polynomial g = (0, 1, 1, 0, 1, 1) over a biAWGN channel at
SNR = 3.5 dB. The blue line is with a genie-aided SC decoder [5] with the exact f−
operation (3.5) and PM update rule (3.56). The red line is with a genie-aided SC
decoder with approximated f− operation (3.9) and PM update rule (3.57).

Note also that their average complexity, which is provided here in the linear scale, is very
similar.
For a given threshold Mmax, we define a binary RV Ω as

Ω = 1

{
M(ûN) ≤Mmax

}
(4.13)

where the indicator function 1{·} equals 1 if the proposition is true and 0 otherwise. The
proposition of the indicator function (4.13) reads as “the modified SCOS decoding finds
an estimate ûN with a PM smaller than Mmax”. Then, the undetected error probability of
the algorithm is given as

Pr
(
ÛN 6= UN ,Ω = 1

)
. (4.14)

Observe that the overall error probability is equal to the summation of detected and
undetected error probabilities, i.e., we have

Pr
(
ÛN 6= UN

)
=

∑
ω∈{0,1}

Pr
(
ÛN 6= UN ,Ω = ω

)
(4.15)

which simply follows from the law of total probability. The parameter Mmax controls the
BLER and undetected block error rate (uBLER) tradeoff [34, 44]. In particular, (4.14)
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Algorithm 4.6: SCOS with maximum PM
(
`N ,Mmax

)
Input : input LLRs `N , Mmax
Output: output vector û, decoding state ω

1 L = ∅, Ep = ∅, Mcml = Mmax, ω = 0
2 if non bit-reversed polar code then
3 `N = BitReverse

(
`N
)

4 for i = 1, 2, . . . , N do
5 L [1, i] = `i

6 iend = SCDec (1,∅)
7 if iend = N then ω = 1
8 for i = 1, 2, . . . , N do
9 if i ∈ A and M [i] < Mcml then

10 InsertList (〈{i}, M [i] , S [i]〉)

11 while L 6= ∅ do
12 〈E , ME , SE〉 = popfirst (L)
13 if ME < Mcml then
14 istart = FindStartIndex (E , Ep)
15 iend = SCDec (istart, E)
16 if iend = N then ω = 1
17 for i = maximum (E) + 1, . . . , iend do
18 if i ∈ A and M [i] < Mcml then
19 InsertList (〈E ∪ {i}, M [i] , S [i]〉)

20 Ep = E

21 return û, ω

becomes equal to the left-hand side of (4.15) if Mmax =∞. Figure 4.10 illustrates that the
(128, 64) PAC code under modified SCOS decoding provides simultaneous gains in overall
BLER as well as in uBLER compared to a (128, 71) polar code concatenated with a CRC-7,
resulting in a (128, 64) overall code, under SCL decoding with L = 16 at high SNR regime.
Furthermore, it outperforms the DSCF decoding with the maximum Tmax = 70 bit flips
although with a small increase in the average complexity.
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Figure 4.9.: Modified SCOS decoding with various maximum PMs and a fixed maximum com-
plexity constraint for a (128, 64) PAC code with RM construction and polynomial
g = (0, 1, 1, 0, 1, 1) over biAWGN channel.
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Figure 4.10.: BLER and uBLER of modified SCOS decoding for a (128, 64) PAC code with RM
construction and polynomial g = (0, 1, 1, 0, 1, 1) compared to SCL and DSCF de-
coding for a (128, 64 + 7) polar code designed by PW with 7 bits CRC (generator
polynomial g(x) = x7 + x6 + x5 + x2 + 1).





5
Polar-Coded IR-HARQ

5.1. Problem Statement

Many communication channels are time-varying and unknown to the transmitter. A HARQ
method combines error correction and automatic repeat request (ARQ) error-control.
HARQ is usually classified as Chase combining (CC) or incremental redundancy (IR),
depending on whether the retransmitted bits are the same as the first transmission or not.

. CC-HARQ has each retransmission send the same coded bits as the first transmission.
Received packets are combined before they are fed to the channel decoder. CC thus
increases the received SNR but does not provide coding gain.

. IR-HARQ is shown in Figure 5.1 and transmits new redundancy (usually in the form
of new redundant constraints) until the information bits can be reconstructed. The
receiver combines its received symbols with previous transmissions.

IR generally achieves higher throughput than CC. For example, let RIR and RCC be
the IR-HARQ and CC-HARQ rates, respectively, and let SNRi be the SNR of the i-th
transmission. For AWGN channels we have

RIR =
∑
i

log2 (1 + SNRi) = log2

(∏
i

[1 + SNRi]
)

≥ log2

(
1 +

∑
i

SNRi

)
= RCC. (5.1)

In a IR-HARQ system, the decoder receives nt bits from the t-th transmission and then
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1st Transmission 2nd Transmission · · · t-th Transmission · · ·

n1 n2 nt

1st decoding

2nd decoding

t-th decoding

Figure 5.1.: IR-HARQ: Each transmission contains new redundancy.

decodes a
(∑t

q=1 nq, k
)
code. Using an error detection outer code (e.g., CRC code), the

receiver may detect a decoding failure, in which case it requests the (t+ 1)-st transmission
from the sender. IR-HARQ solutions are mostly based on turbo or LDPC codes. Turbo
codes have a low rate mother code and are thus suitable for IR-HARQ when combined
with puncturing. The coding scheme for eMBB in 5G uses protograph-based, Raptor-like
LDPC codes [17] that allow flexible adaptation of the block length and code rate. The
standard defines two base matrices for different operating regimes.

5.2. Existing Schemes of Polar-Coded IR-HARQ

5.2.1. Incremental Freezing

Polar codes with incremental freezing (IF) are proposed in [46,58]. The main idea is as fol-
lows. Transmit a (n1, k) polar codeword c[1]n1 . When retransmission occurs, transmit the
k′ least reliable message bits with an (n2, k

′) polar codeword c[2]n2 in the next transmission.
After the second transmission one decodes the (n2, k

′) code and the first code successively.
Note that the first code becomes a (n1, k − k′) code with the estimate of the least reliable
message bits. For the third transmission (if needed), transmit the k′′ least reliable message
bits of both the (n1, k − k′) and the (n2, k

′) codewords. The retransmissions are continued
in this manner until decoding is successful. An example is shown in Figure 5.2.
The nesting property implies that for infinite code lengths we have

At ⊆ At−1 (5.2)

where At denotes the information set of the code c[t]nt . Thus, this scheme achieves capac-
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1st decoding û[1]8 0 0 ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6

2nd
decoding

û[2]8

û[1]8

0 0 0 0 0 ŵ1 ŵ2 ŵ3

0 0 ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6

3rd
decoding

û[3]8

û[2]8

û[1]8

0 0 0 0 0 0 ŵ1 ŵ4

0 0 0 0 0 ŵ1 ŵ2 ŵ3

0 0 ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6

1st encoding & transmission

2nd encoding & transmission

3rd encoding & transmission

u[1]8

c[1]8 = u[1]8F⊗3
0 0 w1w2w3w4w5w6

u[2]8

c[2]8 = u[2]8F⊗3
0 0 0 0 0 w1w2w3

u[3]8

c[3]8 = u[3]8F⊗3
0 0 0 0 0 0 w1w4

Figure 5.2.: Polar codes with IF, k = 6, n1 = n2 = n3 = 8. Suppose the ascending reliability
order of indices is 1, 2, 3, 5, 4, 6, 7, 8. After the t-th transmission, t polar codes are
decoded successively. Only the blue bits are treated as message bits at the decoder.

ity [58] asymptotically.

Note that this scheme is equivalent to dividing the
(∑t

q=1 nq, k
)
code into t separate

polar codes and decoding them successively. This causes a large performance degradation
for finite block lengths. For example, after the second transmission in Figure 5.2 the
receiver decodes two separate (8, 3) codes successively instead of one (16, 6) code.

5.2.2. Polar Extension

The authors of [62] propose polar extension (PE). Consider the first transmission with an
(n, k) polar codeword c[1]n with information set A1. For retransmission, one uses a (2n, k)
polar codeword c[2]2n with information set A2:

c[1]n = u[1]nF⊗ log2 n

c[2]2n = u[2]2nF⊗ log2 n+1.
(5.3)

Let A−2 and A+
2 be the information sets of u[2]n and u[2]2nn+1, respectively:

A−2 = {i : i ∈ [n], i ∈ A2}
A+

2 = {i : i ∈ [n], i+ n ∈ A2} .
(5.4)
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We have
∣∣∣A−2 ∣∣∣+ ∣∣∣A+

2

∣∣∣ = |A2| = |A1| . (5.5)

Let A+
2 be a subset of A1 and set u[2]2nn+1 = u[1]n. Then copy the bits u[1]A1\A+

2
to u[2]A−2 :

u[2]2nn+1 = u[1]n

u[2]A−2 = u[1]A1\A+
2

u[2]i = 0, i ∈ [n] \ A−2 .

(5.6)

For the structure in Figure 3.3, the second half of the codeword c[2]2n is

c[2]2nn+1 = u[2]2nn+1F
⊗ log2 n = u[1]nF⊗ log2 n = c[1]n (5.7)

which was already transmitted. Thus, only the first half of the codeword c[2]2n is encoded
and transmitted in the second transmission, i.e., we have

c[2]n = u[2]nF⊗ log2 n ⊕ c[1]n. (5.8)

After the second transmission, the receiver concatenates the channel output from both
transmissions to obtain the noisy version of the codeword c[2]2n =

(
c[2]n, c[2]2nn+1

)
. We

decode u[2]2n =
(
u[2]n, u[2]2nn+1

)
= (u[2]n, u[1]n) with dynamic frozen bits

u[1]A1\A+
2

= u[2]A−2 . (5.9)

This extension is repeated until the decoding is successful. An example is shown in Fig-
ure 5.3.

Compared with IF, PE has better performance by decoding a
(∑t

q=1 nq, k
)
code instead

of t separate codes, see Figure 5.4. However, PE is not flexible because the packet length
must be the same as the sum of all previous transmissions, i.e., one requires

nt =
t−1∑
q=1

nq = 2t−2n1, t = 2, 3, . . . (5.10)
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(a) 1st Transmission

+
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+
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+

w3

w2

w1

0

w1

0
0
0

c[2]8 = c[1]4

c[2]7 = c[1]3

c[2]6 = c[1]2

c[2]5 = c[1]1

c[2]4

c[2]3

c[2]2

c[2]1

(b) 2nd Transmission

Figure 5.3.: Polar codes with PE, k = 3, n1 = n2 = 4. We assume that A1 = {2, 3, 4} and
A2 = {4, 7, 8}. Only the bits in the dashed box are transmitted. The red bits
are message bits, while the blue bits are statically or dynamically frozen. After the
second transmission, the receiver concatenates the channel output to obtain the noisy
version of c[2]8. c[2]8 is now a codeword of an (8, 3) polar code with dynamic frozen
bits u6 = u4.

Theorem 5.1. The PE scheme achieves capacity asymptotically in the following sense:
for any integer t ≥ 1, if the capacity of the channel satisfies

k

2tn1
≤ C <

k

2t−1n1
(5.11)

then PE achieves a rate of k/(2tn1) reliably, where n1 is a power of two.

Remark. Similar to IF [58, Section 2.C], PE is not truly capacity-achieving in the sense of
achieving arbitrary rate.

5.3. Variable-Length Polar Extension

We proposed variable-length polar extension (VLPE) based on QUP in [125]. The scheme
generalizes PE and supports any packet length. We show that a QUP polar code punctured
from long mother codes does not introduce more encoding and decoding complexity.

Theorem 5.2. Let k ≤ n. An (n, k,N) QUP polar code has the first N − n bits of uN

are frozen.
Proof. Consider the single level mutual information evolution in Figure 3.7. We have

I− + I+ = I1 + I2 (5.12)
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1st decoding, PE
1st decoding, IF

2nd decoding, PE
2nd decoding, IF
3rd decoding, PE
3rd decoding, IF

Figure 5.4.: Comparison of IF and PE over biAWGN channels with SC decoding and k =
768, n1 = n2 = 1024, n3 = 2048. The polar codes are constructed via GA for
{5, 1,−3} dB for the 1st, 2nd and 3rd transmissions, respectively.

where I− ≤ min{I1, I2} and I+ ≥ max{I1, I2}. As mutual information is non-negative, we
have

I− = 0, if I1 = 0 or I2 = 0 (5.13)

i.e., the channels with zero capacity are propagated to lower indices. With QUP we have

I (Ci;Yi) = 0, i ∈ [N − n] . (5.14)

The recursive structure of F⊗ log2 N implies that the zeros will propagate through the
transform which gives

I
(
Ui;Y N

∣∣∣U i−1
)

= 0, i ∈ [N − n] . (5.15)

�

Corollary 5.3. All (n, k, 2jN) QUP polar codes have the same encoding and decoding
complexity as (n, k,N) QUP polar codes, where N = 2dlog2 ne and j ∈ N.

Proof. We start with j = 1. We have N > n > k. More than N bits are punctured, i.e.,
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size-N
SC decoder

+

+

...

...

` (c1)
...

` (cN)

` (cN+1)
...

` (c2N)

0N

`+

size-2N SC decoder

Figure 5.5.: Equivalence of (n, k) QUP polar codes punctured from mother code length N and
2N .

2N − n > N . As a result of Theorem 5.2, the uN are all frozen.
The encoder has c2N = (c− ⊕ c+, c+), where

c− = uNF⊗ log2N = 0N

c+ = u2N
N+1F

⊗ log2 N .
(5.16)

We only need to compute the (n, k,N) QUP polar codeword c+ and transmit the last n
bits of c+.
The decoder for (n, k, 2N) QUP polar codes is shown in Figure 5.5. According to the

SC decoding in Algorithm 3.1, we first decode c− and then decode c+ based on ĉ−. We
have

` (ci)
(a)= 0, i ∈ [N ]

c−i
(b)= 0, i ∈ [N ]

(5.17)

where (a) follows by puncturing and (b) follows because the uN are all frozen. The input
of the decoder for c+ is

`+
i = f+ (0, ` (cN+i) , 0) = ` (cN+i) , i ∈ [N ]. (5.18)

Thus for (n, k, 2N) QUP polar codes, we only need to run the decoder for c+ with input
` (cN+i) , i ∈ [N ].
The same idea extends the corollary to the mother code of length 2jN, j > 1. �

Hence, we use (n, k) to describe a
(
n, k, 2dlog2 ne+j

)
QUP polar code for any j ∈ {0,N}.
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Algorithm 5.1: VLPE: Design the t-th transmission via GA
Input : message length k, mother code length N ,

t-th packet length nt,
previous packet length n′t = ∑t−1

q=1 nq,
design mutual information It,
previous information set A′t = ⋃t−1

q=1Aq and frozen set F ′t = ⋃t−1
q=1Fq

Output: information set At, frozen set Ft,
dynamic frozen constraint

1 Estimate probabilities pi (3.36) via GA.
2 Set pF ′t = 1. // the frozen bits from previous transmissions must be frozen
3 Find k smallest pi and put their indices in At. Frozen set is Ft = ⋃t

q=1 Iq \ At.
4 if t 6= 1 then
5 Dynamic frozen constraint is given by uA′t\At = uAt\A′t .
6 return At, Ft, uA′t\At = uAt\A′t

5.3.1. Detailed Description

Suppose the IR-HARQ system is designed for a maximum of tmax transmissions. Let the
length of a mother polar code be

N = 2
⌈

log2

(∑tmax
q=1 nq

)⌉
(5.19)

where nq is the length of the q-th transmission. In the proposed scheme, a
(∑t

q=1 nq, k
)

QUP polar code is decoded after the t-th transmission. The main structure of the algo-
rithm is shown in Figure 5.6 and Algorithm 5.1. The coded bits cIt are sent in the t-th
transmission, where

It =

N −
t∑

q=1
nq + 1, . . . , N −

t−1∑
q=1

nq

 (5.20)

and At and Ft are the information and frozen sets of the
(∑t

q=1 nq, k
)
QUP polar code after

the t-th transmission, respectively. The dynamic frozen constraint is used for encoding and
decoding:

. The encoder copies the information bits to the extended part, i.e., uAt\A′t = uA′t\At .

. The decoder dynamically freezes the bits in uA′t\At , i.e., ûA′t\At = ûAt\A′t .

Note that At ∪ Ft = ⋃t
q=1 Iq. The first N −∑t

q=1 nq bits are frozen to zero (as a result
of Theorem 5.2) but their indices are neither in At nor Ft.
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F⊗ log2 N

n1

n2

...

ntmax

I1

I2

Itmax

...

Figure 5.6.: Proposed VLPE scheme.

For the first transmission (t = 1), the code is simply a QUP polar code. For t ≥ 1, the
codes are extended from previous codes with dynamic frozen bits. The frozen bits must be
frozen for all extensions, while the message bits could to converted to dynamic frozen bits
in the extensions. Because F⊗ log2 N is a lower triangular matrix, the bits in cNi+1 are not
changed by adjusting the bit ui. The vector cIt is transmitted in the t-th transmission.

Example 5.1. Consider k = 5, n1 = 7 and n2 = 5. The message bits are w5. The
mother code length is N = 2dlog2(n1+n2)e = 16 and we have I1 = {10, 11, 12, 13, 14, 15, 16},
I2 = {5, 6, 7, 8, 9}.

. For the first transmission, we find A1 = {12, 13, 14, 15, 16} for the (7, 5, 16) QUP
polar code. We precode u16 withuA1 = w5

ui = 0, if i ∈ [N ], i /∈ A1.
(5.21)

After the transform c16 = u16F⊗4, the last 7 bits cI1 = c16
10 are transmitted.
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. For the second transmission, we find A2 = {8, 12, 14, 15, 16} for the (12, 5, 16) QUP
polar code. We adjust u16 with

uA2\A1 = uA1\A2 (5.22)

which is u8 = u13 in this example. We perform the transform1 c16 = u16F⊗4 and
transmit cI2 = c9

5.

Because F⊗4 is a lower triangular matrix, adjusting u8 = 0 to u8 = u13 does not change
cI1 = c16

10. The receiver decodes the (12, 5, 16) QUP polar code from the noisy version of
c16

5 . Note that u13 is now a dynamic frozen bit û13 = û8. In this example, the QUP polar
codes with optimal information set are decoded after every single transmission by using
all the received information.

This scheme is equivalent to PE in [62] if n1 is a power of two and nt = 2t−2n1, t =
2, 3, . . . , tmax.

5.3.2. Design Examples and Numerical Results

As discussed in Section 5.3.1, the frozen bits must be frozen for the future extensions
(line 2 in Algorithm 5.1). We cannot guarantee that the polar code designed by VLPE
is an optimal QUP polar code, since some of the reliable bits could be frozen in previous
transmissions.
In Figure 5.7, Figure 5.8 and Figure 5.9, the performances of VLPE over biAWGN

channels with short, moderate and long packet lengths are shown. The polar codes are
designed via GA and are decoded with SC. The

(∑t
q=1 nq, k

)
QUP polar codes (dashed

curves) serve as a reference and cannot be used for an IR-HARQ scheme. The simulation
results show that the polar codes of VLPE are close to the optimal QUP polar codes.
Now consider 2m-ary modulation over real valued AWGN channels Y = X + Z with

uniform distribution, i.e., we have

X = {±1∆,±3∆,± (2m − 1) ∆}

PX(x) = 1
2m , ∀x ∈ X ,

(5.23)

where Z ∼ N (0, σ2) and ∆ is a scaling factor to adjust the transmission power. The SNR
is Es/N0 = E [X2] /σ2.

1Practically, we do not have to perform the full transform F⊗4 because we know that uI1 and cI1 will
not be changed.
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2nd decoding

(250, 160) QUP
3rd decoding

(300, 160) QUP
4th decoding

(350, 160) QUP

Figure 5.7.: VLPE over biAWGN channel with SC decoding, k = 160, n1 = 200, n2 = n3 = n4 =
50. The design SNR is {6, 4, 3, 2} dB for the 1st to 4th transmission, respectively.

The (nc,m, k) QUP-MLPC consists of m component QUP polar codes of length nc.
Multilevel VLPE is an extension of VLPE for higher-order modulation based on QUP-
MLPC. In Figure 5.10, Figure 5.11 and Figure 5.12, the performances of multilevel VLPE
with SP labeling over AWGN channels with short, moderate and long packet lengths are
shown. The codes are designed via a surrogate channel based GA and are decoded with SC.
The

(∑t
q=1 nc,q,m, k

)
QUP-MLPC curves (dashed) serve only as a reference and cannot

be used for an IR-HARQ scheme. The simulation results show that the multilevel VLPE
after every single transmission performs very close to optimal QUP-MLPC.
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Figure 5.8.: VLPE over biAWGN channel with SC decoding, k = 700, n1 = 800, n2 = n3 =
n4 = 100. The design SNR is {7, 5.5, 4.5, 4} dB for the 1st to 4th transmissions,
respectively.
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4th decoding
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Figure 5.9.: VLPE over biAWGN channel with SC decoding, k = 1500, n1 = 2000, n2 = n3 =
n4 = 1000. The design SNR is {5, 2, 0,−1} dB for the 1st to 4th transmissions,
respectively.
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3rd decoding
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4th decoding
(180, 3, 270) QUP-MLPC

Figure 5.10.: VLPE over AWGN channel with 8-ASK modulation and SC decoding, k =
270, nc,1 = 120, nc,2 = nc,3 = nc,4 = 20. The design SNR is {16, 14, 13, 11} dB for
the 1st to 4th transmissions, respectively.
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3rd decoding
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4th decoding
(700, 3, 900) QUP-MLPC

Figure 5.11.: VLPE over AWGN channel with 8-ASK modulation and SC decoding, k =
900, nc,1 = 400, nc,2 = nc,3 = nc,4 = 100. The design SNR is {16, 13, 11, 10} dB for
the 1st to 4th transmissions, respectively.
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Figure 5.12.: VLPE over AWGN channel with 8-ASK modulation and SC decoding, k =
3000, nc,1 = 1400, nc,2 = nc,3 = nc,4 = 200. The design SNR is
{15, 13, 11.5, 10.5} dB for the 1st to 4th transmissions, respectively.



6
Polar-Coded Channel Estimation

The main results of this chapter appear in [122] and we add more details to help understand
the performance of the proposed polar-coded channel estimation (PCCE) scheme.
The communication setting where channel state information (CSI) is not available at

the transmitter or receiver is known as non-coherent communication [11, Section 10.7]. A
common approach to address the lack of CSI is to embed pilot symbols in the transmitted
symbol string, have the receiver estimate the CSI based on the pilots, and use the esti-
mated CSI to decode. This approach is called pilot-assisted transmission (PAT) [109] with
mismatched decoding [38, Exercise 5.22], [55, 68,96,105,106].
PAT has two disadvantages for short block lengths: mismatched decoding reduces reli-

ability and pilot symbols reduce rate significantly at low to moderate SNR [29,61,80,105,
106]. Both problems can be partially mitigated with sophisticated signal processing. For
instance, one may use iterative channel estimation and decoding [24,42,43,51,69,79,119],
or two-stage algorithms that consider pilot symbols as part of the codebook [19, 120], or
even ML decoding. Nevertheless, there is a fundamental performance degradation due to
using pilot symbols [80].
We propose a PCCE scheme and then a pilot-free two-stage polar-coded transmission

scheme [122] to jointly estimate the CSI and data with an adjustable complexity that
can be made comparable to PAT. In the first stage, SCL decoding and the polar code
constraints are used to estimate the CSI. In the second stage, mismatched SCL decoding
proceeds with with this estimate. Gains of up to 2 dB are shown at a BLER of 10−4 as
compared to classic PAT schemes for several non-coherent settings.
A related method to estimate CSI uses the parity-check constraints of a LDPC code [47].
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However, SCL decoding of polar codes naturally provides soft estimates of frozen bits.
Moreover, polar codes are usually used with a high rate outer code [1, 103] that can re-
solve CSI ambiguities, e.g., the phase ambiguity when using quadrature phase-shift key-
ing (QPSK) and Gray labeling [47]. Of course, one may consider outer codes for LDPC
codes as well. Other low-complexity methods for non-coherent channels are described in,
e.g., [20, 47, 67, 89, 116]. We remark that our focus is on QPSK but the ideas extend to
higher-order modulations. One may also combine PAT and PCCE to optimize perfor-
mance.

6.1. System Model

Consider a scalar block fading channel, i.e., the fading coefficient H is constant for nb

channel uses and changes independently across t coherence blocks, resulting in a frame
size of nc = nbt symbols. The channel output of the i-th coherence block is

yi = hixi + zi, i ∈ [t] (6.1)

where xi ∈ X nb and yi ∈ Cnb are the transmitted and received vectors, hi ∈ C is a
realization of H, and zi is an AWGN vector whose entries are i.i.d. as CN (0, 2σ2). Neither
the transmitter nor the receiver knows hi or even the probability distribution of H. We
assume that the noise variance 2σ2 is known to the receiver; this may be justified by the slow
time scale of receiver device variations as compared to fading due to mobility. A vector
without subscripts denotes a concatenation of vectors or scalars, e.g., y = (y1, . . . ,yt),
x = (x1, . . . ,xt) and h = (h1, . . . , ht).

Consider QPSK with Gray labeling (see Figure 6.1). The input alphabet is X =
{±∆± j∆}, ∆ > 0, and we map the binary vector c2m to xm ∈ Xm via fmod : {0, 1}2m 7→
Xm as

fmod
(
c2m

)
= (fQPSK(c1, c2), fQPSK(c3, c4), . . . , fQPSK(c2m−1, c2m)) (6.2)

where fQPSK (c1, c2) = (−1)c1∆ + j(−1)c2∆. The mapping (6.2) is symmetric, i.e., if
fmod (c2m) = x then fmod

(
c2m

)
= −x, where cm denotes the bit-flipped version of cm,

i.e., cm = (c1, . . . , cm) = (c1 ⊕ 1, . . . , cm ⊕ 1). The receiver of a block-wise non-coherent
channel is described in Figure 6.2.
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Figure 6.1.: QPSK with Gray labeling.
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Figure 6.2.: Receiver structure.

6.1.1. Mismatched Log-Likelihood Ratios

Consider one symbol x = fQPSK (c1, c2) and the channel output y from the channel (6.1).
Suppose first that the channel coefficient h is known to the receiver. The receiver can then
form

ỹ = 1
h
y = h∗

|h|2
y = x+ z̃ (6.3)

where Z̃ ∼ CN (0, 2σ2/|h|2). The LLRs for bits c1 and c2 are

` (c1) = log pY |C1,H(y|0, h)
pY |C1,H(y|1, h) = 2∆<(y h∗)

σ2

` (c2) = log pY |C2,H(y|0, h)
pY |C2,H(y|1, h) = 2∆=(y h∗)

σ2 .

(6.4)
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nb = np + nd np nd

nc = nbt

Figure 6.3.: PAT frame structure with t = 2 coherence blocks. Dark and white boxes represent
pilot and coded symbols, respectively.

Suppose now that the channel coefficient is estimated as ĥ. The mismatched LLRs based
on (6.4) are

log pY |C1,H(y|0, ĥ)
pY |C1,H(y|1, ĥ)

= 2∆<(y ĥ∗)
σ2

log pY |C2,H(y|0, ĥ)
pY |C2,H(y|1, ĥ)

= 2∆=(y ĥ∗)
σ2 .

(6.5)

6.1.2. Pilot-Assisted Transmission

Consider PAT as shown in Figure 6.3 where the first np symbols in coherence block i are
pilot symbols xp,i and the remaining nd = nb − np symbols xd,i are coded, i.e., we have

xi = (xp,i,xd,i) , i ∈ [t]. (6.6)

The pilot and coded symbols have the same energy. Upon observing the channel output
yi = (yp,i,yd,i), the ML estimate of the CSI based on yp,i is

ĥi = argmax
h

pY |XH (yp,i |xp,i, h) =
yp,i · xH

p,i

xp,i · xH
p,i
. (6.7)

A mismatched decoder uses ĥ = (ĥ1, . . . , ĥt) to compute the LLRs that are fed to the
decoder that puts out a codeword estimate.

6.2. Joint Channel Estimation and Decoding

This section presents a low-complexity joint channel estimation and decoding scheme for
polar codes. We do not use pilot symbols, i.e., we have np = 0 and xi = xd,i. A random
interleaver Π permutes the encoded bits c and is followed by the mapping (6.2). The
channel model is (6.1). Let hi = rie

jθi where ri ∈ [0,∞) and θi ∈ [0, 2π), i ∈ [t].



6.2. Joint Channel Estimation and Decoding 75

We use the codebook for channel estimation, i.e., for polar codes with the code constraint
UF = 0 we have

ĥ = argmax
h

pY |UFH (y |0, h) . (6.8)

However, for phase-shift keying (PSK) we simplify the estimation by separately estimating
ri = |hi|. For a single coherence block, the received power is approximately the sum of the
(received) signal power and the noise power, i.e., we have

1
nb

yi · yH
i = 1

nb

nb∑
k=1
|yi,k|2 ≈ |hi|2

(
2∆2

)
+ 2σ2 (6.9)

where the approximation becomes more accurate as nb grows by the law of large numbers.
Hence, we estimate the ri as

r̂i = 1√
2∆
·
√

1
nb

(yi · yH
i )− 2σ2, i = 1, . . . , t. (6.10)

Let β be a number of input bits used for channel estimation, and let Aβ = A ∩ [β] and
Fβ = F ∩ [β] be sets of information and frozen indices, respectively, among the first β
input bits uβ. We use the polar code constraints to estimate the phase as

{
θ̂1, . . . , θ̂t

}
= argmax
{θ1,...,θt}

pY |UFβH
(
y
∣∣∣0, ĥ)

= argmax
{θ1,...,θt}

∑
vAβ

pY UAβ |UFβH
(
y, vAβ

∣∣∣0, ĥ) (6.11)

where ĥi = r̂ie
jθi , i ∈ [t]. The sum in (6.11) can be computed by SCL decoding up

to decoding stage β with a list size Le = 2|Aβ |. To reduce complexity at the expense
of accuracy, one can approximate the calculation with SCL decoding and Le satisfying
1 ≤ Le < 2|Aβ |. In fact, simulations in Section 6.3 show that small list sizes such as Le = 8
give BLER curves close to those of the coherent receiver.

Remark. The search space in (6.11) grows exponentially in the number of diversity branches
t. There are several approaches to reduce complexity and we consider only the symmetry
of the likelihood function due to the channel (6.1) and mapping (6.2) that halves the search
space. We further adopt a coarse-fine search [47,88] as an efficient optimizer.
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Lemma 6.1. Polar-coded QPSK with the mapping (6.2) over the channel (6.1) has a sign
ambiguity for the channel coefficients, i.e., for all y, h and vN−1, we have

pY |UH
(
y
∣∣∣(vN−1, 0

)
,h
)

= pY |UH
(
y
∣∣∣(vN−1, 1

)
,−h

)
. (6.12)

Proof. For all x, y, h and s ∈ {−1,+1}t, we have

pY |XH (y |x,h) =
t∏
i=1

pY i|XiHi
(yi |sixi, sihi ) (6.13)

as s2
i = 1. Recall that cN = Π−1

(
f−1

mod(x)
)
so that cN = Π−1

(
f−1

mod(−x)
)
. By choosing

si = −1, i ∈ [t], we have

pY |CH (y |c,h) = pY |CH (y |c,−h) . (6.14)

Let vN be the vector such that cN = vNF⊗ log2N . We have

cN =
(
vN−1, vN ⊕ 1

)
F⊗ log2N (6.15)

because the last row of F⊗ log2N is all ones. �

Lemma 6.1 implies that if a polar code is considered for (6.1) then the decoder cannot
resolve the ambiguity on bit vN . This ambiguity occurs for any binary linear block code
that has a generator matrix with an all ones row, which is reflected in the bit vN for polar
codes.

Theorem 6.2. Polar-coded QPSK with the mapping (6.2) over the channel (6.1) satisfies

pY |UFβH (y |0,h) = pY |UFβH (y |0,−h) (6.16)

pY |U iH
(
y
∣∣∣vi,h) = pY |U iH

(
y
∣∣∣vi,−h) (6.17)

for all y, h, β ∈ [N − 1] and vi, i ∈ [N − 1].

Proof. For i ∈ [N − 1], we have

pY |U iH
(
y
∣∣∣vi,h) (a)=

∑
vNi+1

PUNi+1

(
vNi+1

)
pY |UNH

(
y
∣∣∣vN ,h) (6.18)

(b)=
∑
vN−1
i+1

PUN−1
i+1

(
vN−1
i+1

) [∑
vN

1
2pY |UNH

(
y
∣∣∣vN ,h)] (6.19)
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Figure 6.4.: PCCE for a (128, 38) polar code with a PW construction over a single block fading
channel (t = 1) at 2 dB. θ1 = π.

(c)=
∑
vN−1
i+1

PUN−1
i+1

(
vN−1
i+1

) [∑
vN

1
2pY |UNH

(
y
∣∣∣vN ,−h)] (6.20)

(d)=
∑
vNi+1

PUNi+1

(
vNi+1

)
pY |UNH

(
y
∣∣∣vN ,−h) (6.21)

= pY |U iH
(
y
∣∣∣vi,−h) (6.22)

where step (a) follows by the law of total probability and the mutual independence of
U i, UN

i+1 and H; steps (b) and (d) follow by rearranging the sums and noting that UN is
uniform; step (c) follows by Lemma 6.1. Next, expand

pY |UFβH (y |0,h) (a)=
∑
vAβ

PUAβ

(
vAβ

)
pY |UβH

(
y
∣∣∣vβ,h) (6.23)

(b)=
∑
vAβ

PUAβ

(
vAβ

)
pY |UβH

(
y
∣∣∣vβ,−h) (6.24)

= pY |UFβH (y |0,−h) (6.25)

where step (a) follows by the law of total probability and mutually independent UAβ , UFβ
and H; step (b) follows by (6.17). �
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Algorithm 6.1: Joint Channel Estimation and Decoding
Input : the received vector y
Output: the decoded word ûN

1 estimate {r̂1, . . . , r̂t} via (6.10)
2 estimate {θ̂1, . . . , θ̂t} ∈ [0, 2π)t−1 × [0, π) via (6.11)
3 run an SCL decoder with the LLRs obtained using ĥ and output the list L of vN
4 obtain L′ by flipping the last bit of all vN ∈ L
5 among all vN ∈ L ∪ L′ that pass the outer code test, choose the most likely one as ûN

Theorem 6.2 (6.16) implies that the PCCE (6.11) outputs two solutions: {θ̂1, . . . , θ̂t}
and {θ̂1 + π, . . . , θ̂t + π} where addition is modulo 2π. An example for t = 1 is shown in
Figure 6.4. An outer code can resolve this ambiguity by optimizing over the set [0, 2π)t−1×
[0, π) to obtain {θ̂1, . . . , θ̂t} by using the inner code constraints. The demodulator then
feeds the SCL decoder with the LLR. Let L be the list of candidates vN output by the
decoder and define

L′ =
{(
vN−1, vN

)
: vN ∈ L

}
. (6.26)

The outer code now eliminates invalid words in L ∪ L′. Among the survivors, if any, the
estimate ûN is chosen to maximize pY |UNH

(
y
∣∣∣vN , ĥ) if vN ∈ L or pY |UNH

(
y
∣∣∣vN ,−ĥ) if

vN ∈ L′. An overview is given in Algorithm 6.1.

Remark. An outer code with a minimum distance of at least two can resolve the phase
ambiguity.

Remark. The PCCE (6.11) is based on the imperfection of channel polarization. The
estimation quality can be improved by freezing reliable bits.

6.3. Numerical Results

This section provides simulation results to compare the performance of PAT and PCCE.
The SNR is expressed as Es/N0, where Es is the energy per symbol and N0 is the single-
sided noise power spectral density. The inner code is a (128, 38) polar code designed by
PW and the outer code is a 6-bit CRC code with generator polynomial x6+x5+1, resulting
in a (128, 32) code. For the QPSK modulator (6.2) we have nc = nbt = 64 channel uses
and an overall rate of R = 0.5 bpcu. For PAT, the (128, 32) code is punctured to obtain
npt pilot symbols in total, resulting in a (128−2npt, 32) QUP polar code. All curves shown
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in the figures below are for SCL decoding with a list size of L = 8 after estimating the
CSI. The optimization (6.11) uses a coarse-fine search with 8 levels in both the coarse and
fine search parts [88]. The performance is compared for various estimator parameters β
and Le and to the coherent receiver with perfect CSI. No puncturing is required for the
coherent receiver. As discussed below, the gains of our scheme are similar for t ∈ {1, 2}
and with or without fading.

Single Coherence Block

Consider the channel (6.1) with t = 1, r1 = 1, and the phase θ1 is uniformly distributed
on [0, 2π), i.e., we have

yi = ejθ1xi + zi, i ∈ [nc] , Θ1 ∼ U [0, 2π) . (6.27)

Figure 6.5 compares PAT and PCCE. The best PAT performance for the BLER of interest
is achieved with np = 14, i.e., 14 pilot symbols gave the lowest SNR for BLER ranging from
10−2 to 10−4. For smaller np the quality of the channel estimate limits performance, and for
larger np the puncturing weakens the polar code and limits performance. PCCE performs
within 0.3 dB of the receiver with perfect CSI if the estimator is run with Le = 8 and up
to the last frozen bit with β = 113. It thereby outperforms PAT by about 1.5 dB at a
BLER of 10−4. Observe that if the estimator is run up to the last frozen bit before the first
information bit, i.e., β = 47, then the performance is worse than for PAT. The parameters
β = 113 and Le = 1 provide a good tradeoff between complexity and performance when
combined with a second-stage SCL decoding with a list size L = 8.
Table 6.1 compares the number of node-visits per codeword in the decoding tree along

with the BLER at Es/N0 = 1 dB. For PCCE, we state the sum of the number of node-visits
by the estimator and the number of node-visits by the decoder. The number of visited
nodes with PAT and perfect CSI is thus the same. Observe that PCCE with β = 113 and
Lc = 1 visits a similar number of nodes as PAT with a list size L = 32 (the difference is
less than 10%) and it reduces the error probability by one order of magnitude. We remark
that measuring the complexity by the number of node-visits is pessimistic for PCCE since
most of the visited nodes are frozen bits. Hence, simplified SC decoders [3, 92–94] can
significantly reduce complexity.
Figure 6.6 compares PCCE and PAT with extra pilot symbols. For instance, PCCE with

β = 113, Le = 1 performs close to PAT with 15 pilot symbols. However, the PAT rate is
now R = 32/79 ≈ 0.4 bpcu rather than R = 0.5 bpcu.
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Figure 6.5.: Performance of PAT and PCCE for the channel (6.1) with t = 1, r1 = 1, and
Θ1 ∼ [0, 2π). SCL decoding uses a list size of L = 8 for all cases. A (128, 32) polar
code designed by PWs is used with QPSK for PCCE. PCCE uses a 8 + 8 coarse-fine
search for (6.11). (128 − 2np, 32) QUP polar codes designed by PWs are used for
PAT. The overall rate is 0.5 bpcu for all cases.

Two Coherence Blocks

We next consider t = 2 coherence blocks. Figure 6.7 shows the BLER for ri = 1 and
Θi ∼ U [0, 2π), i ∈ {1, 2}. Figure 6.8 shows the BLER for a Rayleigh block fading channel
with Hi ∼ CN (0, 1), i ∈ {1, 2}. The best performance for PAT is achieved with np = 7
pilot symbols per coherence block for both cases. Observe that, in both cases, PCCE
outperforms PAT by about 2 dB at a BLER ≈ 10−4. Moreover, PCCE approaches the
performance of a coherent receiver with perfect CSI.
Figure 6.8 also plots achievable BLERs based on random coding as the curve labeled

“RCUB” [65, Theorem 1]. The curve labeled “meta-converse” is a lower bound on the
BLERs [83, Theorem 28]. Both curves assume that there is a power constraint per co-
herence block rather than a codeword. Also, the input distribution is induced by unitary
space-time modulation rather than QPSK. For more details, see [54].
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Method BLER Number of node-visits

PAT (np = 14, L = 8) 8.43× 10−3 631
PAT (np = 14, L = 32) 3.16× 10−3 2223

PCCE (β = 47, Le = 1, L = 8) 3.36× 10−2 1383
PCCE (β = 61, Le = 8, L = 8) 3.20× 10−3 2151
PCCE (β = 113, Le = 1, L = 8) 3.50× 10−4 2439
PCCE (β = 113, Le = 8, L = 8) 1.00× 10−4 8807

Perfect CSI (L = 8) 2.40× 10−5 631

Table 6.1.: Performance and complexity comparison at SNR = 1 dB. The setting is the same as
in Figure 6.5.
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β = 113, Le = 8
Perfect CSI

PAT np = {6, 10, 15, 24}

Figure 6.6.: Performance of PAT and PCCE for the channel (6.1) with t = 1, r1 = 1, and
Θ1 ∼ [0, 2π). A (128, 32) polar code designed by PWs is used with QPSK for all
cases. SCL decoding uses a list size of L = 8. PCCE uses a 8 + 8 coarse-fine search
for (6.11). Extra pilot symbols are used for PAT, i.e., the polar code is not punctured
and the overall rate is 32/ (64 + np) bpcu.
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Figure 6.7.: Performance of PAT and PCCE for the channel (6.1) with t = 2, ri = 1, and
Θi ∼ [0, 2π) for i ∈ {1, 2}. SCL decoding uses a list size of L = 8 for all cases. A
(128, 32) polar code designed by PWs is used with QPSK for PCCE. (128− 4np, 32)
QUP polar codes designed by PWs are used for PAT. The overall rate is 0.5 bpcu
for all cases.
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Figure 6.8.: Performance of PAT and PCCE for a Rayleigh block fading channel and t = 2,
Hi ∼ CN (0, 1) for i ∈ {1, 2}. SCL decoding uses a list size of L = 8 for all cases. A
(128, 32) polar code designed by PWs is used with QPSK for PCCE. (128− 4np, 32)
QUP polar codes designed by PWs are used for PAT. The overall rate is 0.5 bpcu
for all cases.





7
Conclusions and Outlook

We summarize the main contributions the thesis and suggest problems that deserve further
attention.

. In Chapter 4, a complexity-adaptive tree search algorithm called SCOS was proposed
for polar codes that implements ML decoding by using a SC schedule. The complexity
is adapted to the channel quality and approaches the complexity of SC decoding for
polar codes at high SNR. Furthermore, a lower bound on the complexity (4.4)
was provided. By modifying the algorithm to limit the worst-case complexity, one
still obtains near-ML performance. Unlike existing alternatives, the algorithm does
not need an outer code (e.g., CRC codes for ASCL and DSCF, see Section 3.5)
or a separate parameter optimization (e.g., parameter ∆ for SC-Fano and α for
DSCF). Future work could develop information theory to improve the complexity
lower bound.

. Chapter 5 proposed a polar-coded IR-HARQ scheme based on QUP and dynamic
frozen bits. The proposed VLPE was extended to PCM. Numerical results show
that the rate-matched polar codes generated by VLPE perform almost as well as the
basic QUP polar codes.

. Chapter 6 proposes PCCE by using the code constraints imposed by the frozen
bits. Interestingly, PCCE takes advantage of the imperfection of channel polariza-
tion. We further introduced a pilot-free two-stage polar-coded transmission scheme
to jointly estimate the channel state and message. An outer code improves reliability
and resolves phase ambiguities. Numerical results show that the proposed scheme
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significantly outperforms PAT with a similar complexity and approaches the perfor-
mance of a coherent receiver. Future work should extend the results to higher-order
modulation and multiple-input, multiple-output (MIMO) systems. Another inter-
esting question for further research is to develop information theory to analyze the
estimation quality.



A
Appendix

A.1. Selection of CRC Polynomials

This appendix introduces a scheme to find good generator polynomial of the CRC outer
code for a given redundancy length rCRC with polar SCL decoding.1 We do this by targeting
the ML performance; based on [123, Conjecture 1] the best ML polynomial should provide
the best performance for any list size L.
The BLER under ML decoding is upper bounded the union bound (UB). For a biAWGN

channel, the UB is given by

BLER ≤ UB = 1
2

N∑
w=1

Awerfc
(√
wSNR

)
(A.1)

where w and Aw denote the Hamming weight and code weight enumerator, respectively.
However, the distance spectrum of polar codes with CRC outer codes is generally unknown.
In [56], the authors proposed a tool to analyze the distance spectrum by using list

decoding. Suppose the list contains only the codewords with the least weights if the all
zero codeword is transmitted over a channel with small noise variance. The algorithm
works as follows.

Step 1. Transmit the all zero codeword at very high SNR.

1The SC performances are the same for any CRC generator polynomials for a (N, k + rCRC) polar code
with redundancy length rCRC.
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rCRC Polynomial AUB estimated SC BLER
3 0x5 1.9433× 10−4 4.2750× 10−3

4 0xC 1.6791× 10−4 5.1077× 10−3

5 0x18 8.9280× 10−5 6.4029× 10−3

6 0x2D 5.8441× 10−6 7.8608× 10−3

7 0x72 3.2828× 10−6 9.5868× 10−3

8 0xA6 2.4525× 10−6 1.1465× 10−2

Table A.1.: Best CRC polynomials for (128, 64 + rCRC) polar codes with rCRC bits CRC outer
codes. The codes are designed via GA for 4 dB. The ML performance (evaluated by
the AUB) and SC performance are estimated for a biAWGN channel at 4 dB.

Step 2. Perform list decoding with a very large list size on the received soft information
for a (N, k + rCRC) code and store the output list.

Step 3. Remove the candidates that do not satisfy the outer code check.

Step 4. Find all codewords with non-zero weight in the list and the corresponding multi-
plicities.

Step 5. Calculate the approximated union bound (AUB) with (A.1) by using the remaining
candidates.

We perform Steps 1 and 2 only once, and repeat Steps 3-5 for 2rCRC−1 polynomials.
An example is shown in Table A.1. The generator polynomials are described by a hex-

adecimal number (Koopman Notation [52]), e.g., 0x5b denotes the generator polynomial
g(x) = x7 + x5 + x4 + x2 + x+ 1 (rCRC = 7).

A.2. Polar Coding with Non-binary Kernels

We introduced polar codes based on 2 × 2 non-binary kernels in [124]. We consider only
Galois fields (GFs) of order q = 2r, r ∈ N. Binary and decimal representations are used to
describe elements over GFs, i.e., GF(q) has q elements and the elements can be represented
by binary log2 q-tuples or integers2 between 0 and q − 1. For the codes over GF(q), Nq

denotes the code length in q-ary symbols, N = log2 q ·Nq denotes the code length in bits,
and k is the code dimension in bits.

2Without loss of generality, the left bit is most significant for the bit-to-integer conversion.
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Figure A.1.: A 2× 2 kernel over GF(q), α, β ∈ GF(q).

A non-binary polar code over GF(q) of length Nq and dimension k is defined by the
q-ary transform F⊗ log2 Nq and N − k frozen (bit) positions, where F denotes the extended
kernel

F =
1 0
α β

 , α, β ∈ GF(q). (A.2)

Figure A.1 shows the q-ary transform of size Nq = 2.
The encoding procedure is represented by

cNq = uNqF⊗ log2Nq . (A.3)

The vectors uNq , cNq and all (addition, multiplication) operations are defined over GF(q).
The vector cNq denotes the code symbols. The vector uNq can be represented by N =
log2 q · Nq bits including the message bits and frozen bits. For a symbol ui ∈ GF(q), ti
bits are selected as message bits, where ti ∈ {0, 1, . . . , log2 q}. The set of all possibilities
of symbol ui is denoted Si. Obviously, we have

|Si| = 2ti ,
Nq∑
i=1

ti = k. (A.4)

To simplify the code design, we always freeze the last ti bits for a symbol ui ∈ GF(q) in
this work. The choice of symbol ui is then restricted to

Si =
{

0, . . . , 2ti − 1
}
. (A.5)

A.2.1. Message Passing on Non-binary Graphs

Considering the decoder in the probability domain, each message is a vector with q prob-
abilities

PA = (PA(0), PA(1) . . . , PA(q − 1)) . (A.6)

We have three basic probability domain operations:
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. Multiplication and addition: B = Aα and

PA(µ) = PB(µα), µ ∈ GF(q). (A.7)

We can find a q × q permutation matrix Π·α such that

PB = PAΠ·α, PA = PBΠ−1
·α . (A.8)

We can also find a permutation matrix Π+α for addition such that

PA+α = PAΠ+α. (A.9)

Note that Π·α depends on the primitive polynomial.

. CN update: A degree-2 CN node computes PA+B from PA and PB.

PA+B(µ) =
∑

µ1,µ2∈GF(q):
µ1+µ2=µ

PA(µ1)PB(µ2), µ ∈ GF(q). (A.10)

We have
PA+B = PA ~ PB (A.11)

where ~ denotes cyclic discrete convolution with complexity O(q2) [25]. By apply-
ing the fast Hadamard transform (FHT), the discrete convolution is translated to
element-wise multiplication [8] which reduces the complexity of the CN update to
O(q log2 q). We have

PA+B = a
(
H−1 (H(PA)�H(PB))

)
(A.12)

where the scalar a is a normalization factor that ensures that the probabilities in
PA+B sum to 1, H(·) denotes the FHT operation and � denotes element-wise mul-
tiplication. Note that the FHT is its own inverse, i.e., H(·) = H−1(·).

. VN update: A degree-2 CN node computes PA from PA1 and PA2 for two independent
observations A1 and A2, respectively. We have

PA(µ) = PA1(µ)PA2(µ), µ ∈ GF(q) (A.13)

and
PA = a (PA1 � PA2) (A.14)
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Figure A.2.: A q-ary SC decoder of size-2.

where the scalar a is a normalization factor.

A.2.2. q-ary SC decoding

The q-ary SC decoder follows mainly the implementation in [103, Algorithm 2-4]. Fig-
ure A.2 shows the extended message update functions for an example of size 2. We have

PU1|Y = f−
(
PC1|Y ,PC2|Y

)
= a1H

(
H
(
PC1|Y

)
�H

(
PC2|Y Π−1

·β Π·α
))

= a1H
(
H
(
PC1|Y

)
�H

(
PC2|Y Π·α

β

))
(A.15)

PU2|Y U1 = f+
(
PC1|Y ,PC2|Y , û1

)
= a2

(
PC1|Y Π+û1Π

−1
·α

)
�
(
PC2|Y Π−1

·β

)
. (A.16)

The decoder input is

PCi|Y =
(
PCi|Y (0|y) , . . . , PCi|Y (q − 1|y)

)
, i ∈ [Nq] . (A.17)

At the decoding phase i ∈ [Nq], we obtain a conditional PMF of Ui by recursively updating
the messages

PUi|Y U i−1 =
(
PUi|Y U i−1

(
0|y, ûi−1

)
, . . . , PUi|Y U i−1

(
q − 1|y, ûi−1

))
. (A.18)

The hard decision of ui is

ûi = argmax
µ∈S(ui)

PUi|Y U i−1

(
µ|y, ûi−1

)
. (A.19)
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The improved decoding algorithms in Section 3.5 can easily be extended to the q-ary
case [124].

A.2.3. Kernel Selection and Code Construction

From (A.15) and (A.16), we observe that the PU1|Y and PU2|Y U1 depend on the ratio α
β
.

We now use a MC approach to choose the best ratio α
β
:

Step 1. Set u1 = 0 and select u2 ∈ GF(q) randomly.

Step 2. q-ary encoding (Nq = 2): c1 = u1 + u2α and c2 = u2β.

Step 3. Transmit c1, c2 over the channel pY |C .

Step 4. Compute PU2|Y U1 via (A.15) and (A.16).

Note that PU2|Y U1 is a random vector that depends on the channel model pY |C . MC
simulation is used to find the optimal α

β
that maximizes the “single-level” polarization

effect, i.e., we choose
α

β
= argmax

α
β
∈GF(q)

E
[
PU2|Y U1 (u2|y, u1)

]
. (A.20)

The code construction of a non-binary kernel is to find a vector of length

tNq = argmax∑Nq
i=1 ti=k

Nq∏
i=1
R (i, ti) (A.21)

where R (i, ti) denotes the symbol reliability of ui with ti message bits, i.e.,

R (i, ti) = Pr
(
Ûi = Ui

∣∣∣Û i−1 = U i−1, |Si| = 2ti
)
, i ∈ [Nq] , ti ∈ {0, 1, . . . , log2 q} .

(A.22)
Obviously, we have

R (i, ti − 1) ≥ R (i, ti) , ti ∈ {1, . . . , log2 q} (A.23)

and R (i, 0) = 1. We use the MC method to compute R (i, ti) numerically. The relative
reliability R̄ (i, ti) is given by

R̄ (i, ti) = R (i, ti)
R (i, ti − 1) , i ∈ [Nq] , ti ∈ {1, . . . , log2 q} . (A.24)
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Algorithm A.1: Progressive construction of non-binary polar codes.
Input : relative reliability R̄ (i, ti) , i ∈ [Nq] , ti ∈ [log2 q]
Output: tNq

1 Set ti = 0, i ∈ [Nq]
2 while ∑Nq

i=1 ti < k do
3 imax = argmaxi R̄ (i, ti + 1)
4 timax = timax + 1
5 return tNq

name size data type description

L (log2 N + 1)×N float LLRs
C (log2 N + 1)×N binary hard decisions
û N binary output vectors

Table A.2.: Data structures for SC decoding.

We have
R (i, ti) =

ti∏
j=0
R̄ (i, j) . (A.25)

The vector tNq is chosen progressively by Algorithm A.1 to fulfill (A.21).

A.3. Pseudo Codes

The memory requirement and pseudo codes of an SC decoder are shown in Table A.2
and Algorithm A.2. The size of the 2-D arrays L and C could be reduced to 2N − 1,
see Section 3.4. Algorithm A.5 and Algorithm A.6 are the 1-based indexing versions
of [103, Algorithm 3,4].
The components of the decoder are implemented for polar codes with bit-reversed or-

der [5]. The decoder input must be permuted to bit-reversed order with Algorithm A.4 if
non bit-reversed polar codes in Definition 3.1 are used (line 1-2).
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Algorithm A.2: SCDec
(
`N
)

Input : LLRs `N
Output: estimates û

1 if non bit-reversed polar code then
2 `N = BitReverse

(
`N
)

3 for i = 1, 2, . . . , N do
4 L [1, i] = `i

5 for i = 1, . . . , N do
6 recursivelyCalcL (log2 N + 1, i− 1)
7 if i /∈ A then
8 û [i] = 0 // compute û [i] if dynamically frozen
9 else

10 û [i] = HardDec (L [log2 N + 1, i])
11 C [log2 N + 1, i] = û [i]
12 if i mod 2 = 0 then
13 recursivelyCalcC (log2 N + 1, i− 1)

14 return û

Algorithm A.3: HardDec (`)
Input : LLR `
Output: hard decision

1 if ` > 0 then
2 return 0
3 else
4 return 1

Algorithm A.4: BitReverse
(
aN
)

Input : vector aN
Output: input vector with bit-reversed order bN

1 if N = 2 then
2 bN = aN

3 else
4 bN/2 = BitReverse

(
a{1,3,...,N−1}

)
5 bNN/2+1 = BitReverse

(
a{2,4,...,N}

)
6 return bN



A.3. Pseudo Codes 95

Algorithm A.5: recursivelyCalcL (λ, φ)
Input : layer λ and phase φ

1 if λ = 1 then
2 return
3 ψ = bφ/2c , t = 2λ−2

4 if φ mod 2 = 0 then
5 recursivelyCalcL (λ− 1, ψ)
6 for β = 0, 1, . . . , 2log2N−λ+1 − 1 do
7 if φ mod 2 = 0 then
8 L [λ, φ+ 2βt+ 1]

= f− (L [λ− 1, ψ + 2βt+ 1] , L [λ− 1, ψ + (2β + 1)t+ 1])
9 else

10 L [λ, φ+ 2βt+ 1]
= f+ (L [λ− 1, ψ + 2βt+ 1] , L [λ− 1, ψ + (2β + 1)t+ 1] , C [λ, φ+ 2βt])

Algorithm A.6: recursivelyCalcC (λ, φ)
Input : layer λ and phase φ

1 ψ = bφ/2c , t = 2λ−2

2 for β = 0, 1, . . . , 2log2N−λ+1 − 1 do
3 C [λ− 1, ψ + 2βt+ 1] = C [λ, φ+ 2βt]⊕ C [λ, φ+ 2βt+ 1]
4 C [λ− 1, ψ + (2β + 1)t+ 1] = C [λ, φ+ 2βt+ 1]
5 if ψ mod 2 = 1 then
6 recursivelyCalcC (λ− 1, ψ)





B
Acronyms

5G 5-th generation wireless system

APP a-posteriori probability

ARQ automatic repeat request

ASCL adaptive successive cancellation list

AUB approximated union bound

AWGN additive white Gaussian noise

B-DMC binary-input discrete memoryless channel

BEC binary erasure channel

biAWGN binary-input additive white Gaussian noise

BLER block error rate

bpcu bits per channel use

BSS binary symmetric source

CC Chase combining

CN check node
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CRC cyclic redundancy check

CSI channel state information

DE density evolution

DSCF dynamic successive cancellation flip

eMBB enhanced mobile broadband

FHT fast Hadamard transform

GA Gaussian approximation

GF Galois field

HARQ hybrid automatic repeat request

i.i.d. independent and identically distributed

IF incremental freezing

IR incremental redundancy

LDPC low-density parity-check

LLR log-likelihood ratio

MAP maximum-a-posteriori

MC Monte Carlo

MIMO multiple-input, multiple-output

MLPC multilevel polar coding

ML maximum-likelihood

PAC polarization-adjusted convolutional

PAT pilot-assisted transmission

PCCE polar-coded channel estimation

PCM polar-coded modulation
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PDF probability density function

PE polar extension

PMF probability mass function

PM path metric

PSK phase-shift keying

PW polarization weight

QPSK quadrature phase-shift keying

QUP quasi-uniform puncturing

RCUB random coding union bound

RM Reed-Muller

RQUP reversal quasi-uniform puncturing

RS Reed-Solomon

RV random variable

SC successive cancellation

SC-Fano successive cancellation Fano

SCF successive cancellation flip

SCL successive cancellation list

SCOS successive cancellation ordered search

SCS successive cancellation sequential

SE spectral efficiency

SNR signal-to-noise ratio

SP set partitioning

UB union bound
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uBLER undetected block error rate

UPO universal partial order

VLPE variable-length polar extension

VN variable node
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