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ABSTRACT
In this work, we predict the outcomes of high fidelity multivariate computer simulations from low fidelity
counterparts using function-to-function regression. The high fidelity simulation takes place on a high
definition mesh, while its low fidelity counterpart takes place on a coarsened and truncated mesh. We
showcase our approach by applying it to a complex finite element simulation of an abdominal aortic
aneurysm which provides the displacement field of a blood vessel under pressure. In order to link the
two multidimensional outcomes we compress them and then fit a function-to-function regression model.
The data are high dimensional but of low sample size, meaning that only a few simulations are available,
while the output of both low and high fidelity simulations is in the order of several thousands. To match
this specific condition our compression method assumes a Gaussian Markov random field that takes
the finite element geometry into account and only needs little data. In order to solve the function-to-
function regression model we construct an appropriate prior with a shrinkage parameter which follows
naturally from a Bayesian view of the Karhunen–Loève decomposition. Our model enables real multivariate
predictions on the complete grid instead of resorting to the outcome of specific points.
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1. Introduction

In this work, we deal with data gathered from a high fidelity
computer simulation, which depends on a variable parame-
ter vector ξ . The simulation is complex but deterministic and
computes scalar variables on a three-dimensional finite element
structure Sy = {sj, j : j = 1, . . . , Ny}. The overall simulation
outcomes are vector-valued and denoted with the vector y =(

y(s1), . . . , y(sNy)
)T

, y ∈ R
Ny , with y(sj) denoting the outcome

at location sj ∈ Sy. The parameter vector ξ is high dimensional
and does not enter the finite element simulation directly, instead
it is used to generate necessary wall parameters. We refer to
the supplementary material for an in depth description of the
separate steps. As the outcome is wholly dependent upon the
parameter, we denote the outcome of the simulation as y(ξ).
Our finite element simulation is computationally expensive and
determines the deformations and stresses of an abdominal aor-
tic aneurysm (AAA) in response to blood pressure, see Biehler,
Gee, and Wall (2014). The outcome of a single simulation is
shown as a part of Figure 1. A low fidelity simulation is also
available as a computationally less intensive alternative. This
simulation depends on the same ξ and gives outcome x(ξ)

as points on a low-dimensional mesh Sx, with x(ξ) following
the same notational convention from above. This means x =(
x(s̃1), . . . , x(s̃Nx

)t is the vector valued outcome on the finite
element structure Sx = {s̃j : k = 1, . . . Nx}. This outcome is
shown in Figure 1. Please notice that y is in the order of 80,000
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while x is in the order of 3500 components. The intention is to
quantify the relation between x and y, or more specifically, to
predict y(ξ) from x(ξ) even if the number of pairs of outcomes
is only a few dozens: Using a two-step approach that involves a
compression with a Gaussian Markov random field assumption
and a Bayesian regression model to connect the compressed
vectors we will derive real vector valued predictions for y(ξ).

This could be useful in uncertainty quantification and opti-
mization, both of which require a high number of high fidelity
evaluations, which can then be substituted with adjusted cheap
low fidelity counterparts. In our concrete case the ultimate goal
is to take the aneurysm geometry of an actual patient and
estimate distributions for the location and magnitude of high
stress to guide further medical treatment. Here it is crucial
to understand that the necessary wall parameters cannot be
measured for an actual living patient, but instead we rely on
distributions estimated from collected tissue samples and want
to propagate this information. The framework we develop in this
work is an important step toward this application, which will
then require additional care in regard to the sampling scheme
of ξ and the treatment of the overall error among other things.

The remainder of the article is organized as follows. In Sec-
tion 2 we give a short review of the related literature and lay out
how we want to build upon these previous results. In Section 3
we provide technical details about the computer simulation and
explain how the data are generated. In Section 4 we derive the
model before fitting it for the case of our specific application in
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Figure 1. High (first and third image) and low (second and fourth image) fidelity output for the same set of parameters. The images show the artery from the outside
(leftmost images) and cutaway (rightmost images), demonstrating the three dimensional structure of the data. In addition to other simplifications, the low fidelity model
is also computed using a coarser mesh (not shown above) than the high fidelity model.

Section 5. Here we also give some brief notes on alternatives
as well as numerical details and tuning parameters. The work
finishes with a discussion in Section 6 that provides further
context for the results.

2. Review of the Literature

The problem of relating high fidelity to low fidelity simulations
is a frequently studied topic in both statistics and engineering.
A good starting point is Kennedy and O’Hagan (2000). Using
their notation, they propose the model

y(ξ) = ρ · x(ξ) + δ(ξ), (1)

where δ(·) is of residual type and independent of x(ξ). In this
case, y and x are either univariate or have the same dimension.
Taking a single location, for example s, which lies on both Sy and
Sx, we can rewrite (1) as (see also Levy and Steinberg 2010)

y(ξ , s) = ρ(s) · x(ξ , s) + δ(ξ , s). (2)

For y(·) and x(·) on the same mesh, the authors assume that the
δ term defines a Gaussian process and specify the parameters
in a Bayesian fashion. Qian and Wu (2008) generalized this
approach by extending (2) and Qian et al. (2006) to

y(ξ , s) = ρ(ξ , s) · x(ξ , s) + δ(ξ , s) + ε(ξ). (3)

In case of deterministic simulations, the ε term is not of partic-
ular interest. The authors refer to ρ as the scale adjustment and
δ as the location adjustment. Both ρ and δ are assumed to be
Gaussian processes.

In a recent contribution, Le Gratiet and Garnier (2014)
showed that the autoregressive scheme proposed by Kennedy
and O’Hagan (2000) can be reformulated in a recursive fashion
if the datasets are nested, that is, if the high-fidelity inputs are
a subset of the low-fidelity inputs. This paved the way for a
nonlinear autoregressive approach proposed by Perdikaris et al.
(2017), which is more data-efficient.

Biehler, Gee, and Wall (2014) used the Bayesian framework
proposed by Koutsourelakis (2009) and arrived at the following
model for a fixed location s:

y(ξ , s) = f (x(ξ , s); θ) + σZ, Z ∼ N(0, 1). (4)

Here, f (x, θ) is defined by a first-order polynomial and a sum
of Gaussian kernel functions. It is important to note that only
the approach put forth by Koutsourelakis (2009) is suitable for
high-dimensional data. All other multifidelity approaches do
not address this fundamental need, as they require the training
of Gaussian process models in the dimension of the parameter
space, that is, in the dimension of ξ . A general review of how to
relate low fidelity with high fidelity outputs can be found in, for
example, Levy and Steinberg (2010), Peherstorfer, Willcox, and
Gunzburger (2016), Giselle Fernández-Godino, Park, Kim, and
Haftka (2019), and Biehler et al. (2019).

The limitations of the methods mentioned above are 2-fold:
First, they require that the relation between y and x is calculated
for all locations s, which poses a significant computational bur-
den and is often infeasible if we are interested in quantities that
require the complete vector y, rather than just a specific location.
Second, incorporating the spatial structure of the problem may
be beneficial for the overall performance of the model. Both of
these points apply in particular if the meshes Sx and Sy differ not
only in their resolution, but also in their size, as seen in Figure 1.
This leaves certain points on the high fidelity mesh that have
no low fidelity counterpart at all. The major objective of this
work is to therefore, overcome the focus on individual points
and to model the relationship between all components of x and
y simultaneously.

An alternative perspective is that of functional data analysis
(FDA). The term was introduced in Ramsay (1982) and we refer
to Ramsay (2006) for a comprehensive introduction. Morris
(2015) contains a more recent survey of developments in this
field. From this perspective, we consider y(s) as functional data
observed on the discrete mesh Sy, whose points are considered
fixed locations on the continuum {S}y. Equivalently, we con-
sider the low fidelity outcome x(t) as data on the space {S}x
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observed at the discrete points t ∈ Sx. To relate x to y corre-
sponds to function-to-function regression in the terminology of
functional data analysis. We refer to Greven and Scheipl (2017)
for a recent discussion or Ettinger, Perotto, and Sangalli (2016)
for regression models on manifolds. The general idea is to relate
x(t) and y(s) through the functional regression model

y(s) = μ0(s) +
∫

x(t)B(t, s)dt + ε(s), (5)

where B(t, s) is a regression function that needs further con-
straints to be identifiable. A common strategy in functional data
analysis is to reduce the dimensionality of the data, for exam-
ple, by eigendecomposition. We pursue a similar approach, but
instead of eigenfunctions we make use of an assumed Gaussian
random field dependence structure to reduce the dimension.
Gaussian Markov random fields have already been used for
compression, for example, for textures in Chellappa, Chatterjee,
and Bagdazian (1985), and are a great fit for grid data in general
due to its intrinsic neighborhood structure. We refer to Rue
and Held (2005) for an in depth discussion on the topic and
to MacNab (2018) for an overview of its applications. We want
to stress out that we do not model the data as proper Gaussian
Markov random fields but solely use this assumption for the
construction of effective compression methods.

The key approach for relating y(·) and x(·) is to reduce
the dimension of both y(·) and x(·) and to relate the reduced
outcomes via regression. While dimension reduction of y(·) and
x(·) can rely on a Gaussian Markov random field structure, the
regression of the reduced dimensional objects still has a large
number of parameters. To address the fact that the number
of simulation runs is usually small, that is, only few indepen-
dent observations are available, we construct an appropriate
prior with a shrinkage parameter in order to make the problem
solvable.

The combination of functional data and computer exper-
iments has already appeared multiple times in the literature,
often in combination with basis reduction. Morris (2012) used
a kriging model to approximate computer experiments where
both the input and the output are time dependent functions.
Muehlenstaedt, Fruth, and Roustant (2017) and more recently
Wang and Xu (2019) discussed the use of kriging models for
experiments which have—not necessarily time dependent—
functional input and also functional output in the latter case.
Finally, there is also work by Chen et al. (2020) which presents
a functional kriging model that connects three-dimensional
structures to response curves using a spectral distance correla-
tion function to quantify the similarity between inputs. How-
ever, none of these articles uses high and low fidelity outcomes
but instead mostly focus on emulating the overall experiment—
which, as we will show in the following section, is not real-
istic in our case. Moreover, it is arguable whether the results
readily extend to connecting high and low fidelity outcomes in
high dimensions with small samples. Finally, the application of
kriging itself is not straightforward if challenged with a heavily
underdetermined setting.

3. Problem Formulation

Before discussing the problem in statistical terms, we provide
a brief description of the data and explain why the relation of

high to low fidelity outcomes is of particular interest in this case.
In this article we consider a nonlinear, patient-specific finite
element model of an abdominal aortic aneurysm (AAA). The
aneurysm is described by means of nonlinear solid mechanics
and a finite element model is used to compute the deforma-
tions and stresses as a result of the applied blood pressure. For
a detailed description the reader is referred to Biehler, Gee,
and Wall (2014). One crucial aspect of the simulation is the
constitutive model which characterizes the tissue and describes
the relationship between stresses and strains. Aside from the
functional form of the constitutive model it also depends on a
number of so-called constitutive parameters. In biomedical sim-
ulations calculating deterministic values for these parameters is
difficult because experimental data are scarce and because they
vary, not only from patient to patient, but also over the geom-
etry of individual aneurysms. Thus, researchers have hitherto
predominantly resorted to using unspecific population averaged
values, despite the fact that these and several other parameters
are uncertain. A more realistic approach is to employ a prob-
abilistic model for these parameters, as proposed in Biehler,
Gee, and Wall (2014). In this work we consider one constitutive
parameter for the wall of the aneurysm called β as a random
field, which depends on a high dimensional (tuning) parameter
vector ξ . For each setting of ξ we obtain a simulation on the
high and low fidelity mesh, that is, corresponding high and low
fidelity simulations depend on the same ξ and can be considered
as connected and comparable. We refer to the supplementary
material for more details and an in depth description of the
modeling background.

We then take a Bayesian point of view and impose a prior
distribution on parameter ξ such that for the high fidelity sim-
ulation we obtain the marginal distribution

f (y) =
∫

f (y|ξ)dF(ξ). (6)

This approach allows to quantify the uncertainty induced by
variation of the input vector ξ . In practice one might want to
solve (6) via Monte Carlo simulations, that is, computing y for
various draws of ξ . However, because evaluation of the model is
very costly and computationally demanding, a large number of
simulation runs renders this approach infeasible. Additionally,
the high dimension of ξ also precludes the efficient use of statis-
tical surrogate models or emulators, such as Gaussian processes
or Polynomial Chaos Expansions (please see Le Maître and
Knio 2010; Xiu 2010; Ghanem and Spanos 2012). Instead, we
follow a multifidelity approach which makes use of data from
a simplified, low fidelity version of the simulation model. The
low fidelity model is based on a coarser, truncated version of
the grid, derived from a computer tomography (CT) scan of
the aneurysm. The so-called intraluminal thrombus (coagulated
blood accumulating inside the AAA) is also omitted, to further
reduce the computational cost of the model. This can be seen in
Figure 1. The low fidelity version consists only of the vessel wall
and is therefore, significantly less complex. In the presented case,
there are no common points in both meshes and we denote the
outcome of the simplified model with x(ξ) ∈ R

Nx . We draw a
small sample of parameter ξ and get ξ 1, ξ 2, . . . , ξn. It is worth
noting that the models are deterministic and the vector ξ is
sampled iid (as opposed to following a sampling scheme). Note
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that n is small, in the order of dozens or hundreds, and certainly
too small to properly assess f (y) given in (6). For each of the ξ k
we compute both y<k> := y(ξ k) and x<k> := x(ξ k) (we refer to
Biehler, Gee, and Wall 2014). The task of the current article is to
make use of this small sample to construct a prediction model
for the high fidelity outcome y using the low fidelity input x.

The ultimate goal of this project is to estimate f (y) based on a
larger Monte Carlo simulation study as shown in (6). But instead
of running high fidelity simulations y(ξ) one runs many (fast)
low fidelity simulations x(ξ) and makes use of the prediction
model to obtain a prediction ŷ(ξ) from x(ξ). To do so the main
objective is an accurate prediction model, which we provide in
this article.

4. Formulation of the Model

In spatial statistics, a frequently used tool for modeling data
on a grid is a Gaussian Markov random field (GMRF). This
approach is applied here, and we refer to Rue and Held (2005)
for a general discussion of the methodology. We use a GMRF
assumption to compress both high and low fidelity outcomes in
combination with basis truncation, which is common in spatial
statistics. GMRFs are based on a predefined neighbor structure,
as opposed to Euclidean distances. This neighborhood structure
is determined by the mesh Sx for the low fidelity and Sy for the
high fidelity data, as can be seen in Figure 2. Let us first look
at the low fidelity data. We represent Sx as an undirected graph,
that is, we define a tuple Gx := (Vx, Ex), where Vx is the set of
nodes in the graph and Ex the set of edges {i, j} ∈ Ex =

{
{i, j} :

i, j ∈ Vx
}

, if i �= j are neighbors. Moreover, we write i ∼ j if
both points are neighbors and N(i) for the neighborhood of i,
that is, {j ∈ Vx : j ∼ i}. We consider x(·) as a random vector
x = (

x(s1), . . ., x(sNx)
)T evaluated at each of the Nx points of

the mesh Sx. We assume that x follows the GMRF defined by

π(x) = (2π)−n/2|Qx|1/2exp
(

−1
2
(x − μ)TQx(x − μ)

)
. (7)

Figure 2. Zoomed in version of the high fidelity mesh.

The inverse variance matrix Qx (also called the concentration
matrix) has zero entries except for

Qx,ij = −1 ⇔ {i, j} in Ex for i, j ∈ Vx,
Qx,ii = |N(i)| for i in Vx.

In other words, x follows a multivariate Gaussian distribution
parameterized by a thoughtfully chosen precision matrix Qx =
�−1

x .
It can be shown that for a single element xi = x(si) of x, we

obtain

E(xi|x−i) = μi − 1
Qx,ii

∑
j∈N(i)

Qx,ij(xj − μj), (8)

where x−i is the entire vector x except for the i-th entry. To be
more specific, the ith value of x only depends on the neighbors of
xi in the mesh and is conditionally independent of the remaining
values of x. In the following we will compress x with the preci-
sion matrix. This is only possible if the mean vector μ is equal
to 0 which corresponds to using centered data. In practice, we
therefore, center the data before the compression.

The idea is now to approximate x with the Karhunen–Loève
theorem. To do so, we write

x =
Nx∑
l=1

ux,lφx,l, (9)

where ux,l are uncorrelated random variables with zero mean
and decreasing variance σ 2

x,l, that is, ux,l ∼ N(0, σ 2
x,l) and

φx,l = (
ϕx,l(s1), ϕx,l(s2), . . . , ϕx,l(sNx)

)T are Nx dimensional
vectors. We consider φx,l as a basis on the mesh Sx. Note that
we can rewrite the above formula pointwise such that

x(si) =
Nx∑
l=1

ux,lφx,l(si). (10)

The structure of φx,l can be approximated through singular
value decomposition of the matrix Qx. Therefore, let φx,l be
defined as the eigenvector corresponding to the lth smallest
eigenvalue of Qx (or equivalently to the lth largest eigenvalue
of Q−1

x ).
We truncate the above expansion to the largest Kx eigenvec-

tors of the variance matrix � and set

x =
Kx∑
l=1

ux,lφx,l + εx, (11)

where εx ∼ N(0, σ 2
x I) is the white-noise component and Kx <

Nx. This leads to the posterior distribution (see e.g., Harville
1976; Harville 1977; Harville and Zimmermann 1996)

ux|x ∼ N(ûx, �u,x), (12)

with ûx and �u,x derived as follows. If we denote with φx the
truncated matrix φx = (

φx,1, . . . , φx,Kx

)
and use the fact that

φx,l is orthonormal, we obtain

ûx = (
IKx + σ−2

x 	−1
x

)−1
φT

x x, (13)
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Figure 3. Complete Model Pipeline.

with 	x = diag(σ 2
x,1, . . . , σ 2

x,Kx
) denoting the diagonal matrix

containing the Kx largest eigenvalues of �. Moreover, it holds
that

�u,x = (
	−1

x + σ−2
x IKx

)−1 . (14)

Note that with (13) we pursue a dimension reduction of the
entire problem by compressing the Nx data points on the mesh
x into Kx score values ûx = (ûx,1, . . . , ûx,Kx)

T .
This leads to a loss of information, which is expressed in σ 2

x
and can, for example, be estimated using restricted maximum
likelihood (see Harville 1977, or Searle, Casella, and McCulloch
2006). The same formulas apply to an approximation of y and
we obtain

ûy =
(

IKy + σ−2
y 	−1

y

)−1
φT

y y. (15)

Assume now that we have computed both the low and high
fidelity simulations for a number of different input values ξ k,
whose outcomes we denote with y<k> and x<k> for k =
1, . . . , n. From both outcomes we calculate ûy<k> and ûx<k>
using the formulas above. The intention is now to relate ûy<k>
to ûx<k>. To begin, we write Ûy = (ûy<1>, . . . , ûy<n>)T and
Ûx = (ûx<1>, . . . , ûx<n>)T . We may then relate the quantities
through a linear model

Ûy = ÛxB + ξ , (16)

where coefficient matrix B needs to be estimated from the n
“data points.” Using simple least squares we obtain:

B̂ =
(

ÛT
x Ûx

)−1
ÛT

x Ûy. (17)

Note that matrix ÛT
x Ûx is only of full rank if Kx ≤ n, which is

not necessarily true if Kx is large. In fact, because high fidelity
computation is time consuming, n is set to be small, which
suggests that n < Kx is actually more reasonable. This implies
that we need to amend (17) to make it numerically solvable,
which we achieve by imposing a Bayesian prior. Note that the
rows of Ûx are ûT

x<k>, which is the posterior mean of ux given
x<k>. We assign a prior density for the coefficients in B which
includes a shrinkage parameter g. In fact, for the lth column of
B we assume

Bl ∼ N
(
0, g · �−1

u,x
)

, (18)

where g is a weight and �u,x is defined as in (14). The resulting
posterior estimate for the lth column of B is then

B̂l =
(

ÛT
x Ûx + g−1�u,x

)−1
ÛT

x ûy,l (19)

for l = 1, . . ., n. Here ûy,l denotes the lth column of Ûx, that is,
the coefficients of the lth eigenvector for all n low fidelity obser-
vations. The parameter g steers the stability, and its influence

on the result tends to zero as it increases. It is chosen in a data-
driven manner by minimizing the prediction error. Details will
be provided in the next section. To sum up, we relate x to y with
the steps shown in Figure 3.

Note that the calculation of both φx and φy does not require
the full data. Instead, it uses the finite elements’ neighborhood
structure along with the Gaussian Markov random field assump-
tion. Moreover, the data has to be centered, that is, strictly
speaking we need estimates for the mean vectors of both high
and low fidelity outcomes. The estimation of regression matrix
B, however, incorporates the information of the full data. As
shown in the sketch above, it is important to keep in mind
that the ultimate goal is the prediction of high fidelity from low
fidelity output. This is indicated as ŷ and we aim to minimize the
distance between y and ŷ. In order to compare different models
we split up our data into a train and test set.

A different modeling approach would be to apply a varying
coefficient model, that is, adding a dependency of the regres-
sion coefficients B on the parameter vector ξ . This dependency
appears frequently in the literature—see for example Levy and
Steinberg (2010)—and increases the flexibility of the model.

However, in our example we are very reluctant of pursuing
this approach. First, ξ , a vector of random angles, is used to
sample the necessary parameters on the two grids with a com-
plex algorithm. It does not enter the simulation itself, but really
serves as a complex tuning parameter. Please see the supple-
mentary material for a detailed description of this process. As
a result an estimable and functional influence on x and y is
unlikely. Second, the parameter ξ is high dimensional (order of
several thousand) which makes the use of a varying coefficient
model infeasible due to the dimensionality. One may then work
with varying coefficient models combined with additive models
in the style of Wood (2017), but even then we are still con-
fronted with the dimensionality since in our case the number
of additive components (dimension of ξ ) exceeds the number
of observations (simulations) by far. All in all, small samples
lead to numerical instability and large estimation variability for
varying coefficient models and as a result we do not employ this
approach in this work.

5. Application

5.1. Description of the Data

The data we consider in this work were generated using a
patient-specific model of an abdominal aortic aneurysm. The
specific model is described in Biehler, Gee, and Wall (2014).
Further details regarding our methodology for the simulation
of aneurysms using finite elements can be found in Reeps et al.
(2010) and Maier et al. (2010). As described in Biehler, Gee, and
Wall (2014), we created two versions of the aneurysm model,
a high fidelity version and a computationally less expensive
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low fidelity version. The low fidelity model was created with
a coarser discretization and with certain parts of the original
model omitted. As a result, the mesh of the high fidelity model
has Ny = 84,889 nodes, whereas the low fidelity mesh has
Nx = 3440 nodes and as a consequence, the low fidelity model
is almost 50 times faster to evaluate.

In total, both simulation models were run for n = 900
different samples of the parameter ξ . First, a realization ξ k was
drawn from a proper prior model. Then both high and low
fidelity outcomes y<k> and x<k> were computed using the
in-house research code BACI (we refer to Wall et al. 2018).
The result of the simulation are the displacements, strains and
stresses for each point of the mesh under the prescribed load. In
the ensuing sections, we consider the displacement magnitude
for each point, as measured by the L2 norm, to be the variable of
interest.

Please note that we center the data by subtracting the means
of a small training set of 10 additional pairs of high and low
fidelity cases beforehand. The reason for this is that—as pointed
out above—the GMRF compression assumes centered data.

5.2. Data Compression

The data compression process begins with the two precision
matrices Qx and Qy that result from the assumed Gaussian
Markov random field. Instead of first inverting the matrices
and then computing their largest eigenvalues, we calculate the
smallest eigenvalues and the corresponding eigenvectors of Qx
and Qy. This was done using the R package RSpectra by
Xuan (2016) which is built upon the C++ package Spectra.
Note that the eigenvectors, which can also be visualized, can
be seen as the most important parts of the structure of the
given geometry. The vectors corresponding to the four smallest
eigenvalues of Qx (which are also the largest ones of the variance
matrix) are shown in Figure 4. As expected, the eigenvectors
capture features of the geometry and also have a smoothing
effect. Eigenvectors for Qy show a similar picture and are there-
fore, not shown. However, it remains to determine the number
of eigenvectors to include, that is, the dimensions of our bases
φx and φy. There are competing interests at play here. On the
one hand, we want to keep the number of eigenvectors small in
order to minimize the computational costs and maximize com-
pression of the data. On the other hand, most of the information
contained in the outcomes should be preserved in order to later
construct accurate high fidelity outcomes. As a result, Kx and

Figure 4. First four eigenvectors for the coarse grid.

Ky will be tuning parameters for our proposed framework. We
also briefly look at the compression accuracy and define the L2
compression error of the low fidelity outcome (and analogously
the high fidelity outcome) for a given number of eigenvectors as
follows

ecomp(Kx) =

n∑
k=1

∥∥x<k> − φxûx<k>
∥∥

n∑
k=1

‖x<k>‖

=

n∑
k=1

∥∥∥x<k> − φx
(
IKx + σ−2

x 	−1
x

)−1
φT

x x<k>

∥∥∥
n∑

k=1
‖x<k>‖

,

(20)

where basis φx is Kx dimensional, which is omitted in the
notation for simplicity, and ‖.‖ denotes the Euclidean distance.
Note that, in order to get a useful metric, we not only sum up the
L2 norm differences for our given sample but also normalize by
the sum of the L2 norms across all vectors in our sample, which
gives the percentile of lost information.

Before we take a look at the results, let us briefly describe
the estimation of σ 2

x . As outlined in the previous section, we
want to estimate σ 2

x in an iterative way. As a starting point,
we use the unbiased standard estimate of σ 2

x in an ordinary
linear regression model, that is model (11) with a flat prior. We
can then use this estimate to solve formula (13) and reestimate
σ 2

x with the result. Doing so shows that σ 2
x hardly changes.

This is to be expected, as we use the same eigenvectors in
both models and should therefore, get similar errors. The error
ecomp defined in (20) for the low fidelity outcomes decreases
when we use more eigenvectors. While the first few eigenvectors
account for most variability, later ones only slightly improve the
approximation. In the end, we get a curve that asymptotically
approaches an error equal to zero, which is attained with Kx =
Nx. On the left of Figure 5, we plot the compression error and
its counterpart, the preserved information, for the low fidelity
simulations. Judging from the plot, Kx = 500 is a reasonable
number of eigenvectors for the compression of the low fidelity
outcomes. The eigenvectors of the high fidelity outcomes give
similar results, where the error again decreases nearing Ky =
Ny. In this case, Ky = 2000 seems reasonable.

5.3. Connecting High and Low Fidelity Outcomes

As outlined in Section 4, the Bayesian regression model in (16)
and (18) will be used to connect the compressed outcomes Ûx
and Ûy. When combined with both projection steps, this gives
us a consolidated model that connects the low and high fidelity
results x and y. To prepare the data we divide the n = 900
computed pairs into a training and test sample. The regression
model is fitted with the training samples and a key question is
then the influence of training sample size on prediction accu-
racy. Note that this number plays an interesting role for two
different reasons. First, we showed that an ordinary linear model
connecting Ûx and Ûy is in general not solvable and a g-prior
is needed. Second, avoiding the high fidelity simulation process
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Figure 5. L2 compression errors for the low fidelity outcome (left) and high fidelity outcome (right).

is the prime objective and reduction in sample size means a
corresponding reduction in computation. In this case, a low
fidelity simulation takes about 215 CPU seconds while a high
fidelity simulation requires approximately 10,800. On the test
sample we calculate the L2 prediction error with

epred(Kx, Ky, g)

=

ntest∑
k=1

∥∥y<k> − ŷ<k>
∥∥

ntest∑
k=1

∥∥y<k>
∥∥ =

ntest∑
k=1

∥∥∥y<k> − φy

(
ûT

x<k>B̂
)∥∥∥

ntest∑
k=1

∥∥y<k>
∥∥

=

ntest∑
k=1

∥∥∥∥y<k> − φy

(((
IKx + σ−2

x 	−1
x

)−1
φT

x xx<k>
)T

B̂
)∥∥∥∥

ntest∑
k=1

∥∥y<k>
∥∥ .

(21)
Different models arise for different tuning parameters, the most
important of which are Kx and g. The number of eigenvectors
used to compress y, Ky, is kept to Ky = 2000, a sensible number
as is shown on the right of Figure 5. This leaves us with three
parameters. To explore this in a reasonable manner, we keep
at least one parameter constant while investigating the different
parameter combinations.

We start by exploring the error in relation to g and Kx. In
order to do so, we fix the size of the training data to 50, that
is, we use only 50 pairs of high and low fidelity outcomes to fit
the model. For these 50 samples we vary Kx and g and compute
the prediction error for the remaining 850 simulation results,
which is shown in Figure 6. Since g is a multiplicative constant,
we will plot it on a logarithmic scale. When observing Figure 6
the prediction error forms a band. It takes a minimum value
at g = 10−4 and increases for both smaller and larger values
of g. This is unsurprising as the g-prior simply needs to be just
large enough to make the model solvable. Even though we only
used 50 cases to build the model there are no difficulties in esti-
mating an accurate model with a substantially higher number
of eigenvectors for the low fidelity outcome. For example for
Kx = 500 the matrix B consists of one million coefficients. The
error gets at first smaller as we use more and more eigenvectors.
For Kx ≥ 100 the benefit of adding more eigenvectors is close
to zero. We repeat the above procedure for 25 and 100 cases and
get the following results shown in Figure 7.

Figure 6. Average L2 prediction error for different numbers of eigenvectors Kx and
different values g for the g-prior specification using 50 training cases.

Both tile plots exhibit the same structure as the previous
figure. The prediction error again takes a minimal value for
g = 10−4.

Next, in order to understand the influence of the size of the
training data, we look at different values of Kx but set g to its
optimal value. This gives the prediction error which is plotted
in Figure 8 against Kx for different sizes of the training data.
Our analysis shows that the information contained in the low
fidelity outcome needs a reasonable number of eigenvectors and
cases to allow for a good approximation of y. Moreover, there
is an asymptotic limit of the information that is contained in
the sample, which gets approached for around 200 eigenvectors.
Finally, we look at the observation y and the prediction ŷ for one
randomly chosen example in the test data. This example was for
Kx = 200, Ky = 2000, optimal g and based on 50 samples
in the training data. The results are visualized in Figure 9.
We also plot the pointwise error, that is the simple difference
between the real and predicted value for each point on the grid
to make any systematic problems clearer. This is particularly
useful as we are dealing with high dimensional spatial data
and the overall error defined in (21) therefore, incorporates a
significant loss of information. It turns out that it is quite difficult
to visually distinguish the real and the computed displacement.
Nevertheless, we can see that the error is larger for the lower part
of the geometry that is completely missing in the low fidelity
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Figure 7. Average L2 prediction error for 25 (left) and 100 training cases (right).

Figure 8. Average L2 prediction error for different numbers of eigenvectors and
different sample sizes.

model and at the back where the thrombus is missing. Overall
the results of the method are satisfying and errors are well within
reasonable bounds. Reproducing these plots for various other
test cases shows the same result and is therefore, omitted.

We also plot in Figure 10 the mean of the pointwise absolute
error in order to avoid selection bias. We can clearly see that the
general spatial distribution of the error follows the same pattern
as in the case of the single exemplary outcome.

5.4. Comparison to Alternatives

5.4.1. Unadjusted Low Fidelity Model
The question remains whether the predicted high fidelity out-
comes are in fact a significant improvement over the raw low
fidelity observations. In this context, it is crucial to stress that
the low fidelity grid is not only thinner and truncated but is
also discretized differently. In other words, no low fidelity points
exist that directly correspond to a given high fidelity point.
Additionally, our ultimate goal is not the accurate prediction of
individual high fidelity realizations, but the accurate assessment
of ensemble statistics of the high fidelity model output under
uncertainty. However, we can still do a reasonable comparison
for the small set of points that are, up to a very small error,
part of both geometries. In order to do so, we first compute the
relative distance between the coordinates of all points on both

grids and select 80 pairs that have a value lower than 0.0002.
These points are, as Figure 11 shows, evenly distributed over the
entire geometry.

We use a tuned GMRF based model, as proposed in Section 4,
with a training set of 50 pairs of observations and Kx = 200
for our comparison. The average absolute difference between
the predicted high fidelity outcome and the real high fidelity
outcome over all the points and test samples is 0.01 in contrast
to 0.058 for the difference to the low fidelity outcome. In other
words, the proposed model provides a great improvement over
the raw low fidelity outcomes.

We can further plot the real high fidelity outcomes for the 80
selected points and the 850 test cases against both our predicted
values and the low fidelity outcomes as show in Figure 12.

Again it appears that the predicted values are much closer to
the real outcomes than the unadjusted low fidelity ones.

5.4.2. Principal Component Basis
A straightforward alternative to the proposed framework is to
substitute the GMRF basis with principal component vectors.
This approach has been used frequently, for example in Higdon
et al. (2008), and has proven to be highly efficient. Moreover,
Mak et al. (2018) showed that principal components can also
capture physical features of the model. To be specific, in the
following we examine a model similar to the one proposed
in Figure 3, but with the important difference that we substi-
tute the eigenvectors and eigenvalues of the GMRF covariance
matrix with the principal components and eigenvalues of the
training set, which was previously only used for regression.
More formally, we substitute the compression matrices φx and
φy with φPCA

x and φPCA
y , the principal components of the low

and high fidelity outcomes in the training set. Analogously,
we replace the eigenvalue matrices 	x and 	y with 	PCA

x and
	PCA

y , which consist of the eigenvalues corresponding to the
principal components. It is important to stress that we now
also use the training set for the compression process, while
previously it only played a role in the overall regression of the
compressed outcomes. We will omit the specific formulas for
the model derivation, as they follow directly from Section 4 and
will only state the more relevant error terms. First, we adapt the
formula for the compression error in (20) by substituting the
φ and 	 matrices and only summing over the test set. This is
necessary, because the compression now also depends on the
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Figure 9. From top to bottom: Observation, prediction, and pointwise error (original, rotated, and opened) for a single test case.

training sample and should therefore, be evaluated exclusively
on the test set. The size of the basis Kx is now limited form above
by the size of the training set ntrain:

ecomp(Kx) =

ntest∑
k=1

∥∥x<k> − φPCA
x ûx<k>

∥∥
ntest∑
k=1

‖x<k>‖

=

ntest∑
k=1

∥∥∥∥x<k> − φPCA
x

(
IKx + σ−2

x
(
	PCA

x
)−1)−1 (

φPCA
x

)T x<k>

∥∥∥∥
ntest∑
k=1

‖x<k>‖
.

(22)

To derive the new prediction error from (21), it is sufficient to
substitute the φ and 	 matrices:

epred(Kx, Ky, g) =
ntest∑
k=1

∥∥∥∥∥y<k> − φPCA
y

(((
IKx + σ−2

x
(
	PCA

x
)−1)−1

φT
x xx<k>

)T
B̂
)∥∥∥∥∥

ntest∑
k=1

∥∥y<k>
∥∥ .

(23)

Using these formulas, we can compare the compression errors
on the test set for PCA and GMRF based approaches. We are
mostly interested in small sample sizes and restrict ourselves
for brevity to the more difficult compression of high fidelity
outcomes. The benchmark is the GMRF compression used for
our regression models in the previous parts, that is, a model
that uses Ky = 2000 eigenvectors. As shown in Figure 13 the
compression error depends heavily on the number of cases used
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Figure 10. Mean absolute error for the predictions in the test set (original, rotated, and opened).

Figure 11. Location of the 80 points for the comparison on the low fidelity grid.

for the PCA, that is, the size of the training set. Moreover, the
GMRF approach, where we can easily increase the number of
vectors into the hundreds, has an edge over the PCA approach
as long as the number of high and low fidelity pairs is below 100.
If we fit an overall prediction model for high fidelity outcomes

Figure 13. Compression error of the high fidelity outcomes for GMRF and PCA
bases.

based on PCA compression and look at the error as defined in
(23), we get a prediction error of 0.087 for 25 pairs of cases in
the training set and 0.052 for 50 pairs of cases, both significantly
higher than the average error for similar GMRF models. Even
for 100 PCA vectors the error is slightly worse than the error of
our GMRF approach. The PCA approach is probably superior

Figure 12. Low fidelity outcome and predicted high fidelity outcome versus real high fidelity outcome for 80 points and 850 samples in the test set.
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Table 1. Comparison of the overall prediction error for GMRF and PCA based
models.

n GMRF PCA

25 0.023 0.087
50 0.015 0.052
100 0.014 0.020

for even larger samples. However, this is problematic as we need
to compute more high fidelity outputs and these are, as the next
section shows, costly. We can therefore, conclude that the GRMF
approach presented in this work has an edge for small samples,
when only a few dozen model runs are available (Table 1).

5.5. Numerical Details

When we focus our attention on the numerical effort of our
proposed function-to-function regression, the most demanding
part is the computation of the eigenvectors. On our 32 GB
memory workstation with 16 Intel Xeon 2.40GHz CPU cores,
the computation of the 5000 eigenvectors for the high fidelity
grid on one core took approximately 36 hr or 129,600 sec. The
computation of the 2000 eigenvectors for the low fidelity grid
took less than half an hour or 1800 sec. However, these compu-
tations need only be performed once and also only depend on
the mesh structure. In other words, if the meshes for calculating
the arterial wall pressure remain the same for two different
patients, a recalculation of bases φx and φy is not required. The
compression of the observations, that is, the estimation of ux and
uy takes negligible time (about half a second per data entry in
the training dataset). The same holds for the estimation of the
Bayesian regression model (16). In fact, all 231 models which
had to be generated for Figure 6 were computed in less than 30
min on 5 cores, that is, 9000 CPU seconds. The computation
of a single high fidelity outcome takes approximately 10,800
CPU seconds, whereas the computation of a low fidelity one
takes a mere 215 CPU seconds. The main cost factors are the
evaluations of the high fidelity model, which in part determine
the error as seen in Figure 8. The benefit of our framework
therefore, depends on the acceptable error and the number of
high fidelity outcomes that are needed. If the number of required
outcomes is large we can replace the serial computation of high
fidelity simulations with a smaller number for model fitting and
scale down the computation time by orders of magnitude.

6. Discussion

The presented work provides a framework for computing a
large number of high fidelity computer simulation outputs on
a mesh if a low fidelity approximation is available. It is possible
to compute approximations for all points of the high fidelity
mesh, not only for a handful of selected locations, even if there
is no corresponding location on the low fidelity grid. At the
same time, the relative error we obtain with these predictions
is reasonably small and can be adjusted for a specific application
via the number of eigenvectors and the size of the training data,
which have to be balanced against an increase in computation
time. There are various possible extensions to the model, for
example choosing a different neighborhood structure for the

GMRF to better mimic mechanical forces or choosing a more
involved regression model to connect the compressed outcomes.

Supplementary Materials

Code and Data: repro_code.zip is a compressed folder that contains
code and data to reproduce the results on a small subset of the data used
in the article. The full dataset is available at: https://syncandshare.lrz.de/
getlink/fi2soSUsR5PzuLnN6Rx8kZ6L/.

Probabilistic Material Model: probabilistic_material_model.
pdf contains further details on the finite element simulation with a
focus on the modeling of wall parameters.
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