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An Interpretable Lane Change Detector Algorithm
based on Deep Autoencoder Anomaly Detection

Oliver De Candido, Maximilian Binder, and Wolfgang Utschick

Abstract— In this paper, we address the challenge of em-
ploying Machine Learning (ML) algorithms in safety critical
driving functions. Despite ML algorithms demonstrating good
performance in various driving tasks, e.g., detecting when other
vehicles are going to change lanes, the challenge of validating
these methods has been neglected. To this end, we introduce an
interpretable Lane Change Detector (LCD) algorithm which
takes advantage of the performance of modern ML-based
anomaly detection methods. We independently train three Deep
Autoencoders (DAEs) on different driving maneuvers: lane
keeping, right lane changes, and left lane changes. The lane
changes are subsequently detected by observing the reconstruc-
tion errors at the output of each DAE. Since the detection
is purely based on the reconstruction errors of independently
trained DAEs, we show that the classification outputs are
completely interpretable. We compare the introduced algorithm
with black-box Recurrent Neural Network (RNN)-based classi-
fiers, and train all methods on realistic highway driving data.
We discuss both the costs and the benefits of an interpretable
classification, and demonstrate the inherent interpretability of
the algorithm.

I. INTRODUCTION AND MOTIVATION

When we consider the ever increasing complexity of
driving scenarios which Autonomous Vehicles (AVs) must
handle, it becomes clear that Machine Learning (ML) algo-
rithms will be part of the solution. However, if we think
about the black-box nature of these ML algorithms, they
lack the interpretability required to validate the driving
functions which they are incorporated into. For example, if
the classification output of an ML-based component leads to
an accident, it is important to understand why that output
arose. To tackle this lack of interpretability, the research
community has focused on Explainable Artificial Intelligence
(XAI) [1], [2], [3]. Recently, AV researchers have proposed
XAI methods in various driving functions, e.g., in [4], the
authors introduce a steering angle control algorithm based
on driving video data. They provide visual interpretability
using attention heat maps, which highlight regions in the 2D-
image that might influence the algorithm’s decision. In [5],
the authors propose the use of interpretable representations
in an end-to-end ML-based motion planner. These are used
to visualize the motion forecasting and to quantify the object
detection performance.

In this paper, we consider the example driving function
to detect when other vehicles are going to change lanes
in a highway scenario, i.e., the vehicles surrounding the
ego vehicle are tracked and a Lane Change Detector (LCD)
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Fig. 1: An overview of the LCD algorithm demonstrating a
decoupling of the ML-based reconstruction (dashed box) and
the explicit decision rules. Each function f is an indepen-
dently trained ML method used to reconstruct the time-series
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the decision c based on the reconstruction errors.

algorithm detects if a vehicle will change lanes. The inputs
to such a driving function are multi-variate time-series data.
Recent publications use Recurrent Neural Network (RNN)
architectures to classify and predict lane changes [6], [7].
However, neither the validation nor the lacking interpretabil-
ity of these ML-based driving functions are addressed. In this
paper, we introduce an interpretable LCD algorithm to detect
when surrounding vehicles change lanes. The algorithm
detects a lane change depending on the reconstruction errors
of three independent ML-based anomaly detection functions
– each trained on a specific driving maneuver. An overview
of the algorithm is depicted in Fig. 1. Since the classification
is based on explicit decision rules [3, Ch. 4.5], the algorithm
is interpretable.

First, we discuss the different approaches to detect
anomalies—also known as outliers—in time-series data. An
overview of ML methods for anomaly detection can be found
in [8]. The Deep Autoencoder (DAE) [9], [10] is a popular
anomaly detection method (see, e.g., [8]) because it is
trained in an unsupervised manner, i.e., it detects anomalies
directly based on the intrinsic properties of the data. A DAE
attempts to reconstruct the input signal whilst representing
the essential information in a smaller dimensional space, i.e.,
it aims to minimize the reconstruction error between input
and output signals with a smaller dimensional latent space
between them. The proposed LCD algorithm is based on
DAEs.

In [11], a time-series anomaly detection algorithm is



introduced using a Convolutional Neural Network (CNN)
with an encoder/decoder architecture, similar to the structure
of a DAE. The algorithm is able to detect and classify
different types of anomalous signals in streaming time-series
data. In [12], an anomaly detection algorithm is introduced
to detect abnormal trajectories of road participants at various
intersections. The authors train a DAE on sequential data
recorded at these intersections. They then classify unseen
scenarios as being “normal” or “abnormal” depending on
the reconstruction error at the output of the DAE, i.e., if the
reconstruction error is larger than a pre-defined threshold,
the scenario is classified as an anomaly (“abnormal”).

Recently, researchers have employed DAE algorithms to
reconstruct, predict, and generate vehicle trajectories in high-
way scenarios. The authors of [13] introduce an algorithm to
predict the future trajectory of vehicles using an RNN-based
DAE, which also takes the driver’s lane change intention
into consideration. They show that this DAE architecture
can predict the lateral and longitudinal position of vehicles
up to 5 s into the future. In [14], the authors introduce
unsupervised ML-based methods to generate lane change
trajectories. They show that a DAE algorithm is able to
generate new realistic trajectories by varying the latent space
representations. This work was extended in [15] using Bézier
curves to generate smoother trajectories, but the underlying
DAE architecture remains the same.

With these results in mind, we propose a novel LCD
algorithm, depicted in Fig. 1, which takes advantage of
the anomaly detection performance of DAEs. The algorithm
classifies the lane changes using the reconstruction error at
the output of the DAE (see, e.g., [12]). To this end, we train
three separate DAEs (depicted in the dashed box in Fig. 1):
one to reconstruct left lane changes (fleft), one to recon-
struct right lane changes (fright), and one to reconstruct lane
keeping (fkeep). Since these DAEs are trained independently
on independent datasets, we argue that the anomalies they
detect are also independent. By observing the reconstruction
error at the output of each DAE, we define a decision
rule-set based on pre-determined thresholds to detect an
upcoming lane change. By pre-determining these thresholds,
an engineer is able to trade-off the classification performance
of the detection algorithm with a reliable detection time,
i.e., whether the algorithm can reliably detect a lane change
earlier or later. Moreover, since the LCD algorithm depends
on the independent outputs of three DAEs, we show that
the classification is directly interpretable (see Section IV-
D). It is well known, see, e.g., [1], [16], that an increase in
interpretability of ML-based classifiers comes at the cost of
classification performance.

The paper is structured as follows: In Section II, we define
the ML problem we consider using DAEs including the real-
world dataset used for training the DAEs. In Section III, we
introduce the LCD algorithm and the lane change classifica-
tion algorithms used as references. In Section IV, we provide
and discuss various experimental results. In Section V, we
conclude the paper with a discussion of the work and possible
extensions of it.

Attribute Description
vlat. Lateral velocity
vlong. Longitudinal velocity
alat. Lateral acceleration
dleft Distance to the left lane marking
dright Distance to the right lane marking

TABLE I: The considered attributes (Γ = 5).

II. PROBLEM FORMULATION

In this section, we introduce the dataset generation and
pre-processing steps required by the proposed algorithm.
Next, we define the DAE architecture and the problem of
detecting anomalies in multi-variate time-series data.

A. Dataset Generation

As training data for the DAEs we use the realistic driving
data summarized in the highD dataset [17]. These data were
recorded by flying a drone above the German highway at
different locations. They summarize many hours of realistic
highway driving data which include thousands of lane change
maneuvers. During the first stage of pre-processing we
extract the driving maneuvers, i.e., left lane changes, right
lane changes, and lane keeping, from the highD dataset; these
define the scenarios the DAEs should reconstruct. For the
lane keeping data, a scenario is defined where the observed
vehicle remains in its lane within all time-steps.

Each DAE is trained using windowed scenarios with the
parameter Nlc to indicate the time before the lane change
which the DAE should be able to reconstruct, i.e., the
number of time-steps before a lane change which should be
reconstructed. We create a training dataset for the DAEs as
follows: first, a set of scenarios is created

D′j =
{
X̃(1), . . . , X̃(Mj)

}
, (1)

with the dataset label j = left, right, keep and each scenario
is defined as

X̃ =
[
x[1], x[2], . . . , x[Nlc]

]
∈ RΓ×Nlc , (2)

where the event, e.g., the center of a vehicle crosses the right
lane marking, occurs at time-step Nlc. At each time-stamp
n = 1, . . . , Nlc, we summarize the Γ attribute signals in a
vector x[n] = [x1[n], x2[n], . . . , xΓ[n]]T ∈ RΓ. The input
attributes we consider are summarized in Table I.

Once we have a set of scenarios describing different
maneuvers—each with a different number of samples—we
further process the data by passing a sliding window over
them with a constant window size W [18]. Each scenario,
i.e., sample in D′j , is processed by a sliding window function
which generates all possible windows for a scenario, i.e.,

win(X̃;W ) =
{ [
x[i], x[i+ 1], . . . , x[i+W − 1]

]
:

∀i ∈ {1, . . . , Nlc −W + 1}
}

(3)

where the index i indicates the initial time-stamp of each
window in a scenario. Thus, the dataset for each driving
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Fig. 2: Abstract DAE architecture.

maneuver can be summarized as

Dj =
{

win
(
X̃(1);W

)
, . . . ,win

(
X̃(Mj);W

)}
, (4)

with |Dj | = Mj(Nlc − W + 1), the dataset label j =
left, right, keep, and each sample, after windowing, has the
dimension X ∈ RΓ×W .

With a dataset defined for each of the three maneuvers, we
split them into three disjunct sets for: (i) training the DAE
(Dtr,j); (ii) determining the threshold values (Dval,j); and (iii)
testing the detection performance (Dtest,j). We separate the
dataset into a 70%, 10% and 20% split of the total data |Dj |,
respectively.

B. Deep Autoencoders

Throughout this work, we train DAEs with 1-D convolu-
tional layers; convolutional based DAEs were first introduced
in [10]. It has been shown that these layers can be employed
to extract discriminative features in multi-variate time-series
data (see, e.g., [19], [20]).

The general architecture of a DAE with 1-D convolutional
layers is depicted in Fig. 2. On the left hand side, we
observe the Γ input channels of the multi-variate time-series
datum which are first passed through an encoder function
enc : RΓ×W → Rp (dotted box), and then a decoder function
dec : Rp → RΓ×W (dashed box). At the output, the decoder
attempts to reconstruct each input signal, i.e., xT

γ ≈ x̂T
γ .

The encoder and the decoder are designed symmetrically,
i.e., they have the same number of convolutional blocks
and transposed convolutional blocks, respectively. Before
the signal is propagated into the latent space of dimension
z ∈ Rp, i.e., the space between the encoder and the decoder,
a fully-connected layer is employed. The first layer in the
decoder is also a fully-connected layer.

The overall structure of a DAE can be summarized as

fj(X) = dec(enc(X;E);D), (5)

with the encoder parameters E and the decoder parameters
D. The index j = right, left, keep indicates which DAE is
trained, i.e., which training dataset is used.

We use the Mean Squared Error (MSE) loss function to
train the DAEs, i.e.,

L(Dtr,j ;E,D) =
1

Mtr,jWΓ

Mtr,j∑

i=1

∥∥∥X(i) − fj(X(i))
∥∥∥

2

F
, (6)

with the Frobenius norm ‖ · ‖F and the DAE for maneuver
j = left, right, keep, as defined in (5). Since the three

DAEs are trained with the loss defined in (6) on independent
datasets the resulting DAE function will embed and recon-
struct an unseen input differently. Thus, the reconstruction
errors of the three DAEs are independent.

C. Anomaly Detection

A main benefit of training a DAE on sliding window multi-
variate time-series data is the ability to detect anomalous
signals (see, e.g., [8], [12]). Since the DAE can reconstruct
data which are from the same distribution as the training
set, when a datum from a different distribution is input, the
reconstruction error at the output will be larger than for a
datum from the same distribution.

In our case, three DAEs are trained on left lane change,
right lane change and lane keeping maneuvers, contained
in Dtr, left, Dtr, right and Dtr, keep, respectively. Therefore, we
expect a higher reconstruction error at the output of the DAE
when a datum from a different dataset, i.e., a different driving
maneuver, is input. We take advantage of this fact in the
proposed LCD algorithm.

III. LANE CHANGE DETECTION ALGORITHM

In this section, we describe the proposed LCD algorithm
and introduce the parameters which can be optimized with
respect to the engineering requirements. The key ideas be-
hind the algorithm were introduced in Section II, i.e., the
windowing of a driving maneuver, the DAE architecture, and
the anomaly detection ability of DAEs.

In the first stage of the algorithm, three DAEs, fleft, fright,
and fkeep, should be trained on representative datasets con-
taining different lane change maneuvers. Once the DAEs
have been trained, the weights are not changed, and the
DAEs are only used to reconstruct the input. Since the
DAEs are trained independently, the anomalous signals each
detects will be independent. As the decision only relies on
the reconstruction errors of these independent DAEs, the
decision of the LCD algorithm is fully interpretable.

The LCD algorithm is depicted in Algorithm 1. For an
arbitrary input, X̄ , we first calculate the reconstruction error
of each DAE (Lines 2, 3 and 4). Next, we calculate the differ-
ence δkeep between the current reconstruction error εkeep and
the reconstruction error from the previous time-stamp ε′keep.
By tracking the change in reconstruction error of fkeep, we
track the derivative of the reconstruction error. This improves
the performance of the LCD algorithm; an improvement
in performance was not observed when considering δleft
or δright. With the given threshold values τleft, τright, τkeep



and τδ (see Section III-A), the algorithm estimates which
class the current window belongs to using explicit decision
rules [3, Ch. 4.5]. This highlights the direct interpretability
of the LCD algorithm. A left lane change is detected if
fright cannot reconstruct the current datum, and either fkeep
cannot reconstruct it as well or the difference δkeep is large,
simultaneously, fleft can reconstruct the datum (see Line 6,
where ∧ and ∨ represent a logical “and” and a logical “or”
operator, respectively). A similar rule-set is used to detect
right lane changes (see Line 8). If the current datum is not a
lane change, the label at the output is c = 0 (lane keeping).

Algorithm 1 Lane Change Detector (LCD) Algorithm

1: Inputs: Multi-variate time-series datum: X̄ ∈ RΓ×W ,
reconstruction error from previous time-stamp: ε′keep

2: εleft ← ‖X̄ − fleft(X̄)‖2F
3: εright ← ‖X̄ − fright(X̄)‖2F
4: εkeep ← ‖X̄ − fkeep(X̄)‖2F
5: δkeep ← εkeep − ε′keep
6: if (εkeep≥τkeep∨δkeep≥τδ)∧ (εright≥τright)∧ (εleft<τleft)

then
7: c← −1 {Left Lane Change}
8: else if (εkeep ≥ τkeep ∨ δkeep ≥ τδ) ∧ (εleft ≥ τleft) ∧

(εright < τright) then
9: c← +1 {Right Lane Change}

10: else
11: c← 0 {Lane Keeping}
12: end if
13: return c, εkeep

A. Performance Trade-off: Threshold Determination

An important step in the design of the LCD algorithm is to
determine the threshold values for the different DAEs. These
thresholds—as seen in Algorithm 1—not only determine how
well the algorithm can classify each maneuver, but also how
early a lane change is reliably detected.

On the one hand, we use the macro-averaged F1 score [21]
as the classification performance measure we aim to maxi-
mize. The precision score and the recall score are defined
for each class c as

Precisionc =
TPc

TPc + FPc
, Recallc =

TPc
TPc + FNc

, (7)

with the true positives (TPc), false positives (FPc) and false
negatives (FNc) of a given class c. The F1,c score for that
class is calculated as the harmonic mean of the precision and
recall scores, i.e.,

F1,c = 2
Precisionc · Recallc
Precisionc + Recallc

. (8)

The macro-averaged F1 score is the arithmetic mean of the
F1,c scores per class, i.e., F1 =

∑
c F1,c/C with the total

number of classes C. We also consider the macro-averaged
precision and recall scores.

To this end, we create an aggregated dataset out of the
validation datasets introduced in Section II-A. We label each

sample with a label corresponding to the driving maneuver,
e.g., all samples in Dval, left are given the label c = −1, all
samples in Dval, right are given the label c = +1, and all
samples in Dval, keep are given the label c = 0. Thus, we
define the validation dataset as

Dval =
{

(X(i), c(i))
}Mval

i=1
, (9)

where the samples are taken from Dval, left,Dval, right and
Dval, keep. The total number of samples is Mval = |Dval, left|+
|Dval, right|+ |Dval, keep|.

On the other hand, we want the LCD algorithm to reliably
detect a lane change as early as possible before the lane
change actually occurs. Thus, we define a reliable detection
time as Def. 1.

Definition 1. A detection is considered reliable if the pre-
diction does not change in the time interval between the first
prediction and the actual lane change.

With the validation datasets, we search for the threshold
values τ = [τleft, τright, τkeep, τδ]

T ∈ R4 which maximize the
F1 score whilst maintaining a reliable early detection.

We further define the set of reconstruction errors of each
DAE on the validation dataset as

Sj =
{
‖X − fj(X)‖2F : ∀X ∈ Dval,j

}
, (10)

with the trained DAEs fj , the validation dataset for each
maneuver Dval,j , and j = left, right, keep. Now, we can
exhaustively search for the optimal thresholds over the range
τj ∈ (0,max{Sj}] which is the maximum reconstruction
error in the set Sj as defined in (10).

Additionally, a method to estimate an appropriate anomaly
threshold is to estimate the mean and standard deviation
of the reconstruction error of each DAE on the validation
dataset. This is similar to the method employed in [12]. To
this end, we can set each threshold as

τj = mean{Sj}+ 3× std{Sj}, (11)

with the mean and the standard deviation of the reconstruc-
tion error values on each validation dataset as defined in (10).
The threshold τδ can be determined as one standard deviation
smaller than the mean difference in lane keep reconstruction
errors using the validation datasets of lane changes.

B. Reference Algorithms

We use two state-of-the-art lane change classification al-
gorithms and a CNN-based algorithm as reference methods.
Both of the state-of-the-art classification algorithms use RNN
architectures which can handle the multi-variate time-series
data. The authors of [6], first introduced an architecture using
Long Term Short Term Memory (LSTM) cells [22], and
the authors of [7] extended the architecture to use Gated
Recurrent Unit (GRU) cells [23]. These both show good lane
change classification results, however, neither the problem of
interpretability nor the challenge of validation are explicitly
mentioned. These will be referred to as LSTM [6] and
GRU [7], respectively.



Network Layer Input Output Kernel Stride

Encoder

Conv1D 5 Chs 10 Chs 1× 3 2
Conv1D 10 Chs 20 Chs 1× 3 2
Conv1D 20 Chs 30 Chs 1× 3 2
Linear 60 Ns 5 Ns N/A N/A

Decoder

Linear 5 Ns 60 Ns N/A N/A
ConvT1D 30 Chs 20 Chs 1× 3 2
ConvT1D 20 Chs 10 Chs 1× 3 2
ConvT1D 10 Chs 5 Chs 1× 3 2

TABLE II: The DAE architecture for the LCD algorithm. The
input/output columns denote the number of channels (Chs)
for the convolution layers and number of neurons (Ns) for
the linear layers.

Additionally, due to the recent success of CNN archi-
tectures in multi-variate time-series classification tasks (see,
e.g., [19], [20]), we compare the interpretable LCD algorithm
with a CNN-based classifier. It also lacks direct interpretabil-
ity of its classifications.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the experimental setup and
results we achieved with the LCD algorithm introduced in
Section III compared with the reference algorithms. We show
how lane changes are detected in an interpretable manner and
how the threshold parameters can be chosen by an engineer.

A. Experimental Setup

We use the same architecture for each DAE, with a
symmetric encoder and decoder design. The parameters are
summarized in Table II. The latent space has a dimension
z ∈ R5.

Since the input attributes are real-valued, i.e., x[n] ∈ RΓ,
we use the Tanhshrink activation function, defined as

tanhshrink(a) = a− tanh(a), (12)

which is applied element-wise on an input a ∈ Rn.
We train each DAE using the training data Dtr,j for the

respective driving maneuver with the MSE loss defined
in (6). We assume the lane changes occur at time-stamp
Nlc = 100, i.e., the scenarios before windowing are of
dimension X̃ ∈ R5×100 (cf. (2)). This means the DAEs
attempt to reconstruct 4 s before the lane change – this
is motivated by the results from [13]. Moreover, we use a
window of length W = 25 time-stamps which corresponds to
subsequences of the time-series data of length 1 s. Thus, the
inputs to the DAEs are of dimension X ∈ R5×25 (cf. (4)).

We train each DAE for 200 epochs using the Adam
optimizer [24] with mini-batches of size 200 and a learning
rate of α = 0.0001.

To train the reference algorithms, we use the same training
data which we trained the DAEs on, i.e., Dtr, left,Dtr, right and
Dtr, keep. Furthermore, we label each sample using the same
principle as introduced in Sub-section III-A, i.e., each left
lane change maneuver is labelled with c = −1, each right
lane change maneuver is labelled with c = +1, and each lane
keep maneuver is labelled with c = 0. Given this training set,

we can train the networks using the standard cross-entropy
classification loss [25, Ch. 4]. The reference algorithms are
trained with the same hyper-parameters as the DAEs, i.e., the
same number of epochs, mini-batch size and learning rate.
The RNN architectures were taken from [6] and [7]. For the
CNN architecture, we take the encoder design from Table II
and change the output to 3 neurons – one for each class.

B. Threshold Determination

First, we discuss the threshold determination which is
required for the LCD algorithm. As the LCD algorithm is
designed to detect lane changes in an interpretable manner,
we show that an engineer is able to choose the thresh-
old values such that the desired performance is achieved.
First, we calculate the threshold values using the means
and the standard deviations on the validation datasets as
introduced in (11). This results in the threshold values
of τkeep, std = 0.015, τleft, std = 0.027, τright, std = 0.021, and
τδ,std = 2.97×10−4. We denote the algorithm with these
threshold values as LCDstd.

We can also determine the threshold values depending on
the desired performance of the LCD algorithm. Thus, we fix
the keep thresholds τkeep, det = τkeep, std and τδ,det = τδ,std.
Now, we can search for the left and right thresholds which
determine the desired function performance. To this end,
we plot the macro-averaged F1 score (cf. (8)), the average
reliable detection time for left and for right lane changes
(cf. Def. 1) on the validation dataset in Fig. 3. We consider
the average reliable detection time only when at least 93%
of the validation data is reliably detected. In Fig. 3a, we
see that a threshold value τleft ∈ (0.021, 0.034) and τright ∈
(0.013, 0.035) achieves an F1 score of over 95%. For a
reliable detection time of 2.9 s for right lane changes we
observe that τleft ∈ (0.007, 0.034) and τright ∈ (0.028, 0.047)
in Fig. 3b. An average reliable detection time of at least
2.85 s for left lane changes is achieved for τleft ≥ 0.027
and τright ≤ 0.28 as seen in Fig. 3c. With these results in
mind, we choose the left and the right threshold values to
be τleft, det = 0.027 and τright, det = 0.028, respectively. We
denote the algorithm with these threshold values as LCDdet.

C. Lane Change Detection Results

Now, we discuss the classification results achieved by the
different LCD algorithms on the test dataset. We observe in
Table IIIa that the purely ML-based algorithms achieve a
better classification performance than the interpretable LCD
algorithms. The CNN algorithm outperforms the RNN-based
algorithms on this task. Since the encoders of the DAEs use
the same CNN architecture, the classification results support
the argument that a CNN is able to extract discriminative
features. The interpretable LCD algorithm achieves a classi-
fication performance to within 3.5% of the black-box ML-
based methods; the average precision is only 2.5% away.
We observe that the LCDdet algorithm achieves a slightly
better performance compared with the LCDstd algorithm,
which indicates the benefit of determining the threshold
values manually. These classification results show that the
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Fig. 3: Threshold choice showing the trade-off between high
F1 score and a reliable early detection.

proposed LCD algorithm is able to classify the different
driving maneuvers whilst maintaining interpretability.

In Table IIIb, we observe the average reliable detection
time results for the different algorithms. Again, the LCD
algorithms almost achieve the same performance as the
black-box ML-based classification algorithms. On average,
the algorithm can reliably predict a lane change 2.93 s before
lane changes, only 0.1 s away from the RNN-based methods.
Furthermore, we observe that the LCDdet detections are more
reliable than the LCDstd algorithm, i.e., in at least 94.3% of
the test data the algorithm output a reliable detection (see
Def. 1) for both types of lane changes. Recall, we chose the
threshold values to achieve a reliability of at least 93% on
the validation data.

Overall, the simulation results indicate that the proposed

Alg. Acc. [%] F1 [%] Precision [%] Recall [%]
LSTM [6] 99.5 99.6 99.6 99.6
GRU [7] 99.5 99.5 99.5 99.6
CNN 99.7 99.8 99.7 99.8

LCDstd 96.4 96.5 97.2 96.0
LCDdet 96.5 96.6 97.3 96.0

(a) Lane change detection classification results.

Alg. Timeleft[s] Rel. [%] Timeright[s] Rel. [%]
LSTM [6] 3.03 99.8 3.03 98.4
GRU [7] 3.03 98.6 3.04 98.8
CNN 3.04 99.8 3.04 99.8

LCDstd 2.93 94.1 2.93 92.6
LCDdet 2.90 94.3 2.93 94.8

(b) The average reliable detection time results, including a percent-
age of reliable (Rel.) detections on the test dataset, for left and for
right lane changes.

TABLE III: Classification and reliable detection time results
on the test data with Nlc = 100.

LCD algorithm can reliably detect lane changes; however, it
shows a slight performance degradation compared to state-of-
the-art ML algorithms. This is the price of the interpretability
of the classification (see, e.g., [1], [16]).

D. Interpretability of the LCD Algorithm

In the previous sub-section, we saw that the LCD algo-
rithm is able to classify different driving maneuvers almost
as well as state-of-the-art ML algorithms. The reasons why
ML-based algorithms make certain classifications is opaque
and not directly interpretable. Now, we demonstrate how the
proposed LCD algorithm is interpretable. To this end, we
take three scenarios—one for each driving maneuver—from
the test dataset and assume Nlc = 200. Then, we pass each
scenario through the window function (see (3)), and classify
each sample sequentially.

The results of passing each windowed sample through
the classifiers are depicted in Figure 4. The first driving
maneuver—a vehicle changing lanes to the right—is depicted
between 1 s and 8 s. We see that the LCDdet algorithm
outputs the label cLCDdet = +1, only once all conditions
in Line 8 of Algorithm 1 are fulfilled, i.e., fleft detects
an anomalous signal, the difference between reconstructions
of the DAE for lane keeping is large, and fright is able
to reconstruct the signal. The classification occurs 3.6 s
before the right lane change for the given threshold values.
Moreover, the reconstruction error at the output of fright
decreases and the reconstruction errors of fleft and fkeep
increase after the lane change is detected. We observe in
the top plot that both of the RNN-based methods show an
erroneous label (cGRU [7] = cLSTM [6] = 0) after initially
classifying the windows as a lane change to the right. This
would not be considered a reliable detection as per Def. 1.
The reason for this change in decision is not obvious nor
directly explainable by the RNN methods.

Between 8 s and 15 s, all four classifiers correctly detect
that the vehicle remains in its lane (c = 0). From the recon-
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Fig. 4: Classification output for different driving maneuvers,
illustrating the interpretability of the LCD algorithm.

struction error plots, we observe that all three DAEs were
able to reconstruct the samples. Finally, a scenario where the
vehicle changes lanes to the left is depicted between 15 s and
22 s. Again, by observing the reconstruction errors, we can
directly see why the LCD algorithm classified the sample as
a left lane change. It is interesting to note that the DAE for
right lane change maneuvers, fright, detected an anomalous
signal earlier than the DAE for lane keeping. This leads to
the lane change only being correctly classified 2.8 s before
it occurred.

These results not only highlight the interpretability of the
LCD algorithm, but they also show that the reconstruction
error at the output of each DAE is independent for differ-
ent inputs. Moreover, we demonstrate how one can easily
understand the detections made by the LCD algorithm.

E. Performance Trade-off: Early vs. Reliable Detections

The results thus far highlight the interpretability of the
LCD algorithm, and show that the performance is compa-
rable to purely ML-based methods. Now, we investigate the
performance trade-off between early and reliable detections
by varying the threshold τδ . We use a test dataset with
Nlc = 200 to investigate the generalizability of the algorithm.

The LSTM [6] method achieves the best performance with
an average detection time of Timeleft of 3.70 s and Timeright
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Fig. 5: Average reliable detection time (solid lines) and
percentage of reliable detections (dotted lines) plotted against
the threshold τδ . Left lane changes indicated by: ×; right lane
changes indicated by: |.

of 3.49 s with a reliability of 91.9% and 93.6%, respectively.
This performance cannot directly be improved.

In Fig. 5, we plot the trade-off between an early average
reliable detection time and the reliability estimate depending
on the threshold value τδ . We observe that with a small
threshold value, we achieve an average reliable detection
time of 3.76 s and 3.58 s for left and right lane changes,
respectively. However, this comes at the cost of less reliable
detections. On the other hand, if we make τδ large enough,
we observe a reliability estimation of 94.3% and 93.4%,
which comes at the cost of a smaller average detection time.
Furthermore, the value τδ,det, which we use in our algorithms,
is near the intersection point of the curves. These results
not only emphasize the benefit of a fully interpretable LCD
algorithm, but they also show how the threshold values can
be chosen to achieve a desired performance.

V. CONCLUSION AND OUTLOOK

Motivated by the ability of DAEs to detect anomalous
signals in multi-variate time-series data, we propose a LCD
algorithm based on the reconstruction error of three inde-
pendent DAEs. We demonstrate how an engineer can choose
appropriate threshold values for the LCD algorithm. The per-
formance capability of the LCD algorithm is investigated on
realistic highway driving data. We show that the interpretable
algorithm almost performs as well as black-box ML-based
methods. Moreover, we highlight the inherent interpretability
of the novel LCD algorithm.

This work demonstrates the feasibility of building an
interpretable classifier out of black-box ML algorithms. The
method can be extended by further optimizing the anomaly
detection, i.e., not only using the output reconstruction error
but also taking the activations in the hidden-layers into
account when detecting anomalous signals (see, e.g., [26]).
Additionally, one can investigate the influence Nlc has on the
performance of the algorithms. Moreover, the interpretability
can be extended if one were to consider the reconstruction
error of each signal individually. Thus, potentially enabling
the LCD algorithm to also explain why a lane change is
imminent, e.g., the longitudinal acceleration is typical for a
left lane change and not for a right lane change.
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