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Abstract: Purpose: Seizures related to tumor growth are common in glioma patients, especially in
low-grade glioma patients this is often the first tumor manifestation. We hypothesize that there are
associations between preoperative seizures and morphologic features (e.g., tumor size, location) and
histogram features in patients with glioblastoma (GB). Methods: Retrospectively, 160 consecutive
patients with initial diagnosis and surgery of GB (WHO IV) and preoperative MRI were analyzed.
Preoperative MRI sequences were co-registered (T2-FLAIR, T1-contrast, DTI) and tumors were
segmented by a neuroradiologist using the software ITK-snap blinded to the clinical data. Tumor
volume (FLAIR, T1-contrast) and histogram analyses of ADC- and FA-maps were recorded in the
contrast enhancing tumor part (CET) and the non-enhancing peritumoral edema (FLAIR). Location
was determined after co-registration of the data with an atlas. Permutation-based multiple-testing
adjusted t statistics were calculated to compare imaging variables between patients with and without
seizures. Results: Patients with seizures showed significantly smaller tumors (CET, adj. p = 0.029) than
patients without preoperative seizures. Less seizures were observed in patients with tumor location in
the right cingulate gyrus (adj. p = 0.048) and in the right caudate nucleus (adj. p = 0.009). Significant
differences of histogram analyses of FA in the contrast enhancing tumor part were observed between
patients with and without seizures considering also tumor location and size. Conclusion: Preoperative
seizures in GB patients are associated with lower preoperative tumor volume. The different histogram
analyses suggest that there might be microstructural differences in the contrast enhancing tumor
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part of patients with seizures measured by fractional anisotropy. Higher variance of GB presenting
without seizures might indicate a more aggressive growth of these tumors.

Keywords: seizures; glioblastoma; diffusion-tensor-imaging

1. Introduction

Brain tumor-related epilepsy (BTE) is a common symptom of patients with intracranial gliomas
and occurs in about 50% of high-grade and up to 100% of low-grade glioma patients [1–5]. Many studies
investigated the pathophysiological mechanisms of BTE and its risk factors [6,7]. Mutation of the
isocitrate dehydrogenase 1/2 [8] (IDH1/2-) gene was shown to correlate with seizures in low-grade
gliomas due to the production of D-2-hydroxyglutarate which is similar to glutamate, an excitatory
neurotransmitter that initiates NMDA-receptor related pathways [1,9–12]. Many other factors are
involved in the pathophysiology of BTE such as ionic changes, GABAergic pathways, hypoxia and
inflammatory changes [12]. The tumor location and the type of the tumor play an important role,
slowly growing tumors have a higher risk of seizures [4,12]. Seizure as first manifestation of the tumor
was also shown to be associated with a better prognosis [5]. Also the peritumoral region has attracted
attention in the pathophysiology of BTE [13–16]. Studies showed that high-grade glioma patients
with smaller preoperative tumor size significantly more often presented with seizures, whereas for
low-grade gliomas contradicting results were shown [17,18].

Diffusion tensor imaging (DTI) is routinely used in preoperative glioma imaging and provides an
insight into the microstructure of tumors and brain tissue [19]. The main quantitative values assessed
via DTI are the apparent diffusion coefficient (ADC) and fractional anisotropy (FA). Studies showed
that not only the contrast-enhancing tumor but also the non-enhancing peritumoral region demonstrate
differences in the microstructure measured especially by FA [20–22].

To our knowledge, there are no studies that assessed the relationship between preoperative
seizures and FA/ADC values in glioblastoma patients.

We therefore hypothesize that glioblastoma causing preoperative seizures differ from glioblastoma
causing no preoperative seizures in size, location and microstructure measured by DTI.

2. Methods

This retrospective single-center non-interventional study was approved by the local ethics
committee (5625-12) at the Klinikum rechts der Isar of the Technical University of Munich, Germany
and performed in accordance with the ethical standards of the 1964 Declaration of Helsinki and its
later amendments [23].

2.1. Patient Population

From the local database 160 consecutive patients with surgery for a newly diagnosed
glioblastoma (GB) (WHO IV) between 01/2010 and 12/2015 were included in this study. They were
selected from a collective of 260 patients choosing those with completely recorded clinical data,
especially concerning epilepsy data, as well as complete preoperative in-house imaging protocol
included high-resolution magnetic resonance imaging (T1-weighted imaging after contrast agent,
Fluid-Attenuated-Inversion-Recovery (FLAIR) images and diffusion tensor imaging (DTI)). Only
patients with first diagnosis of glioblastoma in a preoperative stage, not having received any
chemotherapy or radiotherapy before date of image acquisition, were selected. The occurrence of seizure
as initial tumor manifestation was recorded by qualified neurosurgeons. Isocitrate-dehydrogenase 1
(IDH1)-mutation status was assessed in 109/160 patients in the local department of neuropathology via
immunostaining against the R132H mutation in all patients.
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2.2. MR Imaging

MRI scans were performed on a 3 Tesla (T) MRI scanner, either Philips Achieva, Philips Ingenia
(Philips Medical Systems, The Netherlands B.V.) or Siemens Verio (Siemens Healthcare, Erlangen,
Germany). All patients had FLAIR-images, high-resolution T1-weighted (w) images with and without
contrast agent (MPRage, 1 mm isotropic) and Diffusion Tensor Imaging (DTI). DTI sequence either
comprised 6 diffusion directions (b value 800 s/mm2, TR/TE 7665/55 ms, resolution 2 × 2 × 2 mm)
or 15 diffusion directions (b value 800 s/mm2, TR/TE 10728/55 ms, resolution 2 × 2 × 2 mm) or
15 diffusion directions (b1000, TR/TE 7665/55 ms, resolution 2 × 2 × 2 mm). The contrast agent
Magnograf®was administered intravenously by a standardized protocol (0.2 mL/kg, 0.5–1 mL/sec),
using a MR compatible contrast medium injection system (Spectris Solaris EP, Siemens Medical,
Erlangen, Germany).

2.3. Image Analysis

Image analysis was supervised by two neuroradiologists (BW, 7 years of experience and SB, 7
years of experience) blinded to the clinical data. Image pre-processing encompassed N4 bias-field
correction and linear co-registration using the open-source ANTs packages (https://stnava.github.
io/ANTs/) [24]. DTI processing was done with DiPy (https://nipy.org/dipy/) [25], including affine
registration of diffusion-weighted images to the b0 image and appropriate vector rotation and
non-linear estimation of the diffusion tensor. Semi-automatic segmentation of tumors in two mutually
exclusive areas (contrast-enhancing and FLAIR-hyperintense tumor) was performed using a generative
probabilistic model [26]. Lesion-filled T1 images were deformably registered (SyN) to the SRI24
atlas [27]. Resulting segmentations and atlas images were checked manually prior to analysis
with the freely available software ITK-SNAP (www.itksnap.org) [28]. From the co-registered FA
and ADC maps, first-order statistics were automatically calculated using the PyRadiomics package
(https://pyradiomics.readthedocs.io/) [29] in both contrast-enhancing and FLAIR-hyperintense tumor
areas. Volume information and atlas locations were collected for both areas (Figure 1). Tumor size
was calculated by counting voxels (each voxel with a size of 1 × 1 × 1 mm) and shown as mm3. For
atlas localization, the extent of the entire mass was analyzed. All scripts are available upon request
from B.W.
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Figure 1. Flow chart of image analysis and data processing.

2.4. Statistics

Statistical analysis including descriptive data analysis was performed using IBM SPSS Statistics
version 24.0 (SPSS Inc., IBM Corp., Armonk, NY, USA), Python version 3.6 (https://www.python.org/)
and R version 3.5 (https://www.r-project.org/). To compare first-order statistics in patients with and
without seizures and account for multiple testing, random label permutations (with 1000 iterations)
were performed as described previously [30]. Wilcoxon tests were performed for correlations of
histogram analyses and tumor location (location of the tumor in a brain region that was significantly
associated with seizures in this cohort vs. location of the tumor in another region), Pearson correlation
analyses were performed to analyze the influence of tumor volume on histogram analyses.

A difference with an error probability of less than 0.05 was considered as statistically significant.
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3. Results

3.1. Patients’ and Tumor Characteristics

The study population comprises 160 consecutive patients (90 male, mean age 64y +/- 13.9) with
initial diagnosis of a glioblastoma (WHO IV) (Table 1). 60/160 patients presented with preoperative
seizures. 87/160 tumors showed infiltration of the frontal lobe, 93/160 tumors infiltrated the temporal
lobe. Infiltration of the parietal lobe was shown in 57/160 cases, of the occipital lobe in 37/160 cases. 90/160
tumors showed infiltration of the insular region, 51/160 tumors of the hippocampus. The brainstem
was infiltrated in 13/160 cases, the cerebellum in 4/160 cases.

Table 1. Baseline patient and tumor characteristics.

Age 64 Years (+/-13.9)

Sex, male 90/160
Preoperative seizure 60/160
Tumor infiltration of

- frontal lobe 87/160
- temporal lobe 93/160
- parietal lobe 57/160
- occipital lobe 37/160

- insula 90/160
- hippocampus 51/160

- cerebellum 4/160
- brainstem 13/160
Hemisphere

- right 74/160
- left 64/160

- both 22/160
IDH1-wildtype 108/109

Normally distributed variables shown as mean +/- standard deviation.

3.2. Tumor Size and Location

Patients with seizures showed significantly smaller tumors (contrast enhancing tumor)
(adj. p = 0.029) than patients without preoperative seizures. FLAIR volume did not significantly
differ between patients with and without preoperative seizures (adj. p = 0.725) (Table 2).

Table 2. Tumor size.

MR Sequence Seizure No Seizure adj. p-Value

FLAIR 48884.4 mm3 (31830.9–97074.7) 85391.7 mm3 (54260.2–124244.1) 0.725
CET* 8434.9 mm3 (3604.9–17662.9) 14805.7 mm3 (8196.8–26347.5) 0.029

Data shown as median (interquartile range); CET: contrast enhancing tumor, FLAIR: fluid-attenuated inversion
recovery; * p < 0.05.

Patients with tumor location in the right cingulate gyrus (adj. p = 0.048) and in the right caudate
nucleus (adj. p = 0.009) showed significantly less preoperative seizures (Table 3). Patients with tumors
in the limbic system (including parahippocampal and hippocampal gyrus and cingulate gyrus) also
showed significantly less preoperative seizures (p = 0.030) All other tumor locations were not associated
with the occurrence of preoperative seizures. Figure 2 shows examples of a patient with a small tumor
in the left frontal lobe presenting with seizures (A,B) and a patient with a large tumor in the right
cingulate gyrus presenting without preoperative seizures (C,D).
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Table 3. Tumor location and seizures.

Location Seizure (n = 60) No Seizure (n = 100) Odds Ratio Perm. p-Value

Left superior frontal gyrus 17 38 0.645 0.857
Right superior frontal gyrus 19 43 0.614 0.140

Left middle frontal gyrus 16 29 0.890 1
Right middle frontal gyrus 15 41 0.480 0.172
Left inferior frontal gyrus 16 27 0.983 1

Right inferior frontal gyrus 13 37 0.471 0.248
Left precentral gyrus 19 30 1.081 1

Right precentral gyrus 18 50 0.429 0.091
Left middle orbitofrontal gyrus 9 20 0.706 1

Right middle orbitofrontal gyrus 4 25 0.214 0.064
Left lateral orbitofrontal gyrus 9 19 0.752 1

Right lateral orbitofrontal gyrus 6 27 0.300 0.214
Left gyrus rectus 2 12 0.253 1

Right gyrus rectus 4 11 0.578 0.783
Left postcentral gyrus 15 21 1.254 0.999

Right postcentral gyrus 16 46 0.427 0.200
Left superior parietal gyrus 9 14 1.084 1

Right superior parietal gyrus 15 29 0.816 1
Left supramarginal gyrus 9 12 1.294 1

Right supramarginal gyrus 10 30 0.467 0.072
Left angular gyrus 14 16 1.598 0.991

Right angular gyrus 12 26 0.712 0.935
Left precuneus 9 13 1.181 1

Right precuneus 11 26 0.639 1
Left superior occipital gyrus 6 7 1.476 1

Right superior occipital gyrus 8 21 0.579 0.873
Left middle occipital gyrus 9 9 1.784 0.449

Right middle occipital gyrus 10 21 0.752 1
Left inferior occipital gyrus 7 10 1.189 1

Right inferior occipital gyrus 8 10 1.385 1
Left cuneus 8 8 1.769 0.995

Right cuneus 7 13 0.884 1
Left superior temporal gyrus 24 31 1.484 0.943

Right superior temporal gyrus 18 46 0.503 0.266
Left middle temporal gyrus 21 27 1.456 0.999

Right middle temporal gyrus 14 39 0.476 0.125
Left inferior temporal gyrus 20 26 1.423 0.998

Right inferior temporal gyrus 15 26 0.949 1
Left parahippocampal gyrus 19 27 1.253 1

Right parahippocampal gyrus 14 31 0.677 0968
Left lingual gyrus 11 19 0.957 1

Right lingual gyrus 12 25 0.750 0.995
Left fusiform gyrus 17 24 1.252 1

Right fusiform gyrus 13 30 0.645 0.999
Left insular cortex 18 32 0.911 1

Right insular cortex 18 46 0.503 0.266
Left cingulate gyrus 18 42 0.592 0.877
Right cingulate gyrus 19 49 0.482 0.048

Left caudate 19 35 0.861 1
Right caudate 14 45 0.372 0.009
Left putamen 20 36 0.889 1

Right putamen 19 49 0.482 0.187
Left hippocampus 18 27 1.159 1

Right hippocampus 15 36 0.593 0.476
cerebellum 9 15 1.000 1
brainstem 12 29 0.612 1
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Figure 2. Examples of patients with (A) = T1-weighted imaging after contrast agent, (B) = Fractional
anisotropy maps) and without (C,D) preoperative seizures.

3.3. Histogram Analyses

Histogram analyses of fractional anisotropy (FA) in the contrast enhancing tumor part significantly
differed between patients with and without preoperative seizures. The following features showed
significant differences: Energy (adj. p = 0.017), Entropy (adj. p = 0.043), Interquartile Range
(adj. p = 0.013), Maximum (adj. p = 0.043), Mean Absolute Deviation (adj. p = 0.017), Range
(adj. p = 0.025), Total Energy (adj. p = 0.017), Variance (adj. p = 0.039) (Figure 3). All features were
significantly smaller in patients presenting with seizures.

No significant differences were observed between histogram analyses of ADC in the contrast
enhancing tumor part and of FA and ADC in the FLAIR-hyperintense part (Table S1).

Analyses for correlations between tumor location and FA histogram analyses showed no significant
differences (Figure S1).

Tumor size showed significant positive correlations to the following FA histogram features:
Energy, Entropy, Maximum, Range und Total Energy. No significant correlations were observed
between tumor size and the features Interquartile Range, Variance and Mean Absolute Deviation
(Figure S1). Significant correlations were shown between the FA features that are independent of tumor
size: Interquartile Range/Variance: r = 0.927, p < 0.001; Interquartile Range/Mean Absolute Deviation:
r = 0.966, p < 0.001, Mean Absolute Deviation/Variance: r = 0.963, p < 0.001.
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4. Discussion

Glioblastoma patients with preoperative seizures show significantly smaller tumors. Tumor
location in the right cingulate gyrus and in the right caudate nucleus were associated with less
preoperative seizures whereas infiltration of the hippocampus and the insula did not appear to
promote epileptogenesis.

Tumors with and without preoperative seizures differed in histogram analyses of FA in the contrast
enhancing tumor–with smaller values in the features Interquartile Range, Mean Absolute Deviation
and Variance after consideration of tumor size. As glioma patients with preoperative seizures were
shown to have a better prognosis [31], this might be reflected by differences in the microstructure.
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Brain tumor-related epilepsy was shown to mainly occur in low-grade glioma patients, whereas
glioblastoma patients more often present with other symptoms such as neurologic deficits or headache
due to the mass effect [4,5,7,17]. As seizures were shown to be associated with improved survival
in high-grade glioma [31], it is of high importance to characterize the exact pathomechanisms
causing seizures in glioma patients to develop new therapy strategies. Many studies investigated
the pathomechanisms for brain tumor-related seizures [1,9–11,13,16,18,31]. There are two main
hypotheses: First, the mechanical compression of surrounding brain structures by the tumor mass
might cause seizures which is supported by the findings that gross-total tumor resection is associated
with seizure-control [31,32]. Second, the tumor excretes epileptogenic factors such as glutamate or
causes altered gene expression in the peritumoral region which results in seizures [31,33–35].

The main results of this study are that preoperative tumor volume of the contrast enhancing tumor
(not the FLAIR-hyperintense edema) shows a significant correlation to seizures. This is in common
with a previous study by Skardelly et al. that showed a tumor volume <64 cm3 as a main risk factor
for the development of preoperative seizures [18]. Another study showed that this association was
only found in high-grade gliomas, but not in low-grade gliomas where an inverse association between
tumor volume and seizures was observed [17]. The mentioned study by Skardelly et al. reported a
large population of 242 glioblastoma patients. More rapidly growing tumors might more often be
associated with other symptoms such as hemiparesis, aphasia or headache due to the mass effect [17].
In contrast, small tumors are lacking this space-consuming effect. These results would suggest that
smaller tumors might have a higher epileptogenic level than larger high-grade tumors. A possible
pathomechanism might be that these smaller tumors excrete epileptogenic factors or perform changes
in the peritumoral region as it was discussed in previous studies [9,33,34].

At this point a parallel to low grade gliomas, especially to the larger ones with a relevant surround
reaction and higher level of aggressiveness and growth rate as in small ones, could be seen, that
consequently also show a higher epileptogenic potential [17].

It remains to be seen if these small high-grade gliomas are at an early stage of growth with an
early diagnosis due to seizures as their primary symptom or if they represent a slowly growing, overall
less aggressive tumor type with a higher epileptogenic potential. Further studies that investigate the
exact pathophysiologic mechanisms of tumor growth and seizures will have to be performed to better
characterize these tumor types.

In the present study, glioblastomas without seizures showed a preference towards the right
cingulate gyrus and the right caudate nucleus. These findings are in common with a previous study by
Lee JW et al. [17]. According to this study high grade gliomas presenting with neurologic symptoms
instead of seizures were more likely to occur in the pericallosal region [17]. Interestingly other
than previous studies, we found no significant associations between location in the left hemisphere
and infiltration of the hippocampus was associated with preoperative seizure as shown in previous
studies [18,31,32]. Main explanation for this finding might be that the cited previous studies mainly
assessed low-grade gliomas whereas this study only investigated glioblastoma patients only.

Histogram analyses of FA in the contrast enhancing tumor significantly differed between patients
with and without seizures suggesting that there are microstructural differences in this tumor area.

Previous studies analyzed FA values in the CE tumor and showed that GB have higher FA values
than brain metastases [36–39]. Higher FA values in the CE tumor were explained as an overproduction of
extracellular matrix by glioblastoma cells that accumulate in the CE tumor area [37,39–41]. These results
might suggest that especially the contrast enhancing tumor area attracts attention for further studies
concerning the pathophysiology of preoperative seizures.

Tumors presenting with seizures showed significantly lower values in the features Energy,
Entropy, Maximum, Range, Total Energy, Interquartile Range, Mean Absolute Deviation and Variance.
The features Energy, Entropy, Maximum, Range and Total Energy were also associated with tumor size,
therefore this difference might be explained as tumors presenting with seizures are significantly smaller.
Interquartile Range, Mean Absolute Deviation and Variance however, were independently smaller
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in tumors presenting with seizures. These three FA measures-Interquartile Range, Mean Absolute
Deviation and Variance–are all associated with FA variability and are highly correlated with each other.

These results might suggest that tumors presenting with seizures are more homogenous and
show a growth similar to low-grade tumors (that also present with seizures more often than
high-grade tumors). On the other hand, tumors presenting without seizures might show a more
inhomogenous/aggressive growth.

Main limitation of this study is its retrospective design. The semiautomatic segmentation is a
reliable tool for measurement of tumor volume but also associated with precision errors [42]. However,
by now this might be considered state of the art and both, the volumetric measurements and the
qualitative data analysis, were performed blinded to the clinical data to reduce this bias. Another
limitation is the fact that the results were not validated in an independent cohort. Therefore, further
studies are necessary to confirm the results of this study.

5. Conclusions

In glioblastoma patients, preoperative seizures were associated with significantly smaller contrast
enhancing tumor volumes. Tumor location in the right cingulate gyrus and caudate nucleus were
associated with less preoperative seizures. Significant differences in histogram analyses of FA in the
contrast enhancing tumor part were observed suggesting that there are microstructural differences
between these tumors. As glioblastomas with preoperative seizures are associated with an improved
survival it is important to investigate the exact pathomechanisms causing brain-tumor related epilepsy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/994/s1,
Figure S1: Box plots for FA first order features in tumors in epilepsy location/different location, Table S1: First
order features.
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