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Abstract: Future automated vehicles will have to meet the challenge of anticipating the intentions
of other road users in order to plan their own behavior without compromising safety and efficiency
of the surrounding road traffic. Therefore, the research area of cooperative driving deals with
maneuver-planning algorithms that enable vehicles to behave cooperatively in interactive traffic
scenarios. To prove the functionality of these algorithms, single test scenarios are used in the
current body of literature. The use of a single, exemplary scenario bears the risk that the presented
approach only works in the presented scenario and thus no general statement can be made about
the performance of the algorithm. Furthermore, there is a risk that fictitious traffic scenarios may be
solved which do not occur in reality. Therefore, we present a procedure for generating test scenarios
based on real-world traffic datasets that require cooperation of at least one of the involved vehicles
and thus are challenging from the perspective of cooperation. This procedure is applied to a large
highway traffic dataset, resulting in a test scenario catalog that allows a comprehensive performance
evaluation. The extracted scenarios are clustered according to the cooperative actions used to solve
the respective scenario, which enables a more detailed understanding of the underlying cooperative
mechanisms. In order to serve as a basis for making comparisons between different behavior planners
and thus contribute to the development of future maneuver planning algorithms, a tool to extract the
test scenarios from the used traffic dataset is made publicly available.
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1. Introduction

Human drivers behave cooperatively in road traffic by anticipating the intentions of other vehicles
and adapting their own behavior accordingly. In this way, they support the surrounding vehicles in
achieving their own tactical goals. This cooperative behavior enhances traffic flow and prevents critical
situations. If automated vehicles (AV) are not able to perform such cooperative maneuvers, safety and
traffic flow in the future will decrease as the number of AVs increase. Therefore, researchers in the field
of cooperative driving are working on maneuver planning algorithms that are able to interact with the
surrounding traffic in a cooperative way. The published work in this field proves the functionality
of their approaches based on a small number of scenarios, e.g., [1–4]. However, the main question is
not whether a maneuver planner works in a single scenario, but how well it does in a wide range of
realistic scenarios. Only such a comprehensive performance evaluation enables the comparison of
different approaches of maneuver planners, which is necessary for the research field of cooperative
driving to make progress.

Generating significant test scenarios is the subject of current research in the field of AV. However,
most publications (e.g., [5–8]) focus on critical scenarios needed to validate AV safety. In addition,
more recent publications also consider the behavior of AV alongside safety criticality, testing the
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completion of driving tasks [9–11]. However, these only consider the performance of the AV under
test and not the effects on other road users in terms of cooperative behavior. With the CommonRoad
framework, Althoff et al. [12] introduced a platform for composing and sharing motion planning
problems that consist of a scenario, a vehicle model, vehicle parameters, and cost functions. For each
scenario, a ranking is provided, where users can upload and compare the results of their maneuver
planners. Since CommonRoad only hosts the uploaded scenarios, it is dependent on the content
generated by its community.

Generating scenarios for testing AV cooperative behavior has been a less addressed topic.
Initial works in this field propose artificially creating test scenarios. Whereas Lizenberg et al. [13]
use a Simulation of Urban Mobility (SUMO) to detect interesting situations from the perspective
of cooperation, Hallerbach et al. [14] create specific scenarios from a predefined logical scenario by
randomly choosing the respective parameters from limited parameter spaces. After simulating the
generated scenarios, a combined metric uses a threshold to identify critical situations.

The main aim of this paper is to present a test scenario catalog for cooperative maneuver
planning that is based on real traffic data. The advantage of the data-driven concept lies in the
automated and realistic generation of scenarios. No manual effort is required to create the scenarios,
and they are not constrained by the behavior model of traffic simulation programs or the imagination
of the user generating the scenarios either. A further contribution to the state of the art is achieved
by introducing a scenario selection approach that is able to decide if a certain scenario requires
cooperation, which would thereby ensure that only relevant scenarios are included in the test
scenario catalog. The presented scenario generation pipeline is applied to a state-of-the-art highway
dataset and a tool to extract the computed scenarios is made publicly available on www.github.com/
TUMFTM/test_scenarios_cooperation.

2. Materials and Methods

After explaining the concept and process of scenario extraction, this section presents the applied
metrics for cooperation, the simulation environment with its driver models as well as the dataset on
which the analyses were performed.

2.1. Concept

The goal in creating the scenario dataset is to provide the possibility of testing different
maneuver planners against each other. In terms of methodology, it is therefore advisable to base
the scenario generation on the quality criteria of test theory. These comprise objectivity, reliability and
validity as main criteria ([15], S. 179) and standardization, economy, and practicability as subsidiary
criteria ([16], p. 485 f.). The following section explains how these quality criteria are considered in the
concept of test scenario generation.

Objectivity: If a test achieves the same results regardless of the person performing it, the test
is objective. Since the test in our case represents the execution of a simulation, it is objective if the
conditions of the simulation are clearly defined. Therefore, the description of the roadway characteristic,
starting position (longitudinal and lane) and initial speed, as well as the duration of the simulation,
are determined for each scenario.

Reliability: A test that produces the same results in repeated measures is reliable. Since a
simulation doesn’t underly external influences, as e.g., field tests do, the simulative test of a single
scenario is inherently reliable. Because different maneuver planners are better at different scenarios,
a reliable comparison must include a large number of diverse situations and varying roadway
characteristics, such as differing lane numbers and acceleration lanes. This was taken into account by
using a large traffic dataset that was recorded in several locations for the scenario extraction.

Validity: In contrast to the model validation domain, where validity refers to the consistency
between model and reality, validity in terms of test theory means that a test measures exactly what it is
supposed to measure. In the case of cooperative behavior planning, this comprises the metrics used to
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measure cooperation, the test mode in which the maneuver planners are tested as well as the selection
of test scenarios. The applied metrics are the result of a previous work [17] and are presented briefly in
Section 2.3. The test mode must ensure that the tested maneuver planners not only behave intelligently
in situations where they need the cooperation of other vehicles but also when they are in the position
to support others. Therefore, the test mode intends that the maneuver planner being tested is applied
to all vehicles of a scenario within the same simulation. For this reason, no trajectory is specified
for any of the vehicles, but rather the starting situation. From this starting situation, the maneuver
planners are applied until the determined duration of the scenario is reached. In order to be valid
for testing cooperative behavior, the test scenarios must benefit from cooperation. In the context of
cooperative driving, Düring and Pascheka [18] state that cooperative behavior affects the utility of
the cooperatively acting agent and the utility of at least one other agent in a way that the total utility
increases with respect to a reference utility. Furthermore, the cooperative action must be performed
intentionally. This concept implies that every scenario needs to be simulated twice, by a reference
driver model and by a completely cooperative driver model. We then regard a scenario as valid if at
least one vehicle accepts a lower individual utility to increase the total utility in the cooperative solution
compared to the solution of the reference model. The individual drawback of at least one vehicle is
not a requirement according to the definition of Düring and Pascheka [18], but in order to imply the
intention to increase the other’s utility and not only the ego utility, this is a necessary assumption.
In the sense of Düring and Pascheka [18], cooperative actions with an individual drawback of the
acting agent are referred to as altruistic-cooperative.

Standardization: A standardized test delivers a reference for its test results. Within the generation
of the test scenarios, a cooperative global planning algorithm is used that computes the best possible
solution of the scenarios within a given discretization. The results of this fully cooperative planner
represent the lower limit of achievable costs, whereas the reference driver model without behavior
planning ability can be regarded as the upper cost limit. Both algorithms are described in Section 2.4.

Economy: From the perspective of economy, the resources required for the execution of a test
should not be unnecessarily high. Therefore, we use a scenario-based approach instead of a large-scale
traffic simulation that allows only scenarios that are relevant for testing cooperative behavior to
be computed.

Practicability: A test is practicable if the test method is appropriate for the research purpose.
Since the goal of the test scenarios is to assess how a cooperative behavior planner would perform in
road traffic, the scenarios contained in the test data set should be as natural and realistic as possible.
The easiest way to achieve this is to extract the scenarios from a real traffic data set. This approach
ensures that the test scenario generation is not restricted by manual inputs such as defined parameter
spaces or a certain behavior model. A further aspect of practicability is that not every scenario that
could be solved cooperatively in theory would be solved cooperatively in practice because of the
acceptance of the driver of the AV. For example, it cannot be assumed that drivers are willing to accept
a high individual disadvantage for a small overall advantage. From which ratio of ego-vehicle-costs to
surrounding-vehicle benefit a cooperative action is accepted depends on the degree of cooperativity of
the AV. According to [1,17], this ratio lies between 0 (uncooperative because no extra costs are accepted)
and 1 (fully cooperative because every extra cost is accepted for an overall benefit). Since there is
no established value regarding to what extent AV behave cooperatively, we assume an intermediate
value of 0.5. This means for our scenarios that the drawback of the cooperating vehicle has to pay off
twice-once to compensate the extra costs of the cooperating vehicle to an overall cost difference of 0
and the second time to reach the overall benefit in size of the drawback. Scenarios in which the overall
cost benefit is smaller than the drawback of the cooperating vehicle are assumed to have no practical
relevance and are therefore discarded.
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2.2. Process

The process of scenario generation is divided into the following phases: scenario extraction,
pre-selection, strategic goal generation, and evaluation of cooperation. This process is repeated several
times for every roadway characteristic of the dataset.

In traffic data sets, vehicles are recorded as a continuous flow. In order to generate scenarios from
this, consecutive sequences of vehicles must be extracted. Therefore, we place a reference line in the
beginning of the recorded area (dashed line in Figure 1) and select the n next vehicles with n being the
desired number of vehicles in the scenario. When one vehicle is replaced by another among the n next
vehicles, a new scenario is created. In this way, the entire data set is processed into scenarios without
duplicates and the maximum number of vehicles per scenario is set to 4. This upper limit of vehicles
is restricted by the cooperative planner’s exponential growth of computing time, which is described
in detail in Section 2.4.2. If there are fewer than four vehicles in a recording frame, the scenario is
extracted with the respective number of vehicles.

Figure 1. Scenario extraction with four vehicles.

In order not to simulate all extracted scenarios and thereby save computing time, a pre-selection
filters out obviously irrelevant scenarios. This includes situations where the lowest time to collision [19]
is greater than the duration of the simulation because no interaction is supposed to take place in the
considered time period. In addition, scenarios extracted from bound or congested traffic states,
which can be determined by an average speed of less than 60 km h−1 ([20], p. 88), are discarded
because congestions can only be modeled with a large-scale traffic simulation and not with a small
number of vehicles in a scenario-based approach.

The remaining scenarios consist of a roadway model and the movement states of the vehicles
in their starting position. In addition to the initial state, the vehicles must be given a strategic goal
that the behavior models are to pursue in the subsequent simulations. Since the presented work only
considers motorway-like roads without intersections or similar, the strategic goal is to drive at a given
speed, also referred to as desired velocity. This speed is determined individually for each vehicle based
on its respective state. If a vehicle has a leader, the desired velocity might be higher than the current
speed due to the obstruction of the front vehicle. In this case, the desired velocity is set to the vehicle’s
maximum velocity throughout the entire recording. If a vehicle has no leader car, it is supposed to
already drive at its desired velocity, which in this case is therefore set to the current speed.

Starting from the initial state, the scenarios are simulated with the reference and the cooperative
behavior planner. According to the concept described in Section 2.1, the maximum individual drawback
as well as the overall cost benefit are determined by the results of the simulations. If a vehicle in
the scenario performs a cooperative action and thereby accepts an individual drawback that leads
to an overall cost benefit that is equal or higher than the cost drawback of the cooperating vehicle,
the scenario is considered valid and relevant for testing cooperative behavior and thus added to the
scenario catalog.
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The action that leads to the individual drawback of the cooperating vehicle and thereby causes
the benefit for the surrounding vehicles is considered the main cooperative action. The extracted
scenarios are clustered by their main cooperative action in order to generate a deeper understanding
of the underlying cooperative mechanisms in highway road traffic.

2.3. Metrics

A core aspect of the scenario generation process is the evaluation of cooperation in the performed
simulations. In our previous work [17], we presented such a metric for measuring cooperation.
The basic ideas of this paper are presented in this section briefly, and a detailed description can be
found in the original publication [17].

The cost function is structured in the sub-fields of safety, energy efficiency, time efficiency, and
lateral maneuvers. The safety metric considers the distance headway of each vehicle and calculates the
reaction time required to avoid a collision in case of an emergency braking of the lead vehicle. Situations
with required reaction times of less than 0.5 s are classified as unsafe and result in a negative rating.

At the maneuver level, energy efficiency is mainly influenced by braking. Therefore, the energy
that is converted into heat by the brakes during deceleration is estimated and used as a measure of
energy efficiency.

The evaluation of time efficiency is based on the concept of vehicle individual desired velocity.
By deviating from this desired velocity, the vehicle loses time, which causes an increasingly negative
evaluation with growing time loss.

Lane changes are regarded as the only lateral maneuvers on highways and are charged with
costs for each time step when they occupy more than one lane. The single cost terms are combined
by weighting factors to a metric for cooperation. Determining the weight factors is also described in
detail in the original publication [17].

2.4. Simulation Environment

As explained in Section 2.2, the scenarios extracted from the data set are simulated with a reference
and a completely cooperative maneuver planner to filter out the relevant ones for the test scenario
catalog. These simulations are performed in a self-developed environment that meets the basic
requirements for modeling the maneuver planning level of highway-like road traffic. The implemented
roadway model consists of a variable number of straight lanes and highway entrances that are 250 m
long. The longitudinal dynamics of the vehicles is modeled by a basic kinematic approach:(

s′i
v′i

)
=

(
1 ∆t
0 1
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where the control input of vehicle i is represented by the acceleration ai and the velocity vi and position
si in the next time step (denoted by ′) change accordingly. The simulation time step is set to ∆t = 0.1 s.

The lateral direction is represented by discrete lanes. Therefore, lane changes comprise a fixed
duration in which the changing vehicle occupies both involved lanes. Lane changes have a mean
duration of 4.8 s for cars [21,22] and 7.7 s to 8 s for trucks [22,23]. Since, for the simulation, the duration
of a lane change comprises only the time the vehicles block both lanes and not the entire lane change,
the lane change durations are modeled at 4 s for cars and 6 s for trucks.

To fulfill the criterion of objectivity as stated in Section 2.1, the duration of the performed
simulations must be specified, and the simulation time should be long enough that the scenarios
can be solved completely. Theoretically, we regard a scenario as solved when the vehicles reach a state
in which they can drive at their desired velocity without needing to brake or change lanes, or, in other
words, when the cost terms presented in Section 2.3 become zero. From this point on, the vehicles
follow each other without changing their order. Practically, a vehicle can end up in a situation in which
it follows a slightly slower leader, but the costs for a lane change would be higher than the costs for the
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time loss when staying behind. Therefore, the time costs will not become zero in all scenarios but will
asymptotically approximate a constant value near zero. For the scenario generation process, we used a
simulation time of 20 s and validated it using a plot that shows the cost terms over simulation time
averaged for all scenarios (Appendix A). The value of 20 s proved to fulfill the demands of zero costs
for energy and lane changes as well as asymptotic approximation for time costs.

2.4.1. Reference Behavior Planner

The reference planner should provide a basic and reactive driving behavior without tactical
maneuver planning. Such behavior can be generated by standard driver models from the field of
traffic simulation. Hamdar [24] compares the difference of these models in terms of their macroscopic
behavior in the form of fundamental diagrams and their microscopic behavior on the basis of their
trajectories. Since the “Intelligent Driver Model” (IDM) as a predecessor of the Improved Intelligent
Driver Model (IIDM) achieves realistic results in both areas and at the same time uses only a few
parameters, the IIDM with its associated lane change model, “Minimizing Overall Braking Induced by
Lane change” (MOBIL), is used as the reference planner.

The IIDM behaves similar to an Adaptive Cruise Control which regulates to the set speed v0

during free flow and maintains a specified time gap T to the front vehicle during car-following.
The maximum acceleration and the approaching behavior are considered by the parameters a and b.
A detailed description of the model can be found in ([25], p. 187 ff.). Table 1 shows the parameters
applied to the simulation.

The MOBIL model [20] makes decisions about lane changes based on two criteria, one for safety
and one for incentives. The safety criterion considers the necessary braking of the approaching vehicle
in the target lane. If its hypothetical acceleration falls below the permissible threshold value bsa f e,
the lane change is not performed. The incentive criterion weighs the hypothetical accelerations of all
participating vehicles with and without lane changes against each other. The needs of the other drivers
are weighted with a politeness factor 0 ≤ p ≤ 1, where p = 0 represents egoistic and p = 1 altruistic
behavior. If the accumulated advantage resulting from the lane change exceeds threshold ∆a, the lane
change is executed. According to the European traffic rules, passing in the right lane is forbidden in
non-congested traffic states, as determined by a velocity over 60 km h−1. The obligation to drive in the
rightmost possible lane is not considered (parameter abias = 0) because the data show that it is hardly
observed in real traffic. The parameters used for simulation are listed in Table 1.

Whereas most of the parameters of the IIDM model were set according to the recommendations
of model’s authors [25,26], a different parameterization was chosen for the time gap T. The standard
values of the time gap led to strong decelerations at the beginning of the simulations because the
distances of the drivers kept in reality were smaller than the default value of 1.0 s ([25], p. 190). Instead,
a value of T = 0.5 s resulted in the expected behavior.

Table 1. IIDM and MOBIL parameters.

Parameter Car Truck

Acceleration coefficient a 1.4 m s−2 [26] 0.7 m s−2 [26]
Deceleration coefficient b 2.0 m s−2 [26] 2.0 m s−2 [26]

Desired velocity v0 individual max. velocity individual max. velocity
Time gap T 0.5 s 0.5 s

Minimum distance s0 2.0 m [26] 4.0 m [26]
Acceleration exponent δ 4 [26] 4 [26]
Safe deceleration bsa f e −2.0 m s−2 ([25], p. 244) −2.0 m s−2 ([25], p. 244)

Threshold ∆a 0.1 m s−2 ([25], p. 244) 0.1 m s−2 ([25], p. 244)
Right lane bias abias 0 m s−2 ([25], p. 244) 0 m s−2 ([25], p. 244)
Politeness factor p 0.2 ([25], p. 245) 0.2 ([25], p. 245)
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2.4.2. Cooperative Behavior Planner

The scenario generation approach presented in Section 2.1 needs a cooperative solution for each
traffic scenario in order to evaluate if it benefits from cooperative behavior and can therefore be
regarded as a valid test scenario. However, it is not easy to prove that a maneuver planner works
sufficiently well for this purpose. One option is to use a procedure that centrally optimizes the global
utility for all vehicles and inherently finds the best solution within the selected discretization level for
every planning problem.

In order to model the maneuver planning level of a vehicle, a tree structure is used that contains
all possible states of a scenario. Starting from the beginning of the scenario, the root node, all vehicles
perform actions over a discrete time step, which leads to the next node in the next time step. Each node
contains the movement state of all vehicles. In this way, the tree expands through time until the end of
the planning horizon tend. Figure 2 shows this approach using an example scenario with one vehicle.
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Figure 2. Structure of the search tree.

The optimal solution of the scenario within the selected discretization in time and actions is the
sequence of nodes that causes the lowest costs according to the cost function presented in Section 2.3.
Due to the exponential growth of tree states:

nstates = Amtend/∆t (2)

with number of actions A, number of vehicles m and number of time steps tend/∆t the search tree
becomes too large to calculate each state. Therefore, a tree search method is used to find the best
solution for the scenario with the least possible computation effort. In a previous work [27], we solved
the scenarios by applying the Monte Carlo Tree Search Method (MCTS). However, since there is no
guarantee for the optimality of the solution in the MCTS procedure, an A* algorithm is used instead.

The A* algorithm aims to find the best sequence of nodes from the start node to a goal node.
Therefore, it expands iteratively the nodes of the tree, as depicted in Figure 2, by performing one
possible action for each vehicle in the scenario, which again leads to a new node. Each node n is
associated with costs g(n) according to the metric described in Section 2.3 applied to all previous
actions up to the start node. Furthermore, a node is evaluated by a heuristic h(n) which estimates
the minimum costs to reach a goal node from the respective node n. The decision of which node to
expand is based on the function f (n) = g(n) + h(n). The algorithm puts each new node in a queue
sorted by the minimum value of f (n). At each iteration, the node with the lowest value is taken from
the queue and being expanded. The new successor nodes are sorted into the queue and again the node
with the lowest value of f (n) is chosen. This procedure continues until a goal node has the lowest f
value. If h(n) is guaranteed to underestimate the real costs to reach a goal node, the path to the chosen
goal node represents the least-cost sequence of nodes and therefore the optimal solution. Since the
algorithms purpose is to operate the vehicles with smallest possible costs over the length of a scenario,
all nodes that lie on the planning horizon tend are valid goal nodes. The definition of the vehicles’
possible actions as well as the derivation of h(n) are described in the following. For a more detailed
description of the A* search algorithm, please refer to ([28], p. 93 ff.).
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As described in Section 2.1, the results of the cooperative behavior planning are compared to those
of the reference planner. To ensure that the differences between the two methods result from intelligent
planning and not from an unequal action space, the actions must be constrained by the same limits.
In the IIDM model, the parameter a represents the upper limit for positive accelerations. Negative
accelerations can reach any value up to full braking, but the range of a comfortable deceleration is
given by parameter b. The action set must therefore reflect the normal driving range between a and
b and still be able to provide stronger braking if necessary. To achieve this with a limited number of
actions, the situation-dependent IIDM acceleration is also an element of the action set in the cooperative
planner. The limits of normal driving behavior are represented by constant accelerations with a and
b. Within these limits, the vehicles can maintain their speed, coast with slight deceleration, or follow
their leading vehicles according to IIDM acceleration. Lane changes to the left or right form the actions
in the lateral direction. In summary, each vehicle can choose from the following options at each
state transition:

• Accelerate: constant acceleration of value a
• Maintain speed: constant acceleration of value 0
• Coast: deceleration according to driving resistance forces, at least −0.5 m s−2

• Decelerate: constant deceleration of value b
• Car-following: acceleration according to IIDM model
• Lane change to left lane
• Lane change to right lane

When implementing the A* method, the heuristic used is essential. It estimates the minimum
expected future costs for each node. As long as these future costs are not overestimated, the A* method
is guaranteed to find the best possible solution within the applied discretization. The speed of the
vehicles in their current state can serve as the basis for this best-case estimation. Since the maximum
acceleration amax is limited upward by parameter a and downward by full braking, the desired speed
cannot be reached immediately. The minimum costs h(n) incurred by deviating from the desired speed
vdes (compare Section 2.3) can therefore be calculated as:

h(n) =
∫ tmax

0

∣∣∣∣vdes − v
vdes

∣∣∣∣dt =

(1− vstart
vdes

)tmax − amax
2vdes

t2
max if vstart <= vdes

( vstart
vdes
− 1)tmax +

amax
2vdes

t2
max else

(3)

where v = vstart + amaxt describes the future velocity v obtained by constant acceleration with amax

from current speed vstart and tmax = vdes−vstart
amax

represents the time until vdes is reached.
Depending on the size of a scenario in terms of duration, number of vehicles and discretization

in time, it may not be solved with the available amount of working memory or within reasonable
computing time. In this case, a timeout fixes the parent node of the best-rated node of the deepest tree
level. The previous states of this node are not changed anymore and the search continues from the
fixed node. In such cases, the computed solution is not guaranteed to be optimal.

2.5. Dataset

The scenario selection process presented in Section 2.2 requires naturalistic traffic data as the
input source. For the scope of this paper, the highD dataset [29] that was generated by a video drone
capturing vehicle trajectories within a 420 m long segment of highways was used. It contains recordings
from both driving directions of six different locations in Germany with an overall recording time of
147 h, of which the upper driving direction was used for the scenario extraction process. The videos
were captured between 8:00 AM and 5:00 PM during sunny and windless weather indicating dry
road conditions and unrestricted visibility. The included roadway models cover two- and three-lane
motorways as well as three-lane sections with entrance lanes.
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3. Results

The results chapter is organized in three subsections. First, a case study illustrates the scenario
selection process, followed by a description of the extracted scenario catalog. In order to provide a
more detailed understanding of the cooperative mechanisms in highway road traffic, the last section
presents a classification of the extracted scenarios according to the cooperative actions performed.

3.1. Case Study

In order to identify the scenarios that are to be part of the scenario catalog, a naturalistic driving
dataset is split into scenarios, which are then evaluated using the reference and the cooperative
planner, as described in Section 2.2. This assessment process is illustrated using an exemplary scenario.
The solution computed by the planners is depicted by means of two plots each. The first plot (Figure 3),
referred to as the lateral plot, shows the scenario from the bird’s eye perspective in each relevant time
step. Besides the start and end of the scenario, relevant time steps are the first time steps of and after a
lane change. The second plot (Figure 4) shows the velocity of all involved vehicles in solid lines as
well as their desired velocities in horizontal dashed lines. The vertical dashed lines indicate the time
steps where a lane change starts or ends. These time steps are the relevant time steps depicted in the
bird’s eye perspective plot and are assigned by unique numbers.

The start situation is the same for both simulations. The lead vehicle 3 (red) drives in lane 2
at its desired velocity of 26 m s−1, followed by vehicle 1 (orange) at a lead distance of 26.4 m and a
speed of 24.3 m s−1. Both vehicles are approached by the small blue truck (vehicle 0) approaching at a
considerably higher velocity of 34 m s−1. Due to its greater desired speed of 34.6 m s−1, it might want
to overtake vehicles 1 and 2 during the scenario. In lane 1, vehicle 2 (green) catches up at 35.4 m s−1

and might block the blue truck from making a future lane change. The leftmost lane 0 is not occupied.
Figures 3 and 4 show the solution of the reference IIDM planner. The blue truck changes to the

left in time step t = 0.2 s in order to overtake vehicles 1 and 3. To ensure a safe distance to vehicle 1
during the lane change, it decelerates subject to the IIDM until the end of the lane change at t = 6.1 s.
Since vehicle 2 now has a slower object in front, it also starts a lane change to the free lane 0 at t = 4.3 s.
Until the end of its lane change at t = 8.2 s, it must consider the slower blue truck as its lead vehicle
and therefore decelerate. After their lane changes, vehicles 0 and 2 accelerate toward their respective
desired velocities subject to the IIDM. The decelerations, the associated time loss, and the lane changes
result in scenario costs of 7.6 according to the evaluation function presented in Section 2.3.

The cooperative planner solves the scenario in a different way as depicted in Figures 5 and 6. In the
computed solution, vehicle 1 accelerates over its desired velocity (dashed lines in Figure 6), making
way for vehicle 0. Thus, the blue truck has more room for its lane change, allowing it to maintain
its initial speed. Therefore, vehicle 2 is not affected by the blue truck until the end of the scenario.
After the lane change, vehicles 0 and 1 approach their respective desired velocities. The scenario costs
for the solution computed by the cooperative planner amount to 0.9 according to the cost function
introduced in Section 2.3. In comparison to the reference planner solution, vehicle 1 accepts a drawback
in terms of a deviation from its desired velocity in order to reduce the overall costs for this scenario.
Therefore, it can be regarded as a scenario that benefits from cooperation.
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Figure 3. Lateral plot of the simple planner.
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Figure 6. Longitudinal plot of the global planner.

3.2. Scenario Catalog

The described simulations are performed with all scenarios extracted from the data set. The result
is a list of scenarios, each rated by the maximum drawback of all involved vehicles and the overall
costs of the solutions of the reference and the cooperative planner. The decision as to which scenario
should be part of the test catalog is made according to the quality criteria of validity and practicability
described in Section 2.1. From the perspective of validity, a scenario is cooperative if at least one
vehicle accepts a drawback in the cooperative solution in comparison to the standard behavior of the
reference planner with the goal of reducing the overall scenario costs. In order not to classify negligible
drawbacks as a cooperative action, a threshold is introduced. The value of this threshold is set equal to
the costs of a lane change (0.1), which is considered the smallest clearly cooperative action. In addition
to the requirement of an individual drawback, the cooperative solution of a valid test scenario must
cause lower costs than the solution with the reference behavior. However, according to the concept
of practicability described in Section 2.1, we consider a scenario only as relevant if the overall cost
benefit of the cooperative solution is at least equal to the individual drawback of the cooperating
vehicle. All scenarios that fulfill these requirements are regarded as valid and practically relevant and
are therefore included in the test catalog.

Table 2 illustrates the number of scenarios, the evaluated recording time, and the average
cooperation costs of both behavior models for each roadway characteristic. Due to the varying
recorded time, the number of extracted scenarios varies between 16 for the three-lane merge scenario
and 1902 for the three-lane scenario. The average cooperation costs also differ in terms of roadway
characteristics. With the reduction from 3 to 2 lanes, the average costs for both behavior models increase
by 75 %. For the merge scenario, the average costs raise by a factor of 7 compared to the three-lane
scenario without a merge lane. In terms of all roadway characteristics, the reference behavior model
shows considerably higher costs (factors 2–3) compared with the fully cooperative behavior model.
It is expected that behavior models that use cooperative maneuver planning, but are not capable of
controlling all vehicles in a scenario, will fall between the performance of the fully cooperative and the
reference planner.

Table 2. Structure of the test scenario catalog.

Roadway Number of Scenarios Recording Time Score Ref. Model Score Coop. Model

Two-lane 337 192 min 1.80 0.84
Three-lane 1902 759 min 1.04 0.48

Three- and acc. lane 16 30 min 7.52 2.73
Overall 2255 981 min 1.20 0.55
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The selected scenarios cover the full speed range of uncongested highway traffic (Table 3).
Differences between the solutions of the behavior models are particularly apparent in the minimum
velocity, which drops to 0 m s−1 in the reference model, but is at least 12.8 m s−1 in the cooperative
model. The range of acceleration shows that the cooperative model manages to solve the selected
scenarios with common longitudinal driving behavior, whereas the reference model needs to perform
hard braking maneuvers. Both minimum velocity and acceleration occur on ending lanes after
unsuccessful merging maneuvers.

Table 3. Range of velocity and acceleration.

Behavior Model Range of Velocity Range of Acceleration

Reference model 0 m s−1 to 55.9 m s−1 −9 m s−2 to 1.4 m s−2

Cooperative model 12.8 m s−1 to 58.4 m s−1 −2.6 m s−2 to 1.4 m s−2

3.3. Scenario Clusters

For a more detailed understanding of the cooperative mechanisms in the dataset, a clustering
of the main cooperative actions is performed. The main cooperative action is the action that the
cooperating vehicle (determined by the highest drawback) performs in order to reduce overall costs
of the scenario. According to the cooperation metric’s cost terms, the drawback can be dominated
by higher safety, time, energy or lateral costs. Since braking induces lower velocity, which affects
the time metric, the energy costs are not considered separately. The safety metric is also irrelevant
because the cooperative planner does not produce unsafe solutions, whereby the safety costs cannot
be higher than in the reference solution. The remaining terms are the metrics for time efficiency and
lateral maneuvers. Within the time metric, increased costs for the cooperative solution can be caused
by higher (V+) or lower (V−) speed compared to the desired velocity. Additional lateral costs can be
induced by a lane change to the left (LCL) or to the right (LCR). The analysis of these scenario clusters
delivers the following cooperative mechanisms:

LCR: The cooperating vehicle performs a lane change to the right. According to the passing-on-
the-right prohibition, it enables its follower to pass in the cleared lane.

LCL: The lane change to the left clears the initial lane of the cooperating vehicle. Because of
the passing-on-the-right prohibition, the cleared lane cannot be used to pass the cooperating vehicle.
Instead, the cleared lane becomes the target lane of another vehicle’s lane change from the right.
Reasons for the enabled lane change of the benefiting vehicle are slower lead vehicles or that the
lane ends.

V+: The scenario group of cooperation through increased velocity is split into two subgroups.
The first one, hereinafter referred to as V+, is characterized by the cooperating vehicle staying in its lane.
In this group, the acceleration opens a gap behind the vehicle, which allows a faster following vehicle
to have more time for a lane change, enabling it to maintain greater speed (see example scenario). In the
second sub group (V+ LCR), the acceleration is followed by a lane change to the right. According to the
pure LCR scenarios, the goal of the cooperating vehicle’s action is to let a faster vehicle pass. Due to
a vehicle on the right lane blocking an immediate lane change, the cooperating vehicle accelerates
to overtake the blocking vehicle and to clear the lane as fast as possible to prevent its follower from
losing speed. The main difference between the V+ LCR and the LCR group lies in the definition of
the cooperative action. Since in the LCR group the cooperative behavior planner performs the LCR
in contrast to the reference model, the LCR is the main cooperative action. In the V+ LCR group,
both behavior models perform the LCR, and the cooperative action lies in the acceleration to clear the
lane earlier. The combination of V+ with a LCL is irrelevant in the computed cooperative solutions.

V−: The V− scenarios are also split into two subgroups. Similar to the V+ group, the distinction
can be made based on future lane changes of the cooperating vehicle. In the first subgroup (V−),
the cooperating vehicle decelerates without changing lanes afterward. The deceleration opens a gap in
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front of the vehicle that is used by other vehicles to merge in from the left or the right lane. In the second
subgroup (V− LCL), the cooperating vehicle performs a lane change to the left after decelerating or
maintaining its speed below its desired velocity. The reason why the LCL is not performed immediately
is that approaching vehicles in the left lane that would have to slow down if the cooperating vehicle
were to cut in front of it. By decelerating or keeping its speed low, the cooperating vehicle maintains
a safe distance to its leading vehicle while letting the faster car in the left lane pass before the lane
change. The combination of V- with a LCR is irrelevant in the computed cooperative solutions.

Figure 7 shows the relative frequency of the cooperative actions for straight and merge scenarios.
The LCL is the most prevalently performed action in merge scenarios (56.2 %), followed by the V−
LCL (18.8 %), the V− (12.5 %) and the LCR (12.5 %). The V+ and V+ LCR actions do not occur in
merge scenarios. The scenarios with straight lanes are dominated by the LCR action (85.8 %), whereas
V− (4.7 %), V+ (3.4 %), V+ LCR (3.2 %), LCL (2.4 %) and V− LCL (0.5 %) follow at a great distance.
The extraction tool provided on www.github.com/TUMFTM/test_scenarios_cooperation includes
a tag with the main cooperative action for each scenario in order to analyze the performance of
cooperative behavior planners with respect to the underlying cooperative mechanisms.

[’LCL’] [’LCR’] [’V+’, ’LCR’] [’V+’] [’V-’, ’LCL’] [’V-’]
Cooperative actions
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Figure 7. Relative frequency of cooperative actions.

4. Discussion

The intention of the presented work is to contribute to the development of future AV that are
not only safe, but can also move cooperatively in road traffic. Therefore, we presented a method
for extracting test scenarios from real-world traffic data that are challenging from the perspective of
cooperative behavior. By applying this method to a highway traffic dataset, we created a catalog of
test scenarios that allows comparison and benchmarking of different cooperative maneuver planning
algorithms. Since the used highD dataset [29] is only accessible after permission, the scenario catalog
cannot be shared directly. Instead, we provide a Python tool that extracts the scenarios of the test
catalog by their recording- and vehicle IDs, provided there is access to the root dataset.

In contrast to the state-of-the-art of test scenario generation for AV, which so far addressed the
topics of safety evaluation and driving task completion of single vehicles, the presented work aims to
test an AV’s ability of cooperatively interacting with other road vehicles. This requires test scenarios
that demand cooperative behavior of at least one of the involved vehicles. The presented scenario
extraction approach can select scenarios with this characteristic, which represents the main contribution
to the state-of-the-art of AV test scenario generation.

Furthermore, the presented results extend the state-of-the-art for test scenarios for cooperative
maneuver planning, which has so far consisted of artificially generated scenarios, by a data driven
approach. It was shown that, due to the presented selection process of scenarios, a condensed

www.github.com/TUMFTM/test_scenarios_cooperation
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representation of cooperative situations in road traffic is possible. Since the data set created with this
method contains a large number of scenarios that are difficult to think up, but which occur in real
traffic, it can also be used in the development process of new behavior planners.

The extracted scenarios are clustered according to the most cooperative action that is performed
by one of the vehicles in the scenario. Analyzing these scenario clusters shows that the exact sequence
of the scenarios varies, but that the cooperative mechanisms are the same within each cluster. Therefore,
the performance evaluation of a tested cooperative behavior planner allows conclusions to be drawn
about the situations in which the planner works well and in which there is room for improvement.

One limitation of the test scenario catalog is that the amount of data in the root dataset is limited,
which results in a small number of two-lane and especially three-lane merge scenarios. Therefore,
the result of these roadway types could be less representative compared to the three-lane scenarios.
This can only be overcome by a larger amount of data. Since the presented method is independent from
the root dataset, it could be applied to a larger dataset released in the future. In case of a much larger
dataset, it might not be applicable to use all extracted scenarios for testing. Therefore, the selection of
representative test scenarios as well as the exclusion of similar ones will be a topic of future work.

Another point of discussion is whether a foresightful planning automated vehicle ended up
in difficult situations like the ones in the dataset or if it would be able to avoid them beforehand.
In the second case, the test scenarios, which are derived from human-operated traffic, would not be
suitable for AV. Since a traffic situation arises as a result of the actions of all involved vehicles, and the
surrounding vehicles of an automated vehicle will be mainly driven by humans in the near future,
a behavior planner for AV must also be able to manage today’s difficult traffic situations.

The solution of some scenarios of the global planner show non-humanlike behavior, such as
creating gaps behind a vehicle, e.g., when vehicle 1 performs in the exemplary scenario in Section 3.
These types of actions show that an automated vehicle could be capable of cooperating better than a
human driver due to rational maneuver planning and comprehensive sensor information. However,
human subject research must show the extent to which AV driving behavior may deviate from human
driving behavior in order to still be accepted by human passengers.

The test mode of the methodology presented in this paper intends that there is no ego perspective
in a scenario. Instead, the behavior model being tested is applied to all vehicles of the scenario
independently. This approach ensures that the behavior model not only behaves intelligently when it
is in a situation where it needs the cooperation of others, but also recognizes when other vehicles need
help from the ego vehicle. However, one disadvantage to this approach is that the behavior model is
only confronted with driving behavior similar to its own. To test the robustness in the interaction with
uncooperative, non-planning agents, individual vehicles could be replaced by a reactive driver model
in a future work.

A further limitation of the generated scenarios is the maximum number of vehicles, which is
set to four. With an increasing number of vehicles, the tree of possible states grows exponentially
(see Equation (2)), which leads to strongly increasing computing times. Therefore, it would not be
reasonable to compute a dataset with more involved vehicles. In order to test a behavior model with
more surrounding vehicles, a large-scale traffic simulation would be more appropriate. However,
a large-scale traffic simulation does not offer a fully cooperative solution as a comparison and involves
the computation of a large number of situations that do not require cooperative behavior, which makes
testing more inefficient. On the other hand, a large-scale traffic simulation would offer the possibility of
analyzing the effect of cooperatively behaving AV throughout the entire traffic flow and can therefore
be considered as a complementary approach to scenario-based tests in future work.
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Figure A1. Costs over time for global planner.

References

1. Lenz, D.; Kessler, T.; Knoll, A. Tactical Cooperative Planning for Autonomous Highway Driving using
Monte-Carlo Tree Search. In Proceedings of the IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden,
19–22 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 447–453.

2. Fisac, J.F.; Bronstein, E.; Stefansson, E.; Sadigh, D.; Sastry, S.S.; Dragan, A.D. Hierarchical Game-Theoretic
Planning for Autonomous Vehicles. In Proceedings of the International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9590–9596.

3. Kurzer, K.; Engelhorn, F.; Zöllner, J.M. Decentralized Cooperative Planning for Automated Vehicles with
Continuous Monte Carlo Tree Search. In Proceedings of the IEEE Intelligent Transportation Systems Conference,
Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018.

4. Kurzer, K.; Zhou, C.; Zöllner, J.M. Decentralized Cooperative Planning for Automated Vehicles with
Hierarchical Monte Carlo Tree Search. In Proceedings of the IEEE Intelligent Vehicles Symposium, Changshu,
China, 26–30 June 2018; IEEE: Piscataway, NJ, USA, 2018.

5. Jenkins, I.R.; Gee, L.O.; Knauss, A.; Yin, H.; Schroeder, J. Accident Scenario Generation with Recurrent
Neural Networks. In Proceedings of the International Conference on Intelligent Transportation Systems
(ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3340–3345. [CrossRef]

6. Klueck, F.; Li, Y.; Nica, M.; Tao, J.; Wotawa, F. Using Ontologies for Test Suites Generation for Automated
and Autonomous Driving Functions. In Proceedings of the IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), Memphis, TN, USA, 15–18 October 2018; pp. 118–123.

http://dx.doi.org/10.1109/ITSC.2018.8569661


Appl. Sci. 2020, 10, 8154 17 of 18

7. Mullins, G.E.; Stankiewicz, P.G.; Gupta, S.K. Automated generation of diverse and challenging scenarios
for test and evaluation of autonomous vehicles. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1443–1450. [CrossRef]

8. Rocklage, E.; Kraft, H.; Karatas, A.; Seewig, J. Automated scenario generation for regression testing of
autonomous vehicles. In Proceedings of the IEEE International Conference on Intelligent Transportation
Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 476–483. [CrossRef]

9. Feng, S.; Feng, Y.; Yu, C.; Zhang, Y.; Liu, H.X. Testing Scenario Library Generation for Connected and
Automated Vehicles, Part I: Methodology. IEEE Trans. Intell. Transp. Syst. 2020, 1–10. [CrossRef]

10. Feng, S.; Feng, Y.; Sun, H.; Bao, S.; Zhang, Y.; Liu, H.X. Testing Scenario Library Generation for Connected
and Automated Vehicles, Part II: Case Studies. IEEE Trans. Intell. Transp. Syst. 2020, 1–13. [CrossRef]

11. Feng, S.; Feng, Y.; Sun, H.; Zhang, Y.; Liu, H.X. Testing Scenario Library Generation for Connected and
Automated Vehicles: An Adaptive Framework. IEEE Trans. Intell. Transp. Syst. 2020, 1–10. [CrossRef]

12. Althoff, M.; Koschi, M.; Manzinger, S. CommonRoad: Composable benchmarks for motion planning on
roads. In Proceedings of the IEEE Intelligent Vehicles Symposium, Los Angeles, CA, USA, 11–14 June 2017;
pp. 719–726. [CrossRef]

13. Lizenberg, V.; Knapp, S.; Mannale, R.; Wendel, V.; Köster, F. Simulationsbasierte Bewertungs- und
Vergleichsmethodik für Abstimmungsverfahren in kooperativen Fahrfunktionen. AAET Autom. Vernetztes Fahr.
2019, 20, 49–65.

14. Hallerbach, S.; Xia, Y.; Eberle, U.; Koester, F. Simulation-Based Identification of Critical Scenarios for
Cooperative and Automated Vehicles. SAE Int. J. Connect. Autom. Veh. 2018, 1, 93–106. [CrossRef]

15. Bailey, C.A. A Guide to Qualitative Field Research; Pine Forge Press: London, UK; Thousand Oaks, CA, USA;
New Delhi, India, 2007.

16. Himme, A. Gütekriterien der Messung: Reliabilität, Validität und Generalisierbarkeit. In Methodik der
Empirischen Forschung; Albers, S., Klapper, D., Konradt, U., Walter, A., Wolf, J., Eds.; Gabler: Wiesbaden,
Germany, 2009; pp. 485–500.

17. Knies, C.; Fank, J.; Diermeyer, F. How to Measure Cooperation? Cost Functions for Cooperative Maneuver
Planning on Highways. In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC),
Auckland, New Zealand, 27–30 October 2019; pp. 2483–2489. [CrossRef]

18. Düring, M.; Pascheka, P. Cooperative decentralized decision-making for conflict resolution among
autonomous agents. In Proceedings of the IEEE International Symposium on Innovations in Intelligent
Systems and Applications, Alberobello, Italy, 23–25 June 2014; IEEE: Piscataway, NJ, USA, 2014.

19. Hayward, J.C. Near Misses as a Measure of Safety at Urban Intersections, Master’s Thesis, Pennsylvania
State University, University Park, PA, USA, 1971.

20. Kesting, A.; Treiber, M.; Helbing, D. General Lane-Changing Model MOBIL for Car-Following Models.
Transp. Res. Rec. J. Transp. Res. Board 2007, 1999, 86–94. [CrossRef]

21. Yang, M.; Wang, X. Modeling Lane Change Gap Acceptance and Duration Using Shanghai Naturalistic
Driving Data. In Proceedings of the CICTP, Beijing, China, 5–8 July 2018; American Society of Civil Engineers:
Reston, VA, USA, 2018.

22. Moridpour, S.; Sarvi, M.; Rose, G. Modeling the Lane-Changing Execution of Multiclass Vehicles under
Heavy Traffic Conditions. Transp. Res. Rec. J. Transp. Res. Board 2010, 2161, 11–19. [CrossRef]

23. Merala, R.; White, K. Tractor Semitrailer Left Turns and Lane Changes; SAE Technical Paper Series;
SAE International: Warrendale, PA, USA, 2010. [CrossRef]

24. Hamdar, S. Driver Behavior Modeling. In Handbook of Intelligent Vehicles; Springer Reference; Eskandarian, A., Ed.;
Springer: London, UK, 2012; pp. 537–558.

25. Treiber, M.; Kesting, A. Car-Following Models Based on Driving Strategies. In Traffic Flow Dynamics; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 181–204.

26. Kesting, A.; Treiber, M.; Helbing, D. Enhanced Intelligent Driver Model to Access the Impact of Driving
Strategies on Traffic Capacity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4585–4605. [CrossRef]

27. Knies, C.; Hermansdorfer, L.; Diermeyer, F. Cooperative Maneuver Planning for Highway Traffic Scenarios
based on Monte-Carlo Tree Search. In AAET—Automatisiertes & Vernetztes Fahren; ITS Mobility e.V.:
Brunswick, Germany, 2019; Volume 20, pp. 10–25.

http://dx.doi.org/10.1109/ICRA.2017.7989173
http://dx.doi.org/10.1109/ITSC.2017.8317919
http://dx.doi.org/10.1109/TITS.2020.2972211
http://dx.doi.org/10.1109/TITS.2020.2988309
http://dx.doi.org/10.1109/tits.2020.3023668
http://dx.doi.org/10.1109/ivs.2017.7995802
http://dx.doi.org/10.4271/2018-01-1066
http://dx.doi.org/10.1109/ITSC.2019.8917075
http://dx.doi.org/10.3141/1999-10
http://dx.doi.org/10.3141/2161-02
http://dx.doi.org/10.4271/2010-01-0049
http://dx.doi.org/10.1098/rsta.2010.0084


Appl. Sci. 2020, 10, 8154 18 of 18

28. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, Global Edition; Pearson Education Limited:
Harlow, UK, 2016.

29. Krajewski, R.; Bock, J.; Kloeker, L.; Eckstein, L. The highD Dataset: A Drone Dataset of Naturalistic
Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems.
In Proceedings of the International Conference on Intelligent Transportation Systems (ITSC), Maui, HI,
USA, 4–7 November 2018; pp. 2118–2125. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ITSC.2018.8569552
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Concept
	Process
	Metrics
	Simulation Environment
	Reference Behavior Planner
	Cooperative Behavior Planner

	Dataset

	Results
	Case Study
	Scenario Catalog
	Scenario Clusters

	Discussion
	
	References

