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Abstract 

Line sampling is a method for efficient estimation of the failure (or rare event) probability. 

The method generates a set of samples on a hyperplane perpendicular to an important 

direction that points towards the failure domain, and estimates the probability of failure as 

a sample mean of one-dimensional probability integrals. The performance of the method 

strongly depends on the quality of the chosen important direction. Recently, an adaptive 

approach for adjusting the important direction during the simulation has been proposed, 

termed advanced line sampling (ALS). This contribution revisits the ALS method and 

shows that the ALS estimator can be viewed as a combination of estimators, each one 

corresponding to a direction in the adaptive sequence. We show that the combination 

implied by the original ALS is suboptimal and propose an alternative combination of 

estimators. The resulting method is termed combination line sampling (CLS). We 

demonstrate through three numerical examples that CLS outperforms the ALS estimator, 

in particular if the initially selected important direction is poor.  

Keywords 

Reliability analysis, rare event simulation, simulation method, line sampling, linear 

dynamic systems. 
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1.  Introduction 

In reliability analysis, one evaluates the probability of failure of an engineering system or 

structure. Let 𝐗 = [𝑋!; 𝑋"; … ; 𝑋#] denote a vector of random variables with joint 

probability density function (PDF) 𝑓𝐗(𝒙), which models randomness and uncertainty in the 

inputs that influence the system response. The failure event is defined as 𝐹 =

{𝒙 ∈ ℝ#: 𝑔(𝒙) ≤ 0}, where the function 𝑔(𝒙) is the so-called limit-state function (LSF) 

and depends on the outcome of a model of the system response. The probability of failure 

𝑝% is defined as: 

𝑝%: = Pr(𝐹) = 8 𝑓𝐗(𝒙)𝑑𝒙
&(𝒙)*+

	. (1) 

Evaluation of the integral in Eq. 1 is nontrivial due to the typically low magnitude of 𝑝% 

and the dependence of 𝑔(𝒙) on the outcome of an – often computationally intensive –

model. A number of tailored approaches have been developed, which are known as 

structural reliability methods (e.g., Lemaire 2013, Melchers & Beck 2018). These methods 

can be categorized into approximation and simulation methods. The latter category consists 

of methods that estimate 𝑝% based on Monte Carlo (MC) samples. Crude MC, which 

employs samples from 𝑓𝐗(𝒙), is inefficient for estimating rare events. This is because its 

coefficient of variation, measuring the accuracy of the estimator, is approximately 𝛿,- ≈

(𝑁𝑝%).+.0, implying that for small 𝑝% a large number of samples 𝑁 is required to obtain a 

small 𝛿,- . Hence, a number of advanced sampling methods have been developed that aim 

at reducing the variance of crude MC for a fixed 𝑁. These include importance sampling 

methods (e.g. Bucher 1988, Papaioannou et al. 2016; 2019), subset simulation (Au & Beck 

2001b) and line sampling (Hohenbichler & Rackwitz 1988, Koutsourelakis et al. 2004, 

Schuëller et al. 2004).  

Line sampling (LS) estimates 𝑝% through sampling on a hyperplane perpendicular to an 

important direction pointing towards the failure domain. The method is shown to perform 

well in problems where the dimension 𝑛 of the random variable space is large (Pradlwarter 

et al. 2007). However its performance strongly depends on the choice of the important 

direction, which is often determined through an initial sampling step or through a single 
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gradient evaluation of 𝑔(𝒙). Recently, an adaptive LS approach has been proposed, termed 

advanced LS (ALS) (de Angelis et al. 2015). This approach adapts the important direction 

on the fly throughout the simulation and accounts for all the intermediate directions and 

corresponding samples in the final estimator. 

In this paper, we revisit the ALS estimator and show that it can be viewed as a combination 

of estimators, each one corresponding to an important direction in the adaptive sequence. 

This interpretation enables one to study the optimality of the ALS estimator. We show that 

the combination implied by the ALS estimator is suboptimal and propose an alternative 

combination of estimators that outperforms the ALS estimator. The resulting method is 

termed combination line sampling (CLS). We study its performance and compare it with 

ALS by means of three numerical examples; the first involves a convex LSF, the second is 

a reliability problem whose LSF contains a high-frequency noise term and the third consists 

of the estimation of the first passage probability of a linear dynamic system with parameter 

uncertainties. 

2.  Line sampling (LS) 

The LS method samples on the hyperplane perpendicular to an important direction pointing 

towards the failure region. It was originally developed by Hohenbichler & Rackwitz (1988) 

for obtaining a correction factor to estimates obtained by the first-order reliability method 

(FORM) and was generalized by Koutsourelakis et al. (2004) to a stand-alone simulation 

method. The method is usually applied in a transformed random variable space 𝐔 

consisting of independent standard normal random variables. It is 𝐔 = 𝐓(𝐗) where 

𝐓:ℝ# → ℝ# is a transformation operator (Hohenbichler & Rackwitz 1981). The 

probability of failure can be expressed in the 𝐔-space as follows 

𝑝% = 8 𝜑#(𝒖)𝑑𝒖
1(𝒖)*+

	, (2) 

where 𝐺(𝒖) = 𝑔[𝐓.!(𝒖)] is the LSF in the 𝐔-space and 𝜑#(𝒖) is the 𝑛-dimensional 

independent standard normal PDF. Let 𝜶 be a unit row vector that points towards the failure 

domain. Consider the linear mapping 𝐕 = 𝐑𝐔, where 𝐑 ∈ ℝ#×#, with 𝐑4𝐑 = 𝐈, is a 

suitable rotation matrix whose first row is the unit direction 𝜶. Due to the rotational 
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symmetry of the standard normal PDF, any orthogonal transformation of 𝐔 will also be 

independent standard normal. The first component of 𝐕, 𝑉!, is a standard normal random 

variable that is parallel to 𝜶, whereas the remaining components, 𝐕":#, form an (𝑛 − 1)-

dimensional standard normal random vector with outcome space the hyperplane 

perpendicular to 𝜶. The probability of failure can be expressed in the rotated space as: 

𝑝% = 8 𝜑#(𝒗)𝑑𝒗
1𝐑(𝒗)*+

	

= 8 8 𝜑(𝑣!)
1𝐑([8";𝒗#:%])*+

𝑑𝑣!𝜑#.!(𝒗":#)𝑑𝒗":#
ℝ%&"

	, 
(3) 

where 𝐺𝐑(𝒗) = 𝐺(𝐑4𝒗) is the LSF in the rotated space. For ease of presentation, we make 

the following assumption. 

Assumption 1. For all 𝒗":# ∈ ℝ#.!, 𝑑(𝒗":#) is the unique solution of 𝐺𝐑([𝑑; 𝒗":#]) = 0.   

Under Assumption 1, the inner integral in Eq. 3 can be evaluated as Φ(−𝑑(𝒗":#)), with 

Φ(⋅) denoting the standard normal cumulative distribution function (CDF), such that  

𝑝% = 8 ΦR−𝑑(𝒗":#)S𝜑#.!(𝒗)𝑑𝒗":#
ℝ%&"

	. (4) 

Based on Eq. 4, the LS method generates a set of samples T𝒗":#= , 𝑖 = 1,… ,𝑁V from 𝐕":# and 

estimates the probability of failure as: 

𝑝% ≈ 𝑝>? =
1
𝑁WΦR−𝑑=S

@

=A!

. (5) 

𝑑= is the solution of 𝐺𝐑RX𝑑; 𝒗":#= YS = 0. Hence, the estimator of Eq. 5 requires solving a 

line search for every sample 𝒗":#=  to determine 𝑑=, which can be done, e.g., by application 

of the Newton method or based on a quadratic approximation of 𝐺𝐑RX𝑑; 𝒗":#= YS. This step 

usually requires only a handful of LSF evaluations. The LS method is illustrated in Fig. 1.  
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Figure 1: Illustration of the line sampling method. 

 

The LS estimator of Eq. 5 is unbiased, while it can be shown that its variance is smaller or 

equal to the one of the crude MC estimator with the same number of samples 

(Koutsourelakis et al. 2004). The variance of the LS estimator strongly depends on the 

choice of the direction 𝜶. In (Hohenbichler & Rackwitz 1988) 𝜶 is chosen as the direction 

pointing to the FORM design point, aka the most likely failure point. This is the point of 

the failure domain in 𝐔-space with smallest distance to the origin. In (Koutsourelakis et al. 

2004), different approaches for determining 𝜶 are investigated, including an MC sampling-

based approach. Often the direction is chosen as the gradient of the LSF evaluated at a 

suitable point in the 𝐔-space (Pradlwarter et al. 2005, 2007). 

Remark 2.1. The rotated space 𝐕 can also be expressed as 

𝐕 = 𝐔𝜶C + 𝑉!𝜶4, (6) 

where 𝐔𝜶C is an 𝑛-dimensional random vector that defines the projection of 𝐔 on the 

hyperplane 𝑣! = 0 and can be expressed as 

𝐔𝜶C = 𝐔 − (𝐔𝜶)𝜶4. (7) 

Eqs. 6 and 7 offer an alternative means of implementing the LS estimator that avoids 

evaluation of the projection operator 𝐑. Through Eq. 7, samples 𝒖𝜶
C,= from 𝐔𝜶C can be 
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generated based on samples from the independent standard normal vector 𝐔 and the 

corresponding contribution to the LS estimator can be evaluated through solving 

𝐺R𝒖𝜶
C,= + 𝑑𝜶4S = 0.  

Remark 2.2. If Assumption 1 does not hold, i.e., if 𝐺𝐑RX𝑑; 𝒗":#= YS = 0 has multiple roots, 

then the contribution of each sample in Eq. 5 needs to be modified to account for all roots.  

Remark 2.3. The presentation of the LS method and its variants in this paper focuses on the 

case where the failure domain is concentrated in a distinct region of the outcome space, as 

is the case for component problems with mildly nonlinear LSFs. The efficient treatment of 

problems with multiple failure modes often requires to account for several important 

directions, see (Schuëller et al. 2004). 

3.  Combination line sampling (CLS) 

This section introduces the CLS method for reliability analysis. The method builds upon 

the ALS method, which is described first. We then introduce the CLS estimator as a 

generalization of the ALS estimator. The CLS estimator is a weighted combination of LS 

estimators and the optimal choice of the weights is discussed next. The optimal weights 

cannot be computed in practice, therefore we propose a heuristic selection of the weights. 

3.1 Advanced line sampling (ALS) 

The ALS method, developed by de Angelis et al. (2015), consists of two enhancements of 

the standard LS method. The first is to process the samples  𝒖𝜶
C,= such that each new sample 

is near the current sample and employ the distance 𝑑= as the starting point for the line search 

algorithm to determine 𝑑=E!. This can result in faster convergence of the line search 

algorithm, which reduces the total number of LSF evaluations. The second enhancement is 

an adaptation of the important direction whenever a new point on the limit-state (failure) 

surface is found that is closer to the origin in 𝐔-space (i.e. a failure point with higher 

likelihood). This idea allows improving a poor initial choice of the important direction. In 

the following, we investigate this second enhancement and propose a new estimator, which 

– based on the same LSF evaluations as the original ALS – results in improved accuracy. 
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The ALS method applies the following procedure to adapt the important direction. It first 

chooses an initial direction 𝜶! and evaluates the distance from the origin to the failure 

surface along this direction, 𝑑𝜶", through solving 𝐺R𝑑𝜶"𝜶!
4S = 0. At each new sample on 

the hyperplane perpendicular to the current direction 𝜶F, with 𝑘 denoting a direction 

counter, it evaluates the distance from the origin to the intersection of the line parallel to 

𝜶F with the failure surface, \𝒖𝜶'
C,= + 𝑑=𝜶F4\. If this distance is shorter than 𝑑𝜶', i.e., if 

\𝒖𝜶'
C,= + 𝑑=𝜶F4\ < 𝑑𝜶', it updates the direction through setting 

𝜶FE!4 =
𝒖𝜶'
C,= + 𝑑=𝜶F4

𝑑𝜶'("
	with		𝑑𝜶'(" = \𝒖𝜶'

C,= + 𝑑=𝜶F4\	. (8) 

The sampling then proceeds with this new direction. The final estimator of the probability 

of failure is given by: 

𝑝G>? =
1
𝑁WΦR−𝑑=S

@

=A!

	, (9) 

where 𝑑= is obtained through the solution of 𝐺R𝒖𝜶'
C,= + 𝑑𝜶F4S = 0 with 𝜶F denoting the 

current direction at the time of generation of the 𝑖-th sample, as evaluated by the above 

procedure. 

Remark 3.1. The ALS approach can be effective in low- to moderate-dimensional spaces, 

where the chances of finding a better direction throughout the simulation are good even in 

cases where the initial direction is poor. As the dimension of the sampling space increases, 

it becomes more difficult to achieve a substantial improvement. Hence, although the LS 

method with an appropriately chosen important direction is known to perform well in high 

dimensions, the potential of ALS (or CLS presented herein) is limited to problems in 

moderate dimensions. 

3.2 ALS as a combination of estimators  

The ALS estimator of Eq. 9 can be written as a combination of LS estimators each one 

corresponding to an intermediate direction. Let 𝑝>?' be the LS estimator corresponding to 

direction 𝜶F. It is 
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𝑝>?' =
1
𝑁F
WΦR−𝑑=S
@'

=A!

	, (10) 

where 𝑁F is the number of samples generated on the hyperplane perpendicular to 𝜶F, with 

∑ 𝑁FH
FA! = 𝑁; 𝐾 denotes the total number of directions evaluated throughout the adaptive 

simulation process. The ALS estimator of Eq. 9 is: 

𝑝G>? =W
𝑁F
𝑁 𝑝>?'

H

FA!

	. (11) 

Eq. 11 shows that the original ALS estimator is a linear combination of the estimators 𝑝>?', 

each weighted with the number of samples 𝑁F drawn parallel to the corresponding direction 

𝜶F. This interpretation of the ALS estimator motivates a more general estimator that 

combines the estimators of Eq. 10 as follows: 

𝑝->? =W𝑤F𝑝>?'

H

FA!

	, (12) 

where {𝑤F , 𝑘 = 1,… , 𝐾} are weights satisfying 𝑤F ≥ 0 and ∑ 𝑤FH
FA! = 1. We term this 

estimator combination LS (CLS) estimator. Such combination estimators have been studied 

in the context of adaptive importance sampling (e.g.,  Owen & Zhou 1999, Owen & Zhou 

2019). The estimator 𝑝G>? can be retrieved from the general CLS estimator of Eq. 12 by 

setting 𝑤F = 𝑁F 𝑁⁄ . However, as we show in the following, this is not the optimal choice 

of 𝑤F.  

3.3 Best linear unbiased combination 

The estimator 𝑝->? is unbiased, since 

E[𝑝->?] = W𝑤FEX𝑝>?'Y
H

FA!

=W𝑤F𝑝%

H

FA!

= 𝑝% 	, (13) 

where EX𝑝>?'Y = 𝑝% because the standard LS estimator with fixed direction is unbiased and 

we have used the fact that ∑ 𝑤FH
FA! = 1. Moreover, its variance is 
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Var[𝑝->?] = W𝑤F"VarX𝑝>?'Y
H

FA!

	, (14) 

where 

VarX𝑝>?'Y =
1
𝑁F"

WVarXΦR−𝑑=SY
@'

=A!

=
𝑁FVar jΦ k−𝑑𝜶'(𝐔)lm

𝑁F"
	

=
Var jΦ k−𝑑𝜶'(𝐔)lm

𝑁F
	, 

(15) 

with 𝑑𝜶'(𝐔) denoting the random variable representing the distance to the failure surface 

from the hyperplane perpendicular to direction 𝜶F. One can show that the optimal weights, 

i.e., those that minimize the variance of Eq. 14 while ensuring an unbiased estimator 𝑝->?, 

are given as follows  

𝑤F =
VarX𝑝>?'Y

.!

∑ VarX𝑝>?'Y
.!H

FA!

	. (16) 

A simple proof of Eq. 16 is given in Appendix A. Inserting Eq. 15 into Eq. 16, the optimal 

weights are given as 

𝑤F =
𝑁FVar jΦ k−𝑑𝜶'(𝐔)lm

.!

∑ 𝑁FVar jΦ k−𝑑𝜶'(𝐔)lm
.!

H
FA!

	. (17) 

Eq. 17 shows that the optimal weight of estimator 𝑝>?' increases with increase of the 

number of samples 𝑁F and decreases with increase of the variance of Φk−𝑑𝜶'(𝐔)l.  

To illustrate the relation between the direction 𝜶F and the variance of Φk−𝑑𝜶'(𝐔)l, we 

consider the case where the LSF in 𝐔-space is linear, i.e., it can be expressed as: 

𝐺(𝒖) = −𝜶𝒖 + 𝛽	, (18) 

where 𝜶 ∈ ℝ# is a row vector and we assume without loss of generality that ‖𝜶‖ = 1. In 

this case, it is shown in Appendix B that the variance terms in Eq. 17 can be evaluated 

through the following expression: 



 10 

Var jΦk−𝑑𝜶'(𝐔)lm = 8
1

2𝜋√1 − 𝑟"
exp w−

𝛽"

1 + 𝑟x 𝑑𝑟
!.𝜶⋅𝒂'

)

+
	. (19) 

Fig. 2 plots the variance of Eq. 19 as a function of the angle between the direction 𝜶, which 

is the optimal direction for the linear problem, and the sampling direction 𝜶F. For this 

problem, choosing 𝜶F = 𝜶 would result in zero variance and, hence, an infinite weight 

according to Eq. 17. This is expected, since for the linear problem of Eq. 18, the 

contribution of the direction 𝜶 results in the exact probability of failure. As the angle 

cos.!R𝜶 ⋅ 𝒂F4S increases, the variance term also increases, which implies that poor choices 

of the sampling direction should be associated with smaller weights. That is, larger weights 

should be given to those 𝑝>?' that are associated with better directions 𝜶F, which are the 

latter directions in the adaptive process. In particular, the initial directions can be quite poor 

and hence only a smaller 𝑤F should be assigned to them. The weights in the original ALS 

method are chosen proportional to 𝑁F and are suboptimal, since they do not account for the 

influence of direction 𝜶F on the quality of each estimator 𝑝>?'. 

 

 

Figure 2: Influence of the sampling direction 𝜶! on the variance term Var %Φ '−𝑑𝜶!(𝐔)-. entering 

the optimal weights of Eq. 17, evaluated for a linear LSF in  𝐔-space with 𝛽 = 3 (𝑝# =

1.3 × 10$%). 
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Unfortunately, the weights of Eq. 17 cannot be used in practice because in the general case 

Var jΦk−𝑑𝜶'(𝐔)lm is unknown. One possibility would be to use estimators of 

Var jΦk−𝑑𝜶'(𝐔)lm based on the samples 𝑑= of 𝑑𝜶'(𝐔) generated throughout the 

simulation. However, this is not advisable due to several reasons; see also the discussion 

in the general context of linear combinations of estimators in (Owen & Zhou 2019). The 

main reason is that the number of samples for each estimator 𝑁F is often quite small, since 

the algorithm proceeds to the next direction once it finds a more likely point on the failure 

surface. In this case, the sample estimator of Var jΦ k−𝑑𝜶'(𝐔)lm will evidently be poor. 

Moreover, the estimator 𝑝>?' and the estimator of Var jΦ k−𝑑𝜶'(𝐔)lm are correlated; 

smaller values of 𝑝>?' are associated with smaller values of the Var jΦ k−𝑑𝜶'(𝐔)lm 

estimator. As a result, 𝑝>?' and the weights 𝑤F of Eq. 17 are negatively correlated, since 

these weights are proportional to Var jΦk−𝑑𝜶'(𝐔)lm
.!

. This implies that small 𝑝>?' will 

tend to take large weights while large 𝑝>?' will tend to take small weights. This will lead 

on average to an underestimation of the probability of failure; in other words, to a 

negatively biased estimator. To avoid this, we introduce a practical expression for the 

weights that does not require estimation of a statistical quantity in the following.  

3.4 A heuristic definition of the weights  

The variance terms entering the optimal weights of Eq. 17 will be large if the corresponding 

direction differs significantly from the optimal direction (cf. Fig. 2). This will be the case 

for estimators based on directions 𝜶F along which the distance to the failure surface 𝑑𝜶' is 

large and the corresponding failure integral Φk−𝑑𝜶'(𝟎)l = ΦR−𝑑𝜶'S is small. In other 

words, the theoretically optimal weight of the estimator 𝑝>?' will be larger when the 

probability integral ΦR−𝑑𝜶'S is larger. Based on this rationale, we define the following 

heuristic weights: 

𝑤F =
𝑁FΦR−𝑑𝜶'S

∑ 𝑁FΦR−𝑑𝜶'S
H
FA!

	. (20) 
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The weights of Eq. 20 ensure that among estimators with the same number of samples 𝑁F, 

the ones corresponding to directions that point to failure points with higher likelihood 

(smaller distance to the origin) will have higher contribution to the probability of failure. 

We remark that a similar approach to Eq. 20 has been used in (Schuëller & Stix 1987) for 

choosing the weights in the context of mixture importance sampling for reliability problems 

with multiple failure modes. 

The weights of Eq. 20 can be evaluated based on the same LSF evaluations as for the ALS 

method. In fact, the adaptive sampling process of ALS does not need to be modified. The 

only difference between CLS and ALS is the final estimate of the probability failure, which 

in CLS is based on the combination estimator of Eq. 12 with weights according to Eq. 20. 

To compute these weights, the CLS algorithm needs to keep track of the intermediate 

directions, which is not necessary in ALS.  We summarize the algorithm in Algorithm 1. 

Remark 3.2. The first enhancement of the ALS method, which can improve the 

convergence of the line search required for each sample, can be included in the CLS 

algorithm through modifying the sequence of processing the samples; see (de Angelis et 

al. 2015) for details. 

4.  Numerical examples 

We investigate the performance of the CLS estimator with the proposed weights of Eq. 20 

with three numerical examples. The first consists of a convex LSF and serves as an 

illustration on the influence of the choice of the initial direction. The second is a reliability 

problem whose LSF contains a high-frequency noise term. The third example is an 

application of the approach to the estimation of the first passage probability of linear 

systems with parameter uncertainties. 
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Algorithm 1: CLS algorithm 

Input: Initial direction 𝜶!; sample size 𝑁 

Initialization: Solve 𝐺R𝑑𝜶"𝜶!
4S = 0 for 𝑑𝜶"; set 𝑘 ← 1 

Set 𝑖 ← 0 

for 𝑙 ← 1,𝑁 do 

 𝑖 ← 𝑖 + 1 

 𝒖~𝜑#(𝒖) 

 𝒖𝜶'
C,= ← 𝒖− (𝒖𝜶F)𝜶F4 

 Solve 𝐺R𝒖𝜶'
C,= + 𝑑=𝜶F4S = 0 for 𝑑= 

 𝑐 ← \𝒖𝜶'
C,= + 𝑑=𝜶F4\ 

 if 𝑐 < 𝑑𝜶' or 𝑙 = 𝑁 then 

  𝑁F ← 𝑖 

  Evaluate 𝑝>?' with Eq. 10 

  if 𝑙 = 𝑁 then 

   𝐾 ← 𝑘 

  else 

   𝜶FE!4 ← R𝒖𝜶'
C,= + 𝑑=𝜶F4S 𝑐⁄  

   𝑑𝜶'(" ← 𝑐 

   𝑘 ← 𝑘 + 1 

   𝑖 ← 0 

  end if 

 end if 

end for 

Evaluate the weights {𝑤F , 𝑘 = 1,… , 𝐾} with Eq. 20  

Evaluate the estimator 𝑝->? with Eq. 12 

return 𝑝->? 
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4.1 Convex limit-state function  

The LSF of the first example is given by the following quadratic function of two standard 

normal random variables: 

𝐺(𝒖) = 0.1(𝑢! − 𝑢")" −
1
√2

(𝑢! + 𝑢") + 2.5	. (21) 

The reference probability of failure is 𝑝% = 4.21 × 10.K. The design point of this problem 

lies on the 45° line, such that the optimal direction for application of LS is 𝜶 =

[1 √2⁄ ; 1 √2⁄ ].  

To illustrate the performance of the ALS and CLS estimators, we purposely choose 

suboptimal initial directions. We study two initial directions: 𝜶!
(!) = [0; 1] and 𝜶!

(") ∝

[0.5; 1], shown in Fig. 3. Table 1 shows the coefficient of variation of the two estimators 

obtained with 500 repeated simulation runs for the two choices of the initial directions and 

different sample sizes 𝑁. We see that for direction 𝜶!
(!), which differs significantly from 

the optimal one, the CLS estimator outperforms the standard ALS estimator. This is 

because the LS estimators based on directions closer to the optimal one, found throughout 

the course of the simulation, receive higher weights in the final probability estimate in CLS 

estimator than in ALS. For 𝜶!
("), we observe only a small improvement by the CLS over 

the ALS estimator, since 𝜶!
(")is close to the optimal direction and, hence, the influence of 

the modified weights is small.  
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Figure 3: Convex limit-state surface and chosen initial directions 𝜶&
(&) and 𝜶&

()). 𝒖∗ denotes the 

design point (most likely failure point). 

 

Table 1. Coefficient of variation of the probability estimate for the convex LSF example obtained 
with the ALS and CLS estimators with different initial directions. 

 

Sample size 𝑁 
𝜶*
(*) = [0; 1] 𝜶*

(-) ∝ [0.5; 1] 

ALS CLS ALS CLS 

20 0.46 0.26 0.14 0.12 
30 0.30 0.13 0.10 0.09 
50 0.21 0.07 0.07 0.06 

 
 

4.2 Noisy limit-state function  

We consider a LSF with a high-frequency noise term: 

𝑔(𝒙) = 𝑥! + 2𝑥" + 3𝑥K + 𝑥L − 5𝑥0 − 5𝑥M + 0.1W𝑠𝑖𝑛(100𝑥=)
L

=A!

. (22) 

The random variables in this function are statistically independent and have lognormal 

marginal distributions. The variables 𝑋! to 𝑋L have means 120 and standard deviations 8; 

𝑋0 has mean 50 and standard deviation 10 and 𝑋M has mean 40 and standard deviation 8. 
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This example is modified from an example in (Liu & Der Kiureghian 1991): the standard 

deviation of the variables are reduced to result in a smaller failure probability and the noise 

is amplified, while it is a function of only variables 𝑋! to 𝑋L. The latter variables could 

represent the capacity of a system and the noise could be due to the dependence of the 

capacity on the outcome of a nonlinear numerical solver. The reference probability of 

failure is 𝑝% = 5.29 × 10.L. We choose the initial direction as the negative normalized 

gradient of the LSF evaluated at the origin in standard normal space, which gives 𝜶! =

[0.35; 0.24; 0.24; 0.35; 0.63; 0.50]. We see that the noise term changes the signs of the 

first four components of 𝜶! – the signs are positive although variables 𝑋! to 𝑋L are of the 

capacity type, and amplifies their contribution; this implies that the choice of 𝜶! is far from 

optimal.  

Table 2 shows the coefficient of variation of the estimators obtained with 500 repeated 

simulation runs with the standard LS method, the ALS method and the proposed CLS 

estimator with weights according to Eq. 20 for different sample sizes 𝑁. As expected, both 

ALS and CLS significantly outperform the basic LS method with fixed direction 𝜶!, as 

they both adapt the direction on the fly – we note that the final choice of the direction of a 

run with 𝑁 = 150 is 𝜶 = [−0.01;−0.03;−0.23;−0.10; 0.86; 0.44], which differs 

significantly from 𝜶!. The CLS estimator results in lower coefficient of variation than the 

ALS estimator, because it assigns higher weights to the samples corresponding to the later 

directions in the sequence. 

 

Table 2. Coefficient of variation of the probability estimate for the noisy LSF example obtained 
with the LS, ALS and CLS estimators. 

 

Sample size 𝑁 LS ALS CLS 

80 1.02 0.50 0.21 
100 0.96 0.32 0.19 
150 0.84 0.21 0.14 
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4.3 SDOF oscillator 

We consider a single degree of freedom (SDOF) oscillator subjected to Gaussian white 

noise excitation: 

𝑥̈(𝑡) + 2𝜂𝜔𝑥̇(𝑡) + 𝜔"𝑥(𝑡) = 𝑓(𝑡)	, (23) 

where 𝜔 is the natural frequency and 𝜂 the damping ratio. The system is assumed to start 

at rest, i.e., 𝑥(0) = 0 and 𝑥̇(0) = 0. The parameters 𝚯 = [𝜔, 𝜂] are modeled as 

independent lognormal random variables; 𝜔 has mean 2𝜋	rad/s and standard deviation 

0.2𝜋	rad/s and 𝜂 has mean 0.05 and standard deviation 0.005. The stochastic excitation 

𝑓(𝑡) has duration 𝑇 = 20s and intensity 𝐼 = 1m" sK⁄ , and is discretized at time intervals 

of Δ𝑡 = 0.01s with 𝑛N = 2001 independent standard normal random variables gathered in 

the vector 𝐔O = [𝑈O,!; … ; 𝑈O,#.], such that 𝑓(𝑡=) = �𝐼 Δ𝑡⁄ 𝑈O,= for 𝑡= = (𝑖 − 1)Δ𝑡. We are 

interested in evaluating the probability of the first passage failure event, defined as: 

𝐹 = �X𝚯, 𝐔OY ∈ ℝ#.E": max
=A!,…,#.

𝑥R𝑡= , 𝚯, 𝐔OS ≥ 𝑥∗�	. (24) 

The first passage probability can be expressed as 

Pr(𝐹) = 8 𝑝%|𝚯(𝜽)𝑓𝚯(𝜽)𝑑𝜽
𝜽∈ℝ#

	, (25) 

where 𝑝%|𝚯(𝜽) = Pr(𝐹|𝚯 = 𝜽) is the conditional probability of 𝐹 given a particular 

outcome 𝜽 of the system parameters and 𝑓𝚯(𝜽) is the joint PDF of 𝚯. The probability 

𝑝%|𝚯(𝜽) consists of a first passage probability of a deterministic linear system subjected to 

Gaussian process excitation and can be evaluated efficiently by application of the 

importance sampling approach of (Au & Beck 2001a). Here, we apply the ALS and CLS 

methods to evaluate the integral of Eq. 25 with 𝑝%|𝚯(𝜽) evaluated with the method of (Au 

& Beck 2001a). To apply this approach, we need to transform Eq. 25 to the form of the 

integral of Eq. 2. This can be done by defining the following LSF (Wen and Chen 1987): 

𝑔(𝜽, 𝑧) = 𝑧 − 𝑝%|𝚯(𝜽) , (26) 

where 𝑧 is the outcome of an auxiliary standard uniform random variable 𝑍. Eq. 26 can be 

expressed in the standard normal space 𝐔 = [𝐔𝜽, 𝑈V] as: 
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 𝐺(𝒖𝜽, 𝑢V) = 𝑢V −Φ.!X𝑝%|𝚯R𝐓.!(𝒖𝜽)SY . (27) 

For an application of LS to this type of problems that does not require a transformation of 

Eq. 25, we refer to (Pradlwarter & Schuëller 2010). The threshold in Eq. 24 is taken as 

𝑥∗ = 0.9, which results in a probability of 4.08 × 10.0, as evaluated by crude MC with 

10W samples. The number of samples for evaluating the conditional probability 𝑝%|𝚯(𝜽) is 

taken as 20, which is reported to be an adequate sample size for obtaining a coefficient of 

variation in the order of 0.2 (Au and Beck 2001a). The initial direction is chosen based on 

a gradient evaluation of the LSF of Eq. 27 at the origin of the 𝐔-space, whereby the gradient 

of 𝑝%|𝚯(𝜽) is estimated with a forward difference scheme with a step of 0.05, which gives 

𝜶! = [−0.573; 0.397;−0.717]. Since the estimator of 𝑝%|𝚯(𝜽) is noisy, the direction 

evaluated with this scheme is likely to be suboptimal. The line search required for each 

sample on the hyperplane is solved using a quadratic fit of the LSF at the line perpendicular 

to the sample using 5 LSF evaluations; this allows coping with the noise of the 𝑝%|𝚯(𝜽) 

estimator. 

Fig. 4 shows the probability estimates obtained with the ALS and CLS estimators for 50 

independent simulation runs with two different sample sizes 𝑁, where the two estimators 

are computed using the same samples and corresponding sequence of directions. It is shown 

that the CLS estimator with the weights of Eq. 20 has significantly lower variability than 

the standard ALS estimator. In some cases, the ALS estimator severely overestimates the 

first-passage probability. The reason is that the initial direction differs significantly from 

the optimal one and thus the initial LS estimators in the combination have large variance. 

The ALS estimator weighs the LS estimators according to their respective number of 

samples. Hence, when the total number of samples is small, all LS estimators receive 

significant weights. Overestimation occurs if a sample drawn perpendicular to a suboptimal 

direction results in small 𝑑= and, hence, large ΦR−𝑑=S. The CLS estimator penalizes the 

directions that point to failure points with large distance to the origin. Hence, the 

contribution of the initial LS estimators to the final probability estimate is small in this 

case. In essence, the weights of Eq. 20 act as a correction to the standard ALS estimator as 

is illustrated in Fig. 4.  
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Table 3 shows the 10- and 90-percentiles of the first-passage probability estimates obtained 

from 50 independent runs with the two estimators and different sample sizes 𝑁. For all 𝑁, 

the intervals are significantly tighter for the CLS estimator. We note that both estimators 

are based on the same samples and corresponding LSF evaluation and thus have the same 

computational cost. 

Table 3. 10- and 90-percentiles of the probability estimates for the SDOF oscillator obtained from 
50 independent simulation runs with the ALS and CLS estimators. The reference value of the 

probability of failure is 4.08 × 10$+ 

 

Sample size 𝑁 ALS CLS 

 [𝑝*/, 𝑝0/] [𝑝*/, 𝑝0/] 

20 [2.09,5.70] × 1012 [2.54,5.21] × 1012 

30 [2.91,5.19] × 1012 [3.31,4.41] × 1012 

50 [2.92,4.68] × 1012 [3.47,4.40] × 1012 

 

5.  Concluding remarks 

This paper revisits the advanced line sampling (ALS) method for reliability assessment. 

We show that the ALS estimator can be interpreted as a special case of a combination of 

line sampling estimators corresponding to important directions chosen adaptively 

throughout the simulation. We introduce an alternative combination that penalizes 

directions pointing to failure points with small likelihood. The proposed approach, termed 

combination line sampling (CLS), is based on the ALS algorithm and only modifies the 

final estimator, without requiring additional limit-state function evaluations. Three 

numerical examples demonstrate that the proposed modification improves significantly the 

performance of the method, especially in cases where the initial direction is poorly chosen. 

In the numerical examples, the different variants of the LS method are applied in low- to 

moderate-dimensional parameter spaces. The standard LS method is known to perform 

well in high-dimensional problems, provided that an appropriate important direction is 

chosen. However, the potential of improving the initial direction through an adaptive 
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process decreases as the dimension of the space increases. Hence, the added value of both 

ALS and CLS is restricted to moderate dimensions.   

The focus of this paper is component problems with mildly nonlinear limit states. Highly 

nonlinear limit-state functions and series system problems with multiple failure modes can 

be treated with LS using several important directions (Schuëller et al. 2004). This approach 

could potentially be combined with an adaptation of the important directions. The 

contribution of each mode to the probability of failure could then be evaluated with the 

CLS estimator. Extensions of the proposed method that could address such problems are 

left to future studies. 

 

 
Figure 4: 50 independent estimates for the SDOF oscillator obtained with the ALS and CLS 

estimators using the same samples. 
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Appendix A 

In this Appendix, we show that the optimal weights for the CLS estimator of Eq. 12, i.e. 

the weights that minimize its variance while ensuring an unbiased estimator, are given by 

the weights of Eq. 16. Through Eq. 13, it is easy to see that the necessary constraint for 

obtaining an unbiased estimator is that the weights sum up to one, i.e. that ∑ 𝑤FH
FA! = 1. 

Therefore, the optimization problem can be stated as follows: 

minimize	W𝑤F"VarX𝑝>?'Y
H

FA!

	 ,	

subject	to:	W𝑤F

H

FA!

= 1	. 

(28) 

The program of Eq. 28 can be solved by the method of Lagrange multipliers. The 

Lagrangian of the problem of Eq. 28 is expressed as 

ℒ(𝒘, 𝜆) = W𝑤F"VarX𝑝>?'Y
H

FA!

+ 𝜆«W𝑤F

H

FA!

− 1¬	,	 (29) 

where 𝒘 = [𝑤!, … , 𝑤H] collects the weights and 𝜆 is the Lagrange multiplier. The first-

order necessary conditions read: 

𝜕 ℒ(𝒘, 𝜆)
𝜕𝑤F

= 0, 𝑘 = 1,… , 𝐾;	
𝜕 ℒ(𝒘, 𝜆)

𝜕𝜆 = 0	.		 (30) 

The first condition gives: 

𝑤F = −
𝜆
2VarX𝑝>?'Y

.!	, 𝑘 = 1,… , 𝐾	.		 (31) 

Substitution of Eq. 31 to the second condition of Eq. 30 gives 

W−
𝜆
2VarX𝑝>?'Y

.!
H

FA!

= 1	,		 (32) 

which results in the following expression for 𝜆 
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𝜆 = −
2

∑ VarX𝑝>?'Y
.!H

FA!

	.		 (33) 

Substituting Eq. 33 to Eq. 31 gives the result of Eq. 16. Since the objective function is 

convex (quadratic in 𝒘) and the constraint is affine, the result of Eq. 16 is the global 

optimum. 

 

Appendix B 

We consider the linear LSF of Eq. 18, repeated here for convenience: 

𝐺(𝒖) = −𝜶𝒖 + 𝛽	, (34) 

with ‖𝜶‖ = 1. The probability of failure associated with this LSF is 𝑝% = Φ(−𝛽). Assume 

that we want to estimate 𝑝% with LS using direction 𝜶F, i.e. based on the estimator of Eq. 

10. At each sample on the hyperplane 𝒖𝜶'
C,= the distance to the limit state surface along 

direction 𝜶F is found through solving 𝐺R𝒖𝜶'
C,= + 𝑑𝜶F4S = 0, which gives 𝑑= =

X.𝜶𝒖𝜶'
4,6

𝜶𝜶'
) 	. The 

sample 𝒖𝜶'
C,= can be expressed in terms of a sample from the independent standard normal 

distribution through Eq. 7. Hence, the random variable representing the distance to the 

failure surface from the hyperplane perpendicular to direction 𝜶F can be expressed as 

𝑑𝜶'(𝐔) =
X.𝜶𝐔EZ𝜶𝜶'

)[𝜶'𝐔
𝜶𝜶'

) . The variance of the LS estimator 𝑝>?' is given by: 

VarX𝑝>?'Y =
Var jΦ k−𝑑𝜶'(𝐔)lm

𝑁F
	. (35) 

Expanding the numerator of Eq. 35, we get 

Var jΦk−𝑑𝜶'(𝐔)lm = E ®Φk−𝑑𝜶'(𝐔)l
"
¯ − E jΦk−𝑑𝜶'(𝐔)lm

"
	. (36) 

It is E jΦ k−𝑑𝜶'(𝐔)lm = 𝑝% = Φ(−𝛽). The first term of the right hand side of Eq. 36 is 
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E 7Φ9−𝑑𝜶!(𝐔)?
-
@ = E AΦB

−𝛽 + 𝜶𝐔− E𝜶𝜶78F𝜶7𝐔
𝜶𝜶78

G
-

H		

= E JPrB𝑈N* ≤
−𝛽 + 𝜶𝐔− E𝜶𝜶78F𝜶7𝐔

𝜶𝜶78
P𝐔GPrB𝑈N- ≤

−𝛽 + 𝜶𝐔− E𝜶𝜶78F𝜶7𝐔
𝜶𝜶78

P𝐔GQ	

= E JPrBR𝑈N* ≤
−𝛽 + 𝜶𝐔− E𝜶𝜶78F𝜶7𝐔

𝜶𝜶78
S ∩ R𝑈N- ≤

−𝛽 + 𝜶𝐔− E𝜶𝜶78F𝜶7𝐔
𝜶𝜶78

S P𝐔GQ	

= Pr BR𝑈N* ≤
−𝛽 + 𝜶𝑼− (𝜶𝜶79)𝜶7𝑼

𝜶𝜶79
S ∩ R𝑈N- ≤

−𝛽 + 𝜶𝑼− (𝜶𝜶79)𝜶7𝑼
𝜶𝜶79

SG	, 

(37) 

where 𝑈°! and 𝑈°" are auxiliary independent standard normal random variables. Define the 

random variables 𝑌²= = 𝜶𝜶F\𝑈°= − 𝜶𝑼 + (𝜶𝜶F\)𝜶F𝑼, 𝑖 = 1,2. The variables 𝑌²= , 𝑖 = 1,2,	are 

binormal, have zero means, unit variances and correlation coefficient 𝜌µ!" = 1 − 𝜶𝜶F4. It 

is: 

E ®Φ k−𝑑𝜶'(𝐔)l
"
¯ = PrR{𝑌²! ≤ −𝛽} ∩ {𝑌²" ≤ −𝛽}S

= Φ"(−𝛽,−𝛽, 𝜌µ!")	, 
(38) 

where Φ"(−𝛽,−𝛽, 𝑟) is the bivariate standard normal CDF with correlation parameter 𝑟. 

The bivariate normal CDF can be expressed in terms of a single-fold integral as follows 

(e.g. Owen 1980): 

Φ"(−𝛽,−𝛽, 𝜌µ!") = Φ(−𝛽)" +8 𝜑"(−𝛽,−𝛽, 𝑟)𝑑𝑟
]̂"#

+
	, (39) 

where 𝜑"(−𝛽,−𝛽, 𝑟) is the bivariate standard normal PDF. Combining Eqs. 36, 38 and 39, 

we get: 

Var jΦk−𝑑𝜶'(𝐔)lm = 8 𝜑"(−𝛽,−𝛽, 𝑟)𝑑𝑟
!.𝜶𝜶'

)

+
	

= 8
1

2𝜋√1 − 𝑟"
exp w−

𝛽"

1 + 𝑟x 𝑑𝑟
!.𝜶𝒂'

)

+
	. 

(40) 
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